ChangeLog config
[official-gcc.git] / gcc / ipa-prop.c
blobec45d7c5271057229c45e9622e9ac0220b4f2b0f
1 /* Interprocedural analyses.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "langhooks.h"
26 #include "ggc.h"
27 #include "target.h"
28 #include "cgraph.h"
29 #include "ipa-prop.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-inline.h"
33 #include "gimple.h"
34 #include "flags.h"
35 #include "timevar.h"
36 #include "flags.h"
37 #include "diagnostic.h"
38 #include "tree-pretty-print.h"
39 #include "gimple-pretty-print.h"
40 #include "lto-streamer.h"
43 /* Intermediate information about a parameter that is only useful during the
44 run of ipa_analyze_node and is not kept afterwards. */
46 struct param_analysis_info
48 bool modified;
49 bitmap visited_statements;
52 /* Vector where the parameter infos are actually stored. */
53 VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
54 /* Vector where the parameter infos are actually stored. */
55 VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
57 /* Bitmap with all UIDs of call graph edges that have been already processed
58 by indirect inlining. */
59 static bitmap iinlining_processed_edges;
61 /* Holders of ipa cgraph hooks: */
62 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
63 static struct cgraph_node_hook_list *node_removal_hook_holder;
64 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
65 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
67 /* Add cgraph NODE described by INFO to the worklist WL regardless of whether
68 it is in one or not. It should almost never be used directly, as opposed to
69 ipa_push_func_to_list. */
71 void
72 ipa_push_func_to_list_1 (struct ipa_func_list **wl,
73 struct cgraph_node *node,
74 struct ipa_node_params *info)
76 struct ipa_func_list *temp;
78 info->node_enqueued = 1;
79 temp = XCNEW (struct ipa_func_list);
80 temp->node = node;
81 temp->next = *wl;
82 *wl = temp;
85 /* Initialize worklist to contain all functions. */
87 struct ipa_func_list *
88 ipa_init_func_list (void)
90 struct cgraph_node *node;
91 struct ipa_func_list * wl;
93 wl = NULL;
94 for (node = cgraph_nodes; node; node = node->next)
95 if (node->analyzed)
97 struct ipa_node_params *info = IPA_NODE_REF (node);
98 /* Unreachable nodes should have been eliminated before ipcp and
99 inlining. */
100 gcc_assert (node->needed || node->reachable);
101 ipa_push_func_to_list_1 (&wl, node, info);
104 return wl;
107 /* Remove a function from the worklist WL and return it. */
109 struct cgraph_node *
110 ipa_pop_func_from_list (struct ipa_func_list **wl)
112 struct ipa_node_params *info;
113 struct ipa_func_list *first;
114 struct cgraph_node *node;
116 first = *wl;
117 *wl = (*wl)->next;
118 node = first->node;
119 free (first);
121 info = IPA_NODE_REF (node);
122 info->node_enqueued = 0;
123 return node;
126 /* Return index of the formal whose tree is PTREE in function which corresponds
127 to INFO. */
129 static int
130 ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
132 int i, count;
134 count = ipa_get_param_count (info);
135 for (i = 0; i < count; i++)
136 if (ipa_get_param(info, i) == ptree)
137 return i;
139 return -1;
142 /* Populate the param_decl field in parameter descriptors of INFO that
143 corresponds to NODE. */
145 static void
146 ipa_populate_param_decls (struct cgraph_node *node,
147 struct ipa_node_params *info)
149 tree fndecl;
150 tree fnargs;
151 tree parm;
152 int param_num;
154 fndecl = node->decl;
155 fnargs = DECL_ARGUMENTS (fndecl);
156 param_num = 0;
157 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
159 info->params[param_num].decl = parm;
160 param_num++;
164 /* Return how many formal parameters FNDECL has. */
166 static inline int
167 count_formal_params_1 (tree fndecl)
169 tree parm;
170 int count = 0;
172 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
173 count++;
175 return count;
178 /* Count number of formal parameters in NOTE. Store the result to the
179 appropriate field of INFO. */
181 static void
182 ipa_count_formal_params (struct cgraph_node *node,
183 struct ipa_node_params *info)
185 int param_num;
187 param_num = count_formal_params_1 (node->decl);
188 ipa_set_param_count (info, param_num);
191 /* Initialize the ipa_node_params structure associated with NODE by counting
192 the function parameters, creating the descriptors and populating their
193 param_decls. */
195 void
196 ipa_initialize_node_params (struct cgraph_node *node)
198 struct ipa_node_params *info = IPA_NODE_REF (node);
200 if (!info->params)
202 ipa_count_formal_params (node, info);
203 info->params = XCNEWVEC (struct ipa_param_descriptor,
204 ipa_get_param_count (info));
205 ipa_populate_param_decls (node, info);
209 /* Count number of arguments callsite CS has and store it in
210 ipa_edge_args structure corresponding to this callsite. */
212 static void
213 ipa_count_arguments (struct cgraph_edge *cs)
215 gimple stmt;
216 int arg_num;
218 stmt = cs->call_stmt;
219 gcc_assert (is_gimple_call (stmt));
220 arg_num = gimple_call_num_args (stmt);
221 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
222 <= (unsigned) cgraph_edge_max_uid)
223 VEC_safe_grow_cleared (ipa_edge_args_t, gc,
224 ipa_edge_args_vector, cgraph_edge_max_uid + 1);
225 ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
228 /* Print the jump functions associated with call graph edge CS to file F. */
230 static void
231 ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
233 int i, count;
235 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
236 for (i = 0; i < count; i++)
238 struct ipa_jump_func *jump_func;
239 enum jump_func_type type;
241 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
242 type = jump_func->type;
244 fprintf (f, " param %d: ", i);
245 if (type == IPA_JF_UNKNOWN)
246 fprintf (f, "UNKNOWN\n");
247 else if (type == IPA_JF_KNOWN_TYPE)
249 tree binfo_type = TREE_TYPE (jump_func->value.base_binfo);
250 fprintf (f, "KNOWN TYPE, type in binfo is: ");
251 print_generic_expr (f, binfo_type, 0);
252 fprintf (f, " (%u)\n", TYPE_UID (binfo_type));
254 else if (type == IPA_JF_CONST)
256 tree val = jump_func->value.constant;
257 fprintf (f, "CONST: ");
258 print_generic_expr (f, val, 0);
259 if (TREE_CODE (val) == ADDR_EXPR
260 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
262 fprintf (f, " -> ");
263 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
266 fprintf (f, "\n");
268 else if (type == IPA_JF_CONST_MEMBER_PTR)
270 fprintf (f, "CONST MEMBER PTR: ");
271 print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
272 fprintf (f, ", ");
273 print_generic_expr (f, jump_func->value.member_cst.delta, 0);
274 fprintf (f, "\n");
276 else if (type == IPA_JF_PASS_THROUGH)
278 fprintf (f, "PASS THROUGH: ");
279 fprintf (f, "%d, op %s ",
280 jump_func->value.pass_through.formal_id,
281 tree_code_name[(int)
282 jump_func->value.pass_through.operation]);
283 if (jump_func->value.pass_through.operation != NOP_EXPR)
284 print_generic_expr (dump_file,
285 jump_func->value.pass_through.operand, 0);
286 fprintf (dump_file, "\n");
288 else if (type == IPA_JF_ANCESTOR)
290 fprintf (f, "ANCESTOR: ");
291 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
292 jump_func->value.ancestor.formal_id,
293 jump_func->value.ancestor.offset);
294 print_generic_expr (f, jump_func->value.ancestor.type, 0);
295 fprintf (dump_file, "\n");
301 /* Print the jump functions of all arguments on all call graph edges going from
302 NODE to file F. */
304 void
305 ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
307 struct cgraph_edge *cs;
308 int i;
310 fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
311 for (cs = node->callees; cs; cs = cs->next_callee)
313 if (!ipa_edge_args_info_available_for_edge_p (cs))
314 continue;
316 fprintf (f, " callsite %s/%i -> %s/%i : \n",
317 cgraph_node_name (node), node->uid,
318 cgraph_node_name (cs->callee), cs->callee->uid);
319 ipa_print_node_jump_functions_for_edge (f, cs);
322 for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
324 if (!ipa_edge_args_info_available_for_edge_p (cs))
325 continue;
327 if (cs->call_stmt)
329 fprintf (f, " indirect callsite %d for stmt ", i);
330 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
332 else
333 fprintf (f, " indirect callsite %d :\n", i);
334 ipa_print_node_jump_functions_for_edge (f, cs);
339 /* Print ipa_jump_func data structures of all nodes in the call graph to F. */
341 void
342 ipa_print_all_jump_functions (FILE *f)
344 struct cgraph_node *node;
346 fprintf (f, "\nJump functions:\n");
347 for (node = cgraph_nodes; node; node = node->next)
349 ipa_print_node_jump_functions (f, node);
353 /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
354 of an assignment statement STMT, try to find out whether NAME can be
355 described by a (possibly polynomial) pass-through jump-function or an
356 ancestor jump function and if so, write the appropriate function into
357 JFUNC */
359 static void
360 compute_complex_assign_jump_func (struct ipa_node_params *info,
361 struct ipa_jump_func *jfunc,
362 gimple stmt, tree name)
364 HOST_WIDE_INT offset, size, max_size;
365 tree op1, op2, type;
366 int index;
368 op1 = gimple_assign_rhs1 (stmt);
369 op2 = gimple_assign_rhs2 (stmt);
371 if (TREE_CODE (op1) == SSA_NAME
372 && SSA_NAME_IS_DEFAULT_DEF (op1))
374 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
375 if (index < 0)
376 return;
378 if (op2)
380 if (!is_gimple_ip_invariant (op2)
381 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
382 && !useless_type_conversion_p (TREE_TYPE (name),
383 TREE_TYPE (op1))))
384 return;
386 jfunc->type = IPA_JF_PASS_THROUGH;
387 jfunc->value.pass_through.formal_id = index;
388 jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
389 jfunc->value.pass_through.operand = op2;
391 else if (gimple_assign_unary_nop_p (stmt))
393 jfunc->type = IPA_JF_PASS_THROUGH;
394 jfunc->value.pass_through.formal_id = index;
395 jfunc->value.pass_through.operation = NOP_EXPR;
397 return;
400 if (TREE_CODE (op1) != ADDR_EXPR)
401 return;
403 op1 = TREE_OPERAND (op1, 0);
404 type = TREE_TYPE (op1);
405 if (TREE_CODE (type) != RECORD_TYPE)
406 return;
407 op1 = get_ref_base_and_extent (op1, &offset, &size, &max_size);
408 if (TREE_CODE (op1) != MEM_REF
409 /* If this is a varying address, punt. */
410 || max_size == -1
411 || max_size != size)
412 return;
413 offset += mem_ref_offset (op1).low * BITS_PER_UNIT;
414 op1 = TREE_OPERAND (op1, 0);
415 if (TREE_CODE (op1) != SSA_NAME
416 || !SSA_NAME_IS_DEFAULT_DEF (op1))
417 return;
419 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
420 if (index >= 0)
422 jfunc->type = IPA_JF_ANCESTOR;
423 jfunc->value.ancestor.formal_id = index;
424 jfunc->value.ancestor.offset = offset;
425 jfunc->value.ancestor.type = type;
430 /* Given that an actual argument is an SSA_NAME that is a result of a phi
431 statement PHI, try to find out whether NAME is in fact a
432 multiple-inheritance typecast from a descendant into an ancestor of a formal
433 parameter and thus can be described by an ancestor jump function and if so,
434 write the appropriate function into JFUNC.
436 Essentially we want to match the following pattern:
438 if (obj_2(D) != 0B)
439 goto <bb 3>;
440 else
441 goto <bb 4>;
443 <bb 3>:
444 iftmp.1_3 = &obj_2(D)->D.1762;
446 <bb 4>:
447 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
448 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
449 return D.1879_6; */
451 static void
452 compute_complex_ancestor_jump_func (struct ipa_node_params *info,
453 struct ipa_jump_func *jfunc,
454 gimple phi)
456 HOST_WIDE_INT offset, size, max_size;
457 gimple assign, cond;
458 basic_block phi_bb, assign_bb, cond_bb;
459 tree tmp, parm, expr;
460 int index, i;
462 if (gimple_phi_num_args (phi) != 2
463 || !integer_zerop (PHI_ARG_DEF (phi, 1)))
464 return;
466 tmp = PHI_ARG_DEF (phi, 0);
467 if (TREE_CODE (tmp) != SSA_NAME
468 || SSA_NAME_IS_DEFAULT_DEF (tmp)
469 || !POINTER_TYPE_P (TREE_TYPE (tmp))
470 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
471 return;
473 assign = SSA_NAME_DEF_STMT (tmp);
474 assign_bb = gimple_bb (assign);
475 if (!single_pred_p (assign_bb)
476 || !gimple_assign_single_p (assign))
477 return;
478 expr = gimple_assign_rhs1 (assign);
480 if (TREE_CODE (expr) != ADDR_EXPR)
481 return;
482 expr = TREE_OPERAND (expr, 0);
483 expr = get_ref_base_and_extent (expr, &offset, &size, &max_size);
485 if (TREE_CODE (expr) != MEM_REF
486 /* If this is a varying address, punt. */
487 || max_size == -1
488 || max_size != size)
489 return;
490 offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
491 parm = TREE_OPERAND (expr, 0);
492 if (TREE_CODE (parm) != SSA_NAME
493 || !SSA_NAME_IS_DEFAULT_DEF (parm))
494 return;
496 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
497 if (index < 0)
498 return;
500 cond_bb = single_pred (assign_bb);
501 cond = last_stmt (cond_bb);
502 if (!cond
503 || gimple_code (cond) != GIMPLE_COND
504 || gimple_cond_code (cond) != NE_EXPR
505 || gimple_cond_lhs (cond) != parm
506 || !integer_zerop (gimple_cond_rhs (cond)))
507 return;
510 phi_bb = gimple_bb (phi);
511 for (i = 0; i < 2; i++)
513 basic_block pred = EDGE_PRED (phi_bb, i)->src;
514 if (pred != assign_bb && pred != cond_bb)
515 return;
518 jfunc->type = IPA_JF_ANCESTOR;
519 jfunc->value.ancestor.formal_id = index;
520 jfunc->value.ancestor.offset = offset;
521 jfunc->value.ancestor.type = TREE_TYPE (TREE_TYPE (tmp));
524 /* Given OP whch is passed as an actual argument to a called function,
525 determine if it is possible to construct a KNOWN_TYPE jump function for it
526 and if so, create one and store it to JFUNC. */
528 static void
529 compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc)
531 tree binfo;
533 if (TREE_CODE (op) != ADDR_EXPR)
534 return;
536 op = TREE_OPERAND (op, 0);
537 binfo = gimple_get_relevant_ref_binfo (op, NULL_TREE);
538 if (binfo)
540 jfunc->type = IPA_JF_KNOWN_TYPE;
541 jfunc->value.base_binfo = binfo;
546 /* Determine the jump functions of scalar arguments. Scalar means SSA names
547 and constants of a number of selected types. INFO is the ipa_node_params
548 structure associated with the caller, FUNCTIONS is a pointer to an array of
549 jump function structures associated with CALL which is the call statement
550 being examined.*/
552 static void
553 compute_scalar_jump_functions (struct ipa_node_params *info,
554 struct ipa_jump_func *functions,
555 gimple call)
557 tree arg;
558 unsigned num = 0;
560 for (num = 0; num < gimple_call_num_args (call); num++)
562 arg = gimple_call_arg (call, num);
564 if (is_gimple_ip_invariant (arg))
566 functions[num].type = IPA_JF_CONST;
567 functions[num].value.constant = arg;
569 else if (TREE_CODE (arg) == SSA_NAME)
571 if (SSA_NAME_IS_DEFAULT_DEF (arg))
573 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
575 if (index >= 0)
577 functions[num].type = IPA_JF_PASS_THROUGH;
578 functions[num].value.pass_through.formal_id = index;
579 functions[num].value.pass_through.operation = NOP_EXPR;
582 else
584 gimple stmt = SSA_NAME_DEF_STMT (arg);
585 if (is_gimple_assign (stmt))
586 compute_complex_assign_jump_func (info, &functions[num],
587 stmt, arg);
588 else if (gimple_code (stmt) == GIMPLE_PHI)
589 compute_complex_ancestor_jump_func (info, &functions[num],
590 stmt);
593 else
594 compute_known_type_jump_func (arg, &functions[num]);
598 /* Inspect the given TYPE and return true iff it has the same structure (the
599 same number of fields of the same types) as a C++ member pointer. If
600 METHOD_PTR and DELTA are non-NULL, store the trees representing the
601 corresponding fields there. */
603 static bool
604 type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
606 tree fld;
608 if (TREE_CODE (type) != RECORD_TYPE)
609 return false;
611 fld = TYPE_FIELDS (type);
612 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
613 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
614 return false;
616 if (method_ptr)
617 *method_ptr = fld;
619 fld = DECL_CHAIN (fld);
620 if (!fld || INTEGRAL_TYPE_P (fld))
621 return false;
622 if (delta)
623 *delta = fld;
625 if (DECL_CHAIN (fld))
626 return false;
628 return true;
631 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
632 boolean variable pointed to by DATA. */
634 static bool
635 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
636 void *data)
638 bool *b = (bool *) data;
639 *b = true;
640 return true;
643 /* Return true if the formal parameter PARM might have been modified in this
644 function before reaching the statement CALL. PARM_INFO is a pointer to a
645 structure containing intermediate information about PARM. */
647 static bool
648 is_parm_modified_before_call (struct param_analysis_info *parm_info,
649 gimple call, tree parm)
651 bool modified = false;
652 ao_ref refd;
654 if (parm_info->modified)
655 return true;
657 ao_ref_init (&refd, parm);
658 walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
659 &modified, &parm_info->visited_statements);
660 if (modified)
662 parm_info->modified = true;
663 return true;
665 return false;
668 /* Go through arguments of the CALL and for every one that looks like a member
669 pointer, check whether it can be safely declared pass-through and if so,
670 mark that to the corresponding item of jump FUNCTIONS. Return true iff
671 there are non-pass-through member pointers within the arguments. INFO
672 describes formal parameters of the caller. PARMS_INFO is a pointer to a
673 vector containing intermediate information about each formal parameter. */
675 static bool
676 compute_pass_through_member_ptrs (struct ipa_node_params *info,
677 struct param_analysis_info *parms_info,
678 struct ipa_jump_func *functions,
679 gimple call)
681 bool undecided_members = false;
682 unsigned num;
683 tree arg;
685 for (num = 0; num < gimple_call_num_args (call); num++)
687 arg = gimple_call_arg (call, num);
689 if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
691 if (TREE_CODE (arg) == PARM_DECL)
693 int index = ipa_get_param_decl_index (info, arg);
695 gcc_assert (index >=0);
696 if (!is_parm_modified_before_call (&parms_info[index], call, arg))
698 functions[num].type = IPA_JF_PASS_THROUGH;
699 functions[num].value.pass_through.formal_id = index;
700 functions[num].value.pass_through.operation = NOP_EXPR;
702 else
703 undecided_members = true;
705 else
706 undecided_members = true;
710 return undecided_members;
713 /* Simple function filling in a member pointer constant jump function (with PFN
714 and DELTA as the constant value) into JFUNC. */
716 static void
717 fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
718 tree pfn, tree delta)
720 jfunc->type = IPA_JF_CONST_MEMBER_PTR;
721 jfunc->value.member_cst.pfn = pfn;
722 jfunc->value.member_cst.delta = delta;
725 /* If RHS is an SSA_NAMe and it is defined by a simple copy assign statement,
726 return the rhs of its defining statement. */
728 static inline tree
729 get_ssa_def_if_simple_copy (tree rhs)
731 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
733 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
735 if (gimple_assign_single_p (def_stmt))
736 rhs = gimple_assign_rhs1 (def_stmt);
737 else
738 break;
740 return rhs;
743 /* Traverse statements from CALL backwards, scanning whether the argument ARG
744 which is a member pointer is filled in with constant values. If it is, fill
745 the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
746 fields of the record type of the member pointer. To give an example, we
747 look for a pattern looking like the following:
749 D.2515.__pfn ={v} printStuff;
750 D.2515.__delta ={v} 0;
751 i_1 = doprinting (D.2515); */
753 static void
754 determine_cst_member_ptr (gimple call, tree arg, tree method_field,
755 tree delta_field, struct ipa_jump_func *jfunc)
757 gimple_stmt_iterator gsi;
758 tree method = NULL_TREE;
759 tree delta = NULL_TREE;
761 gsi = gsi_for_stmt (call);
763 gsi_prev (&gsi);
764 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
766 gimple stmt = gsi_stmt (gsi);
767 tree lhs, rhs, fld;
769 if (!stmt_may_clobber_ref_p (stmt, arg))
770 continue;
771 if (!gimple_assign_single_p (stmt))
772 return;
774 lhs = gimple_assign_lhs (stmt);
775 rhs = gimple_assign_rhs1 (stmt);
777 if (TREE_CODE (lhs) != COMPONENT_REF
778 || TREE_OPERAND (lhs, 0) != arg)
779 return;
781 fld = TREE_OPERAND (lhs, 1);
782 if (!method && fld == method_field)
784 rhs = get_ssa_def_if_simple_copy (rhs);
785 if (TREE_CODE (rhs) == ADDR_EXPR
786 && TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
787 && TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
789 method = TREE_OPERAND (rhs, 0);
790 if (delta)
792 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
793 return;
796 else
797 return;
800 if (!delta && fld == delta_field)
802 rhs = get_ssa_def_if_simple_copy (rhs);
803 if (TREE_CODE (rhs) == INTEGER_CST)
805 delta = rhs;
806 if (method)
808 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
809 return;
812 else
813 return;
817 return;
820 /* Go through the arguments of the CALL and for every member pointer within
821 tries determine whether it is a constant. If it is, create a corresponding
822 constant jump function in FUNCTIONS which is an array of jump functions
823 associated with the call. */
825 static void
826 compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
827 gimple call)
829 unsigned num;
830 tree arg, method_field, delta_field;
832 for (num = 0; num < gimple_call_num_args (call); num++)
834 arg = gimple_call_arg (call, num);
836 if (functions[num].type == IPA_JF_UNKNOWN
837 && type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
838 &delta_field))
839 determine_cst_member_ptr (call, arg, method_field, delta_field,
840 &functions[num]);
844 /* Compute jump function for all arguments of callsite CS and insert the
845 information in the jump_functions array in the ipa_edge_args corresponding
846 to this callsite. */
848 static void
849 ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_info,
850 struct cgraph_edge *cs)
852 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
853 struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
854 gimple call;
856 if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
857 return;
858 arguments->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
859 (ipa_get_cs_argument_count (arguments));
861 call = cs->call_stmt;
862 gcc_assert (is_gimple_call (call));
864 /* We will deal with constants and SSA scalars first: */
865 compute_scalar_jump_functions (info, arguments->jump_functions, call);
867 /* Let's check whether there are any potential member pointers and if so,
868 whether we can determine their functions as pass_through. */
869 if (!compute_pass_through_member_ptrs (info, parms_info,
870 arguments->jump_functions, call))
871 return;
873 /* Finally, let's check whether we actually pass a new constant member
874 pointer here... */
875 compute_cst_member_ptr_arguments (arguments->jump_functions, call);
878 /* Compute jump functions for all edges - both direct and indirect - outgoing
879 from NODE. Also count the actual arguments in the process. */
881 static void
882 ipa_compute_jump_functions (struct cgraph_node *node,
883 struct param_analysis_info *parms_info)
885 struct cgraph_edge *cs;
887 for (cs = node->callees; cs; cs = cs->next_callee)
889 /* We do not need to bother analyzing calls to unknown
890 functions unless they may become known during lto/whopr. */
891 if (!cs->callee->analyzed && !flag_lto && !flag_whopr)
892 continue;
893 ipa_count_arguments (cs);
894 /* If the descriptor of the callee is not initialized yet, we have to do
895 it now. */
896 if (cs->callee->analyzed)
897 ipa_initialize_node_params (cs->callee);
898 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
899 != ipa_get_param_count (IPA_NODE_REF (cs->callee)))
900 ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
901 ipa_compute_jump_functions_for_edge (parms_info, cs);
904 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
906 ipa_count_arguments (cs);
907 ipa_compute_jump_functions_for_edge (parms_info, cs);
911 /* If RHS looks like a rhs of a statement loading pfn from a member
912 pointer formal parameter, return the parameter, otherwise return
913 NULL. If USE_DELTA, then we look for a use of the delta field
914 rather than the pfn. */
916 static tree
917 ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
919 tree rec, ref_offset, fld_offset;
920 tree ptr_field;
921 tree delta_field;
923 if (TREE_CODE (rhs) != MEM_REF)
924 return NULL_TREE;
925 rec = TREE_OPERAND (rhs, 0);
926 if (TREE_CODE (rec) != ADDR_EXPR)
927 return NULL_TREE;
928 rec = TREE_OPERAND (rec, 0);
929 if (TREE_CODE (rec) != PARM_DECL
930 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
931 return NULL_TREE;
933 ref_offset = TREE_OPERAND (rhs, 1);
934 if (use_delta)
935 fld_offset = byte_position (delta_field);
936 else
937 fld_offset = byte_position (ptr_field);
939 return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
942 /* If STMT looks like a statement loading a value from a member pointer formal
943 parameter, this function returns that parameter. */
945 static tree
946 ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
948 tree rhs;
950 if (!gimple_assign_single_p (stmt))
951 return NULL_TREE;
953 rhs = gimple_assign_rhs1 (stmt);
954 return ipa_get_member_ptr_load_param (rhs, use_delta);
957 /* Returns true iff T is an SSA_NAME defined by a statement. */
959 static bool
960 ipa_is_ssa_with_stmt_def (tree t)
962 if (TREE_CODE (t) == SSA_NAME
963 && !SSA_NAME_IS_DEFAULT_DEF (t))
964 return true;
965 else
966 return false;
969 /* Find the indirect call graph edge corresponding to STMT and add to it all
970 information necessary to describe a call to a parameter number PARAM_INDEX.
971 NODE is the caller. POLYMORPHIC should be set to true iff the call is a
972 virtual one. */
974 static void
975 ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt,
976 bool polymorphic)
978 struct cgraph_edge *cs;
980 cs = cgraph_edge (node, stmt);
981 cs->indirect_info->param_index = param_index;
982 cs->indirect_info->anc_offset = 0;
983 cs->indirect_info->polymorphic = polymorphic;
984 if (polymorphic)
986 tree otr = gimple_call_fn (stmt);
987 tree type, token = OBJ_TYPE_REF_TOKEN (otr);
988 cs->indirect_info->otr_token = tree_low_cst (token, 1);
989 type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (otr)));
990 cs->indirect_info->otr_type = type;
994 /* Analyze the CALL and examine uses of formal parameters of the caller NODE
995 (described by INFO). PARMS_INFO is a pointer to a vector containing
996 intermediate information about each formal parameter. Currently it checks
997 whether the call calls a pointer that is a formal parameter and if so, the
998 parameter is marked with the called flag and an indirect call graph edge
999 describing the call is created. This is very simple for ordinary pointers
1000 represented in SSA but not-so-nice when it comes to member pointers. The
1001 ugly part of this function does nothing more than trying to match the
1002 pattern of such a call. An example of such a pattern is the gimple dump
1003 below, the call is on the last line:
1005 <bb 2>:
1006 f$__delta_5 = MEM[(struct *)&f];
1007 f$__pfn_24 = MEM[(struct *)&f + 4B];
1011 <bb 5>
1012 D.2496_3 = (int) f$__pfn_24;
1013 D.2497_4 = D.2496_3 & 1;
1014 if (D.2497_4 != 0)
1015 goto <bb 3>;
1016 else
1017 goto <bb 4>;
1019 <bb 6>:
1020 D.2500_7 = (unsigned int) f$__delta_5;
1021 D.2501_8 = &S + D.2500_7;
1022 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1023 D.2503_10 = *D.2502_9;
1024 D.2504_12 = f$__pfn_24 + -1;
1025 D.2505_13 = (unsigned int) D.2504_12;
1026 D.2506_14 = D.2503_10 + D.2505_13;
1027 D.2507_15 = *D.2506_14;
1028 iftmp.11_16 = (String:: *) D.2507_15;
1030 <bb 7>:
1031 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1032 D.2500_19 = (unsigned int) f$__delta_5;
1033 D.2508_20 = &S + D.2500_19;
1034 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
1036 Such patterns are results of simple calls to a member pointer:
1038 int doprinting (int (MyString::* f)(int) const)
1040 MyString S ("somestring");
1042 return (S.*f)(4);
1046 static void
1047 ipa_analyze_indirect_call_uses (struct cgraph_node *node,
1048 struct ipa_node_params *info,
1049 struct param_analysis_info *parms_info,
1050 gimple call, tree target)
1052 gimple def;
1053 tree n1, n2;
1054 gimple d1, d2;
1055 tree rec, rec2, cond;
1056 gimple branch;
1057 int index;
1058 basic_block bb, virt_bb, join;
1060 if (SSA_NAME_IS_DEFAULT_DEF (target))
1062 tree var = SSA_NAME_VAR (target);
1063 index = ipa_get_param_decl_index (info, var);
1064 if (index >= 0)
1065 ipa_note_param_call (node, index, call, false);
1066 return;
1069 /* Now we need to try to match the complex pattern of calling a member
1070 pointer. */
1072 if (!POINTER_TYPE_P (TREE_TYPE (target))
1073 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
1074 return;
1076 def = SSA_NAME_DEF_STMT (target);
1077 if (gimple_code (def) != GIMPLE_PHI)
1078 return;
1080 if (gimple_phi_num_args (def) != 2)
1081 return;
1083 /* First, we need to check whether one of these is a load from a member
1084 pointer that is a parameter to this function. */
1085 n1 = PHI_ARG_DEF (def, 0);
1086 n2 = PHI_ARG_DEF (def, 1);
1087 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
1088 return;
1089 d1 = SSA_NAME_DEF_STMT (n1);
1090 d2 = SSA_NAME_DEF_STMT (n2);
1092 join = gimple_bb (def);
1093 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
1095 if (ipa_get_stmt_member_ptr_load_param (d2, false))
1096 return;
1098 bb = EDGE_PRED (join, 0)->src;
1099 virt_bb = gimple_bb (d2);
1101 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
1103 bb = EDGE_PRED (join, 1)->src;
1104 virt_bb = gimple_bb (d1);
1106 else
1107 return;
1109 /* Second, we need to check that the basic blocks are laid out in the way
1110 corresponding to the pattern. */
1112 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
1113 || single_pred (virt_bb) != bb
1114 || single_succ (virt_bb) != join)
1115 return;
1117 /* Third, let's see that the branching is done depending on the least
1118 significant bit of the pfn. */
1120 branch = last_stmt (bb);
1121 if (!branch || gimple_code (branch) != GIMPLE_COND)
1122 return;
1124 if (gimple_cond_code (branch) != NE_EXPR
1125 || !integer_zerop (gimple_cond_rhs (branch)))
1126 return;
1128 cond = gimple_cond_lhs (branch);
1129 if (!ipa_is_ssa_with_stmt_def (cond))
1130 return;
1132 def = SSA_NAME_DEF_STMT (cond);
1133 if (!is_gimple_assign (def)
1134 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
1135 || !integer_onep (gimple_assign_rhs2 (def)))
1136 return;
1138 cond = gimple_assign_rhs1 (def);
1139 if (!ipa_is_ssa_with_stmt_def (cond))
1140 return;
1142 def = SSA_NAME_DEF_STMT (cond);
1144 if (is_gimple_assign (def)
1145 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1147 cond = gimple_assign_rhs1 (def);
1148 if (!ipa_is_ssa_with_stmt_def (cond))
1149 return;
1150 def = SSA_NAME_DEF_STMT (cond);
1153 rec2 = ipa_get_stmt_member_ptr_load_param (def,
1154 (TARGET_PTRMEMFUNC_VBIT_LOCATION
1155 == ptrmemfunc_vbit_in_delta));
1157 if (rec != rec2)
1158 return;
1160 index = ipa_get_param_decl_index (info, rec);
1161 if (index >= 0 && !is_parm_modified_before_call (&parms_info[index],
1162 call, rec))
1163 ipa_note_param_call (node, index, call, false);
1165 return;
1168 /* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
1169 object referenced in the expression is a formal parameter of the caller
1170 (described by INFO), create a call note for the statement. */
1172 static void
1173 ipa_analyze_virtual_call_uses (struct cgraph_node *node,
1174 struct ipa_node_params *info, gimple call,
1175 tree target)
1177 tree obj = OBJ_TYPE_REF_OBJECT (target);
1178 tree var;
1179 int index;
1181 if (TREE_CODE (obj) == ADDR_EXPR)
1185 obj = TREE_OPERAND (obj, 0);
1187 while (TREE_CODE (obj) == COMPONENT_REF);
1188 if (TREE_CODE (obj) != MEM_REF)
1189 return;
1190 obj = TREE_OPERAND (obj, 0);
1193 if (TREE_CODE (obj) != SSA_NAME
1194 || !SSA_NAME_IS_DEFAULT_DEF (obj))
1195 return;
1197 var = SSA_NAME_VAR (obj);
1198 index = ipa_get_param_decl_index (info, var);
1200 if (index >= 0)
1201 ipa_note_param_call (node, index, call, true);
1204 /* Analyze a call statement CALL whether and how it utilizes formal parameters
1205 of the caller (described by INFO). PARMS_INFO is a pointer to a vector
1206 containing intermediate information about each formal parameter. */
1208 static void
1209 ipa_analyze_call_uses (struct cgraph_node *node,
1210 struct ipa_node_params *info,
1211 struct param_analysis_info *parms_info, gimple call)
1213 tree target = gimple_call_fn (call);
1215 if (TREE_CODE (target) == SSA_NAME)
1216 ipa_analyze_indirect_call_uses (node, info, parms_info, call, target);
1217 else if (TREE_CODE (target) == OBJ_TYPE_REF)
1218 ipa_analyze_virtual_call_uses (node, info, call, target);
1222 /* Analyze the call statement STMT with respect to formal parameters (described
1223 in INFO) of caller given by NODE. Currently it only checks whether formal
1224 parameters are called. PARMS_INFO is a pointer to a vector containing
1225 intermediate information about each formal parameter. */
1227 static void
1228 ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
1229 struct param_analysis_info *parms_info, gimple stmt)
1231 if (is_gimple_call (stmt))
1232 ipa_analyze_call_uses (node, info, parms_info, stmt);
1235 /* Callback of walk_stmt_load_store_addr_ops for the visit_load.
1236 If OP is a parameter declaration, mark it as used in the info structure
1237 passed in DATA. */
1239 static bool
1240 visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
1241 tree op, void *data)
1243 struct ipa_node_params *info = (struct ipa_node_params *) data;
1245 op = get_base_address (op);
1246 if (op
1247 && TREE_CODE (op) == PARM_DECL)
1249 int index = ipa_get_param_decl_index (info, op);
1250 gcc_assert (index >= 0);
1251 info->params[index].used = true;
1254 return false;
1257 /* Scan the function body of NODE and inspect the uses of formal parameters.
1258 Store the findings in various structures of the associated ipa_node_params
1259 structure, such as parameter flags, notes etc. PARMS_INFO is a pointer to a
1260 vector containing intermediate information about each formal parameter. */
1262 static void
1263 ipa_analyze_params_uses (struct cgraph_node *node,
1264 struct param_analysis_info *parms_info)
1266 tree decl = node->decl;
1267 basic_block bb;
1268 struct function *func;
1269 gimple_stmt_iterator gsi;
1270 struct ipa_node_params *info = IPA_NODE_REF (node);
1271 int i;
1273 if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
1274 return;
1276 for (i = 0; i < ipa_get_param_count (info); i++)
1278 tree parm = ipa_get_param (info, i);
1279 /* For SSA regs see if parameter is used. For non-SSA we compute
1280 the flag during modification analysis. */
1281 if (is_gimple_reg (parm)
1282 && gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
1283 info->params[i].used = true;
1286 func = DECL_STRUCT_FUNCTION (decl);
1287 FOR_EACH_BB_FN (bb, func)
1289 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1291 gimple stmt = gsi_stmt (gsi);
1293 if (is_gimple_debug (stmt))
1294 continue;
1296 ipa_analyze_stmt_uses (node, info, parms_info, stmt);
1297 walk_stmt_load_store_addr_ops (stmt, info,
1298 visit_ref_for_mod_analysis,
1299 visit_ref_for_mod_analysis,
1300 visit_ref_for_mod_analysis);
1302 for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
1303 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
1304 visit_ref_for_mod_analysis,
1305 visit_ref_for_mod_analysis,
1306 visit_ref_for_mod_analysis);
1309 info->uses_analysis_done = 1;
1312 /* Initialize the array describing properties of of formal parameters of NODE,
1313 analyze their uses and and compute jump functions associated witu actual
1314 arguments of calls from within NODE. */
1316 void
1317 ipa_analyze_node (struct cgraph_node *node)
1319 struct ipa_node_params *info = IPA_NODE_REF (node);
1320 struct param_analysis_info *parms_info;
1321 int i, param_count;
1323 ipa_initialize_node_params (node);
1325 param_count = ipa_get_param_count (info);
1326 parms_info = XALLOCAVEC (struct param_analysis_info, param_count);
1327 memset (parms_info, 0, sizeof (struct param_analysis_info) * param_count);
1329 ipa_analyze_params_uses (node, parms_info);
1330 ipa_compute_jump_functions (node, parms_info);
1332 for (i = 0; i < param_count; i++)
1333 if (parms_info[i].visited_statements)
1334 BITMAP_FREE (parms_info[i].visited_statements);
1338 /* Update the jump function DST when the call graph edge correspondng to SRC is
1339 is being inlined, knowing that DST is of type ancestor and src of known
1340 type. */
1342 static void
1343 combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
1344 struct ipa_jump_func *dst)
1346 tree new_binfo;
1348 new_binfo = get_binfo_at_offset (src->value.base_binfo,
1349 dst->value.ancestor.offset,
1350 dst->value.ancestor.type);
1351 if (new_binfo)
1353 dst->type = IPA_JF_KNOWN_TYPE;
1354 dst->value.base_binfo = new_binfo;
1356 else
1357 dst->type = IPA_JF_UNKNOWN;
1360 /* Update the jump functions associated with call graph edge E when the call
1361 graph edge CS is being inlined, assuming that E->caller is already (possibly
1362 indirectly) inlined into CS->callee and that E has not been inlined. */
1364 static void
1365 update_jump_functions_after_inlining (struct cgraph_edge *cs,
1366 struct cgraph_edge *e)
1368 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
1369 struct ipa_edge_args *args = IPA_EDGE_REF (e);
1370 int count = ipa_get_cs_argument_count (args);
1371 int i;
1373 for (i = 0; i < count; i++)
1375 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
1377 if (dst->type == IPA_JF_ANCESTOR)
1379 struct ipa_jump_func *src;
1381 /* Variable number of arguments can cause havoc if we try to access
1382 one that does not exist in the inlined edge. So make sure we
1383 don't. */
1384 if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
1386 dst->type = IPA_JF_UNKNOWN;
1387 continue;
1390 src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
1391 if (src->type == IPA_JF_KNOWN_TYPE)
1392 combine_known_type_and_ancestor_jfs (src, dst);
1393 else if (src->type == IPA_JF_CONST)
1395 struct ipa_jump_func kt_func;
1397 kt_func.type = IPA_JF_UNKNOWN;
1398 compute_known_type_jump_func (src->value.constant, &kt_func);
1399 if (kt_func.type == IPA_JF_KNOWN_TYPE)
1400 combine_known_type_and_ancestor_jfs (&kt_func, dst);
1401 else
1402 dst->type = IPA_JF_UNKNOWN;
1404 else if (src->type == IPA_JF_PASS_THROUGH
1405 && src->value.pass_through.operation == NOP_EXPR)
1406 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
1407 else if (src->type == IPA_JF_ANCESTOR)
1409 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
1410 dst->value.ancestor.offset += src->value.ancestor.offset;
1412 else
1413 dst->type = IPA_JF_UNKNOWN;
1415 else if (dst->type == IPA_JF_PASS_THROUGH)
1417 struct ipa_jump_func *src;
1418 /* We must check range due to calls with variable number of arguments
1419 and we cannot combine jump functions with operations. */
1420 if (dst->value.pass_through.operation == NOP_EXPR
1421 && (dst->value.pass_through.formal_id
1422 < ipa_get_cs_argument_count (top)))
1424 src = ipa_get_ith_jump_func (top,
1425 dst->value.pass_through.formal_id);
1426 *dst = *src;
1428 else
1429 dst->type = IPA_JF_UNKNOWN;
1434 /* If TARGET is an addr_expr of a function declaration, make it the destination
1435 of an indirect edge IE and return the edge. Otherwise, return NULL. */
1437 struct cgraph_edge *
1438 ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
1440 struct cgraph_node *callee;
1442 if (TREE_CODE (target) != ADDR_EXPR)
1443 return NULL;
1444 target = TREE_OPERAND (target, 0);
1445 if (TREE_CODE (target) != FUNCTION_DECL)
1446 return NULL;
1447 callee = cgraph_node (target);
1448 if (!callee)
1449 return NULL;
1451 cgraph_make_edge_direct (ie, callee);
1452 if (dump_file)
1454 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
1455 "(%s/%i -> %s/%i) for stmt ",
1456 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
1457 cgraph_node_name (ie->caller), ie->caller->uid,
1458 cgraph_node_name (ie->callee), ie->callee->uid);
1460 if (ie->call_stmt)
1461 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
1462 else
1463 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
1466 if (ipa_get_cs_argument_count (IPA_EDGE_REF (ie))
1467 != ipa_get_param_count (IPA_NODE_REF (callee)))
1468 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
1470 return ie;
1473 /* Try to find a destination for indirect edge IE that corresponds to a simple
1474 call or a call of a member function pointer and where the destination is a
1475 pointer formal parameter described by jump function JFUNC. If it can be
1476 determined, return the newly direct edge, otherwise return NULL. */
1478 static struct cgraph_edge *
1479 try_make_edge_direct_simple_call (struct cgraph_edge *ie,
1480 struct ipa_jump_func *jfunc)
1482 tree target;
1484 if (jfunc->type == IPA_JF_CONST)
1485 target = jfunc->value.constant;
1486 else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
1487 target = jfunc->value.member_cst.pfn;
1488 else
1489 return NULL;
1491 return ipa_make_edge_direct_to_target (ie, target);
1494 /* Try to find a destination for indirect edge IE that corresponds to a
1495 virtuall call based on a formal parameter which is described by jump
1496 function JFUNC and if it can be determined, make it direct and return the
1497 direct edge. Otherwise, return NULL. */
1499 static struct cgraph_edge *
1500 try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
1501 struct ipa_jump_func *jfunc)
1503 tree binfo, type, target;
1504 HOST_WIDE_INT token;
1506 if (jfunc->type == IPA_JF_KNOWN_TYPE)
1507 binfo = jfunc->value.base_binfo;
1508 else if (jfunc->type == IPA_JF_CONST)
1510 tree cst = jfunc->value.constant;
1511 if (TREE_CODE (cst) == ADDR_EXPR)
1512 binfo = gimple_get_relevant_ref_binfo (TREE_OPERAND (cst, 0),
1513 NULL_TREE);
1514 else
1515 return NULL;
1517 else
1518 return NULL;
1520 if (!binfo)
1521 return NULL;
1523 token = ie->indirect_info->otr_token;
1524 type = ie->indirect_info->otr_type;
1525 binfo = get_binfo_at_offset (binfo, ie->indirect_info->anc_offset, type);
1526 if (binfo)
1527 target = gimple_fold_obj_type_ref_known_binfo (token, binfo);
1528 else
1529 return NULL;
1531 if (target)
1532 return ipa_make_edge_direct_to_target (ie, target);
1533 else
1534 return NULL;
1537 /* Update the param called notes associated with NODE when CS is being inlined,
1538 assuming NODE is (potentially indirectly) inlined into CS->callee.
1539 Moreover, if the callee is discovered to be constant, create a new cgraph
1540 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
1541 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
1543 static bool
1544 update_indirect_edges_after_inlining (struct cgraph_edge *cs,
1545 struct cgraph_node *node,
1546 VEC (cgraph_edge_p, heap) **new_edges)
1548 struct ipa_edge_args *top;
1549 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
1550 bool res = false;
1552 ipa_check_create_edge_args ();
1553 top = IPA_EDGE_REF (cs);
1555 for (ie = node->indirect_calls; ie; ie = next_ie)
1557 struct cgraph_indirect_call_info *ici = ie->indirect_info;
1558 struct ipa_jump_func *jfunc;
1560 next_ie = ie->next_callee;
1561 if (bitmap_bit_p (iinlining_processed_edges, ie->uid))
1562 continue;
1564 /* If we ever use indirect edges for anything other than indirect
1565 inlining, we will need to skip those with negative param_indices. */
1566 if (ici->param_index == -1)
1567 continue;
1569 /* We must check range due to calls with variable number of arguments: */
1570 if (ici->param_index >= ipa_get_cs_argument_count (top))
1572 bitmap_set_bit (iinlining_processed_edges, ie->uid);
1573 continue;
1576 jfunc = ipa_get_ith_jump_func (top, ici->param_index);
1577 if (jfunc->type == IPA_JF_PASS_THROUGH
1578 && jfunc->value.pass_through.operation == NOP_EXPR)
1579 ici->param_index = jfunc->value.pass_through.formal_id;
1580 else if (jfunc->type == IPA_JF_ANCESTOR)
1582 ici->param_index = jfunc->value.ancestor.formal_id;
1583 ici->anc_offset += jfunc->value.ancestor.offset;
1585 else
1586 /* Either we can find a destination for this edge now or never. */
1587 bitmap_set_bit (iinlining_processed_edges, ie->uid);
1589 if (ici->polymorphic)
1590 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
1591 else
1592 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
1594 if (new_direct_edge)
1596 new_direct_edge->indirect_inlining_edge = 1;
1597 if (new_edges)
1599 VEC_safe_push (cgraph_edge_p, heap, *new_edges,
1600 new_direct_edge);
1601 top = IPA_EDGE_REF (cs);
1602 res = true;
1607 return res;
1610 /* Recursively traverse subtree of NODE (including node) made of inlined
1611 cgraph_edges when CS has been inlined and invoke
1612 update_indirect_edges_after_inlining on all nodes and
1613 update_jump_functions_after_inlining on all non-inlined edges that lead out
1614 of this subtree. Newly discovered indirect edges will be added to
1615 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
1616 created. */
1618 static bool
1619 propagate_info_to_inlined_callees (struct cgraph_edge *cs,
1620 struct cgraph_node *node,
1621 VEC (cgraph_edge_p, heap) **new_edges)
1623 struct cgraph_edge *e;
1624 bool res;
1626 res = update_indirect_edges_after_inlining (cs, node, new_edges);
1628 for (e = node->callees; e; e = e->next_callee)
1629 if (!e->inline_failed)
1630 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
1631 else
1632 update_jump_functions_after_inlining (cs, e);
1634 return res;
1637 /* Update jump functions and call note functions on inlining the call site CS.
1638 CS is expected to lead to a node already cloned by
1639 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
1640 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
1641 created. */
1643 bool
1644 ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
1645 VEC (cgraph_edge_p, heap) **new_edges)
1647 /* FIXME lto: We do not stream out indirect call information. */
1648 if (flag_wpa)
1649 return false;
1651 /* Do nothing if the preparation phase has not been carried out yet
1652 (i.e. during early inlining). */
1653 if (!ipa_node_params_vector)
1654 return false;
1655 gcc_assert (ipa_edge_args_vector);
1657 return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
1660 /* Frees all dynamically allocated structures that the argument info points
1661 to. */
1663 void
1664 ipa_free_edge_args_substructures (struct ipa_edge_args *args)
1666 if (args->jump_functions)
1667 ggc_free (args->jump_functions);
1669 memset (args, 0, sizeof (*args));
1672 /* Free all ipa_edge structures. */
1674 void
1675 ipa_free_all_edge_args (void)
1677 int i;
1678 struct ipa_edge_args *args;
1680 FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
1681 ipa_free_edge_args_substructures (args);
1683 VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
1684 ipa_edge_args_vector = NULL;
1687 /* Frees all dynamically allocated structures that the param info points
1688 to. */
1690 void
1691 ipa_free_node_params_substructures (struct ipa_node_params *info)
1693 if (info->params)
1694 free (info->params);
1696 memset (info, 0, sizeof (*info));
1699 /* Free all ipa_node_params structures. */
1701 void
1702 ipa_free_all_node_params (void)
1704 int i;
1705 struct ipa_node_params *info;
1707 FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
1708 ipa_free_node_params_substructures (info);
1710 VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
1711 ipa_node_params_vector = NULL;
1714 /* Hook that is called by cgraph.c when an edge is removed. */
1716 static void
1717 ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
1719 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1720 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
1721 <= (unsigned)cs->uid)
1722 return;
1723 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
1726 /* Hook that is called by cgraph.c when a node is removed. */
1728 static void
1729 ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
1731 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1732 if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
1733 <= (unsigned)node->uid)
1734 return;
1735 ipa_free_node_params_substructures (IPA_NODE_REF (node));
1738 /* Helper function to duplicate an array of size N that is at SRC and store a
1739 pointer to it to DST. Nothing is done if SRC is NULL. */
1741 static void *
1742 duplicate_array (void *src, size_t n)
1744 void *p;
1746 if (!src)
1747 return NULL;
1749 p = xmalloc (n);
1750 memcpy (p, src, n);
1751 return p;
1754 static struct ipa_jump_func *
1755 duplicate_ipa_jump_func_array (const struct ipa_jump_func * src, size_t n)
1757 struct ipa_jump_func *p;
1759 if (!src)
1760 return NULL;
1762 p = ggc_alloc_vec_ipa_jump_func (n);
1763 memcpy (p, src, n * sizeof (struct ipa_jump_func));
1764 return p;
1767 /* Hook that is called by cgraph.c when a node is duplicated. */
1769 static void
1770 ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
1771 __attribute__((unused)) void *data)
1773 struct ipa_edge_args *old_args, *new_args;
1774 int arg_count;
1776 ipa_check_create_edge_args ();
1778 old_args = IPA_EDGE_REF (src);
1779 new_args = IPA_EDGE_REF (dst);
1781 arg_count = ipa_get_cs_argument_count (old_args);
1782 ipa_set_cs_argument_count (new_args, arg_count);
1783 new_args->jump_functions =
1784 duplicate_ipa_jump_func_array (old_args->jump_functions, arg_count);
1786 if (iinlining_processed_edges
1787 && bitmap_bit_p (iinlining_processed_edges, src->uid))
1788 bitmap_set_bit (iinlining_processed_edges, dst->uid);
1791 /* Hook that is called by cgraph.c when a node is duplicated. */
1793 static void
1794 ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
1795 __attribute__((unused)) void *data)
1797 struct ipa_node_params *old_info, *new_info;
1798 int param_count, i;
1800 ipa_check_create_node_params ();
1801 old_info = IPA_NODE_REF (src);
1802 new_info = IPA_NODE_REF (dst);
1803 param_count = ipa_get_param_count (old_info);
1805 ipa_set_param_count (new_info, param_count);
1806 new_info->params = (struct ipa_param_descriptor *)
1807 duplicate_array (old_info->params,
1808 sizeof (struct ipa_param_descriptor) * param_count);
1809 for (i = 0; i < param_count; i++)
1810 new_info->params[i].types = VEC_copy (tree, heap,
1811 old_info->params[i].types);
1812 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
1813 new_info->count_scale = old_info->count_scale;
1815 new_info->called_with_var_arguments = old_info->called_with_var_arguments;
1816 new_info->uses_analysis_done = old_info->uses_analysis_done;
1817 new_info->node_enqueued = old_info->node_enqueued;
1820 /* Register our cgraph hooks if they are not already there. */
1822 void
1823 ipa_register_cgraph_hooks (void)
1825 if (!edge_removal_hook_holder)
1826 edge_removal_hook_holder =
1827 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
1828 if (!node_removal_hook_holder)
1829 node_removal_hook_holder =
1830 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
1831 if (!edge_duplication_hook_holder)
1832 edge_duplication_hook_holder =
1833 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
1834 if (!node_duplication_hook_holder)
1835 node_duplication_hook_holder =
1836 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
1839 /* Unregister our cgraph hooks if they are not already there. */
1841 static void
1842 ipa_unregister_cgraph_hooks (void)
1844 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
1845 edge_removal_hook_holder = NULL;
1846 cgraph_remove_node_removal_hook (node_removal_hook_holder);
1847 node_removal_hook_holder = NULL;
1848 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
1849 edge_duplication_hook_holder = NULL;
1850 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
1851 node_duplication_hook_holder = NULL;
1854 /* Allocate all necessary data strucutures necessary for indirect inlining. */
1856 void
1857 ipa_create_all_structures_for_iinln (void)
1859 iinlining_processed_edges = BITMAP_ALLOC (NULL);
1862 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
1863 longer needed after ipa-cp. */
1865 void
1866 ipa_free_all_structures_after_ipa_cp (void)
1868 if (!flag_indirect_inlining)
1870 ipa_free_all_edge_args ();
1871 ipa_free_all_node_params ();
1872 ipa_unregister_cgraph_hooks ();
1876 /* Free all ipa_node_params and all ipa_edge_args structures if they are no
1877 longer needed after indirect inlining. */
1879 void
1880 ipa_free_all_structures_after_iinln (void)
1882 BITMAP_FREE (iinlining_processed_edges);
1884 ipa_free_all_edge_args ();
1885 ipa_free_all_node_params ();
1886 ipa_unregister_cgraph_hooks ();
1889 /* Print ipa_tree_map data structures of all functions in the
1890 callgraph to F. */
1892 void
1893 ipa_print_node_params (FILE * f, struct cgraph_node *node)
1895 int i, count;
1896 tree temp;
1897 struct ipa_node_params *info;
1899 if (!node->analyzed)
1900 return;
1901 info = IPA_NODE_REF (node);
1902 fprintf (f, " function %s parameter descriptors:\n",
1903 cgraph_node_name (node));
1904 count = ipa_get_param_count (info);
1905 for (i = 0; i < count; i++)
1907 temp = ipa_get_param (info, i);
1908 if (TREE_CODE (temp) == PARM_DECL)
1909 fprintf (f, " param %d : %s", i,
1910 (DECL_NAME (temp)
1911 ? (*lang_hooks.decl_printable_name) (temp, 2)
1912 : "(unnamed)"));
1913 if (ipa_is_param_used (info, i))
1914 fprintf (f, " used");
1915 fprintf (f, "\n");
1919 /* Print ipa_tree_map data structures of all functions in the
1920 callgraph to F. */
1922 void
1923 ipa_print_all_params (FILE * f)
1925 struct cgraph_node *node;
1927 fprintf (f, "\nFunction parameters:\n");
1928 for (node = cgraph_nodes; node; node = node->next)
1929 ipa_print_node_params (f, node);
1932 /* Return a heap allocated vector containing formal parameters of FNDECL. */
1934 VEC(tree, heap) *
1935 ipa_get_vector_of_formal_parms (tree fndecl)
1937 VEC(tree, heap) *args;
1938 int count;
1939 tree parm;
1941 count = count_formal_params_1 (fndecl);
1942 args = VEC_alloc (tree, heap, count);
1943 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
1944 VEC_quick_push (tree, args, parm);
1946 return args;
1949 /* Return a heap allocated vector containing types of formal parameters of
1950 function type FNTYPE. */
1952 static inline VEC(tree, heap) *
1953 get_vector_of_formal_parm_types (tree fntype)
1955 VEC(tree, heap) *types;
1956 int count = 0;
1957 tree t;
1959 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
1960 count++;
1962 types = VEC_alloc (tree, heap, count);
1963 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
1964 VEC_quick_push (tree, types, TREE_VALUE (t));
1966 return types;
1969 /* Modify the function declaration FNDECL and its type according to the plan in
1970 ADJUSTMENTS. It also sets base fields of individual adjustments structures
1971 to reflect the actual parameters being modified which are determined by the
1972 base_index field. */
1974 void
1975 ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
1976 const char *synth_parm_prefix)
1978 VEC(tree, heap) *oparms, *otypes;
1979 tree orig_type, new_type = NULL;
1980 tree old_arg_types, t, new_arg_types = NULL;
1981 tree parm, *link = &DECL_ARGUMENTS (fndecl);
1982 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
1983 tree new_reversed = NULL;
1984 bool care_for_types, last_parm_void;
1986 if (!synth_parm_prefix)
1987 synth_parm_prefix = "SYNTH";
1989 oparms = ipa_get_vector_of_formal_parms (fndecl);
1990 orig_type = TREE_TYPE (fndecl);
1991 old_arg_types = TYPE_ARG_TYPES (orig_type);
1993 /* The following test is an ugly hack, some functions simply don't have any
1994 arguments in their type. This is probably a bug but well... */
1995 care_for_types = (old_arg_types != NULL_TREE);
1996 if (care_for_types)
1998 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
1999 == void_type_node);
2000 otypes = get_vector_of_formal_parm_types (orig_type);
2001 if (last_parm_void)
2002 gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
2003 else
2004 gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
2006 else
2008 last_parm_void = false;
2009 otypes = NULL;
2012 for (i = 0; i < len; i++)
2014 struct ipa_parm_adjustment *adj;
2015 gcc_assert (link);
2017 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2018 parm = VEC_index (tree, oparms, adj->base_index);
2019 adj->base = parm;
2021 if (adj->copy_param)
2023 if (care_for_types)
2024 new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
2025 adj->base_index),
2026 new_arg_types);
2027 *link = parm;
2028 link = &DECL_CHAIN (parm);
2030 else if (!adj->remove_param)
2032 tree new_parm;
2033 tree ptype;
2035 if (adj->by_ref)
2036 ptype = build_pointer_type (adj->type);
2037 else
2038 ptype = adj->type;
2040 if (care_for_types)
2041 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
2043 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
2044 ptype);
2045 DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
2047 DECL_ARTIFICIAL (new_parm) = 1;
2048 DECL_ARG_TYPE (new_parm) = ptype;
2049 DECL_CONTEXT (new_parm) = fndecl;
2050 TREE_USED (new_parm) = 1;
2051 DECL_IGNORED_P (new_parm) = 1;
2052 layout_decl (new_parm, 0);
2054 add_referenced_var (new_parm);
2055 mark_sym_for_renaming (new_parm);
2056 adj->base = parm;
2057 adj->reduction = new_parm;
2059 *link = new_parm;
2061 link = &DECL_CHAIN (new_parm);
2065 *link = NULL_TREE;
2067 if (care_for_types)
2069 new_reversed = nreverse (new_arg_types);
2070 if (last_parm_void)
2072 if (new_reversed)
2073 TREE_CHAIN (new_arg_types) = void_list_node;
2074 else
2075 new_reversed = void_list_node;
2079 /* Use copy_node to preserve as much as possible from original type
2080 (debug info, attribute lists etc.)
2081 Exception is METHOD_TYPEs must have THIS argument.
2082 When we are asked to remove it, we need to build new FUNCTION_TYPE
2083 instead. */
2084 if (TREE_CODE (orig_type) != METHOD_TYPE
2085 || (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
2086 && VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
2088 new_type = build_distinct_type_copy (orig_type);
2089 TYPE_ARG_TYPES (new_type) = new_reversed;
2091 else
2093 new_type
2094 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
2095 new_reversed));
2096 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
2097 DECL_VINDEX (fndecl) = NULL_TREE;
2100 /* When signature changes, we need to clear builtin info. */
2101 if (DECL_BUILT_IN (fndecl))
2103 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
2104 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
2107 /* This is a new type, not a copy of an old type. Need to reassociate
2108 variants. We can handle everything except the main variant lazily. */
2109 t = TYPE_MAIN_VARIANT (orig_type);
2110 if (orig_type != t)
2112 TYPE_MAIN_VARIANT (new_type) = t;
2113 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
2114 TYPE_NEXT_VARIANT (t) = new_type;
2116 else
2118 TYPE_MAIN_VARIANT (new_type) = new_type;
2119 TYPE_NEXT_VARIANT (new_type) = NULL;
2122 TREE_TYPE (fndecl) = new_type;
2123 if (otypes)
2124 VEC_free (tree, heap, otypes);
2125 VEC_free (tree, heap, oparms);
2128 /* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
2129 If this is a directly recursive call, CS must be NULL. Otherwise it must
2130 contain the corresponding call graph edge. */
2132 void
2133 ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
2134 ipa_parm_adjustment_vec adjustments)
2136 VEC(tree, heap) *vargs;
2137 gimple new_stmt;
2138 gimple_stmt_iterator gsi;
2139 tree callee_decl;
2140 int i, len;
2142 len = VEC_length (ipa_parm_adjustment_t, adjustments);
2143 vargs = VEC_alloc (tree, heap, len);
2145 gsi = gsi_for_stmt (stmt);
2146 for (i = 0; i < len; i++)
2148 struct ipa_parm_adjustment *adj;
2150 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2152 if (adj->copy_param)
2154 tree arg = gimple_call_arg (stmt, adj->base_index);
2156 VEC_quick_push (tree, vargs, arg);
2158 else if (!adj->remove_param)
2160 tree expr, base, off;
2161 location_t loc;
2163 /* We create a new parameter out of the value of the old one, we can
2164 do the following kind of transformations:
2166 - A scalar passed by reference is converted to a scalar passed by
2167 value. (adj->by_ref is false and the type of the original
2168 actual argument is a pointer to a scalar).
2170 - A part of an aggregate is passed instead of the whole aggregate.
2171 The part can be passed either by value or by reference, this is
2172 determined by value of adj->by_ref. Moreover, the code below
2173 handles both situations when the original aggregate is passed by
2174 value (its type is not a pointer) and when it is passed by
2175 reference (it is a pointer to an aggregate).
2177 When the new argument is passed by reference (adj->by_ref is true)
2178 it must be a part of an aggregate and therefore we form it by
2179 simply taking the address of a reference inside the original
2180 aggregate. */
2182 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
2183 base = gimple_call_arg (stmt, adj->base_index);
2184 loc = EXPR_LOCATION (base);
2186 if (TREE_CODE (base) == ADDR_EXPR
2187 && DECL_P (TREE_OPERAND (base, 0)))
2188 off = build_int_cst (reference_alias_ptr_type (base),
2189 adj->offset / BITS_PER_UNIT);
2190 else if (TREE_CODE (base) != ADDR_EXPR
2191 && POINTER_TYPE_P (TREE_TYPE (base)))
2192 off = build_int_cst (TREE_TYPE (base), adj->offset / BITS_PER_UNIT);
2193 else
2195 HOST_WIDE_INT base_offset;
2196 tree prev_base;
2198 if (TREE_CODE (base) == ADDR_EXPR)
2199 base = TREE_OPERAND (base, 0);
2200 prev_base = base;
2201 base = get_addr_base_and_unit_offset (base, &base_offset);
2202 /* Aggregate arguments can have non-invariant addresses. */
2203 if (!base)
2205 base = build_fold_addr_expr (prev_base);
2206 off = build_int_cst (reference_alias_ptr_type (prev_base),
2207 adj->offset / BITS_PER_UNIT);
2209 else if (TREE_CODE (base) == MEM_REF)
2211 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base,1)),
2212 base_offset
2213 + adj->offset / BITS_PER_UNIT);
2214 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
2215 off, 0);
2216 base = TREE_OPERAND (base, 0);
2218 else
2220 off = build_int_cst (reference_alias_ptr_type (base),
2221 base_offset
2222 + adj->offset / BITS_PER_UNIT);
2223 base = build_fold_addr_expr (base);
2227 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
2228 if (adj->by_ref)
2229 expr = build_fold_addr_expr (expr);
2231 expr = force_gimple_operand_gsi (&gsi, expr,
2232 adj->by_ref
2233 || is_gimple_reg_type (adj->type),
2234 NULL, true, GSI_SAME_STMT);
2235 VEC_quick_push (tree, vargs, expr);
2239 if (dump_file && (dump_flags & TDF_DETAILS))
2241 fprintf (dump_file, "replacing stmt:");
2242 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
2245 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
2246 new_stmt = gimple_build_call_vec (callee_decl, vargs);
2247 VEC_free (tree, heap, vargs);
2248 if (gimple_call_lhs (stmt))
2249 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2251 gimple_set_block (new_stmt, gimple_block (stmt));
2252 if (gimple_has_location (stmt))
2253 gimple_set_location (new_stmt, gimple_location (stmt));
2254 gimple_call_copy_flags (new_stmt, stmt);
2255 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2257 if (dump_file && (dump_flags & TDF_DETAILS))
2259 fprintf (dump_file, "with stmt:");
2260 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2261 fprintf (dump_file, "\n");
2263 gsi_replace (&gsi, new_stmt, true);
2264 if (cs)
2265 cgraph_set_call_stmt (cs, new_stmt);
2266 update_ssa (TODO_update_ssa);
2267 free_dominance_info (CDI_DOMINATORS);
2270 /* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
2272 static bool
2273 index_in_adjustments_multiple_times_p (int base_index,
2274 ipa_parm_adjustment_vec adjustments)
2276 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2277 bool one = false;
2279 for (i = 0; i < len; i++)
2281 struct ipa_parm_adjustment *adj;
2282 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2284 if (adj->base_index == base_index)
2286 if (one)
2287 return true;
2288 else
2289 one = true;
2292 return false;
2296 /* Return adjustments that should have the same effect on function parameters
2297 and call arguments as if they were first changed according to adjustments in
2298 INNER and then by adjustments in OUTER. */
2300 ipa_parm_adjustment_vec
2301 ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
2302 ipa_parm_adjustment_vec outer)
2304 int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
2305 int inlen = VEC_length (ipa_parm_adjustment_t, inner);
2306 int removals = 0;
2307 ipa_parm_adjustment_vec adjustments, tmp;
2309 tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
2310 for (i = 0; i < inlen; i++)
2312 struct ipa_parm_adjustment *n;
2313 n = VEC_index (ipa_parm_adjustment_t, inner, i);
2315 if (n->remove_param)
2316 removals++;
2317 else
2318 VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
2321 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
2322 for (i = 0; i < outlen; i++)
2324 struct ipa_parm_adjustment *r;
2325 struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
2326 outer, i);
2327 struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
2328 out->base_index);
2330 gcc_assert (!in->remove_param);
2331 if (out->remove_param)
2333 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
2335 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2336 memset (r, 0, sizeof (*r));
2337 r->remove_param = true;
2339 continue;
2342 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2343 memset (r, 0, sizeof (*r));
2344 r->base_index = in->base_index;
2345 r->type = out->type;
2347 /* FIXME: Create nonlocal value too. */
2349 if (in->copy_param && out->copy_param)
2350 r->copy_param = true;
2351 else if (in->copy_param)
2352 r->offset = out->offset;
2353 else if (out->copy_param)
2354 r->offset = in->offset;
2355 else
2356 r->offset = in->offset + out->offset;
2359 for (i = 0; i < inlen; i++)
2361 struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
2362 inner, i);
2364 if (n->remove_param)
2365 VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
2368 VEC_free (ipa_parm_adjustment_t, heap, tmp);
2369 return adjustments;
2372 /* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
2373 friendly way, assuming they are meant to be applied to FNDECL. */
2375 void
2376 ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
2377 tree fndecl)
2379 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2380 bool first = true;
2381 VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
2383 fprintf (file, "IPA param adjustments: ");
2384 for (i = 0; i < len; i++)
2386 struct ipa_parm_adjustment *adj;
2387 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2389 if (!first)
2390 fprintf (file, " ");
2391 else
2392 first = false;
2394 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
2395 print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
2396 if (adj->base)
2398 fprintf (file, ", base: ");
2399 print_generic_expr (file, adj->base, 0);
2401 if (adj->reduction)
2403 fprintf (file, ", reduction: ");
2404 print_generic_expr (file, adj->reduction, 0);
2406 if (adj->new_ssa_base)
2408 fprintf (file, ", new_ssa_base: ");
2409 print_generic_expr (file, adj->new_ssa_base, 0);
2412 if (adj->copy_param)
2413 fprintf (file, ", copy_param");
2414 else if (adj->remove_param)
2415 fprintf (file, ", remove_param");
2416 else
2417 fprintf (file, ", offset %li", (long) adj->offset);
2418 if (adj->by_ref)
2419 fprintf (file, ", by_ref");
2420 print_node_brief (file, ", type: ", adj->type, 0);
2421 fprintf (file, "\n");
2423 VEC_free (tree, heap, parms);
2426 /* Stream out jump function JUMP_FUNC to OB. */
2428 static void
2429 ipa_write_jump_function (struct output_block *ob,
2430 struct ipa_jump_func *jump_func)
2432 lto_output_uleb128_stream (ob->main_stream,
2433 jump_func->type);
2435 switch (jump_func->type)
2437 case IPA_JF_UNKNOWN:
2438 break;
2439 case IPA_JF_KNOWN_TYPE:
2440 lto_output_tree (ob, jump_func->value.base_binfo, true);
2441 break;
2442 case IPA_JF_CONST:
2443 lto_output_tree (ob, jump_func->value.constant, true);
2444 break;
2445 case IPA_JF_PASS_THROUGH:
2446 lto_output_tree (ob, jump_func->value.pass_through.operand, true);
2447 lto_output_uleb128_stream (ob->main_stream,
2448 jump_func->value.pass_through.formal_id);
2449 lto_output_uleb128_stream (ob->main_stream,
2450 jump_func->value.pass_through.operation);
2451 break;
2452 case IPA_JF_ANCESTOR:
2453 lto_output_uleb128_stream (ob->main_stream,
2454 jump_func->value.ancestor.offset);
2455 lto_output_tree (ob, jump_func->value.ancestor.type, true);
2456 lto_output_uleb128_stream (ob->main_stream,
2457 jump_func->value.ancestor.formal_id);
2458 break;
2459 case IPA_JF_CONST_MEMBER_PTR:
2460 lto_output_tree (ob, jump_func->value.member_cst.pfn, true);
2461 lto_output_tree (ob, jump_func->value.member_cst.delta, false);
2462 break;
2466 /* Read in jump function JUMP_FUNC from IB. */
2468 static void
2469 ipa_read_jump_function (struct lto_input_block *ib,
2470 struct ipa_jump_func *jump_func,
2471 struct data_in *data_in)
2473 jump_func->type = (enum jump_func_type) lto_input_uleb128 (ib);
2475 switch (jump_func->type)
2477 case IPA_JF_UNKNOWN:
2478 break;
2479 case IPA_JF_KNOWN_TYPE:
2480 jump_func->value.base_binfo = lto_input_tree (ib, data_in);
2481 break;
2482 case IPA_JF_CONST:
2483 jump_func->value.constant = lto_input_tree (ib, data_in);
2484 break;
2485 case IPA_JF_PASS_THROUGH:
2486 jump_func->value.pass_through.operand = lto_input_tree (ib, data_in);
2487 jump_func->value.pass_through.formal_id = lto_input_uleb128 (ib);
2488 jump_func->value.pass_through.operation = (enum tree_code) lto_input_uleb128 (ib);
2489 break;
2490 case IPA_JF_ANCESTOR:
2491 jump_func->value.ancestor.offset = lto_input_uleb128 (ib);
2492 jump_func->value.ancestor.type = lto_input_tree (ib, data_in);
2493 jump_func->value.ancestor.formal_id = lto_input_uleb128 (ib);
2494 break;
2495 case IPA_JF_CONST_MEMBER_PTR:
2496 jump_func->value.member_cst.pfn = lto_input_tree (ib, data_in);
2497 jump_func->value.member_cst.delta = lto_input_tree (ib, data_in);
2498 break;
2502 /* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
2503 relevant to indirect inlining to OB. */
2505 static void
2506 ipa_write_indirect_edge_info (struct output_block *ob,
2507 struct cgraph_edge *cs)
2509 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2510 struct bitpack_d bp;
2512 lto_output_sleb128_stream (ob->main_stream, ii->param_index);
2513 lto_output_sleb128_stream (ob->main_stream, ii->anc_offset);
2514 bp = bitpack_create (ob->main_stream);
2515 bp_pack_value (&bp, ii->polymorphic, 1);
2516 lto_output_bitpack (&bp);
2518 if (ii->polymorphic)
2520 lto_output_sleb128_stream (ob->main_stream, ii->otr_token);
2521 lto_output_tree (ob, ii->otr_type, true);
2525 /* Read in parts of cgraph_indirect_call_info corresponding to CS that are
2526 relevant to indirect inlining from IB. */
2528 static void
2529 ipa_read_indirect_edge_info (struct lto_input_block *ib,
2530 struct data_in *data_in ATTRIBUTE_UNUSED,
2531 struct cgraph_edge *cs)
2533 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2534 struct bitpack_d bp;
2536 ii->param_index = (int) lto_input_sleb128 (ib);
2537 ii->anc_offset = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2538 bp = lto_input_bitpack (ib);
2539 ii->polymorphic = bp_unpack_value (&bp, 1);
2540 if (ii->polymorphic)
2542 ii->otr_token = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2543 ii->otr_type = lto_input_tree (ib, data_in);
2547 /* Stream out NODE info to OB. */
2549 static void
2550 ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
2552 int node_ref;
2553 lto_cgraph_encoder_t encoder;
2554 struct ipa_node_params *info = IPA_NODE_REF (node);
2555 int j;
2556 struct cgraph_edge *e;
2557 struct bitpack_d bp;
2559 encoder = ob->decl_state->cgraph_node_encoder;
2560 node_ref = lto_cgraph_encoder_encode (encoder, node);
2561 lto_output_uleb128_stream (ob->main_stream, node_ref);
2563 bp = bitpack_create (ob->main_stream);
2564 bp_pack_value (&bp, info->called_with_var_arguments, 1);
2565 gcc_assert (info->uses_analysis_done
2566 || ipa_get_param_count (info) == 0);
2567 gcc_assert (!info->node_enqueued);
2568 gcc_assert (!info->ipcp_orig_node);
2569 for (j = 0; j < ipa_get_param_count (info); j++)
2570 bp_pack_value (&bp, info->params[j].used, 1);
2571 lto_output_bitpack (&bp);
2572 for (e = node->callees; e; e = e->next_callee)
2574 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2576 lto_output_uleb128_stream (ob->main_stream,
2577 ipa_get_cs_argument_count (args));
2578 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2579 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2581 for (e = node->indirect_calls; e; e = e->next_callee)
2582 ipa_write_indirect_edge_info (ob, e);
2585 /* Srtream in NODE info from IB. */
2587 static void
2588 ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
2589 struct data_in *data_in)
2591 struct ipa_node_params *info = IPA_NODE_REF (node);
2592 int k;
2593 struct cgraph_edge *e;
2594 struct bitpack_d bp;
2596 ipa_initialize_node_params (node);
2598 bp = lto_input_bitpack (ib);
2599 info->called_with_var_arguments = bp_unpack_value (&bp, 1);
2600 if (ipa_get_param_count (info) != 0)
2601 info->uses_analysis_done = true;
2602 info->node_enqueued = false;
2603 for (k = 0; k < ipa_get_param_count (info); k++)
2604 info->params[k].used = bp_unpack_value (&bp, 1);
2605 for (e = node->callees; e; e = e->next_callee)
2607 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2608 int count = lto_input_uleb128 (ib);
2610 ipa_set_cs_argument_count (args, count);
2611 if (!count)
2612 continue;
2614 args->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
2615 (ipa_get_cs_argument_count (args));
2616 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2617 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
2619 for (e = node->indirect_calls; e; e = e->next_callee)
2620 ipa_read_indirect_edge_info (ib, data_in, e);
2623 /* Write jump functions for nodes in SET. */
2625 void
2626 ipa_prop_write_jump_functions (cgraph_node_set set)
2628 struct cgraph_node *node;
2629 struct output_block *ob = create_output_block (LTO_section_jump_functions);
2630 unsigned int count = 0;
2631 cgraph_node_set_iterator csi;
2633 ob->cgraph_node = NULL;
2635 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2637 node = csi_node (csi);
2638 if (node->analyzed && IPA_NODE_REF (node) != NULL)
2639 count++;
2642 lto_output_uleb128_stream (ob->main_stream, count);
2644 /* Process all of the functions. */
2645 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2647 node = csi_node (csi);
2648 if (node->analyzed && IPA_NODE_REF (node) != NULL)
2649 ipa_write_node_info (ob, node);
2651 lto_output_1_stream (ob->main_stream, 0);
2652 produce_asm (ob, NULL);
2653 destroy_output_block (ob);
2656 /* Read section in file FILE_DATA of length LEN with data DATA. */
2658 static void
2659 ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
2660 size_t len)
2662 const struct lto_function_header *header =
2663 (const struct lto_function_header *) data;
2664 const int32_t cfg_offset = sizeof (struct lto_function_header);
2665 const int32_t main_offset = cfg_offset + header->cfg_size;
2666 const int32_t string_offset = main_offset + header->main_size;
2667 struct data_in *data_in;
2668 struct lto_input_block ib_main;
2669 unsigned int i;
2670 unsigned int count;
2672 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
2673 header->main_size);
2675 data_in =
2676 lto_data_in_create (file_data, (const char *) data + string_offset,
2677 header->string_size, NULL);
2678 count = lto_input_uleb128 (&ib_main);
2680 for (i = 0; i < count; i++)
2682 unsigned int index;
2683 struct cgraph_node *node;
2684 lto_cgraph_encoder_t encoder;
2686 index = lto_input_uleb128 (&ib_main);
2687 encoder = file_data->cgraph_node_encoder;
2688 node = lto_cgraph_encoder_deref (encoder, index);
2689 gcc_assert (node->analyzed);
2690 ipa_read_node_info (&ib_main, node, data_in);
2692 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
2693 len);
2694 lto_data_in_delete (data_in);
2697 /* Read ipcp jump functions. */
2699 void
2700 ipa_prop_read_jump_functions (void)
2702 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2703 struct lto_file_decl_data *file_data;
2704 unsigned int j = 0;
2706 ipa_check_create_node_params ();
2707 ipa_check_create_edge_args ();
2708 ipa_register_cgraph_hooks ();
2710 while ((file_data = file_data_vec[j++]))
2712 size_t len;
2713 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
2715 if (data)
2716 ipa_prop_read_section (file_data, data, len);
2720 /* After merging units, we can get mismatch in argument counts.
2721 Also decl merging might've rendered parameter lists obsolette.
2722 Also compute called_with_variable_arg info. */
2724 void
2725 ipa_update_after_lto_read (void)
2727 struct cgraph_node *node;
2728 struct cgraph_edge *cs;
2730 ipa_check_create_node_params ();
2731 ipa_check_create_edge_args ();
2733 for (node = cgraph_nodes; node; node = node->next)
2734 if (node->analyzed)
2735 ipa_initialize_node_params (node);
2737 for (node = cgraph_nodes; node; node = node->next)
2738 if (node->analyzed)
2739 for (cs = node->callees; cs; cs = cs->next_callee)
2741 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
2742 != ipa_get_param_count (IPA_NODE_REF (cs->callee)))
2743 ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));