1 /* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU Lesser General Public
13 License, the Free Software Foundation gives you unlimited
14 permission to link the compiled version of this file into
15 combinations with other programs, and to distribute those
16 combinations without any restriction coming from the use of this
17 file. (The Lesser General Public License restrictions do apply in
18 other respects; for example, they cover modification of the file,
19 and distribution when not linked into a combine executable.)
21 The GNU C Library is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 Lesser General Public License for more details.
26 You should have received a copy of the GNU Lesser General Public
27 License along with the GNU C Library; if not, see
28 <http://www.gnu.org/licenses/>. */
30 #if _FP_W_TYPE_SIZE < 32
31 # error "Here's a nickel, kid. Go buy yourself a real computer."
34 #if _FP_W_TYPE_SIZE < 64
35 # define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
36 # define _FP_FRACTBITS_DW_E (8*_FP_W_TYPE_SIZE)
38 # define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
39 # define _FP_FRACTBITS_DW_E (4*_FP_W_TYPE_SIZE)
42 #define _FP_FRACBITS_E 64
43 #define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
44 #define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
45 #define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
46 #define _FP_EXPBITS_E 15
47 #define _FP_EXPBIAS_E 16383
48 #define _FP_EXPMAX_E 32767
50 #define _FP_QNANBIT_E \
51 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
52 #define _FP_QNANBIT_SH_E \
53 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-2+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
54 #define _FP_IMPLBIT_E \
55 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
56 #define _FP_IMPLBIT_SH_E \
57 ((_FP_W_TYPE) 1 << (_FP_FRACBITS_E-1+_FP_WORKBITS) % _FP_W_TYPE_SIZE)
58 #define _FP_OVERFLOW_E \
59 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
61 #define _FP_WFRACBITS_DW_E (2 * _FP_WFRACBITS_E)
62 #define _FP_WFRACXBITS_DW_E (_FP_FRACTBITS_DW_E - _FP_WFRACBITS_DW_E)
63 #define _FP_HIGHBIT_DW_E \
64 ((_FP_W_TYPE) 1 << (_FP_WFRACBITS_DW_E - 1) % _FP_W_TYPE_SIZE)
66 typedef float XFtype
__attribute__ ((mode (XF
)));
68 #if _FP_W_TYPE_SIZE < 64
73 struct _FP_STRUCT_LAYOUT
75 # if __BYTE_ORDER == __BIG_ENDIAN
76 unsigned long pad1
: _FP_W_TYPE_SIZE
;
77 unsigned long pad2
: (_FP_W_TYPE_SIZE
- 1 - _FP_EXPBITS_E
);
78 unsigned long sign
: 1;
79 unsigned long exp
: _FP_EXPBITS_E
;
80 unsigned long frac1
: _FP_W_TYPE_SIZE
;
81 unsigned long frac0
: _FP_W_TYPE_SIZE
;
83 unsigned long frac0
: _FP_W_TYPE_SIZE
;
84 unsigned long frac1
: _FP_W_TYPE_SIZE
;
85 unsigned exp
: _FP_EXPBITS_E
;
87 # endif /* not bigendian */
88 } bits
__attribute__ ((packed
));
92 # define FP_DECL_E(X) _FP_DECL (4, X)
94 # define FP_UNPACK_RAW_E(X, val) \
97 union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
98 FP_UNPACK_RAW_E_flo.flt = (val); \
102 X##_f[0] = FP_UNPACK_RAW_E_flo.bits.frac0; \
103 X##_f[1] = FP_UNPACK_RAW_E_flo.bits.frac1; \
104 X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
105 X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
109 # define FP_UNPACK_RAW_EP(X, val) \
112 union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
113 = (union _FP_UNION_E *) (val); \
117 X##_f[0] = FP_UNPACK_RAW_EP_flo->bits.frac0; \
118 X##_f[1] = FP_UNPACK_RAW_EP_flo->bits.frac1; \
119 X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
120 X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
124 # define FP_PACK_RAW_E(val, X) \
127 union _FP_UNION_E FP_PACK_RAW_E_flo; \
130 X##_f[1] |= _FP_IMPLBIT_E; \
132 X##_f[1] &= ~(_FP_IMPLBIT_E); \
133 FP_PACK_RAW_E_flo.bits.frac0 = X##_f[0]; \
134 FP_PACK_RAW_E_flo.bits.frac1 = X##_f[1]; \
135 FP_PACK_RAW_E_flo.bits.exp = X##_e; \
136 FP_PACK_RAW_E_flo.bits.sign = X##_s; \
138 (val) = FP_PACK_RAW_E_flo.flt; \
142 # define FP_PACK_RAW_EP(val, X) \
145 if (!FP_INHIBIT_RESULTS) \
147 union _FP_UNION_E *FP_PACK_RAW_EP_flo \
148 = (union _FP_UNION_E *) (val); \
151 X##_f[1] |= _FP_IMPLBIT_E; \
153 X##_f[1] &= ~(_FP_IMPLBIT_E); \
154 FP_PACK_RAW_EP_flo->bits.frac0 = X##_f[0]; \
155 FP_PACK_RAW_EP_flo->bits.frac1 = X##_f[1]; \
156 FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
157 FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
162 # define FP_UNPACK_E(X, val) \
165 FP_UNPACK_RAW_E (X, (val)); \
166 _FP_UNPACK_CANONICAL (E, 4, X); \
170 # define FP_UNPACK_EP(X, val) \
173 FP_UNPACK_RAW_EP (X, (val)); \
174 _FP_UNPACK_CANONICAL (E, 4, X); \
178 # define FP_UNPACK_SEMIRAW_E(X, val) \
181 FP_UNPACK_RAW_E (X, (val)); \
182 _FP_UNPACK_SEMIRAW (E, 4, X); \
186 # define FP_UNPACK_SEMIRAW_EP(X, val) \
189 FP_UNPACK_RAW_EP (X, (val)); \
190 _FP_UNPACK_SEMIRAW (E, 4, X); \
194 # define FP_PACK_E(val, X) \
197 _FP_PACK_CANONICAL (E, 4, X); \
198 FP_PACK_RAW_E ((val), X); \
202 # define FP_PACK_EP(val, X) \
205 _FP_PACK_CANONICAL (E, 4, X); \
206 FP_PACK_RAW_EP ((val), X); \
210 # define FP_PACK_SEMIRAW_E(val, X) \
213 _FP_PACK_SEMIRAW (E, 4, X); \
214 FP_PACK_RAW_E ((val), X); \
218 # define FP_PACK_SEMIRAW_EP(val, X) \
221 _FP_PACK_SEMIRAW (E, 4, X); \
222 FP_PACK_RAW_EP ((val), X); \
226 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 4, X)
227 # define FP_NEG_E(R, X) _FP_NEG (E, 4, R, X)
228 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 4, R, X, Y)
229 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 4, R, X, Y)
230 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 4, R, X, Y)
231 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 4, R, X, Y)
232 # define FP_SQRT_E(R, X) _FP_SQRT (E, 4, R, X)
233 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 4, 8, R, X, Y, Z)
235 /* Square root algorithms:
236 We have just one right now, maybe Newton approximation
237 should be added for those machines where division is fast.
238 This has special _E version because standard _4 square
239 root would not work (it has to start normally with the
240 second word and not the first), but as we have to do it
241 anyway, we optimize it by doing most of the calculations
242 in two UWtype registers instead of four. */
244 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
247 (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
248 _FP_FRAC_SRL_4 (X, (_FP_WORKBITS)); \
251 T##_f[1] = S##_f[1] + (q); \
252 if (T##_f[1] <= X##_f[1]) \
254 S##_f[1] = T##_f[1] + (q); \
255 X##_f[1] -= T##_f[1]; \
258 _FP_FRAC_SLL_2 (X, 1); \
261 (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
264 T##_f[0] = S##_f[0] + (q); \
265 T##_f[1] = S##_f[1]; \
266 if (T##_f[1] < X##_f[1] \
267 || (T##_f[1] == X##_f[1] \
268 && T##_f[0] <= X##_f[0])) \
270 S##_f[0] = T##_f[0] + (q); \
271 S##_f[1] += (T##_f[0] > S##_f[0]); \
272 _FP_FRAC_DEC_2 (X, T); \
275 _FP_FRAC_SLL_2 (X, 1); \
278 _FP_FRAC_SLL_4 (R, (_FP_WORKBITS)); \
279 if (X##_f[0] | X##_f[1]) \
281 if (S##_f[1] < X##_f[1] \
282 || (S##_f[1] == X##_f[1] \
283 && S##_f[0] < X##_f[0])) \
284 R##_f[0] |= _FP_WORK_ROUND; \
285 R##_f[0] |= _FP_WORK_STICKY; \
290 # define FP_CMP_E(r, X, Y, un, ex) _FP_CMP (E, 4, (r), X, Y, (un), (ex))
291 # define FP_CMP_EQ_E(r, X, Y, ex) _FP_CMP_EQ (E, 4, (r), X, Y, (ex))
292 # define FP_CMP_UNORD_E(r, X, Y, ex) _FP_CMP_UNORD (E, 4, (r), X, Y, (ex))
294 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 4, (r), X, (rsz), (rsg))
295 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 4, X, (r), (rs), rt)
297 # define _FP_FRAC_HIGH_E(X) (X##_f[2])
298 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
300 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[4])
302 #else /* not _FP_W_TYPE_SIZE < 64 */
306 struct _FP_STRUCT_LAYOUT
308 # if __BYTE_ORDER == __BIG_ENDIAN
309 _FP_W_TYPE pad
: (_FP_W_TYPE_SIZE
- 1 - _FP_EXPBITS_E
);
311 unsigned exp
: _FP_EXPBITS_E
;
312 _FP_W_TYPE frac
: _FP_W_TYPE_SIZE
;
314 _FP_W_TYPE frac
: _FP_W_TYPE_SIZE
;
315 unsigned exp
: _FP_EXPBITS_E
;
321 # define FP_DECL_E(X) _FP_DECL (2, X)
323 # define FP_UNPACK_RAW_E(X, val) \
326 union _FP_UNION_E FP_UNPACK_RAW_E_flo; \
327 FP_UNPACK_RAW_E_flo.flt = (val); \
329 X##_f0 = FP_UNPACK_RAW_E_flo.bits.frac; \
331 X##_e = FP_UNPACK_RAW_E_flo.bits.exp; \
332 X##_s = FP_UNPACK_RAW_E_flo.bits.sign; \
336 # define FP_UNPACK_RAW_EP(X, val) \
339 union _FP_UNION_E *FP_UNPACK_RAW_EP_flo \
340 = (union _FP_UNION_E *) (val); \
342 X##_f0 = FP_UNPACK_RAW_EP_flo->bits.frac; \
344 X##_e = FP_UNPACK_RAW_EP_flo->bits.exp; \
345 X##_s = FP_UNPACK_RAW_EP_flo->bits.sign; \
349 # define FP_PACK_RAW_E(val, X) \
352 union _FP_UNION_E FP_PACK_RAW_E_flo; \
355 X##_f0 |= _FP_IMPLBIT_E; \
357 X##_f0 &= ~(_FP_IMPLBIT_E); \
358 FP_PACK_RAW_E_flo.bits.frac = X##_f0; \
359 FP_PACK_RAW_E_flo.bits.exp = X##_e; \
360 FP_PACK_RAW_E_flo.bits.sign = X##_s; \
362 (val) = FP_PACK_RAW_E_flo.flt; \
366 # define FP_PACK_RAW_EP(fs, val, X) \
369 if (!FP_INHIBIT_RESULTS) \
371 union _FP_UNION_E *FP_PACK_RAW_EP_flo \
372 = (union _FP_UNION_E *) (val); \
375 X##_f0 |= _FP_IMPLBIT_E; \
377 X##_f0 &= ~(_FP_IMPLBIT_E); \
378 FP_PACK_RAW_EP_flo->bits.frac = X##_f0; \
379 FP_PACK_RAW_EP_flo->bits.exp = X##_e; \
380 FP_PACK_RAW_EP_flo->bits.sign = X##_s; \
386 # define FP_UNPACK_E(X, val) \
389 FP_UNPACK_RAW_E (X, (val)); \
390 _FP_UNPACK_CANONICAL (E, 2, X); \
394 # define FP_UNPACK_EP(X, val) \
397 FP_UNPACK_RAW_EP (X, (val)); \
398 _FP_UNPACK_CANONICAL (E, 2, X); \
402 # define FP_UNPACK_SEMIRAW_E(X, val) \
405 FP_UNPACK_RAW_E (X, (val)); \
406 _FP_UNPACK_SEMIRAW (E, 2, X); \
410 # define FP_UNPACK_SEMIRAW_EP(X, val) \
413 FP_UNPACK_RAW_EP (X, (val)); \
414 _FP_UNPACK_SEMIRAW (E, 2, X); \
418 # define FP_PACK_E(val, X) \
421 _FP_PACK_CANONICAL (E, 2, X); \
422 FP_PACK_RAW_E ((val), X); \
426 # define FP_PACK_EP(val, X) \
429 _FP_PACK_CANONICAL (E, 2, X); \
430 FP_PACK_RAW_EP ((val), X); \
434 # define FP_PACK_SEMIRAW_E(val, X) \
437 _FP_PACK_SEMIRAW (E, 2, X); \
438 FP_PACK_RAW_E ((val), X); \
442 # define FP_PACK_SEMIRAW_EP(val, X) \
445 _FP_PACK_SEMIRAW (E, 2, X); \
446 FP_PACK_RAW_EP ((val), X); \
450 # define FP_ISSIGNAN_E(X) _FP_ISSIGNAN (E, 2, X)
451 # define FP_NEG_E(R, X) _FP_NEG (E, 2, R, X)
452 # define FP_ADD_E(R, X, Y) _FP_ADD (E, 2, R, X, Y)
453 # define FP_SUB_E(R, X, Y) _FP_SUB (E, 2, R, X, Y)
454 # define FP_MUL_E(R, X, Y) _FP_MUL (E, 2, R, X, Y)
455 # define FP_DIV_E(R, X, Y) _FP_DIV (E, 2, R, X, Y)
456 # define FP_SQRT_E(R, X) _FP_SQRT (E, 2, R, X)
457 # define FP_FMA_E(R, X, Y, Z) _FP_FMA (E, 2, 4, R, X, Y, Z)
459 /* Square root algorithms:
460 We have just one right now, maybe Newton approximation
461 should be added for those machines where division is fast.
462 We optimize it by doing most of the calculations
463 in one UWtype registers instead of two, although we don't
465 # define _FP_SQRT_MEAT_E(R, S, T, X, q) \
468 (q) = (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE - 1); \
469 _FP_FRAC_SRL_2 (X, (_FP_WORKBITS)); \
472 T##_f0 = S##_f0 + (q); \
473 if (T##_f0 <= X##_f0) \
475 S##_f0 = T##_f0 + (q); \
479 _FP_FRAC_SLL_1 (X, 1); \
482 _FP_FRAC_SLL_2 (R, (_FP_WORKBITS)); \
485 if (S##_f0 < X##_f0) \
486 R##_f0 |= _FP_WORK_ROUND; \
487 R##_f0 |= _FP_WORK_STICKY; \
492 # define FP_CMP_E(r, X, Y, un, ex) _FP_CMP (E, 2, (r), X, Y, (un), (ex))
493 # define FP_CMP_EQ_E(r, X, Y, ex) _FP_CMP_EQ (E, 2, (r), X, Y, (ex))
494 # define FP_CMP_UNORD_E(r, X, Y, ex) _FP_CMP_UNORD (E, 2, (r), X, Y, (ex))
496 # define FP_TO_INT_E(r, X, rsz, rsg) _FP_TO_INT (E, 2, (r), X, (rsz), (rsg))
497 # define FP_FROM_INT_E(X, r, rs, rt) _FP_FROM_INT (E, 2, X, (r), (rs), rt)
499 # define _FP_FRAC_HIGH_E(X) (X##_f1)
500 # define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
502 # define _FP_FRAC_HIGH_DW_E(X) (X##_f[2])
504 #endif /* not _FP_W_TYPE_SIZE < 64 */