2011-04-06 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / predict.c
blobdc1104f850e18a27a0e374b75cc1a7727912fdcc
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* References:
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (int freq)
116 struct cgraph_node *node = cgraph_node (current_function_decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq <= (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128 return false;
129 if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130 return false;
131 return true;
134 /* Return TRUE if frequency FREQ is considered to be hot. */
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
139 if (profile_status != PROFILE_READ)
140 return true;
141 /* Code executed at most once is not hot. */
142 if (profile_info->runs >= count)
143 return false;
144 return (count
145 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
148 /* Return true in case BB can be CPU intensive and should be optimized
149 for maximal performance. */
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
154 if (profile_status == PROFILE_READ)
155 return maybe_hot_count_p (bb->count);
156 return maybe_hot_frequency_p (bb->frequency);
159 /* Return true if the call can be hot. */
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
164 if (profile_info && flag_branch_probabilities
165 && (edge->count
166 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167 return false;
168 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173 return false;
174 if (optimize_size)
175 return false;
176 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177 return true;
178 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180 return false;
181 if (flag_guess_branch_prob
182 && edge->frequency <= (CGRAPH_FREQ_BASE
183 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184 return false;
185 return true;
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
191 bool
192 maybe_hot_edge_p (edge e)
194 if (profile_status == PROFILE_READ)
195 return maybe_hot_count_p (e->count);
196 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
199 /* Return true in case BB is probably never executed. */
200 bool
201 probably_never_executed_bb_p (const_basic_block bb)
203 if (profile_info && flag_branch_probabilities)
204 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
205 if ((!profile_info || !flag_branch_probabilities)
206 && cgraph_node (current_function_decl)->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
207 return true;
208 return false;
211 /* Return true when current function should always be optimized for size. */
213 bool
214 optimize_function_for_size_p (struct function *fun)
216 return (optimize_size
217 || (fun && fun->decl
218 && (cgraph_node (fun->decl)->frequency
219 == NODE_FREQUENCY_UNLIKELY_EXECUTED)));
222 /* Return true when current function should always be optimized for speed. */
224 bool
225 optimize_function_for_speed_p (struct function *fun)
227 return !optimize_function_for_size_p (fun);
230 /* Return TRUE when BB should be optimized for size. */
232 bool
233 optimize_bb_for_size_p (const_basic_block bb)
235 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
238 /* Return TRUE when BB should be optimized for speed. */
240 bool
241 optimize_bb_for_speed_p (const_basic_block bb)
243 return !optimize_bb_for_size_p (bb);
246 /* Return TRUE when BB should be optimized for size. */
248 bool
249 optimize_edge_for_size_p (edge e)
251 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
254 /* Return TRUE when BB should be optimized for speed. */
256 bool
257 optimize_edge_for_speed_p (edge e)
259 return !optimize_edge_for_size_p (e);
262 /* Return TRUE when BB should be optimized for size. */
264 bool
265 optimize_insn_for_size_p (void)
267 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
270 /* Return TRUE when BB should be optimized for speed. */
272 bool
273 optimize_insn_for_speed_p (void)
275 return !optimize_insn_for_size_p ();
278 /* Return TRUE when LOOP should be optimized for size. */
280 bool
281 optimize_loop_for_size_p (struct loop *loop)
283 return optimize_bb_for_size_p (loop->header);
286 /* Return TRUE when LOOP should be optimized for speed. */
288 bool
289 optimize_loop_for_speed_p (struct loop *loop)
291 return optimize_bb_for_speed_p (loop->header);
294 /* Return TRUE when LOOP nest should be optimized for speed. */
296 bool
297 optimize_loop_nest_for_speed_p (struct loop *loop)
299 struct loop *l = loop;
300 if (optimize_loop_for_speed_p (loop))
301 return true;
302 l = loop->inner;
303 while (l && l != loop)
305 if (optimize_loop_for_speed_p (l))
306 return true;
307 if (l->inner)
308 l = l->inner;
309 else if (l->next)
310 l = l->next;
311 else
313 while (l != loop && !l->next)
314 l = loop_outer (l);
315 if (l != loop)
316 l = l->next;
319 return false;
322 /* Return TRUE when LOOP nest should be optimized for size. */
324 bool
325 optimize_loop_nest_for_size_p (struct loop *loop)
327 return !optimize_loop_nest_for_speed_p (loop);
330 /* Return true when edge E is likely to be well predictable by branch
331 predictor. */
333 bool
334 predictable_edge_p (edge e)
336 if (profile_status == PROFILE_ABSENT)
337 return false;
338 if ((e->probability
339 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
340 || (REG_BR_PROB_BASE - e->probability
341 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
342 return true;
343 return false;
347 /* Set RTL expansion for BB profile. */
349 void
350 rtl_profile_for_bb (basic_block bb)
352 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
355 /* Set RTL expansion for edge profile. */
357 void
358 rtl_profile_for_edge (edge e)
360 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
363 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
364 void
365 default_rtl_profile (void)
367 crtl->maybe_hot_insn_p = true;
370 /* Return true if the one of outgoing edges is already predicted by
371 PREDICTOR. */
373 bool
374 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
376 rtx note;
377 if (!INSN_P (BB_END (bb)))
378 return false;
379 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
380 if (REG_NOTE_KIND (note) == REG_BR_PRED
381 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
382 return true;
383 return false;
386 /* This map contains for a basic block the list of predictions for the
387 outgoing edges. */
389 static struct pointer_map_t *bb_predictions;
391 /* Structure representing predictions in tree level. */
393 struct edge_prediction {
394 struct edge_prediction *ep_next;
395 edge ep_edge;
396 enum br_predictor ep_predictor;
397 int ep_probability;
400 /* Return true if the one of outgoing edges is already predicted by
401 PREDICTOR. */
403 bool
404 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
406 struct edge_prediction *i;
407 void **preds = pointer_map_contains (bb_predictions, bb);
409 if (!preds)
410 return false;
412 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
413 if (i->ep_predictor == predictor)
414 return true;
415 return false;
418 /* Return true when the probability of edge is reliable.
420 The profile guessing code is good at predicting branch outcome (ie.
421 taken/not taken), that is predicted right slightly over 75% of time.
422 It is however notoriously poor on predicting the probability itself.
423 In general the profile appear a lot flatter (with probabilities closer
424 to 50%) than the reality so it is bad idea to use it to drive optimization
425 such as those disabling dynamic branch prediction for well predictable
426 branches.
428 There are two exceptions - edges leading to noreturn edges and edges
429 predicted by number of iterations heuristics are predicted well. This macro
430 should be able to distinguish those, but at the moment it simply check for
431 noreturn heuristic that is only one giving probability over 99% or bellow
432 1%. In future we might want to propagate reliability information across the
433 CFG if we find this information useful on multiple places. */
434 static bool
435 probability_reliable_p (int prob)
437 return (profile_status == PROFILE_READ
438 || (profile_status == PROFILE_GUESSED
439 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
442 /* Same predicate as above, working on edges. */
443 bool
444 edge_probability_reliable_p (const_edge e)
446 return probability_reliable_p (e->probability);
449 /* Same predicate as edge_probability_reliable_p, working on notes. */
450 bool
451 br_prob_note_reliable_p (const_rtx note)
453 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
454 return probability_reliable_p (INTVAL (XEXP (note, 0)));
457 static void
458 predict_insn (rtx insn, enum br_predictor predictor, int probability)
460 gcc_assert (any_condjump_p (insn));
461 if (!flag_guess_branch_prob)
462 return;
464 add_reg_note (insn, REG_BR_PRED,
465 gen_rtx_CONCAT (VOIDmode,
466 GEN_INT ((int) predictor),
467 GEN_INT ((int) probability)));
470 /* Predict insn by given predictor. */
472 void
473 predict_insn_def (rtx insn, enum br_predictor predictor,
474 enum prediction taken)
476 int probability = predictor_info[(int) predictor].hitrate;
478 if (taken != TAKEN)
479 probability = REG_BR_PROB_BASE - probability;
481 predict_insn (insn, predictor, probability);
484 /* Predict edge E with given probability if possible. */
486 void
487 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
489 rtx last_insn;
490 last_insn = BB_END (e->src);
492 /* We can store the branch prediction information only about
493 conditional jumps. */
494 if (!any_condjump_p (last_insn))
495 return;
497 /* We always store probability of branching. */
498 if (e->flags & EDGE_FALLTHRU)
499 probability = REG_BR_PROB_BASE - probability;
501 predict_insn (last_insn, predictor, probability);
504 /* Predict edge E with the given PROBABILITY. */
505 void
506 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
508 gcc_assert (profile_status != PROFILE_GUESSED);
509 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
510 && flag_guess_branch_prob && optimize)
512 struct edge_prediction *i = XNEW (struct edge_prediction);
513 void **preds = pointer_map_insert (bb_predictions, e->src);
515 i->ep_next = (struct edge_prediction *) *preds;
516 *preds = i;
517 i->ep_probability = probability;
518 i->ep_predictor = predictor;
519 i->ep_edge = e;
523 /* Remove all predictions on given basic block that are attached
524 to edge E. */
525 void
526 remove_predictions_associated_with_edge (edge e)
528 void **preds;
530 if (!bb_predictions)
531 return;
533 preds = pointer_map_contains (bb_predictions, e->src);
535 if (preds)
537 struct edge_prediction **prediction = (struct edge_prediction **) preds;
538 struct edge_prediction *next;
540 while (*prediction)
542 if ((*prediction)->ep_edge == e)
544 next = (*prediction)->ep_next;
545 free (*prediction);
546 *prediction = next;
548 else
549 prediction = &((*prediction)->ep_next);
554 /* Clears the list of predictions stored for BB. */
556 static void
557 clear_bb_predictions (basic_block bb)
559 void **preds = pointer_map_contains (bb_predictions, bb);
560 struct edge_prediction *pred, *next;
562 if (!preds)
563 return;
565 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
567 next = pred->ep_next;
568 free (pred);
570 *preds = NULL;
573 /* Return true when we can store prediction on insn INSN.
574 At the moment we represent predictions only on conditional
575 jumps, not at computed jump or other complicated cases. */
576 static bool
577 can_predict_insn_p (const_rtx insn)
579 return (JUMP_P (insn)
580 && any_condjump_p (insn)
581 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
584 /* Predict edge E by given predictor if possible. */
586 void
587 predict_edge_def (edge e, enum br_predictor predictor,
588 enum prediction taken)
590 int probability = predictor_info[(int) predictor].hitrate;
592 if (taken != TAKEN)
593 probability = REG_BR_PROB_BASE - probability;
595 predict_edge (e, predictor, probability);
598 /* Invert all branch predictions or probability notes in the INSN. This needs
599 to be done each time we invert the condition used by the jump. */
601 void
602 invert_br_probabilities (rtx insn)
604 rtx note;
606 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
607 if (REG_NOTE_KIND (note) == REG_BR_PROB)
608 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
609 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
610 XEXP (XEXP (note, 0), 1)
611 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
614 /* Dump information about the branch prediction to the output file. */
616 static void
617 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
618 basic_block bb, int used)
620 edge e;
621 edge_iterator ei;
623 if (!file)
624 return;
626 FOR_EACH_EDGE (e, ei, bb->succs)
627 if (! (e->flags & EDGE_FALLTHRU))
628 break;
630 fprintf (file, " %s heuristics%s: %.1f%%",
631 predictor_info[predictor].name,
632 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
634 if (bb->count)
636 fprintf (file, " exec ");
637 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
638 if (e)
640 fprintf (file, " hit ");
641 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
642 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
646 fprintf (file, "\n");
649 /* We can not predict the probabilities of outgoing edges of bb. Set them
650 evenly and hope for the best. */
651 static void
652 set_even_probabilities (basic_block bb)
654 int nedges = 0;
655 edge e;
656 edge_iterator ei;
658 FOR_EACH_EDGE (e, ei, bb->succs)
659 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
660 nedges ++;
661 FOR_EACH_EDGE (e, ei, bb->succs)
662 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
663 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
664 else
665 e->probability = 0;
668 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
669 note if not already present. Remove now useless REG_BR_PRED notes. */
671 static void
672 combine_predictions_for_insn (rtx insn, basic_block bb)
674 rtx prob_note;
675 rtx *pnote;
676 rtx note;
677 int best_probability = PROB_EVEN;
678 enum br_predictor best_predictor = END_PREDICTORS;
679 int combined_probability = REG_BR_PROB_BASE / 2;
680 int d;
681 bool first_match = false;
682 bool found = false;
684 if (!can_predict_insn_p (insn))
686 set_even_probabilities (bb);
687 return;
690 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
691 pnote = &REG_NOTES (insn);
692 if (dump_file)
693 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
694 bb->index);
696 /* We implement "first match" heuristics and use probability guessed
697 by predictor with smallest index. */
698 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
699 if (REG_NOTE_KIND (note) == REG_BR_PRED)
701 enum br_predictor predictor = ((enum br_predictor)
702 INTVAL (XEXP (XEXP (note, 0), 0)));
703 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
705 found = true;
706 if (best_predictor > predictor)
707 best_probability = probability, best_predictor = predictor;
709 d = (combined_probability * probability
710 + (REG_BR_PROB_BASE - combined_probability)
711 * (REG_BR_PROB_BASE - probability));
713 /* Use FP math to avoid overflows of 32bit integers. */
714 if (d == 0)
715 /* If one probability is 0% and one 100%, avoid division by zero. */
716 combined_probability = REG_BR_PROB_BASE / 2;
717 else
718 combined_probability = (((double) combined_probability) * probability
719 * REG_BR_PROB_BASE / d + 0.5);
722 /* Decide which heuristic to use. In case we didn't match anything,
723 use no_prediction heuristic, in case we did match, use either
724 first match or Dempster-Shaffer theory depending on the flags. */
726 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
727 first_match = true;
729 if (!found)
730 dump_prediction (dump_file, PRED_NO_PREDICTION,
731 combined_probability, bb, true);
732 else
734 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
735 bb, !first_match);
736 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
737 bb, first_match);
740 if (first_match)
741 combined_probability = best_probability;
742 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
744 while (*pnote)
746 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
748 enum br_predictor predictor = ((enum br_predictor)
749 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
750 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
752 dump_prediction (dump_file, predictor, probability, bb,
753 !first_match || best_predictor == predictor);
754 *pnote = XEXP (*pnote, 1);
756 else
757 pnote = &XEXP (*pnote, 1);
760 if (!prob_note)
762 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
764 /* Save the prediction into CFG in case we are seeing non-degenerated
765 conditional jump. */
766 if (!single_succ_p (bb))
768 BRANCH_EDGE (bb)->probability = combined_probability;
769 FALLTHRU_EDGE (bb)->probability
770 = REG_BR_PROB_BASE - combined_probability;
773 else if (!single_succ_p (bb))
775 int prob = INTVAL (XEXP (prob_note, 0));
777 BRANCH_EDGE (bb)->probability = prob;
778 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
780 else
781 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
784 /* Combine predictions into single probability and store them into CFG.
785 Remove now useless prediction entries. */
787 static void
788 combine_predictions_for_bb (basic_block bb)
790 int best_probability = PROB_EVEN;
791 enum br_predictor best_predictor = END_PREDICTORS;
792 int combined_probability = REG_BR_PROB_BASE / 2;
793 int d;
794 bool first_match = false;
795 bool found = false;
796 struct edge_prediction *pred;
797 int nedges = 0;
798 edge e, first = NULL, second = NULL;
799 edge_iterator ei;
800 void **preds;
802 FOR_EACH_EDGE (e, ei, bb->succs)
803 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
805 nedges ++;
806 if (first && !second)
807 second = e;
808 if (!first)
809 first = e;
812 /* When there is no successor or only one choice, prediction is easy.
814 We are lazy for now and predict only basic blocks with two outgoing
815 edges. It is possible to predict generic case too, but we have to
816 ignore first match heuristics and do more involved combining. Implement
817 this later. */
818 if (nedges != 2)
820 if (!bb->count)
821 set_even_probabilities (bb);
822 clear_bb_predictions (bb);
823 if (dump_file)
824 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
825 nedges, bb->index);
826 return;
829 if (dump_file)
830 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
832 preds = pointer_map_contains (bb_predictions, bb);
833 if (preds)
835 /* We implement "first match" heuristics and use probability guessed
836 by predictor with smallest index. */
837 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
839 enum br_predictor predictor = pred->ep_predictor;
840 int probability = pred->ep_probability;
842 if (pred->ep_edge != first)
843 probability = REG_BR_PROB_BASE - probability;
845 found = true;
846 /* First match heuristics would be widly confused if we predicted
847 both directions. */
848 if (best_predictor > predictor)
850 struct edge_prediction *pred2;
851 int prob = probability;
853 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
854 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
856 int probability2 = pred->ep_probability;
858 if (pred2->ep_edge != first)
859 probability2 = REG_BR_PROB_BASE - probability2;
861 if ((probability < REG_BR_PROB_BASE / 2) !=
862 (probability2 < REG_BR_PROB_BASE / 2))
863 break;
865 /* If the same predictor later gave better result, go for it! */
866 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
867 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
868 prob = probability2;
870 if (!pred2)
871 best_probability = prob, best_predictor = predictor;
874 d = (combined_probability * probability
875 + (REG_BR_PROB_BASE - combined_probability)
876 * (REG_BR_PROB_BASE - probability));
878 /* Use FP math to avoid overflows of 32bit integers. */
879 if (d == 0)
880 /* If one probability is 0% and one 100%, avoid division by zero. */
881 combined_probability = REG_BR_PROB_BASE / 2;
882 else
883 combined_probability = (((double) combined_probability)
884 * probability
885 * REG_BR_PROB_BASE / d + 0.5);
889 /* Decide which heuristic to use. In case we didn't match anything,
890 use no_prediction heuristic, in case we did match, use either
891 first match or Dempster-Shaffer theory depending on the flags. */
893 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
894 first_match = true;
896 if (!found)
897 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
898 else
900 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
901 !first_match);
902 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
903 first_match);
906 if (first_match)
907 combined_probability = best_probability;
908 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
910 if (preds)
912 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
914 enum br_predictor predictor = pred->ep_predictor;
915 int probability = pred->ep_probability;
917 if (pred->ep_edge != EDGE_SUCC (bb, 0))
918 probability = REG_BR_PROB_BASE - probability;
919 dump_prediction (dump_file, predictor, probability, bb,
920 !first_match || best_predictor == predictor);
923 clear_bb_predictions (bb);
925 if (!bb->count)
927 first->probability = combined_probability;
928 second->probability = REG_BR_PROB_BASE - combined_probability;
932 /* Predict edge probabilities by exploiting loop structure. */
934 static void
935 predict_loops (void)
937 loop_iterator li;
938 struct loop *loop;
940 /* Try to predict out blocks in a loop that are not part of a
941 natural loop. */
942 FOR_EACH_LOOP (li, loop, 0)
944 basic_block bb, *bbs;
945 unsigned j, n_exits;
946 VEC (edge, heap) *exits;
947 struct tree_niter_desc niter_desc;
948 edge ex;
950 exits = get_loop_exit_edges (loop);
951 n_exits = VEC_length (edge, exits);
953 FOR_EACH_VEC_ELT (edge, exits, j, ex)
955 tree niter = NULL;
956 HOST_WIDE_INT nitercst;
957 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
958 int probability;
959 enum br_predictor predictor;
961 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
962 niter = niter_desc.niter;
963 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
964 niter = loop_niter_by_eval (loop, ex);
966 if (TREE_CODE (niter) == INTEGER_CST)
968 if (host_integerp (niter, 1)
969 && compare_tree_int (niter, max-1) == -1)
970 nitercst = tree_low_cst (niter, 1) + 1;
971 else
972 nitercst = max;
973 predictor = PRED_LOOP_ITERATIONS;
975 /* If we have just one exit and we can derive some information about
976 the number of iterations of the loop from the statements inside
977 the loop, use it to predict this exit. */
978 else if (n_exits == 1)
980 nitercst = estimated_loop_iterations_int (loop, false);
981 if (nitercst < 0)
982 continue;
983 if (nitercst > max)
984 nitercst = max;
986 predictor = PRED_LOOP_ITERATIONS_GUESSED;
988 else
989 continue;
991 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
992 predict_edge (ex, predictor, probability);
994 VEC_free (edge, heap, exits);
996 bbs = get_loop_body (loop);
998 for (j = 0; j < loop->num_nodes; j++)
1000 int header_found = 0;
1001 edge e;
1002 edge_iterator ei;
1004 bb = bbs[j];
1006 /* Bypass loop heuristics on continue statement. These
1007 statements construct loops via "non-loop" constructs
1008 in the source language and are better to be handled
1009 separately. */
1010 if (predicted_by_p (bb, PRED_CONTINUE))
1011 continue;
1013 /* Loop branch heuristics - predict an edge back to a
1014 loop's head as taken. */
1015 if (bb == loop->latch)
1017 e = find_edge (loop->latch, loop->header);
1018 if (e)
1020 header_found = 1;
1021 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1025 /* Loop exit heuristics - predict an edge exiting the loop if the
1026 conditional has no loop header successors as not taken. */
1027 if (!header_found
1028 /* If we already used more reliable loop exit predictors, do not
1029 bother with PRED_LOOP_EXIT. */
1030 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1031 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1033 /* For loop with many exits we don't want to predict all exits
1034 with the pretty large probability, because if all exits are
1035 considered in row, the loop would be predicted to iterate
1036 almost never. The code to divide probability by number of
1037 exits is very rough. It should compute the number of exits
1038 taken in each patch through function (not the overall number
1039 of exits that might be a lot higher for loops with wide switch
1040 statements in them) and compute n-th square root.
1042 We limit the minimal probability by 2% to avoid
1043 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1044 as this was causing regression in perl benchmark containing such
1045 a wide loop. */
1047 int probability = ((REG_BR_PROB_BASE
1048 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1049 / n_exits);
1050 if (probability < HITRATE (2))
1051 probability = HITRATE (2);
1052 FOR_EACH_EDGE (e, ei, bb->succs)
1053 if (e->dest->index < NUM_FIXED_BLOCKS
1054 || !flow_bb_inside_loop_p (loop, e->dest))
1055 predict_edge (e, PRED_LOOP_EXIT, probability);
1059 /* Free basic blocks from get_loop_body. */
1060 free (bbs);
1064 /* Attempt to predict probabilities of BB outgoing edges using local
1065 properties. */
1066 static void
1067 bb_estimate_probability_locally (basic_block bb)
1069 rtx last_insn = BB_END (bb);
1070 rtx cond;
1072 if (! can_predict_insn_p (last_insn))
1073 return;
1074 cond = get_condition (last_insn, NULL, false, false);
1075 if (! cond)
1076 return;
1078 /* Try "pointer heuristic."
1079 A comparison ptr == 0 is predicted as false.
1080 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1081 if (COMPARISON_P (cond)
1082 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1083 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1085 if (GET_CODE (cond) == EQ)
1086 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1087 else if (GET_CODE (cond) == NE)
1088 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1090 else
1092 /* Try "opcode heuristic."
1093 EQ tests are usually false and NE tests are usually true. Also,
1094 most quantities are positive, so we can make the appropriate guesses
1095 about signed comparisons against zero. */
1096 switch (GET_CODE (cond))
1098 case CONST_INT:
1099 /* Unconditional branch. */
1100 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1101 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1102 break;
1104 case EQ:
1105 case UNEQ:
1106 /* Floating point comparisons appears to behave in a very
1107 unpredictable way because of special role of = tests in
1108 FP code. */
1109 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1111 /* Comparisons with 0 are often used for booleans and there is
1112 nothing useful to predict about them. */
1113 else if (XEXP (cond, 1) == const0_rtx
1114 || XEXP (cond, 0) == const0_rtx)
1116 else
1117 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1118 break;
1120 case NE:
1121 case LTGT:
1122 /* Floating point comparisons appears to behave in a very
1123 unpredictable way because of special role of = tests in
1124 FP code. */
1125 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1127 /* Comparisons with 0 are often used for booleans and there is
1128 nothing useful to predict about them. */
1129 else if (XEXP (cond, 1) == const0_rtx
1130 || XEXP (cond, 0) == const0_rtx)
1132 else
1133 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1134 break;
1136 case ORDERED:
1137 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1138 break;
1140 case UNORDERED:
1141 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1142 break;
1144 case LE:
1145 case LT:
1146 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1147 || XEXP (cond, 1) == constm1_rtx)
1148 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1149 break;
1151 case GE:
1152 case GT:
1153 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1154 || XEXP (cond, 1) == constm1_rtx)
1155 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1156 break;
1158 default:
1159 break;
1163 /* Set edge->probability for each successor edge of BB. */
1164 void
1165 guess_outgoing_edge_probabilities (basic_block bb)
1167 bb_estimate_probability_locally (bb);
1168 combine_predictions_for_insn (BB_END (bb), bb);
1171 static tree expr_expected_value (tree, bitmap);
1173 /* Helper function for expr_expected_value. */
1175 static tree
1176 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1178 gimple def;
1180 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1182 if (TREE_CONSTANT (op0))
1183 return op0;
1185 if (code != SSA_NAME)
1186 return NULL_TREE;
1188 def = SSA_NAME_DEF_STMT (op0);
1190 /* If we were already here, break the infinite cycle. */
1191 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1192 return NULL;
1194 if (gimple_code (def) == GIMPLE_PHI)
1196 /* All the arguments of the PHI node must have the same constant
1197 length. */
1198 int i, n = gimple_phi_num_args (def);
1199 tree val = NULL, new_val;
1201 for (i = 0; i < n; i++)
1203 tree arg = PHI_ARG_DEF (def, i);
1205 /* If this PHI has itself as an argument, we cannot
1206 determine the string length of this argument. However,
1207 if we can find an expected constant value for the other
1208 PHI args then we can still be sure that this is
1209 likely a constant. So be optimistic and just
1210 continue with the next argument. */
1211 if (arg == PHI_RESULT (def))
1212 continue;
1214 new_val = expr_expected_value (arg, visited);
1215 if (!new_val)
1216 return NULL;
1217 if (!val)
1218 val = new_val;
1219 else if (!operand_equal_p (val, new_val, false))
1220 return NULL;
1222 return val;
1224 if (is_gimple_assign (def))
1226 if (gimple_assign_lhs (def) != op0)
1227 return NULL;
1229 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1230 gimple_assign_rhs1 (def),
1231 gimple_assign_rhs_code (def),
1232 gimple_assign_rhs2 (def),
1233 visited);
1236 if (is_gimple_call (def))
1238 tree decl = gimple_call_fndecl (def);
1239 if (!decl)
1240 return NULL;
1241 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1242 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1244 tree val;
1246 if (gimple_call_num_args (def) != 2)
1247 return NULL;
1248 val = gimple_call_arg (def, 0);
1249 if (TREE_CONSTANT (val))
1250 return val;
1251 return gimple_call_arg (def, 1);
1255 return NULL;
1258 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1260 tree res;
1261 op0 = expr_expected_value (op0, visited);
1262 if (!op0)
1263 return NULL;
1264 op1 = expr_expected_value (op1, visited);
1265 if (!op1)
1266 return NULL;
1267 res = fold_build2 (code, type, op0, op1);
1268 if (TREE_CONSTANT (res))
1269 return res;
1270 return NULL;
1272 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1274 tree res;
1275 op0 = expr_expected_value (op0, visited);
1276 if (!op0)
1277 return NULL;
1278 res = fold_build1 (code, type, op0);
1279 if (TREE_CONSTANT (res))
1280 return res;
1281 return NULL;
1283 return NULL;
1286 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1287 The function is used by builtin_expect branch predictor so the evidence
1288 must come from this construct and additional possible constant folding.
1290 We may want to implement more involved value guess (such as value range
1291 propagation based prediction), but such tricks shall go to new
1292 implementation. */
1294 static tree
1295 expr_expected_value (tree expr, bitmap visited)
1297 enum tree_code code;
1298 tree op0, op1;
1300 if (TREE_CONSTANT (expr))
1301 return expr;
1303 extract_ops_from_tree (expr, &code, &op0, &op1);
1304 return expr_expected_value_1 (TREE_TYPE (expr),
1305 op0, code, op1, visited);
1309 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1310 we no longer need. */
1311 static unsigned int
1312 strip_predict_hints (void)
1314 basic_block bb;
1315 gimple ass_stmt;
1316 tree var;
1318 FOR_EACH_BB (bb)
1320 gimple_stmt_iterator bi;
1321 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1323 gimple stmt = gsi_stmt (bi);
1325 if (gimple_code (stmt) == GIMPLE_PREDICT)
1327 gsi_remove (&bi, true);
1328 continue;
1330 else if (gimple_code (stmt) == GIMPLE_CALL)
1332 tree fndecl = gimple_call_fndecl (stmt);
1334 if (fndecl
1335 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1336 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1337 && gimple_call_num_args (stmt) == 2)
1339 var = gimple_call_lhs (stmt);
1340 if (var)
1342 ass_stmt
1343 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1344 gsi_replace (&bi, ass_stmt, true);
1346 else
1348 gsi_remove (&bi, true);
1349 continue;
1353 gsi_next (&bi);
1356 return 0;
1359 /* Predict using opcode of the last statement in basic block. */
1360 static void
1361 tree_predict_by_opcode (basic_block bb)
1363 gimple stmt = last_stmt (bb);
1364 edge then_edge;
1365 tree op0, op1;
1366 tree type;
1367 tree val;
1368 enum tree_code cmp;
1369 bitmap visited;
1370 edge_iterator ei;
1372 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1373 return;
1374 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1375 if (then_edge->flags & EDGE_TRUE_VALUE)
1376 break;
1377 op0 = gimple_cond_lhs (stmt);
1378 op1 = gimple_cond_rhs (stmt);
1379 cmp = gimple_cond_code (stmt);
1380 type = TREE_TYPE (op0);
1381 visited = BITMAP_ALLOC (NULL);
1382 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1383 BITMAP_FREE (visited);
1384 if (val)
1386 if (integer_zerop (val))
1387 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1388 else
1389 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1390 return;
1392 /* Try "pointer heuristic."
1393 A comparison ptr == 0 is predicted as false.
1394 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1395 if (POINTER_TYPE_P (type))
1397 if (cmp == EQ_EXPR)
1398 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1399 else if (cmp == NE_EXPR)
1400 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1402 else
1404 /* Try "opcode heuristic."
1405 EQ tests are usually false and NE tests are usually true. Also,
1406 most quantities are positive, so we can make the appropriate guesses
1407 about signed comparisons against zero. */
1408 switch (cmp)
1410 case EQ_EXPR:
1411 case UNEQ_EXPR:
1412 /* Floating point comparisons appears to behave in a very
1413 unpredictable way because of special role of = tests in
1414 FP code. */
1415 if (FLOAT_TYPE_P (type))
1417 /* Comparisons with 0 are often used for booleans and there is
1418 nothing useful to predict about them. */
1419 else if (integer_zerop (op0) || integer_zerop (op1))
1421 else
1422 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1423 break;
1425 case NE_EXPR:
1426 case LTGT_EXPR:
1427 /* Floating point comparisons appears to behave in a very
1428 unpredictable way because of special role of = tests in
1429 FP code. */
1430 if (FLOAT_TYPE_P (type))
1432 /* Comparisons with 0 are often used for booleans and there is
1433 nothing useful to predict about them. */
1434 else if (integer_zerop (op0)
1435 || integer_zerop (op1))
1437 else
1438 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1439 break;
1441 case ORDERED_EXPR:
1442 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1443 break;
1445 case UNORDERED_EXPR:
1446 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1447 break;
1449 case LE_EXPR:
1450 case LT_EXPR:
1451 if (integer_zerop (op1)
1452 || integer_onep (op1)
1453 || integer_all_onesp (op1)
1454 || real_zerop (op1)
1455 || real_onep (op1)
1456 || real_minus_onep (op1))
1457 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1458 break;
1460 case GE_EXPR:
1461 case GT_EXPR:
1462 if (integer_zerop (op1)
1463 || integer_onep (op1)
1464 || integer_all_onesp (op1)
1465 || real_zerop (op1)
1466 || real_onep (op1)
1467 || real_minus_onep (op1))
1468 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1469 break;
1471 default:
1472 break;
1476 /* Try to guess whether the value of return means error code. */
1478 static enum br_predictor
1479 return_prediction (tree val, enum prediction *prediction)
1481 /* VOID. */
1482 if (!val)
1483 return PRED_NO_PREDICTION;
1484 /* Different heuristics for pointers and scalars. */
1485 if (POINTER_TYPE_P (TREE_TYPE (val)))
1487 /* NULL is usually not returned. */
1488 if (integer_zerop (val))
1490 *prediction = NOT_TAKEN;
1491 return PRED_NULL_RETURN;
1494 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1496 /* Negative return values are often used to indicate
1497 errors. */
1498 if (TREE_CODE (val) == INTEGER_CST
1499 && tree_int_cst_sgn (val) < 0)
1501 *prediction = NOT_TAKEN;
1502 return PRED_NEGATIVE_RETURN;
1504 /* Constant return values seems to be commonly taken.
1505 Zero/one often represent booleans so exclude them from the
1506 heuristics. */
1507 if (TREE_CONSTANT (val)
1508 && (!integer_zerop (val) && !integer_onep (val)))
1510 *prediction = TAKEN;
1511 return PRED_CONST_RETURN;
1514 return PRED_NO_PREDICTION;
1517 /* Find the basic block with return expression and look up for possible
1518 return value trying to apply RETURN_PREDICTION heuristics. */
1519 static void
1520 apply_return_prediction (void)
1522 gimple return_stmt = NULL;
1523 tree return_val;
1524 edge e;
1525 gimple phi;
1526 int phi_num_args, i;
1527 enum br_predictor pred;
1528 enum prediction direction;
1529 edge_iterator ei;
1531 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1533 return_stmt = last_stmt (e->src);
1534 if (return_stmt
1535 && gimple_code (return_stmt) == GIMPLE_RETURN)
1536 break;
1538 if (!e)
1539 return;
1540 return_val = gimple_return_retval (return_stmt);
1541 if (!return_val)
1542 return;
1543 if (TREE_CODE (return_val) != SSA_NAME
1544 || !SSA_NAME_DEF_STMT (return_val)
1545 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1546 return;
1547 phi = SSA_NAME_DEF_STMT (return_val);
1548 phi_num_args = gimple_phi_num_args (phi);
1549 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1551 /* Avoid the degenerate case where all return values form the function
1552 belongs to same category (ie they are all positive constants)
1553 so we can hardly say something about them. */
1554 for (i = 1; i < phi_num_args; i++)
1555 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1556 break;
1557 if (i != phi_num_args)
1558 for (i = 0; i < phi_num_args; i++)
1560 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1561 if (pred != PRED_NO_PREDICTION)
1562 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1563 direction);
1567 /* Look for basic block that contains unlikely to happen events
1568 (such as noreturn calls) and mark all paths leading to execution
1569 of this basic blocks as unlikely. */
1571 static void
1572 tree_bb_level_predictions (void)
1574 basic_block bb;
1575 bool has_return_edges = false;
1576 edge e;
1577 edge_iterator ei;
1579 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1580 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1582 has_return_edges = true;
1583 break;
1586 apply_return_prediction ();
1588 FOR_EACH_BB (bb)
1590 gimple_stmt_iterator gsi;
1592 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1594 gimple stmt = gsi_stmt (gsi);
1595 tree decl;
1597 if (is_gimple_call (stmt))
1599 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1600 && has_return_edges)
1601 predict_paths_leading_to (bb, PRED_NORETURN,
1602 NOT_TAKEN);
1603 decl = gimple_call_fndecl (stmt);
1604 if (decl
1605 && lookup_attribute ("cold",
1606 DECL_ATTRIBUTES (decl)))
1607 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1608 NOT_TAKEN);
1610 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1612 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1613 gimple_predict_outcome (stmt));
1614 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1615 hints to callers. */
1621 #ifdef ENABLE_CHECKING
1623 /* Callback for pointer_map_traverse, asserts that the pointer map is
1624 empty. */
1626 static bool
1627 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1628 void *data ATTRIBUTE_UNUSED)
1630 gcc_assert (!*value);
1631 return false;
1633 #endif
1635 /* Predict branch probabilities and estimate profile for basic block BB. */
1637 static void
1638 tree_estimate_probability_bb (basic_block bb)
1640 edge e;
1641 edge_iterator ei;
1642 gimple last;
1644 FOR_EACH_EDGE (e, ei, bb->succs)
1646 /* Predict early returns to be probable, as we've already taken
1647 care for error returns and other cases are often used for
1648 fast paths through function.
1650 Since we've already removed the return statements, we are
1651 looking for CFG like:
1653 if (conditional)
1656 goto return_block
1658 some other blocks
1659 return_block:
1660 return_stmt. */
1661 if (e->dest != bb->next_bb
1662 && e->dest != EXIT_BLOCK_PTR
1663 && single_succ_p (e->dest)
1664 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1665 && (last = last_stmt (e->dest)) != NULL
1666 && gimple_code (last) == GIMPLE_RETURN)
1668 edge e1;
1669 edge_iterator ei1;
1671 if (single_succ_p (bb))
1673 FOR_EACH_EDGE (e1, ei1, bb->preds)
1674 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1675 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1676 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1677 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1679 else
1680 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1681 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1682 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1683 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1686 /* Look for block we are guarding (ie we dominate it,
1687 but it doesn't postdominate us). */
1688 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1689 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1690 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1692 gimple_stmt_iterator bi;
1694 /* The call heuristic claims that a guarded function call
1695 is improbable. This is because such calls are often used
1696 to signal exceptional situations such as printing error
1697 messages. */
1698 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1699 gsi_next (&bi))
1701 gimple stmt = gsi_stmt (bi);
1702 if (is_gimple_call (stmt)
1703 /* Constant and pure calls are hardly used to signalize
1704 something exceptional. */
1705 && gimple_has_side_effects (stmt))
1707 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1708 break;
1713 tree_predict_by_opcode (bb);
1716 /* Predict branch probabilities and estimate profile of the tree CFG.
1717 This function can be called from the loop optimizers to recompute
1718 the profile information. */
1720 void
1721 tree_estimate_probability (void)
1723 basic_block bb;
1725 add_noreturn_fake_exit_edges ();
1726 connect_infinite_loops_to_exit ();
1727 /* We use loop_niter_by_eval, which requires that the loops have
1728 preheaders. */
1729 create_preheaders (CP_SIMPLE_PREHEADERS);
1730 calculate_dominance_info (CDI_POST_DOMINATORS);
1732 bb_predictions = pointer_map_create ();
1733 tree_bb_level_predictions ();
1734 record_loop_exits ();
1736 if (number_of_loops () > 1)
1737 predict_loops ();
1739 FOR_EACH_BB (bb)
1740 tree_estimate_probability_bb (bb);
1742 FOR_EACH_BB (bb)
1743 combine_predictions_for_bb (bb);
1745 #ifdef ENABLE_CHECKING
1746 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1747 #endif
1748 pointer_map_destroy (bb_predictions);
1749 bb_predictions = NULL;
1751 estimate_bb_frequencies ();
1752 free_dominance_info (CDI_POST_DOMINATORS);
1753 remove_fake_exit_edges ();
1756 /* Predict branch probabilities and estimate profile of the tree CFG.
1757 This is the driver function for PASS_PROFILE. */
1759 static unsigned int
1760 tree_estimate_probability_driver (void)
1762 unsigned nb_loops;
1764 loop_optimizer_init (0);
1765 if (dump_file && (dump_flags & TDF_DETAILS))
1766 flow_loops_dump (dump_file, NULL, 0);
1768 mark_irreducible_loops ();
1770 nb_loops = number_of_loops ();
1771 if (nb_loops > 1)
1772 scev_initialize ();
1774 tree_estimate_probability ();
1776 if (nb_loops > 1)
1777 scev_finalize ();
1779 loop_optimizer_finalize ();
1780 if (dump_file && (dump_flags & TDF_DETAILS))
1781 gimple_dump_cfg (dump_file, dump_flags);
1782 if (profile_status == PROFILE_ABSENT)
1783 profile_status = PROFILE_GUESSED;
1784 return 0;
1787 /* Predict edges to successors of CUR whose sources are not postdominated by
1788 BB by PRED and recurse to all postdominators. */
1790 static void
1791 predict_paths_for_bb (basic_block cur, basic_block bb,
1792 enum br_predictor pred,
1793 enum prediction taken)
1795 edge e;
1796 edge_iterator ei;
1797 basic_block son;
1799 /* We are looking for all edges forming edge cut induced by
1800 set of all blocks postdominated by BB. */
1801 FOR_EACH_EDGE (e, ei, cur->preds)
1802 if (e->src->index >= NUM_FIXED_BLOCKS
1803 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1805 edge e2;
1806 edge_iterator ei2;
1807 bool found = false;
1809 /* Ignore fake edges and eh, we predict them as not taken anyway. */
1810 if (e->flags & (EDGE_EH | EDGE_FAKE))
1811 continue;
1812 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1814 /* See if there is how many edge from e->src that is not abnormal
1815 and does not lead to BB. */
1816 FOR_EACH_EDGE (e2, ei2, e->src->succs)
1817 if (e2 != e
1818 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
1819 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1821 found = true;
1822 break;
1825 /* If there is non-abnormal path leaving e->src, predict edge
1826 using predictor. Otherwise we need to look for paths
1827 leading to e->src. */
1828 if (found)
1829 predict_edge_def (e, pred, taken);
1830 else
1831 predict_paths_for_bb (e->src, e->src, pred, taken);
1833 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1834 son;
1835 son = next_dom_son (CDI_POST_DOMINATORS, son))
1836 predict_paths_for_bb (son, bb, pred, taken);
1839 /* Sets branch probabilities according to PREDiction and
1840 FLAGS. */
1842 static void
1843 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1844 enum prediction taken)
1846 predict_paths_for_bb (bb, bb, pred, taken);
1849 /* Like predict_paths_leading_to but take edge instead of basic block. */
1851 static void
1852 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
1853 enum prediction taken)
1855 bool has_nonloop_edge = false;
1856 edge_iterator ei;
1857 edge e2;
1859 basic_block bb = e->src;
1860 FOR_EACH_EDGE (e2, ei, bb->succs)
1861 if (e2->dest != e->src && e2->dest != e->dest
1862 && !(e->flags & (EDGE_EH | EDGE_FAKE))
1863 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
1865 has_nonloop_edge = true;
1866 break;
1868 if (!has_nonloop_edge)
1869 predict_paths_for_bb (bb, bb, pred, taken);
1870 else
1871 predict_edge_def (e, pred, taken);
1874 /* This is used to carry information about basic blocks. It is
1875 attached to the AUX field of the standard CFG block. */
1877 typedef struct block_info_def
1879 /* Estimated frequency of execution of basic_block. */
1880 sreal frequency;
1882 /* To keep queue of basic blocks to process. */
1883 basic_block next;
1885 /* Number of predecessors we need to visit first. */
1886 int npredecessors;
1887 } *block_info;
1889 /* Similar information for edges. */
1890 typedef struct edge_info_def
1892 /* In case edge is a loopback edge, the probability edge will be reached
1893 in case header is. Estimated number of iterations of the loop can be
1894 then computed as 1 / (1 - back_edge_prob). */
1895 sreal back_edge_prob;
1896 /* True if the edge is a loopback edge in the natural loop. */
1897 unsigned int back_edge:1;
1898 } *edge_info;
1900 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1901 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1903 /* Helper function for estimate_bb_frequencies.
1904 Propagate the frequencies in blocks marked in
1905 TOVISIT, starting in HEAD. */
1907 static void
1908 propagate_freq (basic_block head, bitmap tovisit)
1910 basic_block bb;
1911 basic_block last;
1912 unsigned i;
1913 edge e;
1914 basic_block nextbb;
1915 bitmap_iterator bi;
1917 /* For each basic block we need to visit count number of his predecessors
1918 we need to visit first. */
1919 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1921 edge_iterator ei;
1922 int count = 0;
1924 bb = BASIC_BLOCK (i);
1926 FOR_EACH_EDGE (e, ei, bb->preds)
1928 bool visit = bitmap_bit_p (tovisit, e->src->index);
1930 if (visit && !(e->flags & EDGE_DFS_BACK))
1931 count++;
1932 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1933 fprintf (dump_file,
1934 "Irreducible region hit, ignoring edge to %i->%i\n",
1935 e->src->index, bb->index);
1937 BLOCK_INFO (bb)->npredecessors = count;
1938 /* When function never returns, we will never process exit block. */
1939 if (!count && bb == EXIT_BLOCK_PTR)
1940 bb->count = bb->frequency = 0;
1943 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1944 last = head;
1945 for (bb = head; bb; bb = nextbb)
1947 edge_iterator ei;
1948 sreal cyclic_probability, frequency;
1950 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1951 memcpy (&frequency, &real_zero, sizeof (real_zero));
1953 nextbb = BLOCK_INFO (bb)->next;
1954 BLOCK_INFO (bb)->next = NULL;
1956 /* Compute frequency of basic block. */
1957 if (bb != head)
1959 #ifdef ENABLE_CHECKING
1960 FOR_EACH_EDGE (e, ei, bb->preds)
1961 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1962 || (e->flags & EDGE_DFS_BACK));
1963 #endif
1965 FOR_EACH_EDGE (e, ei, bb->preds)
1966 if (EDGE_INFO (e)->back_edge)
1968 sreal_add (&cyclic_probability, &cyclic_probability,
1969 &EDGE_INFO (e)->back_edge_prob);
1971 else if (!(e->flags & EDGE_DFS_BACK))
1973 sreal tmp;
1975 /* frequency += (e->probability
1976 * BLOCK_INFO (e->src)->frequency /
1977 REG_BR_PROB_BASE); */
1979 sreal_init (&tmp, e->probability, 0);
1980 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1981 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1982 sreal_add (&frequency, &frequency, &tmp);
1985 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1987 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1988 sizeof (frequency));
1990 else
1992 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1994 memcpy (&cyclic_probability, &real_almost_one,
1995 sizeof (real_almost_one));
1998 /* BLOCK_INFO (bb)->frequency = frequency
1999 / (1 - cyclic_probability) */
2001 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2002 sreal_div (&BLOCK_INFO (bb)->frequency,
2003 &frequency, &cyclic_probability);
2007 bitmap_clear_bit (tovisit, bb->index);
2009 e = find_edge (bb, head);
2010 if (e)
2012 sreal tmp;
2014 /* EDGE_INFO (e)->back_edge_prob
2015 = ((e->probability * BLOCK_INFO (bb)->frequency)
2016 / REG_BR_PROB_BASE); */
2018 sreal_init (&tmp, e->probability, 0);
2019 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2020 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2021 &tmp, &real_inv_br_prob_base);
2024 /* Propagate to successor blocks. */
2025 FOR_EACH_EDGE (e, ei, bb->succs)
2026 if (!(e->flags & EDGE_DFS_BACK)
2027 && BLOCK_INFO (e->dest)->npredecessors)
2029 BLOCK_INFO (e->dest)->npredecessors--;
2030 if (!BLOCK_INFO (e->dest)->npredecessors)
2032 if (!nextbb)
2033 nextbb = e->dest;
2034 else
2035 BLOCK_INFO (last)->next = e->dest;
2037 last = e->dest;
2043 /* Estimate probabilities of loopback edges in loops at same nest level. */
2045 static void
2046 estimate_loops_at_level (struct loop *first_loop)
2048 struct loop *loop;
2050 for (loop = first_loop; loop; loop = loop->next)
2052 edge e;
2053 basic_block *bbs;
2054 unsigned i;
2055 bitmap tovisit = BITMAP_ALLOC (NULL);
2057 estimate_loops_at_level (loop->inner);
2059 /* Find current loop back edge and mark it. */
2060 e = loop_latch_edge (loop);
2061 EDGE_INFO (e)->back_edge = 1;
2063 bbs = get_loop_body (loop);
2064 for (i = 0; i < loop->num_nodes; i++)
2065 bitmap_set_bit (tovisit, bbs[i]->index);
2066 free (bbs);
2067 propagate_freq (loop->header, tovisit);
2068 BITMAP_FREE (tovisit);
2072 /* Propagates frequencies through structure of loops. */
2074 static void
2075 estimate_loops (void)
2077 bitmap tovisit = BITMAP_ALLOC (NULL);
2078 basic_block bb;
2080 /* Start by estimating the frequencies in the loops. */
2081 if (number_of_loops () > 1)
2082 estimate_loops_at_level (current_loops->tree_root->inner);
2084 /* Now propagate the frequencies through all the blocks. */
2085 FOR_ALL_BB (bb)
2087 bitmap_set_bit (tovisit, bb->index);
2089 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2090 BITMAP_FREE (tovisit);
2093 /* Convert counts measured by profile driven feedback to frequencies.
2094 Return nonzero iff there was any nonzero execution count. */
2097 counts_to_freqs (void)
2099 gcov_type count_max, true_count_max = 0;
2100 basic_block bb;
2102 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2103 true_count_max = MAX (bb->count, true_count_max);
2105 count_max = MAX (true_count_max, 1);
2106 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2107 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2109 return true_count_max;
2112 /* Return true if function is likely to be expensive, so there is no point to
2113 optimize performance of prologue, epilogue or do inlining at the expense
2114 of code size growth. THRESHOLD is the limit of number of instructions
2115 function can execute at average to be still considered not expensive. */
2117 bool
2118 expensive_function_p (int threshold)
2120 unsigned int sum = 0;
2121 basic_block bb;
2122 unsigned int limit;
2124 /* We can not compute accurately for large thresholds due to scaled
2125 frequencies. */
2126 gcc_assert (threshold <= BB_FREQ_MAX);
2128 /* Frequencies are out of range. This either means that function contains
2129 internal loop executing more than BB_FREQ_MAX times or profile feedback
2130 is available and function has not been executed at all. */
2131 if (ENTRY_BLOCK_PTR->frequency == 0)
2132 return true;
2134 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2135 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2136 FOR_EACH_BB (bb)
2138 rtx insn;
2140 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2141 insn = NEXT_INSN (insn))
2142 if (active_insn_p (insn))
2144 sum += bb->frequency;
2145 if (sum > limit)
2146 return true;
2150 return false;
2153 /* Estimate basic blocks frequency by given branch probabilities. */
2155 void
2156 estimate_bb_frequencies (void)
2158 basic_block bb;
2159 sreal freq_max;
2161 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2163 static int real_values_initialized = 0;
2165 if (!real_values_initialized)
2167 real_values_initialized = 1;
2168 sreal_init (&real_zero, 0, 0);
2169 sreal_init (&real_one, 1, 0);
2170 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2171 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2172 sreal_init (&real_one_half, 1, -1);
2173 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2174 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2177 mark_dfs_back_edges ();
2179 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2181 /* Set up block info for each basic block. */
2182 alloc_aux_for_blocks (sizeof (struct block_info_def));
2183 alloc_aux_for_edges (sizeof (struct edge_info_def));
2184 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2186 edge e;
2187 edge_iterator ei;
2189 FOR_EACH_EDGE (e, ei, bb->succs)
2191 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2192 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2193 &EDGE_INFO (e)->back_edge_prob,
2194 &real_inv_br_prob_base);
2198 /* First compute probabilities locally for each loop from innermost
2199 to outermost to examine probabilities for back edges. */
2200 estimate_loops ();
2202 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2203 FOR_EACH_BB (bb)
2204 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2205 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2207 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2208 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2210 sreal tmp;
2212 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2213 sreal_add (&tmp, &tmp, &real_one_half);
2214 bb->frequency = sreal_to_int (&tmp);
2217 free_aux_for_blocks ();
2218 free_aux_for_edges ();
2220 compute_function_frequency ();
2223 /* Decide whether function is hot, cold or unlikely executed. */
2224 void
2225 compute_function_frequency (void)
2227 basic_block bb;
2228 struct cgraph_node *node = cgraph_node (current_function_decl);
2229 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2230 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2231 node->only_called_at_startup = true;
2232 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2233 node->only_called_at_exit = true;
2235 if (!profile_info || !flag_branch_probabilities)
2237 int flags = flags_from_decl_or_type (current_function_decl);
2238 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2239 != NULL)
2240 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2241 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2242 != NULL)
2243 node->frequency = NODE_FREQUENCY_HOT;
2244 else if (flags & ECF_NORETURN)
2245 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2246 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2247 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2248 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2249 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2250 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2251 return;
2253 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2254 FOR_EACH_BB (bb)
2256 if (maybe_hot_bb_p (bb))
2258 node->frequency = NODE_FREQUENCY_HOT;
2259 return;
2261 if (!probably_never_executed_bb_p (bb))
2262 node->frequency = NODE_FREQUENCY_NORMAL;
2266 static bool
2267 gate_estimate_probability (void)
2269 return flag_guess_branch_prob;
2272 /* Build PREDICT_EXPR. */
2273 tree
2274 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2276 tree t = build1 (PREDICT_EXPR, void_type_node,
2277 build_int_cst (NULL, predictor));
2278 SET_PREDICT_EXPR_OUTCOME (t, taken);
2279 return t;
2282 const char *
2283 predictor_name (enum br_predictor predictor)
2285 return predictor_info[predictor].name;
2288 struct gimple_opt_pass pass_profile =
2291 GIMPLE_PASS,
2292 "profile", /* name */
2293 gate_estimate_probability, /* gate */
2294 tree_estimate_probability_driver, /* execute */
2295 NULL, /* sub */
2296 NULL, /* next */
2297 0, /* static_pass_number */
2298 TV_BRANCH_PROB, /* tv_id */
2299 PROP_cfg, /* properties_required */
2300 0, /* properties_provided */
2301 0, /* properties_destroyed */
2302 0, /* todo_flags_start */
2303 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2307 struct gimple_opt_pass pass_strip_predict_hints =
2310 GIMPLE_PASS,
2311 "*strip_predict_hints", /* name */
2312 NULL, /* gate */
2313 strip_predict_hints, /* execute */
2314 NULL, /* sub */
2315 NULL, /* next */
2316 0, /* static_pass_number */
2317 TV_BRANCH_PROB, /* tv_id */
2318 PROP_cfg, /* properties_required */
2319 0, /* properties_provided */
2320 0, /* properties_destroyed */
2321 0, /* todo_flags_start */
2322 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2326 /* Rebuild function frequencies. Passes are in general expected to
2327 maintain profile by hand, however in some cases this is not possible:
2328 for example when inlining several functions with loops freuqencies might run
2329 out of scale and thus needs to be recomputed. */
2331 void
2332 rebuild_frequencies (void)
2334 timevar_push (TV_REBUILD_FREQUENCIES);
2335 if (profile_status == PROFILE_GUESSED)
2337 loop_optimizer_init (0);
2338 add_noreturn_fake_exit_edges ();
2339 mark_irreducible_loops ();
2340 connect_infinite_loops_to_exit ();
2341 estimate_bb_frequencies ();
2342 remove_fake_exit_edges ();
2343 loop_optimizer_finalize ();
2345 else if (profile_status == PROFILE_READ)
2346 counts_to_freqs ();
2347 else
2348 gcc_unreachable ();
2349 timevar_pop (TV_REBUILD_FREQUENCIES);