1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
43 /* Forward declarations */
44 static void set_of_1 (rtx
, const_rtx
, void *);
45 static bool covers_regno_p (const_rtx
, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
47 static int rtx_referenced_p_1 (rtx
*, void *);
48 static int computed_jump_p_1 (const_rtx
);
49 static void parms_set (rtx
, const_rtx
, void *);
51 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
52 const_rtx
, enum machine_mode
,
53 unsigned HOST_WIDE_INT
);
54 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
55 const_rtx
, enum machine_mode
,
56 unsigned HOST_WIDE_INT
);
57 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
60 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
61 enum machine_mode
, unsigned int);
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
67 /* Bit flags that specify the machine subtype we are compiling for.
68 Bits are tested using macros TARGET_... defined in the tm.h file
69 and set by `-m...' switches. Must be defined in rtlanal.c. */
73 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
74 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
75 SIGN_EXTEND then while narrowing we also have to enforce the
76 representation and sign-extend the value to mode DESTINATION_REP.
78 If the value is already sign-extended to DESTINATION_REP mode we
79 can just switch to DESTINATION mode on it. For each pair of
80 integral modes SOURCE and DESTINATION, when truncating from SOURCE
81 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
82 contains the number of high-order bits in SOURCE that have to be
83 copies of the sign-bit so that we can do this mode-switch to
87 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
89 /* Return 1 if the value of X is unstable
90 (would be different at a different point in the program).
91 The frame pointer, arg pointer, etc. are considered stable
92 (within one function) and so is anything marked `unchanging'. */
95 rtx_unstable_p (const_rtx x
)
97 const RTX_CODE code
= GET_CODE (x
);
104 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
116 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
117 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
118 /* The arg pointer varies if it is not a fixed register. */
119 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
129 if (MEM_VOLATILE_P (x
))
138 fmt
= GET_RTX_FORMAT (code
);
139 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
142 if (rtx_unstable_p (XEXP (x
, i
)))
145 else if (fmt
[i
] == 'E')
148 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
149 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
156 /* Return 1 if X has a value that can vary even between two
157 executions of the program. 0 means X can be compared reliably
158 against certain constants or near-constants.
159 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
160 zero, we are slightly more conservative.
161 The frame pointer and the arg pointer are considered constant. */
164 rtx_varies_p (const_rtx x
, bool for_alias
)
177 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
189 /* Note that we have to test for the actual rtx used for the frame
190 and arg pointers and not just the register number in case we have
191 eliminated the frame and/or arg pointer and are using it
193 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
194 /* The arg pointer varies if it is not a fixed register. */
195 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
197 if (x
== pic_offset_table_rtx
198 /* ??? When call-clobbered, the value is stable modulo the restore
199 that must happen after a call. This currently screws up
200 local-alloc into believing that the restore is not needed, so we
201 must return 0 only if we are called from alias analysis. */
202 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
207 /* The operand 0 of a LO_SUM is considered constant
208 (in fact it is related specifically to operand 1)
209 during alias analysis. */
210 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
211 || rtx_varies_p (XEXP (x
, 1), for_alias
);
214 if (MEM_VOLATILE_P (x
))
223 fmt
= GET_RTX_FORMAT (code
);
224 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
227 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
230 else if (fmt
[i
] == 'E')
233 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
234 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
241 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
242 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
243 whether nonzero is returned for unaligned memory accesses on strict
244 alignment machines. */
247 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
248 enum machine_mode mode
, bool unaligned_mems
)
250 enum rtx_code code
= GET_CODE (x
);
254 && GET_MODE_SIZE (mode
) != 0)
256 HOST_WIDE_INT actual_offset
= offset
;
257 #ifdef SPARC_STACK_BOUNDARY_HACK
258 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
259 the real alignment of %sp. However, when it does this, the
260 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
261 if (SPARC_STACK_BOUNDARY_HACK
262 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
263 actual_offset
-= STACK_POINTER_OFFSET
;
266 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
273 if (SYMBOL_REF_WEAK (x
))
275 if (!CONSTANT_POOL_ADDRESS_P (x
))
278 HOST_WIDE_INT decl_size
;
283 size
= GET_MODE_SIZE (mode
);
287 /* If the size of the access or of the symbol is unknown,
289 decl
= SYMBOL_REF_DECL (x
);
291 /* Else check that the access is in bounds. TODO: restructure
292 expr_size/tree_expr_size/int_expr_size and just use the latter. */
295 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
296 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
297 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
299 else if (TREE_CODE (decl
) == STRING_CST
)
300 decl_size
= TREE_STRING_LENGTH (decl
);
301 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
302 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
306 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
315 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
316 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
317 || x
== stack_pointer_rtx
318 /* The arg pointer varies if it is not a fixed register. */
319 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
321 /* All of the virtual frame registers are stack references. */
322 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
323 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
328 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
329 mode
, unaligned_mems
);
332 /* An address is assumed not to trap if:
333 - it is the pic register plus a constant. */
334 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
337 /* - or it is an address that can't trap plus a constant integer,
338 with the proper remainder modulo the mode size if we are
339 considering unaligned memory references. */
340 if (CONST_INT_P (XEXP (x
, 1))
341 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
342 size
, mode
, unaligned_mems
))
349 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
350 mode
, unaligned_mems
);
357 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
358 mode
, unaligned_mems
);
364 /* If it isn't one of the case above, it can cause a trap. */
368 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
371 rtx_addr_can_trap_p (const_rtx x
)
373 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
376 /* Return true if X is an address that is known to not be zero. */
379 nonzero_address_p (const_rtx x
)
381 const enum rtx_code code
= GET_CODE (x
);
386 return !SYMBOL_REF_WEAK (x
);
392 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
393 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
394 || x
== stack_pointer_rtx
395 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
397 /* All of the virtual frame registers are stack references. */
398 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
399 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
404 return nonzero_address_p (XEXP (x
, 0));
407 if (CONST_INT_P (XEXP (x
, 1)))
408 return nonzero_address_p (XEXP (x
, 0));
409 /* Handle PIC references. */
410 else if (XEXP (x
, 0) == pic_offset_table_rtx
411 && CONSTANT_P (XEXP (x
, 1)))
416 /* Similar to the above; allow positive offsets. Further, since
417 auto-inc is only allowed in memories, the register must be a
419 if (CONST_INT_P (XEXP (x
, 1))
420 && INTVAL (XEXP (x
, 1)) > 0)
422 return nonzero_address_p (XEXP (x
, 0));
425 /* Similarly. Further, the offset is always positive. */
432 return nonzero_address_p (XEXP (x
, 0));
435 return nonzero_address_p (XEXP (x
, 1));
441 /* If it isn't one of the case above, might be zero. */
445 /* Return 1 if X refers to a memory location whose address
446 cannot be compared reliably with constant addresses,
447 or if X refers to a BLKmode memory object.
448 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
449 zero, we are slightly more conservative. */
452 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
463 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
465 fmt
= GET_RTX_FORMAT (code
);
466 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
469 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
472 else if (fmt
[i
] == 'E')
475 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
476 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
482 /* Return the value of the integer term in X, if one is apparent;
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
488 get_integer_term (const_rtx x
)
490 if (GET_CODE (x
) == CONST
)
493 if (GET_CODE (x
) == MINUS
494 && CONST_INT_P (XEXP (x
, 1)))
495 return - INTVAL (XEXP (x
, 1));
496 if (GET_CODE (x
) == PLUS
497 && CONST_INT_P (XEXP (x
, 1)))
498 return INTVAL (XEXP (x
, 1));
502 /* If X is a constant, return the value sans apparent integer term;
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x
)
509 if (GET_CODE (x
) != CONST
)
512 if (GET_CODE (x
) == PLUS
513 && CONST_INT_P (XEXP (x
, 1)))
515 else if (GET_CODE (x
) == MINUS
516 && CONST_INT_P (XEXP (x
, 1)))
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
525 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
529 if (GET_CODE (symbol
) != SYMBOL_REF
)
537 if (CONSTANT_POOL_ADDRESS_P (symbol
)
538 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
541 decl
= SYMBOL_REF_DECL (symbol
);
542 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
547 && SYMBOL_REF_BLOCK (symbol
)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
549 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
550 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
560 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
562 if (GET_CODE (x
) == CONST
)
565 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
567 *base_out
= XEXP (x
, 0);
568 *offset_out
= XEXP (x
, 1);
573 *offset_out
= const0_rtx
;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
584 const char *format_ptr
;
606 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
608 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
612 if (MEM_P (find
) && rtx_equal_p (x
, find
))
617 if (SET_DEST (x
) == find
&& ! count_dest
)
618 return count_occurrences (SET_SRC (x
), find
, count_dest
);
625 format_ptr
= GET_RTX_FORMAT (code
);
628 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
630 switch (*format_ptr
++)
633 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
637 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
638 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
646 /* Nonzero if register REG appears somewhere within IN.
647 Also works if REG is not a register; in this case it checks
648 for a subexpression of IN that is Lisp "equal" to REG. */
651 reg_mentioned_p (const_rtx reg
, const_rtx in
)
663 if (GET_CODE (in
) == LABEL_REF
)
664 return reg
== XEXP (in
, 0);
666 code
= GET_CODE (in
);
670 /* Compare registers by number. */
672 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
674 /* These codes have no constituent expressions
685 /* These are kept unique for a given value. */
692 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
695 fmt
= GET_RTX_FORMAT (code
);
697 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
702 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
703 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
706 else if (fmt
[i
] == 'e'
707 && reg_mentioned_p (reg
, XEXP (in
, i
)))
713 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
714 no CODE_LABEL insn. */
717 no_labels_between_p (const_rtx beg
, const_rtx end
)
722 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
728 /* Nonzero if register REG is used in an insn between
729 FROM_INSN and TO_INSN (exclusive of those two). */
732 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
736 if (from_insn
== to_insn
)
739 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
740 if (NONDEBUG_INSN_P (insn
)
741 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
742 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
747 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
748 is entirely replaced by a new value and the only use is as a SET_DEST,
749 we do not consider it a reference. */
752 reg_referenced_p (const_rtx x
, const_rtx body
)
756 switch (GET_CODE (body
))
759 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
762 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
763 of a REG that occupies all of the REG, the insn references X if
764 it is mentioned in the destination. */
765 if (GET_CODE (SET_DEST (body
)) != CC0
766 && GET_CODE (SET_DEST (body
)) != PC
767 && !REG_P (SET_DEST (body
))
768 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
769 && REG_P (SUBREG_REG (SET_DEST (body
)))
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
771 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
773 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
774 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
779 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
780 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
787 return reg_overlap_mentioned_p (x
, body
);
790 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
793 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
796 case UNSPEC_VOLATILE
:
797 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
798 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
803 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
804 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
809 if (MEM_P (XEXP (body
, 0)))
810 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
815 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
817 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
824 /* Nonzero if register REG is set or clobbered in an insn between
825 FROM_INSN and TO_INSN (exclusive of those two). */
828 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
832 if (from_insn
== to_insn
)
835 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
836 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
841 /* Internals of reg_set_between_p. */
843 reg_set_p (const_rtx reg
, const_rtx insn
)
845 /* We can be passed an insn or part of one. If we are passed an insn,
846 check if a side-effect of the insn clobbers REG. */
848 && (FIND_REG_INC_NOTE (insn
, reg
)
851 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
852 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
853 GET_MODE (reg
), REGNO (reg
)))
855 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
858 return set_of (reg
, insn
) != NULL_RTX
;
861 /* Similar to reg_set_between_p, but check all registers in X. Return 0
862 only if none of them are modified between START and END. Return 1 if
863 X contains a MEM; this routine does use memory aliasing. */
866 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
868 const enum rtx_code code
= GET_CODE (x
);
892 if (modified_between_p (XEXP (x
, 0), start
, end
))
894 if (MEM_READONLY_P (x
))
896 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
897 if (memory_modified_in_insn_p (x
, insn
))
903 return reg_set_between_p (x
, start
, end
);
909 fmt
= GET_RTX_FORMAT (code
);
910 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
912 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
915 else if (fmt
[i
] == 'E')
916 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
917 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
924 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
925 of them are modified in INSN. Return 1 if X contains a MEM; this routine
926 does use memory aliasing. */
929 modified_in_p (const_rtx x
, const_rtx insn
)
931 const enum rtx_code code
= GET_CODE (x
);
951 if (modified_in_p (XEXP (x
, 0), insn
))
953 if (MEM_READONLY_P (x
))
955 if (memory_modified_in_insn_p (x
, insn
))
961 return reg_set_p (x
, insn
);
967 fmt
= GET_RTX_FORMAT (code
);
968 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
970 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
973 else if (fmt
[i
] == 'E')
974 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
975 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
982 /* Helper function for set_of. */
990 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
992 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
993 if (rtx_equal_p (x
, data
->pat
)
994 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
998 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
999 (either directly or via STRICT_LOW_PART and similar modifiers). */
1001 set_of (const_rtx pat
, const_rtx insn
)
1003 struct set_of_data data
;
1004 data
.found
= NULL_RTX
;
1006 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1010 /* Given an INSN, return a SET expression if this insn has only a single SET.
1011 It may also have CLOBBERs, USEs, or SET whose output
1012 will not be used, which we ignore. */
1015 single_set_2 (const_rtx insn
, const_rtx pat
)
1018 int set_verified
= 1;
1021 if (GET_CODE (pat
) == PARALLEL
)
1023 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1025 rtx sub
= XVECEXP (pat
, 0, i
);
1026 switch (GET_CODE (sub
))
1033 /* We can consider insns having multiple sets, where all
1034 but one are dead as single set insns. In common case
1035 only single set is present in the pattern so we want
1036 to avoid checking for REG_UNUSED notes unless necessary.
1038 When we reach set first time, we just expect this is
1039 the single set we are looking for and only when more
1040 sets are found in the insn, we check them. */
1043 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1044 && !side_effects_p (set
))
1050 set
= sub
, set_verified
= 0;
1051 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1052 || side_effects_p (sub
))
1064 /* Given an INSN, return nonzero if it has more than one SET, else return
1068 multiple_sets (const_rtx insn
)
1073 /* INSN must be an insn. */
1074 if (! INSN_P (insn
))
1077 /* Only a PARALLEL can have multiple SETs. */
1078 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1080 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1081 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1083 /* If we have already found a SET, then return now. */
1091 /* Either zero or one SET. */
1095 /* Return nonzero if the destination of SET equals the source
1096 and there are no side effects. */
1099 set_noop_p (const_rtx set
)
1101 rtx src
= SET_SRC (set
);
1102 rtx dst
= SET_DEST (set
);
1104 if (dst
== pc_rtx
&& src
== pc_rtx
)
1107 if (MEM_P (dst
) && MEM_P (src
))
1108 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1110 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1111 return rtx_equal_p (XEXP (dst
, 0), src
)
1112 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1113 && !side_effects_p (src
);
1115 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1116 dst
= XEXP (dst
, 0);
1118 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1120 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1122 src
= SUBREG_REG (src
);
1123 dst
= SUBREG_REG (dst
);
1126 return (REG_P (src
) && REG_P (dst
)
1127 && REGNO (src
) == REGNO (dst
));
1130 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1134 noop_move_p (const_rtx insn
)
1136 rtx pat
= PATTERN (insn
);
1138 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1141 /* Insns carrying these notes are useful later on. */
1142 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1145 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1148 if (GET_CODE (pat
) == PARALLEL
)
1151 /* If nothing but SETs of registers to themselves,
1152 this insn can also be deleted. */
1153 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1155 rtx tem
= XVECEXP (pat
, 0, i
);
1157 if (GET_CODE (tem
) == USE
1158 || GET_CODE (tem
) == CLOBBER
)
1161 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1171 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1172 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1173 If the object was modified, if we hit a partial assignment to X, or hit a
1174 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1175 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1179 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1183 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1187 rtx set
= single_set (p
);
1188 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1190 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1192 rtx src
= SET_SRC (set
);
1194 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1195 src
= XEXP (note
, 0);
1197 if ((valid_to
== NULL_RTX
1198 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1199 /* Reject hard registers because we don't usually want
1200 to use them; we'd rather use a pseudo. */
1202 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1209 /* If set in non-simple way, we don't have a value. */
1210 if (reg_set_p (x
, p
))
1217 /* Return nonzero if register in range [REGNO, ENDREGNO)
1218 appears either explicitly or implicitly in X
1219 other than being stored into.
1221 References contained within the substructure at LOC do not count.
1222 LOC may be zero, meaning don't ignore anything. */
1225 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1229 unsigned int x_regno
;
1234 /* The contents of a REG_NONNEG note is always zero, so we must come here
1235 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1239 code
= GET_CODE (x
);
1244 x_regno
= REGNO (x
);
1246 /* If we modifying the stack, frame, or argument pointer, it will
1247 clobber a virtual register. In fact, we could be more precise,
1248 but it isn't worth it. */
1249 if ((x_regno
== STACK_POINTER_REGNUM
1250 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1251 || x_regno
== ARG_POINTER_REGNUM
1253 || x_regno
== FRAME_POINTER_REGNUM
)
1254 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1257 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1260 /* If this is a SUBREG of a hard reg, we can see exactly which
1261 registers are being modified. Otherwise, handle normally. */
1262 if (REG_P (SUBREG_REG (x
))
1263 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1265 unsigned int inner_regno
= subreg_regno (x
);
1266 unsigned int inner_endregno
1267 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1268 ? subreg_nregs (x
) : 1);
1270 return endregno
> inner_regno
&& regno
< inner_endregno
;
1276 if (&SET_DEST (x
) != loc
1277 /* Note setting a SUBREG counts as referring to the REG it is in for
1278 a pseudo but not for hard registers since we can
1279 treat each word individually. */
1280 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1281 && loc
!= &SUBREG_REG (SET_DEST (x
))
1282 && REG_P (SUBREG_REG (SET_DEST (x
)))
1283 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1284 && refers_to_regno_p (regno
, endregno
,
1285 SUBREG_REG (SET_DEST (x
)), loc
))
1286 || (!REG_P (SET_DEST (x
))
1287 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1290 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1299 /* X does not match, so try its subexpressions. */
1301 fmt
= GET_RTX_FORMAT (code
);
1302 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1304 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1312 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1315 else if (fmt
[i
] == 'E')
1318 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1319 if (loc
!= &XVECEXP (x
, i
, j
)
1320 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1327 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1328 we check if any register number in X conflicts with the relevant register
1329 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1330 contains a MEM (we don't bother checking for memory addresses that can't
1331 conflict because we expect this to be a rare case. */
1334 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1336 unsigned int regno
, endregno
;
1338 /* If either argument is a constant, then modifying X can not
1339 affect IN. Here we look at IN, we can profitably combine
1340 CONSTANT_P (x) with the switch statement below. */
1341 if (CONSTANT_P (in
))
1345 switch (GET_CODE (x
))
1347 case STRICT_LOW_PART
:
1350 /* Overly conservative. */
1355 regno
= REGNO (SUBREG_REG (x
));
1356 if (regno
< FIRST_PSEUDO_REGISTER
)
1357 regno
= subreg_regno (x
);
1358 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1359 ? subreg_nregs (x
) : 1);
1364 endregno
= END_REGNO (x
);
1366 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1376 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1377 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1380 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1383 else if (fmt
[i
] == 'E')
1386 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1387 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1397 return reg_mentioned_p (x
, in
);
1403 /* If any register in here refers to it we return true. */
1404 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1405 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1406 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1412 gcc_assert (CONSTANT_P (x
));
1417 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1418 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1419 ignored by note_stores, but passed to FUN.
1421 FUN receives three arguments:
1422 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1423 2. the SET or CLOBBER rtx that does the store,
1424 3. the pointer DATA provided to note_stores.
1426 If the item being stored in or clobbered is a SUBREG of a hard register,
1427 the SUBREG will be passed. */
1430 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1434 if (GET_CODE (x
) == COND_EXEC
)
1435 x
= COND_EXEC_CODE (x
);
1437 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1439 rtx dest
= SET_DEST (x
);
1441 while ((GET_CODE (dest
) == SUBREG
1442 && (!REG_P (SUBREG_REG (dest
))
1443 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1444 || GET_CODE (dest
) == ZERO_EXTRACT
1445 || GET_CODE (dest
) == STRICT_LOW_PART
)
1446 dest
= XEXP (dest
, 0);
1448 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1449 each of whose first operand is a register. */
1450 if (GET_CODE (dest
) == PARALLEL
)
1452 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1453 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1454 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1457 (*fun
) (dest
, x
, data
);
1460 else if (GET_CODE (x
) == PARALLEL
)
1461 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1462 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1465 /* Like notes_stores, but call FUN for each expression that is being
1466 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1467 FUN for each expression, not any interior subexpressions. FUN receives a
1468 pointer to the expression and the DATA passed to this function.
1470 Note that this is not quite the same test as that done in reg_referenced_p
1471 since that considers something as being referenced if it is being
1472 partially set, while we do not. */
1475 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1480 switch (GET_CODE (body
))
1483 (*fun
) (&COND_EXEC_TEST (body
), data
);
1484 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1488 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1489 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1493 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1494 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1498 (*fun
) (&XEXP (body
, 0), data
);
1502 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1503 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1507 (*fun
) (&TRAP_CONDITION (body
), data
);
1511 (*fun
) (&XEXP (body
, 0), data
);
1515 case UNSPEC_VOLATILE
:
1516 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1517 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1521 if (MEM_P (XEXP (body
, 0)))
1522 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1527 rtx dest
= SET_DEST (body
);
1529 /* For sets we replace everything in source plus registers in memory
1530 expression in store and operands of a ZERO_EXTRACT. */
1531 (*fun
) (&SET_SRC (body
), data
);
1533 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1535 (*fun
) (&XEXP (dest
, 1), data
);
1536 (*fun
) (&XEXP (dest
, 2), data
);
1539 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1540 dest
= XEXP (dest
, 0);
1543 (*fun
) (&XEXP (dest
, 0), data
);
1548 /* All the other possibilities never store. */
1549 (*fun
) (pbody
, data
);
1554 /* Return nonzero if X's old contents don't survive after INSN.
1555 This will be true if X is (cc0) or if X is a register and
1556 X dies in INSN or because INSN entirely sets X.
1558 "Entirely set" means set directly and not through a SUBREG, or
1559 ZERO_EXTRACT, so no trace of the old contents remains.
1560 Likewise, REG_INC does not count.
1562 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1563 but for this use that makes no difference, since regs don't overlap
1564 during their lifetimes. Therefore, this function may be used
1565 at any time after deaths have been computed.
1567 If REG is a hard reg that occupies multiple machine registers, this
1568 function will only return 1 if each of those registers will be replaced
1572 dead_or_set_p (const_rtx insn
, const_rtx x
)
1574 unsigned int regno
, end_regno
;
1577 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1578 if (GET_CODE (x
) == CC0
)
1581 gcc_assert (REG_P (x
));
1584 end_regno
= END_REGNO (x
);
1585 for (i
= regno
; i
< end_regno
; i
++)
1586 if (! dead_or_set_regno_p (insn
, i
))
1592 /* Return TRUE iff DEST is a register or subreg of a register and
1593 doesn't change the number of words of the inner register, and any
1594 part of the register is TEST_REGNO. */
1597 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1599 unsigned int regno
, endregno
;
1601 if (GET_CODE (dest
) == SUBREG
1602 && (((GET_MODE_SIZE (GET_MODE (dest
))
1603 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1604 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1605 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1606 dest
= SUBREG_REG (dest
);
1611 regno
= REGNO (dest
);
1612 endregno
= END_REGNO (dest
);
1613 return (test_regno
>= regno
&& test_regno
< endregno
);
1616 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1617 any member matches the covers_regno_no_parallel_p criteria. */
1620 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1622 if (GET_CODE (dest
) == PARALLEL
)
1624 /* Some targets place small structures in registers for return
1625 values of functions, and those registers are wrapped in
1626 PARALLELs that we may see as the destination of a SET. */
1629 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1631 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1632 if (inner
!= NULL_RTX
1633 && covers_regno_no_parallel_p (inner
, test_regno
))
1640 return covers_regno_no_parallel_p (dest
, test_regno
);
1643 /* Utility function for dead_or_set_p to check an individual register. */
1646 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1650 /* See if there is a death note for something that includes TEST_REGNO. */
1651 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1655 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1658 pattern
= PATTERN (insn
);
1660 if (GET_CODE (pattern
) == COND_EXEC
)
1661 pattern
= COND_EXEC_CODE (pattern
);
1663 if (GET_CODE (pattern
) == SET
)
1664 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1665 else if (GET_CODE (pattern
) == PARALLEL
)
1669 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1671 rtx body
= XVECEXP (pattern
, 0, i
);
1673 if (GET_CODE (body
) == COND_EXEC
)
1674 body
= COND_EXEC_CODE (body
);
1676 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1677 && covers_regno_p (SET_DEST (body
), test_regno
))
1685 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1686 If DATUM is nonzero, look for one whose datum is DATUM. */
1689 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1693 gcc_checking_assert (insn
);
1695 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1696 if (! INSN_P (insn
))
1700 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1701 if (REG_NOTE_KIND (link
) == kind
)
1706 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1707 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1712 /* Return the reg-note of kind KIND in insn INSN which applies to register
1713 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1714 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1715 it might be the case that the note overlaps REGNO. */
1718 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1722 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1723 if (! INSN_P (insn
))
1726 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1727 if (REG_NOTE_KIND (link
) == kind
1728 /* Verify that it is a register, so that scratch and MEM won't cause a
1730 && REG_P (XEXP (link
, 0))
1731 && REGNO (XEXP (link
, 0)) <= regno
1732 && END_REGNO (XEXP (link
, 0)) > regno
)
1737 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1741 find_reg_equal_equiv_note (const_rtx insn
)
1748 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1749 if (REG_NOTE_KIND (link
) == REG_EQUAL
1750 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1752 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1753 insns that have multiple sets. Checking single_set to
1754 make sure of this is not the proper check, as explained
1755 in the comment in set_unique_reg_note.
1757 This should be changed into an assert. */
1758 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1765 /* Check whether INSN is a single_set whose source is known to be
1766 equivalent to a constant. Return that constant if so, otherwise
1770 find_constant_src (const_rtx insn
)
1774 set
= single_set (insn
);
1777 x
= avoid_constant_pool_reference (SET_SRC (set
));
1782 note
= find_reg_equal_equiv_note (insn
);
1783 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1784 return XEXP (note
, 0);
1789 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1790 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1793 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1795 /* If it's not a CALL_INSN, it can't possibly have a
1796 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1806 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1808 link
= XEXP (link
, 1))
1809 if (GET_CODE (XEXP (link
, 0)) == code
1810 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1815 unsigned int regno
= REGNO (datum
);
1817 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1818 to pseudo registers, so don't bother checking. */
1820 if (regno
< FIRST_PSEUDO_REGISTER
)
1822 unsigned int end_regno
= END_HARD_REGNO (datum
);
1825 for (i
= regno
; i
< end_regno
; i
++)
1826 if (find_regno_fusage (insn
, code
, i
))
1834 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1835 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1838 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1842 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1843 to pseudo registers, so don't bother checking. */
1845 if (regno
>= FIRST_PSEUDO_REGISTER
1849 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1853 if (GET_CODE (op
= XEXP (link
, 0)) == code
1854 && REG_P (reg
= XEXP (op
, 0))
1855 && REGNO (reg
) <= regno
1856 && END_HARD_REGNO (reg
) > regno
)
1864 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1865 stored as the pointer to the next register note. */
1868 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1876 case REG_LABEL_TARGET
:
1877 case REG_LABEL_OPERAND
:
1878 /* These types of register notes use an INSN_LIST rather than an
1879 EXPR_LIST, so that copying is done right and dumps look
1881 note
= alloc_INSN_LIST (datum
, list
);
1882 PUT_REG_NOTE_KIND (note
, kind
);
1886 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1893 /* Add register note with kind KIND and datum DATUM to INSN. */
1896 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1898 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1901 /* Remove register note NOTE from the REG_NOTES of INSN. */
1904 remove_note (rtx insn
, const_rtx note
)
1908 if (note
== NULL_RTX
)
1911 if (REG_NOTES (insn
) == note
)
1912 REG_NOTES (insn
) = XEXP (note
, 1);
1914 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1915 if (XEXP (link
, 1) == note
)
1917 XEXP (link
, 1) = XEXP (note
, 1);
1921 switch (REG_NOTE_KIND (note
))
1925 df_notes_rescan (insn
);
1932 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1935 remove_reg_equal_equiv_notes (rtx insn
)
1939 loc
= ®_NOTES (insn
);
1942 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1943 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1944 *loc
= XEXP (*loc
, 1);
1946 loc
= &XEXP (*loc
, 1);
1950 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1951 return 1 if it is found. A simple equality test is used to determine if
1955 in_expr_list_p (const_rtx listp
, const_rtx node
)
1959 for (x
= listp
; x
; x
= XEXP (x
, 1))
1960 if (node
== XEXP (x
, 0))
1966 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1967 remove that entry from the list if it is found.
1969 A simple equality test is used to determine if NODE matches. */
1972 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
1975 rtx prev
= NULL_RTX
;
1979 if (node
== XEXP (temp
, 0))
1981 /* Splice the node out of the list. */
1983 XEXP (prev
, 1) = XEXP (temp
, 1);
1985 *listp
= XEXP (temp
, 1);
1991 temp
= XEXP (temp
, 1);
1995 /* Nonzero if X contains any volatile instructions. These are instructions
1996 which may cause unpredictable machine state instructions, and thus no
1997 instructions should be moved or combined across them. This includes
1998 only volatile asms and UNSPEC_VOLATILE instructions. */
2001 volatile_insn_p (const_rtx x
)
2003 const RTX_CODE code
= GET_CODE (x
);
2024 case UNSPEC_VOLATILE
:
2025 /* case TRAP_IF: This isn't clear yet. */
2030 if (MEM_VOLATILE_P (x
))
2037 /* Recursively scan the operands of this expression. */
2040 const char *const fmt
= GET_RTX_FORMAT (code
);
2043 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2047 if (volatile_insn_p (XEXP (x
, i
)))
2050 else if (fmt
[i
] == 'E')
2053 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2054 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2062 /* Nonzero if X contains any volatile memory references
2063 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2066 volatile_refs_p (const_rtx x
)
2068 const RTX_CODE code
= GET_CODE (x
);
2087 case UNSPEC_VOLATILE
:
2093 if (MEM_VOLATILE_P (x
))
2100 /* Recursively scan the operands of this expression. */
2103 const char *const fmt
= GET_RTX_FORMAT (code
);
2106 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2110 if (volatile_refs_p (XEXP (x
, i
)))
2113 else if (fmt
[i
] == 'E')
2116 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2117 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2125 /* Similar to above, except that it also rejects register pre- and post-
2129 side_effects_p (const_rtx x
)
2131 const RTX_CODE code
= GET_CODE (x
);
2151 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2152 when some combination can't be done. If we see one, don't think
2153 that we can simplify the expression. */
2154 return (GET_MODE (x
) != VOIDmode
);
2163 case UNSPEC_VOLATILE
:
2164 /* case TRAP_IF: This isn't clear yet. */
2170 if (MEM_VOLATILE_P (x
))
2177 /* Recursively scan the operands of this expression. */
2180 const char *fmt
= GET_RTX_FORMAT (code
);
2183 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2187 if (side_effects_p (XEXP (x
, i
)))
2190 else if (fmt
[i
] == 'E')
2193 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2194 if (side_effects_p (XVECEXP (x
, i
, j
)))
2202 /* Return nonzero if evaluating rtx X might cause a trap.
2203 FLAGS controls how to consider MEMs. A nonzero means the context
2204 of the access may have changed from the original, such that the
2205 address may have become invalid. */
2208 may_trap_p_1 (const_rtx x
, unsigned flags
)
2214 /* We make no distinction currently, but this function is part of
2215 the internal target-hooks ABI so we keep the parameter as
2216 "unsigned flags". */
2217 bool code_changed
= flags
!= 0;
2221 code
= GET_CODE (x
);
2224 /* Handle these cases quickly. */
2239 case UNSPEC_VOLATILE
:
2240 return targetm
.unspec_may_trap_p (x
, flags
);
2247 return MEM_VOLATILE_P (x
);
2249 /* Memory ref can trap unless it's a static var or a stack slot. */
2251 /* Recognize specific pattern of stack checking probes. */
2252 if (flag_stack_check
2253 && MEM_VOLATILE_P (x
)
2254 && XEXP (x
, 0) == stack_pointer_rtx
)
2256 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2257 reference; moving it out of context such as when moving code
2258 when optimizing, might cause its address to become invalid. */
2260 || !MEM_NOTRAP_P (x
))
2262 HOST_WIDE_INT size
= MEM_SIZE (x
) ? INTVAL (MEM_SIZE (x
)) : 0;
2263 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2264 GET_MODE (x
), code_changed
);
2269 /* Division by a non-constant might trap. */
2274 if (HONOR_SNANS (GET_MODE (x
)))
2276 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2277 return flag_trapping_math
;
2278 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2283 /* An EXPR_LIST is used to represent a function call. This
2284 certainly may trap. */
2293 /* Some floating point comparisons may trap. */
2294 if (!flag_trapping_math
)
2296 /* ??? There is no machine independent way to check for tests that trap
2297 when COMPARE is used, though many targets do make this distinction.
2298 For instance, sparc uses CCFPE for compares which generate exceptions
2299 and CCFP for compares which do not generate exceptions. */
2300 if (HONOR_NANS (GET_MODE (x
)))
2302 /* But often the compare has some CC mode, so check operand
2304 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2305 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2311 if (HONOR_SNANS (GET_MODE (x
)))
2313 /* Often comparison is CC mode, so check operand modes. */
2314 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2315 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2320 /* Conversion of floating point might trap. */
2321 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2328 /* These operations don't trap even with floating point. */
2332 /* Any floating arithmetic may trap. */
2333 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2334 && flag_trapping_math
)
2338 fmt
= GET_RTX_FORMAT (code
);
2339 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2343 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2346 else if (fmt
[i
] == 'E')
2349 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2350 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2357 /* Return nonzero if evaluating rtx X might cause a trap. */
2360 may_trap_p (const_rtx x
)
2362 return may_trap_p_1 (x
, 0);
2365 /* Same as above, but additionally return nonzero if evaluating rtx X might
2366 cause a fault. We define a fault for the purpose of this function as a
2367 erroneous execution condition that cannot be encountered during the normal
2368 execution of a valid program; the typical example is an unaligned memory
2369 access on a strict alignment machine. The compiler guarantees that it
2370 doesn't generate code that will fault from a valid program, but this
2371 guarantee doesn't mean anything for individual instructions. Consider
2372 the following example:
2374 struct S { int d; union { char *cp; int *ip; }; };
2376 int foo(struct S *s)
2384 on a strict alignment machine. In a valid program, foo will never be
2385 invoked on a structure for which d is equal to 1 and the underlying
2386 unique field of the union not aligned on a 4-byte boundary, but the
2387 expression *s->ip might cause a fault if considered individually.
2389 At the RTL level, potentially problematic expressions will almost always
2390 verify may_trap_p; for example, the above dereference can be emitted as
2391 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2392 However, suppose that foo is inlined in a caller that causes s->cp to
2393 point to a local character variable and guarantees that s->d is not set
2394 to 1; foo may have been effectively translated into pseudo-RTL as:
2397 (set (reg:SI) (mem:SI (%fp - 7)))
2399 (set (reg:QI) (mem:QI (%fp - 7)))
2401 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2402 memory reference to a stack slot, but it will certainly cause a fault
2403 on a strict alignment machine. */
2406 may_trap_or_fault_p (const_rtx x
)
2408 return may_trap_p_1 (x
, 1);
2411 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2412 i.e., an inequality. */
2415 inequality_comparisons_p (const_rtx x
)
2419 const enum rtx_code code
= GET_CODE (x
);
2450 len
= GET_RTX_LENGTH (code
);
2451 fmt
= GET_RTX_FORMAT (code
);
2453 for (i
= 0; i
< len
; i
++)
2457 if (inequality_comparisons_p (XEXP (x
, i
)))
2460 else if (fmt
[i
] == 'E')
2463 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2464 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2472 /* Replace any occurrence of FROM in X with TO. The function does
2473 not enter into CONST_DOUBLE for the replace.
2475 Note that copying is not done so X must not be shared unless all copies
2476 are to be modified. */
2479 replace_rtx (rtx x
, rtx from
, rtx to
)
2484 /* The following prevents loops occurrence when we change MEM in
2485 CONST_DOUBLE onto the same CONST_DOUBLE. */
2486 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2492 /* Allow this function to make replacements in EXPR_LISTs. */
2496 if (GET_CODE (x
) == SUBREG
)
2498 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2500 if (CONST_INT_P (new_rtx
))
2502 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2503 GET_MODE (SUBREG_REG (x
)),
2508 SUBREG_REG (x
) = new_rtx
;
2512 else if (GET_CODE (x
) == ZERO_EXTEND
)
2514 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2516 if (CONST_INT_P (new_rtx
))
2518 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2519 new_rtx
, GET_MODE (XEXP (x
, 0)));
2523 XEXP (x
, 0) = new_rtx
;
2528 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2529 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2532 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2533 else if (fmt
[i
] == 'E')
2534 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2535 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2541 /* Replace occurrences of the old label in *X with the new one.
2542 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2545 replace_label (rtx
*x
, void *data
)
2548 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2549 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2550 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2555 if (GET_CODE (l
) == SYMBOL_REF
2556 && CONSTANT_POOL_ADDRESS_P (l
))
2558 rtx c
= get_pool_constant (l
);
2559 if (rtx_referenced_p (old_label
, c
))
2562 replace_label_data
*d
= (replace_label_data
*) data
;
2564 /* Create a copy of constant C; replace the label inside
2565 but do not update LABEL_NUSES because uses in constant pool
2567 new_c
= copy_rtx (c
);
2568 d
->update_label_nuses
= false;
2569 for_each_rtx (&new_c
, replace_label
, data
);
2570 d
->update_label_nuses
= update_label_nuses
;
2572 /* Add the new constant NEW_C to constant pool and replace
2573 the old reference to constant by new reference. */
2574 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2575 *x
= replace_rtx (l
, l
, new_l
);
2580 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2581 field. This is not handled by for_each_rtx because it doesn't
2582 handle unprinted ('0') fields. */
2583 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2584 JUMP_LABEL (l
) = new_label
;
2586 if ((GET_CODE (l
) == LABEL_REF
2587 || GET_CODE (l
) == INSN_LIST
)
2588 && XEXP (l
, 0) == old_label
)
2590 XEXP (l
, 0) = new_label
;
2591 if (update_label_nuses
)
2593 ++LABEL_NUSES (new_label
);
2594 --LABEL_NUSES (old_label
);
2602 /* When *BODY is equal to X or X is directly referenced by *BODY
2603 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2604 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2607 rtx_referenced_p_1 (rtx
*body
, void *x
)
2611 if (*body
== NULL_RTX
)
2612 return y
== NULL_RTX
;
2614 /* Return true if a label_ref *BODY refers to label Y. */
2615 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2616 return XEXP (*body
, 0) == y
;
2618 /* If *BODY is a reference to pool constant traverse the constant. */
2619 if (GET_CODE (*body
) == SYMBOL_REF
2620 && CONSTANT_POOL_ADDRESS_P (*body
))
2621 return rtx_referenced_p (y
, get_pool_constant (*body
));
2623 /* By default, compare the RTL expressions. */
2624 return rtx_equal_p (*body
, y
);
2627 /* Return true if X is referenced in BODY. */
2630 rtx_referenced_p (rtx x
, rtx body
)
2632 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2635 /* If INSN is a tablejump return true and store the label (before jump table) to
2636 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2639 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2644 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2645 && (table
= next_active_insn (label
)) != NULL_RTX
2646 && JUMP_TABLE_DATA_P (table
))
2657 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2658 constant that is not in the constant pool and not in the condition
2659 of an IF_THEN_ELSE. */
2662 computed_jump_p_1 (const_rtx x
)
2664 const enum rtx_code code
= GET_CODE (x
);
2684 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2685 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2688 return (computed_jump_p_1 (XEXP (x
, 1))
2689 || computed_jump_p_1 (XEXP (x
, 2)));
2695 fmt
= GET_RTX_FORMAT (code
);
2696 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2699 && computed_jump_p_1 (XEXP (x
, i
)))
2702 else if (fmt
[i
] == 'E')
2703 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2704 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2711 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2713 Tablejumps and casesi insns are not considered indirect jumps;
2714 we can recognize them by a (use (label_ref)). */
2717 computed_jump_p (const_rtx insn
)
2722 rtx pat
= PATTERN (insn
);
2724 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2725 if (JUMP_LABEL (insn
) != NULL
)
2728 if (GET_CODE (pat
) == PARALLEL
)
2730 int len
= XVECLEN (pat
, 0);
2731 int has_use_labelref
= 0;
2733 for (i
= len
- 1; i
>= 0; i
--)
2734 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2735 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2737 has_use_labelref
= 1;
2739 if (! has_use_labelref
)
2740 for (i
= len
- 1; i
>= 0; i
--)
2741 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2742 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2743 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2746 else if (GET_CODE (pat
) == SET
2747 && SET_DEST (pat
) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (pat
)))
2754 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2755 calls. Processes the subexpressions of EXP and passes them to F. */
2757 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2760 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2763 for (; format
[n
] != '\0'; n
++)
2770 result
= (*f
) (x
, data
);
2772 /* Do not traverse sub-expressions. */
2774 else if (result
!= 0)
2775 /* Stop the traversal. */
2779 /* There are no sub-expressions. */
2782 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2785 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2793 if (XVEC (exp
, n
) == 0)
2795 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2798 x
= &XVECEXP (exp
, n
, j
);
2799 result
= (*f
) (x
, data
);
2801 /* Do not traverse sub-expressions. */
2803 else if (result
!= 0)
2804 /* Stop the traversal. */
2808 /* There are no sub-expressions. */
2811 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2814 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2822 /* Nothing to do. */
2830 /* Traverse X via depth-first search, calling F for each
2831 sub-expression (including X itself). F is also passed the DATA.
2832 If F returns -1, do not traverse sub-expressions, but continue
2833 traversing the rest of the tree. If F ever returns any other
2834 nonzero value, stop the traversal, and return the value returned
2835 by F. Otherwise, return 0. This function does not traverse inside
2836 tree structure that contains RTX_EXPRs, or into sub-expressions
2837 whose format code is `0' since it is not known whether or not those
2838 codes are actually RTL.
2840 This routine is very general, and could (should?) be used to
2841 implement many of the other routines in this file. */
2844 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2850 result
= (*f
) (x
, data
);
2852 /* Do not traverse sub-expressions. */
2854 else if (result
!= 0)
2855 /* Stop the traversal. */
2859 /* There are no sub-expressions. */
2862 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2866 return for_each_rtx_1 (*x
, i
, f
, data
);
2870 /* Searches X for any reference to REGNO, returning the rtx of the
2871 reference found if any. Otherwise, returns NULL_RTX. */
2874 regno_use_in (unsigned int regno
, rtx x
)
2880 if (REG_P (x
) && REGNO (x
) == regno
)
2883 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2884 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2888 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2891 else if (fmt
[i
] == 'E')
2892 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2893 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2900 /* Return a value indicating whether OP, an operand of a commutative
2901 operation, is preferred as the first or second operand. The higher
2902 the value, the stronger the preference for being the first operand.
2903 We use negative values to indicate a preference for the first operand
2904 and positive values for the second operand. */
2907 commutative_operand_precedence (rtx op
)
2909 enum rtx_code code
= GET_CODE (op
);
2911 /* Constants always come the second operand. Prefer "nice" constants. */
2912 if (code
== CONST_INT
)
2914 if (code
== CONST_DOUBLE
)
2916 if (code
== CONST_FIXED
)
2918 op
= avoid_constant_pool_reference (op
);
2919 code
= GET_CODE (op
);
2921 switch (GET_RTX_CLASS (code
))
2924 if (code
== CONST_INT
)
2926 if (code
== CONST_DOUBLE
)
2928 if (code
== CONST_FIXED
)
2933 /* SUBREGs of objects should come second. */
2934 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2939 /* Complex expressions should be the first, so decrease priority
2940 of objects. Prefer pointer objects over non pointer objects. */
2941 if ((REG_P (op
) && REG_POINTER (op
))
2942 || (MEM_P (op
) && MEM_POINTER (op
)))
2946 case RTX_COMM_ARITH
:
2947 /* Prefer operands that are themselves commutative to be first.
2948 This helps to make things linear. In particular,
2949 (and (and (reg) (reg)) (not (reg))) is canonical. */
2953 /* If only one operand is a binary expression, it will be the first
2954 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2955 is canonical, although it will usually be further simplified. */
2959 /* Then prefer NEG and NOT. */
2960 if (code
== NEG
|| code
== NOT
)
2968 /* Return 1 iff it is necessary to swap operands of commutative operation
2969 in order to canonicalize expression. */
2972 swap_commutative_operands_p (rtx x
, rtx y
)
2974 return (commutative_operand_precedence (x
)
2975 < commutative_operand_precedence (y
));
2978 /* Return 1 if X is an autoincrement side effect and the register is
2979 not the stack pointer. */
2981 auto_inc_p (const_rtx x
)
2983 switch (GET_CODE (x
))
2991 /* There are no REG_INC notes for SP. */
2992 if (XEXP (x
, 0) != stack_pointer_rtx
)
3000 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3002 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3011 code
= GET_CODE (in
);
3012 fmt
= GET_RTX_FORMAT (code
);
3013 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3017 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3020 else if (fmt
[i
] == 'E')
3021 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3022 if (loc
== &XVECEXP (in
, i
, j
)
3023 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3029 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3030 and SUBREG_BYTE, return the bit offset where the subreg begins
3031 (counting from the least significant bit of the operand). */
3034 subreg_lsb_1 (enum machine_mode outer_mode
,
3035 enum machine_mode inner_mode
,
3036 unsigned int subreg_byte
)
3038 unsigned int bitpos
;
3042 /* A paradoxical subreg begins at bit position 0. */
3043 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
3046 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3047 /* If the subreg crosses a word boundary ensure that
3048 it also begins and ends on a word boundary. */
3049 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3050 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3051 && (subreg_byte
% UNITS_PER_WORD
3052 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3054 if (WORDS_BIG_ENDIAN
)
3055 word
= (GET_MODE_SIZE (inner_mode
)
3056 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3058 word
= subreg_byte
/ UNITS_PER_WORD
;
3059 bitpos
= word
* BITS_PER_WORD
;
3061 if (BYTES_BIG_ENDIAN
)
3062 byte
= (GET_MODE_SIZE (inner_mode
)
3063 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3065 byte
= subreg_byte
% UNITS_PER_WORD
;
3066 bitpos
+= byte
* BITS_PER_UNIT
;
3071 /* Given a subreg X, return the bit offset where the subreg begins
3072 (counting from the least significant bit of the reg). */
3075 subreg_lsb (const_rtx x
)
3077 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3081 /* Fill in information about a subreg of a hard register.
3082 xregno - A regno of an inner hard subreg_reg (or what will become one).
3083 xmode - The mode of xregno.
3084 offset - The byte offset.
3085 ymode - The mode of a top level SUBREG (or what may become one).
3086 info - Pointer to structure to fill in. */
3088 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3089 unsigned int offset
, enum machine_mode ymode
,
3090 struct subreg_info
*info
)
3092 int nregs_xmode
, nregs_ymode
;
3093 int mode_multiple
, nregs_multiple
;
3094 int offset_adj
, y_offset
, y_offset_adj
;
3095 int regsize_xmode
, regsize_ymode
;
3098 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3102 /* If there are holes in a non-scalar mode in registers, we expect
3103 that it is made up of its units concatenated together. */
3104 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3106 enum machine_mode xmode_unit
;
3108 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3109 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3112 xmode_unit
= GET_MODE_INNER (xmode
);
3113 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3114 gcc_assert (nregs_xmode
3115 == (GET_MODE_NUNITS (xmode
)
3116 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3117 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3118 == (hard_regno_nregs
[xregno
][xmode_unit
]
3119 * GET_MODE_NUNITS (xmode
)));
3121 /* You can only ask for a SUBREG of a value with holes in the middle
3122 if you don't cross the holes. (Such a SUBREG should be done by
3123 picking a different register class, or doing it in memory if
3124 necessary.) An example of a value with holes is XCmode on 32-bit
3125 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3126 3 for each part, but in memory it's two 128-bit parts.
3127 Padding is assumed to be at the end (not necessarily the 'high part')
3129 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3130 < GET_MODE_NUNITS (xmode
))
3131 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3132 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3133 / GET_MODE_SIZE (xmode_unit
))))
3135 info
->representable_p
= false;
3140 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3142 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3144 /* Paradoxical subregs are otherwise valid. */
3147 && GET_MODE_SIZE (ymode
) > GET_MODE_SIZE (xmode
))
3149 info
->representable_p
= true;
3150 /* If this is a big endian paradoxical subreg, which uses more
3151 actual hard registers than the original register, we must
3152 return a negative offset so that we find the proper highpart
3154 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3155 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3156 info
->offset
= nregs_xmode
- nregs_ymode
;
3159 info
->nregs
= nregs_ymode
;
3163 /* If registers store different numbers of bits in the different
3164 modes, we cannot generally form this subreg. */
3165 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3166 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3167 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3168 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3170 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3171 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3172 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3174 info
->representable_p
= false;
3176 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3177 info
->offset
= offset
/ regsize_xmode
;
3180 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3182 info
->representable_p
= false;
3184 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3185 info
->offset
= offset
/ regsize_xmode
;
3190 /* Lowpart subregs are otherwise valid. */
3191 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3193 info
->representable_p
= true;
3196 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3199 info
->nregs
= nregs_ymode
;
3204 /* This should always pass, otherwise we don't know how to verify
3205 the constraint. These conditions may be relaxed but
3206 subreg_regno_offset would need to be redesigned. */
3207 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3208 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3210 /* The XMODE value can be seen as a vector of NREGS_XMODE
3211 values. The subreg must represent a lowpart of given field.
3212 Compute what field it is. */
3213 offset_adj
= offset
;
3214 offset_adj
-= subreg_lowpart_offset (ymode
,
3215 mode_for_size (GET_MODE_BITSIZE (xmode
)
3219 /* Size of ymode must not be greater than the size of xmode. */
3220 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3221 gcc_assert (mode_multiple
!= 0);
3223 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3224 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3225 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3227 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3228 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3232 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3235 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3236 info
->nregs
= nregs_ymode
;
3239 /* This function returns the regno offset of a subreg expression.
3240 xregno - A regno of an inner hard subreg_reg (or what will become one).
3241 xmode - The mode of xregno.
3242 offset - The byte offset.
3243 ymode - The mode of a top level SUBREG (or what may become one).
3244 RETURN - The regno offset which would be used. */
3246 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3247 unsigned int offset
, enum machine_mode ymode
)
3249 struct subreg_info info
;
3250 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3254 /* This function returns true when the offset is representable via
3255 subreg_offset in the given regno.
3256 xregno - A regno of an inner hard subreg_reg (or what will become one).
3257 xmode - The mode of xregno.
3258 offset - The byte offset.
3259 ymode - The mode of a top level SUBREG (or what may become one).
3260 RETURN - Whether the offset is representable. */
3262 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3263 unsigned int offset
, enum machine_mode ymode
)
3265 struct subreg_info info
;
3266 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3267 return info
.representable_p
;
3270 /* Return the number of a YMODE register to which
3272 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3274 can be simplified. Return -1 if the subreg can't be simplified.
3276 XREGNO is a hard register number. */
3279 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3280 unsigned int offset
, enum machine_mode ymode
)
3282 struct subreg_info info
;
3283 unsigned int yregno
;
3285 #ifdef CANNOT_CHANGE_MODE_CLASS
3286 /* Give the backend a chance to disallow the mode change. */
3287 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3288 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3289 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
))
3293 /* We shouldn't simplify stack-related registers. */
3294 if ((!reload_completed
|| frame_pointer_needed
)
3295 && xregno
== FRAME_POINTER_REGNUM
)
3298 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3299 && xregno
== ARG_POINTER_REGNUM
)
3302 if (xregno
== STACK_POINTER_REGNUM
)
3305 /* Try to get the register offset. */
3306 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3307 if (!info
.representable_p
)
3310 /* Make sure that the offsetted register value is in range. */
3311 yregno
= xregno
+ info
.offset
;
3312 if (!HARD_REGISTER_NUM_P (yregno
))
3315 /* See whether (reg:YMODE YREGNO) is valid.
3317 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3318 This is a kludge to work around how float/complex arguments are passed
3319 on 32-bit SPARC and should be fixed. */
3320 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3321 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3324 return (int) yregno
;
3327 /* Return the final regno that a subreg expression refers to. */
3329 subreg_regno (const_rtx x
)
3332 rtx subreg
= SUBREG_REG (x
);
3333 int regno
= REGNO (subreg
);
3335 ret
= regno
+ subreg_regno_offset (regno
,
3343 /* Return the number of registers that a subreg expression refers
3346 subreg_nregs (const_rtx x
)
3348 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3351 /* Return the number of registers that a subreg REG with REGNO
3352 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3353 changed so that the regno can be passed in. */
3356 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3358 struct subreg_info info
;
3359 rtx subreg
= SUBREG_REG (x
);
3361 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3367 struct parms_set_data
3373 /* Helper function for noticing stores to parameter registers. */
3375 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3377 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3378 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3379 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3381 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3386 /* Look backward for first parameter to be loaded.
3387 Note that loads of all parameters will not necessarily be
3388 found if CSE has eliminated some of them (e.g., an argument
3389 to the outer function is passed down as a parameter).
3390 Do not skip BOUNDARY. */
3392 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3394 struct parms_set_data parm
;
3395 rtx p
, before
, first_set
;
3397 /* Since different machines initialize their parameter registers
3398 in different orders, assume nothing. Collect the set of all
3399 parameter registers. */
3400 CLEAR_HARD_REG_SET (parm
.regs
);
3402 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3403 if (GET_CODE (XEXP (p
, 0)) == USE
3404 && REG_P (XEXP (XEXP (p
, 0), 0)))
3406 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3408 /* We only care about registers which can hold function
3410 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3413 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3417 first_set
= call_insn
;
3419 /* Search backward for the first set of a register in this set. */
3420 while (parm
.nregs
&& before
!= boundary
)
3422 before
= PREV_INSN (before
);
3424 /* It is possible that some loads got CSEed from one call to
3425 another. Stop in that case. */
3426 if (CALL_P (before
))
3429 /* Our caller needs either ensure that we will find all sets
3430 (in case code has not been optimized yet), or take care
3431 for possible labels in a way by setting boundary to preceding
3433 if (LABEL_P (before
))
3435 gcc_assert (before
== boundary
);
3439 if (INSN_P (before
))
3441 int nregs_old
= parm
.nregs
;
3442 note_stores (PATTERN (before
), parms_set
, &parm
);
3443 /* If we found something that did not set a parameter reg,
3444 we're done. Do not keep going, as that might result
3445 in hoisting an insn before the setting of a pseudo
3446 that is used by the hoisted insn. */
3447 if (nregs_old
!= parm
.nregs
)
3456 /* Return true if we should avoid inserting code between INSN and preceding
3457 call instruction. */
3460 keep_with_call_p (const_rtx insn
)
3464 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3466 if (REG_P (SET_DEST (set
))
3467 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3468 && fixed_regs
[REGNO (SET_DEST (set
))]
3469 && general_operand (SET_SRC (set
), VOIDmode
))
3471 if (REG_P (SET_SRC (set
))
3472 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3473 && REG_P (SET_DEST (set
))
3474 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3476 /* There may be a stack pop just after the call and before the store
3477 of the return register. Search for the actual store when deciding
3478 if we can break or not. */
3479 if (SET_DEST (set
) == stack_pointer_rtx
)
3481 /* This CONST_CAST is okay because next_nonnote_insn just
3482 returns its argument and we assign it to a const_rtx
3484 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3485 if (i2
&& keep_with_call_p (i2
))
3492 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3493 to non-complex jumps. That is, direct unconditional, conditional,
3494 and tablejumps, but not computed jumps or returns. It also does
3495 not apply to the fallthru case of a conditional jump. */
3498 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3500 rtx tmp
= JUMP_LABEL (jump_insn
);
3505 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3507 rtvec vec
= XVEC (PATTERN (tmp
),
3508 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3509 int i
, veclen
= GET_NUM_ELEM (vec
);
3511 for (i
= 0; i
< veclen
; ++i
)
3512 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3516 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3523 /* Return an estimate of the cost of computing rtx X.
3524 One use is in cse, to decide which expression to keep in the hash table.
3525 Another is in rtl generation, to pick the cheapest way to multiply.
3526 Other uses like the latter are expected in the future.
3528 SPEED parameter specify whether costs optimized for speed or size should
3532 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
, bool speed
)
3542 /* Compute the default costs of certain things.
3543 Note that targetm.rtx_costs can override the defaults. */
3545 code
= GET_CODE (x
);
3549 total
= COSTS_N_INSNS (5);
3555 total
= COSTS_N_INSNS (7);
3558 /* Used in combine.c as a marker. */
3562 total
= COSTS_N_INSNS (1);
3572 /* If we can't tie these modes, make this expensive. The larger
3573 the mode, the more expensive it is. */
3574 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3575 return COSTS_N_INSNS (2
3576 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3580 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
, speed
))
3585 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3586 which is already in total. */
3588 fmt
= GET_RTX_FORMAT (code
);
3589 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3591 total
+= rtx_cost (XEXP (x
, i
), code
, speed
);
3592 else if (fmt
[i
] == 'E')
3593 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3594 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, speed
);
3599 /* Return cost of address expression X.
3600 Expect that X is properly formed address reference.
3602 SPEED parameter specify whether costs optimized for speed or size should
3606 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3608 /* We may be asked for cost of various unusual addresses, such as operands
3609 of push instruction. It is not worthwhile to complicate writing
3610 of the target hook by such cases. */
3612 if (!memory_address_addr_space_p (mode
, x
, as
))
3615 return targetm
.address_cost (x
, speed
);
3618 /* If the target doesn't override, compute the cost as with arithmetic. */
3621 default_address_cost (rtx x
, bool speed
)
3623 return rtx_cost (x
, MEM
, speed
);
3627 unsigned HOST_WIDE_INT
3628 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3630 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3634 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3636 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3639 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3640 It avoids exponential behavior in nonzero_bits1 when X has
3641 identical subexpressions on the first or the second level. */
3643 static unsigned HOST_WIDE_INT
3644 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3645 enum machine_mode known_mode
,
3646 unsigned HOST_WIDE_INT known_ret
)
3648 if (x
== known_x
&& mode
== known_mode
)
3651 /* Try to find identical subexpressions. If found call
3652 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3653 precomputed value for the subexpression as KNOWN_RET. */
3655 if (ARITHMETIC_P (x
))
3657 rtx x0
= XEXP (x
, 0);
3658 rtx x1
= XEXP (x
, 1);
3660 /* Check the first level. */
3662 return nonzero_bits1 (x
, mode
, x0
, mode
,
3663 cached_nonzero_bits (x0
, mode
, known_x
,
3664 known_mode
, known_ret
));
3666 /* Check the second level. */
3667 if (ARITHMETIC_P (x0
)
3668 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3669 return nonzero_bits1 (x
, mode
, x1
, mode
,
3670 cached_nonzero_bits (x1
, mode
, known_x
,
3671 known_mode
, known_ret
));
3673 if (ARITHMETIC_P (x1
)
3674 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3675 return nonzero_bits1 (x
, mode
, x0
, mode
,
3676 cached_nonzero_bits (x0
, mode
, known_x
,
3677 known_mode
, known_ret
));
3680 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3683 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3684 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3685 is less useful. We can't allow both, because that results in exponential
3686 run time recursion. There is a nullstone testcase that triggered
3687 this. This macro avoids accidental uses of num_sign_bit_copies. */
3688 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3690 /* Given an expression, X, compute which bits in X can be nonzero.
3691 We don't care about bits outside of those defined in MODE.
3693 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3694 an arithmetic operation, we can do better. */
3696 static unsigned HOST_WIDE_INT
3697 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3698 enum machine_mode known_mode
,
3699 unsigned HOST_WIDE_INT known_ret
)
3701 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3702 unsigned HOST_WIDE_INT inner_nz
;
3704 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3706 /* For floating-point and vector values, assume all bits are needed. */
3707 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3708 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3711 /* If X is wider than MODE, use its mode instead. */
3712 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3714 mode
= GET_MODE (x
);
3715 nonzero
= GET_MODE_MASK (mode
);
3716 mode_width
= GET_MODE_BITSIZE (mode
);
3719 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3720 /* Our only callers in this case look for single bit values. So
3721 just return the mode mask. Those tests will then be false. */
3724 #ifndef WORD_REGISTER_OPERATIONS
3725 /* If MODE is wider than X, but both are a single word for both the host
3726 and target machines, we can compute this from which bits of the
3727 object might be nonzero in its own mode, taking into account the fact
3728 that on many CISC machines, accessing an object in a wider mode
3729 causes the high-order bits to become undefined. So they are
3730 not known to be zero. */
3732 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3733 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3734 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3735 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3737 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3738 known_x
, known_mode
, known_ret
);
3739 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3744 code
= GET_CODE (x
);
3748 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3749 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3750 all the bits above ptr_mode are known to be zero. */
3751 /* As we do not know which address space the pointer is refering to,
3752 we can do this only if the target does not support different pointer
3753 or address modes depending on the address space. */
3754 if (target_default_pointer_address_modes_p ()
3755 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3757 nonzero
&= GET_MODE_MASK (ptr_mode
);
3760 /* Include declared information about alignment of pointers. */
3761 /* ??? We don't properly preserve REG_POINTER changes across
3762 pointer-to-integer casts, so we can't trust it except for
3763 things that we know must be pointers. See execute/960116-1.c. */
3764 if ((x
== stack_pointer_rtx
3765 || x
== frame_pointer_rtx
3766 || x
== arg_pointer_rtx
)
3767 && REGNO_POINTER_ALIGN (REGNO (x
)))
3769 unsigned HOST_WIDE_INT alignment
3770 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3772 #ifdef PUSH_ROUNDING
3773 /* If PUSH_ROUNDING is defined, it is possible for the
3774 stack to be momentarily aligned only to that amount,
3775 so we pick the least alignment. */
3776 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3777 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3781 nonzero
&= ~(alignment
- 1);
3785 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3786 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3787 known_mode
, known_ret
,
3791 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
3792 known_mode
, known_ret
);
3794 return nonzero_for_hook
;
3798 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3799 /* If X is negative in MODE, sign-extend the value. */
3801 && mode_width
< BITS_PER_WORD
3802 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
3804 return UINTVAL (x
) | ((unsigned HOST_WIDE_INT
) (-1) << mode_width
);
3810 #ifdef LOAD_EXTEND_OP
3811 /* In many, if not most, RISC machines, reading a byte from memory
3812 zeros the rest of the register. Noticing that fact saves a lot
3813 of extra zero-extends. */
3814 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3815 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3820 case UNEQ
: case LTGT
:
3821 case GT
: case GTU
: case UNGT
:
3822 case LT
: case LTU
: case UNLT
:
3823 case GE
: case GEU
: case UNGE
:
3824 case LE
: case LEU
: case UNLE
:
3825 case UNORDERED
: case ORDERED
:
3826 /* If this produces an integer result, we know which bits are set.
3827 Code here used to clear bits outside the mode of X, but that is
3829 /* Mind that MODE is the mode the caller wants to look at this
3830 operation in, and not the actual operation mode. We can wind
3831 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3832 that describes the results of a vector compare. */
3833 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
3834 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3835 nonzero
= STORE_FLAG_VALUE
;
3840 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3841 and num_sign_bit_copies. */
3842 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3843 == GET_MODE_BITSIZE (GET_MODE (x
)))
3847 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3848 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3853 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3854 and num_sign_bit_copies. */
3855 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3856 == GET_MODE_BITSIZE (GET_MODE (x
)))
3862 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3863 known_x
, known_mode
, known_ret
)
3864 & GET_MODE_MASK (mode
));
3868 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3869 known_x
, known_mode
, known_ret
);
3870 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3871 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3875 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3876 Otherwise, show all the bits in the outer mode but not the inner
3878 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3879 known_x
, known_mode
, known_ret
);
3880 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3882 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3884 & (((unsigned HOST_WIDE_INT
) 1
3885 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3886 inner_nz
|= (GET_MODE_MASK (mode
)
3887 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3890 nonzero
&= inner_nz
;
3894 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3895 known_x
, known_mode
, known_ret
)
3896 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3897 known_x
, known_mode
, known_ret
);
3901 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3903 unsigned HOST_WIDE_INT nonzero0
3904 = cached_nonzero_bits (XEXP (x
, 0), mode
,
3905 known_x
, known_mode
, known_ret
);
3907 /* Don't call nonzero_bits for the second time if it cannot change
3909 if ((nonzero
& nonzero0
) != nonzero
)
3911 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3912 known_x
, known_mode
, known_ret
);
3916 case PLUS
: case MINUS
:
3918 case DIV
: case UDIV
:
3919 case MOD
: case UMOD
:
3920 /* We can apply the rules of arithmetic to compute the number of
3921 high- and low-order zero bits of these operations. We start by
3922 computing the width (position of the highest-order nonzero bit)
3923 and the number of low-order zero bits for each value. */
3925 unsigned HOST_WIDE_INT nz0
3926 = cached_nonzero_bits (XEXP (x
, 0), mode
,
3927 known_x
, known_mode
, known_ret
);
3928 unsigned HOST_WIDE_INT nz1
3929 = cached_nonzero_bits (XEXP (x
, 1), mode
,
3930 known_x
, known_mode
, known_ret
);
3931 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3932 int width0
= floor_log2 (nz0
) + 1;
3933 int width1
= floor_log2 (nz1
) + 1;
3934 int low0
= floor_log2 (nz0
& -nz0
);
3935 int low1
= floor_log2 (nz1
& -nz1
);
3936 unsigned HOST_WIDE_INT op0_maybe_minusp
3937 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
3938 unsigned HOST_WIDE_INT op1_maybe_minusp
3939 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
3940 unsigned int result_width
= mode_width
;
3946 result_width
= MAX (width0
, width1
) + 1;
3947 result_low
= MIN (low0
, low1
);
3950 result_low
= MIN (low0
, low1
);
3953 result_width
= width0
+ width1
;
3954 result_low
= low0
+ low1
;
3959 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
3960 result_width
= width0
;
3965 result_width
= width0
;
3970 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
3971 result_width
= MIN (width0
, width1
);
3972 result_low
= MIN (low0
, low1
);
3977 result_width
= MIN (width0
, width1
);
3978 result_low
= MIN (low0
, low1
);
3984 if (result_width
< mode_width
)
3985 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
3988 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
3990 #ifdef POINTERS_EXTEND_UNSIGNED
3991 /* If pointers extend unsigned and this is an addition or subtraction
3992 to a pointer in Pmode, all the bits above ptr_mode are known to be
3994 /* As we do not know which address space the pointer is refering to,
3995 we can do this only if the target does not support different pointer
3996 or address modes depending on the address space. */
3997 if (target_default_pointer_address_modes_p ()
3998 && POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
3999 && (code
== PLUS
|| code
== MINUS
)
4000 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4001 nonzero
&= GET_MODE_MASK (ptr_mode
);
4007 if (CONST_INT_P (XEXP (x
, 1))
4008 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4009 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4013 /* If this is a SUBREG formed for a promoted variable that has
4014 been zero-extended, we know that at least the high-order bits
4015 are zero, though others might be too. */
4017 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4018 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4019 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4020 known_x
, known_mode
, known_ret
);
4022 /* If the inner mode is a single word for both the host and target
4023 machines, we can compute this from which bits of the inner
4024 object might be nonzero. */
4025 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
4026 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4027 <= HOST_BITS_PER_WIDE_INT
))
4029 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4030 known_x
, known_mode
, known_ret
);
4032 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4033 /* If this is a typical RISC machine, we only have to worry
4034 about the way loads are extended. */
4035 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4037 & (((unsigned HOST_WIDE_INT
) 1
4038 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
4040 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
4041 || !MEM_P (SUBREG_REG (x
)))
4044 /* On many CISC machines, accessing an object in a wider mode
4045 causes the high-order bits to become undefined. So they are
4046 not known to be zero. */
4047 if (GET_MODE_SIZE (GET_MODE (x
))
4048 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4049 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4050 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
4059 /* The nonzero bits are in two classes: any bits within MODE
4060 that aren't in GET_MODE (x) are always significant. The rest of the
4061 nonzero bits are those that are significant in the operand of
4062 the shift when shifted the appropriate number of bits. This
4063 shows that high-order bits are cleared by the right shift and
4064 low-order bits by left shifts. */
4065 if (CONST_INT_P (XEXP (x
, 1))
4066 && INTVAL (XEXP (x
, 1)) >= 0
4067 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4068 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4070 enum machine_mode inner_mode
= GET_MODE (x
);
4071 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
4072 int count
= INTVAL (XEXP (x
, 1));
4073 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4074 unsigned HOST_WIDE_INT op_nonzero
4075 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4076 known_x
, known_mode
, known_ret
);
4077 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4078 unsigned HOST_WIDE_INT outer
= 0;
4080 if (mode_width
> width
)
4081 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4083 if (code
== LSHIFTRT
)
4085 else if (code
== ASHIFTRT
)
4089 /* If the sign bit may have been nonzero before the shift, we
4090 need to mark all the places it could have been copied to
4091 by the shift as possibly nonzero. */
4092 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4093 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4096 else if (code
== ASHIFT
)
4099 inner
= ((inner
<< (count
% width
)
4100 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4102 nonzero
&= (outer
| inner
);
4108 /* This is at most the number of bits in the mode. */
4109 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4113 /* If CLZ has a known value at zero, then the nonzero bits are
4114 that value, plus the number of bits in the mode minus one. */
4115 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4117 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4123 /* If CTZ has a known value at zero, then the nonzero bits are
4124 that value, plus the number of bits in the mode minus one. */
4125 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4127 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4138 unsigned HOST_WIDE_INT nonzero_true
4139 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4140 known_x
, known_mode
, known_ret
);
4142 /* Don't call nonzero_bits for the second time if it cannot change
4144 if ((nonzero
& nonzero_true
) != nonzero
)
4145 nonzero
&= nonzero_true
4146 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4147 known_x
, known_mode
, known_ret
);
4158 /* See the macro definition above. */
4159 #undef cached_num_sign_bit_copies
4162 /* The function cached_num_sign_bit_copies is a wrapper around
4163 num_sign_bit_copies1. It avoids exponential behavior in
4164 num_sign_bit_copies1 when X has identical subexpressions on the
4165 first or the second level. */
4168 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4169 enum machine_mode known_mode
,
4170 unsigned int known_ret
)
4172 if (x
== known_x
&& mode
== known_mode
)
4175 /* Try to find identical subexpressions. If found call
4176 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4177 the precomputed value for the subexpression as KNOWN_RET. */
4179 if (ARITHMETIC_P (x
))
4181 rtx x0
= XEXP (x
, 0);
4182 rtx x1
= XEXP (x
, 1);
4184 /* Check the first level. */
4187 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4188 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0
)
4194 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4196 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4197 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4201 if (ARITHMETIC_P (x1
)
4202 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4204 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4205 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4210 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4213 /* Return the number of bits at the high-order end of X that are known to
4214 be equal to the sign bit. X will be used in mode MODE; if MODE is
4215 VOIDmode, X will be used in its own mode. The returned value will always
4216 be between 1 and the number of bits in MODE. */
4219 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4220 enum machine_mode known_mode
,
4221 unsigned int known_ret
)
4223 enum rtx_code code
= GET_CODE (x
);
4224 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
4225 int num0
, num1
, result
;
4226 unsigned HOST_WIDE_INT nonzero
;
4228 /* If we weren't given a mode, use the mode of X. If the mode is still
4229 VOIDmode, we don't know anything. Likewise if one of the modes is
4232 if (mode
== VOIDmode
)
4233 mode
= GET_MODE (x
);
4235 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4236 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4239 /* For a smaller object, just ignore the high bits. */
4240 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
4242 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4243 known_x
, known_mode
, known_ret
);
4245 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
4248 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
4250 #ifndef WORD_REGISTER_OPERATIONS
4251 /* If this machine does not do all register operations on the entire
4252 register and MODE is wider than the mode of X, we can say nothing
4253 at all about the high-order bits. */
4256 /* Likewise on machines that do, if the mode of the object is smaller
4257 than a word and loads of that size don't sign extend, we can say
4258 nothing about the high order bits. */
4259 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
4260 #ifdef LOAD_EXTEND_OP
4261 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4272 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4273 /* If pointers extend signed and this is a pointer in Pmode, say that
4274 all the bits above ptr_mode are known to be sign bit copies. */
4275 /* As we do not know which address space the pointer is refering to,
4276 we can do this only if the target does not support different pointer
4277 or address modes depending on the address space. */
4278 if (target_default_pointer_address_modes_p ()
4279 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4280 && mode
== Pmode
&& REG_POINTER (x
))
4281 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4285 unsigned int copies_for_hook
= 1, copies
= 1;
4286 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4287 known_mode
, known_ret
,
4291 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4292 known_mode
, known_ret
);
4294 if (copies
> 1 || copies_for_hook
> 1)
4295 return MAX (copies
, copies_for_hook
);
4297 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4302 #ifdef LOAD_EXTEND_OP
4303 /* Some RISC machines sign-extend all loads of smaller than a word. */
4304 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4305 return MAX (1, ((int) bitwidth
4306 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4311 /* If the constant is negative, take its 1's complement and remask.
4312 Then see how many zero bits we have. */
4313 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4314 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4315 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4316 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4318 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4321 /* If this is a SUBREG for a promoted object that is sign-extended
4322 and we are looking at it in a wider mode, we know that at least the
4323 high-order bits are known to be sign bit copies. */
4325 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4327 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4328 known_x
, known_mode
, known_ret
);
4329 return MAX ((int) bitwidth
4330 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4334 /* For a smaller object, just ignore the high bits. */
4335 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4337 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4338 known_x
, known_mode
, known_ret
);
4339 return MAX (1, (num0
4340 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4344 #ifdef WORD_REGISTER_OPERATIONS
4345 #ifdef LOAD_EXTEND_OP
4346 /* For paradoxical SUBREGs on machines where all register operations
4347 affect the entire register, just look inside. Note that we are
4348 passing MODE to the recursive call, so the number of sign bit copies
4349 will remain relative to that mode, not the inner mode. */
4351 /* This works only if loads sign extend. Otherwise, if we get a
4352 reload for the inner part, it may be loaded from the stack, and
4353 then we lose all sign bit copies that existed before the store
4356 if ((GET_MODE_SIZE (GET_MODE (x
))
4357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4358 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4359 && MEM_P (SUBREG_REG (x
)))
4360 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4361 known_x
, known_mode
, known_ret
);
4367 if (CONST_INT_P (XEXP (x
, 1)))
4368 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4372 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4373 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4374 known_x
, known_mode
, known_ret
));
4377 /* For a smaller object, just ignore the high bits. */
4378 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4379 known_x
, known_mode
, known_ret
);
4380 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4384 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4385 known_x
, known_mode
, known_ret
);
4387 case ROTATE
: case ROTATERT
:
4388 /* If we are rotating left by a number of bits less than the number
4389 of sign bit copies, we can just subtract that amount from the
4391 if (CONST_INT_P (XEXP (x
, 1))
4392 && INTVAL (XEXP (x
, 1)) >= 0
4393 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4395 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4396 known_x
, known_mode
, known_ret
);
4397 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4398 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4403 /* In general, this subtracts one sign bit copy. But if the value
4404 is known to be positive, the number of sign bit copies is the
4405 same as that of the input. Finally, if the input has just one bit
4406 that might be nonzero, all the bits are copies of the sign bit. */
4407 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4408 known_x
, known_mode
, known_ret
);
4409 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4410 return num0
> 1 ? num0
- 1 : 1;
4412 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4417 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4422 case IOR
: case AND
: case XOR
:
4423 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4424 /* Logical operations will preserve the number of sign-bit copies.
4425 MIN and MAX operations always return one of the operands. */
4426 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4427 known_x
, known_mode
, known_ret
);
4428 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4429 known_x
, known_mode
, known_ret
);
4431 /* If num1 is clearing some of the top bits then regardless of
4432 the other term, we are guaranteed to have at least that many
4433 high-order zero bits. */
4436 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4437 && CONST_INT_P (XEXP (x
, 1))
4438 && (UINTVAL (XEXP (x
, 1))
4439 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4442 /* Similarly for IOR when setting high-order bits. */
4445 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4446 && CONST_INT_P (XEXP (x
, 1))
4447 && (UINTVAL (XEXP (x
, 1))
4448 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4451 return MIN (num0
, num1
);
4453 case PLUS
: case MINUS
:
4454 /* For addition and subtraction, we can have a 1-bit carry. However,
4455 if we are subtracting 1 from a positive number, there will not
4456 be such a carry. Furthermore, if the positive number is known to
4457 be 0 or 1, we know the result is either -1 or 0. */
4459 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4460 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4462 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4463 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4464 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4465 : bitwidth
- floor_log2 (nonzero
) - 1);
4468 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4469 known_x
, known_mode
, known_ret
);
4470 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4471 known_x
, known_mode
, known_ret
);
4472 result
= MAX (1, MIN (num0
, num1
) - 1);
4474 #ifdef POINTERS_EXTEND_UNSIGNED
4475 /* If pointers extend signed and this is an addition or subtraction
4476 to a pointer in Pmode, all the bits above ptr_mode are known to be
4478 /* As we do not know which address space the pointer is refering to,
4479 we can do this only if the target does not support different pointer
4480 or address modes depending on the address space. */
4481 if (target_default_pointer_address_modes_p ()
4482 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4483 && (code
== PLUS
|| code
== MINUS
)
4484 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4485 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4486 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4492 /* The number of bits of the product is the sum of the number of
4493 bits of both terms. However, unless one of the terms if known
4494 to be positive, we must allow for an additional bit since negating
4495 a negative number can remove one sign bit copy. */
4497 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4498 known_x
, known_mode
, known_ret
);
4499 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4500 known_x
, known_mode
, known_ret
);
4502 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4504 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4505 || (((nonzero_bits (XEXP (x
, 0), mode
)
4506 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4507 && ((nonzero_bits (XEXP (x
, 1), mode
)
4508 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4512 return MAX (1, result
);
4515 /* The result must be <= the first operand. If the first operand
4516 has the high bit set, we know nothing about the number of sign
4518 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4520 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4521 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4524 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4525 known_x
, known_mode
, known_ret
);
4528 /* The result must be <= the second operand. If the second operand
4529 has (or just might have) the high bit set, we know nothing about
4530 the number of sign bit copies. */
4531 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4533 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4534 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4537 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4538 known_x
, known_mode
, known_ret
);
4541 /* Similar to unsigned division, except that we have to worry about
4542 the case where the divisor is negative, in which case we have
4544 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4545 known_x
, known_mode
, known_ret
);
4547 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4548 || (nonzero_bits (XEXP (x
, 1), mode
)
4549 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4555 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4556 known_x
, known_mode
, known_ret
);
4558 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4559 || (nonzero_bits (XEXP (x
, 1), mode
)
4560 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4566 /* Shifts by a constant add to the number of bits equal to the
4568 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4569 known_x
, known_mode
, known_ret
);
4570 if (CONST_INT_P (XEXP (x
, 1))
4571 && INTVAL (XEXP (x
, 1)) > 0
4572 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4573 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4578 /* Left shifts destroy copies. */
4579 if (!CONST_INT_P (XEXP (x
, 1))
4580 || INTVAL (XEXP (x
, 1)) < 0
4581 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4582 || INTVAL (XEXP (x
, 1)) >= GET_MODE_BITSIZE (GET_MODE (x
)))
4585 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4586 known_x
, known_mode
, known_ret
);
4587 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4590 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4591 known_x
, known_mode
, known_ret
);
4592 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4593 known_x
, known_mode
, known_ret
);
4594 return MIN (num0
, num1
);
4596 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4597 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4598 case GEU
: case GTU
: case LEU
: case LTU
:
4599 case UNORDERED
: case ORDERED
:
4600 /* If the constant is negative, take its 1's complement and remask.
4601 Then see how many zero bits we have. */
4602 nonzero
= STORE_FLAG_VALUE
;
4603 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4604 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4605 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4607 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4613 /* If we haven't been able to figure it out by one of the above rules,
4614 see if some of the high-order bits are known to be zero. If so,
4615 count those bits and return one less than that amount. If we can't
4616 safely compute the mask for this mode, always return BITWIDTH. */
4618 bitwidth
= GET_MODE_BITSIZE (mode
);
4619 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4622 nonzero
= nonzero_bits (x
, mode
);
4623 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4624 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4627 /* Calculate the rtx_cost of a single instruction. A return value of
4628 zero indicates an instruction pattern without a known cost. */
4631 insn_rtx_cost (rtx pat
, bool speed
)
4636 /* Extract the single set rtx from the instruction pattern.
4637 We can't use single_set since we only have the pattern. */
4638 if (GET_CODE (pat
) == SET
)
4640 else if (GET_CODE (pat
) == PARALLEL
)
4643 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4645 rtx x
= XVECEXP (pat
, 0, i
);
4646 if (GET_CODE (x
) == SET
)
4659 cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
4660 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4663 /* Given an insn INSN and condition COND, return the condition in a
4664 canonical form to simplify testing by callers. Specifically:
4666 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4667 (2) Both operands will be machine operands; (cc0) will have been replaced.
4668 (3) If an operand is a constant, it will be the second operand.
4669 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4670 for GE, GEU, and LEU.
4672 If the condition cannot be understood, or is an inequality floating-point
4673 comparison which needs to be reversed, 0 will be returned.
4675 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4677 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4678 insn used in locating the condition was found. If a replacement test
4679 of the condition is desired, it should be placed in front of that
4680 insn and we will be sure that the inputs are still valid.
4682 If WANT_REG is nonzero, we wish the condition to be relative to that
4683 register, if possible. Therefore, do not canonicalize the condition
4684 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4685 to be a compare to a CC mode register.
4687 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4691 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4692 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4699 int reverse_code
= 0;
4700 enum machine_mode mode
;
4701 basic_block bb
= BLOCK_FOR_INSN (insn
);
4703 code
= GET_CODE (cond
);
4704 mode
= GET_MODE (cond
);
4705 op0
= XEXP (cond
, 0);
4706 op1
= XEXP (cond
, 1);
4709 code
= reversed_comparison_code (cond
, insn
);
4710 if (code
== UNKNOWN
)
4716 /* If we are comparing a register with zero, see if the register is set
4717 in the previous insn to a COMPARE or a comparison operation. Perform
4718 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4721 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4722 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4723 && op1
== CONST0_RTX (GET_MODE (op0
))
4726 /* Set nonzero when we find something of interest. */
4730 /* If comparison with cc0, import actual comparison from compare
4734 if ((prev
= prev_nonnote_insn (prev
)) == 0
4735 || !NONJUMP_INSN_P (prev
)
4736 || (set
= single_set (prev
)) == 0
4737 || SET_DEST (set
) != cc0_rtx
)
4740 op0
= SET_SRC (set
);
4741 op1
= CONST0_RTX (GET_MODE (op0
));
4747 /* If this is a COMPARE, pick up the two things being compared. */
4748 if (GET_CODE (op0
) == COMPARE
)
4750 op1
= XEXP (op0
, 1);
4751 op0
= XEXP (op0
, 0);
4754 else if (!REG_P (op0
))
4757 /* Go back to the previous insn. Stop if it is not an INSN. We also
4758 stop if it isn't a single set or if it has a REG_INC note because
4759 we don't want to bother dealing with it. */
4761 prev
= prev_nonnote_nondebug_insn (prev
);
4764 || !NONJUMP_INSN_P (prev
)
4765 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4766 /* In cfglayout mode, there do not have to be labels at the
4767 beginning of a block, or jumps at the end, so the previous
4768 conditions would not stop us when we reach bb boundary. */
4769 || BLOCK_FOR_INSN (prev
) != bb
)
4772 set
= set_of (op0
, prev
);
4775 && (GET_CODE (set
) != SET
4776 || !rtx_equal_p (SET_DEST (set
), op0
)))
4779 /* If this is setting OP0, get what it sets it to if it looks
4783 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4784 #ifdef FLOAT_STORE_FLAG_VALUE
4785 REAL_VALUE_TYPE fsfv
;
4788 /* ??? We may not combine comparisons done in a CCmode with
4789 comparisons not done in a CCmode. This is to aid targets
4790 like Alpha that have an IEEE compliant EQ instruction, and
4791 a non-IEEE compliant BEQ instruction. The use of CCmode is
4792 actually artificial, simply to prevent the combination, but
4793 should not affect other platforms.
4795 However, we must allow VOIDmode comparisons to match either
4796 CCmode or non-CCmode comparison, because some ports have
4797 modeless comparisons inside branch patterns.
4799 ??? This mode check should perhaps look more like the mode check
4800 in simplify_comparison in combine. */
4802 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4805 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4806 && (GET_MODE_BITSIZE (inner_mode
)
4807 <= HOST_BITS_PER_WIDE_INT
)
4808 && (STORE_FLAG_VALUE
4809 & ((unsigned HOST_WIDE_INT
) 1
4810 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4811 #ifdef FLOAT_STORE_FLAG_VALUE
4813 && SCALAR_FLOAT_MODE_P (inner_mode
)
4814 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4815 REAL_VALUE_NEGATIVE (fsfv
)))
4818 && COMPARISON_P (SET_SRC (set
))))
4819 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4820 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4821 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4823 else if (((code
== EQ
4825 && (GET_MODE_BITSIZE (inner_mode
)
4826 <= HOST_BITS_PER_WIDE_INT
)
4827 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4828 && (STORE_FLAG_VALUE
4829 & ((unsigned HOST_WIDE_INT
) 1
4830 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4831 #ifdef FLOAT_STORE_FLAG_VALUE
4833 && SCALAR_FLOAT_MODE_P (inner_mode
)
4834 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4835 REAL_VALUE_NEGATIVE (fsfv
)))
4838 && COMPARISON_P (SET_SRC (set
))
4839 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4840 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4841 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4851 else if (reg_set_p (op0
, prev
))
4852 /* If this sets OP0, but not directly, we have to give up. */
4857 /* If the caller is expecting the condition to be valid at INSN,
4858 make sure X doesn't change before INSN. */
4859 if (valid_at_insn_p
)
4860 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4862 if (COMPARISON_P (x
))
4863 code
= GET_CODE (x
);
4866 code
= reversed_comparison_code (x
, prev
);
4867 if (code
== UNKNOWN
)
4872 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4878 /* If constant is first, put it last. */
4879 if (CONSTANT_P (op0
))
4880 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4882 /* If OP0 is the result of a comparison, we weren't able to find what
4883 was really being compared, so fail. */
4885 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4888 /* Canonicalize any ordered comparison with integers involving equality
4889 if we can do computations in the relevant mode and we do not
4892 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4893 && CONST_INT_P (op1
)
4894 && GET_MODE (op0
) != VOIDmode
4895 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4897 HOST_WIDE_INT const_val
= INTVAL (op1
);
4898 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4899 unsigned HOST_WIDE_INT max_val
4900 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4905 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4906 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4909 /* When cross-compiling, const_val might be sign-extended from
4910 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4912 if ((const_val
& max_val
)
4913 != ((unsigned HOST_WIDE_INT
) 1
4914 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1)))
4915 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4919 if (uconst_val
< max_val
)
4920 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4924 if (uconst_val
!= 0)
4925 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4933 /* Never return CC0; return zero instead. */
4937 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4940 /* Given a jump insn JUMP, return the condition that will cause it to branch
4941 to its JUMP_LABEL. If the condition cannot be understood, or is an
4942 inequality floating-point comparison which needs to be reversed, 0 will
4945 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4946 insn used in locating the condition was found. If a replacement test
4947 of the condition is desired, it should be placed in front of that
4948 insn and we will be sure that the inputs are still valid. If EARLIEST
4949 is null, the returned condition will be valid at INSN.
4951 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4952 compare CC mode register.
4954 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4957 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4963 /* If this is not a standard conditional jump, we can't parse it. */
4965 || ! any_condjump_p (jump
))
4967 set
= pc_set (jump
);
4969 cond
= XEXP (SET_SRC (set
), 0);
4971 /* If this branches to JUMP_LABEL when the condition is false, reverse
4974 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4975 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4977 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4978 allow_cc_mode
, valid_at_insn_p
);
4981 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4982 TARGET_MODE_REP_EXTENDED.
4984 Note that we assume that the property of
4985 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4986 narrower than mode B. I.e., if A is a mode narrower than B then in
4987 order to be able to operate on it in mode B, mode A needs to
4988 satisfy the requirements set by the representation of mode B. */
4991 init_num_sign_bit_copies_in_rep (void)
4993 enum machine_mode mode
, in_mode
;
4995 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
4996 in_mode
= GET_MODE_WIDER_MODE (mode
))
4997 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
4998 mode
= GET_MODE_WIDER_MODE (mode
))
5000 enum machine_mode i
;
5002 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5003 extends to the next widest mode. */
5004 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5005 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5007 /* We are in in_mode. Count how many bits outside of mode
5008 have to be copies of the sign-bit. */
5009 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5011 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5013 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5014 /* We can only check sign-bit copies starting from the
5015 top-bit. In order to be able to check the bits we
5016 have already seen we pretend that subsequent bits
5017 have to be sign-bit copies too. */
5018 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5019 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5020 += GET_MODE_BITSIZE (wider
) - GET_MODE_BITSIZE (i
);
5025 /* Suppose that truncation from the machine mode of X to MODE is not a
5026 no-op. See if there is anything special about X so that we can
5027 assume it already contains a truncated value of MODE. */
5030 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5032 /* This register has already been used in MODE without explicit
5034 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5037 /* See if we already satisfy the requirements of MODE. If yes we
5038 can just switch to MODE. */
5039 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5040 && (num_sign_bit_copies (x
, GET_MODE (x
))
5041 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5047 /* Initialize non_rtx_starting_operands, which is used to speed up
5053 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5055 const char *format
= GET_RTX_FORMAT (i
);
5056 const char *first
= strpbrk (format
, "eEV");
5057 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5060 init_num_sign_bit_copies_in_rep ();
5063 /* Check whether this is a constant pool constant. */
5065 constant_pool_constant_p (rtx x
)
5067 x
= avoid_constant_pool_reference (x
);
5068 return GET_CODE (x
) == CONST_DOUBLE
;
5071 /* If M is a bitmask that selects a field of low-order bits within an item but
5072 not the entire word, return the length of the field. Return -1 otherwise.
5073 M is used in machine mode MODE. */
5076 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5078 if (mode
!= VOIDmode
)
5080 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
5082 m
&= GET_MODE_MASK (mode
);
5085 return exact_log2 (m
+ 1);