* c-decl.c (duplicate_decls): Conditionalize DECL_SAVED_TREE copy.
[official-gcc.git] / gcc / ada / urealp.ads
blob9896e0d996843e4e6bf729e6b034531569af88a7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- U R E A L P --
6 -- --
7 -- S p e c --
8 -- --
9 -- $Revision: 1.35 $ --
10 -- --
11 -- Copyright (C) 1992-1998 Free Software Foundation, Inc. --
12 -- --
13 -- GNAT is free software; you can redistribute it and/or modify it under --
14 -- terms of the GNU General Public License as published by the Free Soft- --
15 -- ware Foundation; either version 2, or (at your option) any later ver- --
16 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
17 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
18 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
19 -- for more details. You should have received a copy of the GNU General --
20 -- Public License distributed with GNAT; see file COPYING. If not, write --
21 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
22 -- MA 02111-1307, USA. --
23 -- --
24 -- As a special exception, if other files instantiate generics from this --
25 -- unit, or you link this unit with other files to produce an executable, --
26 -- this unit does not by itself cause the resulting executable to be --
27 -- covered by the GNU General Public License. This exception does not --
28 -- however invalidate any other reasons why the executable file might be --
29 -- covered by the GNU Public License. --
30 -- --
31 -- GNAT was originally developed by the GNAT team at New York University. --
32 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
33 -- --
34 ------------------------------------------------------------------------------
36 -- Support for universal real arithmetic
38 with Types; use Types;
39 with Uintp; use Uintp;
41 package Urealp is
43 ---------------------------------------
44 -- Representation of Universal Reals --
45 ---------------------------------------
47 -- A universal real value is represented by a single value (which is
48 -- an index into an internal table). These values are not hashed, so
49 -- the equality operator should not be used on Ureal values (instead
50 -- use the UR_Eq function).
52 -- A Ureal value represents an arbitrary precision universal real value,
53 -- stored internally using four components
55 -- the numerator (Uint, always non-negative)
56 -- the denominator (Uint, always non-zero, always positive if base = 0)
57 -- a real base (Nat, either zero, or in the range 2 .. 16)
58 -- a sign flag (Boolean), set if negative
60 -- If the base is zero, then the absolute value of the Ureal is simply
61 -- numerator/denominator. If the base is non-zero, then the absolute
62 -- value is num / (rbase ** den).
64 -- Negative numbers are represented by the sign of the numerator being
65 -- negative. The denominator is always positive.
67 -- A normalized Ureal value has base = 0, and numerator/denominator
68 -- reduced to lowest terms, with zero itself being represented as 0/1.
69 -- This is a canonical format, so that for normalized Ureal values it
70 -- is the case that two equal values always have the same denominator
71 -- and numerator values.
73 -- Note: a value of minus zero is legitimate, and the operations in
74 -- Urealp preserve the handling of signed zeroes in accordance with
75 -- the rules of IEEE P754 ("IEEE floating point").
77 ------------------------------
78 -- Types for Urealp Package --
79 ------------------------------
81 type Ureal is private;
82 -- Type used for representation of universal reals
84 No_Ureal : constant Ureal;
85 -- Constant used to indicate missing or unset Ureal value
87 ---------------------
88 -- Ureal Constants --
89 ---------------------
91 function Ureal_0 return Ureal;
92 -- Returns value 0.0
94 function Ureal_M_0 return Ureal;
95 -- Returns value -0.0
97 function Ureal_Tenth return Ureal;
98 -- Returns value 0.1
100 function Ureal_Half return Ureal;
101 -- Returns value 0.5
103 function Ureal_1 return Ureal;
104 -- Returns value 1.0
106 function Ureal_2 return Ureal;
107 -- Returns value 2.0
109 function Ureal_10 return Ureal;
110 -- Returns value 10.0
112 function Ureal_100 return Ureal;
113 -- Returns value 100.0
115 function Ureal_2_128 return Ureal;
116 -- Returns value 2.0 ** 128
118 function Ureal_2_M_128 return Ureal;
119 -- Returns value 2.0 ** (-128)
121 -----------------
122 -- Subprograms --
123 -----------------
125 procedure Initialize;
126 -- Initialize Ureal tables. Note that Initialize must not be called if
127 -- Tree_Read is used. Note also that there is no Lock routine in this
128 -- unit. These tables are among the few tables that can be expanded
129 -- during Gigi processing.
131 procedure Tree_Read;
132 -- Initializes internal tables from current tree file using Tree_Read.
133 -- Note that Initialize should not be called if Tree_Read is used.
134 -- Tree_Read includes all necessary initialization.
136 procedure Tree_Write;
137 -- Writes out internal tables to current tree file using Tree_Write
139 function Rbase (Real : Ureal) return Nat;
140 -- Return the base of the universal real.
142 function Denominator (Real : Ureal) return Uint;
143 -- Return the denominator of the universal real.
145 function Numerator (Real : Ureal) return Uint;
146 -- Return the numerator of the universal real.
148 function Norm_Den (Real : Ureal) return Uint;
149 -- Return the denominator of the universal real after a normalization.
151 function Norm_Num (Real : Ureal) return Uint;
152 -- Return the numerator of the universal real after a normalization.
154 function UR_From_Uint (UI : Uint) return Ureal;
155 -- Returns real corresponding to universal integer value
157 function UR_To_Uint (Real : Ureal) return Uint;
158 -- Return integer value obtained by accurate rounding of real value.
159 -- The rounding of values half way between two integers is away from
160 -- zero, as required by normal Ada 95 rounding semantics.
162 function UR_Trunc (Real : Ureal) return Uint;
163 -- Return integer value obtained by a truncation of real towards zero
165 function UR_Ceiling (Real : Ureal) return Uint;
166 -- Return value of smallest integer not less than the given value
168 function UR_Floor (Real : Ureal) return Uint;
169 -- Return value of smallest integer not greater than the given value
171 -- Conversion table for above four functions
173 -- Input To_Uint Trunc Ceiling Floor
174 -- 1.0 1 1 1 1
175 -- 1.2 1 1 2 1
176 -- 1.5 2 1 2 1
177 -- 1.7 2 1 2 1
178 -- 2.0 2 2 2 2
179 -- -1.0 -1 -1 -1 -1
180 -- -1.2 -1 -1 -1 -2
181 -- -1.5 -2 -1 -1 -2
182 -- -1.7 -2 -1 -1 -2
183 -- -2.0 -2 -2 -2 -2
185 function UR_From_Components
186 (Num : Uint;
187 Den : Uint;
188 Rbase : Nat := 0;
189 Negative : Boolean := False)
190 return Ureal;
191 -- Builds real value from given numerator, denominator and base. The
192 -- value is negative if Negative is set to true, and otherwise is
193 -- non-negative.
195 function UR_Add (Left : Ureal; Right : Ureal) return Ureal;
196 function UR_Add (Left : Ureal; Right : Uint) return Ureal;
197 function UR_Add (Left : Uint; Right : Ureal) return Ureal;
198 -- Returns real sum of operands
200 function UR_Div (Left : Ureal; Right : Ureal) return Ureal;
201 function UR_Div (Left : Uint; Right : Ureal) return Ureal;
202 function UR_Div (Left : Ureal; Right : Uint) return Ureal;
203 -- Returns real quotient of operands. Fatal error if Right is zero
205 function UR_Mul (Left : Ureal; Right : Ureal) return Ureal;
206 function UR_Mul (Left : Uint; Right : Ureal) return Ureal;
207 function UR_Mul (Left : Ureal; Right : Uint) return Ureal;
208 -- Returns real product of operands
210 function UR_Sub (Left : Ureal; Right : Ureal) return Ureal;
211 function UR_Sub (Left : Uint; Right : Ureal) return Ureal;
212 function UR_Sub (Left : Ureal; Right : Uint) return Ureal;
213 -- Returns real difference of operands
215 function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal;
216 -- Returns result of raising Ureal to Uint power.
217 -- Fatal error if Left is 0 and Right is negative.
219 function UR_Abs (Real : Ureal) return Ureal;
220 -- Returns abs function of real
222 function UR_Negate (Real : Ureal) return Ureal;
223 -- Returns negative of real
225 function UR_Eq (Left, Right : Ureal) return Boolean;
226 -- Compares reals for equality.
228 function UR_Max (Left, Right : Ureal) return Ureal;
229 -- Returns the maximum of two reals
231 function UR_Min (Left, Right : Ureal) return Ureal;
232 -- Returns the minimum of two reals
234 function UR_Ne (Left, Right : Ureal) return Boolean;
235 -- Compares reals for inequality.
237 function UR_Lt (Left, Right : Ureal) return Boolean;
238 -- Compares reals for less than.
240 function UR_Le (Left, Right : Ureal) return Boolean;
241 -- Compares reals for less than or equal.
243 function UR_Gt (Left, Right : Ureal) return Boolean;
244 -- Compares reals for greater than.
246 function UR_Ge (Left, Right : Ureal) return Boolean;
247 -- Compares reals for greater than or equal.
249 function UR_Is_Zero (Real : Ureal) return Boolean;
250 -- Tests if real value is zero
252 function UR_Is_Negative (Real : Ureal) return Boolean;
253 -- Tests if real value is negative, note that negative zero gives true
255 function UR_Is_Positive (Real : Ureal) return Boolean;
256 -- Test if real value is greater than zero
258 procedure UR_Write (Real : Ureal);
259 -- Writes value of Real to standard output. Used only for debugging and
260 -- tree/source output. If the result is easily representable as a standard
261 -- Ada literal, it will be given that way, but as a result of evaluation
262 -- of static expressions, it is possible to generate constants (e.g. 1/13)
263 -- which have no such representation. In such cases (and in cases where it
264 -- is too much work to figure out the Ada literal), the string that is
265 -- output is of the form [numerator/denominator].
267 procedure pr (Real : Ureal);
268 -- Writes value of Real to standard output with a terminating line return,
269 -- using UR_Write as described above. This is for use from the debugger.
271 ------------------------
272 -- Operator Renamings --
273 ------------------------
275 function "+" (Left : Ureal; Right : Ureal) return Ureal renames UR_Add;
276 function "+" (Left : Uint; Right : Ureal) return Ureal renames UR_Add;
277 function "+" (Left : Ureal; Right : Uint) return Ureal renames UR_Add;
279 function "/" (Left : Ureal; Right : Ureal) return Ureal renames UR_Div;
280 function "/" (Left : Uint; Right : Ureal) return Ureal renames UR_Div;
281 function "/" (Left : Ureal; Right : Uint) return Ureal renames UR_Div;
283 function "*" (Left : Ureal; Right : Ureal) return Ureal renames UR_Mul;
284 function "*" (Left : Uint; Right : Ureal) return Ureal renames UR_Mul;
285 function "*" (Left : Ureal; Right : Uint) return Ureal renames UR_Mul;
287 function "-" (Left : Ureal; Right : Ureal) return Ureal renames UR_Sub;
288 function "-" (Left : Uint; Right : Ureal) return Ureal renames UR_Sub;
289 function "-" (Left : Ureal; Right : Uint) return Ureal renames UR_Sub;
291 function "**" (Real : Ureal; N : Uint) return Ureal
292 renames UR_Exponentiate;
294 function "abs" (Real : Ureal) return Ureal renames UR_Abs;
296 function "-" (Real : Ureal) return Ureal renames UR_Negate;
298 function "=" (Left, Right : Ureal) return Boolean renames UR_Eq;
300 function "<" (Left, Right : Ureal) return Boolean renames UR_Lt;
302 function "<=" (Left, Right : Ureal) return Boolean renames UR_Le;
304 function ">=" (Left, Right : Ureal) return Boolean renames UR_Ge;
306 function ">" (Left, Right : Ureal) return Boolean renames UR_Gt;
308 -----------------------------
309 -- Mark/Release Processing --
310 -----------------------------
312 -- The space used by Ureal data is not automatically reclaimed. However,
313 -- a mark-release regime is implemented which allows storage to be
314 -- released back to a previously noted mark. This is used for example
315 -- when doing comparisons, where only intermediate results get stored
316 -- that do not need to be saved for future use.
318 type Save_Mark is private;
320 function Mark return Save_Mark;
321 -- Note mark point for future release
323 procedure Release (M : Save_Mark);
324 -- Release storage allocated since mark was noted
326 ------------------------------------
327 -- Representation of Ureal Values --
328 ------------------------------------
330 private
332 type Ureal is new Int range Ureal_Low_Bound .. Ureal_High_Bound;
333 for Ureal'Size use 32;
335 No_Ureal : constant Ureal := Ureal'First;
337 type Save_Mark is new Int;
339 pragma Inline (Denominator);
340 pragma Inline (Mark);
341 pragma Inline (Norm_Num);
342 pragma Inline (Norm_Den);
343 pragma Inline (Numerator);
344 pragma Inline (Rbase);
345 pragma Inline (Release);
346 pragma Inline (Ureal_0);
347 pragma Inline (Ureal_M_0);
348 pragma Inline (Ureal_Tenth);
349 pragma Inline (Ureal_Half);
350 pragma Inline (Ureal_1);
351 pragma Inline (Ureal_2);
352 pragma Inline (Ureal_10);
353 pragma Inline (UR_From_Components);
355 end Urealp;