2001-03-22 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / gcc / function.c
blobe8e35aee5a552f428dc52c7be47619e61ba5f2cd
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "obstack.h"
56 #include "toplev.h"
57 #include "hash.h"
58 #include "ggc.h"
59 #include "tm_p.h"
61 #ifndef TRAMPOLINE_ALIGNMENT
62 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
63 #endif
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
70 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
71 #endif
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #define SYMBOL__MAIN __main
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
92 during rtl generation. If they are different register numbers, this is
93 always true. It may also be true if
94 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
95 generation. See fix_lexical_addr for details. */
97 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
98 #define NEED_SEPARATE_AP
99 #endif
101 /* Nonzero if function being compiled doesn't contain any calls
102 (ignoring the prologue and epilogue). This is set prior to
103 local register allocation and is valid for the remaining
104 compiler passes. */
105 int current_function_is_leaf;
107 /* Nonzero if function being compiled doesn't contain any instructions
108 that can throw an exception. This is set prior to final. */
110 int current_function_nothrow;
112 /* Nonzero if function being compiled doesn't modify the stack pointer
113 (ignoring the prologue and epilogue). This is only valid after
114 life_analysis has run. */
115 int current_function_sp_is_unchanging;
117 /* Nonzero if the function being compiled is a leaf function which only
118 uses leaf registers. This is valid after reload (specifically after
119 sched2) and is useful only if the port defines LEAF_REGISTERS. */
120 int current_function_uses_only_leaf_regs;
122 /* Nonzero once virtual register instantiation has been done.
123 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
124 static int virtuals_instantiated;
126 /* These variables hold pointers to functions to create and destroy
127 target specific, per-function data structures. */
128 void (*init_machine_status) PARAMS ((struct function *));
129 void (*free_machine_status) PARAMS ((struct function *));
130 /* This variable holds a pointer to a function to register any
131 data items in the target specific, per-function data structure
132 that will need garbage collection. */
133 void (*mark_machine_status) PARAMS ((struct function *));
135 /* Likewise, but for language-specific data. */
136 void (*init_lang_status) PARAMS ((struct function *));
137 void (*save_lang_status) PARAMS ((struct function *));
138 void (*restore_lang_status) PARAMS ((struct function *));
139 void (*mark_lang_status) PARAMS ((struct function *));
140 void (*free_lang_status) PARAMS ((struct function *));
142 /* The FUNCTION_DECL for an inline function currently being expanded. */
143 tree inline_function_decl;
145 /* The currently compiled function. */
146 struct function *cfun = 0;
148 /* Global list of all compiled functions. */
149 struct function *all_functions = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static varray_type prologue;
153 static varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Non-zero if this temporary is currently in use. */
198 char in_use;
199 /* Non-zero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Non-zero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry {
226 /* The KEY in HE will be a MEM. */
227 struct hash_entry he;
228 /* These are the INSNS which reference the MEM. */
229 rtx insns;
232 /* Forward declarations. */
234 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
235 int, struct function *));
236 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
237 HOST_WIDE_INT, int, tree));
238 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
239 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
240 enum machine_mode, enum machine_mode,
241 int, unsigned int, int,
242 struct hash_table *));
243 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
244 enum machine_mode,
245 struct hash_table *));
246 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
247 struct hash_table *));
248 static struct fixup_replacement
249 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
250 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
251 int, int));
252 static void fixup_var_refs_insns_with_hash
253 PARAMS ((struct hash_table *, rtx,
254 enum machine_mode, int));
255 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
256 int, int));
257 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
258 struct fixup_replacement **));
259 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
260 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
262 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
263 static void instantiate_decls PARAMS ((tree, int));
264 static void instantiate_decls_1 PARAMS ((tree, int));
265 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
266 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
267 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
268 static void delete_handlers PARAMS ((void));
269 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
270 struct args_size *));
271 #ifndef ARGS_GROW_DOWNWARD
272 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
273 tree));
274 #endif
275 static rtx round_trampoline_addr PARAMS ((rtx));
276 static rtx adjust_trampoline_addr PARAMS ((rtx));
277 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
278 static void reorder_blocks_0 PARAMS ((rtx));
279 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
280 static tree blocks_nreverse PARAMS ((tree));
281 static int all_blocks PARAMS ((tree, tree *));
282 static tree *get_block_vector PARAMS ((tree, int *));
283 /* We always define `record_insns' even if its not used so that we
284 can always export `prologue_epilogue_contains'. */
285 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
286 static int contains PARAMS ((rtx, varray_type));
287 #ifdef HAVE_return
288 static void emit_return_into_block PARAMS ((basic_block, rtx));
289 #endif
290 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
291 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
292 struct hash_table *));
293 static void purge_single_hard_subreg_set PARAMS ((rtx));
294 #ifdef HAVE_epilogue
295 static void keep_stack_depressed PARAMS ((rtx));
296 #endif
297 static int is_addressof PARAMS ((rtx *, void *));
298 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
299 struct hash_table *,
300 hash_table_key));
301 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
302 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
303 static int insns_for_mem_walk PARAMS ((rtx *, void *));
304 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
305 static void mark_temp_slot PARAMS ((struct temp_slot *));
306 static void mark_function_status PARAMS ((struct function *));
307 static void mark_function_chain PARAMS ((void *));
308 static void prepare_function_start PARAMS ((void));
309 static void do_clobber_return_reg PARAMS ((rtx, void *));
310 static void do_use_return_reg PARAMS ((rtx, void *));
312 /* Pointer to chain of `struct function' for containing functions. */
313 struct function *outer_function_chain;
315 /* Given a function decl for a containing function,
316 return the `struct function' for it. */
318 struct function *
319 find_function_data (decl)
320 tree decl;
322 struct function *p;
324 for (p = outer_function_chain; p; p = p->next)
325 if (p->decl == decl)
326 return p;
328 abort ();
331 /* Save the current context for compilation of a nested function.
332 This is called from language-specific code. The caller should use
333 the save_lang_status callback to save any language-specific state,
334 since this function knows only about language-independent
335 variables. */
337 void
338 push_function_context_to (context)
339 tree context;
341 struct function *p, *context_data;
343 if (context)
345 context_data = (context == current_function_decl
346 ? cfun
347 : find_function_data (context));
348 context_data->contains_functions = 1;
351 if (cfun == 0)
352 init_dummy_function_start ();
353 p = cfun;
355 p->next = outer_function_chain;
356 outer_function_chain = p;
357 p->fixup_var_refs_queue = 0;
359 if (save_lang_status)
360 (*save_lang_status) (p);
362 cfun = 0;
365 void
366 push_function_context ()
368 push_function_context_to (current_function_decl);
371 /* Restore the last saved context, at the end of a nested function.
372 This function is called from language-specific code. */
374 void
375 pop_function_context_from (context)
376 tree context ATTRIBUTE_UNUSED;
378 struct function *p = outer_function_chain;
379 struct var_refs_queue *queue;
380 struct var_refs_queue *next;
382 cfun = p;
383 outer_function_chain = p->next;
385 current_function_decl = p->decl;
386 reg_renumber = 0;
388 restore_emit_status (p);
390 if (restore_lang_status)
391 (*restore_lang_status) (p);
393 /* Finish doing put_var_into_stack for any of our variables
394 which became addressable during the nested function. */
395 for (queue = p->fixup_var_refs_queue; queue; queue = next)
397 next = queue->next;
398 fixup_var_refs (queue->modified, queue->promoted_mode,
399 queue->unsignedp, 0);
400 free (queue);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context ()
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (f)
422 struct function *f;
424 /* f->expr->forced_labels is used by code generation. */
425 /* f->emit->regno_reg_rtx is used by code generation. */
426 /* f->varasm is used by code generation. */
427 /* f->eh->eh_return_stub_label is used by code generation. */
429 if (free_lang_status)
430 (*free_lang_status) (f);
431 free_stmt_status (f);
434 /* Clear out all parts of the state in F that can safely be discarded
435 after the function has been compiled, to let garbage collection
436 reclaim the memory. */
438 void
439 free_after_compilation (f)
440 struct function *f;
442 struct temp_slot *ts;
443 struct temp_slot *next;
445 free_eh_status (f);
446 free_expr_status (f);
447 free_emit_status (f);
448 free_varasm_status (f);
450 if (free_machine_status)
451 (*free_machine_status) (f);
453 if (f->x_parm_reg_stack_loc)
454 free (f->x_parm_reg_stack_loc);
456 for (ts = f->x_temp_slots; ts; ts = next)
458 next = ts->next;
459 free (ts);
461 f->x_temp_slots = NULL;
463 f->arg_offset_rtx = NULL;
464 f->return_rtx = NULL;
465 f->internal_arg_pointer = NULL;
466 f->x_nonlocal_labels = NULL;
467 f->x_nonlocal_goto_handler_slots = NULL;
468 f->x_nonlocal_goto_handler_labels = NULL;
469 f->x_nonlocal_goto_stack_level = NULL;
470 f->x_cleanup_label = NULL;
471 f->x_return_label = NULL;
472 f->x_save_expr_regs = NULL;
473 f->x_stack_slot_list = NULL;
474 f->x_rtl_expr_chain = NULL;
475 f->x_tail_recursion_label = NULL;
476 f->x_tail_recursion_reentry = NULL;
477 f->x_arg_pointer_save_area = NULL;
478 f->x_clobber_return_insn = NULL;
479 f->x_context_display = NULL;
480 f->x_trampoline_list = NULL;
481 f->x_parm_birth_insn = NULL;
482 f->x_last_parm_insn = NULL;
483 f->x_parm_reg_stack_loc = NULL;
484 f->fixup_var_refs_queue = NULL;
485 f->original_arg_vector = NULL;
486 f->original_decl_initial = NULL;
487 f->inl_last_parm_insn = NULL;
488 f->epilogue_delay_list = NULL;
491 /* Allocate fixed slots in the stack frame of the current function. */
493 /* Return size needed for stack frame based on slots so far allocated in
494 function F.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
498 HOST_WIDE_INT
499 get_func_frame_size (f)
500 struct function *f;
502 #ifdef FRAME_GROWS_DOWNWARD
503 return -f->x_frame_offset;
504 #else
505 return f->x_frame_offset;
506 #endif
509 /* Return size needed for stack frame based on slots so far allocated.
510 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
511 the caller may have to do that. */
512 HOST_WIDE_INT
513 get_frame_size ()
515 return get_func_frame_size (cfun);
518 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
519 with machine mode MODE.
521 ALIGN controls the amount of alignment for the address of the slot:
522 0 means according to MODE,
523 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
524 positive specifies alignment boundary in bits.
526 We do not round to stack_boundary here.
528 FUNCTION specifies the function to allocate in. */
530 static rtx
531 assign_stack_local_1 (mode, size, align, function)
532 enum machine_mode mode;
533 HOST_WIDE_INT size;
534 int align;
535 struct function *function;
537 register rtx x, addr;
538 int bigend_correction = 0;
539 int alignment;
541 if (align == 0)
543 tree type;
545 if (mode == BLKmode)
546 alignment = BIGGEST_ALIGNMENT;
547 else
548 alignment = GET_MODE_ALIGNMENT (mode);
550 /* Allow the target to (possibly) increase the alignment of this
551 stack slot. */
552 type = type_for_mode (mode, 0);
553 if (type)
554 alignment = LOCAL_ALIGNMENT (type, alignment);
556 alignment /= BITS_PER_UNIT;
558 else if (align == -1)
560 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
561 size = CEIL_ROUND (size, alignment);
563 else
564 alignment = align / BITS_PER_UNIT;
566 #ifdef FRAME_GROWS_DOWNWARD
567 function->x_frame_offset -= size;
568 #endif
570 /* Ignore alignment we can't do with expected alignment of the boundary. */
571 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
572 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
574 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
575 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
577 /* Round frame offset to that alignment.
578 We must be careful here, since FRAME_OFFSET might be negative and
579 division with a negative dividend isn't as well defined as we might
580 like. So we instead assume that ALIGNMENT is a power of two and
581 use logical operations which are unambiguous. */
582 #ifdef FRAME_GROWS_DOWNWARD
583 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
584 #else
585 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
586 #endif
588 /* On a big-endian machine, if we are allocating more space than we will use,
589 use the least significant bytes of those that are allocated. */
590 if (BYTES_BIG_ENDIAN && mode != BLKmode)
591 bigend_correction = size - GET_MODE_SIZE (mode);
593 /* If we have already instantiated virtual registers, return the actual
594 address relative to the frame pointer. */
595 if (function == cfun && virtuals_instantiated)
596 addr = plus_constant (frame_pointer_rtx,
597 (frame_offset + bigend_correction
598 + STARTING_FRAME_OFFSET));
599 else
600 addr = plus_constant (virtual_stack_vars_rtx,
601 function->x_frame_offset + bigend_correction);
603 #ifndef FRAME_GROWS_DOWNWARD
604 function->x_frame_offset += size;
605 #endif
607 x = gen_rtx_MEM (mode, addr);
609 function->x_stack_slot_list
610 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
612 return x;
615 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
616 current function. */
619 assign_stack_local (mode, size, align)
620 enum machine_mode mode;
621 HOST_WIDE_INT size;
622 int align;
624 return assign_stack_local_1 (mode, size, align, cfun);
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
630 MODE is the machine mode to be given to the returned rtx.
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
642 TYPE is the type that will be used for the stack slot. */
644 static rtx
645 assign_stack_temp_for_type (mode, size, keep, type)
646 enum machine_mode mode;
647 HOST_WIDE_INT size;
648 int keep;
649 tree type;
651 int align;
652 struct temp_slot *p, *best_p = 0;
654 /* If SIZE is -1 it means that somebody tried to allocate a temporary
655 of a variable size. */
656 if (size == -1)
657 abort ();
659 if (mode == BLKmode)
660 align = BIGGEST_ALIGNMENT;
661 else
662 align = GET_MODE_ALIGNMENT (mode);
664 if (! type)
665 type = type_for_mode (mode, 0);
667 if (type)
668 align = LOCAL_ALIGNMENT (type, align);
670 /* Try to find an available, already-allocated temporary of the proper
671 mode which meets the size and alignment requirements. Choose the
672 smallest one with the closest alignment. */
673 for (p = temp_slots; p; p = p->next)
674 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
675 && ! p->in_use
676 && objects_must_conflict_p (p->type, type)
677 && (best_p == 0 || best_p->size > p->size
678 || (best_p->size == p->size && best_p->align > p->align)))
680 if (p->align == align && p->size == size)
682 best_p = 0;
683 break;
685 best_p = p;
688 /* Make our best, if any, the one to use. */
689 if (best_p)
691 /* If there are enough aligned bytes left over, make them into a new
692 temp_slot so that the extra bytes don't get wasted. Do this only
693 for BLKmode slots, so that we can be sure of the alignment. */
694 if (GET_MODE (best_p->slot) == BLKmode)
696 int alignment = best_p->align / BITS_PER_UNIT;
697 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
699 if (best_p->size - rounded_size >= alignment)
701 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
702 p->in_use = p->addr_taken = 0;
703 p->size = best_p->size - rounded_size;
704 p->base_offset = best_p->base_offset + rounded_size;
705 p->full_size = best_p->full_size - rounded_size;
706 p->slot = gen_rtx_MEM (BLKmode,
707 plus_constant (XEXP (best_p->slot, 0),
708 rounded_size));
709 p->align = best_p->align;
710 p->address = 0;
711 p->rtl_expr = 0;
712 p->type = best_p->type;
713 p->next = temp_slots;
714 temp_slots = p;
716 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
717 stack_slot_list);
719 best_p->size = rounded_size;
720 best_p->full_size = rounded_size;
724 p = best_p;
727 /* If we still didn't find one, make a new temporary. */
728 if (p == 0)
730 HOST_WIDE_INT frame_offset_old = frame_offset;
732 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
734 /* We are passing an explicit alignment request to assign_stack_local.
735 One side effect of that is assign_stack_local will not round SIZE
736 to ensure the frame offset remains suitably aligned.
738 So for requests which depended on the rounding of SIZE, we go ahead
739 and round it now. We also make sure ALIGNMENT is at least
740 BIGGEST_ALIGNMENT. */
741 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
742 abort();
743 p->slot = assign_stack_local (mode,
744 (mode == BLKmode
745 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
746 : size),
747 align);
749 p->align = align;
751 /* The following slot size computation is necessary because we don't
752 know the actual size of the temporary slot until assign_stack_local
753 has performed all the frame alignment and size rounding for the
754 requested temporary. Note that extra space added for alignment
755 can be either above or below this stack slot depending on which
756 way the frame grows. We include the extra space if and only if it
757 is above this slot. */
758 #ifdef FRAME_GROWS_DOWNWARD
759 p->size = frame_offset_old - frame_offset;
760 #else
761 p->size = size;
762 #endif
764 /* Now define the fields used by combine_temp_slots. */
765 #ifdef FRAME_GROWS_DOWNWARD
766 p->base_offset = frame_offset;
767 p->full_size = frame_offset_old - frame_offset;
768 #else
769 p->base_offset = frame_offset_old;
770 p->full_size = frame_offset - frame_offset_old;
771 #endif
772 p->address = 0;
773 p->next = temp_slots;
774 temp_slots = p;
777 p->in_use = 1;
778 p->addr_taken = 0;
779 p->rtl_expr = seq_rtl_expr;
780 p->type = type;
782 if (keep == 2)
784 p->level = target_temp_slot_level;
785 p->keep = 0;
787 else if (keep == 3)
789 p->level = var_temp_slot_level;
790 p->keep = 0;
792 else
794 p->level = temp_slot_level;
795 p->keep = keep;
798 /* We may be reusing an old slot, so clear any MEM flags that may have been
799 set from before. */
800 RTX_UNCHANGING_P (p->slot) = 0;
801 MEM_IN_STRUCT_P (p->slot) = 0;
802 MEM_SCALAR_P (p->slot) = 0;
803 MEM_VOLATILE_P (p->slot) = 0;
805 /* If we know the alias set for the memory that will be used, use
806 it. If there's no TYPE, then we don't know anything about the
807 alias set for the memory. */
808 if (type)
809 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
810 else
811 MEM_ALIAS_SET (p->slot) = 0;
813 /* If a type is specified, set the relevant flags. */
814 if (type != 0)
816 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
817 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
818 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
821 return p->slot;
824 /* Allocate a temporary stack slot and record it for possible later
825 reuse. First three arguments are same as in preceding function. */
828 assign_stack_temp (mode, size, keep)
829 enum machine_mode mode;
830 HOST_WIDE_INT size;
831 int keep;
833 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
836 /* Assign a temporary of given TYPE.
837 KEEP is as for assign_stack_temp.
838 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
839 it is 0 if a register is OK.
840 DONT_PROMOTE is 1 if we should not promote values in register
841 to wider modes. */
844 assign_temp (type, keep, memory_required, dont_promote)
845 tree type;
846 int keep;
847 int memory_required;
848 int dont_promote ATTRIBUTE_UNUSED;
850 enum machine_mode mode = TYPE_MODE (type);
851 #ifndef PROMOTE_FOR_CALL_ONLY
852 int unsignedp = TREE_UNSIGNED (type);
853 #endif
855 if (mode == BLKmode || memory_required)
857 HOST_WIDE_INT size = int_size_in_bytes (type);
858 rtx tmp;
860 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
861 problems with allocating the stack space. */
862 if (size == 0)
863 size = 1;
865 /* Unfortunately, we don't yet know how to allocate variable-sized
866 temporaries. However, sometimes we have a fixed upper limit on
867 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
868 instead. This is the case for Chill variable-sized strings. */
869 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
870 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
871 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
872 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
874 tmp = assign_stack_temp_for_type (mode, size, keep, type);
875 return tmp;
878 #ifndef PROMOTE_FOR_CALL_ONLY
879 if (! dont_promote)
880 mode = promote_mode (type, mode, &unsignedp, 0);
881 #endif
883 return gen_reg_rtx (mode);
886 /* Combine temporary stack slots which are adjacent on the stack.
888 This allows for better use of already allocated stack space. This is only
889 done for BLKmode slots because we can be sure that we won't have alignment
890 problems in this case. */
892 void
893 combine_temp_slots ()
895 struct temp_slot *p, *q;
896 struct temp_slot *prev_p, *prev_q;
897 int num_slots;
899 /* We can't combine slots, because the information about which slot
900 is in which alias set will be lost. */
901 if (flag_strict_aliasing)
902 return;
904 /* If there are a lot of temp slots, don't do anything unless
905 high levels of optimizaton. */
906 if (! flag_expensive_optimizations)
907 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
908 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
909 return;
911 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
913 int delete_p = 0;
915 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
916 for (q = p->next, prev_q = p; q; q = prev_q->next)
918 int delete_q = 0;
919 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
921 if (p->base_offset + p->full_size == q->base_offset)
923 /* Q comes after P; combine Q into P. */
924 p->size += q->size;
925 p->full_size += q->full_size;
926 delete_q = 1;
928 else if (q->base_offset + q->full_size == p->base_offset)
930 /* P comes after Q; combine P into Q. */
931 q->size += p->size;
932 q->full_size += p->full_size;
933 delete_p = 1;
934 break;
937 /* Either delete Q or advance past it. */
938 if (delete_q)
940 prev_q->next = q->next;
941 free (q);
943 else
944 prev_q = q;
946 /* Either delete P or advance past it. */
947 if (delete_p)
949 if (prev_p)
950 prev_p->next = p->next;
951 else
952 temp_slots = p->next;
954 else
955 prev_p = p;
959 /* Find the temp slot corresponding to the object at address X. */
961 static struct temp_slot *
962 find_temp_slot_from_address (x)
963 rtx x;
965 struct temp_slot *p;
966 rtx next;
968 for (p = temp_slots; p; p = p->next)
970 if (! p->in_use)
971 continue;
973 else if (XEXP (p->slot, 0) == x
974 || p->address == x
975 || (GET_CODE (x) == PLUS
976 && XEXP (x, 0) == virtual_stack_vars_rtx
977 && GET_CODE (XEXP (x, 1)) == CONST_INT
978 && INTVAL (XEXP (x, 1)) >= p->base_offset
979 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
980 return p;
982 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
983 for (next = p->address; next; next = XEXP (next, 1))
984 if (XEXP (next, 0) == x)
985 return p;
988 /* If we have a sum involving a register, see if it points to a temp
989 slot. */
990 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
991 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
992 return p;
993 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
994 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
995 return p;
997 return 0;
1000 /* Indicate that NEW is an alternate way of referring to the temp slot
1001 that previously was known by OLD. */
1003 void
1004 update_temp_slot_address (old, new)
1005 rtx old, new;
1007 struct temp_slot *p;
1009 if (rtx_equal_p (old, new))
1010 return;
1012 p = find_temp_slot_from_address (old);
1014 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1015 is a register, see if one operand of the PLUS is a temporary
1016 location. If so, NEW points into it. Otherwise, if both OLD and
1017 NEW are a PLUS and if there is a register in common between them.
1018 If so, try a recursive call on those values. */
1019 if (p == 0)
1021 if (GET_CODE (old) != PLUS)
1022 return;
1024 if (GET_CODE (new) == REG)
1026 update_temp_slot_address (XEXP (old, 0), new);
1027 update_temp_slot_address (XEXP (old, 1), new);
1028 return;
1030 else if (GET_CODE (new) != PLUS)
1031 return;
1033 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1034 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1035 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1038 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1039 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1042 return;
1045 /* Otherwise add an alias for the temp's address. */
1046 else if (p->address == 0)
1047 p->address = new;
1048 else
1050 if (GET_CODE (p->address) != EXPR_LIST)
1051 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1057 /* If X could be a reference to a temporary slot, mark the fact that its
1058 address was taken. */
1060 void
1061 mark_temp_addr_taken (x)
1062 rtx x;
1064 struct temp_slot *p;
1066 if (x == 0)
1067 return;
1069 /* If X is not in memory or is at a constant address, it cannot be in
1070 a temporary slot. */
1071 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1072 return;
1074 p = find_temp_slot_from_address (XEXP (x, 0));
1075 if (p != 0)
1076 p->addr_taken = 1;
1079 /* If X could be a reference to a temporary slot, mark that slot as
1080 belonging to the to one level higher than the current level. If X
1081 matched one of our slots, just mark that one. Otherwise, we can't
1082 easily predict which it is, so upgrade all of them. Kept slots
1083 need not be touched.
1085 This is called when an ({...}) construct occurs and a statement
1086 returns a value in memory. */
1088 void
1089 preserve_temp_slots (x)
1090 rtx x;
1092 struct temp_slot *p = 0;
1094 /* If there is no result, we still might have some objects whose address
1095 were taken, so we need to make sure they stay around. */
1096 if (x == 0)
1098 for (p = temp_slots; p; p = p->next)
1099 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1100 p->level--;
1102 return;
1105 /* If X is a register that is being used as a pointer, see if we have
1106 a temporary slot we know it points to. To be consistent with
1107 the code below, we really should preserve all non-kept slots
1108 if we can't find a match, but that seems to be much too costly. */
1109 if (GET_CODE (x) == REG && REG_POINTER (x))
1110 p = find_temp_slot_from_address (x);
1112 /* If X is not in memory or is at a constant address, it cannot be in
1113 a temporary slot, but it can contain something whose address was
1114 taken. */
1115 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1117 for (p = temp_slots; p; p = p->next)
1118 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1119 p->level--;
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = temp_slots; q; q = q->next)
1137 if (q != p && q->addr_taken && q->level == p->level)
1138 q->level--;
1140 p->level--;
1141 p->addr_taken = 0;
1143 return;
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = temp_slots; p; p = p->next)
1148 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1149 p->level--;
1152 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1153 with that RTL_EXPR, promote it into a temporary slot at the present
1154 level so it will not be freed when we free slots made in the
1155 RTL_EXPR. */
1157 void
1158 preserve_rtl_expr_result (x)
1159 rtx x;
1161 struct temp_slot *p;
1163 /* If X is not in memory or is at a constant address, it cannot be in
1164 a temporary slot. */
1165 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1166 return;
1168 /* If we can find a match, move it to our level unless it is already at
1169 an upper level. */
1170 p = find_temp_slot_from_address (XEXP (x, 0));
1171 if (p != 0)
1173 p->level = MIN (p->level, temp_slot_level);
1174 p->rtl_expr = 0;
1177 return;
1180 /* Free all temporaries used so far. This is normally called at the end
1181 of generating code for a statement. Don't free any temporaries
1182 currently in use for an RTL_EXPR that hasn't yet been emitted.
1183 We could eventually do better than this since it can be reused while
1184 generating the same RTL_EXPR, but this is complex and probably not
1185 worthwhile. */
1187 void
1188 free_temp_slots ()
1190 struct temp_slot *p;
1192 for (p = temp_slots; p; p = p->next)
1193 if (p->in_use && p->level == temp_slot_level && ! p->keep
1194 && p->rtl_expr == 0)
1195 p->in_use = 0;
1197 combine_temp_slots ();
1200 /* Free all temporary slots used in T, an RTL_EXPR node. */
1202 void
1203 free_temps_for_rtl_expr (t)
1204 tree t;
1206 struct temp_slot *p;
1208 for (p = temp_slots; p; p = p->next)
1209 if (p->rtl_expr == t)
1211 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1212 needs to be preserved. This can happen if a temporary in
1213 the RTL_EXPR was addressed; preserve_temp_slots will move
1214 the temporary into a higher level. */
1215 if (temp_slot_level <= p->level)
1216 p->in_use = 0;
1217 else
1218 p->rtl_expr = NULL_TREE;
1221 combine_temp_slots ();
1224 /* Mark all temporaries ever allocated in this function as not suitable
1225 for reuse until the current level is exited. */
1227 void
1228 mark_all_temps_used ()
1230 struct temp_slot *p;
1232 for (p = temp_slots; p; p = p->next)
1234 p->in_use = p->keep = 1;
1235 p->level = MIN (p->level, temp_slot_level);
1239 /* Push deeper into the nesting level for stack temporaries. */
1241 void
1242 push_temp_slots ()
1244 temp_slot_level++;
1247 /* Likewise, but save the new level as the place to allocate variables
1248 for blocks. */
1250 #if 0
1251 void
1252 push_temp_slots_for_block ()
1254 push_temp_slots ();
1256 var_temp_slot_level = temp_slot_level;
1259 /* Likewise, but save the new level as the place to allocate temporaries
1260 for TARGET_EXPRs. */
1262 void
1263 push_temp_slots_for_target ()
1265 push_temp_slots ();
1267 target_temp_slot_level = temp_slot_level;
1270 /* Set and get the value of target_temp_slot_level. The only
1271 permitted use of these functions is to save and restore this value. */
1274 get_target_temp_slot_level ()
1276 return target_temp_slot_level;
1279 void
1280 set_target_temp_slot_level (level)
1281 int level;
1283 target_temp_slot_level = level;
1285 #endif
1287 /* Pop a temporary nesting level. All slots in use in the current level
1288 are freed. */
1290 void
1291 pop_temp_slots ()
1293 struct temp_slot *p;
1295 for (p = temp_slots; p; p = p->next)
1296 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1297 p->in_use = 0;
1299 combine_temp_slots ();
1301 temp_slot_level--;
1304 /* Initialize temporary slots. */
1306 void
1307 init_temp_slots ()
1309 /* We have not allocated any temporaries yet. */
1310 temp_slots = 0;
1311 temp_slot_level = 0;
1312 var_temp_slot_level = 0;
1313 target_temp_slot_level = 0;
1316 /* Retroactively move an auto variable from a register to a stack slot.
1317 This is done when an address-reference to the variable is seen. */
1319 void
1320 put_var_into_stack (decl)
1321 tree decl;
1323 register rtx reg;
1324 enum machine_mode promoted_mode, decl_mode;
1325 struct function *function = 0;
1326 tree context;
1327 int can_use_addressof;
1328 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1329 int usedp = (TREE_USED (decl)
1330 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1332 context = decl_function_context (decl);
1334 /* Get the current rtl used for this object and its original mode. */
1335 reg = (TREE_CODE (decl) == SAVE_EXPR
1336 ? SAVE_EXPR_RTL (decl)
1337 : DECL_RTL_IF_SET (decl));
1339 /* No need to do anything if decl has no rtx yet
1340 since in that case caller is setting TREE_ADDRESSABLE
1341 and a stack slot will be assigned when the rtl is made. */
1342 if (reg == 0)
1343 return;
1345 /* Get the declared mode for this object. */
1346 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1347 : DECL_MODE (decl));
1348 /* Get the mode it's actually stored in. */
1349 promoted_mode = GET_MODE (reg);
1351 /* If this variable comes from an outer function,
1352 find that function's saved context. */
1353 if (context != current_function_decl && context != inline_function_decl)
1354 for (function = outer_function_chain; function; function = function->next)
1355 if (function->decl == context)
1356 break;
1358 /* If this is a variable-size object with a pseudo to address it,
1359 put that pseudo into the stack, if the var is nonlocal. */
1360 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1361 && GET_CODE (reg) == MEM
1362 && GET_CODE (XEXP (reg, 0)) == REG
1363 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1365 reg = XEXP (reg, 0);
1366 decl_mode = promoted_mode = GET_MODE (reg);
1369 can_use_addressof
1370 = (function == 0
1371 && optimize > 0
1372 /* FIXME make it work for promoted modes too */
1373 && decl_mode == promoted_mode
1374 #ifdef NON_SAVING_SETJMP
1375 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1376 #endif
1379 /* If we can't use ADDRESSOF, make sure we see through one we already
1380 generated. */
1381 if (! can_use_addressof && GET_CODE (reg) == MEM
1382 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1383 reg = XEXP (XEXP (reg, 0), 0);
1385 /* Now we should have a value that resides in one or more pseudo regs. */
1387 if (GET_CODE (reg) == REG)
1389 /* If this variable lives in the current function and we don't need
1390 to put things in the stack for the sake of setjmp, try to keep it
1391 in a register until we know we actually need the address. */
1392 if (can_use_addressof)
1393 gen_mem_addressof (reg, decl);
1394 else
1395 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1396 decl_mode, volatilep, 0, usedp, 0);
1398 else if (GET_CODE (reg) == CONCAT)
1400 /* A CONCAT contains two pseudos; put them both in the stack.
1401 We do it so they end up consecutive.
1402 We fixup references to the parts only after we fixup references
1403 to the whole CONCAT, lest we do double fixups for the latter
1404 references. */
1405 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1406 tree part_type = type_for_mode (part_mode, 0);
1407 rtx lopart = XEXP (reg, 0);
1408 rtx hipart = XEXP (reg, 1);
1409 #ifdef FRAME_GROWS_DOWNWARD
1410 /* Since part 0 should have a lower address, do it second. */
1411 put_reg_into_stack (function, hipart, part_type, part_mode,
1412 part_mode, volatilep, 0, 0, 0);
1413 put_reg_into_stack (function, lopart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 #else
1416 put_reg_into_stack (function, lopart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 put_reg_into_stack (function, hipart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 #endif
1422 /* Change the CONCAT into a combined MEM for both parts. */
1423 PUT_CODE (reg, MEM);
1424 set_mem_attributes (reg, decl, 1);
1426 /* The two parts are in memory order already.
1427 Use the lower parts address as ours. */
1428 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1429 /* Prevent sharing of rtl that might lose. */
1430 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1431 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1432 if (usedp)
1434 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1435 promoted_mode, 0);
1436 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1437 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1440 else
1441 return;
1443 if (current_function_check_memory_usage)
1444 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1445 3, XEXP (reg, 0), Pmode,
1446 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1447 TYPE_MODE (sizetype),
1448 GEN_INT (MEMORY_USE_RW),
1449 TYPE_MODE (integer_type_node));
1452 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1453 into the stack frame of FUNCTION (0 means the current function).
1454 DECL_MODE is the machine mode of the user-level data type.
1455 PROMOTED_MODE is the machine mode of the register.
1456 VOLATILE_P is nonzero if this is for a "volatile" decl.
1457 USED_P is nonzero if this reg might have already been used in an insn. */
1459 static void
1460 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1461 original_regno, used_p, ht)
1462 struct function *function;
1463 rtx reg;
1464 tree type;
1465 enum machine_mode promoted_mode, decl_mode;
1466 int volatile_p;
1467 unsigned int original_regno;
1468 int used_p;
1469 struct hash_table *ht;
1471 struct function *func = function ? function : cfun;
1472 rtx new = 0;
1473 unsigned int regno = original_regno;
1475 if (regno == 0)
1476 regno = REGNO (reg);
1478 if (regno < func->x_max_parm_reg)
1479 new = func->x_parm_reg_stack_loc[regno];
1481 if (new == 0)
1482 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1484 PUT_CODE (reg, MEM);
1485 PUT_MODE (reg, decl_mode);
1486 XEXP (reg, 0) = XEXP (new, 0);
1487 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1488 MEM_VOLATILE_P (reg) = volatile_p;
1490 /* If this is a memory ref that contains aggregate components,
1491 mark it as such for cse and loop optimize. If we are reusing a
1492 previously generated stack slot, then we need to copy the bit in
1493 case it was set for other reasons. For instance, it is set for
1494 __builtin_va_alist. */
1495 if (type)
1497 MEM_SET_IN_STRUCT_P (reg,
1498 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1499 MEM_ALIAS_SET (reg) = get_alias_set (type);
1501 if (used_p)
1502 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1505 /* Make sure that all refs to the variable, previously made
1506 when it was a register, are fixed up to be valid again.
1507 See function above for meaning of arguments. */
1509 static void
1510 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1511 struct function *function;
1512 rtx reg;
1513 tree type;
1514 enum machine_mode promoted_mode;
1515 struct hash_table *ht;
1517 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1519 if (function != 0)
1521 struct var_refs_queue *temp;
1523 temp
1524 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1525 temp->modified = reg;
1526 temp->promoted_mode = promoted_mode;
1527 temp->unsignedp = unsigned_p;
1528 temp->next = function->fixup_var_refs_queue;
1529 function->fixup_var_refs_queue = temp;
1531 else
1532 /* Variable is local; fix it up now. */
1533 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1536 static void
1537 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1538 rtx var;
1539 enum machine_mode promoted_mode;
1540 int unsignedp;
1541 struct hash_table *ht;
1543 tree pending;
1544 rtx first_insn = get_insns ();
1545 struct sequence_stack *stack = seq_stack;
1546 tree rtl_exps = rtl_expr_chain;
1548 /* If there's a hash table, it must record all uses of VAR. */
1549 if (ht)
1551 if (stack != 0)
1552 abort ();
1553 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1554 return;
1557 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1558 stack == 0);
1560 /* Scan all pending sequences too. */
1561 for (; stack; stack = stack->next)
1563 push_to_full_sequence (stack->first, stack->last);
1564 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1565 stack->next != 0);
1566 /* Update remembered end of sequence
1567 in case we added an insn at the end. */
1568 stack->last = get_last_insn ();
1569 end_sequence ();
1572 /* Scan all waiting RTL_EXPRs too. */
1573 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1575 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1576 if (seq != const0_rtx && seq != 0)
1578 push_to_sequence (seq);
1579 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1580 end_sequence ();
1584 /* Scan the catch clauses for exception handling too. */
1585 push_to_full_sequence (catch_clauses, catch_clauses_last);
1586 fixup_var_refs_insns (catch_clauses, var, promoted_mode, unsignedp, 0);
1587 end_full_sequence (&catch_clauses, &catch_clauses_last);
1590 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1591 some part of an insn. Return a struct fixup_replacement whose OLD
1592 value is equal to X. Allocate a new structure if no such entry exists. */
1594 static struct fixup_replacement *
1595 find_fixup_replacement (replacements, x)
1596 struct fixup_replacement **replacements;
1597 rtx x;
1599 struct fixup_replacement *p;
1601 /* See if we have already replaced this. */
1602 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1605 if (p == 0)
1607 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1608 p->old = x;
1609 p->new = 0;
1610 p->next = *replacements;
1611 *replacements = p;
1614 return p;
1617 /* Scan the insn-chain starting with INSN for refs to VAR
1618 and fix them up. TOPLEVEL is nonzero if this chain is the
1619 main chain of insns for the current function. */
1621 static void
1622 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1623 rtx insn;
1624 rtx var;
1625 enum machine_mode promoted_mode;
1626 int unsignedp;
1627 int toplevel;
1629 while (insn)
1631 /* fixup_var_refs_insn might modify insn, so save its next
1632 pointer now. */
1633 rtx next = NEXT_INSN (insn);
1635 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1636 the three sequences they (potentially) contain, and process
1637 them recursively. The CALL_INSN itself is not interesting. */
1639 if (GET_CODE (insn) == CALL_INSN
1640 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1642 int i;
1644 /* Look at the Normal call, sibling call and tail recursion
1645 sequences attached to the CALL_PLACEHOLDER. */
1646 for (i = 0; i < 3; i++)
1648 rtx seq = XEXP (PATTERN (insn), i);
1649 if (seq)
1651 push_to_sequence (seq);
1652 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1653 XEXP (PATTERN (insn), i) = get_insns ();
1654 end_sequence ();
1659 else if (INSN_P (insn))
1660 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1662 insn = next;
1666 /* Look up the insns which reference VAR in HT and fix them up. Other
1667 arguments are the same as fixup_var_refs_insns.
1669 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1670 because the hash table will point straight to the interesting insn
1671 (inside the CALL_PLACEHOLDER). */
1672 static void
1673 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1674 struct hash_table *ht;
1675 rtx var;
1676 enum machine_mode promoted_mode;
1677 int unsignedp;
1679 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1680 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1681 rtx insn_list = ime->insns;
1683 while (insn_list)
1685 rtx insn = XEXP (insn_list, 0);
1687 if (INSN_P (insn))
1688 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 0);
1690 insn_list = XEXP (insn_list, 1);
1695 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1696 the insn under examination, VAR is the variable to fix up
1697 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1698 TOPLEVEL is nonzero if this is the main insn chain for this
1699 function. */
1700 static void
1701 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1702 rtx insn;
1703 rtx var;
1704 enum machine_mode promoted_mode;
1705 int unsignedp;
1706 int toplevel;
1708 rtx call_dest = 0;
1709 rtx set, prev, prev_set;
1710 rtx note;
1712 /* Remember the notes in case we delete the insn. */
1713 note = REG_NOTES (insn);
1715 /* If this is a CLOBBER of VAR, delete it.
1717 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1718 and REG_RETVAL notes too. */
1719 if (GET_CODE (PATTERN (insn)) == CLOBBER
1720 && (XEXP (PATTERN (insn), 0) == var
1721 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1722 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1723 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1725 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1726 /* The REG_LIBCALL note will go away since we are going to
1727 turn INSN into a NOTE, so just delete the
1728 corresponding REG_RETVAL note. */
1729 remove_note (XEXP (note, 0),
1730 find_reg_note (XEXP (note, 0), REG_RETVAL,
1731 NULL_RTX));
1733 /* In unoptimized compilation, we shouldn't call delete_insn
1734 except in jump.c doing warnings. */
1735 PUT_CODE (insn, NOTE);
1736 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1737 NOTE_SOURCE_FILE (insn) = 0;
1740 /* The insn to load VAR from a home in the arglist
1741 is now a no-op. When we see it, just delete it.
1742 Similarly if this is storing VAR from a register from which
1743 it was loaded in the previous insn. This will occur
1744 when an ADDRESSOF was made for an arglist slot. */
1745 else if (toplevel
1746 && (set = single_set (insn)) != 0
1747 && SET_DEST (set) == var
1748 /* If this represents the result of an insn group,
1749 don't delete the insn. */
1750 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1751 && (rtx_equal_p (SET_SRC (set), var)
1752 || (GET_CODE (SET_SRC (set)) == REG
1753 && (prev = prev_nonnote_insn (insn)) != 0
1754 && (prev_set = single_set (prev)) != 0
1755 && SET_DEST (prev_set) == SET_SRC (set)
1756 && rtx_equal_p (SET_SRC (prev_set), var))))
1758 /* In unoptimized compilation, we shouldn't call delete_insn
1759 except in jump.c doing warnings. */
1760 PUT_CODE (insn, NOTE);
1761 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1762 NOTE_SOURCE_FILE (insn) = 0;
1764 else
1766 struct fixup_replacement *replacements = 0;
1767 rtx next_insn = NEXT_INSN (insn);
1769 if (SMALL_REGISTER_CLASSES)
1771 /* If the insn that copies the results of a CALL_INSN
1772 into a pseudo now references VAR, we have to use an
1773 intermediate pseudo since we want the life of the
1774 return value register to be only a single insn.
1776 If we don't use an intermediate pseudo, such things as
1777 address computations to make the address of VAR valid
1778 if it is not can be placed between the CALL_INSN and INSN.
1780 To make sure this doesn't happen, we record the destination
1781 of the CALL_INSN and see if the next insn uses both that
1782 and VAR. */
1784 if (call_dest != 0 && GET_CODE (insn) == INSN
1785 && reg_mentioned_p (var, PATTERN (insn))
1786 && reg_mentioned_p (call_dest, PATTERN (insn)))
1788 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1790 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1792 PATTERN (insn) = replace_rtx (PATTERN (insn),
1793 call_dest, temp);
1796 if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == SET)
1798 call_dest = SET_DEST (PATTERN (insn));
1799 else if (GET_CODE (insn) == CALL_INSN
1800 && GET_CODE (PATTERN (insn)) == PARALLEL
1801 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1802 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1803 else
1804 call_dest = 0;
1807 /* See if we have to do anything to INSN now that VAR is in
1808 memory. If it needs to be loaded into a pseudo, use a single
1809 pseudo for the entire insn in case there is a MATCH_DUP
1810 between two operands. We pass a pointer to the head of
1811 a list of struct fixup_replacements. If fixup_var_refs_1
1812 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1813 it will record them in this list.
1815 If it allocated a pseudo for any replacement, we copy into
1816 it here. */
1818 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1819 &replacements);
1821 /* If this is last_parm_insn, and any instructions were output
1822 after it to fix it up, then we must set last_parm_insn to
1823 the last such instruction emitted. */
1824 if (insn == last_parm_insn)
1825 last_parm_insn = PREV_INSN (next_insn);
1827 while (replacements)
1829 struct fixup_replacement *next;
1831 if (GET_CODE (replacements->new) == REG)
1833 rtx insert_before;
1834 rtx seq;
1836 /* OLD might be a (subreg (mem)). */
1837 if (GET_CODE (replacements->old) == SUBREG)
1838 replacements->old
1839 = fixup_memory_subreg (replacements->old, insn, 0);
1840 else
1841 replacements->old
1842 = fixup_stack_1 (replacements->old, insn);
1844 insert_before = insn;
1846 /* If we are changing the mode, do a conversion.
1847 This might be wasteful, but combine.c will
1848 eliminate much of the waste. */
1850 if (GET_MODE (replacements->new)
1851 != GET_MODE (replacements->old))
1853 start_sequence ();
1854 convert_move (replacements->new,
1855 replacements->old, unsignedp);
1856 seq = gen_sequence ();
1857 end_sequence ();
1859 else
1860 seq = gen_move_insn (replacements->new,
1861 replacements->old);
1863 emit_insn_before (seq, insert_before);
1866 next = replacements->next;
1867 free (replacements);
1868 replacements = next;
1872 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1873 But don't touch other insns referred to by reg-notes;
1874 we will get them elsewhere. */
1875 while (note)
1877 if (GET_CODE (note) != INSN_LIST)
1878 XEXP (note, 0)
1879 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1880 note = XEXP (note, 1);
1884 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1885 See if the rtx expression at *LOC in INSN needs to be changed.
1887 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1888 contain a list of original rtx's and replacements. If we find that we need
1889 to modify this insn by replacing a memory reference with a pseudo or by
1890 making a new MEM to implement a SUBREG, we consult that list to see if
1891 we have already chosen a replacement. If none has already been allocated,
1892 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1893 or the SUBREG, as appropriate, to the pseudo. */
1895 static void
1896 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1897 register rtx var;
1898 enum machine_mode promoted_mode;
1899 register rtx *loc;
1900 rtx insn;
1901 struct fixup_replacement **replacements;
1903 register int i;
1904 register rtx x = *loc;
1905 RTX_CODE code = GET_CODE (x);
1906 register const char *fmt;
1907 register rtx tem, tem1;
1908 struct fixup_replacement *replacement;
1910 switch (code)
1912 case ADDRESSOF:
1913 if (XEXP (x, 0) == var)
1915 /* Prevent sharing of rtl that might lose. */
1916 rtx sub = copy_rtx (XEXP (var, 0));
1918 if (! validate_change (insn, loc, sub, 0))
1920 rtx y = gen_reg_rtx (GET_MODE (sub));
1921 rtx seq, new_insn;
1923 /* We should be able to replace with a register or all is lost.
1924 Note that we can't use validate_change to verify this, since
1925 we're not caring for replacing all dups simultaneously. */
1926 if (! validate_replace_rtx (*loc, y, insn))
1927 abort ();
1929 /* Careful! First try to recognize a direct move of the
1930 value, mimicking how things are done in gen_reload wrt
1931 PLUS. Consider what happens when insn is a conditional
1932 move instruction and addsi3 clobbers flags. */
1934 start_sequence ();
1935 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1936 seq = gen_sequence ();
1937 end_sequence ();
1939 if (recog_memoized (new_insn) < 0)
1941 /* That failed. Fall back on force_operand and hope. */
1943 start_sequence ();
1944 sub = force_operand (sub, y);
1945 if (sub != y)
1946 emit_insn (gen_move_insn (y, sub));
1947 seq = gen_sequence ();
1948 end_sequence ();
1951 #ifdef HAVE_cc0
1952 /* Don't separate setter from user. */
1953 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1954 insn = PREV_INSN (insn);
1955 #endif
1957 emit_insn_before (seq, insn);
1960 return;
1962 case MEM:
1963 if (var == x)
1965 /* If we already have a replacement, use it. Otherwise,
1966 try to fix up this address in case it is invalid. */
1968 replacement = find_fixup_replacement (replacements, var);
1969 if (replacement->new)
1971 *loc = replacement->new;
1972 return;
1975 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1977 /* Unless we are forcing memory to register or we changed the mode,
1978 we can leave things the way they are if the insn is valid. */
1980 INSN_CODE (insn) = -1;
1981 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1982 && recog_memoized (insn) >= 0)
1983 return;
1985 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1986 return;
1989 /* If X contains VAR, we need to unshare it here so that we update
1990 each occurrence separately. But all identical MEMs in one insn
1991 must be replaced with the same rtx because of the possibility of
1992 MATCH_DUPs. */
1994 if (reg_mentioned_p (var, x))
1996 replacement = find_fixup_replacement (replacements, x);
1997 if (replacement->new == 0)
1998 replacement->new = copy_most_rtx (x, var);
2000 *loc = x = replacement->new;
2001 code = GET_CODE (x);
2003 break;
2005 case REG:
2006 case CC0:
2007 case PC:
2008 case CONST_INT:
2009 case CONST:
2010 case SYMBOL_REF:
2011 case LABEL_REF:
2012 case CONST_DOUBLE:
2013 return;
2015 case SIGN_EXTRACT:
2016 case ZERO_EXTRACT:
2017 /* Note that in some cases those types of expressions are altered
2018 by optimize_bit_field, and do not survive to get here. */
2019 if (XEXP (x, 0) == var
2020 || (GET_CODE (XEXP (x, 0)) == SUBREG
2021 && SUBREG_REG (XEXP (x, 0)) == var))
2023 /* Get TEM as a valid MEM in the mode presently in the insn.
2025 We don't worry about the possibility of MATCH_DUP here; it
2026 is highly unlikely and would be tricky to handle. */
2028 tem = XEXP (x, 0);
2029 if (GET_CODE (tem) == SUBREG)
2031 if (GET_MODE_BITSIZE (GET_MODE (tem))
2032 > GET_MODE_BITSIZE (GET_MODE (var)))
2034 replacement = find_fixup_replacement (replacements, var);
2035 if (replacement->new == 0)
2036 replacement->new = gen_reg_rtx (GET_MODE (var));
2037 SUBREG_REG (tem) = replacement->new;
2039 /* The following code works only if we have a MEM, so we
2040 need to handle the subreg here. We directly substitute
2041 it assuming that a subreg must be OK here. We already
2042 scheduled a replacement to copy the mem into the
2043 subreg. */
2044 XEXP (x, 0) = tem;
2045 return;
2047 else
2048 tem = fixup_memory_subreg (tem, insn, 0);
2050 else
2051 tem = fixup_stack_1 (tem, insn);
2053 /* Unless we want to load from memory, get TEM into the proper mode
2054 for an extract from memory. This can only be done if the
2055 extract is at a constant position and length. */
2057 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2058 && GET_CODE (XEXP (x, 2)) == CONST_INT
2059 && ! mode_dependent_address_p (XEXP (tem, 0))
2060 && ! MEM_VOLATILE_P (tem))
2062 enum machine_mode wanted_mode = VOIDmode;
2063 enum machine_mode is_mode = GET_MODE (tem);
2064 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2066 #ifdef HAVE_extzv
2067 if (GET_CODE (x) == ZERO_EXTRACT)
2069 wanted_mode
2070 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2071 if (wanted_mode == VOIDmode)
2072 wanted_mode = word_mode;
2074 #endif
2075 #ifdef HAVE_extv
2076 if (GET_CODE (x) == SIGN_EXTRACT)
2078 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2079 if (wanted_mode == VOIDmode)
2080 wanted_mode = word_mode;
2082 #endif
2083 /* If we have a narrower mode, we can do something. */
2084 if (wanted_mode != VOIDmode
2085 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2087 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2088 rtx old_pos = XEXP (x, 2);
2089 rtx newmem;
2091 /* If the bytes and bits are counted differently, we
2092 must adjust the offset. */
2093 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2094 offset = (GET_MODE_SIZE (is_mode)
2095 - GET_MODE_SIZE (wanted_mode) - offset);
2097 pos %= GET_MODE_BITSIZE (wanted_mode);
2099 newmem = gen_rtx_MEM (wanted_mode,
2100 plus_constant (XEXP (tem, 0), offset));
2101 MEM_COPY_ATTRIBUTES (newmem, tem);
2103 /* Make the change and see if the insn remains valid. */
2104 INSN_CODE (insn) = -1;
2105 XEXP (x, 0) = newmem;
2106 XEXP (x, 2) = GEN_INT (pos);
2108 if (recog_memoized (insn) >= 0)
2109 return;
2111 /* Otherwise, restore old position. XEXP (x, 0) will be
2112 restored later. */
2113 XEXP (x, 2) = old_pos;
2117 /* If we get here, the bitfield extract insn can't accept a memory
2118 reference. Copy the input into a register. */
2120 tem1 = gen_reg_rtx (GET_MODE (tem));
2121 emit_insn_before (gen_move_insn (tem1, tem), insn);
2122 XEXP (x, 0) = tem1;
2123 return;
2125 break;
2127 case SUBREG:
2128 if (SUBREG_REG (x) == var)
2130 /* If this is a special SUBREG made because VAR was promoted
2131 from a wider mode, replace it with VAR and call ourself
2132 recursively, this time saying that the object previously
2133 had its current mode (by virtue of the SUBREG). */
2135 if (SUBREG_PROMOTED_VAR_P (x))
2137 *loc = var;
2138 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2139 return;
2142 /* If this SUBREG makes VAR wider, it has become a paradoxical
2143 SUBREG with VAR in memory, but these aren't allowed at this
2144 stage of the compilation. So load VAR into a pseudo and take
2145 a SUBREG of that pseudo. */
2146 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2148 replacement = find_fixup_replacement (replacements, var);
2149 if (replacement->new == 0)
2150 replacement->new = gen_reg_rtx (GET_MODE (var));
2151 SUBREG_REG (x) = replacement->new;
2152 return;
2155 /* See if we have already found a replacement for this SUBREG.
2156 If so, use it. Otherwise, make a MEM and see if the insn
2157 is recognized. If not, or if we should force MEM into a register,
2158 make a pseudo for this SUBREG. */
2159 replacement = find_fixup_replacement (replacements, x);
2160 if (replacement->new)
2162 *loc = replacement->new;
2163 return;
2166 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2168 INSN_CODE (insn) = -1;
2169 if (! flag_force_mem && recog_memoized (insn) >= 0)
2170 return;
2172 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2173 return;
2175 break;
2177 case SET:
2178 /* First do special simplification of bit-field references. */
2179 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2180 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2181 optimize_bit_field (x, insn, 0);
2182 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2183 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2184 optimize_bit_field (x, insn, NULL_PTR);
2186 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2187 into a register and then store it back out. */
2188 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2189 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2190 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2191 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2192 > GET_MODE_SIZE (GET_MODE (var))))
2194 replacement = find_fixup_replacement (replacements, var);
2195 if (replacement->new == 0)
2196 replacement->new = gen_reg_rtx (GET_MODE (var));
2198 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2199 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2202 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2203 insn into a pseudo and store the low part of the pseudo into VAR. */
2204 if (GET_CODE (SET_DEST (x)) == SUBREG
2205 && SUBREG_REG (SET_DEST (x)) == var
2206 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2207 > GET_MODE_SIZE (GET_MODE (var))))
2209 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2210 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2211 tem)),
2212 insn);
2213 break;
2217 rtx dest = SET_DEST (x);
2218 rtx src = SET_SRC (x);
2219 #ifdef HAVE_insv
2220 rtx outerdest = dest;
2221 #endif
2223 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2224 || GET_CODE (dest) == SIGN_EXTRACT
2225 || GET_CODE (dest) == ZERO_EXTRACT)
2226 dest = XEXP (dest, 0);
2228 if (GET_CODE (src) == SUBREG)
2229 src = XEXP (src, 0);
2231 /* If VAR does not appear at the top level of the SET
2232 just scan the lower levels of the tree. */
2234 if (src != var && dest != var)
2235 break;
2237 /* We will need to rerecognize this insn. */
2238 INSN_CODE (insn) = -1;
2240 #ifdef HAVE_insv
2241 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2243 /* Since this case will return, ensure we fixup all the
2244 operands here. */
2245 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2246 insn, replacements);
2247 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2248 insn, replacements);
2249 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2250 insn, replacements);
2252 tem = XEXP (outerdest, 0);
2254 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2255 that may appear inside a ZERO_EXTRACT.
2256 This was legitimate when the MEM was a REG. */
2257 if (GET_CODE (tem) == SUBREG
2258 && SUBREG_REG (tem) == var)
2259 tem = fixup_memory_subreg (tem, insn, 0);
2260 else
2261 tem = fixup_stack_1 (tem, insn);
2263 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2264 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2265 && ! mode_dependent_address_p (XEXP (tem, 0))
2266 && ! MEM_VOLATILE_P (tem))
2268 enum machine_mode wanted_mode;
2269 enum machine_mode is_mode = GET_MODE (tem);
2270 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2272 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2273 if (wanted_mode == VOIDmode)
2274 wanted_mode = word_mode;
2276 /* If we have a narrower mode, we can do something. */
2277 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2279 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2280 rtx old_pos = XEXP (outerdest, 2);
2281 rtx newmem;
2283 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2284 offset = (GET_MODE_SIZE (is_mode)
2285 - GET_MODE_SIZE (wanted_mode) - offset);
2287 pos %= GET_MODE_BITSIZE (wanted_mode);
2289 newmem = gen_rtx_MEM (wanted_mode,
2290 plus_constant (XEXP (tem, 0),
2291 offset));
2292 MEM_COPY_ATTRIBUTES (newmem, tem);
2294 /* Make the change and see if the insn remains valid. */
2295 INSN_CODE (insn) = -1;
2296 XEXP (outerdest, 0) = newmem;
2297 XEXP (outerdest, 2) = GEN_INT (pos);
2299 if (recog_memoized (insn) >= 0)
2300 return;
2302 /* Otherwise, restore old position. XEXP (x, 0) will be
2303 restored later. */
2304 XEXP (outerdest, 2) = old_pos;
2308 /* If we get here, the bit-field store doesn't allow memory
2309 or isn't located at a constant position. Load the value into
2310 a register, do the store, and put it back into memory. */
2312 tem1 = gen_reg_rtx (GET_MODE (tem));
2313 emit_insn_before (gen_move_insn (tem1, tem), insn);
2314 emit_insn_after (gen_move_insn (tem, tem1), insn);
2315 XEXP (outerdest, 0) = tem1;
2316 return;
2318 #endif
2320 /* STRICT_LOW_PART is a no-op on memory references
2321 and it can cause combinations to be unrecognizable,
2322 so eliminate it. */
2324 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2325 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2327 /* A valid insn to copy VAR into or out of a register
2328 must be left alone, to avoid an infinite loop here.
2329 If the reference to VAR is by a subreg, fix that up,
2330 since SUBREG is not valid for a memref.
2331 Also fix up the address of the stack slot.
2333 Note that we must not try to recognize the insn until
2334 after we know that we have valid addresses and no
2335 (subreg (mem ...) ...) constructs, since these interfere
2336 with determining the validity of the insn. */
2338 if ((SET_SRC (x) == var
2339 || (GET_CODE (SET_SRC (x)) == SUBREG
2340 && SUBREG_REG (SET_SRC (x)) == var))
2341 && (GET_CODE (SET_DEST (x)) == REG
2342 || (GET_CODE (SET_DEST (x)) == SUBREG
2343 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2344 && GET_MODE (var) == promoted_mode
2345 && x == single_set (insn))
2347 rtx pat, last;
2349 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2350 if (replacement->new)
2351 SET_SRC (x) = replacement->new;
2352 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2353 SET_SRC (x) = replacement->new
2354 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2355 else
2356 SET_SRC (x) = replacement->new
2357 = fixup_stack_1 (SET_SRC (x), insn);
2359 if (recog_memoized (insn) >= 0)
2360 return;
2362 /* INSN is not valid, but we know that we want to
2363 copy SET_SRC (x) to SET_DEST (x) in some way. So
2364 we generate the move and see whether it requires more
2365 than one insn. If it does, we emit those insns and
2366 delete INSN. Otherwise, we an just replace the pattern
2367 of INSN; we have already verified above that INSN has
2368 no other function that to do X. */
2370 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2371 if (GET_CODE (pat) == SEQUENCE)
2373 last = emit_insn_before (pat, insn);
2375 /* INSN might have REG_RETVAL or other important notes, so
2376 we need to store the pattern of the last insn in the
2377 sequence into INSN similarly to the normal case. LAST
2378 should not have REG_NOTES, but we allow them if INSN has
2379 no REG_NOTES. */
2380 if (REG_NOTES (last) && REG_NOTES (insn))
2381 abort ();
2382 if (REG_NOTES (last))
2383 REG_NOTES (insn) = REG_NOTES (last);
2384 PATTERN (insn) = PATTERN (last);
2386 PUT_CODE (last, NOTE);
2387 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2388 NOTE_SOURCE_FILE (last) = 0;
2390 else
2391 PATTERN (insn) = pat;
2393 return;
2396 if ((SET_DEST (x) == var
2397 || (GET_CODE (SET_DEST (x)) == SUBREG
2398 && SUBREG_REG (SET_DEST (x)) == var))
2399 && (GET_CODE (SET_SRC (x)) == REG
2400 || (GET_CODE (SET_SRC (x)) == SUBREG
2401 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2402 && GET_MODE (var) == promoted_mode
2403 && x == single_set (insn))
2405 rtx pat, last;
2407 if (GET_CODE (SET_DEST (x)) == SUBREG)
2408 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2409 else
2410 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2412 if (recog_memoized (insn) >= 0)
2413 return;
2415 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2416 if (GET_CODE (pat) == SEQUENCE)
2418 last = emit_insn_before (pat, insn);
2420 /* INSN might have REG_RETVAL or other important notes, so
2421 we need to store the pattern of the last insn in the
2422 sequence into INSN similarly to the normal case. LAST
2423 should not have REG_NOTES, but we allow them if INSN has
2424 no REG_NOTES. */
2425 if (REG_NOTES (last) && REG_NOTES (insn))
2426 abort ();
2427 if (REG_NOTES (last))
2428 REG_NOTES (insn) = REG_NOTES (last);
2429 PATTERN (insn) = PATTERN (last);
2431 PUT_CODE (last, NOTE);
2432 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2433 NOTE_SOURCE_FILE (last) = 0;
2435 else
2436 PATTERN (insn) = pat;
2438 return;
2441 /* Otherwise, storing into VAR must be handled specially
2442 by storing into a temporary and copying that into VAR
2443 with a new insn after this one. Note that this case
2444 will be used when storing into a promoted scalar since
2445 the insn will now have different modes on the input
2446 and output and hence will be invalid (except for the case
2447 of setting it to a constant, which does not need any
2448 change if it is valid). We generate extra code in that case,
2449 but combine.c will eliminate it. */
2451 if (dest == var)
2453 rtx temp;
2454 rtx fixeddest = SET_DEST (x);
2456 /* STRICT_LOW_PART can be discarded, around a MEM. */
2457 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2458 fixeddest = XEXP (fixeddest, 0);
2459 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2460 if (GET_CODE (fixeddest) == SUBREG)
2462 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2463 promoted_mode = GET_MODE (fixeddest);
2465 else
2466 fixeddest = fixup_stack_1 (fixeddest, insn);
2468 temp = gen_reg_rtx (promoted_mode);
2470 emit_insn_after (gen_move_insn (fixeddest,
2471 gen_lowpart (GET_MODE (fixeddest),
2472 temp)),
2473 insn);
2475 SET_DEST (x) = temp;
2479 default:
2480 break;
2483 /* Nothing special about this RTX; fix its operands. */
2485 fmt = GET_RTX_FORMAT (code);
2486 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2488 if (fmt[i] == 'e')
2489 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2490 else if (fmt[i] == 'E')
2492 register int j;
2493 for (j = 0; j < XVECLEN (x, i); j++)
2494 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2495 insn, replacements);
2500 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2501 return an rtx (MEM:m1 newaddr) which is equivalent.
2502 If any insns must be emitted to compute NEWADDR, put them before INSN.
2504 UNCRITICAL nonzero means accept paradoxical subregs.
2505 This is used for subregs found inside REG_NOTES. */
2507 static rtx
2508 fixup_memory_subreg (x, insn, uncritical)
2509 rtx x;
2510 rtx insn;
2511 int uncritical;
2513 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2514 rtx addr = XEXP (SUBREG_REG (x), 0);
2515 enum machine_mode mode = GET_MODE (x);
2516 rtx result;
2518 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2519 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2520 && ! uncritical)
2521 abort ();
2523 if (BYTES_BIG_ENDIAN)
2524 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2525 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2526 addr = plus_constant (addr, offset);
2527 if (!flag_force_addr && memory_address_p (mode, addr))
2528 /* Shortcut if no insns need be emitted. */
2529 return change_address (SUBREG_REG (x), mode, addr);
2530 start_sequence ();
2531 result = change_address (SUBREG_REG (x), mode, addr);
2532 emit_insn_before (gen_sequence (), insn);
2533 end_sequence ();
2534 return result;
2537 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2538 Replace subexpressions of X in place.
2539 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2540 Otherwise return X, with its contents possibly altered.
2542 If any insns must be emitted to compute NEWADDR, put them before INSN.
2544 UNCRITICAL is as in fixup_memory_subreg. */
2546 static rtx
2547 walk_fixup_memory_subreg (x, insn, uncritical)
2548 register rtx x;
2549 rtx insn;
2550 int uncritical;
2552 register enum rtx_code code;
2553 register const char *fmt;
2554 register int i;
2556 if (x == 0)
2557 return 0;
2559 code = GET_CODE (x);
2561 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2562 return fixup_memory_subreg (x, insn, uncritical);
2564 /* Nothing special about this RTX; fix its operands. */
2566 fmt = GET_RTX_FORMAT (code);
2567 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2569 if (fmt[i] == 'e')
2570 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2571 else if (fmt[i] == 'E')
2573 register int j;
2574 for (j = 0; j < XVECLEN (x, i); j++)
2575 XVECEXP (x, i, j)
2576 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2579 return x;
2582 /* For each memory ref within X, if it refers to a stack slot
2583 with an out of range displacement, put the address in a temp register
2584 (emitting new insns before INSN to load these registers)
2585 and alter the memory ref to use that register.
2586 Replace each such MEM rtx with a copy, to avoid clobberage. */
2588 static rtx
2589 fixup_stack_1 (x, insn)
2590 rtx x;
2591 rtx insn;
2593 register int i;
2594 register RTX_CODE code = GET_CODE (x);
2595 register const char *fmt;
2597 if (code == MEM)
2599 register rtx ad = XEXP (x, 0);
2600 /* If we have address of a stack slot but it's not valid
2601 (displacement is too large), compute the sum in a register. */
2602 if (GET_CODE (ad) == PLUS
2603 && GET_CODE (XEXP (ad, 0)) == REG
2604 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2605 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2606 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2607 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2608 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2609 #endif
2610 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2611 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2612 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2613 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2615 rtx temp, seq;
2616 if (memory_address_p (GET_MODE (x), ad))
2617 return x;
2619 start_sequence ();
2620 temp = copy_to_reg (ad);
2621 seq = gen_sequence ();
2622 end_sequence ();
2623 emit_insn_before (seq, insn);
2624 return change_address (x, VOIDmode, temp);
2626 return x;
2629 fmt = GET_RTX_FORMAT (code);
2630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2632 if (fmt[i] == 'e')
2633 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2634 else if (fmt[i] == 'E')
2636 register int j;
2637 for (j = 0; j < XVECLEN (x, i); j++)
2638 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2641 return x;
2644 /* Optimization: a bit-field instruction whose field
2645 happens to be a byte or halfword in memory
2646 can be changed to a move instruction.
2648 We call here when INSN is an insn to examine or store into a bit-field.
2649 BODY is the SET-rtx to be altered.
2651 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2652 (Currently this is called only from function.c, and EQUIV_MEM
2653 is always 0.) */
2655 static void
2656 optimize_bit_field (body, insn, equiv_mem)
2657 rtx body;
2658 rtx insn;
2659 rtx *equiv_mem;
2661 register rtx bitfield;
2662 int destflag;
2663 rtx seq = 0;
2664 enum machine_mode mode;
2666 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2667 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2668 bitfield = SET_DEST (body), destflag = 1;
2669 else
2670 bitfield = SET_SRC (body), destflag = 0;
2672 /* First check that the field being stored has constant size and position
2673 and is in fact a byte or halfword suitably aligned. */
2675 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2676 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2677 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2678 != BLKmode)
2679 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2681 register rtx memref = 0;
2683 /* Now check that the containing word is memory, not a register,
2684 and that it is safe to change the machine mode. */
2686 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2687 memref = XEXP (bitfield, 0);
2688 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2689 && equiv_mem != 0)
2690 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2691 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2692 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2693 memref = SUBREG_REG (XEXP (bitfield, 0));
2694 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2695 && equiv_mem != 0
2696 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2697 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2699 if (memref
2700 && ! mode_dependent_address_p (XEXP (memref, 0))
2701 && ! MEM_VOLATILE_P (memref))
2703 /* Now adjust the address, first for any subreg'ing
2704 that we are now getting rid of,
2705 and then for which byte of the word is wanted. */
2707 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2708 rtx insns;
2710 /* Adjust OFFSET to count bits from low-address byte. */
2711 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2712 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2713 - offset - INTVAL (XEXP (bitfield, 1)));
2715 /* Adjust OFFSET to count bytes from low-address byte. */
2716 offset /= BITS_PER_UNIT;
2717 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2719 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2720 if (BYTES_BIG_ENDIAN)
2721 offset -= (MIN (UNITS_PER_WORD,
2722 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2723 - MIN (UNITS_PER_WORD,
2724 GET_MODE_SIZE (GET_MODE (memref))));
2727 start_sequence ();
2728 memref = change_address (memref, mode,
2729 plus_constant (XEXP (memref, 0), offset));
2730 insns = get_insns ();
2731 end_sequence ();
2732 emit_insns_before (insns, insn);
2734 /* Store this memory reference where
2735 we found the bit field reference. */
2737 if (destflag)
2739 validate_change (insn, &SET_DEST (body), memref, 1);
2740 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2742 rtx src = SET_SRC (body);
2743 while (GET_CODE (src) == SUBREG
2744 && SUBREG_WORD (src) == 0)
2745 src = SUBREG_REG (src);
2746 if (GET_MODE (src) != GET_MODE (memref))
2747 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2748 validate_change (insn, &SET_SRC (body), src, 1);
2750 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2751 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2752 /* This shouldn't happen because anything that didn't have
2753 one of these modes should have got converted explicitly
2754 and then referenced through a subreg.
2755 This is so because the original bit-field was
2756 handled by agg_mode and so its tree structure had
2757 the same mode that memref now has. */
2758 abort ();
2760 else
2762 rtx dest = SET_DEST (body);
2764 while (GET_CODE (dest) == SUBREG
2765 && SUBREG_WORD (dest) == 0
2766 && (GET_MODE_CLASS (GET_MODE (dest))
2767 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2768 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2769 <= UNITS_PER_WORD))
2770 dest = SUBREG_REG (dest);
2772 validate_change (insn, &SET_DEST (body), dest, 1);
2774 if (GET_MODE (dest) == GET_MODE (memref))
2775 validate_change (insn, &SET_SRC (body), memref, 1);
2776 else
2778 /* Convert the mem ref to the destination mode. */
2779 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2781 start_sequence ();
2782 convert_move (newreg, memref,
2783 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2784 seq = get_insns ();
2785 end_sequence ();
2787 validate_change (insn, &SET_SRC (body), newreg, 1);
2791 /* See if we can convert this extraction or insertion into
2792 a simple move insn. We might not be able to do so if this
2793 was, for example, part of a PARALLEL.
2795 If we succeed, write out any needed conversions. If we fail,
2796 it is hard to guess why we failed, so don't do anything
2797 special; just let the optimization be suppressed. */
2799 if (apply_change_group () && seq)
2800 emit_insns_before (seq, insn);
2805 /* These routines are responsible for converting virtual register references
2806 to the actual hard register references once RTL generation is complete.
2808 The following four variables are used for communication between the
2809 routines. They contain the offsets of the virtual registers from their
2810 respective hard registers. */
2812 static int in_arg_offset;
2813 static int var_offset;
2814 static int dynamic_offset;
2815 static int out_arg_offset;
2816 static int cfa_offset;
2818 /* In most machines, the stack pointer register is equivalent to the bottom
2819 of the stack. */
2821 #ifndef STACK_POINTER_OFFSET
2822 #define STACK_POINTER_OFFSET 0
2823 #endif
2825 /* If not defined, pick an appropriate default for the offset of dynamically
2826 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2827 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2829 #ifndef STACK_DYNAMIC_OFFSET
2831 /* The bottom of the stack points to the actual arguments. If
2832 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2833 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2834 stack space for register parameters is not pushed by the caller, but
2835 rather part of the fixed stack areas and hence not included in
2836 `current_function_outgoing_args_size'. Nevertheless, we must allow
2837 for it when allocating stack dynamic objects. */
2839 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2840 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2841 ((ACCUMULATE_OUTGOING_ARGS \
2842 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2843 + (STACK_POINTER_OFFSET)) \
2845 #else
2846 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2847 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2848 + (STACK_POINTER_OFFSET))
2849 #endif
2850 #endif
2852 /* On most machines, the CFA coincides with the first incoming parm. */
2854 #ifndef ARG_POINTER_CFA_OFFSET
2855 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2856 #endif
2858 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2859 its address taken. DECL is the decl for the object stored in the
2860 register, for later use if we do need to force REG into the stack.
2861 REG is overwritten by the MEM like in put_reg_into_stack. */
2864 gen_mem_addressof (reg, decl)
2865 rtx reg;
2866 tree decl;
2868 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2869 REGNO (reg), decl);
2871 /* If the original REG was a user-variable, then so is the REG whose
2872 address is being taken. Likewise for unchanging. */
2873 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2874 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2876 PUT_CODE (reg, MEM);
2877 XEXP (reg, 0) = r;
2878 if (decl)
2880 tree type = TREE_TYPE (decl);
2882 PUT_MODE (reg, DECL_MODE (decl));
2883 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2884 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2885 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2887 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2888 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2890 else
2892 /* We have no alias information about this newly created MEM. */
2893 MEM_ALIAS_SET (reg) = 0;
2895 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2898 return reg;
2901 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2903 void
2904 flush_addressof (decl)
2905 tree decl;
2907 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2908 && DECL_RTL (decl) != 0
2909 && GET_CODE (DECL_RTL (decl)) == MEM
2910 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2911 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2912 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2915 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2917 static void
2918 put_addressof_into_stack (r, ht)
2919 rtx r;
2920 struct hash_table *ht;
2922 tree decl, type;
2923 int volatile_p, used_p;
2925 rtx reg = XEXP (r, 0);
2927 if (GET_CODE (reg) != REG)
2928 abort ();
2930 decl = ADDRESSOF_DECL (r);
2931 if (decl)
2933 type = TREE_TYPE (decl);
2934 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2935 && TREE_THIS_VOLATILE (decl));
2936 used_p = (TREE_USED (decl)
2937 || (TREE_CODE (decl) != SAVE_EXPR
2938 && DECL_INITIAL (decl) != 0));
2940 else
2942 type = NULL_TREE;
2943 volatile_p = 0;
2944 used_p = 1;
2947 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2948 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2951 /* List of replacements made below in purge_addressof_1 when creating
2952 bitfield insertions. */
2953 static rtx purge_bitfield_addressof_replacements;
2955 /* List of replacements made below in purge_addressof_1 for patterns
2956 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2957 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2958 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2959 enough in complex cases, e.g. when some field values can be
2960 extracted by usage MEM with narrower mode. */
2961 static rtx purge_addressof_replacements;
2963 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2964 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2965 the stack. If the function returns FALSE then the replacement could not
2966 be made. */
2968 static bool
2969 purge_addressof_1 (loc, insn, force, store, ht)
2970 rtx *loc;
2971 rtx insn;
2972 int force, store;
2973 struct hash_table *ht;
2975 rtx x;
2976 RTX_CODE code;
2977 int i, j;
2978 const char *fmt;
2979 bool result = true;
2981 /* Re-start here to avoid recursion in common cases. */
2982 restart:
2984 x = *loc;
2985 if (x == 0)
2986 return true;
2988 code = GET_CODE (x);
2990 /* If we don't return in any of the cases below, we will recurse inside
2991 the RTX, which will normally result in any ADDRESSOF being forced into
2992 memory. */
2993 if (code == SET)
2995 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2996 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2997 return result;
3000 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
3002 /* We must create a copy of the rtx because it was created by
3003 overwriting a REG rtx which is always shared. */
3004 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3005 rtx insns;
3007 if (validate_change (insn, loc, sub, 0)
3008 || validate_replace_rtx (x, sub, insn))
3009 return true;
3011 start_sequence ();
3012 sub = force_operand (sub, NULL_RTX);
3013 if (! validate_change (insn, loc, sub, 0)
3014 && ! validate_replace_rtx (x, sub, insn))
3015 abort ();
3017 insns = gen_sequence ();
3018 end_sequence ();
3019 emit_insn_before (insns, insn);
3020 return true;
3023 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3025 rtx sub = XEXP (XEXP (x, 0), 0);
3026 rtx sub2;
3028 if (GET_CODE (sub) == MEM)
3030 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3031 MEM_COPY_ATTRIBUTES (sub2, sub);
3032 sub = sub2;
3034 else if (GET_CODE (sub) == REG
3035 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3037 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3039 int size_x, size_sub;
3041 if (!insn)
3043 /* When processing REG_NOTES look at the list of
3044 replacements done on the insn to find the register that X
3045 was replaced by. */
3046 rtx tem;
3048 for (tem = purge_bitfield_addressof_replacements;
3049 tem != NULL_RTX;
3050 tem = XEXP (XEXP (tem, 1), 1))
3051 if (rtx_equal_p (x, XEXP (tem, 0)))
3053 *loc = XEXP (XEXP (tem, 1), 0);
3054 return true;
3057 /* See comment for purge_addressof_replacements. */
3058 for (tem = purge_addressof_replacements;
3059 tem != NULL_RTX;
3060 tem = XEXP (XEXP (tem, 1), 1))
3061 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3063 rtx z = XEXP (XEXP (tem, 1), 0);
3065 if (GET_MODE (x) == GET_MODE (z)
3066 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3067 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3068 abort ();
3070 /* It can happen that the note may speak of things
3071 in a wider (or just different) mode than the
3072 code did. This is especially true of
3073 REG_RETVAL. */
3075 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3076 z = SUBREG_REG (z);
3078 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3079 && (GET_MODE_SIZE (GET_MODE (x))
3080 > GET_MODE_SIZE (GET_MODE (z))))
3082 /* This can occur as a result in invalid
3083 pointer casts, e.g. float f; ...
3084 *(long long int *)&f.
3085 ??? We could emit a warning here, but
3086 without a line number that wouldn't be
3087 very helpful. */
3088 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3090 else
3091 z = gen_lowpart (GET_MODE (x), z);
3093 *loc = z;
3094 return true;
3097 /* Sometimes we may not be able to find the replacement. For
3098 example when the original insn was a MEM in a wider mode,
3099 and the note is part of a sign extension of a narrowed
3100 version of that MEM. Gcc testcase compile/990829-1.c can
3101 generate an example of this siutation. Rather than complain
3102 we return false, which will prompt our caller to remove the
3103 offending note. */
3104 return false;
3107 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3108 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3110 /* Don't even consider working with paradoxical subregs,
3111 or the moral equivalent seen here. */
3112 if (size_x <= size_sub
3113 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3115 /* Do a bitfield insertion to mirror what would happen
3116 in memory. */
3118 rtx val, seq;
3120 if (store)
3122 rtx p = PREV_INSN (insn);
3124 start_sequence ();
3125 val = gen_reg_rtx (GET_MODE (x));
3126 if (! validate_change (insn, loc, val, 0))
3128 /* Discard the current sequence and put the
3129 ADDRESSOF on stack. */
3130 end_sequence ();
3131 goto give_up;
3133 seq = gen_sequence ();
3134 end_sequence ();
3135 emit_insn_before (seq, insn);
3136 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3137 insn, ht);
3139 start_sequence ();
3140 store_bit_field (sub, size_x, 0, GET_MODE (x),
3141 val, GET_MODE_SIZE (GET_MODE (sub)),
3142 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3144 /* Make sure to unshare any shared rtl that store_bit_field
3145 might have created. */
3146 unshare_all_rtl_again (get_insns ());
3148 seq = gen_sequence ();
3149 end_sequence ();
3150 p = emit_insn_after (seq, insn);
3151 if (NEXT_INSN (insn))
3152 compute_insns_for_mem (NEXT_INSN (insn),
3153 p ? NEXT_INSN (p) : NULL_RTX,
3154 ht);
3156 else
3158 rtx p = PREV_INSN (insn);
3160 start_sequence ();
3161 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3162 GET_MODE (x), GET_MODE (x),
3163 GET_MODE_SIZE (GET_MODE (sub)),
3164 GET_MODE_SIZE (GET_MODE (sub)));
3166 if (! validate_change (insn, loc, val, 0))
3168 /* Discard the current sequence and put the
3169 ADDRESSOF on stack. */
3170 end_sequence ();
3171 goto give_up;
3174 seq = gen_sequence ();
3175 end_sequence ();
3176 emit_insn_before (seq, insn);
3177 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3178 insn, ht);
3181 /* Remember the replacement so that the same one can be done
3182 on the REG_NOTES. */
3183 purge_bitfield_addressof_replacements
3184 = gen_rtx_EXPR_LIST (VOIDmode, x,
3185 gen_rtx_EXPR_LIST
3186 (VOIDmode, val,
3187 purge_bitfield_addressof_replacements));
3189 /* We replaced with a reg -- all done. */
3190 return true;
3194 else if (validate_change (insn, loc, sub, 0))
3196 /* Remember the replacement so that the same one can be done
3197 on the REG_NOTES. */
3198 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3200 rtx tem;
3202 for (tem = purge_addressof_replacements;
3203 tem != NULL_RTX;
3204 tem = XEXP (XEXP (tem, 1), 1))
3205 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3207 XEXP (XEXP (tem, 1), 0) = sub;
3208 return true;
3210 purge_addressof_replacements
3211 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3212 gen_rtx_EXPR_LIST (VOIDmode, sub,
3213 purge_addressof_replacements));
3214 return true;
3216 goto restart;
3218 give_up:;
3219 /* else give up and put it into the stack */
3222 else if (code == ADDRESSOF)
3224 put_addressof_into_stack (x, ht);
3225 return true;
3227 else if (code == SET)
3229 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3230 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3231 return result;
3234 /* Scan all subexpressions. */
3235 fmt = GET_RTX_FORMAT (code);
3236 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3238 if (*fmt == 'e')
3239 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3240 else if (*fmt == 'E')
3241 for (j = 0; j < XVECLEN (x, i); j++)
3242 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3245 return result;
3248 /* Return a new hash table entry in HT. */
3250 static struct hash_entry *
3251 insns_for_mem_newfunc (he, ht, k)
3252 struct hash_entry *he;
3253 struct hash_table *ht;
3254 hash_table_key k ATTRIBUTE_UNUSED;
3256 struct insns_for_mem_entry *ifmhe;
3257 if (he)
3258 return he;
3260 ifmhe = ((struct insns_for_mem_entry *)
3261 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3262 ifmhe->insns = NULL_RTX;
3264 return &ifmhe->he;
3267 /* Return a hash value for K, a REG. */
3269 static unsigned long
3270 insns_for_mem_hash (k)
3271 hash_table_key k;
3273 /* K is really a RTX. Just use the address as the hash value. */
3274 return (unsigned long) k;
3277 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3279 static bool
3280 insns_for_mem_comp (k1, k2)
3281 hash_table_key k1;
3282 hash_table_key k2;
3284 return k1 == k2;
3287 struct insns_for_mem_walk_info {
3288 /* The hash table that we are using to record which INSNs use which
3289 MEMs. */
3290 struct hash_table *ht;
3292 /* The INSN we are currently proessing. */
3293 rtx insn;
3295 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3296 to find the insns that use the REGs in the ADDRESSOFs. */
3297 int pass;
3300 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3301 that might be used in an ADDRESSOF expression, record this INSN in
3302 the hash table given by DATA (which is really a pointer to an
3303 insns_for_mem_walk_info structure). */
3305 static int
3306 insns_for_mem_walk (r, data)
3307 rtx *r;
3308 void *data;
3310 struct insns_for_mem_walk_info *ifmwi
3311 = (struct insns_for_mem_walk_info *) data;
3313 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3314 && GET_CODE (XEXP (*r, 0)) == REG)
3315 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3316 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3318 /* Lookup this MEM in the hashtable, creating it if necessary. */
3319 struct insns_for_mem_entry *ifme
3320 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3322 /*create=*/0,
3323 /*copy=*/0);
3325 /* If we have not already recorded this INSN, do so now. Since
3326 we process the INSNs in order, we know that if we have
3327 recorded it it must be at the front of the list. */
3328 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3329 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3330 ifme->insns);
3333 return 0;
3336 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3337 which REGs in HT. */
3339 static void
3340 compute_insns_for_mem (insns, last_insn, ht)
3341 rtx insns;
3342 rtx last_insn;
3343 struct hash_table *ht;
3345 rtx insn;
3346 struct insns_for_mem_walk_info ifmwi;
3347 ifmwi.ht = ht;
3349 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3350 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3351 if (INSN_P (insn))
3353 ifmwi.insn = insn;
3354 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3358 /* Helper function for purge_addressof called through for_each_rtx.
3359 Returns true iff the rtl is an ADDRESSOF. */
3360 static int
3361 is_addressof (rtl, data)
3362 rtx *rtl;
3363 void *data ATTRIBUTE_UNUSED;
3365 return GET_CODE (*rtl) == ADDRESSOF;
3368 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3369 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3370 stack. */
3372 void
3373 purge_addressof (insns)
3374 rtx insns;
3376 rtx insn;
3377 struct hash_table ht;
3379 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3380 requires a fixup pass over the instruction stream to correct
3381 INSNs that depended on the REG being a REG, and not a MEM. But,
3382 these fixup passes are slow. Furthermore, most MEMs are not
3383 mentioned in very many instructions. So, we speed up the process
3384 by pre-calculating which REGs occur in which INSNs; that allows
3385 us to perform the fixup passes much more quickly. */
3386 hash_table_init (&ht,
3387 insns_for_mem_newfunc,
3388 insns_for_mem_hash,
3389 insns_for_mem_comp);
3390 compute_insns_for_mem (insns, NULL_RTX, &ht);
3392 for (insn = insns; insn; insn = NEXT_INSN (insn))
3393 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3394 || GET_CODE (insn) == CALL_INSN)
3396 if (! purge_addressof_1 (&PATTERN (insn), insn,
3397 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3398 /* If we could not replace the ADDRESSOFs in the insn,
3399 something is wrong. */
3400 abort ();
3402 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3404 /* If we could not replace the ADDRESSOFs in the insn's notes,
3405 we can just remove the offending notes instead. */
3406 rtx note;
3408 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3410 /* If we find a REG_RETVAL note then the insn is a libcall.
3411 Such insns must have REG_EQUAL notes as well, in order
3412 for later passes of the compiler to work. So it is not
3413 safe to delete the notes here, and instead we abort. */
3414 if (REG_NOTE_KIND (note) == REG_RETVAL)
3415 abort ();
3416 if (for_each_rtx (&note, is_addressof, NULL))
3417 remove_note (insn, note);
3422 /* Clean up. */
3423 hash_table_free (&ht);
3424 purge_bitfield_addressof_replacements = 0;
3425 purge_addressof_replacements = 0;
3427 /* REGs are shared. purge_addressof will destructively replace a REG
3428 with a MEM, which creates shared MEMs.
3430 Unfortunately, the children of put_reg_into_stack assume that MEMs
3431 referring to the same stack slot are shared (fixup_var_refs and
3432 the associated hash table code).
3434 So, we have to do another unsharing pass after we have flushed any
3435 REGs that had their address taken into the stack.
3437 It may be worth tracking whether or not we converted any REGs into
3438 MEMs to avoid this overhead when it is not needed. */
3439 unshare_all_rtl_again (get_insns ());
3442 /* Convert a SET of a hard subreg to a set of the appropriet hard
3443 register. A subroutine of purge_hard_subreg_sets. */
3445 static void
3446 purge_single_hard_subreg_set (pattern)
3447 rtx pattern;
3449 rtx reg = SET_DEST (pattern);
3450 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3451 int word = 0;
3453 while (GET_CODE (reg) == SUBREG)
3455 word += SUBREG_WORD (reg);
3456 reg = SUBREG_REG (reg);
3459 if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
3461 reg = gen_rtx_REG (mode, REGNO (reg) + word);
3462 SET_DEST (pattern) = reg;
3466 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3467 only such SETs that we expect to see are those left in because
3468 integrate can't handle sets of parts of a return value register.
3470 We don't use alter_subreg because we only want to eliminate subregs
3471 of hard registers. */
3473 void
3474 purge_hard_subreg_sets (insn)
3475 rtx insn;
3477 for (; insn; insn = NEXT_INSN (insn))
3479 if (INSN_P (insn))
3481 rtx pattern = PATTERN (insn);
3482 switch (GET_CODE (pattern))
3484 case SET:
3485 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3486 purge_single_hard_subreg_set (pattern);
3487 break;
3488 case PARALLEL:
3490 int j;
3491 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3493 rtx inner_pattern = XVECEXP (pattern, 0, j);
3494 if (GET_CODE (inner_pattern) == SET
3495 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3496 purge_single_hard_subreg_set (inner_pattern);
3499 break;
3500 default:
3501 break;
3507 /* Pass through the INSNS of function FNDECL and convert virtual register
3508 references to hard register references. */
3510 void
3511 instantiate_virtual_regs (fndecl, insns)
3512 tree fndecl;
3513 rtx insns;
3515 rtx insn;
3516 unsigned int i;
3518 /* Compute the offsets to use for this function. */
3519 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3520 var_offset = STARTING_FRAME_OFFSET;
3521 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3522 out_arg_offset = STACK_POINTER_OFFSET;
3523 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3525 /* Scan all variables and parameters of this function. For each that is
3526 in memory, instantiate all virtual registers if the result is a valid
3527 address. If not, we do it later. That will handle most uses of virtual
3528 regs on many machines. */
3529 instantiate_decls (fndecl, 1);
3531 /* Initialize recognition, indicating that volatile is OK. */
3532 init_recog ();
3534 /* Scan through all the insns, instantiating every virtual register still
3535 present. */
3536 for (insn = insns; insn; insn = NEXT_INSN (insn))
3537 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3538 || GET_CODE (insn) == CALL_INSN)
3540 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3541 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3542 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3543 if (GET_CODE (insn) == CALL_INSN)
3544 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3545 NULL_RTX, 0);
3548 /* Instantiate the stack slots for the parm registers, for later use in
3549 addressof elimination. */
3550 for (i = 0; i < max_parm_reg; ++i)
3551 if (parm_reg_stack_loc[i])
3552 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3554 /* Now instantiate the remaining register equivalences for debugging info.
3555 These will not be valid addresses. */
3556 instantiate_decls (fndecl, 0);
3558 /* Indicate that, from now on, assign_stack_local should use
3559 frame_pointer_rtx. */
3560 virtuals_instantiated = 1;
3563 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3564 all virtual registers in their DECL_RTL's.
3566 If VALID_ONLY, do this only if the resulting address is still valid.
3567 Otherwise, always do it. */
3569 static void
3570 instantiate_decls (fndecl, valid_only)
3571 tree fndecl;
3572 int valid_only;
3574 tree decl;
3576 /* Process all parameters of the function. */
3577 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3579 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3581 instantiate_decl (DECL_RTL (decl), size, valid_only);
3583 /* If the parameter was promoted, then the incoming RTL mode may be
3584 larger than the declared type size. We must use the larger of
3585 the two sizes. */
3586 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3587 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3590 /* Now process all variables defined in the function or its subblocks. */
3591 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3594 /* Subroutine of instantiate_decls: Process all decls in the given
3595 BLOCK node and all its subblocks. */
3597 static void
3598 instantiate_decls_1 (let, valid_only)
3599 tree let;
3600 int valid_only;
3602 tree t;
3604 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3605 if (DECL_RTL_SET_P (t))
3606 instantiate_decl (DECL_RTL (t),
3607 int_size_in_bytes (TREE_TYPE (t)),
3608 valid_only);
3610 /* Process all subblocks. */
3611 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3612 instantiate_decls_1 (t, valid_only);
3615 /* Subroutine of the preceding procedures: Given RTL representing a
3616 decl and the size of the object, do any instantiation required.
3618 If VALID_ONLY is non-zero, it means that the RTL should only be
3619 changed if the new address is valid. */
3621 static void
3622 instantiate_decl (x, size, valid_only)
3623 rtx x;
3624 HOST_WIDE_INT size;
3625 int valid_only;
3627 enum machine_mode mode;
3628 rtx addr;
3630 /* If this is not a MEM, no need to do anything. Similarly if the
3631 address is a constant or a register that is not a virtual register. */
3633 if (x == 0 || GET_CODE (x) != MEM)
3634 return;
3636 addr = XEXP (x, 0);
3637 if (CONSTANT_P (addr)
3638 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3639 || (GET_CODE (addr) == REG
3640 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3641 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3642 return;
3644 /* If we should only do this if the address is valid, copy the address.
3645 We need to do this so we can undo any changes that might make the
3646 address invalid. This copy is unfortunate, but probably can't be
3647 avoided. */
3649 if (valid_only)
3650 addr = copy_rtx (addr);
3652 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3654 if (valid_only && size >= 0)
3656 unsigned HOST_WIDE_INT decl_size = size;
3658 /* Now verify that the resulting address is valid for every integer or
3659 floating-point mode up to and including SIZE bytes long. We do this
3660 since the object might be accessed in any mode and frame addresses
3661 are shared. */
3663 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3664 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3665 mode = GET_MODE_WIDER_MODE (mode))
3666 if (! memory_address_p (mode, addr))
3667 return;
3669 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3670 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3671 mode = GET_MODE_WIDER_MODE (mode))
3672 if (! memory_address_p (mode, addr))
3673 return;
3676 /* Put back the address now that we have updated it and we either know
3677 it is valid or we don't care whether it is valid. */
3679 XEXP (x, 0) = addr;
3682 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3683 is a virtual register, return the requivalent hard register and set the
3684 offset indirectly through the pointer. Otherwise, return 0. */
3686 static rtx
3687 instantiate_new_reg (x, poffset)
3688 rtx x;
3689 HOST_WIDE_INT *poffset;
3691 rtx new;
3692 HOST_WIDE_INT offset;
3694 if (x == virtual_incoming_args_rtx)
3695 new = arg_pointer_rtx, offset = in_arg_offset;
3696 else if (x == virtual_stack_vars_rtx)
3697 new = frame_pointer_rtx, offset = var_offset;
3698 else if (x == virtual_stack_dynamic_rtx)
3699 new = stack_pointer_rtx, offset = dynamic_offset;
3700 else if (x == virtual_outgoing_args_rtx)
3701 new = stack_pointer_rtx, offset = out_arg_offset;
3702 else if (x == virtual_cfa_rtx)
3703 new = arg_pointer_rtx, offset = cfa_offset;
3704 else
3705 return 0;
3707 *poffset = offset;
3708 return new;
3711 /* Given a pointer to a piece of rtx and an optional pointer to the
3712 containing object, instantiate any virtual registers present in it.
3714 If EXTRA_INSNS, we always do the replacement and generate
3715 any extra insns before OBJECT. If it zero, we do nothing if replacement
3716 is not valid.
3718 Return 1 if we either had nothing to do or if we were able to do the
3719 needed replacement. Return 0 otherwise; we only return zero if
3720 EXTRA_INSNS is zero.
3722 We first try some simple transformations to avoid the creation of extra
3723 pseudos. */
3725 static int
3726 instantiate_virtual_regs_1 (loc, object, extra_insns)
3727 rtx *loc;
3728 rtx object;
3729 int extra_insns;
3731 rtx x;
3732 RTX_CODE code;
3733 rtx new = 0;
3734 HOST_WIDE_INT offset = 0;
3735 rtx temp;
3736 rtx seq;
3737 int i, j;
3738 const char *fmt;
3740 /* Re-start here to avoid recursion in common cases. */
3741 restart:
3743 x = *loc;
3744 if (x == 0)
3745 return 1;
3747 code = GET_CODE (x);
3749 /* Check for some special cases. */
3750 switch (code)
3752 case CONST_INT:
3753 case CONST_DOUBLE:
3754 case CONST:
3755 case SYMBOL_REF:
3756 case CODE_LABEL:
3757 case PC:
3758 case CC0:
3759 case ASM_INPUT:
3760 case ADDR_VEC:
3761 case ADDR_DIFF_VEC:
3762 case RETURN:
3763 return 1;
3765 case SET:
3766 /* We are allowed to set the virtual registers. This means that
3767 the actual register should receive the source minus the
3768 appropriate offset. This is used, for example, in the handling
3769 of non-local gotos. */
3770 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3772 rtx src = SET_SRC (x);
3774 /* We are setting the register, not using it, so the relevant
3775 offset is the negative of the offset to use were we using
3776 the register. */
3777 offset = - offset;
3778 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3780 /* The only valid sources here are PLUS or REG. Just do
3781 the simplest possible thing to handle them. */
3782 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3783 abort ();
3785 start_sequence ();
3786 if (GET_CODE (src) != REG)
3787 temp = force_operand (src, NULL_RTX);
3788 else
3789 temp = src;
3790 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3791 seq = get_insns ();
3792 end_sequence ();
3794 emit_insns_before (seq, object);
3795 SET_DEST (x) = new;
3797 if (! validate_change (object, &SET_SRC (x), temp, 0)
3798 || ! extra_insns)
3799 abort ();
3801 return 1;
3804 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3805 loc = &SET_SRC (x);
3806 goto restart;
3808 case PLUS:
3809 /* Handle special case of virtual register plus constant. */
3810 if (CONSTANT_P (XEXP (x, 1)))
3812 rtx old, new_offset;
3814 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3815 if (GET_CODE (XEXP (x, 0)) == PLUS)
3817 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3819 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3820 extra_insns);
3821 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3823 else
3825 loc = &XEXP (x, 0);
3826 goto restart;
3830 #ifdef POINTERS_EXTEND_UNSIGNED
3831 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3832 we can commute the PLUS and SUBREG because pointers into the
3833 frame are well-behaved. */
3834 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3835 && GET_CODE (XEXP (x, 1)) == CONST_INT
3836 && 0 != (new
3837 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3838 &offset))
3839 && validate_change (object, loc,
3840 plus_constant (gen_lowpart (ptr_mode,
3841 new),
3842 offset
3843 + INTVAL (XEXP (x, 1))),
3845 return 1;
3846 #endif
3847 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3849 /* We know the second operand is a constant. Unless the
3850 first operand is a REG (which has been already checked),
3851 it needs to be checked. */
3852 if (GET_CODE (XEXP (x, 0)) != REG)
3854 loc = &XEXP (x, 0);
3855 goto restart;
3857 return 1;
3860 new_offset = plus_constant (XEXP (x, 1), offset);
3862 /* If the new constant is zero, try to replace the sum with just
3863 the register. */
3864 if (new_offset == const0_rtx
3865 && validate_change (object, loc, new, 0))
3866 return 1;
3868 /* Next try to replace the register and new offset.
3869 There are two changes to validate here and we can't assume that
3870 in the case of old offset equals new just changing the register
3871 will yield a valid insn. In the interests of a little efficiency,
3872 however, we only call validate change once (we don't queue up the
3873 changes and then call apply_change_group). */
3875 old = XEXP (x, 0);
3876 if (offset == 0
3877 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3878 : (XEXP (x, 0) = new,
3879 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3881 if (! extra_insns)
3883 XEXP (x, 0) = old;
3884 return 0;
3887 /* Otherwise copy the new constant into a register and replace
3888 constant with that register. */
3889 temp = gen_reg_rtx (Pmode);
3890 XEXP (x, 0) = new;
3891 if (validate_change (object, &XEXP (x, 1), temp, 0))
3892 emit_insn_before (gen_move_insn (temp, new_offset), object);
3893 else
3895 /* If that didn't work, replace this expression with a
3896 register containing the sum. */
3898 XEXP (x, 0) = old;
3899 new = gen_rtx_PLUS (Pmode, new, new_offset);
3901 start_sequence ();
3902 temp = force_operand (new, NULL_RTX);
3903 seq = get_insns ();
3904 end_sequence ();
3906 emit_insns_before (seq, object);
3907 if (! validate_change (object, loc, temp, 0)
3908 && ! validate_replace_rtx (x, temp, object))
3909 abort ();
3913 return 1;
3916 /* Fall through to generic two-operand expression case. */
3917 case EXPR_LIST:
3918 case CALL:
3919 case COMPARE:
3920 case MINUS:
3921 case MULT:
3922 case DIV: case UDIV:
3923 case MOD: case UMOD:
3924 case AND: case IOR: case XOR:
3925 case ROTATERT: case ROTATE:
3926 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3927 case NE: case EQ:
3928 case GE: case GT: case GEU: case GTU:
3929 case LE: case LT: case LEU: case LTU:
3930 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3931 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3932 loc = &XEXP (x, 0);
3933 goto restart;
3935 case MEM:
3936 /* Most cases of MEM that convert to valid addresses have already been
3937 handled by our scan of decls. The only special handling we
3938 need here is to make a copy of the rtx to ensure it isn't being
3939 shared if we have to change it to a pseudo.
3941 If the rtx is a simple reference to an address via a virtual register,
3942 it can potentially be shared. In such cases, first try to make it
3943 a valid address, which can also be shared. Otherwise, copy it and
3944 proceed normally.
3946 First check for common cases that need no processing. These are
3947 usually due to instantiation already being done on a previous instance
3948 of a shared rtx. */
3950 temp = XEXP (x, 0);
3951 if (CONSTANT_ADDRESS_P (temp)
3952 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3953 || temp == arg_pointer_rtx
3954 #endif
3955 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3956 || temp == hard_frame_pointer_rtx
3957 #endif
3958 || temp == frame_pointer_rtx)
3959 return 1;
3961 if (GET_CODE (temp) == PLUS
3962 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3963 && (XEXP (temp, 0) == frame_pointer_rtx
3964 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3965 || XEXP (temp, 0) == hard_frame_pointer_rtx
3966 #endif
3967 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3968 || XEXP (temp, 0) == arg_pointer_rtx
3969 #endif
3971 return 1;
3973 if (temp == virtual_stack_vars_rtx
3974 || temp == virtual_incoming_args_rtx
3975 || (GET_CODE (temp) == PLUS
3976 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3977 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3978 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3980 /* This MEM may be shared. If the substitution can be done without
3981 the need to generate new pseudos, we want to do it in place
3982 so all copies of the shared rtx benefit. The call below will
3983 only make substitutions if the resulting address is still
3984 valid.
3986 Note that we cannot pass X as the object in the recursive call
3987 since the insn being processed may not allow all valid
3988 addresses. However, if we were not passed on object, we can
3989 only modify X without copying it if X will have a valid
3990 address.
3992 ??? Also note that this can still lose if OBJECT is an insn that
3993 has less restrictions on an address that some other insn.
3994 In that case, we will modify the shared address. This case
3995 doesn't seem very likely, though. One case where this could
3996 happen is in the case of a USE or CLOBBER reference, but we
3997 take care of that below. */
3999 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4000 object ? object : x, 0))
4001 return 1;
4003 /* Otherwise make a copy and process that copy. We copy the entire
4004 RTL expression since it might be a PLUS which could also be
4005 shared. */
4006 *loc = x = copy_rtx (x);
4009 /* Fall through to generic unary operation case. */
4010 case SUBREG:
4011 case STRICT_LOW_PART:
4012 case NEG: case NOT:
4013 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4014 case SIGN_EXTEND: case ZERO_EXTEND:
4015 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4016 case FLOAT: case FIX:
4017 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4018 case ABS:
4019 case SQRT:
4020 case FFS:
4021 /* These case either have just one operand or we know that we need not
4022 check the rest of the operands. */
4023 loc = &XEXP (x, 0);
4024 goto restart;
4026 case USE:
4027 case CLOBBER:
4028 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4029 go ahead and make the invalid one, but do it to a copy. For a REG,
4030 just make the recursive call, since there's no chance of a problem. */
4032 if ((GET_CODE (XEXP (x, 0)) == MEM
4033 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4035 || (GET_CODE (XEXP (x, 0)) == REG
4036 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4037 return 1;
4039 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4040 loc = &XEXP (x, 0);
4041 goto restart;
4043 case REG:
4044 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4045 in front of this insn and substitute the temporary. */
4046 if ((new = instantiate_new_reg (x, &offset)) != 0)
4048 temp = plus_constant (new, offset);
4049 if (!validate_change (object, loc, temp, 0))
4051 if (! extra_insns)
4052 return 0;
4054 start_sequence ();
4055 temp = force_operand (temp, NULL_RTX);
4056 seq = get_insns ();
4057 end_sequence ();
4059 emit_insns_before (seq, object);
4060 if (! validate_change (object, loc, temp, 0)
4061 && ! validate_replace_rtx (x, temp, object))
4062 abort ();
4066 return 1;
4068 case ADDRESSOF:
4069 if (GET_CODE (XEXP (x, 0)) == REG)
4070 return 1;
4072 else if (GET_CODE (XEXP (x, 0)) == MEM)
4074 /* If we have a (addressof (mem ..)), do any instantiation inside
4075 since we know we'll be making the inside valid when we finally
4076 remove the ADDRESSOF. */
4077 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4078 return 1;
4080 break;
4082 default:
4083 break;
4086 /* Scan all subexpressions. */
4087 fmt = GET_RTX_FORMAT (code);
4088 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4089 if (*fmt == 'e')
4091 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4092 return 0;
4094 else if (*fmt == 'E')
4095 for (j = 0; j < XVECLEN (x, i); j++)
4096 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4097 extra_insns))
4098 return 0;
4100 return 1;
4103 /* Optimization: assuming this function does not receive nonlocal gotos,
4104 delete the handlers for such, as well as the insns to establish
4105 and disestablish them. */
4107 static void
4108 delete_handlers ()
4110 rtx insn;
4111 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4113 /* Delete the handler by turning off the flag that would
4114 prevent jump_optimize from deleting it.
4115 Also permit deletion of the nonlocal labels themselves
4116 if nothing local refers to them. */
4117 if (GET_CODE (insn) == CODE_LABEL)
4119 tree t, last_t;
4121 LABEL_PRESERVE_P (insn) = 0;
4123 /* Remove it from the nonlocal_label list, to avoid confusing
4124 flow. */
4125 for (t = nonlocal_labels, last_t = 0; t;
4126 last_t = t, t = TREE_CHAIN (t))
4127 if (DECL_RTL (TREE_VALUE (t)) == insn)
4128 break;
4129 if (t)
4131 if (! last_t)
4132 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4133 else
4134 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4137 if (GET_CODE (insn) == INSN)
4139 int can_delete = 0;
4140 rtx t;
4141 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4142 if (reg_mentioned_p (t, PATTERN (insn)))
4144 can_delete = 1;
4145 break;
4147 if (can_delete
4148 || (nonlocal_goto_stack_level != 0
4149 && reg_mentioned_p (nonlocal_goto_stack_level,
4150 PATTERN (insn))))
4151 delete_insn (insn);
4157 max_parm_reg_num ()
4159 return max_parm_reg;
4162 /* Return the first insn following those generated by `assign_parms'. */
4165 get_first_nonparm_insn ()
4167 if (last_parm_insn)
4168 return NEXT_INSN (last_parm_insn);
4169 return get_insns ();
4172 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4173 Crash if there is none. */
4176 get_first_block_beg ()
4178 register rtx searcher;
4179 register rtx insn = get_first_nonparm_insn ();
4181 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4182 if (GET_CODE (searcher) == NOTE
4183 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4184 return searcher;
4186 abort (); /* Invalid call to this function. (See comments above.) */
4187 return NULL_RTX;
4190 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4191 This means a type for which function calls must pass an address to the
4192 function or get an address back from the function.
4193 EXP may be a type node or an expression (whose type is tested). */
4196 aggregate_value_p (exp)
4197 tree exp;
4199 int i, regno, nregs;
4200 rtx reg;
4202 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4204 if (TREE_CODE (type) == VOID_TYPE)
4205 return 0;
4206 if (RETURN_IN_MEMORY (type))
4207 return 1;
4208 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4209 and thus can't be returned in registers. */
4210 if (TREE_ADDRESSABLE (type))
4211 return 1;
4212 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4213 return 1;
4214 /* Make sure we have suitable call-clobbered regs to return
4215 the value in; if not, we must return it in memory. */
4216 reg = hard_function_value (type, 0, 0);
4218 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4219 it is OK. */
4220 if (GET_CODE (reg) != REG)
4221 return 0;
4223 regno = REGNO (reg);
4224 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4225 for (i = 0; i < nregs; i++)
4226 if (! call_used_regs[regno + i])
4227 return 1;
4228 return 0;
4231 /* Assign RTL expressions to the function's parameters.
4232 This may involve copying them into registers and using
4233 those registers as the RTL for them. */
4235 void
4236 assign_parms (fndecl)
4237 tree fndecl;
4239 register tree parm;
4240 register rtx entry_parm = 0;
4241 register rtx stack_parm = 0;
4242 CUMULATIVE_ARGS args_so_far;
4243 enum machine_mode promoted_mode, passed_mode;
4244 enum machine_mode nominal_mode, promoted_nominal_mode;
4245 int unsignedp;
4246 /* Total space needed so far for args on the stack,
4247 given as a constant and a tree-expression. */
4248 struct args_size stack_args_size;
4249 tree fntype = TREE_TYPE (fndecl);
4250 tree fnargs = DECL_ARGUMENTS (fndecl);
4251 /* This is used for the arg pointer when referring to stack args. */
4252 rtx internal_arg_pointer;
4253 /* This is a dummy PARM_DECL that we used for the function result if
4254 the function returns a structure. */
4255 tree function_result_decl = 0;
4256 #ifdef SETUP_INCOMING_VARARGS
4257 int varargs_setup = 0;
4258 #endif
4259 rtx conversion_insns = 0;
4260 struct args_size alignment_pad;
4262 /* Nonzero if the last arg is named `__builtin_va_alist',
4263 which is used on some machines for old-fashioned non-ANSI varargs.h;
4264 this should be stuck onto the stack as if it had arrived there. */
4265 int hide_last_arg
4266 = (current_function_varargs
4267 && fnargs
4268 && (parm = tree_last (fnargs)) != 0
4269 && DECL_NAME (parm)
4270 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4271 "__builtin_va_alist")));
4273 /* Nonzero if function takes extra anonymous args.
4274 This means the last named arg must be on the stack
4275 right before the anonymous ones. */
4276 int stdarg
4277 = (TYPE_ARG_TYPES (fntype) != 0
4278 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4279 != void_type_node));
4281 current_function_stdarg = stdarg;
4283 /* If the reg that the virtual arg pointer will be translated into is
4284 not a fixed reg or is the stack pointer, make a copy of the virtual
4285 arg pointer, and address parms via the copy. The frame pointer is
4286 considered fixed even though it is not marked as such.
4288 The second time through, simply use ap to avoid generating rtx. */
4290 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4291 || ! (fixed_regs[ARG_POINTER_REGNUM]
4292 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4293 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4294 else
4295 internal_arg_pointer = virtual_incoming_args_rtx;
4296 current_function_internal_arg_pointer = internal_arg_pointer;
4298 stack_args_size.constant = 0;
4299 stack_args_size.var = 0;
4301 /* If struct value address is treated as the first argument, make it so. */
4302 if (aggregate_value_p (DECL_RESULT (fndecl))
4303 && ! current_function_returns_pcc_struct
4304 && struct_value_incoming_rtx == 0)
4306 tree type = build_pointer_type (TREE_TYPE (fntype));
4308 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4310 DECL_ARG_TYPE (function_result_decl) = type;
4311 TREE_CHAIN (function_result_decl) = fnargs;
4312 fnargs = function_result_decl;
4315 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4316 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4318 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4319 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4320 #else
4321 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4322 #endif
4324 /* We haven't yet found an argument that we must push and pretend the
4325 caller did. */
4326 current_function_pretend_args_size = 0;
4328 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4330 struct args_size stack_offset;
4331 struct args_size arg_size;
4332 int passed_pointer = 0;
4333 int did_conversion = 0;
4334 tree passed_type = DECL_ARG_TYPE (parm);
4335 tree nominal_type = TREE_TYPE (parm);
4336 int pretend_named;
4338 /* Set LAST_NAMED if this is last named arg before some
4339 anonymous args. */
4340 int last_named = ((TREE_CHAIN (parm) == 0
4341 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4342 && (stdarg || current_function_varargs));
4343 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4344 most machines, if this is a varargs/stdarg function, then we treat
4345 the last named arg as if it were anonymous too. */
4346 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4348 if (TREE_TYPE (parm) == error_mark_node
4349 /* This can happen after weird syntax errors
4350 or if an enum type is defined among the parms. */
4351 || TREE_CODE (parm) != PARM_DECL
4352 || passed_type == NULL)
4354 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4355 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4356 TREE_USED (parm) = 1;
4357 continue;
4360 /* For varargs.h function, save info about regs and stack space
4361 used by the individual args, not including the va_alist arg. */
4362 if (hide_last_arg && last_named)
4363 current_function_args_info = args_so_far;
4365 /* Find mode of arg as it is passed, and mode of arg
4366 as it should be during execution of this function. */
4367 passed_mode = TYPE_MODE (passed_type);
4368 nominal_mode = TYPE_MODE (nominal_type);
4370 /* If the parm's mode is VOID, its value doesn't matter,
4371 and avoid the usual things like emit_move_insn that could crash. */
4372 if (nominal_mode == VOIDmode)
4374 SET_DECL_RTL (parm, const0_rtx);
4375 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4376 continue;
4379 /* If the parm is to be passed as a transparent union, use the
4380 type of the first field for the tests below. We have already
4381 verified that the modes are the same. */
4382 if (DECL_TRANSPARENT_UNION (parm)
4383 || (TREE_CODE (passed_type) == UNION_TYPE
4384 && TYPE_TRANSPARENT_UNION (passed_type)))
4385 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4387 /* See if this arg was passed by invisible reference. It is if
4388 it is an object whose size depends on the contents of the
4389 object itself or if the machine requires these objects be passed
4390 that way. */
4392 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4393 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4394 || TREE_ADDRESSABLE (passed_type)
4395 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4396 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4397 passed_type, named_arg)
4398 #endif
4401 passed_type = nominal_type = build_pointer_type (passed_type);
4402 passed_pointer = 1;
4403 passed_mode = nominal_mode = Pmode;
4406 promoted_mode = passed_mode;
4408 #ifdef PROMOTE_FUNCTION_ARGS
4409 /* Compute the mode in which the arg is actually extended to. */
4410 unsignedp = TREE_UNSIGNED (passed_type);
4411 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4412 #endif
4414 /* Let machine desc say which reg (if any) the parm arrives in.
4415 0 means it arrives on the stack. */
4416 #ifdef FUNCTION_INCOMING_ARG
4417 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4418 passed_type, named_arg);
4419 #else
4420 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4421 passed_type, named_arg);
4422 #endif
4424 if (entry_parm == 0)
4425 promoted_mode = passed_mode;
4427 #ifdef SETUP_INCOMING_VARARGS
4428 /* If this is the last named parameter, do any required setup for
4429 varargs or stdargs. We need to know about the case of this being an
4430 addressable type, in which case we skip the registers it
4431 would have arrived in.
4433 For stdargs, LAST_NAMED will be set for two parameters, the one that
4434 is actually the last named, and the dummy parameter. We only
4435 want to do this action once.
4437 Also, indicate when RTL generation is to be suppressed. */
4438 if (last_named && !varargs_setup)
4440 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4441 current_function_pretend_args_size, 0);
4442 varargs_setup = 1;
4444 #endif
4446 /* Determine parm's home in the stack,
4447 in case it arrives in the stack or we should pretend it did.
4449 Compute the stack position and rtx where the argument arrives
4450 and its size.
4452 There is one complexity here: If this was a parameter that would
4453 have been passed in registers, but wasn't only because it is
4454 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4455 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4456 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4457 0 as it was the previous time. */
4459 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4460 locate_and_pad_parm (promoted_mode, passed_type,
4461 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4463 #else
4464 #ifdef FUNCTION_INCOMING_ARG
4465 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4466 passed_type,
4467 pretend_named) != 0,
4468 #else
4469 FUNCTION_ARG (args_so_far, promoted_mode,
4470 passed_type,
4471 pretend_named) != 0,
4472 #endif
4473 #endif
4474 fndecl, &stack_args_size, &stack_offset, &arg_size,
4475 &alignment_pad);
4478 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4480 if (offset_rtx == const0_rtx)
4481 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4482 else
4483 stack_parm = gen_rtx_MEM (promoted_mode,
4484 gen_rtx_PLUS (Pmode,
4485 internal_arg_pointer,
4486 offset_rtx));
4488 set_mem_attributes (stack_parm, parm, 1);
4491 /* If this parameter was passed both in registers and in the stack,
4492 use the copy on the stack. */
4493 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4494 entry_parm = 0;
4496 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4497 /* If this parm was passed part in regs and part in memory,
4498 pretend it arrived entirely in memory
4499 by pushing the register-part onto the stack.
4501 In the special case of a DImode or DFmode that is split,
4502 we could put it together in a pseudoreg directly,
4503 but for now that's not worth bothering with. */
4505 if (entry_parm)
4507 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4508 passed_type, named_arg);
4510 if (nregs > 0)
4512 current_function_pretend_args_size
4513 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4514 / (PARM_BOUNDARY / BITS_PER_UNIT)
4515 * (PARM_BOUNDARY / BITS_PER_UNIT));
4517 /* Handle calls that pass values in multiple non-contiguous
4518 locations. The Irix 6 ABI has examples of this. */
4519 if (GET_CODE (entry_parm) == PARALLEL)
4520 emit_group_store (validize_mem (stack_parm), entry_parm,
4521 int_size_in_bytes (TREE_TYPE (parm)),
4522 TYPE_ALIGN (TREE_TYPE (parm)));
4524 else
4525 move_block_from_reg (REGNO (entry_parm),
4526 validize_mem (stack_parm), nregs,
4527 int_size_in_bytes (TREE_TYPE (parm)));
4529 entry_parm = stack_parm;
4532 #endif
4534 /* If we didn't decide this parm came in a register,
4535 by default it came on the stack. */
4536 if (entry_parm == 0)
4537 entry_parm = stack_parm;
4539 /* Record permanently how this parm was passed. */
4540 DECL_INCOMING_RTL (parm) = entry_parm;
4542 /* If there is actually space on the stack for this parm,
4543 count it in stack_args_size; otherwise set stack_parm to 0
4544 to indicate there is no preallocated stack slot for the parm. */
4546 if (entry_parm == stack_parm
4547 || (GET_CODE (entry_parm) == PARALLEL
4548 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4549 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4550 /* On some machines, even if a parm value arrives in a register
4551 there is still an (uninitialized) stack slot allocated for it.
4553 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4554 whether this parameter already has a stack slot allocated,
4555 because an arg block exists only if current_function_args_size
4556 is larger than some threshold, and we haven't calculated that
4557 yet. So, for now, we just assume that stack slots never exist
4558 in this case. */
4559 || REG_PARM_STACK_SPACE (fndecl) > 0
4560 #endif
4563 stack_args_size.constant += arg_size.constant;
4564 if (arg_size.var)
4565 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4567 else
4568 /* No stack slot was pushed for this parm. */
4569 stack_parm = 0;
4571 /* Update info on where next arg arrives in registers. */
4573 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4574 passed_type, named_arg);
4576 /* If we can't trust the parm stack slot to be aligned enough
4577 for its ultimate type, don't use that slot after entry.
4578 We'll make another stack slot, if we need one. */
4580 unsigned int thisparm_boundary
4581 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4583 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4584 stack_parm = 0;
4587 /* If parm was passed in memory, and we need to convert it on entry,
4588 don't store it back in that same slot. */
4589 if (entry_parm != 0
4590 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4591 stack_parm = 0;
4593 /* When an argument is passed in multiple locations, we can't
4594 make use of this information, but we can save some copying if
4595 the whole argument is passed in a single register. */
4596 if (GET_CODE (entry_parm) == PARALLEL
4597 && nominal_mode != BLKmode && passed_mode != BLKmode)
4599 int i, len = XVECLEN (entry_parm, 0);
4601 for (i = 0; i < len; i++)
4602 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4603 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4604 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4605 == passed_mode)
4606 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4608 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4609 DECL_INCOMING_RTL (parm) = entry_parm;
4610 break;
4614 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4615 in the mode in which it arrives.
4616 STACK_PARM is an RTX for a stack slot where the parameter can live
4617 during the function (in case we want to put it there).
4618 STACK_PARM is 0 if no stack slot was pushed for it.
4620 Now output code if necessary to convert ENTRY_PARM to
4621 the type in which this function declares it,
4622 and store that result in an appropriate place,
4623 which may be a pseudo reg, may be STACK_PARM,
4624 or may be a local stack slot if STACK_PARM is 0.
4626 Set DECL_RTL to that place. */
4628 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4630 /* If a BLKmode arrives in registers, copy it to a stack slot.
4631 Handle calls that pass values in multiple non-contiguous
4632 locations. The Irix 6 ABI has examples of this. */
4633 if (GET_CODE (entry_parm) == REG
4634 || GET_CODE (entry_parm) == PARALLEL)
4636 int size_stored
4637 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4638 UNITS_PER_WORD);
4640 /* Note that we will be storing an integral number of words.
4641 So we have to be careful to ensure that we allocate an
4642 integral number of words. We do this below in the
4643 assign_stack_local if space was not allocated in the argument
4644 list. If it was, this will not work if PARM_BOUNDARY is not
4645 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4646 if it becomes a problem. */
4648 if (stack_parm == 0)
4650 stack_parm
4651 = assign_stack_local (GET_MODE (entry_parm),
4652 size_stored, 0);
4653 set_mem_attributes (stack_parm, parm, 1);
4656 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4657 abort ();
4659 /* Handle calls that pass values in multiple non-contiguous
4660 locations. The Irix 6 ABI has examples of this. */
4661 if (GET_CODE (entry_parm) == PARALLEL)
4662 emit_group_store (validize_mem (stack_parm), entry_parm,
4663 int_size_in_bytes (TREE_TYPE (parm)),
4664 TYPE_ALIGN (TREE_TYPE (parm)));
4665 else
4666 move_block_from_reg (REGNO (entry_parm),
4667 validize_mem (stack_parm),
4668 size_stored / UNITS_PER_WORD,
4669 int_size_in_bytes (TREE_TYPE (parm)));
4671 SET_DECL_RTL (parm, stack_parm);
4673 else if (! ((! optimize
4674 && ! DECL_REGISTER (parm)
4675 && ! DECL_INLINE (fndecl))
4676 || TREE_SIDE_EFFECTS (parm)
4677 /* If -ffloat-store specified, don't put explicit
4678 float variables into registers. */
4679 || (flag_float_store
4680 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4681 /* Always assign pseudo to structure return or item passed
4682 by invisible reference. */
4683 || passed_pointer || parm == function_result_decl)
4685 /* Store the parm in a pseudoregister during the function, but we
4686 may need to do it in a wider mode. */
4688 register rtx parmreg;
4689 unsigned int regno, regnoi = 0, regnor = 0;
4691 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4693 promoted_nominal_mode
4694 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4696 parmreg = gen_reg_rtx (promoted_nominal_mode);
4697 mark_user_reg (parmreg);
4699 /* If this was an item that we received a pointer to, set DECL_RTL
4700 appropriately. */
4701 if (passed_pointer)
4703 SET_DECL_RTL (parm,
4704 gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4705 parmreg));
4706 set_mem_attributes (DECL_RTL (parm), parm, 1);
4708 else
4710 SET_DECL_RTL (parm, parmreg);
4711 maybe_set_unchanging (DECL_RTL (parm), parm);
4714 /* Copy the value into the register. */
4715 if (nominal_mode != passed_mode
4716 || promoted_nominal_mode != promoted_mode)
4718 int save_tree_used;
4719 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4720 mode, by the caller. We now have to convert it to
4721 NOMINAL_MODE, if different. However, PARMREG may be in
4722 a different mode than NOMINAL_MODE if it is being stored
4723 promoted.
4725 If ENTRY_PARM is a hard register, it might be in a register
4726 not valid for operating in its mode (e.g., an odd-numbered
4727 register for a DFmode). In that case, moves are the only
4728 thing valid, so we can't do a convert from there. This
4729 occurs when the calling sequence allow such misaligned
4730 usages.
4732 In addition, the conversion may involve a call, which could
4733 clobber parameters which haven't been copied to pseudo
4734 registers yet. Therefore, we must first copy the parm to
4735 a pseudo reg here, and save the conversion until after all
4736 parameters have been moved. */
4738 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4740 emit_move_insn (tempreg, validize_mem (entry_parm));
4742 push_to_sequence (conversion_insns);
4743 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4745 /* TREE_USED gets set erroneously during expand_assignment. */
4746 save_tree_used = TREE_USED (parm);
4747 expand_assignment (parm,
4748 make_tree (nominal_type, tempreg), 0, 0);
4749 TREE_USED (parm) = save_tree_used;
4750 conversion_insns = get_insns ();
4751 did_conversion = 1;
4752 end_sequence ();
4754 else
4755 emit_move_insn (parmreg, validize_mem (entry_parm));
4757 /* If we were passed a pointer but the actual value
4758 can safely live in a register, put it in one. */
4759 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4760 && ! ((! optimize
4761 && ! DECL_REGISTER (parm)
4762 && ! DECL_INLINE (fndecl))
4763 || TREE_SIDE_EFFECTS (parm)
4764 /* If -ffloat-store specified, don't put explicit
4765 float variables into registers. */
4766 || (flag_float_store
4767 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4769 /* We can't use nominal_mode, because it will have been set to
4770 Pmode above. We must use the actual mode of the parm. */
4771 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4772 mark_user_reg (parmreg);
4773 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4775 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4776 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4777 push_to_sequence (conversion_insns);
4778 emit_move_insn (tempreg, DECL_RTL (parm));
4779 SET_DECL_RTL (parm,
4780 convert_to_mode (GET_MODE (parmreg),
4781 tempreg,
4782 unsigned_p));
4783 emit_move_insn (parmreg, DECL_RTL (parm));
4784 conversion_insns = get_insns();
4785 did_conversion = 1;
4786 end_sequence ();
4788 else
4789 emit_move_insn (parmreg, DECL_RTL (parm));
4790 SET_DECL_RTL (parm, parmreg);
4791 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4792 now the parm. */
4793 stack_parm = 0;
4795 #ifdef FUNCTION_ARG_CALLEE_COPIES
4796 /* If we are passed an arg by reference and it is our responsibility
4797 to make a copy, do it now.
4798 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4799 original argument, so we must recreate them in the call to
4800 FUNCTION_ARG_CALLEE_COPIES. */
4801 /* ??? Later add code to handle the case that if the argument isn't
4802 modified, don't do the copy. */
4804 else if (passed_pointer
4805 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4806 TYPE_MODE (DECL_ARG_TYPE (parm)),
4807 DECL_ARG_TYPE (parm),
4808 named_arg)
4809 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4811 rtx copy;
4812 tree type = DECL_ARG_TYPE (parm);
4814 /* This sequence may involve a library call perhaps clobbering
4815 registers that haven't been copied to pseudos yet. */
4817 push_to_sequence (conversion_insns);
4819 if (!COMPLETE_TYPE_P (type)
4820 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4821 /* This is a variable sized object. */
4822 copy = gen_rtx_MEM (BLKmode,
4823 allocate_dynamic_stack_space
4824 (expr_size (parm), NULL_RTX,
4825 TYPE_ALIGN (type)));
4826 else
4827 copy = assign_stack_temp (TYPE_MODE (type),
4828 int_size_in_bytes (type), 1);
4829 set_mem_attributes (copy, parm, 1);
4831 store_expr (parm, copy, 0);
4832 emit_move_insn (parmreg, XEXP (copy, 0));
4833 if (current_function_check_memory_usage)
4834 emit_library_call (chkr_set_right_libfunc,
4835 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4836 XEXP (copy, 0), Pmode,
4837 GEN_INT (int_size_in_bytes (type)),
4838 TYPE_MODE (sizetype),
4839 GEN_INT (MEMORY_USE_RW),
4840 TYPE_MODE (integer_type_node));
4841 conversion_insns = get_insns ();
4842 did_conversion = 1;
4843 end_sequence ();
4845 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4847 /* In any case, record the parm's desired stack location
4848 in case we later discover it must live in the stack.
4850 If it is a COMPLEX value, store the stack location for both
4851 halves. */
4853 if (GET_CODE (parmreg) == CONCAT)
4854 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4855 else
4856 regno = REGNO (parmreg);
4858 if (regno >= max_parm_reg)
4860 rtx *new;
4861 int old_max_parm_reg = max_parm_reg;
4863 /* It's slow to expand this one register at a time,
4864 but it's also rare and we need max_parm_reg to be
4865 precisely correct. */
4866 max_parm_reg = regno + 1;
4867 new = (rtx *) xrealloc (parm_reg_stack_loc,
4868 max_parm_reg * sizeof (rtx));
4869 memset ((char *) (new + old_max_parm_reg), 0,
4870 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4871 parm_reg_stack_loc = new;
4874 if (GET_CODE (parmreg) == CONCAT)
4876 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4878 regnor = REGNO (gen_realpart (submode, parmreg));
4879 regnoi = REGNO (gen_imagpart (submode, parmreg));
4881 if (stack_parm != 0)
4883 parm_reg_stack_loc[regnor]
4884 = gen_realpart (submode, stack_parm);
4885 parm_reg_stack_loc[regnoi]
4886 = gen_imagpart (submode, stack_parm);
4888 else
4890 parm_reg_stack_loc[regnor] = 0;
4891 parm_reg_stack_loc[regnoi] = 0;
4894 else
4895 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4897 /* Mark the register as eliminable if we did no conversion
4898 and it was copied from memory at a fixed offset,
4899 and the arg pointer was not copied to a pseudo-reg.
4900 If the arg pointer is a pseudo reg or the offset formed
4901 an invalid address, such memory-equivalences
4902 as we make here would screw up life analysis for it. */
4903 if (nominal_mode == passed_mode
4904 && ! did_conversion
4905 && stack_parm != 0
4906 && GET_CODE (stack_parm) == MEM
4907 && stack_offset.var == 0
4908 && reg_mentioned_p (virtual_incoming_args_rtx,
4909 XEXP (stack_parm, 0)))
4911 rtx linsn = get_last_insn ();
4912 rtx sinsn, set;
4914 /* Mark complex types separately. */
4915 if (GET_CODE (parmreg) == CONCAT)
4916 /* Scan backwards for the set of the real and
4917 imaginary parts. */
4918 for (sinsn = linsn; sinsn != 0;
4919 sinsn = prev_nonnote_insn (sinsn))
4921 set = single_set (sinsn);
4922 if (set != 0
4923 && SET_DEST (set) == regno_reg_rtx [regnoi])
4924 REG_NOTES (sinsn)
4925 = gen_rtx_EXPR_LIST (REG_EQUIV,
4926 parm_reg_stack_loc[regnoi],
4927 REG_NOTES (sinsn));
4928 else if (set != 0
4929 && SET_DEST (set) == regno_reg_rtx [regnor])
4930 REG_NOTES (sinsn)
4931 = gen_rtx_EXPR_LIST (REG_EQUIV,
4932 parm_reg_stack_loc[regnor],
4933 REG_NOTES (sinsn));
4935 else if ((set = single_set (linsn)) != 0
4936 && SET_DEST (set) == parmreg)
4937 REG_NOTES (linsn)
4938 = gen_rtx_EXPR_LIST (REG_EQUIV,
4939 stack_parm, REG_NOTES (linsn));
4942 /* For pointer data type, suggest pointer register. */
4943 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4944 mark_reg_pointer (parmreg,
4945 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4947 /* If something wants our address, try to use ADDRESSOF. */
4948 if (TREE_ADDRESSABLE (parm))
4950 /* If we end up putting something into the stack,
4951 fixup_var_refs_insns will need to make a pass over
4952 all the instructions. It looks throughs the pending
4953 sequences -- but it can't see the ones in the
4954 CONVERSION_INSNS, if they're not on the sequence
4955 stack. So, we go back to that sequence, just so that
4956 the fixups will happen. */
4957 push_to_sequence (conversion_insns);
4958 put_var_into_stack (parm);
4959 conversion_insns = get_insns ();
4960 end_sequence ();
4963 else
4965 /* Value must be stored in the stack slot STACK_PARM
4966 during function execution. */
4968 if (promoted_mode != nominal_mode)
4970 /* Conversion is required. */
4971 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4973 emit_move_insn (tempreg, validize_mem (entry_parm));
4975 push_to_sequence (conversion_insns);
4976 entry_parm = convert_to_mode (nominal_mode, tempreg,
4977 TREE_UNSIGNED (TREE_TYPE (parm)));
4978 if (stack_parm)
4980 /* ??? This may need a big-endian conversion on sparc64. */
4981 stack_parm = change_address (stack_parm, nominal_mode,
4982 NULL_RTX);
4984 conversion_insns = get_insns ();
4985 did_conversion = 1;
4986 end_sequence ();
4989 if (entry_parm != stack_parm)
4991 if (stack_parm == 0)
4993 stack_parm
4994 = assign_stack_local (GET_MODE (entry_parm),
4995 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4996 set_mem_attributes (stack_parm, parm, 1);
4999 if (promoted_mode != nominal_mode)
5001 push_to_sequence (conversion_insns);
5002 emit_move_insn (validize_mem (stack_parm),
5003 validize_mem (entry_parm));
5004 conversion_insns = get_insns ();
5005 end_sequence ();
5007 else
5008 emit_move_insn (validize_mem (stack_parm),
5009 validize_mem (entry_parm));
5011 if (current_function_check_memory_usage)
5013 push_to_sequence (conversion_insns);
5014 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5015 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5016 GEN_INT (GET_MODE_SIZE (GET_MODE
5017 (entry_parm))),
5018 TYPE_MODE (sizetype),
5019 GEN_INT (MEMORY_USE_RW),
5020 TYPE_MODE (integer_type_node));
5022 conversion_insns = get_insns ();
5023 end_sequence ();
5025 SET_DECL_RTL (parm, stack_parm);
5028 /* If this "parameter" was the place where we are receiving the
5029 function's incoming structure pointer, set up the result. */
5030 if (parm == function_result_decl)
5032 tree result = DECL_RESULT (fndecl);
5034 SET_DECL_RTL (result,
5035 gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)));
5037 set_mem_attributes (DECL_RTL (result), result, 1);
5041 /* Output all parameter conversion instructions (possibly including calls)
5042 now that all parameters have been copied out of hard registers. */
5043 emit_insns (conversion_insns);
5045 last_parm_insn = get_last_insn ();
5047 current_function_args_size = stack_args_size.constant;
5049 /* Adjust function incoming argument size for alignment and
5050 minimum length. */
5052 #ifdef REG_PARM_STACK_SPACE
5053 #ifndef MAYBE_REG_PARM_STACK_SPACE
5054 current_function_args_size = MAX (current_function_args_size,
5055 REG_PARM_STACK_SPACE (fndecl));
5056 #endif
5057 #endif
5059 #ifdef STACK_BOUNDARY
5060 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5062 current_function_args_size
5063 = ((current_function_args_size + STACK_BYTES - 1)
5064 / STACK_BYTES) * STACK_BYTES;
5065 #endif
5067 #ifdef ARGS_GROW_DOWNWARD
5068 current_function_arg_offset_rtx
5069 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5070 : expand_expr (size_diffop (stack_args_size.var,
5071 size_int (-stack_args_size.constant)),
5072 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5073 #else
5074 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5075 #endif
5077 /* See how many bytes, if any, of its args a function should try to pop
5078 on return. */
5080 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5081 current_function_args_size);
5083 /* For stdarg.h function, save info about
5084 regs and stack space used by the named args. */
5086 if (!hide_last_arg)
5087 current_function_args_info = args_so_far;
5089 /* Set the rtx used for the function return value. Put this in its
5090 own variable so any optimizers that need this information don't have
5091 to include tree.h. Do this here so it gets done when an inlined
5092 function gets output. */
5094 current_function_return_rtx
5095 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5096 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5099 /* Indicate whether REGNO is an incoming argument to the current function
5100 that was promoted to a wider mode. If so, return the RTX for the
5101 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5102 that REGNO is promoted from and whether the promotion was signed or
5103 unsigned. */
5105 #ifdef PROMOTE_FUNCTION_ARGS
5108 promoted_input_arg (regno, pmode, punsignedp)
5109 unsigned int regno;
5110 enum machine_mode *pmode;
5111 int *punsignedp;
5113 tree arg;
5115 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5116 arg = TREE_CHAIN (arg))
5117 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5118 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5119 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5121 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5122 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5124 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5125 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5126 && mode != DECL_MODE (arg))
5128 *pmode = DECL_MODE (arg);
5129 *punsignedp = unsignedp;
5130 return DECL_INCOMING_RTL (arg);
5134 return 0;
5137 #endif
5139 /* Compute the size and offset from the start of the stacked arguments for a
5140 parm passed in mode PASSED_MODE and with type TYPE.
5142 INITIAL_OFFSET_PTR points to the current offset into the stacked
5143 arguments.
5145 The starting offset and size for this parm are returned in *OFFSET_PTR
5146 and *ARG_SIZE_PTR, respectively.
5148 IN_REGS is non-zero if the argument will be passed in registers. It will
5149 never be set if REG_PARM_STACK_SPACE is not defined.
5151 FNDECL is the function in which the argument was defined.
5153 There are two types of rounding that are done. The first, controlled by
5154 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5155 list to be aligned to the specific boundary (in bits). This rounding
5156 affects the initial and starting offsets, but not the argument size.
5158 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5159 optionally rounds the size of the parm to PARM_BOUNDARY. The
5160 initial offset is not affected by this rounding, while the size always
5161 is and the starting offset may be. */
5163 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5164 initial_offset_ptr is positive because locate_and_pad_parm's
5165 callers pass in the total size of args so far as
5166 initial_offset_ptr. arg_size_ptr is always positive.*/
5168 void
5169 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5170 initial_offset_ptr, offset_ptr, arg_size_ptr,
5171 alignment_pad)
5172 enum machine_mode passed_mode;
5173 tree type;
5174 int in_regs ATTRIBUTE_UNUSED;
5175 tree fndecl ATTRIBUTE_UNUSED;
5176 struct args_size *initial_offset_ptr;
5177 struct args_size *offset_ptr;
5178 struct args_size *arg_size_ptr;
5179 struct args_size *alignment_pad;
5182 tree sizetree
5183 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5184 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5185 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5187 #ifdef REG_PARM_STACK_SPACE
5188 /* If we have found a stack parm before we reach the end of the
5189 area reserved for registers, skip that area. */
5190 if (! in_regs)
5192 int reg_parm_stack_space = 0;
5194 #ifdef MAYBE_REG_PARM_STACK_SPACE
5195 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5196 #else
5197 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5198 #endif
5199 if (reg_parm_stack_space > 0)
5201 if (initial_offset_ptr->var)
5203 initial_offset_ptr->var
5204 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5205 ssize_int (reg_parm_stack_space));
5206 initial_offset_ptr->constant = 0;
5208 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5209 initial_offset_ptr->constant = reg_parm_stack_space;
5212 #endif /* REG_PARM_STACK_SPACE */
5214 arg_size_ptr->var = 0;
5215 arg_size_ptr->constant = 0;
5216 alignment_pad->var = 0;
5217 alignment_pad->constant = 0;
5219 #ifdef ARGS_GROW_DOWNWARD
5220 if (initial_offset_ptr->var)
5222 offset_ptr->constant = 0;
5223 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5224 initial_offset_ptr->var);
5226 else
5228 offset_ptr->constant = -initial_offset_ptr->constant;
5229 offset_ptr->var = 0;
5231 if (where_pad != none
5232 && (!host_integerp (sizetree, 1)
5233 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5234 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5235 SUB_PARM_SIZE (*offset_ptr, sizetree);
5236 if (where_pad != downward)
5237 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5238 if (initial_offset_ptr->var)
5239 arg_size_ptr->var = size_binop (MINUS_EXPR,
5240 size_binop (MINUS_EXPR,
5241 ssize_int (0),
5242 initial_offset_ptr->var),
5243 offset_ptr->var);
5245 else
5246 arg_size_ptr->constant = (-initial_offset_ptr->constant
5247 - offset_ptr->constant);
5249 #else /* !ARGS_GROW_DOWNWARD */
5250 if (!in_regs
5251 #ifdef REG_PARM_STACK_SPACE
5252 || REG_PARM_STACK_SPACE (fndecl) > 0
5253 #endif
5255 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5256 *offset_ptr = *initial_offset_ptr;
5258 #ifdef PUSH_ROUNDING
5259 if (passed_mode != BLKmode)
5260 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5261 #endif
5263 /* Pad_below needs the pre-rounded size to know how much to pad below
5264 so this must be done before rounding up. */
5265 if (where_pad == downward
5266 /* However, BLKmode args passed in regs have their padding done elsewhere.
5267 The stack slot must be able to hold the entire register. */
5268 && !(in_regs && passed_mode == BLKmode))
5269 pad_below (offset_ptr, passed_mode, sizetree);
5271 if (where_pad != none
5272 && (!host_integerp (sizetree, 1)
5273 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5274 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5276 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5277 #endif /* ARGS_GROW_DOWNWARD */
5280 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5281 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5283 static void
5284 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5285 struct args_size *offset_ptr;
5286 int boundary;
5287 struct args_size *alignment_pad;
5289 tree save_var = NULL_TREE;
5290 HOST_WIDE_INT save_constant = 0;
5292 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5294 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5296 save_var = offset_ptr->var;
5297 save_constant = offset_ptr->constant;
5300 alignment_pad->var = NULL_TREE;
5301 alignment_pad->constant = 0;
5303 if (boundary > BITS_PER_UNIT)
5305 if (offset_ptr->var)
5307 offset_ptr->var =
5308 #ifdef ARGS_GROW_DOWNWARD
5309 round_down
5310 #else
5311 round_up
5312 #endif
5313 (ARGS_SIZE_TREE (*offset_ptr),
5314 boundary / BITS_PER_UNIT);
5315 offset_ptr->constant = 0; /*?*/
5316 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5317 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5318 save_var);
5320 else
5322 offset_ptr->constant =
5323 #ifdef ARGS_GROW_DOWNWARD
5324 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5325 #else
5326 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5327 #endif
5328 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5329 alignment_pad->constant = offset_ptr->constant - save_constant;
5334 #ifndef ARGS_GROW_DOWNWARD
5335 static void
5336 pad_below (offset_ptr, passed_mode, sizetree)
5337 struct args_size *offset_ptr;
5338 enum machine_mode passed_mode;
5339 tree sizetree;
5341 if (passed_mode != BLKmode)
5343 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5344 offset_ptr->constant
5345 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5346 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5347 - GET_MODE_SIZE (passed_mode));
5349 else
5351 if (TREE_CODE (sizetree) != INTEGER_CST
5352 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5354 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5355 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5356 /* Add it in. */
5357 ADD_PARM_SIZE (*offset_ptr, s2);
5358 SUB_PARM_SIZE (*offset_ptr, sizetree);
5362 #endif
5364 /* Walk the tree of blocks describing the binding levels within a function
5365 and warn about uninitialized variables.
5366 This is done after calling flow_analysis and before global_alloc
5367 clobbers the pseudo-regs to hard regs. */
5369 void
5370 uninitialized_vars_warning (block)
5371 tree block;
5373 register tree decl, sub;
5374 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5376 if (warn_uninitialized
5377 && TREE_CODE (decl) == VAR_DECL
5378 /* These warnings are unreliable for and aggregates
5379 because assigning the fields one by one can fail to convince
5380 flow.c that the entire aggregate was initialized.
5381 Unions are troublesome because members may be shorter. */
5382 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5383 && DECL_RTL (decl) != 0
5384 && GET_CODE (DECL_RTL (decl)) == REG
5385 /* Global optimizations can make it difficult to determine if a
5386 particular variable has been initialized. However, a VAR_DECL
5387 with a nonzero DECL_INITIAL had an initializer, so do not
5388 claim it is potentially uninitialized.
5390 We do not care about the actual value in DECL_INITIAL, so we do
5391 not worry that it may be a dangling pointer. */
5392 && DECL_INITIAL (decl) == NULL_TREE
5393 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5394 warning_with_decl (decl,
5395 "`%s' might be used uninitialized in this function");
5396 if (extra_warnings
5397 && TREE_CODE (decl) == VAR_DECL
5398 && DECL_RTL (decl) != 0
5399 && GET_CODE (DECL_RTL (decl)) == REG
5400 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5401 warning_with_decl (decl,
5402 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5404 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5405 uninitialized_vars_warning (sub);
5408 /* Do the appropriate part of uninitialized_vars_warning
5409 but for arguments instead of local variables. */
5411 void
5412 setjmp_args_warning ()
5414 register tree decl;
5415 for (decl = DECL_ARGUMENTS (current_function_decl);
5416 decl; decl = TREE_CHAIN (decl))
5417 if (DECL_RTL (decl) != 0
5418 && GET_CODE (DECL_RTL (decl)) == REG
5419 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5420 warning_with_decl (decl,
5421 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5424 /* If this function call setjmp, put all vars into the stack
5425 unless they were declared `register'. */
5427 void
5428 setjmp_protect (block)
5429 tree block;
5431 register tree decl, sub;
5432 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5433 if ((TREE_CODE (decl) == VAR_DECL
5434 || TREE_CODE (decl) == PARM_DECL)
5435 && DECL_RTL (decl) != 0
5436 && (GET_CODE (DECL_RTL (decl)) == REG
5437 || (GET_CODE (DECL_RTL (decl)) == MEM
5438 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5439 /* If this variable came from an inline function, it must be
5440 that its life doesn't overlap the setjmp. If there was a
5441 setjmp in the function, it would already be in memory. We
5442 must exclude such variable because their DECL_RTL might be
5443 set to strange things such as virtual_stack_vars_rtx. */
5444 && ! DECL_FROM_INLINE (decl)
5445 && (
5446 #ifdef NON_SAVING_SETJMP
5447 /* If longjmp doesn't restore the registers,
5448 don't put anything in them. */
5449 NON_SAVING_SETJMP
5451 #endif
5452 ! DECL_REGISTER (decl)))
5453 put_var_into_stack (decl);
5454 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5455 setjmp_protect (sub);
5458 /* Like the previous function, but for args instead of local variables. */
5460 void
5461 setjmp_protect_args ()
5463 register tree decl;
5464 for (decl = DECL_ARGUMENTS (current_function_decl);
5465 decl; decl = TREE_CHAIN (decl))
5466 if ((TREE_CODE (decl) == VAR_DECL
5467 || TREE_CODE (decl) == PARM_DECL)
5468 && DECL_RTL (decl) != 0
5469 && (GET_CODE (DECL_RTL (decl)) == REG
5470 || (GET_CODE (DECL_RTL (decl)) == MEM
5471 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5472 && (
5473 /* If longjmp doesn't restore the registers,
5474 don't put anything in them. */
5475 #ifdef NON_SAVING_SETJMP
5476 NON_SAVING_SETJMP
5478 #endif
5479 ! DECL_REGISTER (decl)))
5480 put_var_into_stack (decl);
5483 /* Return the context-pointer register corresponding to DECL,
5484 or 0 if it does not need one. */
5487 lookup_static_chain (decl)
5488 tree decl;
5490 tree context = decl_function_context (decl);
5491 tree link;
5493 if (context == 0
5494 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5495 return 0;
5497 /* We treat inline_function_decl as an alias for the current function
5498 because that is the inline function whose vars, types, etc.
5499 are being merged into the current function.
5500 See expand_inline_function. */
5501 if (context == current_function_decl || context == inline_function_decl)
5502 return virtual_stack_vars_rtx;
5504 for (link = context_display; link; link = TREE_CHAIN (link))
5505 if (TREE_PURPOSE (link) == context)
5506 return RTL_EXPR_RTL (TREE_VALUE (link));
5508 abort ();
5511 /* Convert a stack slot address ADDR for variable VAR
5512 (from a containing function)
5513 into an address valid in this function (using a static chain). */
5516 fix_lexical_addr (addr, var)
5517 rtx addr;
5518 tree var;
5520 rtx basereg;
5521 HOST_WIDE_INT displacement;
5522 tree context = decl_function_context (var);
5523 struct function *fp;
5524 rtx base = 0;
5526 /* If this is the present function, we need not do anything. */
5527 if (context == current_function_decl || context == inline_function_decl)
5528 return addr;
5530 for (fp = outer_function_chain; fp; fp = fp->next)
5531 if (fp->decl == context)
5532 break;
5534 if (fp == 0)
5535 abort ();
5537 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5538 addr = XEXP (XEXP (addr, 0), 0);
5540 /* Decode given address as base reg plus displacement. */
5541 if (GET_CODE (addr) == REG)
5542 basereg = addr, displacement = 0;
5543 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5544 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5545 else
5546 abort ();
5548 /* We accept vars reached via the containing function's
5549 incoming arg pointer and via its stack variables pointer. */
5550 if (basereg == fp->internal_arg_pointer)
5552 /* If reached via arg pointer, get the arg pointer value
5553 out of that function's stack frame.
5555 There are two cases: If a separate ap is needed, allocate a
5556 slot in the outer function for it and dereference it that way.
5557 This is correct even if the real ap is actually a pseudo.
5558 Otherwise, just adjust the offset from the frame pointer to
5559 compensate. */
5561 #ifdef NEED_SEPARATE_AP
5562 rtx addr;
5564 if (fp->x_arg_pointer_save_area == 0)
5565 fp->x_arg_pointer_save_area
5566 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5568 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5569 addr = memory_address (Pmode, addr);
5571 base = gen_rtx_MEM (Pmode, addr);
5572 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5573 base = copy_to_reg (base);
5574 #else
5575 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5576 base = lookup_static_chain (var);
5577 #endif
5580 else if (basereg == virtual_stack_vars_rtx)
5582 /* This is the same code as lookup_static_chain, duplicated here to
5583 avoid an extra call to decl_function_context. */
5584 tree link;
5586 for (link = context_display; link; link = TREE_CHAIN (link))
5587 if (TREE_PURPOSE (link) == context)
5589 base = RTL_EXPR_RTL (TREE_VALUE (link));
5590 break;
5594 if (base == 0)
5595 abort ();
5597 /* Use same offset, relative to appropriate static chain or argument
5598 pointer. */
5599 return plus_constant (base, displacement);
5602 /* Return the address of the trampoline for entering nested fn FUNCTION.
5603 If necessary, allocate a trampoline (in the stack frame)
5604 and emit rtl to initialize its contents (at entry to this function). */
5607 trampoline_address (function)
5608 tree function;
5610 tree link;
5611 tree rtlexp;
5612 rtx tramp;
5613 struct function *fp;
5614 tree fn_context;
5616 /* Find an existing trampoline and return it. */
5617 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5618 if (TREE_PURPOSE (link) == function)
5619 return
5620 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5622 for (fp = outer_function_chain; fp; fp = fp->next)
5623 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5624 if (TREE_PURPOSE (link) == function)
5626 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5627 function);
5628 return adjust_trampoline_addr (tramp);
5631 /* None exists; we must make one. */
5633 /* Find the `struct function' for the function containing FUNCTION. */
5634 fp = 0;
5635 fn_context = decl_function_context (function);
5636 if (fn_context != current_function_decl
5637 && fn_context != inline_function_decl)
5638 for (fp = outer_function_chain; fp; fp = fp->next)
5639 if (fp->decl == fn_context)
5640 break;
5642 /* Allocate run-time space for this trampoline
5643 (usually in the defining function's stack frame). */
5644 #ifdef ALLOCATE_TRAMPOLINE
5645 tramp = ALLOCATE_TRAMPOLINE (fp);
5646 #else
5647 /* If rounding needed, allocate extra space
5648 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5649 #ifdef TRAMPOLINE_ALIGNMENT
5650 #define TRAMPOLINE_REAL_SIZE \
5651 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5652 #else
5653 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5654 #endif
5655 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5656 fp ? fp : cfun);
5657 #endif
5659 /* Record the trampoline for reuse and note it for later initialization
5660 by expand_function_end. */
5661 if (fp != 0)
5663 rtlexp = make_node (RTL_EXPR);
5664 RTL_EXPR_RTL (rtlexp) = tramp;
5665 fp->x_trampoline_list = tree_cons (function, rtlexp,
5666 fp->x_trampoline_list);
5668 else
5670 /* Make the RTL_EXPR node temporary, not momentary, so that the
5671 trampoline_list doesn't become garbage. */
5672 rtlexp = make_node (RTL_EXPR);
5674 RTL_EXPR_RTL (rtlexp) = tramp;
5675 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5678 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5679 return adjust_trampoline_addr (tramp);
5682 /* Given a trampoline address,
5683 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5685 static rtx
5686 round_trampoline_addr (tramp)
5687 rtx tramp;
5689 #ifdef TRAMPOLINE_ALIGNMENT
5690 /* Round address up to desired boundary. */
5691 rtx temp = gen_reg_rtx (Pmode);
5692 temp = expand_binop (Pmode, add_optab, tramp,
5693 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5694 temp, 0, OPTAB_LIB_WIDEN);
5695 tramp = expand_binop (Pmode, and_optab, temp,
5696 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5697 temp, 0, OPTAB_LIB_WIDEN);
5698 #endif
5699 return tramp;
5702 /* Given a trampoline address, round it then apply any
5703 platform-specific adjustments so that the result can be used for a
5704 function call . */
5706 static rtx
5707 adjust_trampoline_addr (tramp)
5708 rtx tramp;
5710 tramp = round_trampoline_addr (tramp);
5711 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5712 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5713 #endif
5714 return tramp;
5717 /* Put all this function's BLOCK nodes including those that are chained
5718 onto the first block into a vector, and return it.
5719 Also store in each NOTE for the beginning or end of a block
5720 the index of that block in the vector.
5721 The arguments are BLOCK, the chain of top-level blocks of the function,
5722 and INSNS, the insn chain of the function. */
5724 void
5725 identify_blocks ()
5727 int n_blocks;
5728 tree *block_vector, *last_block_vector;
5729 tree *block_stack;
5730 tree block = DECL_INITIAL (current_function_decl);
5732 if (block == 0)
5733 return;
5735 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5736 depth-first order. */
5737 block_vector = get_block_vector (block, &n_blocks);
5738 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5740 last_block_vector = identify_blocks_1 (get_insns (),
5741 block_vector + 1,
5742 block_vector + n_blocks,
5743 block_stack);
5745 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5746 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5747 if (0 && last_block_vector != block_vector + n_blocks)
5748 abort ();
5750 free (block_vector);
5751 free (block_stack);
5754 /* Subroutine of identify_blocks. Do the block substitution on the
5755 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5757 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5758 BLOCK_VECTOR is incremented for each block seen. */
5760 static tree *
5761 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5762 rtx insns;
5763 tree *block_vector;
5764 tree *end_block_vector;
5765 tree *orig_block_stack;
5767 rtx insn;
5768 tree *block_stack = orig_block_stack;
5770 for (insn = insns; insn; insn = NEXT_INSN (insn))
5772 if (GET_CODE (insn) == NOTE)
5774 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5776 tree b;
5778 /* If there are more block notes than BLOCKs, something
5779 is badly wrong. */
5780 if (block_vector == end_block_vector)
5781 abort ();
5783 b = *block_vector++;
5784 NOTE_BLOCK (insn) = b;
5785 *block_stack++ = b;
5787 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5789 /* If there are more NOTE_INSN_BLOCK_ENDs than
5790 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5791 if (block_stack == orig_block_stack)
5792 abort ();
5794 NOTE_BLOCK (insn) = *--block_stack;
5797 else if (GET_CODE (insn) == CALL_INSN
5798 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5800 rtx cp = PATTERN (insn);
5802 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5803 end_block_vector, block_stack);
5804 if (XEXP (cp, 1))
5805 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5806 end_block_vector, block_stack);
5807 if (XEXP (cp, 2))
5808 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5809 end_block_vector, block_stack);
5813 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5814 something is badly wrong. */
5815 if (block_stack != orig_block_stack)
5816 abort ();
5818 return block_vector;
5821 /* Identify BLOCKs referenced by more than one
5822 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5824 void
5825 reorder_blocks ()
5827 tree block = DECL_INITIAL (current_function_decl);
5828 varray_type block_stack;
5830 if (block == NULL_TREE)
5831 return;
5833 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5835 /* Prune the old trees away, so that they don't get in the way. */
5836 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5837 BLOCK_CHAIN (block) = NULL_TREE;
5839 reorder_blocks_0 (get_insns ());
5840 reorder_blocks_1 (get_insns (), block, &block_stack);
5842 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5844 VARRAY_FREE (block_stack);
5847 /* Helper function for reorder_blocks. Process the insn chain beginning
5848 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5850 static void
5851 reorder_blocks_0 (insns)
5852 rtx insns;
5854 rtx insn;
5856 for (insn = insns; insn; insn = NEXT_INSN (insn))
5858 if (GET_CODE (insn) == NOTE)
5860 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5862 tree block = NOTE_BLOCK (insn);
5863 TREE_ASM_WRITTEN (block) = 0;
5866 else if (GET_CODE (insn) == CALL_INSN
5867 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5869 rtx cp = PATTERN (insn);
5870 reorder_blocks_0 (XEXP (cp, 0));
5871 if (XEXP (cp, 1))
5872 reorder_blocks_0 (XEXP (cp, 1));
5873 if (XEXP (cp, 2))
5874 reorder_blocks_0 (XEXP (cp, 2));
5879 static void
5880 reorder_blocks_1 (insns, current_block, p_block_stack)
5881 rtx insns;
5882 tree current_block;
5883 varray_type *p_block_stack;
5885 rtx insn;
5887 for (insn = insns; insn; insn = NEXT_INSN (insn))
5889 if (GET_CODE (insn) == NOTE)
5891 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5893 tree block = NOTE_BLOCK (insn);
5894 /* If we have seen this block before, copy it. */
5895 if (TREE_ASM_WRITTEN (block))
5897 block = copy_node (block);
5898 NOTE_BLOCK (insn) = block;
5900 BLOCK_SUBBLOCKS (block) = 0;
5901 TREE_ASM_WRITTEN (block) = 1;
5902 BLOCK_SUPERCONTEXT (block) = current_block;
5903 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5904 BLOCK_SUBBLOCKS (current_block) = block;
5905 current_block = block;
5906 VARRAY_PUSH_TREE (*p_block_stack, block);
5908 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5910 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5911 VARRAY_POP (*p_block_stack);
5912 BLOCK_SUBBLOCKS (current_block)
5913 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5914 current_block = BLOCK_SUPERCONTEXT (current_block);
5917 else if (GET_CODE (insn) == CALL_INSN
5918 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5920 rtx cp = PATTERN (insn);
5921 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5922 if (XEXP (cp, 1))
5923 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5924 if (XEXP (cp, 2))
5925 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5930 /* Reverse the order of elements in the chain T of blocks,
5931 and return the new head of the chain (old last element). */
5933 static tree
5934 blocks_nreverse (t)
5935 tree t;
5937 register tree prev = 0, decl, next;
5938 for (decl = t; decl; decl = next)
5940 next = BLOCK_CHAIN (decl);
5941 BLOCK_CHAIN (decl) = prev;
5942 prev = decl;
5944 return prev;
5947 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5948 non-NULL, list them all into VECTOR, in a depth-first preorder
5949 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5950 blocks. */
5952 static int
5953 all_blocks (block, vector)
5954 tree block;
5955 tree *vector;
5957 int n_blocks = 0;
5959 while (block)
5961 TREE_ASM_WRITTEN (block) = 0;
5963 /* Record this block. */
5964 if (vector)
5965 vector[n_blocks] = block;
5967 ++n_blocks;
5969 /* Record the subblocks, and their subblocks... */
5970 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5971 vector ? vector + n_blocks : 0);
5972 block = BLOCK_CHAIN (block);
5975 return n_blocks;
5978 /* Return a vector containing all the blocks rooted at BLOCK. The
5979 number of elements in the vector is stored in N_BLOCKS_P. The
5980 vector is dynamically allocated; it is the caller's responsibility
5981 to call `free' on the pointer returned. */
5983 static tree *
5984 get_block_vector (block, n_blocks_p)
5985 tree block;
5986 int *n_blocks_p;
5988 tree *block_vector;
5990 *n_blocks_p = all_blocks (block, NULL);
5991 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5992 all_blocks (block, block_vector);
5994 return block_vector;
5997 static int next_block_index = 2;
5999 /* Set BLOCK_NUMBER for all the blocks in FN. */
6001 void
6002 number_blocks (fn)
6003 tree fn;
6005 int i;
6006 int n_blocks;
6007 tree *block_vector;
6009 /* For SDB and XCOFF debugging output, we start numbering the blocks
6010 from 1 within each function, rather than keeping a running
6011 count. */
6012 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6013 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6014 next_block_index = 1;
6015 #endif
6017 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6019 /* The top-level BLOCK isn't numbered at all. */
6020 for (i = 1; i < n_blocks; ++i)
6021 /* We number the blocks from two. */
6022 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6024 free (block_vector);
6026 return;
6029 /* Allocate a function structure and reset its contents to the defaults. */
6030 static void
6031 prepare_function_start ()
6033 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6035 init_stmt_for_function ();
6036 init_eh_for_function ();
6038 cse_not_expected = ! optimize;
6040 /* Caller save not needed yet. */
6041 caller_save_needed = 0;
6043 /* No stack slots have been made yet. */
6044 stack_slot_list = 0;
6046 current_function_has_nonlocal_label = 0;
6047 current_function_has_nonlocal_goto = 0;
6049 /* There is no stack slot for handling nonlocal gotos. */
6050 nonlocal_goto_handler_slots = 0;
6051 nonlocal_goto_stack_level = 0;
6053 /* No labels have been declared for nonlocal use. */
6054 nonlocal_labels = 0;
6055 nonlocal_goto_handler_labels = 0;
6057 /* No function calls so far in this function. */
6058 function_call_count = 0;
6060 /* No parm regs have been allocated.
6061 (This is important for output_inline_function.) */
6062 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6064 /* Initialize the RTL mechanism. */
6065 init_emit ();
6067 /* Initialize the queue of pending postincrement and postdecrements,
6068 and some other info in expr.c. */
6069 init_expr ();
6071 /* We haven't done register allocation yet. */
6072 reg_renumber = 0;
6074 init_varasm_status (cfun);
6076 /* Clear out data used for inlining. */
6077 cfun->inlinable = 0;
6078 cfun->original_decl_initial = 0;
6079 cfun->original_arg_vector = 0;
6081 #ifdef STACK_BOUNDARY
6082 cfun->stack_alignment_needed = STACK_BOUNDARY;
6083 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6084 #else
6085 cfun->stack_alignment_needed = 0;
6086 cfun->preferred_stack_boundary = 0;
6087 #endif
6089 /* Set if a call to setjmp is seen. */
6090 current_function_calls_setjmp = 0;
6092 /* Set if a call to longjmp is seen. */
6093 current_function_calls_longjmp = 0;
6095 current_function_calls_alloca = 0;
6096 current_function_contains_functions = 0;
6097 current_function_is_leaf = 0;
6098 current_function_nothrow = 0;
6099 current_function_sp_is_unchanging = 0;
6100 current_function_uses_only_leaf_regs = 0;
6101 current_function_has_computed_jump = 0;
6102 current_function_is_thunk = 0;
6104 current_function_returns_pcc_struct = 0;
6105 current_function_returns_struct = 0;
6106 current_function_epilogue_delay_list = 0;
6107 current_function_uses_const_pool = 0;
6108 current_function_uses_pic_offset_table = 0;
6109 current_function_cannot_inline = 0;
6111 /* We have not yet needed to make a label to jump to for tail-recursion. */
6112 tail_recursion_label = 0;
6114 /* We haven't had a need to make a save area for ap yet. */
6115 arg_pointer_save_area = 0;
6117 /* No stack slots allocated yet. */
6118 frame_offset = 0;
6120 /* No SAVE_EXPRs in this function yet. */
6121 save_expr_regs = 0;
6123 /* No RTL_EXPRs in this function yet. */
6124 rtl_expr_chain = 0;
6126 /* Set up to allocate temporaries. */
6127 init_temp_slots ();
6129 /* Indicate that we need to distinguish between the return value of the
6130 present function and the return value of a function being called. */
6131 rtx_equal_function_value_matters = 1;
6133 /* Indicate that we have not instantiated virtual registers yet. */
6134 virtuals_instantiated = 0;
6136 /* Indicate that we want CONCATs now. */
6137 generating_concat_p = 1;
6139 /* Indicate we have no need of a frame pointer yet. */
6140 frame_pointer_needed = 0;
6142 /* By default assume not varargs or stdarg. */
6143 current_function_varargs = 0;
6144 current_function_stdarg = 0;
6146 /* We haven't made any trampolines for this function yet. */
6147 trampoline_list = 0;
6149 init_pending_stack_adjust ();
6150 inhibit_defer_pop = 0;
6152 current_function_outgoing_args_size = 0;
6154 if (init_lang_status)
6155 (*init_lang_status) (cfun);
6156 if (init_machine_status)
6157 (*init_machine_status) (cfun);
6160 /* Initialize the rtl expansion mechanism so that we can do simple things
6161 like generate sequences. This is used to provide a context during global
6162 initialization of some passes. */
6163 void
6164 init_dummy_function_start ()
6166 prepare_function_start ();
6169 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6170 and initialize static variables for generating RTL for the statements
6171 of the function. */
6173 void
6174 init_function_start (subr, filename, line)
6175 tree subr;
6176 const char *filename;
6177 int line;
6179 prepare_function_start ();
6181 /* Remember this function for later. */
6182 cfun->next_global = all_functions;
6183 all_functions = cfun;
6185 current_function_name = (*decl_printable_name) (subr, 2);
6186 cfun->decl = subr;
6188 /* Nonzero if this is a nested function that uses a static chain. */
6190 current_function_needs_context
6191 = (decl_function_context (current_function_decl) != 0
6192 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6194 /* Within function body, compute a type's size as soon it is laid out. */
6195 immediate_size_expand++;
6197 /* Prevent ever trying to delete the first instruction of a function.
6198 Also tell final how to output a linenum before the function prologue.
6199 Note linenums could be missing, e.g. when compiling a Java .class file. */
6200 if (line > 0)
6201 emit_line_note (filename, line);
6203 /* Make sure first insn is a note even if we don't want linenums.
6204 This makes sure the first insn will never be deleted.
6205 Also, final expects a note to appear there. */
6206 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6208 /* Set flags used by final.c. */
6209 if (aggregate_value_p (DECL_RESULT (subr)))
6211 #ifdef PCC_STATIC_STRUCT_RETURN
6212 current_function_returns_pcc_struct = 1;
6213 #endif
6214 current_function_returns_struct = 1;
6217 /* Warn if this value is an aggregate type,
6218 regardless of which calling convention we are using for it. */
6219 if (warn_aggregate_return
6220 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6221 warning ("function returns an aggregate");
6223 current_function_returns_pointer
6224 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6227 /* Make sure all values used by the optimization passes have sane
6228 defaults. */
6229 void
6230 init_function_for_compilation ()
6232 reg_renumber = 0;
6234 /* No prologue/epilogue insns yet. */
6235 VARRAY_GROW (prologue, 0);
6236 VARRAY_GROW (epilogue, 0);
6237 VARRAY_GROW (sibcall_epilogue, 0);
6240 /* Indicate that the current function uses extra args
6241 not explicitly mentioned in the argument list in any fashion. */
6243 void
6244 mark_varargs ()
6246 current_function_varargs = 1;
6249 /* Expand a call to __main at the beginning of a possible main function. */
6251 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6252 #undef HAS_INIT_SECTION
6253 #define HAS_INIT_SECTION
6254 #endif
6256 void
6257 expand_main_function ()
6259 #if !defined (HAS_INIT_SECTION)
6260 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6261 VOIDmode, 0);
6262 #endif /* not HAS_INIT_SECTION */
6265 extern struct obstack permanent_obstack;
6267 /* Start the RTL for a new function, and set variables used for
6268 emitting RTL.
6269 SUBR is the FUNCTION_DECL node.
6270 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6271 the function's parameters, which must be run at any return statement. */
6273 void
6274 expand_function_start (subr, parms_have_cleanups)
6275 tree subr;
6276 int parms_have_cleanups;
6278 tree tem;
6279 rtx last_ptr = NULL_RTX;
6281 /* Make sure volatile mem refs aren't considered
6282 valid operands of arithmetic insns. */
6283 init_recog_no_volatile ();
6285 /* Set this before generating any memory accesses. */
6286 current_function_check_memory_usage
6287 = (flag_check_memory_usage
6288 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6290 current_function_instrument_entry_exit
6291 = (flag_instrument_function_entry_exit
6292 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6294 current_function_limit_stack
6295 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6297 /* If function gets a static chain arg, store it in the stack frame.
6298 Do this first, so it gets the first stack slot offset. */
6299 if (current_function_needs_context)
6301 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6303 /* Delay copying static chain if it is not a register to avoid
6304 conflicts with regs used for parameters. */
6305 if (! SMALL_REGISTER_CLASSES
6306 || GET_CODE (static_chain_incoming_rtx) == REG)
6307 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6310 /* If the parameters of this function need cleaning up, get a label
6311 for the beginning of the code which executes those cleanups. This must
6312 be done before doing anything with return_label. */
6313 if (parms_have_cleanups)
6314 cleanup_label = gen_label_rtx ();
6315 else
6316 cleanup_label = 0;
6318 /* Make the label for return statements to jump to, if this machine
6319 does not have a one-instruction return and uses an epilogue,
6320 or if it returns a structure, or if it has parm cleanups. */
6321 #ifdef HAVE_return
6322 if (cleanup_label == 0 && HAVE_return
6323 && ! current_function_instrument_entry_exit
6324 && ! current_function_returns_pcc_struct
6325 && ! (current_function_returns_struct && ! optimize))
6326 return_label = 0;
6327 else
6328 return_label = gen_label_rtx ();
6329 #else
6330 return_label = gen_label_rtx ();
6331 #endif
6333 /* Initialize rtx used to return the value. */
6334 /* Do this before assign_parms so that we copy the struct value address
6335 before any library calls that assign parms might generate. */
6337 /* Decide whether to return the value in memory or in a register. */
6338 if (aggregate_value_p (DECL_RESULT (subr)))
6340 /* Returning something that won't go in a register. */
6341 register rtx value_address = 0;
6343 #ifdef PCC_STATIC_STRUCT_RETURN
6344 if (current_function_returns_pcc_struct)
6346 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6347 value_address = assemble_static_space (size);
6349 else
6350 #endif
6352 /* Expect to be passed the address of a place to store the value.
6353 If it is passed as an argument, assign_parms will take care of
6354 it. */
6355 if (struct_value_incoming_rtx)
6357 value_address = gen_reg_rtx (Pmode);
6358 emit_move_insn (value_address, struct_value_incoming_rtx);
6361 if (value_address)
6363 SET_DECL_RTL (DECL_RESULT (subr),
6364 gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)),
6365 value_address));
6366 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6367 DECL_RESULT (subr), 1);
6370 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6371 /* If return mode is void, this decl rtl should not be used. */
6372 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6373 else if (parms_have_cleanups || current_function_instrument_entry_exit)
6375 /* If function will end with cleanup code for parms,
6376 compute the return values into a pseudo reg,
6377 which we will copy into the true return register
6378 after the cleanups are done. */
6380 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6382 #ifdef PROMOTE_FUNCTION_RETURN
6383 tree type = TREE_TYPE (DECL_RESULT (subr));
6384 int unsignedp = TREE_UNSIGNED (type);
6386 mode = promote_mode (type, mode, &unsignedp, 1);
6387 #endif
6389 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (mode));
6391 else
6392 /* Scalar, returned in a register. */
6394 SET_DECL_RTL (DECL_RESULT (subr),
6395 hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6396 subr, 1));
6398 /* Mark this reg as the function's return value. */
6399 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6401 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6402 /* Needed because we may need to move this to memory
6403 in case it's a named return value whose address is taken. */
6404 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6408 /* Initialize rtx for parameters and local variables.
6409 In some cases this requires emitting insns. */
6411 assign_parms (subr);
6413 /* Copy the static chain now if it wasn't a register. The delay is to
6414 avoid conflicts with the parameter passing registers. */
6416 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6417 if (GET_CODE (static_chain_incoming_rtx) != REG)
6418 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6420 /* The following was moved from init_function_start.
6421 The move is supposed to make sdb output more accurate. */
6422 /* Indicate the beginning of the function body,
6423 as opposed to parm setup. */
6424 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6426 if (GET_CODE (get_last_insn ()) != NOTE)
6427 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6428 parm_birth_insn = get_last_insn ();
6430 context_display = 0;
6431 if (current_function_needs_context)
6433 /* Fetch static chain values for containing functions. */
6434 tem = decl_function_context (current_function_decl);
6435 /* Copy the static chain pointer into a pseudo. If we have
6436 small register classes, copy the value from memory if
6437 static_chain_incoming_rtx is a REG. */
6438 if (tem)
6440 /* If the static chain originally came in a register, put it back
6441 there, then move it out in the next insn. The reason for
6442 this peculiar code is to satisfy function integration. */
6443 if (SMALL_REGISTER_CLASSES
6444 && GET_CODE (static_chain_incoming_rtx) == REG)
6445 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6446 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6449 while (tem)
6451 tree rtlexp = make_node (RTL_EXPR);
6453 RTL_EXPR_RTL (rtlexp) = last_ptr;
6454 context_display = tree_cons (tem, rtlexp, context_display);
6455 tem = decl_function_context (tem);
6456 if (tem == 0)
6457 break;
6458 /* Chain thru stack frames, assuming pointer to next lexical frame
6459 is found at the place we always store it. */
6460 #ifdef FRAME_GROWS_DOWNWARD
6461 last_ptr = plus_constant (last_ptr,
6462 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6463 #endif
6464 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6465 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6466 last_ptr = copy_to_reg (last_ptr);
6468 /* If we are not optimizing, ensure that we know that this
6469 piece of context is live over the entire function. */
6470 if (! optimize)
6471 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6472 save_expr_regs);
6476 if (current_function_instrument_entry_exit)
6478 rtx fun = DECL_RTL (current_function_decl);
6479 if (GET_CODE (fun) == MEM)
6480 fun = XEXP (fun, 0);
6481 else
6482 abort ();
6483 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6484 fun, Pmode,
6485 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6487 hard_frame_pointer_rtx),
6488 Pmode);
6491 #ifdef PROFILE_HOOK
6492 if (profile_flag)
6493 PROFILE_HOOK (profile_label_no);
6494 #endif
6496 /* After the display initializations is where the tail-recursion label
6497 should go, if we end up needing one. Ensure we have a NOTE here
6498 since some things (like trampolines) get placed before this. */
6499 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6501 /* Evaluate now the sizes of any types declared among the arguments. */
6502 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6504 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6505 EXPAND_MEMORY_USE_BAD);
6506 /* Flush the queue in case this parameter declaration has
6507 side-effects. */
6508 emit_queue ();
6511 /* Make sure there is a line number after the function entry setup code. */
6512 force_next_line_note ();
6515 /* Undo the effects of init_dummy_function_start. */
6516 void
6517 expand_dummy_function_end ()
6519 /* End any sequences that failed to be closed due to syntax errors. */
6520 while (in_sequence_p ())
6521 end_sequence ();
6523 /* Outside function body, can't compute type's actual size
6524 until next function's body starts. */
6526 free_after_parsing (cfun);
6527 free_after_compilation (cfun);
6528 free (cfun);
6529 cfun = 0;
6532 /* Call DOIT for each hard register used as a return value from
6533 the current function. */
6535 void
6536 diddle_return_value (doit, arg)
6537 void (*doit) PARAMS ((rtx, void *));
6538 void *arg;
6540 rtx outgoing = current_function_return_rtx;
6541 int pcc;
6543 if (! outgoing)
6544 return;
6546 pcc = (current_function_returns_struct
6547 || current_function_returns_pcc_struct);
6549 if ((GET_CODE (outgoing) == REG
6550 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6551 || pcc)
6553 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6555 /* A PCC-style return returns a pointer to the memory in which
6556 the structure is stored. */
6557 if (pcc)
6558 type = build_pointer_type (type);
6560 #ifdef FUNCTION_OUTGOING_VALUE
6561 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6562 #else
6563 outgoing = FUNCTION_VALUE (type, current_function_decl);
6564 #endif
6565 /* If this is a BLKmode structure being returned in registers, then use
6566 the mode computed in expand_return. */
6567 if (GET_MODE (outgoing) == BLKmode)
6568 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6569 REG_FUNCTION_VALUE_P (outgoing) = 1;
6572 if (GET_CODE (outgoing) == REG)
6573 (*doit) (outgoing, arg);
6574 else if (GET_CODE (outgoing) == PARALLEL)
6576 int i;
6578 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6580 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6582 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6583 (*doit) (x, arg);
6588 static void
6589 do_clobber_return_reg (reg, arg)
6590 rtx reg;
6591 void *arg ATTRIBUTE_UNUSED;
6593 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6596 void
6597 clobber_return_register ()
6599 diddle_return_value (do_clobber_return_reg, NULL);
6602 static void
6603 do_use_return_reg (reg, arg)
6604 rtx reg;
6605 void *arg ATTRIBUTE_UNUSED;
6607 emit_insn (gen_rtx_USE (VOIDmode, reg));
6610 void
6611 use_return_register ()
6613 diddle_return_value (do_use_return_reg, NULL);
6616 /* Generate RTL for the end of the current function.
6617 FILENAME and LINE are the current position in the source file.
6619 It is up to language-specific callers to do cleanups for parameters--
6620 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6622 void
6623 expand_function_end (filename, line, end_bindings)
6624 const char *filename;
6625 int line;
6626 int end_bindings;
6628 tree link;
6630 #ifdef TRAMPOLINE_TEMPLATE
6631 static rtx initial_trampoline;
6632 #endif
6634 finish_expr_for_function ();
6636 #ifdef NON_SAVING_SETJMP
6637 /* Don't put any variables in registers if we call setjmp
6638 on a machine that fails to restore the registers. */
6639 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6641 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6642 setjmp_protect (DECL_INITIAL (current_function_decl));
6644 setjmp_protect_args ();
6646 #endif
6648 /* Save the argument pointer if a save area was made for it. */
6649 if (arg_pointer_save_area)
6651 /* arg_pointer_save_area may not be a valid memory address, so we
6652 have to check it and fix it if necessary. */
6653 rtx seq;
6654 start_sequence ();
6655 emit_move_insn (validize_mem (arg_pointer_save_area),
6656 virtual_incoming_args_rtx);
6657 seq = gen_sequence ();
6658 end_sequence ();
6659 emit_insn_before (seq, tail_recursion_reentry);
6662 /* Initialize any trampolines required by this function. */
6663 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6665 tree function = TREE_PURPOSE (link);
6666 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6667 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6668 #ifdef TRAMPOLINE_TEMPLATE
6669 rtx blktramp;
6670 #endif
6671 rtx seq;
6673 #ifdef TRAMPOLINE_TEMPLATE
6674 /* First make sure this compilation has a template for
6675 initializing trampolines. */
6676 if (initial_trampoline == 0)
6678 initial_trampoline
6679 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6681 ggc_add_rtx_root (&initial_trampoline, 1);
6683 #endif
6685 /* Generate insns to initialize the trampoline. */
6686 start_sequence ();
6687 tramp = round_trampoline_addr (XEXP (tramp, 0));
6688 #ifdef TRAMPOLINE_TEMPLATE
6689 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6690 emit_block_move (blktramp, initial_trampoline,
6691 GEN_INT (TRAMPOLINE_SIZE),
6692 TRAMPOLINE_ALIGNMENT);
6693 #endif
6694 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6695 seq = get_insns ();
6696 end_sequence ();
6698 /* Put those insns at entry to the containing function (this one). */
6699 emit_insns_before (seq, tail_recursion_reentry);
6702 /* If we are doing stack checking and this function makes calls,
6703 do a stack probe at the start of the function to ensure we have enough
6704 space for another stack frame. */
6705 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6707 rtx insn, seq;
6709 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6710 if (GET_CODE (insn) == CALL_INSN)
6712 start_sequence ();
6713 probe_stack_range (STACK_CHECK_PROTECT,
6714 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6715 seq = get_insns ();
6716 end_sequence ();
6717 emit_insns_before (seq, tail_recursion_reentry);
6718 break;
6722 /* Warn about unused parms if extra warnings were specified. */
6723 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6724 warning. WARN_UNUSED_PARAMETER is negative when set by
6725 -Wunused. */
6726 if (warn_unused_parameter > 0
6727 || (warn_unused_parameter < 0 && extra_warnings))
6729 tree decl;
6731 for (decl = DECL_ARGUMENTS (current_function_decl);
6732 decl; decl = TREE_CHAIN (decl))
6733 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6734 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6735 warning_with_decl (decl, "unused parameter `%s'");
6738 /* Delete handlers for nonlocal gotos if nothing uses them. */
6739 if (nonlocal_goto_handler_slots != 0
6740 && ! current_function_has_nonlocal_label)
6741 delete_handlers ();
6743 /* End any sequences that failed to be closed due to syntax errors. */
6744 while (in_sequence_p ())
6745 end_sequence ();
6747 /* Outside function body, can't compute type's actual size
6748 until next function's body starts. */
6749 immediate_size_expand--;
6751 clear_pending_stack_adjust ();
6752 do_pending_stack_adjust ();
6754 /* Mark the end of the function body.
6755 If control reaches this insn, the function can drop through
6756 without returning a value. */
6757 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6759 /* Must mark the last line number note in the function, so that the test
6760 coverage code can avoid counting the last line twice. This just tells
6761 the code to ignore the immediately following line note, since there
6762 already exists a copy of this note somewhere above. This line number
6763 note is still needed for debugging though, so we can't delete it. */
6764 if (flag_test_coverage)
6765 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6767 /* Output a linenumber for the end of the function.
6768 SDB depends on this. */
6769 emit_line_note_force (filename, line);
6771 /* Output the label for the actual return from the function,
6772 if one is expected. This happens either because a function epilogue
6773 is used instead of a return instruction, or because a return was done
6774 with a goto in order to run local cleanups, or because of pcc-style
6775 structure returning. */
6777 if (return_label)
6779 rtx before, after;
6781 /* Before the return label, clobber the return registers so that
6782 they are not propogated live to the rest of the function. This
6783 can only happen with functions that drop through; if there had
6784 been a return statement, there would have either been a return
6785 rtx, or a jump to the return label. */
6787 before = get_last_insn ();
6788 clobber_return_register ();
6789 after = get_last_insn ();
6791 if (before != after)
6792 cfun->x_clobber_return_insn = after;
6794 emit_label (return_label);
6797 /* C++ uses this. */
6798 if (end_bindings)
6799 expand_end_bindings (0, 0, 0);
6801 /* Now handle any leftover exception regions that may have been
6802 created for the parameters. */
6804 rtx last = get_last_insn ();
6805 rtx label;
6807 expand_leftover_cleanups ();
6809 /* If there are any catch_clauses remaining, output them now. */
6810 emit_insns (catch_clauses);
6811 catch_clauses = catch_clauses_last = NULL_RTX;
6812 /* If the above emitted any code, may sure we jump around it. */
6813 if (last != get_last_insn ())
6815 label = gen_label_rtx ();
6816 last = emit_jump_insn_after (gen_jump (label), last);
6817 last = emit_barrier_after (last);
6818 emit_label (label);
6822 if (current_function_instrument_entry_exit)
6824 rtx fun = DECL_RTL (current_function_decl);
6825 if (GET_CODE (fun) == MEM)
6826 fun = XEXP (fun, 0);
6827 else
6828 abort ();
6829 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6830 fun, Pmode,
6831 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6833 hard_frame_pointer_rtx),
6834 Pmode);
6837 /* If we had calls to alloca, and this machine needs
6838 an accurate stack pointer to exit the function,
6839 insert some code to save and restore the stack pointer. */
6840 #ifdef EXIT_IGNORE_STACK
6841 if (! EXIT_IGNORE_STACK)
6842 #endif
6843 if (current_function_calls_alloca)
6845 rtx tem = 0;
6847 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6848 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6851 /* If scalar return value was computed in a pseudo-reg, or was a named
6852 return value that got dumped to the stack, copy that to the hard
6853 return register. */
6854 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6856 tree decl_result = DECL_RESULT (current_function_decl);
6857 rtx decl_rtl = DECL_RTL (decl_result);
6859 if (REG_P (decl_rtl)
6860 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6861 : DECL_REGISTER (decl_result))
6863 rtx real_decl_rtl;
6865 #ifdef FUNCTION_OUTGOING_VALUE
6866 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6867 current_function_decl);
6868 #else
6869 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6870 current_function_decl);
6871 #endif
6872 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6874 /* If this is a BLKmode structure being returned in registers,
6875 then use the mode computed in expand_return. Note that if
6876 decl_rtl is memory, then its mode may have been changed,
6877 but that current_function_return_rtx has not. */
6878 if (GET_MODE (real_decl_rtl) == BLKmode)
6879 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6881 /* If a named return value dumped decl_return to memory, then
6882 we may need to re-do the PROMOTE_MODE signed/unsigned
6883 extension. */
6884 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6886 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6888 #ifdef PROMOTE_FUNCTION_RETURN
6889 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6890 &unsignedp, 1);
6891 #endif
6893 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6895 else
6896 emit_move_insn (real_decl_rtl, decl_rtl);
6898 /* The delay slot scheduler assumes that current_function_return_rtx
6899 holds the hard register containing the return value, not a
6900 temporary pseudo. */
6901 current_function_return_rtx = real_decl_rtl;
6905 /* If returning a structure, arrange to return the address of the value
6906 in a place where debuggers expect to find it.
6908 If returning a structure PCC style,
6909 the caller also depends on this value.
6910 And current_function_returns_pcc_struct is not necessarily set. */
6911 if (current_function_returns_struct
6912 || current_function_returns_pcc_struct)
6914 rtx value_address
6915 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6916 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6917 #ifdef FUNCTION_OUTGOING_VALUE
6918 rtx outgoing
6919 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6920 current_function_decl);
6921 #else
6922 rtx outgoing
6923 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6924 #endif
6926 /* Mark this as a function return value so integrate will delete the
6927 assignment and USE below when inlining this function. */
6928 REG_FUNCTION_VALUE_P (outgoing) = 1;
6930 #ifdef POINTERS_EXTEND_UNSIGNED
6931 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6932 if (GET_MODE (outgoing) != GET_MODE (value_address))
6933 value_address = convert_memory_address (GET_MODE (outgoing),
6934 value_address);
6935 #endif
6937 emit_move_insn (outgoing, value_address);
6939 /* Show return register used to hold result (in this case the address
6940 of the result. */
6941 current_function_return_rtx = outgoing;
6944 /* ??? This should no longer be necessary since stupid is no longer with
6945 us, but there are some parts of the compiler (eg reload_combine, and
6946 sh mach_dep_reorg) that still try and compute their own lifetime info
6947 instead of using the general framework. */
6948 use_return_register ();
6950 /* If this is an implementation of __throw, do what's necessary to
6951 communicate between __builtin_eh_return and the epilogue. */
6952 expand_eh_return ();
6954 /* Output a return insn if we are using one.
6955 Otherwise, let the rtl chain end here, to drop through
6956 into the epilogue. */
6958 #ifdef HAVE_return
6959 if (HAVE_return)
6961 emit_jump_insn (gen_return ());
6962 emit_barrier ();
6964 #endif
6966 /* Fix up any gotos that jumped out to the outermost
6967 binding level of the function.
6968 Must follow emitting RETURN_LABEL. */
6970 /* If you have any cleanups to do at this point,
6971 and they need to create temporary variables,
6972 then you will lose. */
6973 expand_fixups (get_insns ());
6976 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6977 sequence or a single insn). */
6979 static void
6980 record_insns (insns, vecp)
6981 rtx insns;
6982 varray_type *vecp;
6984 if (GET_CODE (insns) == SEQUENCE)
6986 int len = XVECLEN (insns, 0);
6987 int i = VARRAY_SIZE (*vecp);
6989 VARRAY_GROW (*vecp, i + len);
6990 while (--len >= 0)
6992 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6993 ++i;
6996 else
6998 int i = VARRAY_SIZE (*vecp);
6999 VARRAY_GROW (*vecp, i + 1);
7000 VARRAY_INT (*vecp, i) = INSN_UID (insns);
7004 /* Determine how many INSN_UIDs in VEC are part of INSN. */
7006 static int
7007 contains (insn, vec)
7008 rtx insn;
7009 varray_type vec;
7011 register int i, j;
7013 if (GET_CODE (insn) == INSN
7014 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7016 int count = 0;
7017 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7018 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7019 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7020 count++;
7021 return count;
7023 else
7025 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7026 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7027 return 1;
7029 return 0;
7033 prologue_epilogue_contains (insn)
7034 rtx insn;
7036 if (contains (insn, prologue))
7037 return 1;
7038 if (contains (insn, epilogue))
7039 return 1;
7040 return 0;
7044 sibcall_epilogue_contains (insn)
7045 rtx insn;
7047 if (sibcall_epilogue)
7048 return contains (insn, sibcall_epilogue);
7049 return 0;
7052 #ifdef HAVE_return
7053 /* Insert gen_return at the end of block BB. This also means updating
7054 block_for_insn appropriately. */
7056 static void
7057 emit_return_into_block (bb, line_note)
7058 basic_block bb;
7059 rtx line_note;
7061 rtx p, end;
7063 p = NEXT_INSN (bb->end);
7064 end = emit_jump_insn_after (gen_return (), bb->end);
7065 if (line_note)
7066 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7067 NOTE_LINE_NUMBER (line_note), bb->end);
7069 while (1)
7071 set_block_for_insn (p, bb);
7072 if (p == bb->end)
7073 break;
7074 p = PREV_INSN (p);
7076 bb->end = end;
7078 #endif /* HAVE_return */
7080 #ifdef HAVE_epilogue
7082 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7083 to the stack pointer. */
7085 static void
7086 keep_stack_depressed (seq)
7087 rtx seq;
7089 int i;
7090 rtx sp_from_reg = 0;
7091 int sp_modified_unknown = 0;
7093 /* If the epilogue is just a single instruction, it's OK as is */
7095 if (GET_CODE (seq) != SEQUENCE)
7096 return;
7098 /* Scan all insns in SEQ looking for ones that modified the stack
7099 pointer. Record if it modified the stack pointer by copying it
7100 from the frame pointer or if it modified it in some other way.
7101 Then modify any subsequent stack pointer references to take that
7102 into account. We start by only allowing SP to be copied from a
7103 register (presumably FP) and then be subsequently referenced. */
7105 for (i = 0; i < XVECLEN (seq, 0); i++)
7107 rtx insn = XVECEXP (seq, 0, i);
7109 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7110 continue;
7112 if (reg_set_p (stack_pointer_rtx, insn))
7114 rtx set = single_set (insn);
7116 /* If SP is set as a side-effect, we can't support this. */
7117 if (set == 0)
7118 abort ();
7120 if (GET_CODE (SET_SRC (set)) == REG)
7121 sp_from_reg = SET_SRC (set);
7122 else
7123 sp_modified_unknown = 1;
7125 /* Don't allow the SP modification to happen. */
7126 PUT_CODE (insn, NOTE);
7127 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7128 NOTE_SOURCE_FILE (insn) = 0;
7130 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7132 if (sp_modified_unknown)
7133 abort ();
7135 else if (sp_from_reg != 0)
7136 PATTERN (insn)
7137 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7141 #endif
7143 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7144 this into place with notes indicating where the prologue ends and where
7145 the epilogue begins. Update the basic block information when possible. */
7147 void
7148 thread_prologue_and_epilogue_insns (f)
7149 rtx f ATTRIBUTE_UNUSED;
7151 int inserted = 0;
7152 edge e;
7153 rtx seq;
7154 #ifdef HAVE_prologue
7155 rtx prologue_end = NULL_RTX;
7156 #endif
7157 #if defined (HAVE_epilogue) || defined(HAVE_return)
7158 rtx epilogue_end = NULL_RTX;
7159 #endif
7161 #ifdef HAVE_prologue
7162 if (HAVE_prologue)
7164 start_sequence ();
7165 seq = gen_prologue ();
7166 emit_insn (seq);
7168 /* Retain a map of the prologue insns. */
7169 if (GET_CODE (seq) != SEQUENCE)
7170 seq = get_insns ();
7171 record_insns (seq, &prologue);
7172 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7174 seq = gen_sequence ();
7175 end_sequence ();
7177 /* If optimization is off, and perhaps in an empty function,
7178 the entry block will have no successors. */
7179 if (ENTRY_BLOCK_PTR->succ)
7181 /* Can't deal with multiple successsors of the entry block. */
7182 if (ENTRY_BLOCK_PTR->succ->succ_next)
7183 abort ();
7185 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7186 inserted = 1;
7188 else
7189 emit_insn_after (seq, f);
7191 #endif
7193 /* If the exit block has no non-fake predecessors, we don't need
7194 an epilogue. */
7195 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7196 if ((e->flags & EDGE_FAKE) == 0)
7197 break;
7198 if (e == NULL)
7199 goto epilogue_done;
7201 #ifdef HAVE_return
7202 if (optimize && HAVE_return)
7204 /* If we're allowed to generate a simple return instruction,
7205 then by definition we don't need a full epilogue. Examine
7206 the block that falls through to EXIT. If it does not
7207 contain any code, examine its predecessors and try to
7208 emit (conditional) return instructions. */
7210 basic_block last;
7211 edge e_next;
7212 rtx label;
7214 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7215 if (e->flags & EDGE_FALLTHRU)
7216 break;
7217 if (e == NULL)
7218 goto epilogue_done;
7219 last = e->src;
7221 /* Verify that there are no active instructions in the last block. */
7222 label = last->end;
7223 while (label && GET_CODE (label) != CODE_LABEL)
7225 if (active_insn_p (label))
7226 break;
7227 label = PREV_INSN (label);
7230 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7232 rtx epilogue_line_note = NULL_RTX;
7234 /* Locate the line number associated with the closing brace,
7235 if we can find one. */
7236 for (seq = get_last_insn ();
7237 seq && ! active_insn_p (seq);
7238 seq = PREV_INSN (seq))
7239 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7241 epilogue_line_note = seq;
7242 break;
7245 for (e = last->pred; e; e = e_next)
7247 basic_block bb = e->src;
7248 rtx jump;
7250 e_next = e->pred_next;
7251 if (bb == ENTRY_BLOCK_PTR)
7252 continue;
7254 jump = bb->end;
7255 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7256 continue;
7258 /* If we have an unconditional jump, we can replace that
7259 with a simple return instruction. */
7260 if (simplejump_p (jump))
7262 emit_return_into_block (bb, epilogue_line_note);
7263 flow_delete_insn (jump);
7266 /* If we have a conditional jump, we can try to replace
7267 that with a conditional return instruction. */
7268 else if (condjump_p (jump))
7270 rtx ret, *loc;
7272 ret = SET_SRC (PATTERN (jump));
7273 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7274 loc = &XEXP (ret, 1);
7275 else
7276 loc = &XEXP (ret, 2);
7277 ret = gen_rtx_RETURN (VOIDmode);
7279 if (! validate_change (jump, loc, ret, 0))
7280 continue;
7281 if (JUMP_LABEL (jump))
7282 LABEL_NUSES (JUMP_LABEL (jump))--;
7284 /* If this block has only one successor, it both jumps
7285 and falls through to the fallthru block, so we can't
7286 delete the edge. */
7287 if (bb->succ->succ_next == NULL)
7288 continue;
7290 else
7291 continue;
7293 /* Fix up the CFG for the successful change we just made. */
7294 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7297 /* Emit a return insn for the exit fallthru block. Whether
7298 this is still reachable will be determined later. */
7300 emit_barrier_after (last->end);
7301 emit_return_into_block (last, epilogue_line_note);
7302 epilogue_end = last->end;
7303 goto epilogue_done;
7306 #endif
7307 #ifdef HAVE_epilogue
7308 if (HAVE_epilogue)
7310 /* Find the edge that falls through to EXIT. Other edges may exist
7311 due to RETURN instructions, but those don't need epilogues.
7312 There really shouldn't be a mixture -- either all should have
7313 been converted or none, however... */
7315 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7316 if (e->flags & EDGE_FALLTHRU)
7317 break;
7318 if (e == NULL)
7319 goto epilogue_done;
7321 start_sequence ();
7322 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7324 seq = gen_epilogue ();
7326 /* If this function returns with the stack depressed, massage
7327 the epilogue to actually do that. */
7328 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7329 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7330 keep_stack_depressed (seq);
7332 emit_jump_insn (seq);
7334 /* Retain a map of the epilogue insns. */
7335 if (GET_CODE (seq) != SEQUENCE)
7336 seq = get_insns ();
7337 record_insns (seq, &epilogue);
7339 seq = gen_sequence ();
7340 end_sequence ();
7342 insert_insn_on_edge (seq, e);
7343 inserted = 1;
7345 #endif
7346 epilogue_done:
7348 if (inserted)
7349 commit_edge_insertions ();
7351 #ifdef HAVE_sibcall_epilogue
7352 /* Emit sibling epilogues before any sibling call sites. */
7353 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7355 basic_block bb = e->src;
7356 rtx insn = bb->end;
7357 rtx i;
7358 rtx newinsn;
7360 if (GET_CODE (insn) != CALL_INSN
7361 || ! SIBLING_CALL_P (insn))
7362 continue;
7364 start_sequence ();
7365 seq = gen_sibcall_epilogue ();
7366 end_sequence ();
7368 i = PREV_INSN (insn);
7369 newinsn = emit_insn_before (seq, insn);
7371 /* Update the UID to basic block map. */
7372 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7373 set_block_for_insn (i, bb);
7375 /* Retain a map of the epilogue insns. Used in life analysis to
7376 avoid getting rid of sibcall epilogue insns. */
7377 record_insns (GET_CODE (seq) == SEQUENCE
7378 ? seq : newinsn, &sibcall_epilogue);
7380 #endif
7382 #ifdef HAVE_prologue
7383 if (prologue_end)
7385 rtx insn, prev;
7387 /* GDB handles `break f' by setting a breakpoint on the first
7388 line note after the prologue. Which means (1) that if
7389 there are line number notes before where we inserted the
7390 prologue we should move them, and (2) we should generate a
7391 note before the end of the first basic block, if there isn't
7392 one already there.
7394 ??? This behaviour is completely broken when dealing with
7395 multiple entry functions. We simply place the note always
7396 into first basic block and let alternate entry points
7397 to be missed.
7400 for (insn = prologue_end; insn; insn = prev)
7402 prev = PREV_INSN (insn);
7403 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7405 /* Note that we cannot reorder the first insn in the
7406 chain, since rest_of_compilation relies on that
7407 remaining constant. */
7408 if (prev == NULL)
7409 break;
7410 reorder_insns (insn, insn, prologue_end);
7414 /* Find the last line number note in the first block. */
7415 for (insn = BASIC_BLOCK (0)->end;
7416 insn != prologue_end && insn;
7417 insn = PREV_INSN (insn))
7418 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7419 break;
7421 /* If we didn't find one, make a copy of the first line number
7422 we run across. */
7423 if (! insn)
7425 for (insn = next_active_insn (prologue_end);
7426 insn;
7427 insn = PREV_INSN (insn))
7428 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7430 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7431 NOTE_LINE_NUMBER (insn),
7432 prologue_end);
7433 break;
7437 #endif
7438 #ifdef HAVE_epilogue
7439 if (epilogue_end)
7441 rtx insn, next;
7443 /* Similarly, move any line notes that appear after the epilogue.
7444 There is no need, however, to be quite so anal about the existance
7445 of such a note. */
7446 for (insn = epilogue_end; insn; insn = next)
7448 next = NEXT_INSN (insn);
7449 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7450 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7453 #endif
7456 /* Reposition the prologue-end and epilogue-begin notes after instruction
7457 scheduling and delayed branch scheduling. */
7459 void
7460 reposition_prologue_and_epilogue_notes (f)
7461 rtx f ATTRIBUTE_UNUSED;
7463 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7464 int len;
7466 if ((len = VARRAY_SIZE (prologue)) > 0)
7468 register rtx insn, note = 0;
7470 /* Scan from the beginning until we reach the last prologue insn.
7471 We apparently can't depend on basic_block_{head,end} after
7472 reorg has run. */
7473 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7475 if (GET_CODE (insn) == NOTE)
7477 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7478 note = insn;
7480 else if ((len -= contains (insn, prologue)) == 0)
7482 rtx next;
7483 /* Find the prologue-end note if we haven't already, and
7484 move it to just after the last prologue insn. */
7485 if (note == 0)
7487 for (note = insn; (note = NEXT_INSN (note));)
7488 if (GET_CODE (note) == NOTE
7489 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7490 break;
7493 next = NEXT_INSN (note);
7495 /* Whether or not we can depend on BLOCK_HEAD,
7496 attempt to keep it up-to-date. */
7497 if (BLOCK_HEAD (0) == note)
7498 BLOCK_HEAD (0) = next;
7500 remove_insn (note);
7501 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7502 if (GET_CODE (insn) == CODE_LABEL)
7503 insn = NEXT_INSN (insn);
7504 add_insn_after (note, insn);
7509 if ((len = VARRAY_SIZE (epilogue)) > 0)
7511 register rtx insn, note = 0;
7513 /* Scan from the end until we reach the first epilogue insn.
7514 We apparently can't depend on basic_block_{head,end} after
7515 reorg has run. */
7516 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7518 if (GET_CODE (insn) == NOTE)
7520 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7521 note = insn;
7523 else if ((len -= contains (insn, epilogue)) == 0)
7525 /* Find the epilogue-begin note if we haven't already, and
7526 move it to just before the first epilogue insn. */
7527 if (note == 0)
7529 for (note = insn; (note = PREV_INSN (note));)
7530 if (GET_CODE (note) == NOTE
7531 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7532 break;
7535 /* Whether or not we can depend on BLOCK_HEAD,
7536 attempt to keep it up-to-date. */
7537 if (n_basic_blocks
7538 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7539 BLOCK_HEAD (n_basic_blocks-1) = note;
7541 remove_insn (note);
7542 add_insn_before (note, insn);
7546 #endif /* HAVE_prologue or HAVE_epilogue */
7549 /* Mark T for GC. */
7551 static void
7552 mark_temp_slot (t)
7553 struct temp_slot *t;
7555 while (t)
7557 ggc_mark_rtx (t->slot);
7558 ggc_mark_rtx (t->address);
7559 ggc_mark_tree (t->rtl_expr);
7560 ggc_mark_tree (t->type);
7562 t = t->next;
7566 /* Mark P for GC. */
7568 static void
7569 mark_function_status (p)
7570 struct function *p;
7572 int i;
7573 rtx *r;
7575 if (p == 0)
7576 return;
7578 ggc_mark_rtx (p->arg_offset_rtx);
7580 if (p->x_parm_reg_stack_loc)
7581 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7582 i > 0; --i, ++r)
7583 ggc_mark_rtx (*r);
7585 ggc_mark_rtx (p->return_rtx);
7586 ggc_mark_rtx (p->x_cleanup_label);
7587 ggc_mark_rtx (p->x_return_label);
7588 ggc_mark_rtx (p->x_save_expr_regs);
7589 ggc_mark_rtx (p->x_stack_slot_list);
7590 ggc_mark_rtx (p->x_parm_birth_insn);
7591 ggc_mark_rtx (p->x_tail_recursion_label);
7592 ggc_mark_rtx (p->x_tail_recursion_reentry);
7593 ggc_mark_rtx (p->internal_arg_pointer);
7594 ggc_mark_rtx (p->x_arg_pointer_save_area);
7595 ggc_mark_tree (p->x_rtl_expr_chain);
7596 ggc_mark_rtx (p->x_last_parm_insn);
7597 ggc_mark_tree (p->x_context_display);
7598 ggc_mark_tree (p->x_trampoline_list);
7599 ggc_mark_rtx (p->epilogue_delay_list);
7600 ggc_mark_rtx (p->x_clobber_return_insn);
7602 mark_temp_slot (p->x_temp_slots);
7605 struct var_refs_queue *q = p->fixup_var_refs_queue;
7606 while (q)
7608 ggc_mark_rtx (q->modified);
7609 q = q->next;
7613 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7614 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7615 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7616 ggc_mark_tree (p->x_nonlocal_labels);
7619 /* Mark the function chain ARG (which is really a struct function **)
7620 for GC. */
7622 static void
7623 mark_function_chain (arg)
7624 void *arg;
7626 struct function *f = *(struct function **) arg;
7628 for (; f; f = f->next_global)
7630 ggc_mark_tree (f->decl);
7632 mark_function_status (f);
7633 mark_eh_status (f->eh);
7634 mark_stmt_status (f->stmt);
7635 mark_expr_status (f->expr);
7636 mark_emit_status (f->emit);
7637 mark_varasm_status (f->varasm);
7639 if (mark_machine_status)
7640 (*mark_machine_status) (f);
7641 if (mark_lang_status)
7642 (*mark_lang_status) (f);
7644 if (f->original_arg_vector)
7645 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7646 if (f->original_decl_initial)
7647 ggc_mark_tree (f->original_decl_initial);
7651 /* Called once, at initialization, to initialize function.c. */
7653 void
7654 init_function_once ()
7656 ggc_add_root (&all_functions, 1, sizeof all_functions,
7657 mark_function_chain);
7659 VARRAY_INT_INIT (prologue, 0, "prologue");
7660 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7661 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");