1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
27 #include <isl/union_map.h>
31 #include "coretypes.h"
36 #include "fold-const.h"
39 #include "hard-reg-set.h"
41 #include "dominance.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-phinodes.h"
51 #include "ssa-iterators.h"
52 #include "tree-ssa-loop-manip.h"
53 #include "tree-ssa-loop-niter.h"
54 #include "tree-ssa-loop.h"
55 #include "tree-into-ssa.h"
58 #include "tree-chrec.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "tree-pass.h"
63 #include "tree-ssa-propagate.h"
66 #include "graphite-poly.h"
67 #include "graphite-scop-detection.h"
69 /* Forward declarations. */
70 static void make_close_phi_nodes_unique (basic_block
);
72 /* The type of the analyzed basic block. */
74 typedef enum gbb_type
{
76 GBB_LOOP_SING_EXIT_HEADER
,
77 GBB_LOOP_MULT_EXIT_HEADER
,
84 /* Detect the type of BB. Loop headers are only marked, if they are
85 new. This means their loop_father is different to LAST_LOOP.
86 Otherwise they are treated like any other bb and their type can be
90 get_bb_type (basic_block bb
, struct loop
*last_loop
)
94 struct loop
*loop
= bb
->loop_father
;
96 /* Check, if we entry into a new loop. */
97 if (loop
!= last_loop
)
99 if (single_exit (loop
) != NULL
)
100 return GBB_LOOP_SING_EXIT_HEADER
;
101 else if (loop
->num
!= 0)
102 return GBB_LOOP_MULT_EXIT_HEADER
;
104 return GBB_COND_HEADER
;
107 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
108 nb_dom
= dom
.length ();
114 if (nb_dom
== 1 && single_succ_p (bb
))
117 return GBB_COND_HEADER
;
120 /* A SCoP detection region, defined using bbs as borders.
122 All control flow touching this region, comes in passing basic_block
123 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
124 edges for the borders we are able to represent also regions that do
125 not have a single entry or exit edge.
127 But as they have a single entry basic_block and a single exit
128 basic_block, we are able to generate for every sd_region a single
136 / \ This region contains: {3, 4, 5, 6, 7, 8}
144 typedef struct sd_region_p
146 /* The entry bb dominates all bbs in the sd_region. It is part of
150 /* The exit bb postdominates all bbs in the sd_region, but is not
151 part of the region. */
157 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
160 move_sd_regions (vec
<sd_region
> *source
, vec
<sd_region
> *target
)
165 FOR_EACH_VEC_ELT (*source
, i
, s
)
166 target
->safe_push (*s
);
171 /* Something like "n * m" is not allowed. */
174 graphite_can_represent_init (tree e
)
176 switch (TREE_CODE (e
))
178 case POLYNOMIAL_CHREC
:
179 return graphite_can_represent_init (CHREC_LEFT (e
))
180 && graphite_can_represent_init (CHREC_RIGHT (e
));
183 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
184 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
185 && tree_fits_shwi_p (TREE_OPERAND (e
, 1));
187 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
188 && tree_fits_shwi_p (TREE_OPERAND (e
, 0));
191 case POINTER_PLUS_EXPR
:
193 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
194 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
199 case NON_LVALUE_EXPR
:
200 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
209 /* Return true when SCEV can be represented in the polyhedral model.
211 An expression can be represented, if it can be expressed as an
212 affine expression. For loops (i, j) and parameters (m, n) all
213 affine expressions are of the form:
215 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
217 1 i + 20 j + (-2) m + 25
219 Something like "i * n" or "n * m" is not allowed. */
222 graphite_can_represent_scev (tree scev
)
224 if (chrec_contains_undetermined (scev
))
227 /* We disable the handling of pointer types, because it’s currently not
228 supported by Graphite with the ISL AST generator. SSA_NAME nodes are
229 the only nodes, which are disabled in case they are pointers to object
230 types, but this can be changed. */
232 if (POINTER_TYPE_P (TREE_TYPE (scev
)) && TREE_CODE (scev
) == SSA_NAME
)
235 switch (TREE_CODE (scev
))
240 case NON_LVALUE_EXPR
:
241 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0));
244 case POINTER_PLUS_EXPR
:
246 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
247 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
250 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
251 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
252 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
253 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
254 && graphite_can_represent_init (scev
)
255 && graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
256 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
258 case POLYNOMIAL_CHREC
:
259 /* Check for constant strides. With a non constant stride of
260 'n' we would have a value of 'iv * n'. Also check that the
261 initial value can represented: for example 'n * m' cannot be
263 if (!evolution_function_right_is_integer_cst (scev
)
264 || !graphite_can_represent_init (scev
))
266 return graphite_can_represent_scev (CHREC_LEFT (scev
));
272 /* Only affine functions can be represented. */
273 if (tree_contains_chrecs (scev
, NULL
)
274 || !scev_is_linear_expression (scev
))
281 /* Return true when EXPR can be represented in the polyhedral model.
283 This means an expression can be represented, if it is linear with
284 respect to the loops and the strides are non parametric.
285 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
286 entry of the region we analyse. */
289 graphite_can_represent_expr (basic_block scop_entry
, loop_p loop
,
292 tree scev
= analyze_scalar_evolution (loop
, expr
);
294 scev
= instantiate_scev (scop_entry
, loop
, scev
);
296 return graphite_can_represent_scev (scev
);
299 /* Return true if the data references of STMT can be represented by
303 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED
,
310 vec
<data_reference_p
> drs
= vNULL
;
313 for (outer
= loop_containing_stmt (stmt
); outer
; outer
= loop_outer (outer
))
315 graphite_find_data_references_in_stmt (outer
,
316 loop_containing_stmt (stmt
),
319 FOR_EACH_VEC_ELT (drs
, j
, dr
)
320 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
321 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr
, i
)))
327 free_data_refs (drs
);
332 free_data_refs (drs
);
336 /* Return true only when STMT is simple enough for being handled by
337 Graphite. This depends on SCOP_ENTRY, as the parameters are
338 initialized relatively to this basic block, the linear functions
339 are initialized to OUTERMOST_LOOP and BB is the place where we try
340 to evaluate the STMT. */
343 stmt_simple_for_scop_p (basic_block scop_entry
, loop_p outermost_loop
,
344 gimple stmt
, basic_block bb
)
346 loop_p loop
= bb
->loop_father
;
348 gcc_assert (scop_entry
);
350 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
351 Calls have side-effects, except those to const or pure
353 if (gimple_has_volatile_ops (stmt
)
354 || (gimple_code (stmt
) == GIMPLE_CALL
355 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
356 || (gimple_code (stmt
) == GIMPLE_ASM
))
359 if (is_gimple_debug (stmt
))
362 if (!stmt_has_simple_data_refs_p (outermost_loop
, stmt
))
365 switch (gimple_code (stmt
))
373 /* We can handle all binary comparisons. Inequalities are
374 also supported as they can be represented with union of
376 enum tree_code code
= gimple_cond_code (stmt
);
377 if (!(code
== LT_EXPR
385 for (unsigned i
= 0; i
< 2; ++i
)
387 tree op
= gimple_op (stmt
, i
);
388 if (!graphite_can_represent_expr (scop_entry
, loop
, op
)
389 /* We can not handle REAL_TYPE. Failed for pr39260. */
390 || TREE_CODE (TREE_TYPE (op
)) == REAL_TYPE
)
402 /* These nodes cut a new scope. */
409 /* Returns the statement of BB that contains a harmful operation: that
410 can be a function call with side effects, the induction variables
411 are not linear with respect to SCOP_ENTRY, etc. The current open
412 scop should end before this statement. The evaluation is limited using
413 OUTERMOST_LOOP as outermost loop that may change. */
416 harmful_stmt_in_bb (basic_block scop_entry
, loop_p outer_loop
, basic_block bb
)
418 gimple_stmt_iterator gsi
;
420 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
421 if (!stmt_simple_for_scop_p (scop_entry
, outer_loop
, gsi_stmt (gsi
), bb
))
422 return gsi_stmt (gsi
);
427 /* Return true if LOOP can be represented in the polyhedral
428 representation. This is evaluated taking SCOP_ENTRY and
429 OUTERMOST_LOOP in mind. */
432 graphite_can_represent_loop (basic_block scop_entry
, loop_p loop
)
435 struct tree_niter_desc niter_desc
;
437 /* FIXME: For the moment, graphite cannot be used on loops that
438 iterate using induction variables that wrap. */
440 return number_of_iterations_exit (loop
, single_exit (loop
), &niter_desc
, false)
441 && niter_desc
.control
.no_overflow
442 && (niter
= number_of_latch_executions (loop
))
443 && !chrec_contains_undetermined (niter
)
444 && graphite_can_represent_expr (scop_entry
, loop
, niter
);
447 /* Store information needed by scopdet_* functions. */
451 /* Exit of the open scop would stop if the current BB is harmful. */
454 /* Where the next scop would start if the current BB is harmful. */
457 /* The bb or one of its children contains open loop exits. That means
458 loop exit nodes that are not surrounded by a loop dominated by bb. */
461 /* The bb or one of its children contains only structures we can handle. */
465 static struct scopdet_info
build_scops_1 (basic_block
, loop_p
,
466 vec
<sd_region
> *, loop_p
);
468 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
469 to SCOPS. TYPE is the gbb_type of BB. */
471 static struct scopdet_info
472 scopdet_basic_block_info (basic_block bb
, loop_p outermost_loop
,
473 vec
<sd_region
> *scops
, gbb_type type
)
475 loop_p loop
= bb
->loop_father
;
476 struct scopdet_info result
;
479 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
480 basic_block entry_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
481 stmt
= harmful_stmt_in_bb (entry_block
, outermost_loop
, bb
);
482 result
.difficult
= (stmt
!= NULL
);
489 result
.exits
= false;
491 /* Mark bbs terminating a SESE region difficult, if they start
492 a condition or if the block it exits to cannot be split
493 with make_forwarder_block. */
494 if (!single_succ_p (bb
)
495 || bb_has_abnormal_pred (single_succ (bb
)))
496 result
.difficult
= true;
498 result
.exit
= single_succ (bb
);
503 result
.next
= single_succ (bb
);
504 result
.exits
= false;
505 result
.exit
= single_succ (bb
);
508 case GBB_LOOP_SING_EXIT_HEADER
:
510 auto_vec
<sd_region
, 3> regions
;
511 struct scopdet_info sinfo
;
512 edge exit_e
= single_exit (loop
);
514 sinfo
= build_scops_1 (bb
, outermost_loop
, ®ions
, loop
);
516 if (!graphite_can_represent_loop (entry_block
, loop
))
517 result
.difficult
= true;
519 result
.difficult
|= sinfo
.difficult
;
521 /* Try again with another loop level. */
523 && loop_depth (outermost_loop
) + 1 == loop_depth (loop
))
525 outermost_loop
= loop
;
530 sinfo
= scopdet_basic_block_info (bb
, outermost_loop
, scops
, type
);
533 result
.difficult
= true;
536 move_sd_regions (®ions
, scops
);
540 open_scop
.entry
= bb
;
541 open_scop
.exit
= exit_e
->dest
;
542 scops
->safe_push (open_scop
);
548 result
.exit
= exit_e
->dest
;
549 result
.next
= exit_e
->dest
;
551 /* If we do not dominate result.next, remove it. It's either
552 the exit block, or another bb dominates it and will
553 call the scop detection for this bb. */
554 if (!dominated_by_p (CDI_DOMINATORS
, result
.next
, bb
))
557 if (exit_e
->src
->loop_father
!= loop
)
560 result
.exits
= false;
562 if (result
.difficult
)
563 move_sd_regions (®ions
, scops
);
571 case GBB_LOOP_MULT_EXIT_HEADER
:
573 /* XXX: For now we just do not join loops with multiple exits. If the
574 exits lead to the same bb it may be possible to join the loop. */
575 auto_vec
<sd_region
, 3> regions
;
576 vec
<edge
> exits
= get_loop_exit_edges (loop
);
579 build_scops_1 (bb
, loop
, ®ions
, loop
);
581 /* Scan the code dominated by this loop. This means all bbs, that are
582 are dominated by a bb in this loop, but are not part of this loop.
585 - The loop exit destination is dominated by the exit sources.
587 TODO: We miss here the more complex cases:
588 - The exit destinations are dominated by another bb inside
590 - The loop dominates bbs, that are not exit destinations. */
591 FOR_EACH_VEC_ELT (exits
, i
, e
)
592 if (e
->src
->loop_father
== loop
593 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
))
595 if (loop_outer (outermost_loop
))
596 outermost_loop
= loop_outer (outermost_loop
);
598 /* Pass loop_outer to recognize e->dest as loop header in
600 if (e
->dest
->loop_father
->header
== e
->dest
)
601 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
602 loop_outer (e
->dest
->loop_father
));
604 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
605 e
->dest
->loop_father
);
610 result
.difficult
= true;
611 result
.exits
= false;
612 move_sd_regions (®ions
, scops
);
616 case GBB_COND_HEADER
:
618 auto_vec
<sd_region
, 3> regions
;
619 struct scopdet_info sinfo
;
620 vec
<basic_block
> dominated
;
623 basic_block last_exit
= NULL
;
625 result
.exits
= false;
627 /* First check the successors of BB, and check if it is
628 possible to join the different branches. */
629 FOR_EACH_VEC_SAFE_ELT (bb
->succs
, i
, e
)
631 /* Ignore loop exits. They will be handled after the loop
633 if (loop_exits_to_bb_p (loop
, e
->dest
))
639 /* Do not follow edges that lead to the end of the
640 conditions block. For example, in
650 the edge from 0 => 6. Only check if all paths lead to
653 if (!single_pred_p (e
->dest
))
655 /* Check, if edge leads directly to the end of this
660 if (e
->dest
!= last_exit
)
661 result
.difficult
= true;
666 if (!dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
668 result
.difficult
= true;
672 sinfo
= build_scops_1 (e
->dest
, outermost_loop
, ®ions
, loop
);
674 result
.exits
|= sinfo
.exits
;
675 result
.difficult
|= sinfo
.difficult
;
677 /* Checks, if all branches end at the same point.
678 If that is true, the condition stays joinable.
679 Have a look at the example above. */
683 last_exit
= sinfo
.exit
;
685 if (sinfo
.exit
!= last_exit
)
686 result
.difficult
= true;
689 result
.difficult
= true;
693 result
.difficult
= true;
695 /* Join the branches of the condition if possible. */
696 if (!result
.exits
&& !result
.difficult
)
698 /* Only return a next pointer if we dominate this pointer.
699 Otherwise it will be handled by the bb dominating it. */
700 if (dominated_by_p (CDI_DOMINATORS
, last_exit
, bb
)
702 result
.next
= last_exit
;
706 result
.exit
= last_exit
;
712 /* Scan remaining bbs dominated by BB. */
713 dominated
= get_dominated_by (CDI_DOMINATORS
, bb
);
715 FOR_EACH_VEC_ELT (dominated
, i
, dom_bb
)
717 /* Ignore loop exits: they will be handled after the loop body. */
718 if (loop_depth (find_common_loop (loop
, dom_bb
->loop_father
))
725 /* Ignore the bbs processed above. */
726 if (single_pred_p (dom_bb
) && single_pred (dom_bb
) == bb
)
729 if (loop_depth (loop
) > loop_depth (dom_bb
->loop_father
))
730 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
,
733 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
, loop
);
735 result
.exits
|= sinfo
.exits
;
736 result
.difficult
= true;
740 dominated
.release ();
743 move_sd_regions (®ions
, scops
);
755 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
756 SCOPS. The analyse if a sd_region can be handled is based on the value
757 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
758 is the loop in which CURRENT is handled.
760 TODO: These functions got a little bit big. They definitely should be cleaned
763 static struct scopdet_info
764 build_scops_1 (basic_block current
, loop_p outermost_loop
,
765 vec
<sd_region
> *scops
, loop_p loop
)
767 bool in_scop
= false;
769 struct scopdet_info sinfo
;
771 /* Initialize result. */
772 struct scopdet_info result
;
773 result
.exits
= false;
774 result
.difficult
= false;
777 open_scop
.entry
= NULL
;
778 open_scop
.exit
= NULL
;
781 /* Loop over the dominance tree. If we meet a difficult bb, close
782 the current SCoP. Loop and condition header start a new layer,
783 and can only be added if all bbs in deeper layers are simple. */
784 while (current
!= NULL
)
786 sinfo
= scopdet_basic_block_info (current
, outermost_loop
, scops
,
787 get_bb_type (current
, loop
));
789 if (!in_scop
&& !(sinfo
.exits
|| sinfo
.difficult
))
791 open_scop
.entry
= current
;
792 open_scop
.exit
= NULL
;
795 else if (in_scop
&& (sinfo
.exits
|| sinfo
.difficult
))
797 open_scop
.exit
= current
;
798 scops
->safe_push (open_scop
);
802 result
.difficult
|= sinfo
.difficult
;
803 result
.exits
|= sinfo
.exits
;
805 current
= sinfo
.next
;
808 /* Try to close open_scop, if we are still in an open SCoP. */
811 open_scop
.exit
= sinfo
.exit
;
812 gcc_assert (open_scop
.exit
);
813 scops
->safe_push (open_scop
);
816 result
.exit
= sinfo
.exit
;
820 /* Checks if a bb is contained in REGION. */
823 bb_in_sd_region (basic_block bb
, sd_region
*region
)
825 return bb_in_region (bb
, region
->entry
, region
->exit
);
828 /* Returns the single entry edge of REGION, if it does not exits NULL. */
831 find_single_entry_edge (sd_region
*region
)
837 FOR_EACH_EDGE (e
, ei
, region
->entry
->preds
)
838 if (!bb_in_sd_region (e
->src
, region
))
853 /* Returns the single exit edge of REGION, if it does not exits NULL. */
856 find_single_exit_edge (sd_region
*region
)
862 FOR_EACH_EDGE (e
, ei
, region
->exit
->preds
)
863 if (bb_in_sd_region (e
->src
, region
))
878 /* Create a single entry edge for REGION. */
881 create_single_entry_edge (sd_region
*region
)
883 if (find_single_entry_edge (region
))
886 /* There are multiple predecessors for bb_3
899 There are two edges (1->3, 2->3), that point from outside into the region,
900 and another one (5->3), a loop latch, lead to bb_3.
908 | |\ (3.0 -> 3.1) = single entry edge
917 If the loop is part of the SCoP, we have to redirect the loop latches.
923 | | (3.0 -> 3.1) = entry edge
932 if (region
->entry
->loop_father
->header
!= region
->entry
933 || dominated_by_p (CDI_DOMINATORS
,
934 loop_latch_edge (region
->entry
->loop_father
)->src
,
937 edge forwarder
= split_block_after_labels (region
->entry
);
938 region
->entry
= forwarder
->dest
;
941 /* This case is never executed, as the loop headers seem always to have a
942 single edge pointing from outside into the loop. */
945 gcc_checking_assert (find_single_entry_edge (region
));
948 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
951 sd_region_without_exit (edge e
)
953 sd_region
*r
= (sd_region
*) e
->aux
;
956 return r
->exit
== NULL
;
961 /* Create a single exit edge for REGION. */
964 create_single_exit_edge (sd_region
*region
)
968 edge forwarder
= NULL
;
971 /* We create a forwarder bb (5) for all edges leaving this region
972 (3->5, 4->5). All other edges leading to the same bb, are moved
973 to a new bb (6). If these edges where part of another region (2->5)
974 we update the region->exit pointer, of this region.
976 To identify which edge belongs to which region we depend on the e->aux
977 pointer in every edge. It points to the region of the edge or to NULL,
978 if the edge is not part of any region.
980 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
981 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
986 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
987 | | \/ 3->5 no region, 4->5 no region,
989 \| / 5->6 region->exit = 6
992 Now there is only a single exit edge (5->6). */
995 forwarder
= make_forwarder_block (exit
, &sd_region_without_exit
, NULL
);
997 /* Unmark the edges, that are no longer exit edges. */
998 FOR_EACH_EDGE (e
, ei
, forwarder
->src
->preds
)
1002 /* Mark the new exit edge. */
1003 single_succ_edge (forwarder
->src
)->aux
= region
;
1005 /* Update the exit bb of all regions, where exit edges lead to
1007 FOR_EACH_EDGE (e
, ei
, forwarder
->dest
->preds
)
1009 ((sd_region
*) e
->aux
)->exit
= forwarder
->dest
;
1011 gcc_checking_assert (find_single_exit_edge (region
));
1014 /* Unmark the exit edges of all REGIONS.
1015 See comment in "create_single_exit_edge". */
1018 unmark_exit_edges (vec
<sd_region
> regions
)
1025 FOR_EACH_VEC_ELT (regions
, i
, s
)
1026 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1031 /* Mark the exit edges of all REGIONS.
1032 See comment in "create_single_exit_edge". */
1035 mark_exit_edges (vec
<sd_region
> regions
)
1042 FOR_EACH_VEC_ELT (regions
, i
, s
)
1043 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1044 if (bb_in_sd_region (e
->src
, s
))
1048 /* Create for all scop regions a single entry and a single exit edge. */
1051 create_sese_edges (vec
<sd_region
> regions
)
1056 FOR_EACH_VEC_ELT (regions
, i
, s
)
1057 create_single_entry_edge (s
);
1059 mark_exit_edges (regions
);
1061 FOR_EACH_VEC_ELT (regions
, i
, s
)
1062 /* Don't handle multiple edges exiting the function. */
1063 if (!find_single_exit_edge (s
)
1064 && s
->exit
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1065 create_single_exit_edge (s
);
1067 unmark_exit_edges (regions
);
1069 calculate_dominance_info (CDI_DOMINATORS
);
1070 fix_loop_structure (NULL
);
1072 #ifdef ENABLE_CHECKING
1073 verify_loop_structure ();
1074 verify_ssa (false, true);
1078 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1081 build_graphite_scops (vec
<sd_region
> regions
,
1087 FOR_EACH_VEC_ELT (regions
, i
, s
)
1089 edge entry
= find_single_entry_edge (s
);
1090 edge exit
= find_single_exit_edge (s
);
1096 scop
= new_scop (new_sese (entry
, exit
));
1097 scops
->safe_push (scop
);
1099 /* Are there overlapping SCoPs? */
1100 #ifdef ENABLE_CHECKING
1105 FOR_EACH_VEC_ELT (regions
, j
, s2
)
1107 gcc_assert (!bb_in_sd_region (s
->entry
, s2
));
1113 /* Returns true when BB contains only close phi nodes. */
1116 contains_only_close_phi_nodes (basic_block bb
)
1118 gimple_stmt_iterator gsi
;
1120 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1121 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_LABEL
)
1127 /* Print statistics for SCOP to FILE. */
1130 print_graphite_scop_statistics (FILE* file
, scop_p scop
)
1135 long n_conditions
= 0;
1139 long n_p_conditions
= 0;
1143 FOR_ALL_BB_FN (bb
, cfun
)
1145 gimple_stmt_iterator psi
;
1146 loop_p loop
= bb
->loop_father
;
1148 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
1152 n_p_bbs
+= bb
->count
;
1154 if (EDGE_COUNT (bb
->succs
) > 1)
1157 n_p_conditions
+= bb
->count
;
1160 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1163 n_p_stmts
+= bb
->count
;
1166 if (loop
->header
== bb
&& loop_in_sese_p (loop
, SCOP_REGION (scop
)))
1169 n_p_loops
+= bb
->count
;
1174 fprintf (file
, "\nBefore limit_scops SCoP statistics (");
1175 fprintf (file
, "BBS:%ld, ", n_bbs
);
1176 fprintf (file
, "LOOPS:%ld, ", n_loops
);
1177 fprintf (file
, "CONDITIONS:%ld, ", n_conditions
);
1178 fprintf (file
, "STMTS:%ld)\n", n_stmts
);
1179 fprintf (file
, "\nBefore limit_scops SCoP profiling statistics (");
1180 fprintf (file
, "BBS:%ld, ", n_p_bbs
);
1181 fprintf (file
, "LOOPS:%ld, ", n_p_loops
);
1182 fprintf (file
, "CONDITIONS:%ld, ", n_p_conditions
);
1183 fprintf (file
, "STMTS:%ld)\n", n_p_stmts
);
1186 /* Print statistics for SCOPS to FILE. */
1189 print_graphite_statistics (FILE* file
, vec
<scop_p
> scops
)
1194 FOR_EACH_VEC_ELT (scops
, i
, scop
)
1195 print_graphite_scop_statistics (file
, scop
);
1198 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1208 * SCoP frontier, as this line is not surrounded by any loop. *
1212 This is necessary as scalar evolution and parameter detection need a
1213 outermost loop to initialize parameters correctly.
1215 TODO: FIX scalar evolution and parameter detection to allow more flexible
1219 limit_scops (vec
<scop_p
> *scops
)
1221 auto_vec
<sd_region
, 3> regions
;
1226 FOR_EACH_VEC_ELT (*scops
, i
, scop
)
1230 sese region
= SCOP_REGION (scop
);
1231 build_sese_loop_nests (region
);
1233 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), j
, loop
)
1234 if (!loop_in_sese_p (loop_outer (loop
), region
)
1235 && single_exit (loop
))
1237 sd_region open_scop
;
1238 open_scop
.entry
= loop
->header
;
1239 open_scop
.exit
= single_exit (loop
)->dest
;
1241 /* This is a hack on top of the limit_scops hack. The
1242 limit_scops hack should disappear all together. */
1243 if (single_succ_p (open_scop
.exit
)
1244 && contains_only_close_phi_nodes (open_scop
.exit
))
1245 open_scop
.exit
= single_succ_edge (open_scop
.exit
)->dest
;
1247 regions
.safe_push (open_scop
);
1251 free_scops (*scops
);
1254 create_sese_edges (regions
);
1255 build_graphite_scops (regions
, scops
);
1258 /* Returns true when P1 and P2 are close phis with the same
1262 same_close_phi_node (gphi
*p1
, gphi
*p2
)
1264 return operand_equal_p (gimple_phi_arg_def (p1
, 0),
1265 gimple_phi_arg_def (p2
, 0), 0);
1268 /* Remove the close phi node at GSI and replace its rhs with the rhs
1272 remove_duplicate_close_phi (gphi
*phi
, gphi_iterator
*gsi
)
1275 use_operand_p use_p
;
1276 imm_use_iterator imm_iter
;
1277 tree res
= gimple_phi_result (phi
);
1278 tree def
= gimple_phi_result (gsi
->phi ());
1280 gcc_assert (same_close_phi_node (phi
, gsi
->phi ()));
1282 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
1284 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1285 SET_USE (use_p
, res
);
1287 update_stmt (use_stmt
);
1289 /* It is possible that we just created a duplicate close-phi
1290 for an already-processed containing loop. Check for this
1291 case and clean it up. */
1292 if (gimple_code (use_stmt
) == GIMPLE_PHI
1293 && gimple_phi_num_args (use_stmt
) == 1)
1294 make_close_phi_nodes_unique (gimple_bb (use_stmt
));
1297 remove_phi_node (gsi
, true);
1300 /* Removes all the close phi duplicates from BB. */
1303 make_close_phi_nodes_unique (basic_block bb
)
1307 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1309 gphi_iterator gsi
= psi
;
1310 gphi
*phi
= psi
.phi ();
1312 /* At this point, PHI should be a close phi in normal form. */
1313 gcc_assert (gimple_phi_num_args (phi
) == 1);
1315 /* Iterate over the next phis and remove duplicates. */
1317 while (!gsi_end_p (gsi
))
1318 if (same_close_phi_node (phi
, gsi
.phi ()))
1319 remove_duplicate_close_phi (phi
, &gsi
);
1325 /* Transforms LOOP to the canonical loop closed SSA form. */
1328 canonicalize_loop_closed_ssa (loop_p loop
)
1330 edge e
= single_exit (loop
);
1333 if (!e
|| e
->flags
& EDGE_ABNORMAL
)
1338 if (single_pred_p (bb
))
1340 e
= split_block_after_labels (bb
);
1341 make_close_phi_nodes_unique (e
->src
);
1346 basic_block close
= split_edge (e
);
1348 e
= single_succ_edge (close
);
1350 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1352 gphi
*phi
= psi
.phi ();
1355 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1356 if (gimple_phi_arg_edge (phi
, i
) == e
)
1358 tree res
, arg
= gimple_phi_arg_def (phi
, i
);
1359 use_operand_p use_p
;
1362 if (TREE_CODE (arg
) != SSA_NAME
)
1365 close_phi
= create_phi_node (NULL_TREE
, close
);
1366 res
= create_new_def_for (arg
, close_phi
,
1367 gimple_phi_result_ptr (close_phi
));
1368 add_phi_arg (close_phi
, arg
,
1369 gimple_phi_arg_edge (close_phi
, 0),
1371 use_p
= gimple_phi_arg_imm_use_ptr (phi
, i
);
1372 replace_exp (use_p
, res
);
1377 make_close_phi_nodes_unique (close
);
1380 /* The code above does not properly handle changes in the post dominance
1381 information (yet). */
1382 free_dominance_info (CDI_POST_DOMINATORS
);
1385 /* Converts the current loop closed SSA form to a canonical form
1386 expected by the Graphite code generation.
1388 The loop closed SSA form has the following invariant: a variable
1389 defined in a loop that is used outside the loop appears only in the
1390 phi nodes in the destination of the loop exit. These phi nodes are
1391 called close phi nodes.
1393 The canonical loop closed SSA form contains the extra invariants:
1395 - when the loop contains only one exit, the close phi nodes contain
1396 only one argument. That implies that the basic block that contains
1397 the close phi nodes has only one predecessor, that is a basic block
1400 - the basic block containing the close phi nodes does not contain
1403 - there exist only one phi node per definition in the loop.
1407 canonicalize_loop_closed_ssa_form (void)
1411 #ifdef ENABLE_CHECKING
1412 verify_loop_closed_ssa (true);
1415 FOR_EACH_LOOP (loop
, 0)
1416 canonicalize_loop_closed_ssa (loop
);
1418 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1419 update_ssa (TODO_update_ssa
);
1421 #ifdef ENABLE_CHECKING
1422 verify_loop_closed_ssa (true);
1426 /* Find Static Control Parts (SCoP) in the current function and pushes
1430 build_scops (vec
<scop_p
> *scops
)
1432 struct loop
*loop
= current_loops
->tree_root
;
1433 auto_vec
<sd_region
, 3> regions
;
1435 canonicalize_loop_closed_ssa_form ();
1436 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
1437 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->loop_father
,
1439 create_sese_edges (regions
);
1440 build_graphite_scops (regions
, scops
);
1442 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1443 print_graphite_statistics (dump_file
, *scops
);
1445 limit_scops (scops
);
1448 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1449 fprintf (dump_file
, "\nnumber of SCoPs: %d\n",
1450 scops
? scops
->length () : 0);
1453 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1454 different colors. If there are not enough colors, paint the
1455 remaining SCoPs in gray.
1458 - "*" after the node number denotes the entry of a SCoP,
1459 - "#" after the node number denotes the exit of a SCoP,
1460 - "()" around the node number denotes the entry or the
1461 exit nodes of the SCOP. These are not part of SCoP. */
1464 dot_all_scops_1 (FILE *file
, vec
<scop_p
> scops
)
1473 /* Disable debugging while printing graph. */
1474 int tmp_dump_flags
= dump_flags
;
1477 fprintf (file
, "digraph all {\n");
1479 FOR_ALL_BB_FN (bb
, cfun
)
1481 int part_of_scop
= false;
1483 /* Use HTML for every bb label. So we are able to print bbs
1484 which are part of two different SCoPs, with two different
1485 background colors. */
1486 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1488 fprintf (file
, "CELLSPACING=\"0\">\n");
1490 /* Select color for SCoP. */
1491 FOR_EACH_VEC_ELT (scops
, i
, scop
)
1493 sese region
= SCOP_REGION (scop
);
1494 if (bb_in_sese_p (bb
, region
)
1495 || (SESE_EXIT_BB (region
) == bb
)
1496 || (SESE_ENTRY_BB (region
) == bb
))
1509 case 3: /* purple */
1512 case 4: /* orange */
1515 case 5: /* yellow */
1555 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color
);
1557 if (!bb_in_sese_p (bb
, region
))
1558 fprintf (file
, " (");
1560 if (bb
== SESE_ENTRY_BB (region
)
1561 && bb
== SESE_EXIT_BB (region
))
1562 fprintf (file
, " %d*# ", bb
->index
);
1563 else if (bb
== SESE_ENTRY_BB (region
))
1564 fprintf (file
, " %d* ", bb
->index
);
1565 else if (bb
== SESE_EXIT_BB (region
))
1566 fprintf (file
, " %d# ", bb
->index
);
1568 fprintf (file
, " %d ", bb
->index
);
1570 if (!bb_in_sese_p (bb
,region
))
1571 fprintf (file
, ")");
1573 fprintf (file
, "</TD></TR>\n");
1574 part_of_scop
= true;
1580 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1581 fprintf (file
, " %d </TD></TR>\n", bb
->index
);
1583 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1586 FOR_ALL_BB_FN (bb
, cfun
)
1588 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1589 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
1592 fputs ("}\n\n", file
);
1594 /* Enable debugging again. */
1595 dump_flags
= tmp_dump_flags
;
1598 /* Display all SCoPs using dotty. */
1601 dot_all_scops (vec
<scop_p
> scops
)
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1607 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1608 gcc_assert (stream
);
1610 dot_all_scops_1 (stream
, scops
);
1613 x
= system ("dotty /tmp/allscops.dot &");
1615 dot_all_scops_1 (stderr
, scops
);
1619 /* Display all SCoPs using dotty. */
1622 dot_scop (scop_p scop
)
1624 auto_vec
<scop_p
, 1> scops
;
1627 scops
.safe_push (scop
);
1629 /* When debugging, enable the following code. This cannot be used
1630 in production compilers because it calls "system". */
1634 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1635 gcc_assert (stream
);
1637 dot_all_scops_1 (stream
, scops
);
1639 x
= system ("dotty /tmp/allscops.dot &");
1642 dot_all_scops_1 (stderr
, scops
);