* c-decl.c (duplicate_decls): Conditionalize DECL_SAVED_TREE copy.
[official-gcc.git] / gcc / flow.c
blobdf27edc8f4552943e6d0b1ceed7aa6252256a557
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
140 #include "obstack.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
171 #ifdef HAVE_conditional_execution
172 #ifndef REVERSE_CONDEXEC_PREDICATES_P
173 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
174 #endif
175 #endif
177 /* Nonzero if the second flow pass has completed. */
178 int flow2_completed;
180 /* Maximum register number used in this function, plus one. */
182 int max_regno;
184 /* Indexed by n, giving various register information */
186 varray_type reg_n_info;
188 /* Size of a regset for the current function,
189 in (1) bytes and (2) elements. */
191 int regset_bytes;
192 int regset_size;
194 /* Regset of regs live when calls to `setjmp'-like functions happen. */
195 /* ??? Does this exist only for the setjmp-clobbered warning message? */
197 regset regs_live_at_setjmp;
199 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
200 that have to go in the same hard reg.
201 The first two regs in the list are a pair, and the next two
202 are another pair, etc. */
203 rtx regs_may_share;
205 /* Callback that determines if it's ok for a function to have no
206 noreturn attribute. */
207 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
209 /* Set of registers that may be eliminable. These are handled specially
210 in updating regs_ever_live. */
212 static HARD_REG_SET elim_reg_set;
214 /* Holds information for tracking conditional register life information. */
215 struct reg_cond_life_info
217 /* A boolean expression of conditions under which a register is dead. */
218 rtx condition;
219 /* Conditions under which a register is dead at the basic block end. */
220 rtx orig_condition;
222 /* A boolean expression of conditions under which a register has been
223 stored into. */
224 rtx stores;
226 /* ??? Could store mask of bytes that are dead, so that we could finally
227 track lifetimes of multi-word registers accessed via subregs. */
230 /* For use in communicating between propagate_block and its subroutines.
231 Holds all information needed to compute life and def-use information. */
233 struct propagate_block_info
235 /* The basic block we're considering. */
236 basic_block bb;
238 /* Bit N is set if register N is conditionally or unconditionally live. */
239 regset reg_live;
241 /* Bit N is set if register N is set this insn. */
242 regset new_set;
244 /* Element N is the next insn that uses (hard or pseudo) register N
245 within the current basic block; or zero, if there is no such insn. */
246 rtx *reg_next_use;
248 /* Contains a list of all the MEMs we are tracking for dead store
249 elimination. */
250 rtx mem_set_list;
252 /* If non-null, record the set of registers set unconditionally in the
253 basic block. */
254 regset local_set;
256 /* If non-null, record the set of registers set conditionally in the
257 basic block. */
258 regset cond_local_set;
260 #ifdef HAVE_conditional_execution
261 /* Indexed by register number, holds a reg_cond_life_info for each
262 register that is not unconditionally live or dead. */
263 splay_tree reg_cond_dead;
265 /* Bit N is set if register N is in an expression in reg_cond_dead. */
266 regset reg_cond_reg;
267 #endif
269 /* The length of mem_set_list. */
270 int mem_set_list_len;
272 /* Non-zero if the value of CC0 is live. */
273 int cc0_live;
275 /* Flags controling the set of information propagate_block collects. */
276 int flags;
279 /* Maximum length of pbi->mem_set_list before we start dropping
280 new elements on the floor. */
281 #define MAX_MEM_SET_LIST_LEN 100
283 /* Have print_rtl_and_abort give the same information that fancy_abort
284 does. */
285 #define print_rtl_and_abort() \
286 print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, rtx, rtx));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 #ifdef HAVE_conditional_execution
310 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
311 int, rtx));
312 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
313 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
314 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
315 int));
316 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
317 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
318 static rtx not_reg_cond PARAMS ((rtx));
319 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
323 rtx, rtx, rtx, rtx, rtx));
324 static void find_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx));
326 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
327 rtx));
328 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
329 #endif
330 static void mark_used_reg PARAMS ((struct propagate_block_info *,
331 rtx, rtx, rtx));
332 static void mark_used_regs PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 void dump_flow_info PARAMS ((FILE *));
335 void debug_flow_info PARAMS ((void));
336 static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
337 const char *))
338 ATTRIBUTE_NORETURN;
340 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
341 rtx));
342 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
345 rtx));
346 static void delete_dead_jumptables PARAMS ((void));
347 static void clear_log_links PARAMS ((sbitmap));
350 void
351 check_function_return_warnings ()
353 if (warn_missing_noreturn
354 && !TREE_THIS_VOLATILE (cfun->decl)
355 && EXIT_BLOCK_PTR->pred == NULL
356 && (lang_missing_noreturn_ok_p
357 && !lang_missing_noreturn_ok_p (cfun->decl)))
358 warning ("function might be possible candidate for attribute `noreturn'");
360 /* If we have a path to EXIT, then we do return. */
361 if (TREE_THIS_VOLATILE (cfun->decl)
362 && EXIT_BLOCK_PTR->pred != NULL)
363 warning ("`noreturn' function does return");
365 /* If the clobber_return_insn appears in some basic block, then we
366 do reach the end without returning a value. */
367 else if (warn_return_type
368 && cfun->x_clobber_return_insn != NULL
369 && EXIT_BLOCK_PTR->pred != NULL)
371 int max_uid = get_max_uid ();
373 /* If clobber_return_insn was excised by jump1, then renumber_insns
374 can make max_uid smaller than the number still recorded in our rtx.
375 That's fine, since this is a quick way of verifying that the insn
376 is no longer in the chain. */
377 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
379 /* Recompute insn->block mapping, since the initial mapping is
380 set before we delete unreachable blocks. */
381 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
382 warning ("control reaches end of non-void function");
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block)
392 basic_block block;
394 rtx insn;
396 /* Get the first instruction in the block. */
397 insn = block->head;
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
406 return NEXT_INSN (insn);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
419 #ifdef ELIMINABLE_REGS
420 int i;
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
427 CLEAR_HARD_REG_SET (elim_reg_set);
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
436 if (! optimize)
437 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
439 /* The post-reload life analysis have (on a global basis) the same
440 registers live as was computed by reload itself. elimination
441 Otherwise offsets and such may be incorrect.
443 Reload will make some registers as live even though they do not
444 appear in the rtl.
446 We don't want to create new auto-incs after reload, since they
447 are unlikely to be useful and can cause problems with shared
448 stack slots. */
449 if (reload_completed)
450 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
452 /* We want alias analysis information for local dead store elimination. */
453 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
454 init_alias_analysis ();
456 /* Always remove no-op moves. Do this before other processing so
457 that we don't have to keep re-scanning them. */
458 delete_noop_moves (f);
459 purge_all_dead_edges (false);
461 /* Some targets can emit simpler epilogues if they know that sp was
462 not ever modified during the function. After reload, of course,
463 we've already emitted the epilogue so there's no sense searching. */
464 if (! reload_completed)
465 notice_stack_pointer_modification (f);
467 /* Allocate and zero out data structures that will record the
468 data from lifetime analysis. */
469 allocate_reg_life_data ();
470 allocate_bb_life_data ();
472 /* Find the set of registers live on function exit. */
473 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
475 /* "Update" life info from zero. It'd be nice to begin the
476 relaxation with just the exit and noreturn blocks, but that set
477 is not immediately handy. */
479 if (flags & PROP_REG_INFO)
480 memset (regs_ever_live, 0, sizeof (regs_ever_live));
481 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
483 /* Clean up. */
484 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
485 end_alias_analysis ();
487 if (file)
488 dump_flow_info (file);
490 free_basic_block_vars (1);
492 #ifdef ENABLE_CHECKING
494 rtx insn;
496 /* Search for any REG_LABEL notes which reference deleted labels. */
497 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
499 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
501 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
502 abort ();
505 #endif
506 /* Removing dead insns should've made jumptables really dead. */
507 delete_dead_jumptables ();
510 /* A subroutine of verify_wide_reg, called through for_each_rtx.
511 Search for REGNO. If found, abort if it is not wider than word_mode. */
513 static int
514 verify_wide_reg_1 (px, pregno)
515 rtx *px;
516 void *pregno;
518 rtx x = *px;
519 unsigned int regno = *(int *) pregno;
521 if (GET_CODE (x) == REG && REGNO (x) == regno)
523 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
524 abort ();
525 return 1;
527 return 0;
530 /* A subroutine of verify_local_live_at_start. Search through insns
531 between HEAD and END looking for register REGNO. */
533 static void
534 verify_wide_reg (regno, head, end)
535 int regno;
536 rtx head, end;
538 while (1)
540 if (INSN_P (head)
541 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
542 return;
543 if (head == end)
544 break;
545 head = NEXT_INSN (head);
548 /* We didn't find the register at all. Something's way screwy. */
549 if (rtl_dump_file)
550 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
551 print_rtl_and_abort ();
554 /* A subroutine of update_life_info. Verify that there are no untoward
555 changes in live_at_start during a local update. */
557 static void
558 verify_local_live_at_start (new_live_at_start, bb)
559 regset new_live_at_start;
560 basic_block bb;
562 if (reload_completed)
564 /* After reload, there are no pseudos, nor subregs of multi-word
565 registers. The regsets should exactly match. */
566 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
568 if (rtl_dump_file)
570 fprintf (rtl_dump_file,
571 "live_at_start mismatch in bb %d, aborting\n",
572 bb->index);
573 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
574 debug_bitmap_file (rtl_dump_file, new_live_at_start);
576 print_rtl_and_abort ();
579 else
581 int i;
583 /* Find the set of changed registers. */
584 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
586 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
588 /* No registers should die. */
589 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
591 if (rtl_dump_file)
592 fprintf (rtl_dump_file,
593 "Register %d died unexpectedly in block %d\n", i,
594 bb->index);
595 print_rtl_and_abort ();
598 /* Verify that the now-live register is wider than word_mode. */
599 verify_wide_reg (i, bb->head, bb->end);
604 /* Updates life information starting with the basic blocks set in BLOCKS.
605 If BLOCKS is null, consider it to be the universal set.
607 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
608 we are only expecting local modifications to basic blocks. If we find
609 extra registers live at the beginning of a block, then we either killed
610 useful data, or we have a broken split that wants data not provided.
611 If we find registers removed from live_at_start, that means we have
612 a broken peephole that is killing a register it shouldn't.
614 ??? This is not true in one situation -- when a pre-reload splitter
615 generates subregs of a multi-word pseudo, current life analysis will
616 lose the kill. So we _can_ have a pseudo go live. How irritating.
618 Including PROP_REG_INFO does not properly refresh regs_ever_live
619 unless the caller resets it to zero. */
621 void
622 update_life_info (blocks, extent, prop_flags)
623 sbitmap blocks;
624 enum update_life_extent extent;
625 int prop_flags;
627 regset tmp;
628 regset_head tmp_head;
629 int i;
631 tmp = INITIALIZE_REG_SET (tmp_head);
633 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
634 ? TV_LIFE_UPDATE : TV_LIFE);
636 /* Changes to the CFG are only allowed when
637 doing a global update for the entire CFG. */
638 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
639 && (extent == UPDATE_LIFE_LOCAL || blocks))
640 abort ();
642 /* Clear log links in case we are asked to (re)compute them. */
643 if (prop_flags & PROP_LOG_LINKS)
644 clear_log_links (blocks);
646 /* For a global update, we go through the relaxation process again. */
647 if (extent != UPDATE_LIFE_LOCAL)
649 for ( ; ; )
651 int changed = 0;
653 calculate_global_regs_live (blocks, blocks,
654 prop_flags & (PROP_SCAN_DEAD_CODE
655 | PROP_ALLOW_CFG_CHANGES));
657 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
658 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
659 break;
661 /* Removing dead code may allow the CFG to be simplified which
662 in turn may allow for further dead code detection / removal. */
663 for (i = n_basic_blocks - 1; i >= 0; --i)
665 basic_block bb = BASIC_BLOCK (i);
667 COPY_REG_SET (tmp, bb->global_live_at_end);
668 changed |= propagate_block (bb, tmp, NULL, NULL,
669 prop_flags & (PROP_SCAN_DEAD_CODE
670 | PROP_KILL_DEAD_CODE));
673 if (! changed || ! cleanup_cfg (CLEANUP_EXPENSIVE))
674 break;
677 /* If asked, remove notes from the blocks we'll update. */
678 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
679 count_or_remove_death_notes (blocks, 1);
682 if (blocks)
684 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
686 basic_block bb = BASIC_BLOCK (i);
688 COPY_REG_SET (tmp, bb->global_live_at_end);
689 propagate_block (bb, tmp, NULL, NULL, prop_flags);
691 if (extent == UPDATE_LIFE_LOCAL)
692 verify_local_live_at_start (tmp, bb);
695 else
697 for (i = n_basic_blocks - 1; i >= 0; --i)
699 basic_block bb = BASIC_BLOCK (i);
701 COPY_REG_SET (tmp, bb->global_live_at_end);
702 propagate_block (bb, tmp, NULL, NULL, prop_flags);
704 if (extent == UPDATE_LIFE_LOCAL)
705 verify_local_live_at_start (tmp, bb);
709 FREE_REG_SET (tmp);
711 if (prop_flags & PROP_REG_INFO)
713 /* The only pseudos that are live at the beginning of the function
714 are those that were not set anywhere in the function. local-alloc
715 doesn't know how to handle these correctly, so mark them as not
716 local to any one basic block. */
717 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
718 FIRST_PSEUDO_REGISTER, i,
719 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
721 /* We have a problem with any pseudoreg that lives across the setjmp.
722 ANSI says that if a user variable does not change in value between
723 the setjmp and the longjmp, then the longjmp preserves it. This
724 includes longjmp from a place where the pseudo appears dead.
725 (In principle, the value still exists if it is in scope.)
726 If the pseudo goes in a hard reg, some other value may occupy
727 that hard reg where this pseudo is dead, thus clobbering the pseudo.
728 Conclusion: such a pseudo must not go in a hard reg. */
729 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
730 FIRST_PSEUDO_REGISTER, i,
732 if (regno_reg_rtx[i] != 0)
734 REG_LIVE_LENGTH (i) = -1;
735 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
739 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
740 ? TV_LIFE_UPDATE : TV_LIFE);
743 /* Free the variables allocated by find_basic_blocks.
745 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
747 void
748 free_basic_block_vars (keep_head_end_p)
749 int keep_head_end_p;
751 if (! keep_head_end_p)
753 if (basic_block_info)
755 clear_edges ();
756 VARRAY_FREE (basic_block_info);
758 n_basic_blocks = 0;
760 ENTRY_BLOCK_PTR->aux = NULL;
761 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
762 EXIT_BLOCK_PTR->aux = NULL;
763 EXIT_BLOCK_PTR->global_live_at_start = NULL;
767 /* Delete any insns that copy a register to itself. */
769 void
770 delete_noop_moves (f)
771 rtx f ATTRIBUTE_UNUSED;
773 int i;
774 rtx insn, next;
775 basic_block bb;
777 for (i = 0; i < n_basic_blocks; i++)
779 bb = BASIC_BLOCK (i);
780 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
782 next = NEXT_INSN (insn);
783 if (INSN_P (insn) && noop_move_p (insn))
785 rtx note;
787 /* If we're about to remove the first insn of a libcall
788 then move the libcall note to the next real insn and
789 update the retval note. */
790 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
791 && XEXP (note, 0) != insn)
793 rtx new_libcall_insn = next_real_insn (insn);
794 rtx retval_note = find_reg_note (XEXP (note, 0),
795 REG_RETVAL, NULL_RTX);
796 REG_NOTES (new_libcall_insn)
797 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
798 REG_NOTES (new_libcall_insn));
799 XEXP (retval_note, 0) = new_libcall_insn;
802 /* Do not call delete_insn here since that may change
803 the basic block boundaries which upsets some callers. */
804 PUT_CODE (insn, NOTE);
805 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
806 NOTE_SOURCE_FILE (insn) = 0;
812 /* Delete any jump tables never referenced. We can't delete them at the
813 time of removing tablejump insn as they are referenced by the preceding
814 insns computing the destination, so we delay deleting and garbagecollect
815 them once life information is computed. */
816 static void
817 delete_dead_jumptables ()
819 rtx insn, next;
820 for (insn = get_insns (); insn; insn = next)
822 next = NEXT_INSN (insn);
823 if (GET_CODE (insn) == CODE_LABEL
824 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
825 && GET_CODE (next) == JUMP_INSN
826 && (GET_CODE (PATTERN (next)) == ADDR_VEC
827 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
829 if (rtl_dump_file)
830 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
831 delete_insn (NEXT_INSN (insn));
832 delete_insn (insn);
833 next = NEXT_INSN (next);
838 /* Determine if the stack pointer is constant over the life of the function.
839 Only useful before prologues have been emitted. */
841 static void
842 notice_stack_pointer_modification_1 (x, pat, data)
843 rtx x;
844 rtx pat ATTRIBUTE_UNUSED;
845 void *data ATTRIBUTE_UNUSED;
847 if (x == stack_pointer_rtx
848 /* The stack pointer is only modified indirectly as the result
849 of a push until later in flow. See the comments in rtl.texi
850 regarding Embedded Side-Effects on Addresses. */
851 || (GET_CODE (x) == MEM
852 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
853 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
854 current_function_sp_is_unchanging = 0;
857 static void
858 notice_stack_pointer_modification (f)
859 rtx f;
861 rtx insn;
863 /* Assume that the stack pointer is unchanging if alloca hasn't
864 been used. */
865 current_function_sp_is_unchanging = !current_function_calls_alloca;
866 if (! current_function_sp_is_unchanging)
867 return;
869 for (insn = f; insn; insn = NEXT_INSN (insn))
871 if (INSN_P (insn))
873 /* Check if insn modifies the stack pointer. */
874 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
875 NULL);
876 if (! current_function_sp_is_unchanging)
877 return;
882 /* Mark a register in SET. Hard registers in large modes get all
883 of their component registers set as well. */
885 static void
886 mark_reg (reg, xset)
887 rtx reg;
888 void *xset;
890 regset set = (regset) xset;
891 int regno = REGNO (reg);
893 if (GET_MODE (reg) == BLKmode)
894 abort ();
896 SET_REGNO_REG_SET (set, regno);
897 if (regno < FIRST_PSEUDO_REGISTER)
899 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
900 while (--n > 0)
901 SET_REGNO_REG_SET (set, regno + n);
905 /* Mark those regs which are needed at the end of the function as live
906 at the end of the last basic block. */
908 static void
909 mark_regs_live_at_end (set)
910 regset set;
912 unsigned int i;
914 /* If exiting needs the right stack value, consider the stack pointer
915 live at the end of the function. */
916 if ((HAVE_epilogue && reload_completed)
917 || ! EXIT_IGNORE_STACK
918 || (! FRAME_POINTER_REQUIRED
919 && ! current_function_calls_alloca
920 && flag_omit_frame_pointer)
921 || current_function_sp_is_unchanging)
923 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
926 /* Mark the frame pointer if needed at the end of the function. If
927 we end up eliminating it, it will be removed from the live list
928 of each basic block by reload. */
930 if (! reload_completed || frame_pointer_needed)
932 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
933 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
934 /* If they are different, also mark the hard frame pointer as live. */
935 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
936 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
937 #endif
940 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
941 /* Many architectures have a GP register even without flag_pic.
942 Assume the pic register is not in use, or will be handled by
943 other means, if it is not fixed. */
944 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
945 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
946 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
947 #endif
949 /* Mark all global registers, and all registers used by the epilogue
950 as being live at the end of the function since they may be
951 referenced by our caller. */
952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
953 if (global_regs[i] || EPILOGUE_USES (i))
954 SET_REGNO_REG_SET (set, i);
956 if (HAVE_epilogue && reload_completed)
958 /* Mark all call-saved registers that we actually used. */
959 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
960 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
961 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
962 SET_REGNO_REG_SET (set, i);
965 #ifdef EH_RETURN_DATA_REGNO
966 /* Mark the registers that will contain data for the handler. */
967 if (reload_completed && current_function_calls_eh_return)
968 for (i = 0; ; ++i)
970 unsigned regno = EH_RETURN_DATA_REGNO(i);
971 if (regno == INVALID_REGNUM)
972 break;
973 SET_REGNO_REG_SET (set, regno);
975 #endif
976 #ifdef EH_RETURN_STACKADJ_RTX
977 if ((! HAVE_epilogue || ! reload_completed)
978 && current_function_calls_eh_return)
980 rtx tmp = EH_RETURN_STACKADJ_RTX;
981 if (tmp && REG_P (tmp))
982 mark_reg (tmp, set);
984 #endif
985 #ifdef EH_RETURN_HANDLER_RTX
986 if ((! HAVE_epilogue || ! reload_completed)
987 && current_function_calls_eh_return)
989 rtx tmp = EH_RETURN_HANDLER_RTX;
990 if (tmp && REG_P (tmp))
991 mark_reg (tmp, set);
993 #endif
995 /* Mark function return value. */
996 diddle_return_value (mark_reg, set);
999 /* Callback function for for_each_successor_phi. DATA is a regset.
1000 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1001 INSN, in the regset. */
1003 static int
1004 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1005 rtx insn ATTRIBUTE_UNUSED;
1006 int dest_regno ATTRIBUTE_UNUSED;
1007 int src_regno;
1008 void *data;
1010 regset live = (regset) data;
1011 SET_REGNO_REG_SET (live, src_regno);
1012 return 0;
1015 /* Propagate global life info around the graph of basic blocks. Begin
1016 considering blocks with their corresponding bit set in BLOCKS_IN.
1017 If BLOCKS_IN is null, consider it the universal set.
1019 BLOCKS_OUT is set for every block that was changed. */
1021 static void
1022 calculate_global_regs_live (blocks_in, blocks_out, flags)
1023 sbitmap blocks_in, blocks_out;
1024 int flags;
1026 basic_block *queue, *qhead, *qtail, *qend;
1027 regset tmp, new_live_at_end, call_used;
1028 regset_head tmp_head, call_used_head;
1029 regset_head new_live_at_end_head;
1030 int i;
1032 tmp = INITIALIZE_REG_SET (tmp_head);
1033 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1034 call_used = INITIALIZE_REG_SET (call_used_head);
1036 /* Inconveniently, this is only redily available in hard reg set form. */
1037 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1038 if (call_used_regs[i])
1039 SET_REGNO_REG_SET (call_used, i);
1041 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1042 because the `head == tail' style test for an empty queue doesn't
1043 work with a full queue. */
1044 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1045 qtail = queue;
1046 qhead = qend = queue + n_basic_blocks + 2;
1048 /* Queue the blocks set in the initial mask. Do this in reverse block
1049 number order so that we are more likely for the first round to do
1050 useful work. We use AUX non-null to flag that the block is queued. */
1051 if (blocks_in)
1053 /* Clear out the garbage that might be hanging out in bb->aux. */
1054 for (i = n_basic_blocks - 1; i >= 0; --i)
1055 BASIC_BLOCK (i)->aux = NULL;
1057 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
1059 basic_block bb = BASIC_BLOCK (i);
1060 *--qhead = bb;
1061 bb->aux = bb;
1064 else
1066 for (i = 0; i < n_basic_blocks; ++i)
1068 basic_block bb = BASIC_BLOCK (i);
1069 *--qhead = bb;
1070 bb->aux = bb;
1074 if (blocks_out)
1075 sbitmap_zero (blocks_out);
1077 /* We work through the queue until there are no more blocks. What
1078 is live at the end of this block is precisely the union of what
1079 is live at the beginning of all its successors. So, we set its
1080 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1081 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1082 this block by walking through the instructions in this block in
1083 reverse order and updating as we go. If that changed
1084 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1085 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1087 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1088 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1089 must either be live at the end of the block, or used within the
1090 block. In the latter case, it will certainly never disappear
1091 from GLOBAL_LIVE_AT_START. In the former case, the register
1092 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1093 for one of the successor blocks. By induction, that cannot
1094 occur. */
1095 while (qhead != qtail)
1097 int rescan, changed;
1098 basic_block bb;
1099 edge e;
1101 bb = *qhead++;
1102 if (qhead == qend)
1103 qhead = queue;
1104 bb->aux = NULL;
1106 /* Begin by propagating live_at_start from the successor blocks. */
1107 CLEAR_REG_SET (new_live_at_end);
1108 for (e = bb->succ; e; e = e->succ_next)
1110 basic_block sb = e->dest;
1112 /* Call-clobbered registers die across exception and call edges. */
1113 /* ??? Abnormal call edges ignored for the moment, as this gets
1114 confused by sibling call edges, which crashes reg-stack. */
1115 if (e->flags & EDGE_EH)
1117 bitmap_operation (tmp, sb->global_live_at_start,
1118 call_used, BITMAP_AND_COMPL);
1119 IOR_REG_SET (new_live_at_end, tmp);
1121 else
1122 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1125 /* The all-important stack pointer must always be live. */
1126 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1128 /* Before reload, there are a few registers that must be forced
1129 live everywhere -- which might not already be the case for
1130 blocks within infinite loops. */
1131 if (! reload_completed)
1133 /* Any reference to any pseudo before reload is a potential
1134 reference of the frame pointer. */
1135 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1137 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1138 /* Pseudos with argument area equivalences may require
1139 reloading via the argument pointer. */
1140 if (fixed_regs[ARG_POINTER_REGNUM])
1141 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1142 #endif
1144 /* Any constant, or pseudo with constant equivalences, may
1145 require reloading from memory using the pic register. */
1146 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1147 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1148 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1151 /* Regs used in phi nodes are not included in
1152 global_live_at_start, since they are live only along a
1153 particular edge. Set those regs that are live because of a
1154 phi node alternative corresponding to this particular block. */
1155 if (in_ssa_form)
1156 for_each_successor_phi (bb, &set_phi_alternative_reg,
1157 new_live_at_end);
1159 if (bb == ENTRY_BLOCK_PTR)
1161 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1162 continue;
1165 /* On our first pass through this block, we'll go ahead and continue.
1166 Recognize first pass by local_set NULL. On subsequent passes, we
1167 get to skip out early if live_at_end wouldn't have changed. */
1169 if (bb->local_set == NULL)
1171 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1172 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1173 rescan = 1;
1175 else
1177 /* If any bits were removed from live_at_end, we'll have to
1178 rescan the block. This wouldn't be necessary if we had
1179 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1180 local_live is really dependent on live_at_end. */
1181 CLEAR_REG_SET (tmp);
1182 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1183 new_live_at_end, BITMAP_AND_COMPL);
1185 if (! rescan)
1187 /* If any of the registers in the new live_at_end set are
1188 conditionally set in this basic block, we must rescan.
1189 This is because conditional lifetimes at the end of the
1190 block do not just take the live_at_end set into account,
1191 but also the liveness at the start of each successor
1192 block. We can miss changes in those sets if we only
1193 compare the new live_at_end against the previous one. */
1194 CLEAR_REG_SET (tmp);
1195 rescan = bitmap_operation (tmp, new_live_at_end,
1196 bb->cond_local_set, BITMAP_AND);
1199 if (! rescan)
1201 /* Find the set of changed bits. Take this opportunity
1202 to notice that this set is empty and early out. */
1203 CLEAR_REG_SET (tmp);
1204 changed = bitmap_operation (tmp, bb->global_live_at_end,
1205 new_live_at_end, BITMAP_XOR);
1206 if (! changed)
1207 continue;
1209 /* If any of the changed bits overlap with local_set,
1210 we'll have to rescan the block. Detect overlap by
1211 the AND with ~local_set turning off bits. */
1212 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1213 BITMAP_AND_COMPL);
1217 /* Let our caller know that BB changed enough to require its
1218 death notes updated. */
1219 if (blocks_out)
1220 SET_BIT (blocks_out, bb->index);
1222 if (! rescan)
1224 /* Add to live_at_start the set of all registers in
1225 new_live_at_end that aren't in the old live_at_end. */
1227 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1228 BITMAP_AND_COMPL);
1229 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1231 changed = bitmap_operation (bb->global_live_at_start,
1232 bb->global_live_at_start,
1233 tmp, BITMAP_IOR);
1234 if (! changed)
1235 continue;
1237 else
1239 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1241 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1242 into live_at_start. */
1243 propagate_block (bb, new_live_at_end, bb->local_set,
1244 bb->cond_local_set, flags);
1246 /* If live_at start didn't change, no need to go farther. */
1247 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1248 continue;
1250 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1253 /* Queue all predecessors of BB so that we may re-examine
1254 their live_at_end. */
1255 for (e = bb->pred; e; e = e->pred_next)
1257 basic_block pb = e->src;
1258 if (pb->aux == NULL)
1260 *qtail++ = pb;
1261 if (qtail == qend)
1262 qtail = queue;
1263 pb->aux = pb;
1268 FREE_REG_SET (tmp);
1269 FREE_REG_SET (new_live_at_end);
1270 FREE_REG_SET (call_used);
1272 if (blocks_out)
1274 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1276 basic_block bb = BASIC_BLOCK (i);
1277 FREE_REG_SET (bb->local_set);
1278 FREE_REG_SET (bb->cond_local_set);
1281 else
1283 for (i = n_basic_blocks - 1; i >= 0; --i)
1285 basic_block bb = BASIC_BLOCK (i);
1286 FREE_REG_SET (bb->local_set);
1287 FREE_REG_SET (bb->cond_local_set);
1291 free (queue);
1294 /* Subroutines of life analysis. */
1296 /* Allocate the permanent data structures that represent the results
1297 of life analysis. Not static since used also for stupid life analysis. */
1299 void
1300 allocate_bb_life_data ()
1302 int i;
1304 for (i = 0; i < n_basic_blocks; i++)
1306 basic_block bb = BASIC_BLOCK (i);
1308 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1309 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1312 ENTRY_BLOCK_PTR->global_live_at_end
1313 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1314 EXIT_BLOCK_PTR->global_live_at_start
1315 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1317 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1320 void
1321 allocate_reg_life_data ()
1323 int i;
1325 max_regno = max_reg_num ();
1327 /* Recalculate the register space, in case it has grown. Old style
1328 vector oriented regsets would set regset_{size,bytes} here also. */
1329 allocate_reg_info (max_regno, FALSE, FALSE);
1331 /* Reset all the data we'll collect in propagate_block and its
1332 subroutines. */
1333 for (i = 0; i < max_regno; i++)
1335 REG_N_SETS (i) = 0;
1336 REG_N_REFS (i) = 0;
1337 REG_N_DEATHS (i) = 0;
1338 REG_N_CALLS_CROSSED (i) = 0;
1339 REG_LIVE_LENGTH (i) = 0;
1340 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1344 /* Delete dead instructions for propagate_block. */
1346 static void
1347 propagate_block_delete_insn (bb, insn)
1348 basic_block bb;
1349 rtx insn;
1351 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1352 bool purge = false;
1354 /* If the insn referred to a label, and that label was attached to
1355 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1356 pretty much mandatory to delete it, because the ADDR_VEC may be
1357 referencing labels that no longer exist.
1359 INSN may reference a deleted label, particularly when a jump
1360 table has been optimized into a direct jump. There's no
1361 real good way to fix up the reference to the deleted label
1362 when the label is deleted, so we just allow it here.
1364 After dead code elimination is complete, we do search for
1365 any REG_LABEL notes which reference deleted labels as a
1366 sanity check. */
1368 if (inote && GET_CODE (inote) == CODE_LABEL)
1370 rtx label = XEXP (inote, 0);
1371 rtx next;
1373 /* The label may be forced if it has been put in the constant
1374 pool. If that is the only use we must discard the table
1375 jump following it, but not the label itself. */
1376 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1377 && (next = next_nonnote_insn (label)) != NULL
1378 && GET_CODE (next) == JUMP_INSN
1379 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1380 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1382 rtx pat = PATTERN (next);
1383 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1384 int len = XVECLEN (pat, diff_vec_p);
1385 int i;
1387 for (i = 0; i < len; i++)
1388 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1390 delete_insn (next);
1394 if (bb->end == insn)
1395 purge = true;
1396 delete_insn (insn);
1397 if (purge)
1398 purge_dead_edges (bb);
1401 /* Delete dead libcalls for propagate_block. Return the insn
1402 before the libcall. */
1404 static rtx
1405 propagate_block_delete_libcall ( insn, note)
1406 rtx insn, note;
1408 rtx first = XEXP (note, 0);
1409 rtx before = PREV_INSN (first);
1411 delete_insn_chain (first, insn);
1412 return before;
1415 /* Update the life-status of regs for one insn. Return the previous insn. */
1418 propagate_one_insn (pbi, insn)
1419 struct propagate_block_info *pbi;
1420 rtx insn;
1422 rtx prev = PREV_INSN (insn);
1423 int flags = pbi->flags;
1424 int insn_is_dead = 0;
1425 int libcall_is_dead = 0;
1426 rtx note;
1427 int i;
1429 if (! INSN_P (insn))
1430 return prev;
1432 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1433 if (flags & PROP_SCAN_DEAD_CODE)
1435 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1436 libcall_is_dead = (insn_is_dead && note != 0
1437 && libcall_dead_p (pbi, note, insn));
1440 /* If an instruction consists of just dead store(s) on final pass,
1441 delete it. */
1442 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1444 /* If we're trying to delete a prologue or epilogue instruction
1445 that isn't flagged as possibly being dead, something is wrong.
1446 But if we are keeping the stack pointer depressed, we might well
1447 be deleting insns that are used to compute the amount to update
1448 it by, so they are fine. */
1449 if (reload_completed
1450 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1451 && (TYPE_RETURNS_STACK_DEPRESSED
1452 (TREE_TYPE (current_function_decl))))
1453 && (((HAVE_epilogue || HAVE_prologue)
1454 && prologue_epilogue_contains (insn))
1455 || (HAVE_sibcall_epilogue
1456 && sibcall_epilogue_contains (insn)))
1457 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1458 abort ();
1460 /* Record sets. Do this even for dead instructions, since they
1461 would have killed the values if they hadn't been deleted. */
1462 mark_set_regs (pbi, PATTERN (insn), insn);
1464 /* CC0 is now known to be dead. Either this insn used it,
1465 in which case it doesn't anymore, or clobbered it,
1466 so the next insn can't use it. */
1467 pbi->cc0_live = 0;
1469 if (libcall_is_dead)
1470 prev = propagate_block_delete_libcall ( insn, note);
1471 else
1472 propagate_block_delete_insn (pbi->bb, insn);
1474 return prev;
1477 /* See if this is an increment or decrement that can be merged into
1478 a following memory address. */
1479 #ifdef AUTO_INC_DEC
1481 rtx x = single_set (insn);
1483 /* Does this instruction increment or decrement a register? */
1484 if ((flags & PROP_AUTOINC)
1485 && x != 0
1486 && GET_CODE (SET_DEST (x)) == REG
1487 && (GET_CODE (SET_SRC (x)) == PLUS
1488 || GET_CODE (SET_SRC (x)) == MINUS)
1489 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1490 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1491 /* Ok, look for a following memory ref we can combine with.
1492 If one is found, change the memory ref to a PRE_INC
1493 or PRE_DEC, cancel this insn, and return 1.
1494 Return 0 if nothing has been done. */
1495 && try_pre_increment_1 (pbi, insn))
1496 return prev;
1498 #endif /* AUTO_INC_DEC */
1500 CLEAR_REG_SET (pbi->new_set);
1502 /* If this is not the final pass, and this insn is copying the value of
1503 a library call and it's dead, don't scan the insns that perform the
1504 library call, so that the call's arguments are not marked live. */
1505 if (libcall_is_dead)
1507 /* Record the death of the dest reg. */
1508 mark_set_regs (pbi, PATTERN (insn), insn);
1510 insn = XEXP (note, 0);
1511 return PREV_INSN (insn);
1513 else if (GET_CODE (PATTERN (insn)) == SET
1514 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1515 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1516 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1517 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1518 /* We have an insn to pop a constant amount off the stack.
1519 (Such insns use PLUS regardless of the direction of the stack,
1520 and any insn to adjust the stack by a constant is always a pop.)
1521 These insns, if not dead stores, have no effect on life. */
1523 else
1525 /* Any regs live at the time of a call instruction must not go
1526 in a register clobbered by calls. Find all regs now live and
1527 record this for them. */
1529 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1530 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1531 { REG_N_CALLS_CROSSED (i)++; });
1533 /* Record sets. Do this even for dead instructions, since they
1534 would have killed the values if they hadn't been deleted. */
1535 mark_set_regs (pbi, PATTERN (insn), insn);
1537 if (GET_CODE (insn) == CALL_INSN)
1539 int i;
1540 rtx note, cond;
1542 cond = NULL_RTX;
1543 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1544 cond = COND_EXEC_TEST (PATTERN (insn));
1546 /* Non-constant calls clobber memory. */
1547 if (! CONST_OR_PURE_CALL_P (insn))
1549 free_EXPR_LIST_list (&pbi->mem_set_list);
1550 pbi->mem_set_list_len = 0;
1553 /* There may be extra registers to be clobbered. */
1554 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1555 note;
1556 note = XEXP (note, 1))
1557 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1558 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1559 cond, insn, pbi->flags);
1561 /* Calls change all call-used and global registers. */
1562 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1563 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1565 /* We do not want REG_UNUSED notes for these registers. */
1566 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1567 cond, insn,
1568 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1572 /* If an insn doesn't use CC0, it becomes dead since we assume
1573 that every insn clobbers it. So show it dead here;
1574 mark_used_regs will set it live if it is referenced. */
1575 pbi->cc0_live = 0;
1577 /* Record uses. */
1578 if (! insn_is_dead)
1579 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1581 /* Sometimes we may have inserted something before INSN (such as a move)
1582 when we make an auto-inc. So ensure we will scan those insns. */
1583 #ifdef AUTO_INC_DEC
1584 prev = PREV_INSN (insn);
1585 #endif
1587 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1589 int i;
1590 rtx note, cond;
1592 cond = NULL_RTX;
1593 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1594 cond = COND_EXEC_TEST (PATTERN (insn));
1596 /* Calls use their arguments. */
1597 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1598 note;
1599 note = XEXP (note, 1))
1600 if (GET_CODE (XEXP (note, 0)) == USE)
1601 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1602 cond, insn);
1604 /* The stack ptr is used (honorarily) by a CALL insn. */
1605 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1607 /* Calls may also reference any of the global registers,
1608 so they are made live. */
1609 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1610 if (global_regs[i])
1611 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1612 cond, insn);
1616 /* On final pass, update counts of how many insns in which each reg
1617 is live. */
1618 if (flags & PROP_REG_INFO)
1619 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1620 { REG_LIVE_LENGTH (i)++; });
1622 return prev;
1625 /* Initialize a propagate_block_info struct for public consumption.
1626 Note that the structure itself is opaque to this file, but that
1627 the user can use the regsets provided here. */
1629 struct propagate_block_info *
1630 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1631 basic_block bb;
1632 regset live, local_set, cond_local_set;
1633 int flags;
1635 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1637 pbi->bb = bb;
1638 pbi->reg_live = live;
1639 pbi->mem_set_list = NULL_RTX;
1640 pbi->mem_set_list_len = 0;
1641 pbi->local_set = local_set;
1642 pbi->cond_local_set = cond_local_set;
1643 pbi->cc0_live = 0;
1644 pbi->flags = flags;
1646 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1647 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1648 else
1649 pbi->reg_next_use = NULL;
1651 pbi->new_set = BITMAP_XMALLOC ();
1653 #ifdef HAVE_conditional_execution
1654 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1655 free_reg_cond_life_info);
1656 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1658 /* If this block ends in a conditional branch, for each register live
1659 from one side of the branch and not the other, record the register
1660 as conditionally dead. */
1661 if (GET_CODE (bb->end) == JUMP_INSN
1662 && any_condjump_p (bb->end))
1664 regset_head diff_head;
1665 regset diff = INITIALIZE_REG_SET (diff_head);
1666 basic_block bb_true, bb_false;
1667 rtx cond_true, cond_false, set_src;
1668 int i;
1670 /* Identify the successor blocks. */
1671 bb_true = bb->succ->dest;
1672 if (bb->succ->succ_next != NULL)
1674 bb_false = bb->succ->succ_next->dest;
1676 if (bb->succ->flags & EDGE_FALLTHRU)
1678 basic_block t = bb_false;
1679 bb_false = bb_true;
1680 bb_true = t;
1682 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1683 abort ();
1685 else
1687 /* This can happen with a conditional jump to the next insn. */
1688 if (JUMP_LABEL (bb->end) != bb_true->head)
1689 abort ();
1691 /* Simplest way to do nothing. */
1692 bb_false = bb_true;
1695 /* Extract the condition from the branch. */
1696 set_src = SET_SRC (pc_set (bb->end));
1697 cond_true = XEXP (set_src, 0);
1698 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1699 GET_MODE (cond_true), XEXP (cond_true, 0),
1700 XEXP (cond_true, 1));
1701 if (GET_CODE (XEXP (set_src, 1)) == PC)
1703 rtx t = cond_false;
1704 cond_false = cond_true;
1705 cond_true = t;
1708 /* Compute which register lead different lives in the successors. */
1709 if (bitmap_operation (diff, bb_true->global_live_at_start,
1710 bb_false->global_live_at_start, BITMAP_XOR))
1712 rtx reg = XEXP (cond_true, 0);
1714 if (GET_CODE (reg) == SUBREG)
1715 reg = SUBREG_REG (reg);
1717 if (GET_CODE (reg) != REG)
1718 abort ();
1720 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1722 /* For each such register, mark it conditionally dead. */
1723 EXECUTE_IF_SET_IN_REG_SET
1724 (diff, 0, i,
1726 struct reg_cond_life_info *rcli;
1727 rtx cond;
1729 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1731 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1732 cond = cond_false;
1733 else
1734 cond = cond_true;
1735 rcli->condition = cond;
1736 rcli->stores = const0_rtx;
1737 rcli->orig_condition = cond;
1739 splay_tree_insert (pbi->reg_cond_dead, i,
1740 (splay_tree_value) rcli);
1744 FREE_REG_SET (diff);
1746 #endif
1748 /* If this block has no successors, any stores to the frame that aren't
1749 used later in the block are dead. So make a pass over the block
1750 recording any such that are made and show them dead at the end. We do
1751 a very conservative and simple job here. */
1752 if (optimize
1753 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1754 && (TYPE_RETURNS_STACK_DEPRESSED
1755 (TREE_TYPE (current_function_decl))))
1756 && (flags & PROP_SCAN_DEAD_CODE)
1757 && (bb->succ == NULL
1758 || (bb->succ->succ_next == NULL
1759 && bb->succ->dest == EXIT_BLOCK_PTR
1760 && ! current_function_calls_eh_return)))
1762 rtx insn, set;
1763 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1764 if (GET_CODE (insn) == INSN
1765 && (set = single_set (insn))
1766 && GET_CODE (SET_DEST (set)) == MEM)
1768 rtx mem = SET_DEST (set);
1769 rtx canon_mem = canon_rtx (mem);
1771 /* This optimization is performed by faking a store to the
1772 memory at the end of the block. This doesn't work for
1773 unchanging memories because multiple stores to unchanging
1774 memory is illegal and alias analysis doesn't consider it. */
1775 if (RTX_UNCHANGING_P (canon_mem))
1776 continue;
1778 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1779 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1780 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1781 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1782 add_to_mem_set_list (pbi, canon_mem);
1786 return pbi;
1789 /* Release a propagate_block_info struct. */
1791 void
1792 free_propagate_block_info (pbi)
1793 struct propagate_block_info *pbi;
1795 free_EXPR_LIST_list (&pbi->mem_set_list);
1797 BITMAP_XFREE (pbi->new_set);
1799 #ifdef HAVE_conditional_execution
1800 splay_tree_delete (pbi->reg_cond_dead);
1801 BITMAP_XFREE (pbi->reg_cond_reg);
1802 #endif
1804 if (pbi->reg_next_use)
1805 free (pbi->reg_next_use);
1807 free (pbi);
1810 /* Compute the registers live at the beginning of a basic block BB from
1811 those live at the end.
1813 When called, REG_LIVE contains those live at the end. On return, it
1814 contains those live at the beginning.
1816 LOCAL_SET, if non-null, will be set with all registers killed
1817 unconditionally by this basic block.
1818 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1819 killed conditionally by this basic block. If there is any unconditional
1820 set of a register, then the corresponding bit will be set in LOCAL_SET
1821 and cleared in COND_LOCAL_SET.
1822 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1823 case, the resulting set will be equal to the union of the two sets that
1824 would otherwise be computed.
1826 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
1829 propagate_block (bb, live, local_set, cond_local_set, flags)
1830 basic_block bb;
1831 regset live;
1832 regset local_set;
1833 regset cond_local_set;
1834 int flags;
1836 struct propagate_block_info *pbi;
1837 rtx insn, prev;
1838 int changed;
1840 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
1842 if (flags & PROP_REG_INFO)
1844 int i;
1846 /* Process the regs live at the end of the block.
1847 Mark them as not local to any one basic block. */
1848 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
1849 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
1852 /* Scan the block an insn at a time from end to beginning. */
1854 changed = 0;
1855 for (insn = bb->end;; insn = prev)
1857 /* If this is a call to `setjmp' et al, warn if any
1858 non-volatile datum is live. */
1859 if ((flags & PROP_REG_INFO)
1860 && GET_CODE (insn) == CALL_INSN
1861 && find_reg_note (insn, REG_SETJMP, NULL))
1862 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
1864 prev = propagate_one_insn (pbi, insn);
1865 changed |= NEXT_INSN (prev) != insn;
1867 if (insn == bb->head)
1868 break;
1871 free_propagate_block_info (pbi);
1873 return changed;
1876 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1877 (SET expressions whose destinations are registers dead after the insn).
1878 NEEDED is the regset that says which regs are alive after the insn.
1880 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
1882 If X is the entire body of an insn, NOTES contains the reg notes
1883 pertaining to the insn. */
1885 static int
1886 insn_dead_p (pbi, x, call_ok, notes)
1887 struct propagate_block_info *pbi;
1888 rtx x;
1889 int call_ok;
1890 rtx notes ATTRIBUTE_UNUSED;
1892 enum rtx_code code = GET_CODE (x);
1894 #ifdef AUTO_INC_DEC
1895 /* As flow is invoked after combine, we must take existing AUTO_INC
1896 expressions into account. */
1897 for (; notes; notes = XEXP (notes, 1))
1899 if (REG_NOTE_KIND (notes) == REG_INC)
1901 int regno = REGNO (XEXP (notes, 0));
1903 /* Don't delete insns to set global regs. */
1904 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1905 || REGNO_REG_SET_P (pbi->reg_live, regno))
1906 return 0;
1909 #endif
1911 /* If setting something that's a reg or part of one,
1912 see if that register's altered value will be live. */
1914 if (code == SET)
1916 rtx r = SET_DEST (x);
1918 #ifdef HAVE_cc0
1919 if (GET_CODE (r) == CC0)
1920 return ! pbi->cc0_live;
1921 #endif
1923 /* A SET that is a subroutine call cannot be dead. */
1924 if (GET_CODE (SET_SRC (x)) == CALL)
1926 if (! call_ok)
1927 return 0;
1930 /* Don't eliminate loads from volatile memory or volatile asms. */
1931 else if (volatile_refs_p (SET_SRC (x)))
1932 return 0;
1934 if (GET_CODE (r) == MEM)
1936 rtx temp, canon_r;
1938 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
1939 return 0;
1941 canon_r = canon_rtx (r);
1943 /* Walk the set of memory locations we are currently tracking
1944 and see if one is an identical match to this memory location.
1945 If so, this memory write is dead (remember, we're walking
1946 backwards from the end of the block to the start). Since
1947 rtx_equal_p does not check the alias set or flags, we also
1948 must have the potential for them to conflict (anti_dependence). */
1949 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
1950 if (anti_dependence (r, XEXP (temp, 0)))
1952 rtx mem = XEXP (temp, 0);
1954 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
1955 && (GET_MODE_SIZE (GET_MODE (canon_r))
1956 <= GET_MODE_SIZE (GET_MODE (mem))))
1957 return 1;
1959 #ifdef AUTO_INC_DEC
1960 /* Check if memory reference matches an auto increment. Only
1961 post increment/decrement or modify are valid. */
1962 if (GET_MODE (mem) == GET_MODE (r)
1963 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
1964 || GET_CODE (XEXP (mem, 0)) == POST_INC
1965 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
1966 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
1967 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
1968 return 1;
1969 #endif
1972 else
1974 while (GET_CODE (r) == SUBREG
1975 || GET_CODE (r) == STRICT_LOW_PART
1976 || GET_CODE (r) == ZERO_EXTRACT)
1977 r = XEXP (r, 0);
1979 if (GET_CODE (r) == REG)
1981 int regno = REGNO (r);
1983 /* Obvious. */
1984 if (REGNO_REG_SET_P (pbi->reg_live, regno))
1985 return 0;
1987 /* If this is a hard register, verify that subsequent
1988 words are not needed. */
1989 if (regno < FIRST_PSEUDO_REGISTER)
1991 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1993 while (--n > 0)
1994 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
1995 return 0;
1998 /* Don't delete insns to set global regs. */
1999 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2000 return 0;
2002 /* Make sure insns to set the stack pointer aren't deleted. */
2003 if (regno == STACK_POINTER_REGNUM)
2004 return 0;
2006 /* ??? These bits might be redundant with the force live bits
2007 in calculate_global_regs_live. We would delete from
2008 sequential sets; whether this actually affects real code
2009 for anything but the stack pointer I don't know. */
2010 /* Make sure insns to set the frame pointer aren't deleted. */
2011 if (regno == FRAME_POINTER_REGNUM
2012 && (! reload_completed || frame_pointer_needed))
2013 return 0;
2014 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2015 if (regno == HARD_FRAME_POINTER_REGNUM
2016 && (! reload_completed || frame_pointer_needed))
2017 return 0;
2018 #endif
2020 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2021 /* Make sure insns to set arg pointer are never deleted
2022 (if the arg pointer isn't fixed, there will be a USE
2023 for it, so we can treat it normally). */
2024 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2025 return 0;
2026 #endif
2028 /* Otherwise, the set is dead. */
2029 return 1;
2034 /* If performing several activities, insn is dead if each activity
2035 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2036 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2037 worth keeping. */
2038 else if (code == PARALLEL)
2040 int i = XVECLEN (x, 0);
2042 for (i--; i >= 0; i--)
2043 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2044 && GET_CODE (XVECEXP (x, 0, i)) != USE
2045 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2046 return 0;
2048 return 1;
2051 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2052 is not necessarily true for hard registers. */
2053 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2054 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2055 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2056 return 1;
2058 /* We do not check other CLOBBER or USE here. An insn consisting of just
2059 a CLOBBER or just a USE should not be deleted. */
2060 return 0;
2063 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2064 return 1 if the entire library call is dead.
2065 This is true if INSN copies a register (hard or pseudo)
2066 and if the hard return reg of the call insn is dead.
2067 (The caller should have tested the destination of the SET inside
2068 INSN already for death.)
2070 If this insn doesn't just copy a register, then we don't
2071 have an ordinary libcall. In that case, cse could not have
2072 managed to substitute the source for the dest later on,
2073 so we can assume the libcall is dead.
2075 PBI is the block info giving pseudoregs live before this insn.
2076 NOTE is the REG_RETVAL note of the insn. */
2078 static int
2079 libcall_dead_p (pbi, note, insn)
2080 struct propagate_block_info *pbi;
2081 rtx note;
2082 rtx insn;
2084 rtx x = single_set (insn);
2086 if (x)
2088 rtx r = SET_SRC (x);
2090 if (GET_CODE (r) == REG)
2092 rtx call = XEXP (note, 0);
2093 rtx call_pat;
2094 int i;
2096 /* Find the call insn. */
2097 while (call != insn && GET_CODE (call) != CALL_INSN)
2098 call = NEXT_INSN (call);
2100 /* If there is none, do nothing special,
2101 since ordinary death handling can understand these insns. */
2102 if (call == insn)
2103 return 0;
2105 /* See if the hard reg holding the value is dead.
2106 If this is a PARALLEL, find the call within it. */
2107 call_pat = PATTERN (call);
2108 if (GET_CODE (call_pat) == PARALLEL)
2110 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2111 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2112 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2113 break;
2115 /* This may be a library call that is returning a value
2116 via invisible pointer. Do nothing special, since
2117 ordinary death handling can understand these insns. */
2118 if (i < 0)
2119 return 0;
2121 call_pat = XVECEXP (call_pat, 0, i);
2124 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2127 return 1;
2130 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2131 live at function entry. Don't count global register variables, variables
2132 in registers that can be used for function arg passing, or variables in
2133 fixed hard registers. */
2136 regno_uninitialized (regno)
2137 int regno;
2139 if (n_basic_blocks == 0
2140 || (regno < FIRST_PSEUDO_REGISTER
2141 && (global_regs[regno]
2142 || fixed_regs[regno]
2143 || FUNCTION_ARG_REGNO_P (regno))))
2144 return 0;
2146 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
2149 /* 1 if register REGNO was alive at a place where `setjmp' was called
2150 and was set more than once or is an argument.
2151 Such regs may be clobbered by `longjmp'. */
2154 regno_clobbered_at_setjmp (regno)
2155 int regno;
2157 if (n_basic_blocks == 0)
2158 return 0;
2160 return ((REG_N_SETS (regno) > 1
2161 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
2162 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2165 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2166 maximal list size; look for overlaps in mode and select the largest. */
2167 static void
2168 add_to_mem_set_list (pbi, mem)
2169 struct propagate_block_info *pbi;
2170 rtx mem;
2172 rtx i;
2174 /* We don't know how large a BLKmode store is, so we must not
2175 take them into consideration. */
2176 if (GET_MODE (mem) == BLKmode)
2177 return;
2179 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2181 rtx e = XEXP (i, 0);
2182 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2184 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2186 #ifdef AUTO_INC_DEC
2187 /* If we must store a copy of the mem, we can just modify
2188 the mode of the stored copy. */
2189 if (pbi->flags & PROP_AUTOINC)
2190 PUT_MODE (e, GET_MODE (mem));
2191 else
2192 #endif
2193 XEXP (i, 0) = mem;
2195 return;
2199 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2201 #ifdef AUTO_INC_DEC
2202 /* Store a copy of mem, otherwise the address may be
2203 scrogged by find_auto_inc. */
2204 if (pbi->flags & PROP_AUTOINC)
2205 mem = shallow_copy_rtx (mem);
2206 #endif
2207 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2208 pbi->mem_set_list_len++;
2212 /* INSN references memory, possibly using autoincrement addressing modes.
2213 Find any entries on the mem_set_list that need to be invalidated due
2214 to an address change. */
2216 static void
2217 invalidate_mems_from_autoinc (pbi, insn)
2218 struct propagate_block_info *pbi;
2219 rtx insn;
2221 rtx note = REG_NOTES (insn);
2222 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2223 if (REG_NOTE_KIND (note) == REG_INC)
2224 invalidate_mems_from_set (pbi, XEXP (note, 0));
2227 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2229 static void
2230 invalidate_mems_from_set (pbi, exp)
2231 struct propagate_block_info *pbi;
2232 rtx exp;
2234 rtx temp = pbi->mem_set_list;
2235 rtx prev = NULL_RTX;
2236 rtx next;
2238 while (temp)
2240 next = XEXP (temp, 1);
2241 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2243 /* Splice this entry out of the list. */
2244 if (prev)
2245 XEXP (prev, 1) = next;
2246 else
2247 pbi->mem_set_list = next;
2248 free_EXPR_LIST_node (temp);
2249 pbi->mem_set_list_len--;
2251 else
2252 prev = temp;
2253 temp = next;
2257 /* Process the registers that are set within X. Their bits are set to
2258 1 in the regset DEAD, because they are dead prior to this insn.
2260 If INSN is nonzero, it is the insn being processed.
2262 FLAGS is the set of operations to perform. */
2264 static void
2265 mark_set_regs (pbi, x, insn)
2266 struct propagate_block_info *pbi;
2267 rtx x, insn;
2269 rtx cond = NULL_RTX;
2270 rtx link;
2271 enum rtx_code code;
2273 if (insn)
2274 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2276 if (REG_NOTE_KIND (link) == REG_INC)
2277 mark_set_1 (pbi, SET, XEXP (link, 0),
2278 (GET_CODE (x) == COND_EXEC
2279 ? COND_EXEC_TEST (x) : NULL_RTX),
2280 insn, pbi->flags);
2282 retry:
2283 switch (code = GET_CODE (x))
2285 case SET:
2286 case CLOBBER:
2287 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2288 return;
2290 case COND_EXEC:
2291 cond = COND_EXEC_TEST (x);
2292 x = COND_EXEC_CODE (x);
2293 goto retry;
2295 case PARALLEL:
2297 int i;
2299 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2301 rtx sub = XVECEXP (x, 0, i);
2302 switch (code = GET_CODE (sub))
2304 case COND_EXEC:
2305 if (cond != NULL_RTX)
2306 abort ();
2308 cond = COND_EXEC_TEST (sub);
2309 sub = COND_EXEC_CODE (sub);
2310 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2311 break;
2312 /* Fall through. */
2314 case SET:
2315 case CLOBBER:
2316 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2317 break;
2319 default:
2320 break;
2323 break;
2326 default:
2327 break;
2331 /* Process a single set, which appears in INSN. REG (which may not
2332 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2333 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2334 If the set is conditional (because it appear in a COND_EXEC), COND
2335 will be the condition. */
2337 static void
2338 mark_set_1 (pbi, code, reg, cond, insn, flags)
2339 struct propagate_block_info *pbi;
2340 enum rtx_code code;
2341 rtx reg, cond, insn;
2342 int flags;
2344 int regno_first = -1, regno_last = -1;
2345 unsigned long not_dead = 0;
2346 int i;
2348 /* Modifying just one hardware register of a multi-reg value or just a
2349 byte field of a register does not mean the value from before this insn
2350 is now dead. Of course, if it was dead after it's unused now. */
2352 switch (GET_CODE (reg))
2354 case PARALLEL:
2355 /* Some targets place small structures in registers for return values of
2356 functions. We have to detect this case specially here to get correct
2357 flow information. */
2358 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2359 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2360 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2361 flags);
2362 return;
2364 case ZERO_EXTRACT:
2365 case SIGN_EXTRACT:
2366 case STRICT_LOW_PART:
2367 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2369 reg = XEXP (reg, 0);
2370 while (GET_CODE (reg) == SUBREG
2371 || GET_CODE (reg) == ZERO_EXTRACT
2372 || GET_CODE (reg) == SIGN_EXTRACT
2373 || GET_CODE (reg) == STRICT_LOW_PART);
2374 if (GET_CODE (reg) == MEM)
2375 break;
2376 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2377 /* Fall through. */
2379 case REG:
2380 regno_last = regno_first = REGNO (reg);
2381 if (regno_first < FIRST_PSEUDO_REGISTER)
2382 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2383 break;
2385 case SUBREG:
2386 if (GET_CODE (SUBREG_REG (reg)) == REG)
2388 enum machine_mode outer_mode = GET_MODE (reg);
2389 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2391 /* Identify the range of registers affected. This is moderately
2392 tricky for hard registers. See alter_subreg. */
2394 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2395 if (regno_first < FIRST_PSEUDO_REGISTER)
2397 regno_first += subreg_regno_offset (regno_first, inner_mode,
2398 SUBREG_BYTE (reg),
2399 outer_mode);
2400 regno_last = (regno_first
2401 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2403 /* Since we've just adjusted the register number ranges, make
2404 sure REG matches. Otherwise some_was_live will be clear
2405 when it shouldn't have been, and we'll create incorrect
2406 REG_UNUSED notes. */
2407 reg = gen_rtx_REG (outer_mode, regno_first);
2409 else
2411 /* If the number of words in the subreg is less than the number
2412 of words in the full register, we have a well-defined partial
2413 set. Otherwise the high bits are undefined.
2415 This is only really applicable to pseudos, since we just took
2416 care of multi-word hard registers. */
2417 if (((GET_MODE_SIZE (outer_mode)
2418 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2419 < ((GET_MODE_SIZE (inner_mode)
2420 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2421 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2422 regno_first);
2424 reg = SUBREG_REG (reg);
2427 else
2428 reg = SUBREG_REG (reg);
2429 break;
2431 default:
2432 break;
2435 /* If this set is a MEM, then it kills any aliased writes.
2436 If this set is a REG, then it kills any MEMs which use the reg. */
2437 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2439 if (GET_CODE (reg) == REG)
2440 invalidate_mems_from_set (pbi, reg);
2442 /* If the memory reference had embedded side effects (autoincrement
2443 address modes. Then we may need to kill some entries on the
2444 memory set list. */
2445 if (insn && GET_CODE (reg) == MEM)
2446 invalidate_mems_from_autoinc (pbi, insn);
2448 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2449 /* ??? With more effort we could track conditional memory life. */
2450 && ! cond
2451 /* There are no REG_INC notes for SP, so we can't assume we'll see
2452 everything that invalidates it. To be safe, don't eliminate any
2453 stores though SP; none of them should be redundant anyway. */
2454 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2455 add_to_mem_set_list (pbi, canon_rtx (reg));
2458 if (GET_CODE (reg) == REG
2459 && ! (regno_first == FRAME_POINTER_REGNUM
2460 && (! reload_completed || frame_pointer_needed))
2461 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2462 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2463 && (! reload_completed || frame_pointer_needed))
2464 #endif
2465 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2466 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2467 #endif
2470 int some_was_live = 0, some_was_dead = 0;
2472 for (i = regno_first; i <= regno_last; ++i)
2474 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2475 if (pbi->local_set)
2477 /* Order of the set operation matters here since both
2478 sets may be the same. */
2479 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2480 if (cond != NULL_RTX
2481 && ! REGNO_REG_SET_P (pbi->local_set, i))
2482 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2483 else
2484 SET_REGNO_REG_SET (pbi->local_set, i);
2486 if (code != CLOBBER)
2487 SET_REGNO_REG_SET (pbi->new_set, i);
2489 some_was_live |= needed_regno;
2490 some_was_dead |= ! needed_regno;
2493 #ifdef HAVE_conditional_execution
2494 /* Consider conditional death in deciding that the register needs
2495 a death note. */
2496 if (some_was_live && ! not_dead
2497 /* The stack pointer is never dead. Well, not strictly true,
2498 but it's very difficult to tell from here. Hopefully
2499 combine_stack_adjustments will fix up the most egregious
2500 errors. */
2501 && regno_first != STACK_POINTER_REGNUM)
2503 for (i = regno_first; i <= regno_last; ++i)
2504 if (! mark_regno_cond_dead (pbi, i, cond))
2505 not_dead |= ((unsigned long) 1) << (i - regno_first);
2507 #endif
2509 /* Additional data to record if this is the final pass. */
2510 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2511 | PROP_DEATH_NOTES | PROP_AUTOINC))
2513 rtx y;
2514 int blocknum = pbi->bb->index;
2516 y = NULL_RTX;
2517 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2519 y = pbi->reg_next_use[regno_first];
2521 /* The next use is no longer next, since a store intervenes. */
2522 for (i = regno_first; i <= regno_last; ++i)
2523 pbi->reg_next_use[i] = 0;
2526 if (flags & PROP_REG_INFO)
2528 for (i = regno_first; i <= regno_last; ++i)
2530 /* Count (weighted) references, stores, etc. This counts a
2531 register twice if it is modified, but that is correct. */
2532 REG_N_SETS (i) += 1;
2533 REG_N_REFS (i) += 1;
2534 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2536 /* The insns where a reg is live are normally counted
2537 elsewhere, but we want the count to include the insn
2538 where the reg is set, and the normal counting mechanism
2539 would not count it. */
2540 REG_LIVE_LENGTH (i) += 1;
2543 /* If this is a hard reg, record this function uses the reg. */
2544 if (regno_first < FIRST_PSEUDO_REGISTER)
2546 for (i = regno_first; i <= regno_last; i++)
2547 regs_ever_live[i] = 1;
2549 else
2551 /* Keep track of which basic blocks each reg appears in. */
2552 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2553 REG_BASIC_BLOCK (regno_first) = blocknum;
2554 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2555 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2559 if (! some_was_dead)
2561 if (flags & PROP_LOG_LINKS)
2563 /* Make a logical link from the next following insn
2564 that uses this register, back to this insn.
2565 The following insns have already been processed.
2567 We don't build a LOG_LINK for hard registers containing
2568 in ASM_OPERANDs. If these registers get replaced,
2569 we might wind up changing the semantics of the insn,
2570 even if reload can make what appear to be valid
2571 assignments later. */
2572 if (y && (BLOCK_NUM (y) == blocknum)
2573 && (regno_first >= FIRST_PSEUDO_REGISTER
2574 || asm_noperands (PATTERN (y)) < 0))
2575 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2578 else if (not_dead)
2580 else if (! some_was_live)
2582 if (flags & PROP_REG_INFO)
2583 REG_N_DEATHS (regno_first) += 1;
2585 if (flags & PROP_DEATH_NOTES)
2587 /* Note that dead stores have already been deleted
2588 when possible. If we get here, we have found a
2589 dead store that cannot be eliminated (because the
2590 same insn does something useful). Indicate this
2591 by marking the reg being set as dying here. */
2592 REG_NOTES (insn)
2593 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2596 else
2598 if (flags & PROP_DEATH_NOTES)
2600 /* This is a case where we have a multi-word hard register
2601 and some, but not all, of the words of the register are
2602 needed in subsequent insns. Write REG_UNUSED notes
2603 for those parts that were not needed. This case should
2604 be rare. */
2606 for (i = regno_first; i <= regno_last; ++i)
2607 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2608 REG_NOTES (insn)
2609 = alloc_EXPR_LIST (REG_UNUSED,
2610 gen_rtx_REG (reg_raw_mode[i], i),
2611 REG_NOTES (insn));
2616 /* Mark the register as being dead. */
2617 if (some_was_live
2618 /* The stack pointer is never dead. Well, not strictly true,
2619 but it's very difficult to tell from here. Hopefully
2620 combine_stack_adjustments will fix up the most egregious
2621 errors. */
2622 && regno_first != STACK_POINTER_REGNUM)
2624 for (i = regno_first; i <= regno_last; ++i)
2625 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2626 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2629 else if (GET_CODE (reg) == REG)
2631 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2632 pbi->reg_next_use[regno_first] = 0;
2635 /* If this is the last pass and this is a SCRATCH, show it will be dying
2636 here and count it. */
2637 else if (GET_CODE (reg) == SCRATCH)
2639 if (flags & PROP_DEATH_NOTES)
2640 REG_NOTES (insn)
2641 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2645 #ifdef HAVE_conditional_execution
2646 /* Mark REGNO conditionally dead.
2647 Return true if the register is now unconditionally dead. */
2649 static int
2650 mark_regno_cond_dead (pbi, regno, cond)
2651 struct propagate_block_info *pbi;
2652 int regno;
2653 rtx cond;
2655 /* If this is a store to a predicate register, the value of the
2656 predicate is changing, we don't know that the predicate as seen
2657 before is the same as that seen after. Flush all dependent
2658 conditions from reg_cond_dead. This will make all such
2659 conditionally live registers unconditionally live. */
2660 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2661 flush_reg_cond_reg (pbi, regno);
2663 /* If this is an unconditional store, remove any conditional
2664 life that may have existed. */
2665 if (cond == NULL_RTX)
2666 splay_tree_remove (pbi->reg_cond_dead, regno);
2667 else
2669 splay_tree_node node;
2670 struct reg_cond_life_info *rcli;
2671 rtx ncond;
2673 /* Otherwise this is a conditional set. Record that fact.
2674 It may have been conditionally used, or there may be a
2675 subsequent set with a complimentary condition. */
2677 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2678 if (node == NULL)
2680 /* The register was unconditionally live previously.
2681 Record the current condition as the condition under
2682 which it is dead. */
2683 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2684 rcli->condition = cond;
2685 rcli->stores = cond;
2686 rcli->orig_condition = const0_rtx;
2687 splay_tree_insert (pbi->reg_cond_dead, regno,
2688 (splay_tree_value) rcli);
2690 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2692 /* Not unconditionaly dead. */
2693 return 0;
2695 else
2697 /* The register was conditionally live previously.
2698 Add the new condition to the old. */
2699 rcli = (struct reg_cond_life_info *) node->value;
2700 ncond = rcli->condition;
2701 ncond = ior_reg_cond (ncond, cond, 1);
2702 if (rcli->stores == const0_rtx)
2703 rcli->stores = cond;
2704 else if (rcli->stores != const1_rtx)
2705 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2707 /* If the register is now unconditionally dead, remove the entry
2708 in the splay_tree. A register is unconditionally dead if the
2709 dead condition ncond is true. A register is also unconditionally
2710 dead if the sum of all conditional stores is an unconditional
2711 store (stores is true), and the dead condition is identically the
2712 same as the original dead condition initialized at the end of
2713 the block. This is a pointer compare, not an rtx_equal_p
2714 compare. */
2715 if (ncond == const1_rtx
2716 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2717 splay_tree_remove (pbi->reg_cond_dead, regno);
2718 else
2720 rcli->condition = ncond;
2722 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2724 /* Not unconditionaly dead. */
2725 return 0;
2730 return 1;
2733 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2735 static void
2736 free_reg_cond_life_info (value)
2737 splay_tree_value value;
2739 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2740 free (rcli);
2743 /* Helper function for flush_reg_cond_reg. */
2745 static int
2746 flush_reg_cond_reg_1 (node, data)
2747 splay_tree_node node;
2748 void *data;
2750 struct reg_cond_life_info *rcli;
2751 int *xdata = (int *) data;
2752 unsigned int regno = xdata[0];
2754 /* Don't need to search if last flushed value was farther on in
2755 the in-order traversal. */
2756 if (xdata[1] >= (int) node->key)
2757 return 0;
2759 /* Splice out portions of the expression that refer to regno. */
2760 rcli = (struct reg_cond_life_info *) node->value;
2761 rcli->condition = elim_reg_cond (rcli->condition, regno);
2762 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2763 rcli->stores = elim_reg_cond (rcli->stores, regno);
2765 /* If the entire condition is now false, signal the node to be removed. */
2766 if (rcli->condition == const0_rtx)
2768 xdata[1] = node->key;
2769 return -1;
2771 else if (rcli->condition == const1_rtx)
2772 abort ();
2774 return 0;
2777 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2779 static void
2780 flush_reg_cond_reg (pbi, regno)
2781 struct propagate_block_info *pbi;
2782 int regno;
2784 int pair[2];
2786 pair[0] = regno;
2787 pair[1] = -1;
2788 while (splay_tree_foreach (pbi->reg_cond_dead,
2789 flush_reg_cond_reg_1, pair) == -1)
2790 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2792 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2795 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2796 For ior/and, the ADD flag determines whether we want to add the new
2797 condition X to the old one unconditionally. If it is zero, we will
2798 only return a new expression if X allows us to simplify part of
2799 OLD, otherwise we return OLD unchanged to the caller.
2800 If ADD is nonzero, we will return a new condition in all cases. The
2801 toplevel caller of one of these functions should always pass 1 for
2802 ADD. */
2804 static rtx
2805 ior_reg_cond (old, x, add)
2806 rtx old, x;
2807 int add;
2809 rtx op0, op1;
2811 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2813 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2814 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2815 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2816 return const1_rtx;
2817 if (GET_CODE (x) == GET_CODE (old)
2818 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2819 return old;
2820 if (! add)
2821 return old;
2822 return gen_rtx_IOR (0, old, x);
2825 switch (GET_CODE (old))
2827 case IOR:
2828 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2829 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2830 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2832 if (op0 == const0_rtx)
2833 return op1;
2834 if (op1 == const0_rtx)
2835 return op0;
2836 if (op0 == const1_rtx || op1 == const1_rtx)
2837 return const1_rtx;
2838 if (op0 == XEXP (old, 0))
2839 op0 = gen_rtx_IOR (0, op0, x);
2840 else
2841 op1 = gen_rtx_IOR (0, op1, x);
2842 return gen_rtx_IOR (0, op0, op1);
2844 if (! add)
2845 return old;
2846 return gen_rtx_IOR (0, old, x);
2848 case AND:
2849 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2850 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2851 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2853 if (op0 == const1_rtx)
2854 return op1;
2855 if (op1 == const1_rtx)
2856 return op0;
2857 if (op0 == const0_rtx || op1 == const0_rtx)
2858 return const0_rtx;
2859 if (op0 == XEXP (old, 0))
2860 op0 = gen_rtx_IOR (0, op0, x);
2861 else
2862 op1 = gen_rtx_IOR (0, op1, x);
2863 return gen_rtx_AND (0, op0, op1);
2865 if (! add)
2866 return old;
2867 return gen_rtx_IOR (0, old, x);
2869 case NOT:
2870 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
2871 if (op0 != XEXP (old, 0))
2872 return not_reg_cond (op0);
2873 if (! add)
2874 return old;
2875 return gen_rtx_IOR (0, old, x);
2877 default:
2878 abort ();
2882 static rtx
2883 not_reg_cond (x)
2884 rtx x;
2886 enum rtx_code x_code;
2888 if (x == const0_rtx)
2889 return const1_rtx;
2890 else if (x == const1_rtx)
2891 return const0_rtx;
2892 x_code = GET_CODE (x);
2893 if (x_code == NOT)
2894 return XEXP (x, 0);
2895 if (GET_RTX_CLASS (x_code) == '<'
2896 && GET_CODE (XEXP (x, 0)) == REG)
2898 if (XEXP (x, 1) != const0_rtx)
2899 abort ();
2901 return gen_rtx_fmt_ee (reverse_condition (x_code),
2902 VOIDmode, XEXP (x, 0), const0_rtx);
2904 return gen_rtx_NOT (0, x);
2907 static rtx
2908 and_reg_cond (old, x, add)
2909 rtx old, x;
2910 int add;
2912 rtx op0, op1;
2914 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2916 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2917 && GET_CODE (x) == reverse_condition (GET_CODE (old))
2918 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2919 return const0_rtx;
2920 if (GET_CODE (x) == GET_CODE (old)
2921 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2922 return old;
2923 if (! add)
2924 return old;
2925 return gen_rtx_AND (0, old, x);
2928 switch (GET_CODE (old))
2930 case IOR:
2931 op0 = and_reg_cond (XEXP (old, 0), x, 0);
2932 op1 = and_reg_cond (XEXP (old, 1), x, 0);
2933 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2935 if (op0 == const0_rtx)
2936 return op1;
2937 if (op1 == const0_rtx)
2938 return op0;
2939 if (op0 == const1_rtx || op1 == const1_rtx)
2940 return const1_rtx;
2941 if (op0 == XEXP (old, 0))
2942 op0 = gen_rtx_AND (0, op0, x);
2943 else
2944 op1 = gen_rtx_AND (0, op1, x);
2945 return gen_rtx_IOR (0, op0, op1);
2947 if (! add)
2948 return old;
2949 return gen_rtx_AND (0, old, x);
2951 case AND:
2952 op0 = and_reg_cond (XEXP (old, 0), x, 0);
2953 op1 = and_reg_cond (XEXP (old, 1), x, 0);
2954 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
2956 if (op0 == const1_rtx)
2957 return op1;
2958 if (op1 == const1_rtx)
2959 return op0;
2960 if (op0 == const0_rtx || op1 == const0_rtx)
2961 return const0_rtx;
2962 if (op0 == XEXP (old, 0))
2963 op0 = gen_rtx_AND (0, op0, x);
2964 else
2965 op1 = gen_rtx_AND (0, op1, x);
2966 return gen_rtx_AND (0, op0, op1);
2968 if (! add)
2969 return old;
2971 /* If X is identical to one of the existing terms of the AND,
2972 then just return what we already have. */
2973 /* ??? There really should be some sort of recursive check here in
2974 case there are nested ANDs. */
2975 if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
2976 && REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
2977 || (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
2978 && REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
2979 return old;
2981 return gen_rtx_AND (0, old, x);
2983 case NOT:
2984 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
2985 if (op0 != XEXP (old, 0))
2986 return not_reg_cond (op0);
2987 if (! add)
2988 return old;
2989 return gen_rtx_AND (0, old, x);
2991 default:
2992 abort ();
2996 /* Given a condition X, remove references to reg REGNO and return the
2997 new condition. The removal will be done so that all conditions
2998 involving REGNO are considered to evaluate to false. This function
2999 is used when the value of REGNO changes. */
3001 static rtx
3002 elim_reg_cond (x, regno)
3003 rtx x;
3004 unsigned int regno;
3006 rtx op0, op1;
3008 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3010 if (REGNO (XEXP (x, 0)) == regno)
3011 return const0_rtx;
3012 return x;
3015 switch (GET_CODE (x))
3017 case AND:
3018 op0 = elim_reg_cond (XEXP (x, 0), regno);
3019 op1 = elim_reg_cond (XEXP (x, 1), regno);
3020 if (op0 == const0_rtx || op1 == const0_rtx)
3021 return const0_rtx;
3022 if (op0 == const1_rtx)
3023 return op1;
3024 if (op1 == const1_rtx)
3025 return op0;
3026 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3027 return x;
3028 return gen_rtx_AND (0, op0, op1);
3030 case IOR:
3031 op0 = elim_reg_cond (XEXP (x, 0), regno);
3032 op1 = elim_reg_cond (XEXP (x, 1), regno);
3033 if (op0 == const1_rtx || op1 == const1_rtx)
3034 return const1_rtx;
3035 if (op0 == const0_rtx)
3036 return op1;
3037 if (op1 == const0_rtx)
3038 return op0;
3039 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3040 return x;
3041 return gen_rtx_IOR (0, op0, op1);
3043 case NOT:
3044 op0 = elim_reg_cond (XEXP (x, 0), regno);
3045 if (op0 == const0_rtx)
3046 return const1_rtx;
3047 if (op0 == const1_rtx)
3048 return const0_rtx;
3049 if (op0 != XEXP (x, 0))
3050 return not_reg_cond (op0);
3051 return x;
3053 default:
3054 abort ();
3057 #endif /* HAVE_conditional_execution */
3059 #ifdef AUTO_INC_DEC
3061 /* Try to substitute the auto-inc expression INC as the address inside
3062 MEM which occurs in INSN. Currently, the address of MEM is an expression
3063 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3064 that has a single set whose source is a PLUS of INCR_REG and something
3065 else. */
3067 static void
3068 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3069 struct propagate_block_info *pbi;
3070 rtx inc, insn, mem, incr, incr_reg;
3072 int regno = REGNO (incr_reg);
3073 rtx set = single_set (incr);
3074 rtx q = SET_DEST (set);
3075 rtx y = SET_SRC (set);
3076 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3078 /* Make sure this reg appears only once in this insn. */
3079 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3080 return;
3082 if (dead_or_set_p (incr, incr_reg)
3083 /* Mustn't autoinc an eliminable register. */
3084 && (regno >= FIRST_PSEUDO_REGISTER
3085 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3087 /* This is the simple case. Try to make the auto-inc. If
3088 we can't, we are done. Otherwise, we will do any
3089 needed updates below. */
3090 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3091 return;
3093 else if (GET_CODE (q) == REG
3094 /* PREV_INSN used here to check the semi-open interval
3095 [insn,incr). */
3096 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3097 /* We must also check for sets of q as q may be
3098 a call clobbered hard register and there may
3099 be a call between PREV_INSN (insn) and incr. */
3100 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3102 /* We have *p followed sometime later by q = p+size.
3103 Both p and q must be live afterward,
3104 and q is not used between INSN and its assignment.
3105 Change it to q = p, ...*q..., q = q+size.
3106 Then fall into the usual case. */
3107 rtx insns, temp;
3109 start_sequence ();
3110 emit_move_insn (q, incr_reg);
3111 insns = get_insns ();
3112 end_sequence ();
3114 /* If we can't make the auto-inc, or can't make the
3115 replacement into Y, exit. There's no point in making
3116 the change below if we can't do the auto-inc and doing
3117 so is not correct in the pre-inc case. */
3119 XEXP (inc, 0) = q;
3120 validate_change (insn, &XEXP (mem, 0), inc, 1);
3121 validate_change (incr, &XEXP (y, opnum), q, 1);
3122 if (! apply_change_group ())
3123 return;
3125 /* We now know we'll be doing this change, so emit the
3126 new insn(s) and do the updates. */
3127 emit_insns_before (insns, insn);
3129 if (pbi->bb->head == insn)
3130 pbi->bb->head = insns;
3132 /* INCR will become a NOTE and INSN won't contain a
3133 use of INCR_REG. If a use of INCR_REG was just placed in
3134 the insn before INSN, make that the next use.
3135 Otherwise, invalidate it. */
3136 if (GET_CODE (PREV_INSN (insn)) == INSN
3137 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3138 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3139 pbi->reg_next_use[regno] = PREV_INSN (insn);
3140 else
3141 pbi->reg_next_use[regno] = 0;
3143 incr_reg = q;
3144 regno = REGNO (q);
3146 /* REGNO is now used in INCR which is below INSN, but
3147 it previously wasn't live here. If we don't mark
3148 it as live, we'll put a REG_DEAD note for it
3149 on this insn, which is incorrect. */
3150 SET_REGNO_REG_SET (pbi->reg_live, regno);
3152 /* If there are any calls between INSN and INCR, show
3153 that REGNO now crosses them. */
3154 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3155 if (GET_CODE (temp) == CALL_INSN)
3156 REG_N_CALLS_CROSSED (regno)++;
3158 /* Invalidate alias info for Q since we just changed its value. */
3159 clear_reg_alias_info (q);
3161 else
3162 return;
3164 /* If we haven't returned, it means we were able to make the
3165 auto-inc, so update the status. First, record that this insn
3166 has an implicit side effect. */
3168 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3170 /* Modify the old increment-insn to simply copy
3171 the already-incremented value of our register. */
3172 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3173 abort ();
3175 /* If that makes it a no-op (copying the register into itself) delete
3176 it so it won't appear to be a "use" and a "set" of this
3177 register. */
3178 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3180 /* If the original source was dead, it's dead now. */
3181 rtx note;
3183 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3185 remove_note (incr, note);
3186 if (XEXP (note, 0) != incr_reg)
3187 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3190 PUT_CODE (incr, NOTE);
3191 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3192 NOTE_SOURCE_FILE (incr) = 0;
3195 if (regno >= FIRST_PSEUDO_REGISTER)
3197 /* Count an extra reference to the reg. When a reg is
3198 incremented, spilling it is worse, so we want to make
3199 that less likely. */
3200 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3202 /* Count the increment as a setting of the register,
3203 even though it isn't a SET in rtl. */
3204 REG_N_SETS (regno)++;
3208 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3209 reference. */
3211 static void
3212 find_auto_inc (pbi, x, insn)
3213 struct propagate_block_info *pbi;
3214 rtx x;
3215 rtx insn;
3217 rtx addr = XEXP (x, 0);
3218 HOST_WIDE_INT offset = 0;
3219 rtx set, y, incr, inc_val;
3220 int regno;
3221 int size = GET_MODE_SIZE (GET_MODE (x));
3223 if (GET_CODE (insn) == JUMP_INSN)
3224 return;
3226 /* Here we detect use of an index register which might be good for
3227 postincrement, postdecrement, preincrement, or predecrement. */
3229 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3230 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3232 if (GET_CODE (addr) != REG)
3233 return;
3235 regno = REGNO (addr);
3237 /* Is the next use an increment that might make auto-increment? */
3238 incr = pbi->reg_next_use[regno];
3239 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3240 return;
3241 set = single_set (incr);
3242 if (set == 0 || GET_CODE (set) != SET)
3243 return;
3244 y = SET_SRC (set);
3246 if (GET_CODE (y) != PLUS)
3247 return;
3249 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3250 inc_val = XEXP (y, 1);
3251 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3252 inc_val = XEXP (y, 0);
3253 else
3254 return;
3256 if (GET_CODE (inc_val) == CONST_INT)
3258 if (HAVE_POST_INCREMENT
3259 && (INTVAL (inc_val) == size && offset == 0))
3260 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3261 incr, addr);
3262 else if (HAVE_POST_DECREMENT
3263 && (INTVAL (inc_val) == -size && offset == 0))
3264 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3265 incr, addr);
3266 else if (HAVE_PRE_INCREMENT
3267 && (INTVAL (inc_val) == size && offset == size))
3268 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3269 incr, addr);
3270 else if (HAVE_PRE_DECREMENT
3271 && (INTVAL (inc_val) == -size && offset == -size))
3272 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3273 incr, addr);
3274 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3275 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3276 gen_rtx_PLUS (Pmode,
3277 addr,
3278 inc_val)),
3279 insn, x, incr, addr);
3281 else if (GET_CODE (inc_val) == REG
3282 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3283 NEXT_INSN (incr)))
3286 if (HAVE_POST_MODIFY_REG && offset == 0)
3287 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3288 gen_rtx_PLUS (Pmode,
3289 addr,
3290 inc_val)),
3291 insn, x, incr, addr);
3295 #endif /* AUTO_INC_DEC */
3297 static void
3298 mark_used_reg (pbi, reg, cond, insn)
3299 struct propagate_block_info *pbi;
3300 rtx reg;
3301 rtx cond ATTRIBUTE_UNUSED;
3302 rtx insn;
3304 unsigned int regno_first, regno_last, i;
3305 int some_was_live, some_was_dead, some_not_set;
3307 regno_last = regno_first = REGNO (reg);
3308 if (regno_first < FIRST_PSEUDO_REGISTER)
3309 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3311 /* Find out if any of this register is live after this instruction. */
3312 some_was_live = some_was_dead = 0;
3313 for (i = regno_first; i <= regno_last; ++i)
3315 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3316 some_was_live |= needed_regno;
3317 some_was_dead |= ! needed_regno;
3320 /* Find out if any of the register was set this insn. */
3321 some_not_set = 0;
3322 for (i = regno_first; i <= regno_last; ++i)
3323 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3325 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3327 /* Record where each reg is used, so when the reg is set we know
3328 the next insn that uses it. */
3329 pbi->reg_next_use[regno_first] = insn;
3332 if (pbi->flags & PROP_REG_INFO)
3334 if (regno_first < FIRST_PSEUDO_REGISTER)
3336 /* If this is a register we are going to try to eliminate,
3337 don't mark it live here. If we are successful in
3338 eliminating it, it need not be live unless it is used for
3339 pseudos, in which case it will have been set live when it
3340 was allocated to the pseudos. If the register will not
3341 be eliminated, reload will set it live at that point.
3343 Otherwise, record that this function uses this register. */
3344 /* ??? The PPC backend tries to "eliminate" on the pic
3345 register to itself. This should be fixed. In the mean
3346 time, hack around it. */
3348 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3349 && (regno_first == FRAME_POINTER_REGNUM
3350 || regno_first == ARG_POINTER_REGNUM)))
3351 for (i = regno_first; i <= regno_last; ++i)
3352 regs_ever_live[i] = 1;
3354 else
3356 /* Keep track of which basic block each reg appears in. */
3358 int blocknum = pbi->bb->index;
3359 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3360 REG_BASIC_BLOCK (regno_first) = blocknum;
3361 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3362 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3364 /* Count (weighted) number of uses of each reg. */
3365 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3366 REG_N_REFS (regno_first)++;
3370 /* Record and count the insns in which a reg dies. If it is used in
3371 this insn and was dead below the insn then it dies in this insn.
3372 If it was set in this insn, we do not make a REG_DEAD note;
3373 likewise if we already made such a note. */
3374 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3375 && some_was_dead
3376 && some_not_set)
3378 /* Check for the case where the register dying partially
3379 overlaps the register set by this insn. */
3380 if (regno_first != regno_last)
3381 for (i = regno_first; i <= regno_last; ++i)
3382 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3384 /* If none of the words in X is needed, make a REG_DEAD note.
3385 Otherwise, we must make partial REG_DEAD notes. */
3386 if (! some_was_live)
3388 if ((pbi->flags & PROP_DEATH_NOTES)
3389 && ! find_regno_note (insn, REG_DEAD, regno_first))
3390 REG_NOTES (insn)
3391 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3393 if (pbi->flags & PROP_REG_INFO)
3394 REG_N_DEATHS (regno_first)++;
3396 else
3398 /* Don't make a REG_DEAD note for a part of a register
3399 that is set in the insn. */
3400 for (i = regno_first; i <= regno_last; ++i)
3401 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3402 && ! dead_or_set_regno_p (insn, i))
3403 REG_NOTES (insn)
3404 = alloc_EXPR_LIST (REG_DEAD,
3405 gen_rtx_REG (reg_raw_mode[i], i),
3406 REG_NOTES (insn));
3410 /* Mark the register as being live. */
3411 for (i = regno_first; i <= regno_last; ++i)
3413 SET_REGNO_REG_SET (pbi->reg_live, i);
3415 #ifdef HAVE_conditional_execution
3416 /* If this is a conditional use, record that fact. If it is later
3417 conditionally set, we'll know to kill the register. */
3418 if (cond != NULL_RTX)
3420 splay_tree_node node;
3421 struct reg_cond_life_info *rcli;
3422 rtx ncond;
3424 if (some_was_live)
3426 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3427 if (node == NULL)
3429 /* The register was unconditionally live previously.
3430 No need to do anything. */
3432 else
3434 /* The register was conditionally live previously.
3435 Subtract the new life cond from the old death cond. */
3436 rcli = (struct reg_cond_life_info *) node->value;
3437 ncond = rcli->condition;
3438 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3440 /* If the register is now unconditionally live,
3441 remove the entry in the splay_tree. */
3442 if (ncond == const0_rtx)
3443 splay_tree_remove (pbi->reg_cond_dead, i);
3444 else
3446 rcli->condition = ncond;
3447 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3448 REGNO (XEXP (cond, 0)));
3452 else
3454 /* The register was not previously live at all. Record
3455 the condition under which it is still dead. */
3456 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3457 rcli->condition = not_reg_cond (cond);
3458 rcli->stores = const0_rtx;
3459 rcli->orig_condition = const0_rtx;
3460 splay_tree_insert (pbi->reg_cond_dead, i,
3461 (splay_tree_value) rcli);
3463 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3466 else if (some_was_live)
3468 /* The register may have been conditionally live previously, but
3469 is now unconditionally live. Remove it from the conditionally
3470 dead list, so that a conditional set won't cause us to think
3471 it dead. */
3472 splay_tree_remove (pbi->reg_cond_dead, i);
3474 #endif
3478 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3479 This is done assuming the registers needed from X are those that
3480 have 1-bits in PBI->REG_LIVE.
3482 INSN is the containing instruction. If INSN is dead, this function
3483 is not called. */
3485 static void
3486 mark_used_regs (pbi, x, cond, insn)
3487 struct propagate_block_info *pbi;
3488 rtx x, cond, insn;
3490 RTX_CODE code;
3491 int regno;
3492 int flags = pbi->flags;
3494 retry:
3495 code = GET_CODE (x);
3496 switch (code)
3498 case LABEL_REF:
3499 case SYMBOL_REF:
3500 case CONST_INT:
3501 case CONST:
3502 case CONST_DOUBLE:
3503 case PC:
3504 case ADDR_VEC:
3505 case ADDR_DIFF_VEC:
3506 return;
3508 #ifdef HAVE_cc0
3509 case CC0:
3510 pbi->cc0_live = 1;
3511 return;
3512 #endif
3514 case CLOBBER:
3515 /* If we are clobbering a MEM, mark any registers inside the address
3516 as being used. */
3517 if (GET_CODE (XEXP (x, 0)) == MEM)
3518 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3519 return;
3521 case MEM:
3522 /* Don't bother watching stores to mems if this is not the
3523 final pass. We'll not be deleting dead stores this round. */
3524 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3526 /* Invalidate the data for the last MEM stored, but only if MEM is
3527 something that can be stored into. */
3528 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3529 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3530 /* Needn't clear the memory set list. */
3532 else
3534 rtx temp = pbi->mem_set_list;
3535 rtx prev = NULL_RTX;
3536 rtx next;
3538 while (temp)
3540 next = XEXP (temp, 1);
3541 if (anti_dependence (XEXP (temp, 0), x))
3543 /* Splice temp out of the list. */
3544 if (prev)
3545 XEXP (prev, 1) = next;
3546 else
3547 pbi->mem_set_list = next;
3548 free_EXPR_LIST_node (temp);
3549 pbi->mem_set_list_len--;
3551 else
3552 prev = temp;
3553 temp = next;
3557 /* If the memory reference had embedded side effects (autoincrement
3558 address modes. Then we may need to kill some entries on the
3559 memory set list. */
3560 if (insn)
3561 invalidate_mems_from_autoinc (pbi, insn);
3564 #ifdef AUTO_INC_DEC
3565 if (flags & PROP_AUTOINC)
3566 find_auto_inc (pbi, x, insn);
3567 #endif
3568 break;
3570 case SUBREG:
3571 #ifdef CLASS_CANNOT_CHANGE_MODE
3572 if (GET_CODE (SUBREG_REG (x)) == REG
3573 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3574 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3575 GET_MODE (SUBREG_REG (x))))
3576 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3577 #endif
3579 /* While we're here, optimize this case. */
3580 x = SUBREG_REG (x);
3581 if (GET_CODE (x) != REG)
3582 goto retry;
3583 /* Fall through. */
3585 case REG:
3586 /* See a register other than being set => mark it as needed. */
3587 mark_used_reg (pbi, x, cond, insn);
3588 return;
3590 case SET:
3592 rtx testreg = SET_DEST (x);
3593 int mark_dest = 0;
3595 /* If storing into MEM, don't show it as being used. But do
3596 show the address as being used. */
3597 if (GET_CODE (testreg) == MEM)
3599 #ifdef AUTO_INC_DEC
3600 if (flags & PROP_AUTOINC)
3601 find_auto_inc (pbi, testreg, insn);
3602 #endif
3603 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3604 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3605 return;
3608 /* Storing in STRICT_LOW_PART is like storing in a reg
3609 in that this SET might be dead, so ignore it in TESTREG.
3610 but in some other ways it is like using the reg.
3612 Storing in a SUBREG or a bit field is like storing the entire
3613 register in that if the register's value is not used
3614 then this SET is not needed. */
3615 while (GET_CODE (testreg) == STRICT_LOW_PART
3616 || GET_CODE (testreg) == ZERO_EXTRACT
3617 || GET_CODE (testreg) == SIGN_EXTRACT
3618 || GET_CODE (testreg) == SUBREG)
3620 #ifdef CLASS_CANNOT_CHANGE_MODE
3621 if (GET_CODE (testreg) == SUBREG
3622 && GET_CODE (SUBREG_REG (testreg)) == REG
3623 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3624 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3625 GET_MODE (testreg)))
3626 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3627 #endif
3629 /* Modifying a single register in an alternate mode
3630 does not use any of the old value. But these other
3631 ways of storing in a register do use the old value. */
3632 if (GET_CODE (testreg) == SUBREG
3633 && !((REG_BYTES (SUBREG_REG (testreg))
3634 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3635 > (REG_BYTES (testreg)
3636 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3638 else
3639 mark_dest = 1;
3641 testreg = XEXP (testreg, 0);
3644 /* If this is a store into a register or group of registers,
3645 recursively scan the value being stored. */
3647 if ((GET_CODE (testreg) == PARALLEL
3648 && GET_MODE (testreg) == BLKmode)
3649 || (GET_CODE (testreg) == REG
3650 && (regno = REGNO (testreg),
3651 ! (regno == FRAME_POINTER_REGNUM
3652 && (! reload_completed || frame_pointer_needed)))
3653 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3654 && ! (regno == HARD_FRAME_POINTER_REGNUM
3655 && (! reload_completed || frame_pointer_needed))
3656 #endif
3657 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3658 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3659 #endif
3662 if (mark_dest)
3663 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3664 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3665 return;
3668 break;
3670 case ASM_OPERANDS:
3671 case UNSPEC_VOLATILE:
3672 case TRAP_IF:
3673 case ASM_INPUT:
3675 /* Traditional and volatile asm instructions must be considered to use
3676 and clobber all hard registers, all pseudo-registers and all of
3677 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3679 Consider for instance a volatile asm that changes the fpu rounding
3680 mode. An insn should not be moved across this even if it only uses
3681 pseudo-regs because it might give an incorrectly rounded result.
3683 ?!? Unfortunately, marking all hard registers as live causes massive
3684 problems for the register allocator and marking all pseudos as live
3685 creates mountains of uninitialized variable warnings.
3687 So for now, just clear the memory set list and mark any regs
3688 we can find in ASM_OPERANDS as used. */
3689 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3691 free_EXPR_LIST_list (&pbi->mem_set_list);
3692 pbi->mem_set_list_len = 0;
3695 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3696 We can not just fall through here since then we would be confused
3697 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3698 traditional asms unlike their normal usage. */
3699 if (code == ASM_OPERANDS)
3701 int j;
3703 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3704 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3706 break;
3709 case COND_EXEC:
3710 if (cond != NULL_RTX)
3711 abort ();
3713 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3715 cond = COND_EXEC_TEST (x);
3716 x = COND_EXEC_CODE (x);
3717 goto retry;
3719 case PHI:
3720 /* We _do_not_ want to scan operands of phi nodes. Operands of
3721 a phi function are evaluated only when control reaches this
3722 block along a particular edge. Therefore, regs that appear
3723 as arguments to phi should not be added to the global live at
3724 start. */
3725 return;
3727 default:
3728 break;
3731 /* Recursively scan the operands of this expression. */
3734 const char * const fmt = GET_RTX_FORMAT (code);
3735 int i;
3737 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3739 if (fmt[i] == 'e')
3741 /* Tail recursive case: save a function call level. */
3742 if (i == 0)
3744 x = XEXP (x, 0);
3745 goto retry;
3747 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3749 else if (fmt[i] == 'E')
3751 int j;
3752 for (j = 0; j < XVECLEN (x, i); j++)
3753 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3759 #ifdef AUTO_INC_DEC
3761 static int
3762 try_pre_increment_1 (pbi, insn)
3763 struct propagate_block_info *pbi;
3764 rtx insn;
3766 /* Find the next use of this reg. If in same basic block,
3767 make it do pre-increment or pre-decrement if appropriate. */
3768 rtx x = single_set (insn);
3769 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3770 * INTVAL (XEXP (SET_SRC (x), 1)));
3771 int regno = REGNO (SET_DEST (x));
3772 rtx y = pbi->reg_next_use[regno];
3773 if (y != 0
3774 && SET_DEST (x) != stack_pointer_rtx
3775 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3776 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3777 mode would be better. */
3778 && ! dead_or_set_p (y, SET_DEST (x))
3779 && try_pre_increment (y, SET_DEST (x), amount))
3781 /* We have found a suitable auto-increment and already changed
3782 insn Y to do it. So flush this increment instruction. */
3783 propagate_block_delete_insn (pbi->bb, insn);
3785 /* Count a reference to this reg for the increment insn we are
3786 deleting. When a reg is incremented, spilling it is worse,
3787 so we want to make that less likely. */
3788 if (regno >= FIRST_PSEUDO_REGISTER)
3790 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3791 REG_N_SETS (regno)++;
3794 /* Flush any remembered memories depending on the value of
3795 the incremented register. */
3796 invalidate_mems_from_set (pbi, SET_DEST (x));
3798 return 1;
3800 return 0;
3803 /* Try to change INSN so that it does pre-increment or pre-decrement
3804 addressing on register REG in order to add AMOUNT to REG.
3805 AMOUNT is negative for pre-decrement.
3806 Returns 1 if the change could be made.
3807 This checks all about the validity of the result of modifying INSN. */
3809 static int
3810 try_pre_increment (insn, reg, amount)
3811 rtx insn, reg;
3812 HOST_WIDE_INT amount;
3814 rtx use;
3816 /* Nonzero if we can try to make a pre-increment or pre-decrement.
3817 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
3818 int pre_ok = 0;
3819 /* Nonzero if we can try to make a post-increment or post-decrement.
3820 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
3821 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
3822 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
3823 int post_ok = 0;
3825 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
3826 int do_post = 0;
3828 /* From the sign of increment, see which possibilities are conceivable
3829 on this target machine. */
3830 if (HAVE_PRE_INCREMENT && amount > 0)
3831 pre_ok = 1;
3832 if (HAVE_POST_INCREMENT && amount > 0)
3833 post_ok = 1;
3835 if (HAVE_PRE_DECREMENT && amount < 0)
3836 pre_ok = 1;
3837 if (HAVE_POST_DECREMENT && amount < 0)
3838 post_ok = 1;
3840 if (! (pre_ok || post_ok))
3841 return 0;
3843 /* It is not safe to add a side effect to a jump insn
3844 because if the incremented register is spilled and must be reloaded
3845 there would be no way to store the incremented value back in memory. */
3847 if (GET_CODE (insn) == JUMP_INSN)
3848 return 0;
3850 use = 0;
3851 if (pre_ok)
3852 use = find_use_as_address (PATTERN (insn), reg, 0);
3853 if (post_ok && (use == 0 || use == (rtx) 1))
3855 use = find_use_as_address (PATTERN (insn), reg, -amount);
3856 do_post = 1;
3859 if (use == 0 || use == (rtx) 1)
3860 return 0;
3862 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
3863 return 0;
3865 /* See if this combination of instruction and addressing mode exists. */
3866 if (! validate_change (insn, &XEXP (use, 0),
3867 gen_rtx_fmt_e (amount > 0
3868 ? (do_post ? POST_INC : PRE_INC)
3869 : (do_post ? POST_DEC : PRE_DEC),
3870 Pmode, reg), 0))
3871 return 0;
3873 /* Record that this insn now has an implicit side effect on X. */
3874 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
3875 return 1;
3878 #endif /* AUTO_INC_DEC */
3880 /* Find the place in the rtx X where REG is used as a memory address.
3881 Return the MEM rtx that so uses it.
3882 If PLUSCONST is nonzero, search instead for a memory address equivalent to
3883 (plus REG (const_int PLUSCONST)).
3885 If such an address does not appear, return 0.
3886 If REG appears more than once, or is used other than in such an address,
3887 return (rtx)1. */
3890 find_use_as_address (x, reg, plusconst)
3891 rtx x;
3892 rtx reg;
3893 HOST_WIDE_INT plusconst;
3895 enum rtx_code code = GET_CODE (x);
3896 const char * const fmt = GET_RTX_FORMAT (code);
3897 int i;
3898 rtx value = 0;
3899 rtx tem;
3901 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
3902 return x;
3904 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
3905 && XEXP (XEXP (x, 0), 0) == reg
3906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3907 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
3908 return x;
3910 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
3912 /* If REG occurs inside a MEM used in a bit-field reference,
3913 that is unacceptable. */
3914 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
3915 return (rtx) (HOST_WIDE_INT) 1;
3918 if (x == reg)
3919 return (rtx) (HOST_WIDE_INT) 1;
3921 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3923 if (fmt[i] == 'e')
3925 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
3926 if (value == 0)
3927 value = tem;
3928 else if (tem != 0)
3929 return (rtx) (HOST_WIDE_INT) 1;
3931 else if (fmt[i] == 'E')
3933 int j;
3934 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3936 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
3937 if (value == 0)
3938 value = tem;
3939 else if (tem != 0)
3940 return (rtx) (HOST_WIDE_INT) 1;
3945 return value;
3948 /* Write information about registers and basic blocks into FILE.
3949 This is part of making a debugging dump. */
3951 void
3952 dump_regset (r, outf)
3953 regset r;
3954 FILE *outf;
3956 int i;
3957 if (r == NULL)
3959 fputs (" (nil)", outf);
3960 return;
3963 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
3965 fprintf (outf, " %d", i);
3966 if (i < FIRST_PSEUDO_REGISTER)
3967 fprintf (outf, " [%s]",
3968 reg_names[i]);
3972 /* Print a human-reaable representation of R on the standard error
3973 stream. This function is designed to be used from within the
3974 debugger. */
3976 void
3977 debug_regset (r)
3978 regset r;
3980 dump_regset (r, stderr);
3981 putc ('\n', stderr);
3984 /* Dump the rtl into the current debugging dump file, then abort. */
3986 static void
3987 print_rtl_and_abort_fcn (file, line, function)
3988 const char *file;
3989 int line;
3990 const char *function;
3992 if (rtl_dump_file)
3994 print_rtl_with_bb (rtl_dump_file, get_insns ());
3995 fclose (rtl_dump_file);
3998 fancy_abort (file, line, function);
4001 /* Recompute register set/reference counts immediately prior to register
4002 allocation.
4004 This avoids problems with set/reference counts changing to/from values
4005 which have special meanings to the register allocators.
4007 Additionally, the reference counts are the primary component used by the
4008 register allocators to prioritize pseudos for allocation to hard regs.
4009 More accurate reference counts generally lead to better register allocation.
4011 F is the first insn to be scanned.
4013 LOOP_STEP denotes how much loop_depth should be incremented per
4014 loop nesting level in order to increase the ref count more for
4015 references in a loop.
4017 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4018 possibly other information which is used by the register allocators. */
4020 void
4021 recompute_reg_usage (f, loop_step)
4022 rtx f ATTRIBUTE_UNUSED;
4023 int loop_step ATTRIBUTE_UNUSED;
4025 allocate_reg_life_data ();
4026 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4029 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4030 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4031 of the number of registers that died. */
4034 count_or_remove_death_notes (blocks, kill)
4035 sbitmap blocks;
4036 int kill;
4038 int i, count = 0;
4040 for (i = n_basic_blocks - 1; i >= 0; --i)
4042 basic_block bb;
4043 rtx insn;
4045 if (blocks && ! TEST_BIT (blocks, i))
4046 continue;
4048 bb = BASIC_BLOCK (i);
4050 for (insn = bb->head;; insn = NEXT_INSN (insn))
4052 if (INSN_P (insn))
4054 rtx *pprev = &REG_NOTES (insn);
4055 rtx link = *pprev;
4057 while (link)
4059 switch (REG_NOTE_KIND (link))
4061 case REG_DEAD:
4062 if (GET_CODE (XEXP (link, 0)) == REG)
4064 rtx reg = XEXP (link, 0);
4065 int n;
4067 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4068 n = 1;
4069 else
4070 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4071 count += n;
4073 /* Fall through. */
4075 case REG_UNUSED:
4076 if (kill)
4078 rtx next = XEXP (link, 1);
4079 free_EXPR_LIST_node (link);
4080 *pprev = link = next;
4081 break;
4083 /* Fall through. */
4085 default:
4086 pprev = &XEXP (link, 1);
4087 link = *pprev;
4088 break;
4093 if (insn == bb->end)
4094 break;
4098 return count;
4100 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4101 if blocks is NULL. */
4103 static void
4104 clear_log_links (blocks)
4105 sbitmap blocks;
4107 rtx insn;
4108 int i;
4110 if (!blocks)
4112 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4113 if (INSN_P (insn))
4114 free_INSN_LIST_list (&LOG_LINKS (insn));
4116 else
4117 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4119 basic_block bb = BASIC_BLOCK (i);
4121 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4122 insn = NEXT_INSN (insn))
4123 if (INSN_P (insn))
4124 free_INSN_LIST_list (&LOG_LINKS (insn));
4128 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4129 correspond to the hard registers, if any, set in that map. This
4130 could be done far more efficiently by having all sorts of special-cases
4131 with moving single words, but probably isn't worth the trouble. */
4133 void
4134 reg_set_to_hard_reg_set (to, from)
4135 HARD_REG_SET *to;
4136 bitmap from;
4138 int i;
4140 EXECUTE_IF_SET_IN_BITMAP
4141 (from, 0, i,
4143 if (i >= FIRST_PSEUDO_REGISTER)
4144 return;
4145 SET_HARD_REG_BIT (*to, i);