ChangeLog config
[official-gcc.git] / gcc / tree-predcom.c
blobb90f5ce8fa0979baa94d2e854ca8fde6c4293d8a
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
163 a[i] = 1;
164 a[i+2] = 2;
167 can be replaced with
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
178 a[n] = t0;
179 a[n+1] = t1;
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
207 /* The maximum number of iterations between the considered memory
208 references. */
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
215 typedef struct dref_d
217 /* The reference itself. */
218 struct data_reference *ref;
220 /* The statement in that the reference appears. */
221 gimple stmt;
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
246 /* Type of the chain of the references. */
248 enum chain_type
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
253 /* There are only loads in the chain. */
254 CT_LOAD,
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
259 /* A combination of two chains. */
260 CT_COMBINATION
263 /* Chains of data references. */
265 typedef struct chain
267 /* Type of the chain. */
268 enum chain_type type;
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
305 enum ref_step_type
307 /* The step is zero. */
308 RS_INVARIANT,
310 /* The step is nonzero. */
311 RS_NONZERO,
313 /* The step may or may not be nonzero. */
314 RS_ANY
317 /* Components of the data dependence graph. */
319 struct component
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
327 /* Next component in the list. */
328 struct component *next;
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
333 static bitmap looparound_phis;
335 /* Cache used by tree_to_aff_combination_expand. */
337 static struct pointer_map_t *name_expansions;
339 /* Dumps data reference REF to FILE. */
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
345 if (ref->ref)
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
356 fprintf (file, " distance %u\n", ref->distance);
358 else
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
372 /* Dumps CHAIN to FILE. */
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
383 switch (chain->type)
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
401 default:
402 gcc_unreachable ();
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
411 if (chain->type == CT_COMBINATION)
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
420 if (chain->vars)
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
428 fprintf (file, "\n");
431 if (chain->inits)
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
439 fprintf (file, "\n");
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
446 fprintf (file, "\n");
449 /* Dumps CHAINS to FILE. */
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
455 chain_p chain;
456 unsigned i;
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
462 /* Dumps COMP to FILE. */
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
468 dref a;
469 unsigned i;
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
478 /* Dumps COMPS to FILE. */
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
484 struct component *comp;
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
490 /* Frees a chain CHAIN. */
492 static void
493 release_chain (chain_p chain)
495 dref ref;
496 unsigned i;
498 if (chain == NULL)
499 return;
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
508 free (chain);
511 /* Frees CHAINS. */
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
516 unsigned i;
517 chain_p chain;
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
524 /* Frees a component COMP. */
526 static void
527 release_component (struct component *comp)
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
533 /* Frees list of components COMPS. */
535 static void
536 release_components (struct component *comps)
538 struct component *act, *next;
540 for (act = comps; act; act = next)
542 next = act->next;
543 release_component (act);
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
553 unsigned root, n;
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
558 for (; a != root; a = n)
560 n = fathers[a];
561 fathers[a] = root;
564 return root;
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
576 if (ca == cb)
577 return;
579 if (sizes[ca] < sizes[cb])
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
584 else
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
598 tree ref = DR_REF (a), step = DR_STEP (a);
600 if (!step
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
612 return true;
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
620 aff_tree delta;
622 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
623 &name_expansions);
624 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
625 aff_combination_add (offset, &delta);
628 /* Determines number of iterations of the innermost enclosing loop before B
629 refers to exactly the same location as A and stores it to OFF. If A and
630 B do not have the same step, they never meet, or anything else fails,
631 returns false, otherwise returns true. Both A and B are assumed to
632 satisfy suitable_reference_p. */
634 static bool
635 determine_offset (struct data_reference *a, struct data_reference *b,
636 double_int *off)
638 aff_tree diff, baseb, step;
639 tree typea, typeb;
641 /* Check that both the references access the location in the same type. */
642 typea = TREE_TYPE (DR_REF (a));
643 typeb = TREE_TYPE (DR_REF (b));
644 if (!useless_type_conversion_p (typeb, typea))
645 return false;
647 /* Check whether the base address and the step of both references is the
648 same. */
649 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
650 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
651 return false;
653 if (integer_zerop (DR_STEP (a)))
655 /* If the references have loop invariant address, check that they access
656 exactly the same location. */
657 *off = double_int_zero;
658 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
659 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
662 /* Compare the offsets of the addresses, and check whether the difference
663 is a multiple of step. */
664 aff_combination_dr_offset (a, &diff);
665 aff_combination_dr_offset (b, &baseb);
666 aff_combination_scale (&baseb, double_int_minus_one);
667 aff_combination_add (&diff, &baseb);
669 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
670 &step, &name_expansions);
671 return aff_combination_constant_multiple_p (&diff, &step, off);
674 /* Returns the last basic block in LOOP for that we are sure that
675 it is executed whenever the loop is entered. */
677 static basic_block
678 last_always_executed_block (struct loop *loop)
680 unsigned i;
681 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
682 edge ex;
683 basic_block last = loop->latch;
685 FOR_EACH_VEC_ELT (edge, exits, i, ex)
686 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
687 VEC_free (edge, heap, exits);
689 return last;
692 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
694 static struct component *
695 split_data_refs_to_components (struct loop *loop,
696 VEC (data_reference_p, heap) *datarefs,
697 VEC (ddr_p, heap) *depends)
699 unsigned i, n = VEC_length (data_reference_p, datarefs);
700 unsigned ca, ia, ib, bad;
701 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
702 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
703 struct component **comps;
704 struct data_reference *dr, *dra, *drb;
705 struct data_dependence_relation *ddr;
706 struct component *comp_list = NULL, *comp;
707 dref dataref;
708 basic_block last_always_executed = last_always_executed_block (loop);
710 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
712 if (!DR_REF (dr))
714 /* A fake reference for call or asm_expr that may clobber memory;
715 just fail. */
716 goto end;
718 dr->aux = (void *) (size_t) i;
719 comp_father[i] = i;
720 comp_size[i] = 1;
723 /* A component reserved for the "bad" data references. */
724 comp_father[n] = n;
725 comp_size[n] = 1;
727 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
729 enum ref_step_type dummy;
731 if (!suitable_reference_p (dr, &dummy))
733 ia = (unsigned) (size_t) dr->aux;
734 merge_comps (comp_father, comp_size, n, ia);
738 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
740 double_int dummy_off;
742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
743 continue;
745 dra = DDR_A (ddr);
746 drb = DDR_B (ddr);
747 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
748 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
749 if (ia == ib)
750 continue;
752 bad = component_of (comp_father, n);
754 /* If both A and B are reads, we may ignore unsuitable dependences. */
755 if (DR_IS_READ (dra) && DR_IS_READ (drb)
756 && (ia == bad || ib == bad
757 || !determine_offset (dra, drb, &dummy_off)))
758 continue;
760 merge_comps (comp_father, comp_size, ia, ib);
763 comps = XCNEWVEC (struct component *, n);
764 bad = component_of (comp_father, n);
765 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
767 ia = (unsigned) (size_t) dr->aux;
768 ca = component_of (comp_father, ia);
769 if (ca == bad)
770 continue;
772 comp = comps[ca];
773 if (!comp)
775 comp = XCNEW (struct component);
776 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
777 comps[ca] = comp;
780 dataref = XCNEW (struct dref_d);
781 dataref->ref = dr;
782 dataref->stmt = DR_STMT (dr);
783 dataref->offset = double_int_zero;
784 dataref->distance = 0;
786 dataref->always_accessed
787 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
788 gimple_bb (dataref->stmt));
789 dataref->pos = VEC_length (dref, comp->refs);
790 VEC_quick_push (dref, comp->refs, dataref);
793 for (i = 0; i < n; i++)
795 comp = comps[i];
796 if (comp)
798 comp->next = comp_list;
799 comp_list = comp;
802 free (comps);
804 end:
805 free (comp_father);
806 free (comp_size);
807 return comp_list;
810 /* Returns true if the component COMP satisfies the conditions
811 described in 2) at the beginning of this file. LOOP is the current
812 loop. */
814 static bool
815 suitable_component_p (struct loop *loop, struct component *comp)
817 unsigned i;
818 dref a, first;
819 basic_block ba, bp = loop->header;
820 bool ok, has_write = false;
822 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
824 ba = gimple_bb (a->stmt);
826 if (!just_once_each_iteration_p (loop, ba))
827 return false;
829 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
830 bp = ba;
832 if (DR_IS_WRITE (a->ref))
833 has_write = true;
836 first = VEC_index (dref, comp->refs, 0);
837 ok = suitable_reference_p (first->ref, &comp->comp_step);
838 gcc_assert (ok);
839 first->offset = double_int_zero;
841 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
843 if (!determine_offset (first->ref, a->ref, &a->offset))
844 return false;
846 #ifdef ENABLE_CHECKING
848 enum ref_step_type a_step;
849 ok = suitable_reference_p (a->ref, &a_step);
850 gcc_assert (ok && a_step == comp->comp_step);
852 #endif
855 /* If there is a write inside the component, we must know whether the
856 step is nonzero or not -- we would not otherwise be able to recognize
857 whether the value accessed by reads comes from the OFFSET-th iteration
858 or the previous one. */
859 if (has_write && comp->comp_step == RS_ANY)
860 return false;
862 return true;
865 /* Check the conditions on references inside each of components COMPS,
866 and remove the unsuitable components from the list. The new list
867 of components is returned. The conditions are described in 2) at
868 the beginning of this file. LOOP is the current loop. */
870 static struct component *
871 filter_suitable_components (struct loop *loop, struct component *comps)
873 struct component **comp, *act;
875 for (comp = &comps; *comp; )
877 act = *comp;
878 if (suitable_component_p (loop, act))
879 comp = &act->next;
880 else
882 dref ref;
883 unsigned i;
885 *comp = act->next;
886 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
887 free (ref);
888 release_component (act);
892 return comps;
895 /* Compares two drefs A and B by their offset and position. Callback for
896 qsort. */
898 static int
899 order_drefs (const void *a, const void *b)
901 const dref *const da = (const dref *) a;
902 const dref *const db = (const dref *) b;
903 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
905 if (offcmp != 0)
906 return offcmp;
908 return (*da)->pos - (*db)->pos;
911 /* Returns root of the CHAIN. */
913 static inline dref
914 get_chain_root (chain_p chain)
916 return VEC_index (dref, chain->refs, 0);
919 /* Adds REF to the chain CHAIN. */
921 static void
922 add_ref_to_chain (chain_p chain, dref ref)
924 dref root = get_chain_root (chain);
925 double_int dist;
927 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
928 dist = double_int_sub (ref->offset, root->offset);
929 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
931 free (ref);
932 return;
934 gcc_assert (double_int_fits_in_uhwi_p (dist));
936 VEC_safe_push (dref, heap, chain->refs, ref);
938 ref->distance = double_int_to_uhwi (dist);
940 if (ref->distance >= chain->length)
942 chain->length = ref->distance;
943 chain->has_max_use_after = false;
946 if (ref->distance == chain->length
947 && ref->pos > root->pos)
948 chain->has_max_use_after = true;
950 chain->all_always_accessed &= ref->always_accessed;
953 /* Returns the chain for invariant component COMP. */
955 static chain_p
956 make_invariant_chain (struct component *comp)
958 chain_p chain = XCNEW (struct chain);
959 unsigned i;
960 dref ref;
962 chain->type = CT_INVARIANT;
964 chain->all_always_accessed = true;
966 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
968 VEC_safe_push (dref, heap, chain->refs, ref);
969 chain->all_always_accessed &= ref->always_accessed;
972 return chain;
975 /* Make a new chain rooted at REF. */
977 static chain_p
978 make_rooted_chain (dref ref)
980 chain_p chain = XCNEW (struct chain);
982 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
984 VEC_safe_push (dref, heap, chain->refs, ref);
985 chain->all_always_accessed = ref->always_accessed;
987 ref->distance = 0;
989 return chain;
992 /* Returns true if CHAIN is not trivial. */
994 static bool
995 nontrivial_chain_p (chain_p chain)
997 return chain != NULL && VEC_length (dref, chain->refs) > 1;
1000 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1001 is no such name. */
1003 static tree
1004 name_for_ref (dref ref)
1006 tree name;
1008 if (is_gimple_assign (ref->stmt))
1010 if (!ref->ref || DR_IS_READ (ref->ref))
1011 name = gimple_assign_lhs (ref->stmt);
1012 else
1013 name = gimple_assign_rhs1 (ref->stmt);
1015 else
1016 name = PHI_RESULT (ref->stmt);
1018 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1021 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1022 iterations of the innermost enclosing loop). */
1024 static bool
1025 valid_initializer_p (struct data_reference *ref,
1026 unsigned distance, struct data_reference *root)
1028 aff_tree diff, base, step;
1029 double_int off;
1031 /* Both REF and ROOT must be accessing the same object. */
1032 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1033 return false;
1035 /* The initializer is defined outside of loop, hence its address must be
1036 invariant inside the loop. */
1037 gcc_assert (integer_zerop (DR_STEP (ref)));
1039 /* If the address of the reference is invariant, initializer must access
1040 exactly the same location. */
1041 if (integer_zerop (DR_STEP (root)))
1042 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1043 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1045 /* Verify that this index of REF is equal to the root's index at
1046 -DISTANCE-th iteration. */
1047 aff_combination_dr_offset (root, &diff);
1048 aff_combination_dr_offset (ref, &base);
1049 aff_combination_scale (&base, double_int_minus_one);
1050 aff_combination_add (&diff, &base);
1052 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1053 &name_expansions);
1054 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1055 return false;
1057 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1058 return false;
1060 return true;
1063 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1064 initial value is correct (equal to initial value of REF shifted by one
1065 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1066 is the root of the current chain. */
1068 static gimple
1069 find_looparound_phi (struct loop *loop, dref ref, dref root)
1071 tree name, init, init_ref;
1072 gimple phi = NULL, init_stmt;
1073 edge latch = loop_latch_edge (loop);
1074 struct data_reference init_dr;
1075 gimple_stmt_iterator psi;
1077 if (is_gimple_assign (ref->stmt))
1079 if (DR_IS_READ (ref->ref))
1080 name = gimple_assign_lhs (ref->stmt);
1081 else
1082 name = gimple_assign_rhs1 (ref->stmt);
1084 else
1085 name = PHI_RESULT (ref->stmt);
1086 if (!name)
1087 return NULL;
1089 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1091 phi = gsi_stmt (psi);
1092 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1093 break;
1096 if (gsi_end_p (psi))
1097 return NULL;
1099 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1100 if (TREE_CODE (init) != SSA_NAME)
1101 return NULL;
1102 init_stmt = SSA_NAME_DEF_STMT (init);
1103 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1104 return NULL;
1105 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1107 init_ref = gimple_assign_rhs1 (init_stmt);
1108 if (!REFERENCE_CLASS_P (init_ref)
1109 && !DECL_P (init_ref))
1110 return NULL;
1112 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1113 loop enclosing PHI). */
1114 memset (&init_dr, 0, sizeof (struct data_reference));
1115 DR_REF (&init_dr) = init_ref;
1116 DR_STMT (&init_dr) = phi;
1117 if (!dr_analyze_innermost (&init_dr))
1118 return NULL;
1120 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1121 return NULL;
1123 return phi;
1126 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128 static void
1129 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1131 dref nw = XCNEW (struct dref_d), aref;
1132 unsigned i;
1134 nw->stmt = phi;
1135 nw->distance = ref->distance + 1;
1136 nw->always_accessed = 1;
1138 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1139 if (aref->distance >= nw->distance)
1140 break;
1141 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1143 if (nw->distance > chain->length)
1145 chain->length = nw->distance;
1146 chain->has_max_use_after = false;
1150 /* For references in CHAIN that are copied around the LOOP (created previously
1151 by PRE, or by user), add the results of such copies to the chain. This
1152 enables us to remove the copies by unrolling, and may need less registers
1153 (also, it may allow us to combine chains together). */
1155 static void
1156 add_looparound_copies (struct loop *loop, chain_p chain)
1158 unsigned i;
1159 dref ref, root = get_chain_root (chain);
1160 gimple phi;
1162 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1164 phi = find_looparound_phi (loop, ref, root);
1165 if (!phi)
1166 continue;
1168 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1169 insert_looparound_copy (chain, ref, phi);
1173 /* Find roots of the values and determine distances in the component COMP.
1174 The references are redistributed into CHAINS. LOOP is the current
1175 loop. */
1177 static void
1178 determine_roots_comp (struct loop *loop,
1179 struct component *comp,
1180 VEC (chain_p, heap) **chains)
1182 unsigned i;
1183 dref a;
1184 chain_p chain = NULL;
1185 double_int last_ofs = double_int_zero;
1187 /* Invariants are handled specially. */
1188 if (comp->comp_step == RS_INVARIANT)
1190 chain = make_invariant_chain (comp);
1191 VEC_safe_push (chain_p, heap, *chains, chain);
1192 return;
1195 qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1196 sizeof (dref), order_drefs);
1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1200 if (!chain || DR_IS_WRITE (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_sub (a->offset, last_ofs)) <= 0)
1204 if (nontrivial_chain_p (chain))
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
1212 last_ofs = a->offset;
1213 continue;
1216 add_ref_to_chain (chain, a);
1219 if (nontrivial_chain_p (chain))
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1224 else
1225 release_chain (chain);
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1231 static void
1232 determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1235 struct component *comp;
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
1253 if (gimple_code (stmt) == GIMPLE_PHI)
1255 gcc_assert (!in_lhs && !set);
1257 val = PHI_RESULT (stmt);
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt = gimple_build_assign (val, new_tree);
1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265 return;
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt));
1272 bsi = gsi_for_stmt (stmt);
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1275 if (!set)
1277 gcc_assert (!in_lhs);
1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279 stmt = gsi_stmt (bsi);
1280 update_stmt (stmt);
1281 return;
1284 if (in_lhs)
1286 /* We have statement
1288 OLD = VAL
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
1293 OLD = VAL
1294 NEW = VAL
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1300 OLD = VAL
1301 NEW = OLD
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1308 gcc_assert (gimple_assign_copy_p (stmt));
1309 val = gimple_assign_rhs1 (stmt);
1312 else
1314 /* VAL = OLD
1316 is transformed to
1318 VAL = OLD
1319 NEW = VAL */
1321 val = gimple_assign_lhs (stmt);
1324 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1325 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1328 /* Returns the reference to the address of REF in the ITER-th iteration of
1329 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1330 try to preserve the original shape of the reference (not rewrite it
1331 as an indirect ref to the address), to make tree_could_trap_p in
1332 prepare_initializers_chain return false more often. */
1334 static tree
1335 ref_at_iteration (struct loop *loop, tree ref, int iter)
1337 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1338 affine_iv iv;
1339 bool ok;
1341 if (handled_component_p (ref))
1343 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1344 if (!op0)
1345 return NULL_TREE;
1347 else if (!INDIRECT_REF_P (ref)
1348 && TREE_CODE (ref) != MEM_REF)
1349 return unshare_expr (ref);
1351 if (TREE_CODE (ref) == MEM_REF)
1353 ret = unshare_expr (ref);
1354 idx = TREE_OPERAND (ref, 0);
1355 idx_p = &TREE_OPERAND (ret, 0);
1357 else if (TREE_CODE (ref) == COMPONENT_REF)
1359 /* Check that the offset is loop invariant. */
1360 if (TREE_OPERAND (ref, 2)
1361 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1362 return NULL_TREE;
1364 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1365 unshare_expr (TREE_OPERAND (ref, 1)),
1366 unshare_expr (TREE_OPERAND (ref, 2)));
1368 else if (TREE_CODE (ref) == ARRAY_REF)
1370 /* Check that the lower bound and the step are loop invariant. */
1371 if (TREE_OPERAND (ref, 2)
1372 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1373 return NULL_TREE;
1374 if (TREE_OPERAND (ref, 3)
1375 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1376 return NULL_TREE;
1378 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1379 unshare_expr (TREE_OPERAND (ref, 2)),
1380 unshare_expr (TREE_OPERAND (ref, 3)));
1381 idx = TREE_OPERAND (ref, 1);
1382 idx_p = &TREE_OPERAND (ret, 1);
1384 else
1385 return NULL_TREE;
1387 ok = simple_iv (loop, loop, idx, &iv, true);
1388 if (!ok)
1389 return NULL_TREE;
1390 iv.base = expand_simple_operations (iv.base);
1391 if (integer_zerop (iv.step))
1392 *idx_p = unshare_expr (iv.base);
1393 else
1395 type = TREE_TYPE (iv.base);
1396 if (POINTER_TYPE_P (type))
1398 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1399 size_int (iter));
1400 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1402 else
1404 val = fold_build2 (MULT_EXPR, type, iv.step,
1405 build_int_cst_type (type, iter));
1406 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1408 *idx_p = unshare_expr (val);
1411 return ret;
1414 /* Get the initialization expression for the INDEX-th temporary variable
1415 of CHAIN. */
1417 static tree
1418 get_init_expr (chain_p chain, unsigned index)
1420 if (chain->type == CT_COMBINATION)
1422 tree e1 = get_init_expr (chain->ch1, index);
1423 tree e2 = get_init_expr (chain->ch2, index);
1425 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1427 else
1428 return VEC_index (tree, chain->inits, index);
1431 /* Marks all virtual operands of statement STMT for renaming. */
1433 void
1434 mark_virtual_ops_for_renaming (gimple stmt)
1436 tree var;
1438 if (gimple_code (stmt) == GIMPLE_PHI)
1440 var = PHI_RESULT (stmt);
1441 if (is_gimple_reg (var))
1442 return;
1444 if (TREE_CODE (var) == SSA_NAME)
1445 var = SSA_NAME_VAR (var);
1446 mark_sym_for_renaming (var);
1447 return;
1450 update_stmt (stmt);
1451 if (gimple_vuse (stmt))
1452 mark_sym_for_renaming (gimple_vop (cfun));
1455 /* Returns a new temporary variable used for the I-th variable carrying
1456 value of REF. The variable's uid is marked in TMP_VARS. */
1458 static tree
1459 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1461 tree type = TREE_TYPE (ref);
1462 /* We never access the components of the temporary variable in predictive
1463 commoning. */
1464 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1466 add_referenced_var (var);
1467 bitmap_set_bit (tmp_vars, DECL_UID (var));
1468 return var;
1471 /* Creates the variables for CHAIN, as well as phi nodes for them and
1472 initialization on entry to LOOP. Uids of the newly created
1473 temporary variables are marked in TMP_VARS. */
1475 static void
1476 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1478 unsigned i;
1479 unsigned n = chain->length;
1480 dref root = get_chain_root (chain);
1481 bool reuse_first = !chain->has_max_use_after;
1482 tree ref, init, var, next;
1483 gimple phi;
1484 gimple_seq stmts;
1485 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1487 /* If N == 0, then all the references are within the single iteration. And
1488 since this is an nonempty chain, reuse_first cannot be true. */
1489 gcc_assert (n > 0 || !reuse_first);
1491 chain->vars = VEC_alloc (tree, heap, n + 1);
1493 if (chain->type == CT_COMBINATION)
1494 ref = gimple_assign_lhs (root->stmt);
1495 else
1496 ref = DR_REF (root->ref);
1498 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1500 var = predcom_tmp_var (ref, i, tmp_vars);
1501 VEC_quick_push (tree, chain->vars, var);
1503 if (reuse_first)
1504 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1506 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1507 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1509 for (i = 0; i < n; i++)
1511 var = VEC_index (tree, chain->vars, i);
1512 next = VEC_index (tree, chain->vars, i + 1);
1513 init = get_init_expr (chain, i);
1515 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1516 if (stmts)
1517 gsi_insert_seq_on_edge_immediate (entry, stmts);
1519 phi = create_phi_node (var, loop->header);
1520 SSA_NAME_DEF_STMT (var) = phi;
1521 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1522 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1526 /* Create the variables and initialization statement for root of chain
1527 CHAIN. Uids of the newly created temporary variables are marked
1528 in TMP_VARS. */
1530 static void
1531 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1533 dref root = get_chain_root (chain);
1534 bool in_lhs = (chain->type == CT_STORE_LOAD
1535 || chain->type == CT_COMBINATION);
1537 initialize_root_vars (loop, chain, tmp_vars);
1538 replace_ref_with (root->stmt,
1539 VEC_index (tree, chain->vars, chain->length),
1540 true, in_lhs);
1543 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1544 initialization on entry to LOOP if necessary. The ssa name for the variable
1545 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1546 around the loop is created. Uid of the newly created temporary variable
1547 is marked in TMP_VARS. INITS is the list containing the (single)
1548 initializer. */
1550 static void
1551 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1552 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1553 bitmap tmp_vars)
1555 unsigned i;
1556 tree ref = DR_REF (root->ref), init, var, next;
1557 gimple_seq stmts;
1558 gimple phi;
1559 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1561 /* Find the initializer for the variable, and check that it cannot
1562 trap. */
1563 init = VEC_index (tree, inits, 0);
1565 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1566 var = predcom_tmp_var (ref, 0, tmp_vars);
1567 VEC_quick_push (tree, *vars, var);
1568 if (written)
1569 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1571 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1572 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1574 var = VEC_index (tree, *vars, 0);
1576 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1577 if (stmts)
1578 gsi_insert_seq_on_edge_immediate (entry, stmts);
1580 if (written)
1582 next = VEC_index (tree, *vars, 1);
1583 phi = create_phi_node (var, loop->header);
1584 SSA_NAME_DEF_STMT (var) = phi;
1585 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1586 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1588 else
1590 gimple init_stmt = gimple_build_assign (var, init);
1591 mark_virtual_ops_for_renaming (init_stmt);
1592 gsi_insert_on_edge_immediate (entry, init_stmt);
1597 /* Execute load motion for references in chain CHAIN. Uids of the newly
1598 created temporary variables are marked in TMP_VARS. */
1600 static void
1601 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1603 VEC (tree, heap) *vars;
1604 dref a;
1605 unsigned n_writes = 0, ridx, i;
1606 tree var;
1608 gcc_assert (chain->type == CT_INVARIANT);
1609 gcc_assert (!chain->combined);
1610 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1611 if (DR_IS_WRITE (a->ref))
1612 n_writes++;
1614 /* If there are no reads in the loop, there is nothing to do. */
1615 if (n_writes == VEC_length (dref, chain->refs))
1616 return;
1618 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1619 &vars, chain->inits, tmp_vars);
1621 ridx = 0;
1622 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1624 bool is_read = DR_IS_READ (a->ref);
1625 mark_virtual_ops_for_renaming (a->stmt);
1627 if (DR_IS_WRITE (a->ref))
1629 n_writes--;
1630 if (n_writes)
1632 var = VEC_index (tree, vars, 0);
1633 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1634 VEC_replace (tree, vars, 0, var);
1636 else
1637 ridx = 1;
1640 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1641 !is_read, !is_read);
1644 VEC_free (tree, heap, vars);
1647 /* Returns the single statement in that NAME is used, excepting
1648 the looparound phi nodes contained in one of the chains. If there is no
1649 such statement, or more statements, NULL is returned. */
1651 static gimple
1652 single_nonlooparound_use (tree name)
1654 use_operand_p use;
1655 imm_use_iterator it;
1656 gimple stmt, ret = NULL;
1658 FOR_EACH_IMM_USE_FAST (use, it, name)
1660 stmt = USE_STMT (use);
1662 if (gimple_code (stmt) == GIMPLE_PHI)
1664 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1665 could not be processed anyway, so just fail for them. */
1666 if (bitmap_bit_p (looparound_phis,
1667 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1668 continue;
1670 return NULL;
1672 else if (ret != NULL)
1673 return NULL;
1674 else
1675 ret = stmt;
1678 return ret;
1681 /* Remove statement STMT, as well as the chain of assignments in that it is
1682 used. */
1684 static void
1685 remove_stmt (gimple stmt)
1687 tree name;
1688 gimple next;
1689 gimple_stmt_iterator psi;
1691 if (gimple_code (stmt) == GIMPLE_PHI)
1693 name = PHI_RESULT (stmt);
1694 next = single_nonlooparound_use (name);
1695 psi = gsi_for_stmt (stmt);
1696 remove_phi_node (&psi, true);
1698 if (!next
1699 || !gimple_assign_ssa_name_copy_p (next)
1700 || gimple_assign_rhs1 (next) != name)
1701 return;
1703 stmt = next;
1706 while (1)
1708 gimple_stmt_iterator bsi;
1710 bsi = gsi_for_stmt (stmt);
1712 name = gimple_assign_lhs (stmt);
1713 gcc_assert (TREE_CODE (name) == SSA_NAME);
1715 next = single_nonlooparound_use (name);
1717 mark_virtual_ops_for_renaming (stmt);
1718 gsi_remove (&bsi, true);
1719 release_defs (stmt);
1721 if (!next
1722 || !gimple_assign_ssa_name_copy_p (next)
1723 || gimple_assign_rhs1 (next) != name)
1724 return;
1726 stmt = next;
1730 /* Perform the predictive commoning optimization for a chain CHAIN.
1731 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1733 static void
1734 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1735 bitmap tmp_vars)
1737 unsigned i;
1738 dref a, root;
1739 tree var;
1741 if (chain->combined)
1743 /* For combined chains, just remove the statements that are used to
1744 compute the values of the expression (except for the root one). */
1745 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1746 remove_stmt (a->stmt);
1748 else
1750 /* For non-combined chains, set up the variables that hold its value,
1751 and replace the uses of the original references by these
1752 variables. */
1753 root = get_chain_root (chain);
1754 mark_virtual_ops_for_renaming (root->stmt);
1756 initialize_root (loop, chain, tmp_vars);
1757 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1759 mark_virtual_ops_for_renaming (a->stmt);
1760 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1761 replace_ref_with (a->stmt, var, false, false);
1766 /* Determines the unroll factor necessary to remove as many temporary variable
1767 copies as possible. CHAINS is the list of chains that will be
1768 optimized. */
1770 static unsigned
1771 determine_unroll_factor (VEC (chain_p, heap) *chains)
1773 chain_p chain;
1774 unsigned factor = 1, af, nfactor, i;
1775 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1777 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1779 if (chain->type == CT_INVARIANT || chain->combined)
1780 continue;
1782 /* The best unroll factor for this chain is equal to the number of
1783 temporary variables that we create for it. */
1784 af = chain->length;
1785 if (chain->has_max_use_after)
1786 af++;
1788 nfactor = factor * af / gcd (factor, af);
1789 if (nfactor <= max)
1790 factor = nfactor;
1793 return factor;
1796 /* Perform the predictive commoning optimization for CHAINS.
1797 Uids of the newly created temporary variables are marked in TMP_VARS. */
1799 static void
1800 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1801 bitmap tmp_vars)
1803 chain_p chain;
1804 unsigned i;
1806 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1808 if (chain->type == CT_INVARIANT)
1809 execute_load_motion (loop, chain, tmp_vars);
1810 else
1811 execute_pred_commoning_chain (loop, chain, tmp_vars);
1814 update_ssa (TODO_update_ssa_only_virtuals);
1817 /* For each reference in CHAINS, if its defining statement is
1818 phi node, record the ssa name that is defined by it. */
1820 static void
1821 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1823 chain_p chain;
1824 dref a;
1825 unsigned i, j;
1827 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1828 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1830 if (gimple_code (a->stmt) == GIMPLE_PHI)
1832 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1833 a->stmt = NULL;
1838 /* For each reference in CHAINS, if name_defined_by_phi is not
1839 NULL, use it to set the stmt field. */
1841 static void
1842 replace_names_by_phis (VEC (chain_p, heap) *chains)
1844 chain_p chain;
1845 dref a;
1846 unsigned i, j;
1848 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1849 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1850 if (a->stmt == NULL)
1852 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1853 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1854 a->name_defined_by_phi = NULL_TREE;
1858 /* Wrapper over execute_pred_commoning, to pass it as a callback
1859 to tree_transform_and_unroll_loop. */
1861 struct epcc_data
1863 VEC (chain_p, heap) *chains;
1864 bitmap tmp_vars;
1867 static void
1868 execute_pred_commoning_cbck (struct loop *loop, void *data)
1870 struct epcc_data *const dta = (struct epcc_data *) data;
1872 /* Restore phi nodes that were replaced by ssa names before
1873 tree_transform_and_unroll_loop (see detailed description in
1874 tree_predictive_commoning_loop). */
1875 replace_names_by_phis (dta->chains);
1876 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1879 /* Base NAME and all the names in the chain of phi nodes that use it
1880 on variable VAR. The phi nodes are recognized by being in the copies of
1881 the header of the LOOP. */
1883 static void
1884 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1886 gimple stmt, phi;
1887 imm_use_iterator iter;
1889 SSA_NAME_VAR (name) = var;
1891 while (1)
1893 phi = NULL;
1894 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1896 if (gimple_code (stmt) == GIMPLE_PHI
1897 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1899 phi = stmt;
1900 BREAK_FROM_IMM_USE_STMT (iter);
1903 if (!phi)
1904 return;
1906 name = PHI_RESULT (phi);
1907 SSA_NAME_VAR (name) = var;
1911 /* Given an unrolled LOOP after predictive commoning, remove the
1912 register copies arising from phi nodes by changing the base
1913 variables of SSA names. TMP_VARS is the set of the temporary variables
1914 for those we want to perform this. */
1916 static void
1917 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1919 edge e;
1920 gimple phi, stmt;
1921 tree name, use, var;
1922 gimple_stmt_iterator psi;
1924 e = loop_latch_edge (loop);
1925 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1927 phi = gsi_stmt (psi);
1928 name = PHI_RESULT (phi);
1929 var = SSA_NAME_VAR (name);
1930 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1931 continue;
1932 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1933 gcc_assert (TREE_CODE (use) == SSA_NAME);
1935 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1936 stmt = SSA_NAME_DEF_STMT (use);
1937 while (gimple_code (stmt) == GIMPLE_PHI
1938 /* In case we could not unroll the loop enough to eliminate
1939 all copies, we may reach the loop header before the defining
1940 statement (in that case, some register copies will be present
1941 in loop latch in the final code, corresponding to the newly
1942 created looparound phi nodes). */
1943 && gimple_bb (stmt) != loop->header)
1945 gcc_assert (single_pred_p (gimple_bb (stmt)));
1946 use = PHI_ARG_DEF (stmt, 0);
1947 stmt = SSA_NAME_DEF_STMT (use);
1950 base_names_in_chain_on (loop, use, var);
1954 /* Returns true if CHAIN is suitable to be combined. */
1956 static bool
1957 chain_can_be_combined_p (chain_p chain)
1959 return (!chain->combined
1960 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1963 /* Returns the modify statement that uses NAME. Skips over assignment
1964 statements, NAME is replaced with the actual name used in the returned
1965 statement. */
1967 static gimple
1968 find_use_stmt (tree *name)
1970 gimple stmt;
1971 tree rhs, lhs;
1973 /* Skip over assignments. */
1974 while (1)
1976 stmt = single_nonlooparound_use (*name);
1977 if (!stmt)
1978 return NULL;
1980 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1981 return NULL;
1983 lhs = gimple_assign_lhs (stmt);
1984 if (TREE_CODE (lhs) != SSA_NAME)
1985 return NULL;
1987 if (gimple_assign_copy_p (stmt))
1989 rhs = gimple_assign_rhs1 (stmt);
1990 if (rhs != *name)
1991 return NULL;
1993 *name = lhs;
1995 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1996 == GIMPLE_BINARY_RHS)
1997 return stmt;
1998 else
1999 return NULL;
2003 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2005 static bool
2006 may_reassociate_p (tree type, enum tree_code code)
2008 if (FLOAT_TYPE_P (type)
2009 && !flag_unsafe_math_optimizations)
2010 return false;
2012 return (commutative_tree_code (code)
2013 && associative_tree_code (code));
2016 /* If the operation used in STMT is associative and commutative, go through the
2017 tree of the same operations and returns its root. Distance to the root
2018 is stored in DISTANCE. */
2020 static gimple
2021 find_associative_operation_root (gimple stmt, unsigned *distance)
2023 tree lhs;
2024 gimple next;
2025 enum tree_code code = gimple_assign_rhs_code (stmt);
2026 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2027 unsigned dist = 0;
2029 if (!may_reassociate_p (type, code))
2030 return NULL;
2032 while (1)
2034 lhs = gimple_assign_lhs (stmt);
2035 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2037 next = find_use_stmt (&lhs);
2038 if (!next
2039 || gimple_assign_rhs_code (next) != code)
2040 break;
2042 stmt = next;
2043 dist++;
2046 if (distance)
2047 *distance = dist;
2048 return stmt;
2051 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2052 is no such statement, returns NULL_TREE. In case the operation used on
2053 NAME1 and NAME2 is associative and commutative, returns the root of the
2054 tree formed by this operation instead of the statement that uses NAME1 or
2055 NAME2. */
2057 static gimple
2058 find_common_use_stmt (tree *name1, tree *name2)
2060 gimple stmt1, stmt2;
2062 stmt1 = find_use_stmt (name1);
2063 if (!stmt1)
2064 return NULL;
2066 stmt2 = find_use_stmt (name2);
2067 if (!stmt2)
2068 return NULL;
2070 if (stmt1 == stmt2)
2071 return stmt1;
2073 stmt1 = find_associative_operation_root (stmt1, NULL);
2074 if (!stmt1)
2075 return NULL;
2076 stmt2 = find_associative_operation_root (stmt2, NULL);
2077 if (!stmt2)
2078 return NULL;
2080 return (stmt1 == stmt2 ? stmt1 : NULL);
2083 /* Checks whether R1 and R2 are combined together using CODE, with the result
2084 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2085 if it is true. If CODE is ERROR_MARK, set these values instead. */
2087 static bool
2088 combinable_refs_p (dref r1, dref r2,
2089 enum tree_code *code, bool *swap, tree *rslt_type)
2091 enum tree_code acode;
2092 bool aswap;
2093 tree atype;
2094 tree name1, name2;
2095 gimple stmt;
2097 name1 = name_for_ref (r1);
2098 name2 = name_for_ref (r2);
2099 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2101 stmt = find_common_use_stmt (&name1, &name2);
2103 if (!stmt)
2104 return false;
2106 acode = gimple_assign_rhs_code (stmt);
2107 aswap = (!commutative_tree_code (acode)
2108 && gimple_assign_rhs1 (stmt) != name1);
2109 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2111 if (*code == ERROR_MARK)
2113 *code = acode;
2114 *swap = aswap;
2115 *rslt_type = atype;
2116 return true;
2119 return (*code == acode
2120 && *swap == aswap
2121 && *rslt_type == atype);
2124 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2125 an assignment of the remaining operand. */
2127 static void
2128 remove_name_from_operation (gimple stmt, tree op)
2130 tree other_op;
2131 gimple_stmt_iterator si;
2133 gcc_assert (is_gimple_assign (stmt));
2135 if (gimple_assign_rhs1 (stmt) == op)
2136 other_op = gimple_assign_rhs2 (stmt);
2137 else
2138 other_op = gimple_assign_rhs1 (stmt);
2140 si = gsi_for_stmt (stmt);
2141 gimple_assign_set_rhs_from_tree (&si, other_op);
2143 /* We should not have reallocated STMT. */
2144 gcc_assert (gsi_stmt (si) == stmt);
2146 update_stmt (stmt);
2149 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2150 are combined in a single statement, and returns this statement. */
2152 static gimple
2153 reassociate_to_the_same_stmt (tree name1, tree name2)
2155 gimple stmt1, stmt2, root1, root2, s1, s2;
2156 gimple new_stmt, tmp_stmt;
2157 tree new_name, tmp_name, var, r1, r2;
2158 unsigned dist1, dist2;
2159 enum tree_code code;
2160 tree type = TREE_TYPE (name1);
2161 gimple_stmt_iterator bsi;
2163 stmt1 = find_use_stmt (&name1);
2164 stmt2 = find_use_stmt (&name2);
2165 root1 = find_associative_operation_root (stmt1, &dist1);
2166 root2 = find_associative_operation_root (stmt2, &dist2);
2167 code = gimple_assign_rhs_code (stmt1);
2169 gcc_assert (root1 && root2 && root1 == root2
2170 && code == gimple_assign_rhs_code (stmt2));
2172 /* Find the root of the nearest expression in that both NAME1 and NAME2
2173 are used. */
2174 r1 = name1;
2175 s1 = stmt1;
2176 r2 = name2;
2177 s2 = stmt2;
2179 while (dist1 > dist2)
2181 s1 = find_use_stmt (&r1);
2182 r1 = gimple_assign_lhs (s1);
2183 dist1--;
2185 while (dist2 > dist1)
2187 s2 = find_use_stmt (&r2);
2188 r2 = gimple_assign_lhs (s2);
2189 dist2--;
2192 while (s1 != s2)
2194 s1 = find_use_stmt (&r1);
2195 r1 = gimple_assign_lhs (s1);
2196 s2 = find_use_stmt (&r2);
2197 r2 = gimple_assign_lhs (s2);
2200 /* Remove NAME1 and NAME2 from the statements in that they are used
2201 currently. */
2202 remove_name_from_operation (stmt1, name1);
2203 remove_name_from_operation (stmt2, name2);
2205 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2206 combine it with the rhs of S1. */
2207 var = create_tmp_reg (type, "predreastmp");
2208 add_referenced_var (var);
2209 new_name = make_ssa_name (var, NULL);
2210 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2212 var = create_tmp_reg (type, "predreastmp");
2213 add_referenced_var (var);
2214 tmp_name = make_ssa_name (var, NULL);
2216 /* Rhs of S1 may now be either a binary expression with operation
2217 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2218 so that name1 or name2 was removed from it). */
2219 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2220 tmp_name,
2221 gimple_assign_rhs1 (s1),
2222 gimple_assign_rhs2 (s1));
2224 bsi = gsi_for_stmt (s1);
2225 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2226 s1 = gsi_stmt (bsi);
2227 update_stmt (s1);
2229 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2230 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2232 return new_stmt;
2235 /* Returns the statement that combines references R1 and R2. In case R1
2236 and R2 are not used in the same statement, but they are used with an
2237 associative and commutative operation in the same expression, reassociate
2238 the expression so that they are used in the same statement. */
2240 static gimple
2241 stmt_combining_refs (dref r1, dref r2)
2243 gimple stmt1, stmt2;
2244 tree name1 = name_for_ref (r1);
2245 tree name2 = name_for_ref (r2);
2247 stmt1 = find_use_stmt (&name1);
2248 stmt2 = find_use_stmt (&name2);
2249 if (stmt1 == stmt2)
2250 return stmt1;
2252 return reassociate_to_the_same_stmt (name1, name2);
2255 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2256 description of the new chain is returned, otherwise we return NULL. */
2258 static chain_p
2259 combine_chains (chain_p ch1, chain_p ch2)
2261 dref r1, r2, nw;
2262 enum tree_code op = ERROR_MARK;
2263 bool swap = false;
2264 chain_p new_chain;
2265 unsigned i;
2266 gimple root_stmt;
2267 tree rslt_type = NULL_TREE;
2269 if (ch1 == ch2)
2270 return NULL;
2271 if (ch1->length != ch2->length)
2272 return NULL;
2274 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2275 return NULL;
2277 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2278 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2280 if (r1->distance != r2->distance)
2281 return NULL;
2283 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2284 return NULL;
2287 if (swap)
2289 chain_p tmp = ch1;
2290 ch1 = ch2;
2291 ch2 = tmp;
2294 new_chain = XCNEW (struct chain);
2295 new_chain->type = CT_COMBINATION;
2296 new_chain->op = op;
2297 new_chain->ch1 = ch1;
2298 new_chain->ch2 = ch2;
2299 new_chain->rslt_type = rslt_type;
2300 new_chain->length = ch1->length;
2302 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2303 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2305 nw = XCNEW (struct dref_d);
2306 nw->stmt = stmt_combining_refs (r1, r2);
2307 nw->distance = r1->distance;
2309 VEC_safe_push (dref, heap, new_chain->refs, nw);
2312 new_chain->has_max_use_after = false;
2313 root_stmt = get_chain_root (new_chain)->stmt;
2314 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2316 if (nw->distance == new_chain->length
2317 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2319 new_chain->has_max_use_after = true;
2320 break;
2324 ch1->combined = true;
2325 ch2->combined = true;
2326 return new_chain;
2329 /* Try to combine the CHAINS. */
2331 static void
2332 try_combine_chains (VEC (chain_p, heap) **chains)
2334 unsigned i, j;
2335 chain_p ch1, ch2, cch;
2336 VEC (chain_p, heap) *worklist = NULL;
2338 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2339 if (chain_can_be_combined_p (ch1))
2340 VEC_safe_push (chain_p, heap, worklist, ch1);
2342 while (!VEC_empty (chain_p, worklist))
2344 ch1 = VEC_pop (chain_p, worklist);
2345 if (!chain_can_be_combined_p (ch1))
2346 continue;
2348 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2350 if (!chain_can_be_combined_p (ch2))
2351 continue;
2353 cch = combine_chains (ch1, ch2);
2354 if (cch)
2356 VEC_safe_push (chain_p, heap, worklist, cch);
2357 VEC_safe_push (chain_p, heap, *chains, cch);
2358 break;
2364 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2365 impossible because one of these initializers may trap, true otherwise. */
2367 static bool
2368 prepare_initializers_chain (struct loop *loop, chain_p chain)
2370 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2371 struct data_reference *dr = get_chain_root (chain)->ref;
2372 tree init;
2373 gimple_seq stmts;
2374 dref laref;
2375 edge entry = loop_preheader_edge (loop);
2377 /* Find the initializers for the variables, and check that they cannot
2378 trap. */
2379 chain->inits = VEC_alloc (tree, heap, n);
2380 for (i = 0; i < n; i++)
2381 VEC_quick_push (tree, chain->inits, NULL_TREE);
2383 /* If we have replaced some looparound phi nodes, use their initializers
2384 instead of creating our own. */
2385 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2387 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2388 continue;
2390 gcc_assert (laref->distance > 0);
2391 VEC_replace (tree, chain->inits, n - laref->distance,
2392 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2395 for (i = 0; i < n; i++)
2397 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2398 continue;
2400 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2401 if (!init)
2402 return false;
2404 if (!chain->all_always_accessed && tree_could_trap_p (init))
2405 return false;
2407 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2408 if (stmts)
2409 gsi_insert_seq_on_edge_immediate (entry, stmts);
2411 VEC_replace (tree, chain->inits, i, init);
2414 return true;
2417 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2418 be used because the initializers might trap. */
2420 static void
2421 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2423 chain_p chain;
2424 unsigned i;
2426 for (i = 0; i < VEC_length (chain_p, chains); )
2428 chain = VEC_index (chain_p, chains, i);
2429 if (prepare_initializers_chain (loop, chain))
2430 i++;
2431 else
2433 release_chain (chain);
2434 VEC_unordered_remove (chain_p, chains, i);
2439 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2440 unrolled. */
2442 static bool
2443 tree_predictive_commoning_loop (struct loop *loop)
2445 VEC (data_reference_p, heap) *datarefs;
2446 VEC (ddr_p, heap) *dependences;
2447 struct component *components;
2448 VEC (chain_p, heap) *chains = NULL;
2449 unsigned unroll_factor;
2450 struct tree_niter_desc desc;
2451 bool unroll = false;
2452 edge exit;
2453 bitmap tmp_vars;
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2456 fprintf (dump_file, "Processing loop %d\n", loop->num);
2458 /* Find the data references and split them into components according to their
2459 dependence relations. */
2460 datarefs = VEC_alloc (data_reference_p, heap, 10);
2461 dependences = VEC_alloc (ddr_p, heap, 10);
2462 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2463 if (dump_file && (dump_flags & TDF_DETAILS))
2464 dump_data_dependence_relations (dump_file, dependences);
2466 components = split_data_refs_to_components (loop, datarefs, dependences);
2467 free_dependence_relations (dependences);
2468 if (!components)
2470 free_data_refs (datarefs);
2471 return false;
2474 if (dump_file && (dump_flags & TDF_DETAILS))
2476 fprintf (dump_file, "Initial state:\n\n");
2477 dump_components (dump_file, components);
2480 /* Find the suitable components and split them into chains. */
2481 components = filter_suitable_components (loop, components);
2483 tmp_vars = BITMAP_ALLOC (NULL);
2484 looparound_phis = BITMAP_ALLOC (NULL);
2485 determine_roots (loop, components, &chains);
2486 release_components (components);
2488 if (!chains)
2490 if (dump_file && (dump_flags & TDF_DETAILS))
2491 fprintf (dump_file,
2492 "Predictive commoning failed: no suitable chains\n");
2493 goto end;
2495 prepare_initializers (loop, chains);
2497 /* Try to combine the chains that are always worked with together. */
2498 try_combine_chains (&chains);
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2502 fprintf (dump_file, "Before commoning:\n\n");
2503 dump_chains (dump_file, chains);
2506 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2507 that its number of iterations is divisible by the factor. */
2508 unroll_factor = determine_unroll_factor (chains);
2509 scev_reset ();
2510 unroll = (unroll_factor > 1
2511 && can_unroll_loop_p (loop, unroll_factor, &desc));
2512 exit = single_dom_exit (loop);
2514 /* Execute the predictive commoning transformations, and possibly unroll the
2515 loop. */
2516 if (unroll)
2518 struct epcc_data dta;
2520 if (dump_file && (dump_flags & TDF_DETAILS))
2521 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2523 dta.chains = chains;
2524 dta.tmp_vars = tmp_vars;
2526 update_ssa (TODO_update_ssa_only_virtuals);
2528 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2529 execute_pred_commoning_cbck is called may cause phi nodes to be
2530 reallocated, which is a problem since CHAINS may point to these
2531 statements. To fix this, we store the ssa names defined by the
2532 phi nodes here instead of the phi nodes themselves, and restore
2533 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2534 replace_phis_by_defined_names (chains);
2536 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2537 execute_pred_commoning_cbck, &dta);
2538 eliminate_temp_copies (loop, tmp_vars);
2540 else
2542 if (dump_file && (dump_flags & TDF_DETAILS))
2543 fprintf (dump_file,
2544 "Executing predictive commoning without unrolling.\n");
2545 execute_pred_commoning (loop, chains, tmp_vars);
2548 end: ;
2549 release_chains (chains);
2550 free_data_refs (datarefs);
2551 BITMAP_FREE (tmp_vars);
2552 BITMAP_FREE (looparound_phis);
2554 free_affine_expand_cache (&name_expansions);
2556 return unroll;
2559 /* Runs predictive commoning. */
2561 unsigned
2562 tree_predictive_commoning (void)
2564 bool unrolled = false;
2565 struct loop *loop;
2566 loop_iterator li;
2567 unsigned ret = 0;
2569 initialize_original_copy_tables ();
2570 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2571 if (optimize_loop_for_speed_p (loop))
2573 unrolled |= tree_predictive_commoning_loop (loop);
2576 if (unrolled)
2578 scev_reset ();
2579 ret = TODO_cleanup_cfg;
2581 free_original_copy_tables ();
2583 return ret;