* c-decl.c (c_expand_body): Check TYPE_SIZE_UNIT (ret_type)
[official-gcc.git] / gcc / jump.c
blobff2ab146d9778ea059e7548e4870fe4494f9c7f2
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-flags.h"
63 #include "insn-attr.h"
64 #include "recog.h"
65 #include "function.h"
66 #include "expr.h"
67 #include "real.h"
68 #include "except.h"
69 #include "toplev.h"
71 /* ??? Eventually must record somehow the labels used by jumps
72 from nested functions. */
73 /* Pre-record the next or previous real insn for each label?
74 No, this pass is very fast anyway. */
75 /* Condense consecutive labels?
76 This would make life analysis faster, maybe. */
77 /* Optimize jump y; x: ... y: jumpif... x?
78 Don't know if it is worth bothering with. */
79 /* Optimize two cases of conditional jump to conditional jump?
80 This can never delete any instruction or make anything dead,
81 or even change what is live at any point.
82 So perhaps let combiner do it. */
84 /* Vector indexed by uid.
85 For each CODE_LABEL, index by its uid to get first unconditional jump
86 that jumps to the label.
87 For each JUMP_INSN, index by its uid to get the next unconditional jump
88 that jumps to the same label.
89 Element 0 is the start of a chain of all return insns.
90 (It is safe to use element 0 because insn uid 0 is not used. */
92 static rtx *jump_chain;
94 /* Maximum index in jump_chain. */
96 static int max_jump_chain;
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
104 static int cross_jump_death_matters = 0;
106 static int init_label_info PARAMS ((rtx));
107 static void delete_barrier_successors PARAMS ((rtx));
108 static void mark_all_labels PARAMS ((rtx, int));
109 static rtx delete_unreferenced_labels PARAMS ((rtx));
110 static void delete_noop_moves PARAMS ((rtx));
111 static int duplicate_loop_exit_test PARAMS ((rtx));
112 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
113 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
114 static int jump_back_p PARAMS ((rtx, rtx));
115 static int tension_vector_labels PARAMS ((rtx, int));
116 static void delete_computation PARAMS ((rtx));
117 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
118 static int redirect_exp PARAMS ((rtx, rtx, rtx));
119 static void invert_exp_1 PARAMS ((rtx));
120 static int invert_exp PARAMS ((rtx));
121 static void delete_from_jump_chain PARAMS ((rtx));
122 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
123 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
124 static void redirect_tablejump PARAMS ((rtx, rtx));
125 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
126 static int returnjump_p_1 PARAMS ((rtx *, void *));
127 static void delete_prior_computation PARAMS ((rtx, rtx));
129 /* Main external entry point into the jump optimizer. See comments before
130 jump_optimize_1 for descriptions of the arguments. */
131 void
132 jump_optimize (f, cross_jump, noop_moves, after_regscan)
133 rtx f;
134 int cross_jump;
135 int noop_moves;
136 int after_regscan;
138 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
141 /* Alternate entry into the jump optimizer. This entry point only rebuilds
142 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
143 instructions. */
144 void
145 rebuild_jump_labels (f)
146 rtx f;
148 jump_optimize_1 (f, 0, 0, 0, 1, 0);
151 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
153 void
154 jump_optimize_minimal (f)
155 rtx f;
157 jump_optimize_1 (f, 0, 0, 0, 0, 1);
160 /* Delete no-op jumps and optimize jumps to jumps
161 and jumps around jumps.
162 Delete unused labels and unreachable code.
164 If CROSS_JUMP is 1, detect matching code
165 before a jump and its destination and unify them.
166 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
168 If NOOP_MOVES is nonzero, delete no-op move insns.
170 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
171 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
173 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
174 and JUMP_LABEL field for jumping insns.
176 If `optimize' is zero, don't change any code,
177 just determine whether control drops off the end of the function.
178 This case occurs when we have -W and not -O.
179 It works because `delete_insn' checks the value of `optimize'
180 and refrains from actually deleting when that is 0.
182 If MINIMAL is nonzero, then we only perform trivial optimizations:
184 * Removal of unreachable code after BARRIERs.
185 * Removal of unreferenced CODE_LABELs.
186 * Removal of a jump to the next instruction.
187 * Removal of a conditional jump followed by an unconditional jump
188 to the same target as the conditional jump.
189 * Simplify a conditional jump around an unconditional jump.
190 * Simplify a jump to a jump.
191 * Delete extraneous line number notes.
194 static void
195 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
196 mark_labels_only, minimal)
197 rtx f;
198 int cross_jump;
199 int noop_moves;
200 int after_regscan;
201 int mark_labels_only;
202 int minimal;
204 register rtx insn, next;
205 int changed;
206 int old_max_reg;
207 int first = 1;
208 int max_uid = 0;
209 rtx last_insn;
210 enum rtx_code reversed_code;
212 cross_jump_death_matters = (cross_jump == 2);
213 max_uid = init_label_info (f) + 1;
215 /* If we are performing cross jump optimizations, then initialize
216 tables mapping UIDs to EH regions to avoid incorrect movement
217 of insns from one EH region to another. */
218 if (flag_exceptions && cross_jump)
219 init_insn_eh_region (f, max_uid);
221 if (! mark_labels_only)
222 delete_barrier_successors (f);
224 /* Leave some extra room for labels and duplicate exit test insns
225 we make. */
226 max_jump_chain = max_uid * 14 / 10;
227 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
229 mark_all_labels (f, cross_jump);
231 /* Keep track of labels used from static data; we don't track them
232 closely enough to delete them here, so make sure their reference
233 count doesn't drop to zero. */
235 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
236 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
237 LABEL_NUSES (XEXP (insn, 0))++;
239 check_exception_handler_labels ();
241 /* Keep track of labels used for marking handlers for exception
242 regions; they cannot usually be deleted. */
244 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
245 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
246 LABEL_NUSES (XEXP (insn, 0))++;
248 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
249 notes and recompute LABEL_NUSES. */
250 if (mark_labels_only)
251 goto end;
253 if (! minimal)
254 exception_optimize ();
256 last_insn = delete_unreferenced_labels (f);
258 if (noop_moves)
259 delete_noop_moves (f);
261 /* If we haven't yet gotten to reload and we have just run regscan,
262 delete any insn that sets a register that isn't used elsewhere.
263 This helps some of the optimizations below by having less insns
264 being jumped around. */
266 if (optimize && ! reload_completed && after_regscan)
267 for (insn = f; insn; insn = next)
269 rtx set = single_set (insn);
271 next = NEXT_INSN (insn);
273 if (set && GET_CODE (SET_DEST (set)) == REG
274 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
275 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
276 /* We use regno_last_note_uid so as not to delete the setting
277 of a reg that's used in notes. A subsequent optimization
278 might arrange to use that reg for real. */
279 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
280 && ! side_effects_p (SET_SRC (set))
281 && ! find_reg_note (insn, REG_RETVAL, 0)
282 /* An ADDRESSOF expression can turn into a use of the internal arg
283 pointer, so do not delete the initialization of the internal
284 arg pointer yet. If it is truly dead, flow will delete the
285 initializing insn. */
286 && SET_DEST (set) != current_function_internal_arg_pointer)
287 delete_insn (insn);
290 /* Now iterate optimizing jumps until nothing changes over one pass. */
291 changed = 1;
292 old_max_reg = max_reg_num ();
293 while (changed)
295 changed = 0;
297 for (insn = f; insn; insn = next)
299 rtx reallabelprev;
300 rtx temp, temp1, temp2 = NULL_RTX;
301 rtx temp4 ATTRIBUTE_UNUSED;
302 rtx nlabel;
303 int this_is_any_uncondjump;
304 int this_is_any_condjump;
305 int this_is_onlyjump;
307 next = NEXT_INSN (insn);
309 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
310 jump. Try to optimize by duplicating the loop exit test if so.
311 This is only safe immediately after regscan, because it uses
312 the values of regno_first_uid and regno_last_uid. */
313 if (after_regscan && GET_CODE (insn) == NOTE
314 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
315 && (temp1 = next_nonnote_insn (insn)) != 0
316 && any_uncondjump_p (temp1)
317 && onlyjump_p (temp1))
319 temp = PREV_INSN (insn);
320 if (duplicate_loop_exit_test (insn))
322 changed = 1;
323 next = NEXT_INSN (temp);
324 continue;
328 if (GET_CODE (insn) != JUMP_INSN)
329 continue;
331 this_is_any_condjump = any_condjump_p (insn);
332 this_is_any_uncondjump = any_uncondjump_p (insn);
333 this_is_onlyjump = onlyjump_p (insn);
335 /* Tension the labels in dispatch tables. */
337 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
338 changed |= tension_vector_labels (PATTERN (insn), 0);
339 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
340 changed |= tension_vector_labels (PATTERN (insn), 1);
342 /* See if this jump goes to another jump and redirect if so. */
343 nlabel = follow_jumps (JUMP_LABEL (insn));
344 if (nlabel != JUMP_LABEL (insn))
345 changed |= redirect_jump (insn, nlabel, 1);
347 if (! optimize || minimal)
348 continue;
350 /* If a dispatch table always goes to the same place,
351 get rid of it and replace the insn that uses it. */
353 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
354 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
356 int i;
357 rtx pat = PATTERN (insn);
358 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
359 int len = XVECLEN (pat, diff_vec_p);
360 rtx dispatch = prev_real_insn (insn);
361 rtx set;
363 for (i = 0; i < len; i++)
364 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
365 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
366 break;
368 if (i == len
369 && dispatch != 0
370 && GET_CODE (dispatch) == JUMP_INSN
371 && JUMP_LABEL (dispatch) != 0
372 /* Don't mess with a casesi insn.
373 XXX according to the comment before computed_jump_p(),
374 all casesi insns should be a parallel of the jump
375 and a USE of a LABEL_REF. */
376 && ! ((set = single_set (dispatch)) != NULL
377 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
378 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
380 redirect_tablejump (dispatch,
381 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
382 changed = 1;
386 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
388 /* Detect jump to following insn. */
389 if (reallabelprev == insn
390 && (this_is_any_condjump || this_is_any_uncondjump)
391 && this_is_onlyjump)
393 next = next_real_insn (JUMP_LABEL (insn));
394 delete_jump (insn);
396 /* Remove the "inactive" but "real" insns (i.e. uses and
397 clobbers) in between here and there. */
398 temp = insn;
399 while ((temp = next_real_insn (temp)) != next)
400 delete_insn (temp);
402 changed = 1;
403 continue;
406 /* Detect a conditional jump going to the same place
407 as an immediately following unconditional jump. */
408 else if (this_is_any_condjump && this_is_onlyjump
409 && (temp = next_active_insn (insn)) != 0
410 && simplejump_p (temp)
411 && (next_active_insn (JUMP_LABEL (insn))
412 == next_active_insn (JUMP_LABEL (temp))))
414 /* Don't mess up test coverage analysis. */
415 temp2 = temp;
416 if (flag_test_coverage && !reload_completed)
417 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
418 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
419 break;
421 if (temp2 == temp)
423 delete_jump (insn);
424 changed = 1;
425 continue;
429 /* Detect a conditional jump jumping over an unconditional jump. */
431 else if (this_is_any_condjump
432 && reallabelprev != 0
433 && GET_CODE (reallabelprev) == JUMP_INSN
434 && prev_active_insn (reallabelprev) == insn
435 && no_labels_between_p (insn, reallabelprev)
436 && any_uncondjump_p (reallabelprev)
437 && onlyjump_p (reallabelprev))
439 /* When we invert the unconditional jump, we will be
440 decrementing the usage count of its old label.
441 Make sure that we don't delete it now because that
442 might cause the following code to be deleted. */
443 rtx prev_uses = prev_nonnote_insn (reallabelprev);
444 rtx prev_label = JUMP_LABEL (insn);
446 if (prev_label)
447 ++LABEL_NUSES (prev_label);
449 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
451 /* It is very likely that if there are USE insns before
452 this jump, they hold REG_DEAD notes. These REG_DEAD
453 notes are no longer valid due to this optimization,
454 and will cause the life-analysis that following passes
455 (notably delayed-branch scheduling) to think that
456 these registers are dead when they are not.
458 To prevent this trouble, we just remove the USE insns
459 from the insn chain. */
461 while (prev_uses && GET_CODE (prev_uses) == INSN
462 && GET_CODE (PATTERN (prev_uses)) == USE)
464 rtx useless = prev_uses;
465 prev_uses = prev_nonnote_insn (prev_uses);
466 delete_insn (useless);
469 delete_insn (reallabelprev);
470 changed = 1;
473 /* We can now safely delete the label if it is unreferenced
474 since the delete_insn above has deleted the BARRIER. */
475 if (prev_label && --LABEL_NUSES (prev_label) == 0)
476 delete_insn (prev_label);
478 next = NEXT_INSN (insn);
481 /* If we have an unconditional jump preceded by a USE, try to put
482 the USE before the target and jump there. This simplifies many
483 of the optimizations below since we don't have to worry about
484 dealing with these USE insns. We only do this if the label
485 being branch to already has the identical USE or if code
486 never falls through to that label. */
488 else if (this_is_any_uncondjump
489 && (temp = prev_nonnote_insn (insn)) != 0
490 && GET_CODE (temp) == INSN
491 && GET_CODE (PATTERN (temp)) == USE
492 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
493 && (GET_CODE (temp1) == BARRIER
494 || (GET_CODE (temp1) == INSN
495 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
496 /* Don't do this optimization if we have a loop containing
497 only the USE instruction, and the loop start label has
498 a usage count of 1. This is because we will redo this
499 optimization everytime through the outer loop, and jump
500 opt will never exit. */
501 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
502 && temp2 == JUMP_LABEL (insn)
503 && LABEL_NUSES (temp2) == 1))
505 if (GET_CODE (temp1) == BARRIER)
507 emit_insn_after (PATTERN (temp), temp1);
508 temp1 = NEXT_INSN (temp1);
511 delete_insn (temp);
512 redirect_jump (insn, get_label_before (temp1), 1);
513 reallabelprev = prev_real_insn (temp1);
514 changed = 1;
515 next = NEXT_INSN (insn);
518 #ifdef HAVE_trap
519 /* Detect a conditional jump jumping over an unconditional trap. */
520 if (HAVE_trap
521 && this_is_any_condjump && this_is_onlyjump
522 && reallabelprev != 0
523 && GET_CODE (reallabelprev) == INSN
524 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
525 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
526 && prev_active_insn (reallabelprev) == insn
527 && no_labels_between_p (insn, reallabelprev)
528 && (temp2 = get_condition (insn, &temp4))
529 && ((reversed_code = reversed_comparison_code (temp2, insn))
530 != UNKNOWN))
532 rtx new = gen_cond_trap (reversed_code,
533 XEXP (temp2, 0), XEXP (temp2, 1),
534 TRAP_CODE (PATTERN (reallabelprev)));
536 if (new)
538 emit_insn_before (new, temp4);
539 delete_insn (reallabelprev);
540 delete_jump (insn);
541 changed = 1;
542 continue;
545 /* Detect a jump jumping to an unconditional trap. */
546 else if (HAVE_trap && this_is_onlyjump
547 && (temp = next_active_insn (JUMP_LABEL (insn)))
548 && GET_CODE (temp) == INSN
549 && GET_CODE (PATTERN (temp)) == TRAP_IF
550 && (this_is_any_uncondjump
551 || (this_is_any_condjump
552 && (temp2 = get_condition (insn, &temp4)))))
554 rtx tc = TRAP_CONDITION (PATTERN (temp));
556 if (tc == const_true_rtx
557 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
559 rtx new;
560 /* Replace an unconditional jump to a trap with a trap. */
561 if (this_is_any_uncondjump)
563 emit_barrier_after (emit_insn_before (gen_trap (), insn));
564 delete_jump (insn);
565 changed = 1;
566 continue;
568 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
569 XEXP (temp2, 1),
570 TRAP_CODE (PATTERN (temp)));
571 if (new)
573 emit_insn_before (new, temp4);
574 delete_jump (insn);
575 changed = 1;
576 continue;
579 /* If the trap condition and jump condition are mutually
580 exclusive, redirect the jump to the following insn. */
581 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
582 && this_is_any_condjump
583 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
584 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
585 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
586 && redirect_jump (insn, get_label_after (temp), 1))
588 changed = 1;
589 continue;
592 #endif
593 else
595 /* Now that the jump has been tensioned,
596 try cross jumping: check for identical code
597 before the jump and before its target label. */
599 /* First, cross jumping of conditional jumps: */
601 if (cross_jump && condjump_p (insn))
603 rtx newjpos, newlpos;
604 rtx x = prev_real_insn (JUMP_LABEL (insn));
606 /* A conditional jump may be crossjumped
607 only if the place it jumps to follows
608 an opposing jump that comes back here. */
610 if (x != 0 && ! jump_back_p (x, insn))
611 /* We have no opposing jump;
612 cannot cross jump this insn. */
613 x = 0;
615 newjpos = 0;
616 /* TARGET is nonzero if it is ok to cross jump
617 to code before TARGET. If so, see if matches. */
618 if (x != 0)
619 find_cross_jump (insn, x, 2,
620 &newjpos, &newlpos);
622 if (newjpos != 0)
624 do_cross_jump (insn, newjpos, newlpos);
625 /* Make the old conditional jump
626 into an unconditional one. */
627 SET_SRC (PATTERN (insn))
628 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
629 INSN_CODE (insn) = -1;
630 emit_barrier_after (insn);
631 /* Add to jump_chain unless this is a new label
632 whose UID is too large. */
633 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
635 jump_chain[INSN_UID (insn)]
636 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
637 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
639 changed = 1;
640 next = insn;
644 /* Cross jumping of unconditional jumps:
645 a few differences. */
647 if (cross_jump && simplejump_p (insn))
649 rtx newjpos, newlpos;
650 rtx target;
652 newjpos = 0;
654 /* TARGET is nonzero if it is ok to cross jump
655 to code before TARGET. If so, see if matches. */
656 find_cross_jump (insn, JUMP_LABEL (insn), 1,
657 &newjpos, &newlpos);
659 /* If cannot cross jump to code before the label,
660 see if we can cross jump to another jump to
661 the same label. */
662 /* Try each other jump to this label. */
663 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
664 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
665 target != 0 && newjpos == 0;
666 target = jump_chain[INSN_UID (target)])
667 if (target != insn
668 && JUMP_LABEL (target) == JUMP_LABEL (insn)
669 /* Ignore TARGET if it's deleted. */
670 && ! INSN_DELETED_P (target))
671 find_cross_jump (insn, target, 2,
672 &newjpos, &newlpos);
674 if (newjpos != 0)
676 do_cross_jump (insn, newjpos, newlpos);
677 changed = 1;
678 next = insn;
682 /* This code was dead in the previous jump.c! */
683 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
685 /* Return insns all "jump to the same place"
686 so we can cross-jump between any two of them. */
688 rtx newjpos, newlpos, target;
690 newjpos = 0;
692 /* If cannot cross jump to code before the label,
693 see if we can cross jump to another jump to
694 the same label. */
695 /* Try each other jump to this label. */
696 for (target = jump_chain[0];
697 target != 0 && newjpos == 0;
698 target = jump_chain[INSN_UID (target)])
699 if (target != insn
700 && ! INSN_DELETED_P (target)
701 && GET_CODE (PATTERN (target)) == RETURN)
702 find_cross_jump (insn, target, 2,
703 &newjpos, &newlpos);
705 if (newjpos != 0)
707 do_cross_jump (insn, newjpos, newlpos);
708 changed = 1;
709 next = insn;
715 first = 0;
718 /* Delete extraneous line number notes.
719 Note that two consecutive notes for different lines are not really
720 extraneous. There should be some indication where that line belonged,
721 even if it became empty. */
724 rtx last_note = 0;
726 for (insn = f; insn; insn = NEXT_INSN (insn))
727 if (GET_CODE (insn) == NOTE)
729 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
730 /* Any previous line note was for the prologue; gdb wants a new
731 note after the prologue even if it is for the same line. */
732 last_note = NULL_RTX;
733 else if (NOTE_LINE_NUMBER (insn) >= 0)
735 /* Delete this note if it is identical to previous note. */
736 if (last_note
737 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
738 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
740 delete_insn (insn);
741 continue;
744 last_note = insn;
749 end:
750 /* Clean up. */
751 free (jump_chain);
752 jump_chain = 0;
755 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
756 notes whose labels don't occur in the insn any more. Returns the
757 largest INSN_UID found. */
758 static int
759 init_label_info (f)
760 rtx f;
762 int largest_uid = 0;
763 rtx insn;
765 for (insn = f; insn; insn = NEXT_INSN (insn))
767 if (GET_CODE (insn) == CODE_LABEL)
768 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
769 else if (GET_CODE (insn) == JUMP_INSN)
770 JUMP_LABEL (insn) = 0;
771 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
773 rtx note, next;
775 for (note = REG_NOTES (insn); note; note = next)
777 next = XEXP (note, 1);
778 if (REG_NOTE_KIND (note) == REG_LABEL
779 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
780 remove_note (insn, note);
783 if (INSN_UID (insn) > largest_uid)
784 largest_uid = INSN_UID (insn);
787 return largest_uid;
790 /* Delete insns following barriers, up to next label.
792 Also delete no-op jumps created by gcse. */
794 static void
795 delete_barrier_successors (f)
796 rtx f;
798 rtx insn;
799 rtx set;
801 for (insn = f; insn;)
803 if (GET_CODE (insn) == BARRIER)
805 insn = NEXT_INSN (insn);
807 never_reached_warning (insn);
809 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
811 if (GET_CODE (insn) == NOTE
812 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
813 insn = NEXT_INSN (insn);
814 else
815 insn = delete_insn (insn);
817 /* INSN is now the code_label. */
820 /* Also remove (set (pc) (pc)) insns which can be created by
821 gcse. We eliminate such insns now to avoid having them
822 cause problems later. */
823 else if (GET_CODE (insn) == JUMP_INSN
824 && (set = pc_set (insn)) != NULL
825 && SET_SRC (set) == pc_rtx
826 && SET_DEST (set) == pc_rtx
827 && onlyjump_p (insn))
828 insn = delete_insn (insn);
830 else
831 insn = NEXT_INSN (insn);
835 /* Mark the label each jump jumps to.
836 Combine consecutive labels, and count uses of labels.
838 For each label, make a chain (using `jump_chain')
839 of all the *unconditional* jumps that jump to it;
840 also make a chain of all returns.
842 CROSS_JUMP indicates whether we are doing cross jumping
843 and if we are whether we will be paying attention to
844 death notes or not. */
846 static void
847 mark_all_labels (f, cross_jump)
848 rtx f;
849 int cross_jump;
851 rtx insn;
853 for (insn = f; insn; insn = NEXT_INSN (insn))
854 if (INSN_P (insn))
856 if (GET_CODE (insn) == CALL_INSN
857 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
859 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
860 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
861 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
862 continue;
865 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
866 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
868 /* When we know the LABEL_REF contained in a REG used in
869 an indirect jump, we'll have a REG_LABEL note so that
870 flow can tell where it's going. */
871 if (JUMP_LABEL (insn) == 0)
873 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
874 if (label_note)
876 /* But a LABEL_REF around the REG_LABEL note, so
877 that we can canonicalize it. */
878 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
879 XEXP (label_note, 0));
881 mark_jump_label (label_ref, insn, cross_jump, 0);
882 XEXP (label_note, 0) = XEXP (label_ref, 0);
883 JUMP_LABEL (insn) = XEXP (label_note, 0);
886 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
888 jump_chain[INSN_UID (insn)]
889 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
890 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
892 if (GET_CODE (PATTERN (insn)) == RETURN)
894 jump_chain[INSN_UID (insn)] = jump_chain[0];
895 jump_chain[0] = insn;
901 /* Delete all labels already not referenced.
902 Also find and return the last insn. */
904 static rtx
905 delete_unreferenced_labels (f)
906 rtx f;
908 rtx final = NULL_RTX;
909 rtx insn;
911 for (insn = f; insn;)
913 if (GET_CODE (insn) == CODE_LABEL
914 && LABEL_NUSES (insn) == 0
915 && LABEL_ALTERNATE_NAME (insn) == NULL)
916 insn = delete_insn (insn);
917 else
919 final = insn;
920 insn = NEXT_INSN (insn);
924 return final;
927 /* Delete various simple forms of moves which have no necessary
928 side effect. */
930 static void
931 delete_noop_moves (f)
932 rtx f;
934 rtx insn, next;
936 for (insn = f; insn;)
938 next = NEXT_INSN (insn);
940 if (GET_CODE (insn) == INSN)
942 register rtx body = PATTERN (insn);
944 /* Detect and delete no-op move instructions
945 resulting from not allocating a parameter in a register. */
947 if (GET_CODE (body) == SET
948 && (SET_DEST (body) == SET_SRC (body)
949 || (GET_CODE (SET_DEST (body)) == MEM
950 && GET_CODE (SET_SRC (body)) == MEM
951 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
952 && ! (GET_CODE (SET_DEST (body)) == MEM
953 && MEM_VOLATILE_P (SET_DEST (body)))
954 && ! (GET_CODE (SET_SRC (body)) == MEM
955 && MEM_VOLATILE_P (SET_SRC (body))))
956 delete_computation (insn);
958 /* Detect and ignore no-op move instructions
959 resulting from smart or fortuitous register allocation. */
961 else if (GET_CODE (body) == SET)
963 int sreg = true_regnum (SET_SRC (body));
964 int dreg = true_regnum (SET_DEST (body));
966 if (sreg == dreg && sreg >= 0)
967 delete_insn (insn);
968 else if (sreg >= 0 && dreg >= 0)
970 rtx trial;
971 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
972 sreg, NULL_PTR, dreg,
973 GET_MODE (SET_SRC (body)));
975 if (tem != 0
976 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
978 /* DREG may have been the target of a REG_DEAD note in
979 the insn which makes INSN redundant. If so, reorg
980 would still think it is dead. So search for such a
981 note and delete it if we find it. */
982 if (! find_regno_note (insn, REG_UNUSED, dreg))
983 for (trial = prev_nonnote_insn (insn);
984 trial && GET_CODE (trial) != CODE_LABEL;
985 trial = prev_nonnote_insn (trial))
986 if (find_regno_note (trial, REG_DEAD, dreg))
988 remove_death (dreg, trial);
989 break;
992 /* Deleting insn could lose a death-note for SREG. */
993 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
995 /* Change this into a USE so that we won't emit
996 code for it, but still can keep the note. */
997 PATTERN (insn)
998 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
999 INSN_CODE (insn) = -1;
1000 /* Remove all reg notes but the REG_DEAD one. */
1001 REG_NOTES (insn) = trial;
1002 XEXP (trial, 1) = NULL_RTX;
1004 else
1005 delete_insn (insn);
1008 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1009 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1010 NULL_PTR, 0,
1011 GET_MODE (SET_DEST (body))))
1013 /* This handles the case where we have two consecutive
1014 assignments of the same constant to pseudos that didn't
1015 get a hard reg. Each SET from the constant will be
1016 converted into a SET of the spill register and an
1017 output reload will be made following it. This produces
1018 two loads of the same constant into the same spill
1019 register. */
1021 rtx in_insn = insn;
1023 /* Look back for a death note for the first reg.
1024 If there is one, it is no longer accurate. */
1025 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1027 if ((GET_CODE (in_insn) == INSN
1028 || GET_CODE (in_insn) == JUMP_INSN)
1029 && find_regno_note (in_insn, REG_DEAD, dreg))
1031 remove_death (dreg, in_insn);
1032 break;
1034 in_insn = PREV_INSN (in_insn);
1037 /* Delete the second load of the value. */
1038 delete_insn (insn);
1041 else if (GET_CODE (body) == PARALLEL)
1043 /* If each part is a set between two identical registers or
1044 a USE or CLOBBER, delete the insn. */
1045 int i, sreg, dreg;
1046 rtx tem;
1048 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1050 tem = XVECEXP (body, 0, i);
1051 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1052 continue;
1054 if (GET_CODE (tem) != SET
1055 || (sreg = true_regnum (SET_SRC (tem))) < 0
1056 || (dreg = true_regnum (SET_DEST (tem))) < 0
1057 || dreg != sreg)
1058 break;
1061 if (i < 0)
1062 delete_insn (insn);
1064 /* Also delete insns to store bit fields if they are no-ops. */
1065 /* Not worth the hair to detect this in the big-endian case. */
1066 else if (! BYTES_BIG_ENDIAN
1067 && GET_CODE (body) == SET
1068 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1069 && XEXP (SET_DEST (body), 2) == const0_rtx
1070 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1071 && ! (GET_CODE (SET_SRC (body)) == MEM
1072 && MEM_VOLATILE_P (SET_SRC (body))))
1073 delete_insn (insn);
1075 insn = next;
1079 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1080 jump. Assume that this unconditional jump is to the exit test code. If
1081 the code is sufficiently simple, make a copy of it before INSN,
1082 followed by a jump to the exit of the loop. Then delete the unconditional
1083 jump after INSN.
1085 Return 1 if we made the change, else 0.
1087 This is only safe immediately after a regscan pass because it uses the
1088 values of regno_first_uid and regno_last_uid. */
1090 static int
1091 duplicate_loop_exit_test (loop_start)
1092 rtx loop_start;
1094 rtx insn, set, reg, p, link;
1095 rtx copy = 0, first_copy = 0;
1096 int num_insns = 0;
1097 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1098 rtx lastexit;
1099 int max_reg = max_reg_num ();
1100 rtx *reg_map = 0;
1102 /* Scan the exit code. We do not perform this optimization if any insn:
1104 is a CALL_INSN
1105 is a CODE_LABEL
1106 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1107 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1108 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1109 is not valid.
1111 We also do not do this if we find an insn with ASM_OPERANDS. While
1112 this restriction should not be necessary, copying an insn with
1113 ASM_OPERANDS can confuse asm_noperands in some cases.
1115 Also, don't do this if the exit code is more than 20 insns. */
1117 for (insn = exitcode;
1118 insn
1119 && ! (GET_CODE (insn) == NOTE
1120 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1121 insn = NEXT_INSN (insn))
1123 switch (GET_CODE (insn))
1125 case CODE_LABEL:
1126 case CALL_INSN:
1127 return 0;
1128 case NOTE:
1129 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1130 a jump immediately after the loop start that branches outside
1131 the loop but within an outer loop, near the exit test.
1132 If we copied this exit test and created a phony
1133 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1134 before the exit test look like these could be safely moved
1135 out of the loop even if they actually may be never executed.
1136 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1138 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1139 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1140 return 0;
1142 if (optimize < 2
1143 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1144 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1145 /* If we were to duplicate this code, we would not move
1146 the BLOCK notes, and so debugging the moved code would
1147 be difficult. Thus, we only move the code with -O2 or
1148 higher. */
1149 return 0;
1151 break;
1152 case JUMP_INSN:
1153 case INSN:
1154 /* The code below would grossly mishandle REG_WAS_0 notes,
1155 so get rid of them here. */
1156 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1157 remove_note (insn, p);
1158 if (++num_insns > 20
1159 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1160 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1161 return 0;
1162 break;
1163 default:
1164 break;
1168 /* Unless INSN is zero, we can do the optimization. */
1169 if (insn == 0)
1170 return 0;
1172 lastexit = insn;
1174 /* See if any insn sets a register only used in the loop exit code and
1175 not a user variable. If so, replace it with a new register. */
1176 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1177 if (GET_CODE (insn) == INSN
1178 && (set = single_set (insn)) != 0
1179 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1180 || (GET_CODE (reg) == SUBREG
1181 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1182 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1183 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1185 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1186 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1187 break;
1189 if (p != lastexit)
1191 /* We can do the replacement. Allocate reg_map if this is the
1192 first replacement we found. */
1193 if (reg_map == 0)
1194 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1196 REG_LOOP_TEST_P (reg) = 1;
1198 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1202 /* Now copy each insn. */
1203 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1205 switch (GET_CODE (insn))
1207 case BARRIER:
1208 copy = emit_barrier_before (loop_start);
1209 break;
1210 case NOTE:
1211 /* Only copy line-number notes. */
1212 if (NOTE_LINE_NUMBER (insn) >= 0)
1214 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1215 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1217 break;
1219 case INSN:
1220 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1221 if (reg_map)
1222 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1224 mark_jump_label (PATTERN (copy), copy, 0, 0);
1226 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1227 make them. */
1228 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1229 if (REG_NOTE_KIND (link) != REG_LABEL)
1231 if (GET_CODE (link) == EXPR_LIST)
1232 REG_NOTES (copy)
1233 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1234 XEXP (link, 0),
1235 REG_NOTES (copy)));
1236 else
1237 REG_NOTES (copy)
1238 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1239 XEXP (link, 0),
1240 REG_NOTES (copy)));
1243 if (reg_map && REG_NOTES (copy))
1244 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1245 break;
1247 case JUMP_INSN:
1248 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1249 loop_start);
1250 if (reg_map)
1251 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1252 mark_jump_label (PATTERN (copy), copy, 0, 0);
1253 if (REG_NOTES (insn))
1255 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1256 if (reg_map)
1257 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1260 /* If this is a simple jump, add it to the jump chain. */
1262 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1263 && simplejump_p (copy))
1265 jump_chain[INSN_UID (copy)]
1266 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1267 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1269 break;
1271 default:
1272 abort ();
1275 /* Record the first insn we copied. We need it so that we can
1276 scan the copied insns for new pseudo registers. */
1277 if (! first_copy)
1278 first_copy = copy;
1281 /* Now clean up by emitting a jump to the end label and deleting the jump
1282 at the start of the loop. */
1283 if (! copy || GET_CODE (copy) != BARRIER)
1285 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1286 loop_start);
1288 /* Record the first insn we copied. We need it so that we can
1289 scan the copied insns for new pseudo registers. This may not
1290 be strictly necessary since we should have copied at least one
1291 insn above. But I am going to be safe. */
1292 if (! first_copy)
1293 first_copy = copy;
1295 mark_jump_label (PATTERN (copy), copy, 0, 0);
1296 if (INSN_UID (copy) < max_jump_chain
1297 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1299 jump_chain[INSN_UID (copy)]
1300 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1301 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1303 emit_barrier_before (loop_start);
1306 /* Now scan from the first insn we copied to the last insn we copied
1307 (copy) for new pseudo registers. Do this after the code to jump to
1308 the end label since that might create a new pseudo too. */
1309 reg_scan_update (first_copy, copy, max_reg);
1311 /* Mark the exit code as the virtual top of the converted loop. */
1312 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1314 delete_insn (next_nonnote_insn (loop_start));
1316 /* Clean up. */
1317 if (reg_map)
1318 free (reg_map);
1320 return 1;
1323 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1324 eh-beg, eh-end notes between START and END out before START. Assume that
1325 END is not such a note. START may be such a note. Returns the value
1326 of the new starting insn, which may be different if the original start
1327 was such a note. */
1330 squeeze_notes (start, end)
1331 rtx start, end;
1333 rtx insn;
1334 rtx next;
1336 for (insn = start; insn != end; insn = next)
1338 next = NEXT_INSN (insn);
1339 if (GET_CODE (insn) == NOTE
1340 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1341 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1342 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1343 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1344 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1345 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP
1346 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1347 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1349 if (insn == start)
1350 start = next;
1351 else
1353 rtx prev = PREV_INSN (insn);
1354 PREV_INSN (insn) = PREV_INSN (start);
1355 NEXT_INSN (insn) = start;
1356 NEXT_INSN (PREV_INSN (insn)) = insn;
1357 PREV_INSN (NEXT_INSN (insn)) = insn;
1358 NEXT_INSN (prev) = next;
1359 PREV_INSN (next) = prev;
1364 return start;
1367 /* Compare the instructions before insn E1 with those before E2
1368 to find an opportunity for cross jumping.
1369 (This means detecting identical sequences of insns followed by
1370 jumps to the same place, or followed by a label and a jump
1371 to that label, and replacing one with a jump to the other.)
1373 Assume E1 is a jump that jumps to label E2
1374 (that is not always true but it might as well be).
1375 Find the longest possible equivalent sequences
1376 and store the first insns of those sequences into *F1 and *F2.
1377 Store zero there if no equivalent preceding instructions are found.
1379 We give up if we find a label in stream 1.
1380 Actually we could transfer that label into stream 2. */
1382 static void
1383 find_cross_jump (e1, e2, minimum, f1, f2)
1384 rtx e1, e2;
1385 int minimum;
1386 rtx *f1, *f2;
1388 register rtx i1 = e1, i2 = e2;
1389 register rtx p1, p2;
1390 int lose = 0;
1392 rtx last1 = 0, last2 = 0;
1393 rtx afterlast1 = 0, afterlast2 = 0;
1395 *f1 = 0;
1396 *f2 = 0;
1398 while (1)
1400 i1 = prev_nonnote_insn (i1);
1402 i2 = PREV_INSN (i2);
1403 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1404 i2 = PREV_INSN (i2);
1406 if (i1 == 0)
1407 break;
1409 /* Don't allow the range of insns preceding E1 or E2
1410 to include the other (E2 or E1). */
1411 if (i2 == e1 || i1 == e2)
1412 break;
1414 /* If we will get to this code by jumping, those jumps will be
1415 tensioned to go directly to the new label (before I2),
1416 so this cross-jumping won't cost extra. So reduce the minimum. */
1417 if (GET_CODE (i1) == CODE_LABEL)
1419 --minimum;
1420 break;
1423 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1424 break;
1426 /* Avoid moving insns across EH regions if either of the insns
1427 can throw. */
1428 if (flag_exceptions
1429 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1430 && !in_same_eh_region (i1, i2))
1431 break;
1433 p1 = PATTERN (i1);
1434 p2 = PATTERN (i2);
1436 /* If this is a CALL_INSN, compare register usage information.
1437 If we don't check this on stack register machines, the two
1438 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1439 numbers of stack registers in the same basic block.
1440 If we don't check this on machines with delay slots, a delay slot may
1441 be filled that clobbers a parameter expected by the subroutine.
1443 ??? We take the simple route for now and assume that if they're
1444 equal, they were constructed identically. */
1446 if (GET_CODE (i1) == CALL_INSN
1447 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1448 CALL_INSN_FUNCTION_USAGE (i2)))
1449 lose = 1;
1451 #ifdef STACK_REGS
1452 /* If cross_jump_death_matters is not 0, the insn's mode
1453 indicates whether or not the insn contains any stack-like
1454 regs. */
1456 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1458 /* If register stack conversion has already been done, then
1459 death notes must also be compared before it is certain that
1460 the two instruction streams match. */
1462 rtx note;
1463 HARD_REG_SET i1_regset, i2_regset;
1465 CLEAR_HARD_REG_SET (i1_regset);
1466 CLEAR_HARD_REG_SET (i2_regset);
1468 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1469 if (REG_NOTE_KIND (note) == REG_DEAD
1470 && STACK_REG_P (XEXP (note, 0)))
1471 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1473 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1474 if (REG_NOTE_KIND (note) == REG_DEAD
1475 && STACK_REG_P (XEXP (note, 0)))
1476 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1478 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1480 lose = 1;
1482 done:
1485 #endif
1487 /* Don't allow old-style asm or volatile extended asms to be accepted
1488 for cross jumping purposes. It is conceptually correct to allow
1489 them, since cross-jumping preserves the dynamic instruction order
1490 even though it is changing the static instruction order. However,
1491 if an asm is being used to emit an assembler pseudo-op, such as
1492 the MIPS `.set reorder' pseudo-op, then the static instruction order
1493 matters and it must be preserved. */
1494 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1495 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1496 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1497 lose = 1;
1499 if (lose || GET_CODE (p1) != GET_CODE (p2)
1500 || ! rtx_renumbered_equal_p (p1, p2))
1502 /* The following code helps take care of G++ cleanups. */
1503 rtx equiv1;
1504 rtx equiv2;
1506 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1507 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1508 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1509 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1510 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1511 /* If the equivalences are not to a constant, they may
1512 reference pseudos that no longer exist, so we can't
1513 use them. */
1514 && CONSTANT_P (XEXP (equiv1, 0))
1515 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1517 rtx s1 = single_set (i1);
1518 rtx s2 = single_set (i2);
1519 if (s1 != 0 && s2 != 0
1520 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1522 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1523 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1524 if (! rtx_renumbered_equal_p (p1, p2))
1525 cancel_changes (0);
1526 else if (apply_change_group ())
1527 goto win;
1531 /* Insns fail to match; cross jumping is limited to the following
1532 insns. */
1534 #ifdef HAVE_cc0
1535 /* Don't allow the insn after a compare to be shared by
1536 cross-jumping unless the compare is also shared.
1537 Here, if either of these non-matching insns is a compare,
1538 exclude the following insn from possible cross-jumping. */
1539 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1540 last1 = afterlast1, last2 = afterlast2, ++minimum;
1541 #endif
1543 /* If cross-jumping here will feed a jump-around-jump
1544 optimization, this jump won't cost extra, so reduce
1545 the minimum. */
1546 if (GET_CODE (i1) == JUMP_INSN
1547 && JUMP_LABEL (i1)
1548 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1549 --minimum;
1550 break;
1553 win:
1554 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1556 /* Ok, this insn is potentially includable in a cross-jump here. */
1557 afterlast1 = last1, afterlast2 = last2;
1558 last1 = i1, last2 = i2, --minimum;
1562 if (minimum <= 0 && last1 != 0 && last1 != e1)
1563 *f1 = last1, *f2 = last2;
1566 static void
1567 do_cross_jump (insn, newjpos, newlpos)
1568 rtx insn, newjpos, newlpos;
1570 /* Find an existing label at this point
1571 or make a new one if there is none. */
1572 register rtx label = get_label_before (newlpos);
1574 /* Make the same jump insn jump to the new point. */
1575 if (GET_CODE (PATTERN (insn)) == RETURN)
1577 /* Remove from jump chain of returns. */
1578 delete_from_jump_chain (insn);
1579 /* Change the insn. */
1580 PATTERN (insn) = gen_jump (label);
1581 INSN_CODE (insn) = -1;
1582 JUMP_LABEL (insn) = label;
1583 LABEL_NUSES (label)++;
1584 /* Add to new the jump chain. */
1585 if (INSN_UID (label) < max_jump_chain
1586 && INSN_UID (insn) < max_jump_chain)
1588 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1589 jump_chain[INSN_UID (label)] = insn;
1592 else
1593 redirect_jump (insn, label, 1);
1595 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1596 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1597 the NEWJPOS stream. */
1599 while (newjpos != insn)
1601 rtx lnote;
1603 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1604 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1605 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1606 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1607 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1608 remove_note (newlpos, lnote);
1610 delete_insn (newjpos);
1611 newjpos = next_real_insn (newjpos);
1612 newlpos = next_real_insn (newlpos);
1616 /* Return the label before INSN, or put a new label there. */
1619 get_label_before (insn)
1620 rtx insn;
1622 rtx label;
1624 /* Find an existing label at this point
1625 or make a new one if there is none. */
1626 label = prev_nonnote_insn (insn);
1628 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1630 rtx prev = PREV_INSN (insn);
1632 label = gen_label_rtx ();
1633 emit_label_after (label, prev);
1634 LABEL_NUSES (label) = 0;
1636 return label;
1639 /* Return the label after INSN, or put a new label there. */
1642 get_label_after (insn)
1643 rtx insn;
1645 rtx label;
1647 /* Find an existing label at this point
1648 or make a new one if there is none. */
1649 label = next_nonnote_insn (insn);
1651 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1653 label = gen_label_rtx ();
1654 emit_label_after (label, insn);
1655 LABEL_NUSES (label) = 0;
1657 return label;
1660 /* Return 1 if INSN is a jump that jumps to right after TARGET
1661 only on the condition that TARGET itself would drop through.
1662 Assumes that TARGET is a conditional jump. */
1664 static int
1665 jump_back_p (insn, target)
1666 rtx insn, target;
1668 rtx cinsn, ctarget;
1669 enum rtx_code codei, codet;
1670 rtx set, tset;
1672 if (! any_condjump_p (insn)
1673 || any_uncondjump_p (target)
1674 || target != prev_real_insn (JUMP_LABEL (insn)))
1675 return 0;
1676 set = pc_set (insn);
1677 tset = pc_set (target);
1679 cinsn = XEXP (SET_SRC (set), 0);
1680 ctarget = XEXP (SET_SRC (tset), 0);
1682 codei = GET_CODE (cinsn);
1683 codet = GET_CODE (ctarget);
1685 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1687 codei = reversed_comparison_code (cinsn, insn);
1688 if (codei == UNKNOWN)
1689 return 0;
1692 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1694 codet = reversed_comparison_code (ctarget, target);
1695 if (codei == UNKNOWN)
1696 return 0;
1699 return (codei == codet
1700 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1701 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1704 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1705 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1706 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1707 know whether it's source is floating point or integer comparison. Machine
1708 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1709 to help this function avoid overhead in these cases. */
1710 enum rtx_code
1711 reversed_comparison_code_parts (code, arg0, arg1, insn)
1712 rtx insn, arg0, arg1;
1713 enum rtx_code code;
1715 enum machine_mode mode;
1717 /* If this is not actually a comparison, we can't reverse it. */
1718 if (GET_RTX_CLASS (code) != '<')
1719 return UNKNOWN;
1721 mode = GET_MODE (arg0);
1722 if (mode == VOIDmode)
1723 mode = GET_MODE (arg1);
1725 /* First see if machine description supply us way to reverse the comparison.
1726 Give it priority over everything else to allow machine description to do
1727 tricks. */
1728 #ifdef REVERSIBLE_CC_MODE
1729 if (GET_MODE_CLASS (mode) == MODE_CC
1730 && REVERSIBLE_CC_MODE (mode))
1732 #ifdef REVERSE_CONDITION
1733 return REVERSE_CONDITION (code, mode);
1734 #endif
1735 return reverse_condition (code);
1737 #endif
1739 /* Try few special cases based on the comparison code. */
1740 switch (code)
1742 case GEU:
1743 case GTU:
1744 case LEU:
1745 case LTU:
1746 case NE:
1747 case EQ:
1748 /* It is always safe to reverse EQ and NE, even for the floating
1749 point. Similary the unsigned comparisons are never used for
1750 floating point so we can reverse them in the default way. */
1751 return reverse_condition (code);
1752 case ORDERED:
1753 case UNORDERED:
1754 case LTGT:
1755 case UNEQ:
1756 /* In case we already see unordered comparison, we can be sure to
1757 be dealing with floating point so we don't need any more tests. */
1758 return reverse_condition_maybe_unordered (code);
1759 case UNLT:
1760 case UNLE:
1761 case UNGT:
1762 case UNGE:
1763 /* We don't have safe way to reverse these yet. */
1764 return UNKNOWN;
1765 default:
1766 break;
1769 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1770 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1771 || flag_fast_math)
1772 return reverse_condition (code);
1774 if (GET_MODE_CLASS (mode) == MODE_CC
1775 #ifdef HAVE_cc0
1776 || arg0 == cc0_rtx
1777 #endif
1780 rtx prev;
1781 /* Try to search for the comparison to determine the real mode.
1782 This code is expensive, but with sane machine description it
1783 will be never used, since REVERSIBLE_CC_MODE will return true
1784 in all cases. */
1785 if (! insn)
1786 return UNKNOWN;
1788 for (prev = prev_nonnote_insn (insn);
1789 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1790 prev = prev_nonnote_insn (prev))
1792 rtx set = set_of (arg0, prev);
1793 if (set && GET_CODE (set) == SET
1794 && rtx_equal_p (SET_DEST (set), arg0))
1796 rtx src = SET_SRC (set);
1798 if (GET_CODE (src) == COMPARE)
1800 rtx comparison = src;
1801 arg0 = XEXP (src, 0);
1802 mode = GET_MODE (arg0);
1803 if (mode == VOIDmode)
1804 mode = GET_MODE (XEXP (comparison, 1));
1805 break;
1807 /* We can get past reg-reg moves. This may be usefull for model
1808 of i387 comparisons that first move flag registers around. */
1809 if (REG_P (src))
1811 arg0 = src;
1812 continue;
1815 /* If register is clobbered in some ununderstandable way,
1816 give up. */
1817 if (set)
1818 return UNKNOWN;
1822 /* An integer condition. */
1823 if (GET_CODE (arg0) == CONST_INT
1824 || (GET_MODE (arg0) != VOIDmode
1825 && GET_MODE_CLASS (mode) != MODE_CC
1826 && ! FLOAT_MODE_P (mode)))
1827 return reverse_condition (code);
1829 return UNKNOWN;
1832 /* An wrapper around the previous function to take COMPARISON as rtx
1833 expression. This simplifies many callers. */
1834 enum rtx_code
1835 reversed_comparison_code (comparison, insn)
1836 rtx comparison, insn;
1838 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1839 return UNKNOWN;
1840 return reversed_comparison_code_parts (GET_CODE (comparison),
1841 XEXP (comparison, 0),
1842 XEXP (comparison, 1), insn);
1845 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1846 return non-zero if it is safe to reverse this comparison. It is if our
1847 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1848 this is known to be an integer comparison.
1850 Use of this function is depreached and you should use
1851 REVERSED_COMPARISON_CODE bits instead.
1855 can_reverse_comparison_p (comparison, insn)
1856 rtx comparison;
1857 rtx insn;
1859 enum rtx_code code;
1861 /* If this is not actually a comparison, we can't reverse it. */
1862 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1863 return 0;
1865 code = reversed_comparison_code (comparison, insn);
1866 if (code == UNKNOWN)
1867 return 0;
1869 /* The code will follow can_reverse_comparison_p with reverse_condition,
1870 so see if it will get proper result. */
1871 return (code == reverse_condition (GET_CODE (comparison)));
1874 /* Given an rtx-code for a comparison, return the code for the negated
1875 comparison. If no such code exists, return UNKNOWN.
1877 WATCH OUT! reverse_condition is not safe to use on a jump that might
1878 be acting on the results of an IEEE floating point comparison, because
1879 of the special treatment of non-signaling nans in comparisons.
1880 Use reversed_comparison_code instead. */
1882 enum rtx_code
1883 reverse_condition (code)
1884 enum rtx_code code;
1886 switch (code)
1888 case EQ:
1889 return NE;
1890 case NE:
1891 return EQ;
1892 case GT:
1893 return LE;
1894 case GE:
1895 return LT;
1896 case LT:
1897 return GE;
1898 case LE:
1899 return GT;
1900 case GTU:
1901 return LEU;
1902 case GEU:
1903 return LTU;
1904 case LTU:
1905 return GEU;
1906 case LEU:
1907 return GTU;
1908 case UNORDERED:
1909 return ORDERED;
1910 case ORDERED:
1911 return UNORDERED;
1913 case UNLT:
1914 case UNLE:
1915 case UNGT:
1916 case UNGE:
1917 case UNEQ:
1918 case LTGT:
1919 return UNKNOWN;
1921 default:
1922 abort ();
1926 /* Similar, but we're allowed to generate unordered comparisons, which
1927 makes it safe for IEEE floating-point. Of course, we have to recognize
1928 that the target will support them too... */
1930 enum rtx_code
1931 reverse_condition_maybe_unordered (code)
1932 enum rtx_code code;
1934 /* Non-IEEE formats don't have unordered conditions. */
1935 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1936 return reverse_condition (code);
1938 switch (code)
1940 case EQ:
1941 return NE;
1942 case NE:
1943 return EQ;
1944 case GT:
1945 return UNLE;
1946 case GE:
1947 return UNLT;
1948 case LT:
1949 return UNGE;
1950 case LE:
1951 return UNGT;
1952 case LTGT:
1953 return UNEQ;
1954 case UNORDERED:
1955 return ORDERED;
1956 case ORDERED:
1957 return UNORDERED;
1958 case UNLT:
1959 return GE;
1960 case UNLE:
1961 return GT;
1962 case UNGT:
1963 return LE;
1964 case UNGE:
1965 return LT;
1966 case UNEQ:
1967 return LTGT;
1969 default:
1970 abort ();
1974 /* Similar, but return the code when two operands of a comparison are swapped.
1975 This IS safe for IEEE floating-point. */
1977 enum rtx_code
1978 swap_condition (code)
1979 enum rtx_code code;
1981 switch (code)
1983 case EQ:
1984 case NE:
1985 case UNORDERED:
1986 case ORDERED:
1987 case UNEQ:
1988 case LTGT:
1989 return code;
1991 case GT:
1992 return LT;
1993 case GE:
1994 return LE;
1995 case LT:
1996 return GT;
1997 case LE:
1998 return GE;
1999 case GTU:
2000 return LTU;
2001 case GEU:
2002 return LEU;
2003 case LTU:
2004 return GTU;
2005 case LEU:
2006 return GEU;
2007 case UNLT:
2008 return UNGT;
2009 case UNLE:
2010 return UNGE;
2011 case UNGT:
2012 return UNLT;
2013 case UNGE:
2014 return UNLE;
2016 default:
2017 abort ();
2021 /* Given a comparison CODE, return the corresponding unsigned comparison.
2022 If CODE is an equality comparison or already an unsigned comparison,
2023 CODE is returned. */
2025 enum rtx_code
2026 unsigned_condition (code)
2027 enum rtx_code code;
2029 switch (code)
2031 case EQ:
2032 case NE:
2033 case GTU:
2034 case GEU:
2035 case LTU:
2036 case LEU:
2037 return code;
2039 case GT:
2040 return GTU;
2041 case GE:
2042 return GEU;
2043 case LT:
2044 return LTU;
2045 case LE:
2046 return LEU;
2048 default:
2049 abort ();
2053 /* Similarly, return the signed version of a comparison. */
2055 enum rtx_code
2056 signed_condition (code)
2057 enum rtx_code code;
2059 switch (code)
2061 case EQ:
2062 case NE:
2063 case GT:
2064 case GE:
2065 case LT:
2066 case LE:
2067 return code;
2069 case GTU:
2070 return GT;
2071 case GEU:
2072 return GE;
2073 case LTU:
2074 return LT;
2075 case LEU:
2076 return LE;
2078 default:
2079 abort ();
2083 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2084 truth of CODE1 implies the truth of CODE2. */
2087 comparison_dominates_p (code1, code2)
2088 enum rtx_code code1, code2;
2090 if (code1 == code2)
2091 return 1;
2093 switch (code1)
2095 case UNEQ:
2096 if (code2 == UNLE || code2 == UNGE)
2097 return 1;
2098 break;
2100 case EQ:
2101 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2102 || code2 == ORDERED)
2103 return 1;
2104 break;
2106 case UNLT:
2107 if (code2 == UNLE || code2 == NE)
2108 return 1;
2109 break;
2111 case LT:
2112 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2113 return 1;
2114 break;
2116 case UNGT:
2117 if (code2 == UNGE || code2 == NE)
2118 return 1;
2119 break;
2121 case GT:
2122 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2123 return 1;
2124 break;
2126 case GE:
2127 case LE:
2128 if (code2 == ORDERED)
2129 return 1;
2130 break;
2132 case LTGT:
2133 if (code2 == NE || code2 == ORDERED)
2134 return 1;
2135 break;
2137 case LTU:
2138 if (code2 == LEU || code2 == NE)
2139 return 1;
2140 break;
2142 case GTU:
2143 if (code2 == GEU || code2 == NE)
2144 return 1;
2145 break;
2147 case UNORDERED:
2148 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2149 || code2 == UNGE || code2 == UNGT)
2150 return 1;
2151 break;
2153 default:
2154 break;
2157 return 0;
2160 /* Return 1 if INSN is an unconditional jump and nothing else. */
2163 simplejump_p (insn)
2164 rtx insn;
2166 return (GET_CODE (insn) == JUMP_INSN
2167 && GET_CODE (PATTERN (insn)) == SET
2168 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2169 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2172 /* Return nonzero if INSN is a (possibly) conditional jump
2173 and nothing more.
2175 Use this function is deprecated, since we need to support combined
2176 branch and compare insns. Use any_condjump_p instead whenever possible. */
2179 condjump_p (insn)
2180 rtx insn;
2182 register rtx x = PATTERN (insn);
2184 if (GET_CODE (x) != SET
2185 || GET_CODE (SET_DEST (x)) != PC)
2186 return 0;
2188 x = SET_SRC (x);
2189 if (GET_CODE (x) == LABEL_REF)
2190 return 1;
2191 else
2192 return (GET_CODE (x) == IF_THEN_ELSE
2193 && ((GET_CODE (XEXP (x, 2)) == PC
2194 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2195 || GET_CODE (XEXP (x, 1)) == RETURN))
2196 || (GET_CODE (XEXP (x, 1)) == PC
2197 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2198 || GET_CODE (XEXP (x, 2)) == RETURN))));
2200 return 0;
2203 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2204 PARALLEL.
2206 Use this function is deprecated, since we need to support combined
2207 branch and compare insns. Use any_condjump_p instead whenever possible. */
2210 condjump_in_parallel_p (insn)
2211 rtx insn;
2213 register rtx x = PATTERN (insn);
2215 if (GET_CODE (x) != PARALLEL)
2216 return 0;
2217 else
2218 x = XVECEXP (x, 0, 0);
2220 if (GET_CODE (x) != SET)
2221 return 0;
2222 if (GET_CODE (SET_DEST (x)) != PC)
2223 return 0;
2224 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2225 return 1;
2226 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2227 return 0;
2228 if (XEXP (SET_SRC (x), 2) == pc_rtx
2229 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2230 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2231 return 1;
2232 if (XEXP (SET_SRC (x), 1) == pc_rtx
2233 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2234 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2235 return 1;
2236 return 0;
2239 /* Return set of PC, otherwise NULL. */
2242 pc_set (insn)
2243 rtx insn;
2245 rtx pat;
2246 if (GET_CODE (insn) != JUMP_INSN)
2247 return NULL_RTX;
2248 pat = PATTERN (insn);
2250 /* The set is allowed to appear either as the insn pattern or
2251 the first set in a PARALLEL. */
2252 if (GET_CODE (pat) == PARALLEL)
2253 pat = XVECEXP (pat, 0, 0);
2254 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2255 return pat;
2257 return NULL_RTX;
2260 /* Return true when insn is an unconditional direct jump,
2261 possibly bundled inside a PARALLEL. */
2264 any_uncondjump_p (insn)
2265 rtx insn;
2267 rtx x = pc_set (insn);
2268 if (!x)
2269 return 0;
2270 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2271 return 0;
2272 return 1;
2275 /* Return true when insn is a conditional jump. This function works for
2276 instructions containing PC sets in PARALLELs. The instruction may have
2277 various other effects so before removing the jump you must verify
2278 onlyjump_p.
2280 Note that unlike condjump_p it returns false for unconditional jumps. */
2283 any_condjump_p (insn)
2284 rtx insn;
2286 rtx x = pc_set (insn);
2287 enum rtx_code a, b;
2289 if (!x)
2290 return 0;
2291 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2292 return 0;
2294 a = GET_CODE (XEXP (SET_SRC (x), 1));
2295 b = GET_CODE (XEXP (SET_SRC (x), 2));
2297 return ((b == PC && (a == LABEL_REF || a == RETURN))
2298 || (a == PC && (b == LABEL_REF || b == RETURN)));
2301 /* Return the label of a conditional jump. */
2304 condjump_label (insn)
2305 rtx insn;
2307 rtx x = pc_set (insn);
2309 if (!x)
2310 return NULL_RTX;
2311 x = SET_SRC (x);
2312 if (GET_CODE (x) == LABEL_REF)
2313 return x;
2314 if (GET_CODE (x) != IF_THEN_ELSE)
2315 return NULL_RTX;
2316 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2317 return XEXP (x, 1);
2318 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2319 return XEXP (x, 2);
2320 return NULL_RTX;
2323 /* Return true if INSN is a (possibly conditional) return insn. */
2325 static int
2326 returnjump_p_1 (loc, data)
2327 rtx *loc;
2328 void *data ATTRIBUTE_UNUSED;
2330 rtx x = *loc;
2331 return x && GET_CODE (x) == RETURN;
2335 returnjump_p (insn)
2336 rtx insn;
2338 if (GET_CODE (insn) != JUMP_INSN)
2339 return 0;
2340 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2343 /* Return true if INSN is a jump that only transfers control and
2344 nothing more. */
2347 onlyjump_p (insn)
2348 rtx insn;
2350 rtx set;
2352 if (GET_CODE (insn) != JUMP_INSN)
2353 return 0;
2355 set = single_set (insn);
2356 if (set == NULL)
2357 return 0;
2358 if (GET_CODE (SET_DEST (set)) != PC)
2359 return 0;
2360 if (side_effects_p (SET_SRC (set)))
2361 return 0;
2363 return 1;
2366 #ifdef HAVE_cc0
2368 /* Return 1 if X is an RTX that does nothing but set the condition codes
2369 and CLOBBER or USE registers.
2370 Return -1 if X does explicitly set the condition codes,
2371 but also does other things. */
2374 sets_cc0_p (x)
2375 rtx x ATTRIBUTE_UNUSED;
2377 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2378 return 1;
2379 if (GET_CODE (x) == PARALLEL)
2381 int i;
2382 int sets_cc0 = 0;
2383 int other_things = 0;
2384 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2386 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2387 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2388 sets_cc0 = 1;
2389 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2390 other_things = 1;
2392 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2394 return 0;
2396 #endif
2398 /* Follow any unconditional jump at LABEL;
2399 return the ultimate label reached by any such chain of jumps.
2400 If LABEL is not followed by a jump, return LABEL.
2401 If the chain loops or we can't find end, return LABEL,
2402 since that tells caller to avoid changing the insn.
2404 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2405 a USE or CLOBBER. */
2408 follow_jumps (label)
2409 rtx label;
2411 register rtx insn;
2412 register rtx next;
2413 register rtx value = label;
2414 register int depth;
2416 for (depth = 0;
2417 (depth < 10
2418 && (insn = next_active_insn (value)) != 0
2419 && GET_CODE (insn) == JUMP_INSN
2420 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2421 && onlyjump_p (insn))
2422 || GET_CODE (PATTERN (insn)) == RETURN)
2423 && (next = NEXT_INSN (insn))
2424 && GET_CODE (next) == BARRIER);
2425 depth++)
2427 /* Don't chain through the insn that jumps into a loop
2428 from outside the loop,
2429 since that would create multiple loop entry jumps
2430 and prevent loop optimization. */
2431 rtx tem;
2432 if (!reload_completed)
2433 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2434 if (GET_CODE (tem) == NOTE
2435 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2436 /* ??? Optional. Disables some optimizations, but makes
2437 gcov output more accurate with -O. */
2438 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2439 return value;
2441 /* If we have found a cycle, make the insn jump to itself. */
2442 if (JUMP_LABEL (insn) == label)
2443 return label;
2445 tem = next_active_insn (JUMP_LABEL (insn));
2446 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2447 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2448 break;
2450 value = JUMP_LABEL (insn);
2452 if (depth == 10)
2453 return label;
2454 return value;
2457 /* Assuming that field IDX of X is a vector of label_refs,
2458 replace each of them by the ultimate label reached by it.
2459 Return nonzero if a change is made.
2460 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2462 static int
2463 tension_vector_labels (x, idx)
2464 register rtx x;
2465 register int idx;
2467 int changed = 0;
2468 register int i;
2469 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2471 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2472 register rtx nlabel = follow_jumps (olabel);
2473 if (nlabel && nlabel != olabel)
2475 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2476 ++LABEL_NUSES (nlabel);
2477 if (--LABEL_NUSES (olabel) == 0)
2478 delete_insn (olabel);
2479 changed = 1;
2482 return changed;
2485 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2486 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2487 in INSN, then store one of them in JUMP_LABEL (INSN).
2488 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2489 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2490 Also, when there are consecutive labels, canonicalize on the last of them.
2492 Note that two labels separated by a loop-beginning note
2493 must be kept distinct if we have not yet done loop-optimization,
2494 because the gap between them is where loop-optimize
2495 will want to move invariant code to. CROSS_JUMP tells us
2496 that loop-optimization is done with.
2498 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2499 two labels distinct if they are separated by only USE or CLOBBER insns. */
2501 void
2502 mark_jump_label (x, insn, cross_jump, in_mem)
2503 register rtx x;
2504 rtx insn;
2505 int cross_jump;
2506 int in_mem;
2508 register RTX_CODE code = GET_CODE (x);
2509 register int i;
2510 register const char *fmt;
2512 switch (code)
2514 case PC:
2515 case CC0:
2516 case REG:
2517 case SUBREG:
2518 case CONST_INT:
2519 case CONST_DOUBLE:
2520 case CLOBBER:
2521 case CALL:
2522 return;
2524 case MEM:
2525 in_mem = 1;
2526 break;
2528 case SYMBOL_REF:
2529 if (!in_mem)
2530 return;
2532 /* If this is a constant-pool reference, see if it is a label. */
2533 if (CONSTANT_POOL_ADDRESS_P (x))
2534 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2535 break;
2537 case LABEL_REF:
2539 rtx label = XEXP (x, 0);
2540 rtx olabel = label;
2541 rtx note;
2542 rtx next;
2544 /* Ignore remaining references to unreachable labels that
2545 have been deleted. */
2546 if (GET_CODE (label) == NOTE
2547 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2548 break;
2550 if (GET_CODE (label) != CODE_LABEL)
2551 abort ();
2553 /* Ignore references to labels of containing functions. */
2554 if (LABEL_REF_NONLOCAL_P (x))
2555 break;
2557 /* If there are other labels following this one,
2558 replace it with the last of the consecutive labels. */
2559 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2561 if (GET_CODE (next) == CODE_LABEL)
2562 label = next;
2563 else if (cross_jump && GET_CODE (next) == INSN
2564 && (GET_CODE (PATTERN (next)) == USE
2565 || GET_CODE (PATTERN (next)) == CLOBBER))
2566 continue;
2567 else if (GET_CODE (next) != NOTE)
2568 break;
2569 else if (! cross_jump
2570 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2571 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2572 /* ??? Optional. Disables some optimizations, but
2573 makes gcov output more accurate with -O. */
2574 || (flag_test_coverage
2575 && NOTE_LINE_NUMBER (next) > 0)))
2576 break;
2579 XEXP (x, 0) = label;
2580 if (! insn || ! INSN_DELETED_P (insn))
2581 ++LABEL_NUSES (label);
2583 if (insn)
2585 if (GET_CODE (insn) == JUMP_INSN)
2586 JUMP_LABEL (insn) = label;
2588 /* If we've changed OLABEL and we had a REG_LABEL note
2589 for it, update it as well. */
2590 else if (label != olabel
2591 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2592 XEXP (note, 0) = label;
2594 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2595 is one. */
2596 else if (! find_reg_note (insn, REG_LABEL, label))
2598 /* This code used to ignore labels which refered to dispatch
2599 tables to avoid flow.c generating worse code.
2601 However, in the presense of global optimizations like
2602 gcse which call find_basic_blocks without calling
2603 life_analysis, not recording such labels will lead
2604 to compiler aborts because of inconsistencies in the
2605 flow graph. So we go ahead and record the label.
2607 It may also be the case that the optimization argument
2608 is no longer valid because of the more accurate cfg
2609 we build in find_basic_blocks -- it no longer pessimizes
2610 code when it finds a REG_LABEL note. */
2611 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2612 REG_NOTES (insn));
2615 return;
2618 /* Do walk the labels in a vector, but not the first operand of an
2619 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2620 case ADDR_VEC:
2621 case ADDR_DIFF_VEC:
2622 if (! INSN_DELETED_P (insn))
2624 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2626 for (i = 0; i < XVECLEN (x, eltnum); i++)
2627 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2628 cross_jump, in_mem);
2630 return;
2632 default:
2633 break;
2636 fmt = GET_RTX_FORMAT (code);
2637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2639 if (fmt[i] == 'e')
2640 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2641 else if (fmt[i] == 'E')
2643 register int j;
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2650 /* If all INSN does is set the pc, delete it,
2651 and delete the insn that set the condition codes for it
2652 if that's what the previous thing was. */
2654 void
2655 delete_jump (insn)
2656 rtx insn;
2658 register rtx set = single_set (insn);
2660 if (set && GET_CODE (SET_DEST (set)) == PC)
2661 delete_computation (insn);
2664 /* Verify INSN is a BARRIER and delete it. */
2666 void
2667 delete_barrier (insn)
2668 rtx insn;
2670 if (GET_CODE (insn) != BARRIER)
2671 abort ();
2673 delete_insn (insn);
2676 /* Recursively delete prior insns that compute the value (used only by INSN
2677 which the caller is deleting) stored in the register mentioned by NOTE
2678 which is a REG_DEAD note associated with INSN. */
2680 static void
2681 delete_prior_computation (note, insn)
2682 rtx note;
2683 rtx insn;
2685 rtx our_prev;
2686 rtx reg = XEXP (note, 0);
2688 for (our_prev = prev_nonnote_insn (insn);
2689 our_prev && (GET_CODE (our_prev) == INSN
2690 || GET_CODE (our_prev) == CALL_INSN);
2691 our_prev = prev_nonnote_insn (our_prev))
2693 rtx pat = PATTERN (our_prev);
2695 /* If we reach a CALL which is not calling a const function
2696 or the callee pops the arguments, then give up. */
2697 if (GET_CODE (our_prev) == CALL_INSN
2698 && (! CONST_CALL_P (our_prev)
2699 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2700 break;
2702 /* If we reach a SEQUENCE, it is too complex to try to
2703 do anything with it, so give up. */
2704 if (GET_CODE (pat) == SEQUENCE)
2705 break;
2707 if (GET_CODE (pat) == USE
2708 && GET_CODE (XEXP (pat, 0)) == INSN)
2709 /* reorg creates USEs that look like this. We leave them
2710 alone because reorg needs them for its own purposes. */
2711 break;
2713 if (reg_set_p (reg, pat))
2715 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2716 break;
2718 if (GET_CODE (pat) == PARALLEL)
2720 /* If we find a SET of something else, we can't
2721 delete the insn. */
2723 int i;
2725 for (i = 0; i < XVECLEN (pat, 0); i++)
2727 rtx part = XVECEXP (pat, 0, i);
2729 if (GET_CODE (part) == SET
2730 && SET_DEST (part) != reg)
2731 break;
2734 if (i == XVECLEN (pat, 0))
2735 delete_computation (our_prev);
2737 else if (GET_CODE (pat) == SET
2738 && GET_CODE (SET_DEST (pat)) == REG)
2740 int dest_regno = REGNO (SET_DEST (pat));
2741 int dest_endregno
2742 = (dest_regno
2743 + (dest_regno < FIRST_PSEUDO_REGISTER
2744 ? HARD_REGNO_NREGS (dest_regno,
2745 GET_MODE (SET_DEST (pat))) : 1));
2746 int regno = REGNO (reg);
2747 int endregno
2748 = (regno
2749 + (regno < FIRST_PSEUDO_REGISTER
2750 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2752 if (dest_regno >= regno
2753 && dest_endregno <= endregno)
2754 delete_computation (our_prev);
2756 /* We may have a multi-word hard register and some, but not
2757 all, of the words of the register are needed in subsequent
2758 insns. Write REG_UNUSED notes for those parts that were not
2759 needed. */
2760 else if (dest_regno <= regno
2761 && dest_endregno >= endregno)
2763 int i;
2765 REG_NOTES (our_prev)
2766 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2767 REG_NOTES (our_prev));
2769 for (i = dest_regno; i < dest_endregno; i++)
2770 if (! find_regno_note (our_prev, REG_UNUSED, i))
2771 break;
2773 if (i == dest_endregno)
2774 delete_computation (our_prev);
2778 break;
2781 /* If PAT references the register that dies here, it is an
2782 additional use. Hence any prior SET isn't dead. However, this
2783 insn becomes the new place for the REG_DEAD note. */
2784 if (reg_overlap_mentioned_p (reg, pat))
2786 XEXP (note, 1) = REG_NOTES (our_prev);
2787 REG_NOTES (our_prev) = note;
2788 break;
2793 /* Delete INSN and recursively delete insns that compute values used only
2794 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2795 If we are running before flow.c, we need do nothing since flow.c will
2796 delete dead code. We also can't know if the registers being used are
2797 dead or not at this point.
2799 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2800 nothing other than set a register that dies in this insn, we can delete
2801 that insn as well.
2803 On machines with CC0, if CC0 is used in this insn, we may be able to
2804 delete the insn that set it. */
2806 static void
2807 delete_computation (insn)
2808 rtx insn;
2810 rtx note, next;
2812 #ifdef HAVE_cc0
2813 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2815 rtx prev = prev_nonnote_insn (insn);
2816 /* We assume that at this stage
2817 CC's are always set explicitly
2818 and always immediately before the jump that
2819 will use them. So if the previous insn
2820 exists to set the CC's, delete it
2821 (unless it performs auto-increments, etc.). */
2822 if (prev && GET_CODE (prev) == INSN
2823 && sets_cc0_p (PATTERN (prev)))
2825 if (sets_cc0_p (PATTERN (prev)) > 0
2826 && ! side_effects_p (PATTERN (prev)))
2827 delete_computation (prev);
2828 else
2829 /* Otherwise, show that cc0 won't be used. */
2830 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2831 cc0_rtx, REG_NOTES (prev));
2834 #endif
2836 for (note = REG_NOTES (insn); note; note = next)
2838 next = XEXP (note, 1);
2840 if (REG_NOTE_KIND (note) != REG_DEAD
2841 /* Verify that the REG_NOTE is legitimate. */
2842 || GET_CODE (XEXP (note, 0)) != REG)
2843 continue;
2845 delete_prior_computation (note, insn);
2848 delete_insn (insn);
2851 /* Delete insn INSN from the chain of insns and update label ref counts.
2852 May delete some following insns as a consequence; may even delete
2853 a label elsewhere and insns that follow it.
2855 Returns the first insn after INSN that was not deleted. */
2858 delete_insn (insn)
2859 register rtx insn;
2861 register rtx next = NEXT_INSN (insn);
2862 register rtx prev = PREV_INSN (insn);
2863 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2864 register int dont_really_delete = 0;
2865 rtx note;
2867 while (next && INSN_DELETED_P (next))
2868 next = NEXT_INSN (next);
2870 /* This insn is already deleted => return first following nondeleted. */
2871 if (INSN_DELETED_P (insn))
2872 return next;
2874 if (was_code_label)
2875 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2877 /* Don't delete user-declared labels. When optimizing, convert them
2878 to special NOTEs instead. When not optimizing, leave them alone. */
2879 if (was_code_label && LABEL_NAME (insn) != 0)
2881 if (! optimize)
2882 dont_really_delete = 1;
2883 else if (! dont_really_delete)
2885 const char *name = LABEL_NAME (insn);
2886 PUT_CODE (insn, NOTE);
2887 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2888 NOTE_SOURCE_FILE (insn) = name;
2889 dont_really_delete = 1;
2892 else
2893 /* Mark this insn as deleted. */
2894 INSN_DELETED_P (insn) = 1;
2896 /* If this is an unconditional jump, delete it from the jump chain. */
2897 if (simplejump_p (insn))
2898 delete_from_jump_chain (insn);
2900 /* If instruction is followed by a barrier,
2901 delete the barrier too. */
2903 if (next != 0 && GET_CODE (next) == BARRIER)
2905 INSN_DELETED_P (next) = 1;
2906 next = NEXT_INSN (next);
2909 /* Patch out INSN (and the barrier if any) */
2911 if (! dont_really_delete)
2913 if (prev)
2915 NEXT_INSN (prev) = next;
2916 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2917 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2918 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2921 if (next)
2923 PREV_INSN (next) = prev;
2924 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2925 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2928 if (prev && NEXT_INSN (prev) == 0)
2929 set_last_insn (prev);
2932 /* If deleting a jump, decrement the count of the label,
2933 and delete the label if it is now unused. */
2935 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2937 rtx lab = JUMP_LABEL (insn), lab_next;
2939 if (--LABEL_NUSES (lab) == 0)
2941 /* This can delete NEXT or PREV,
2942 either directly if NEXT is JUMP_LABEL (INSN),
2943 or indirectly through more levels of jumps. */
2944 delete_insn (lab);
2946 /* I feel a little doubtful about this loop,
2947 but I see no clean and sure alternative way
2948 to find the first insn after INSN that is not now deleted.
2949 I hope this works. */
2950 while (next && INSN_DELETED_P (next))
2951 next = NEXT_INSN (next);
2952 return next;
2954 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2955 && GET_CODE (lab_next) == JUMP_INSN
2956 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2957 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2959 /* If we're deleting the tablejump, delete the dispatch table.
2960 We may not be able to kill the label immediately preceeding
2961 just yet, as it might be referenced in code leading up to
2962 the tablejump. */
2963 delete_insn (lab_next);
2967 /* Likewise if we're deleting a dispatch table. */
2969 if (GET_CODE (insn) == JUMP_INSN
2970 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2971 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2973 rtx pat = PATTERN (insn);
2974 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2975 int len = XVECLEN (pat, diff_vec_p);
2977 for (i = 0; i < len; i++)
2978 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2979 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2980 while (next && INSN_DELETED_P (next))
2981 next = NEXT_INSN (next);
2982 return next;
2985 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2986 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2987 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2988 if (REG_NOTE_KIND (note) == REG_LABEL
2989 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2990 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2991 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2992 delete_insn (XEXP (note, 0));
2994 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2995 prev = PREV_INSN (prev);
2997 /* If INSN was a label and a dispatch table follows it,
2998 delete the dispatch table. The tablejump must have gone already.
2999 It isn't useful to fall through into a table. */
3001 if (was_code_label
3002 && NEXT_INSN (insn) != 0
3003 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3004 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
3005 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
3006 next = delete_insn (NEXT_INSN (insn));
3008 /* If INSN was a label, delete insns following it if now unreachable. */
3010 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
3012 register RTX_CODE code;
3013 while (next != 0
3014 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
3015 || code == NOTE || code == BARRIER
3016 || (code == CODE_LABEL && INSN_DELETED_P (next))))
3018 if (code == NOTE
3019 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3020 next = NEXT_INSN (next);
3021 /* Keep going past other deleted labels to delete what follows. */
3022 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3023 next = NEXT_INSN (next);
3024 else
3025 /* Note: if this deletes a jump, it can cause more
3026 deletion of unreachable code, after a different label.
3027 As long as the value from this recursive call is correct,
3028 this invocation functions correctly. */
3029 next = delete_insn (next);
3033 return next;
3036 /* Advance from INSN till reaching something not deleted
3037 then return that. May return INSN itself. */
3040 next_nondeleted_insn (insn)
3041 rtx insn;
3043 while (INSN_DELETED_P (insn))
3044 insn = NEXT_INSN (insn);
3045 return insn;
3048 /* Delete a range of insns from FROM to TO, inclusive.
3049 This is for the sake of peephole optimization, so assume
3050 that whatever these insns do will still be done by a new
3051 peephole insn that will replace them. */
3053 void
3054 delete_for_peephole (from, to)
3055 register rtx from, to;
3057 register rtx insn = from;
3059 while (1)
3061 register rtx next = NEXT_INSN (insn);
3062 register rtx prev = PREV_INSN (insn);
3064 if (GET_CODE (insn) != NOTE)
3066 INSN_DELETED_P (insn) = 1;
3068 /* Patch this insn out of the chain. */
3069 /* We don't do this all at once, because we
3070 must preserve all NOTEs. */
3071 if (prev)
3072 NEXT_INSN (prev) = next;
3074 if (next)
3075 PREV_INSN (next) = prev;
3078 if (insn == to)
3079 break;
3080 insn = next;
3083 /* Note that if TO is an unconditional jump
3084 we *do not* delete the BARRIER that follows,
3085 since the peephole that replaces this sequence
3086 is also an unconditional jump in that case. */
3089 /* We have determined that INSN is never reached, and are about to
3090 delete it. Print a warning if the user asked for one.
3092 To try to make this warning more useful, this should only be called
3093 once per basic block not reached, and it only warns when the basic
3094 block contains more than one line from the current function, and
3095 contains at least one operation. CSE and inlining can duplicate insns,
3096 so it's possible to get spurious warnings from this. */
3098 void
3099 never_reached_warning (avoided_insn)
3100 rtx avoided_insn;
3102 rtx insn;
3103 rtx a_line_note = NULL;
3104 int two_avoided_lines = 0;
3105 int contains_insn = 0;
3107 if (! warn_notreached)
3108 return;
3110 /* Scan forwards, looking at LINE_NUMBER notes, until
3111 we hit a LABEL or we run out of insns. */
3113 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3115 if (GET_CODE (insn) == CODE_LABEL)
3116 break;
3117 else if (GET_CODE (insn) == NOTE /* A line number note? */
3118 && NOTE_LINE_NUMBER (insn) >= 0)
3120 if (a_line_note == NULL)
3121 a_line_note = insn;
3122 else
3123 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3124 != NOTE_LINE_NUMBER (insn));
3126 else if (INSN_P (insn))
3127 contains_insn = 1;
3129 if (two_avoided_lines && contains_insn)
3130 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3131 NOTE_LINE_NUMBER (a_line_note),
3132 "will never be executed");
3135 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3136 NLABEL as a return. Accrue modifications into the change group. */
3138 static void
3139 redirect_exp_1 (loc, olabel, nlabel, insn)
3140 rtx *loc;
3141 rtx olabel, nlabel;
3142 rtx insn;
3144 register rtx x = *loc;
3145 register RTX_CODE code = GET_CODE (x);
3146 register int i;
3147 register const char *fmt;
3149 if (code == LABEL_REF)
3151 if (XEXP (x, 0) == olabel)
3153 rtx n;
3154 if (nlabel)
3155 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3156 else
3157 n = gen_rtx_RETURN (VOIDmode);
3159 validate_change (insn, loc, n, 1);
3160 return;
3163 else if (code == RETURN && olabel == 0)
3165 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3166 if (loc == &PATTERN (insn))
3167 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3168 validate_change (insn, loc, x, 1);
3169 return;
3172 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3173 && GET_CODE (SET_SRC (x)) == LABEL_REF
3174 && XEXP (SET_SRC (x), 0) == olabel)
3176 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3177 return;
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183 if (fmt[i] == 'e')
3184 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3185 else if (fmt[i] == 'E')
3187 register int j;
3188 for (j = 0; j < XVECLEN (x, i); j++)
3189 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3194 /* Similar, but apply the change group and report success or failure. */
3196 static int
3197 redirect_exp (olabel, nlabel, insn)
3198 rtx olabel, nlabel;
3199 rtx insn;
3201 rtx *loc;
3203 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3204 loc = &XVECEXP (PATTERN (insn), 0, 0);
3205 else
3206 loc = &PATTERN (insn);
3208 redirect_exp_1 (loc, olabel, nlabel, insn);
3209 if (num_validated_changes () == 0)
3210 return 0;
3212 return apply_change_group ();
3215 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3216 the modifications into the change group. Return false if we did
3217 not see how to do that. */
3220 redirect_jump_1 (jump, nlabel)
3221 rtx jump, nlabel;
3223 int ochanges = num_validated_changes ();
3224 rtx *loc;
3226 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3227 loc = &XVECEXP (PATTERN (jump), 0, 0);
3228 else
3229 loc = &PATTERN (jump);
3231 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3232 return num_validated_changes () > ochanges;
3235 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3236 jump target label is unused as a result, it and the code following
3237 it may be deleted.
3239 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3240 RETURN insn.
3242 The return value will be 1 if the change was made, 0 if it wasn't
3243 (this can only occur for NLABEL == 0). */
3246 redirect_jump (jump, nlabel, delete_unused)
3247 rtx jump, nlabel;
3248 int delete_unused;
3250 register rtx olabel = JUMP_LABEL (jump);
3252 if (nlabel == olabel)
3253 return 1;
3255 if (! redirect_exp (olabel, nlabel, jump))
3256 return 0;
3258 /* If this is an unconditional branch, delete it from the jump_chain of
3259 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3260 have UID's in range and JUMP_CHAIN is valid). */
3261 if (jump_chain && (simplejump_p (jump)
3262 || GET_CODE (PATTERN (jump)) == RETURN))
3264 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3266 delete_from_jump_chain (jump);
3267 if (label_index < max_jump_chain
3268 && INSN_UID (jump) < max_jump_chain)
3270 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3271 jump_chain[label_index] = jump;
3275 JUMP_LABEL (jump) = nlabel;
3276 if (nlabel)
3277 ++LABEL_NUSES (nlabel);
3279 /* If we're eliding the jump over exception cleanups at the end of a
3280 function, move the function end note so that -Wreturn-type works. */
3281 if (olabel && nlabel
3282 && NEXT_INSN (olabel)
3283 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3284 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3285 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3287 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3288 delete_insn (olabel);
3290 return 1;
3293 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3294 Accrue the modifications into the change group. */
3296 static void
3297 invert_exp_1 (insn)
3298 rtx insn;
3300 register RTX_CODE code;
3301 rtx x = pc_set (insn);
3303 if (!x)
3304 abort ();
3305 x = SET_SRC (x);
3307 code = GET_CODE (x);
3309 if (code == IF_THEN_ELSE)
3311 register rtx comp = XEXP (x, 0);
3312 register rtx tem;
3313 enum rtx_code reversed_code;
3315 /* We can do this in two ways: The preferable way, which can only
3316 be done if this is not an integer comparison, is to reverse
3317 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3318 of the IF_THEN_ELSE. If we can't do either, fail. */
3320 reversed_code = reversed_comparison_code (comp, insn);
3322 if (reversed_code != UNKNOWN)
3324 validate_change (insn, &XEXP (x, 0),
3325 gen_rtx_fmt_ee (reversed_code,
3326 GET_MODE (comp), XEXP (comp, 0),
3327 XEXP (comp, 1)),
3329 return;
3332 tem = XEXP (x, 1);
3333 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3334 validate_change (insn, &XEXP (x, 2), tem, 1);
3336 else
3337 abort ();
3340 /* Invert the jump condition of conditional jump insn, INSN.
3342 Return 1 if we can do so, 0 if we cannot find a way to do so that
3343 matches a pattern. */
3345 static int
3346 invert_exp (insn)
3347 rtx insn;
3349 invert_exp_1 (insn);
3350 if (num_validated_changes () == 0)
3351 return 0;
3353 return apply_change_group ();
3356 /* Invert the condition of the jump JUMP, and make it jump to label
3357 NLABEL instead of where it jumps now. Accrue changes into the
3358 change group. Return false if we didn't see how to perform the
3359 inversion and redirection. */
3362 invert_jump_1 (jump, nlabel)
3363 rtx jump, nlabel;
3365 int ochanges;
3367 ochanges = num_validated_changes ();
3368 invert_exp_1 (jump);
3369 if (num_validated_changes () == ochanges)
3370 return 0;
3372 return redirect_jump_1 (jump, nlabel);
3375 /* Invert the condition of the jump JUMP, and make it jump to label
3376 NLABEL instead of where it jumps now. Return true if successful. */
3379 invert_jump (jump, nlabel, delete_unused)
3380 rtx jump, nlabel;
3381 int delete_unused;
3383 /* We have to either invert the condition and change the label or
3384 do neither. Either operation could fail. We first try to invert
3385 the jump. If that succeeds, we try changing the label. If that fails,
3386 we invert the jump back to what it was. */
3388 if (! invert_exp (jump))
3389 return 0;
3391 if (redirect_jump (jump, nlabel, delete_unused))
3393 /* An inverted jump means that a probability taken becomes a
3394 probability not taken. Subtract the branch probability from the
3395 probability base to convert it back to a taken probability. */
3397 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3398 if (note)
3399 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3401 return 1;
3404 if (! invert_exp (jump))
3405 /* This should just be putting it back the way it was. */
3406 abort ();
3408 return 0;
3411 /* Delete the instruction JUMP from any jump chain it might be on. */
3413 static void
3414 delete_from_jump_chain (jump)
3415 rtx jump;
3417 int index;
3418 rtx olabel = JUMP_LABEL (jump);
3420 /* Handle unconditional jumps. */
3421 if (jump_chain && olabel != 0
3422 && INSN_UID (olabel) < max_jump_chain
3423 && simplejump_p (jump))
3424 index = INSN_UID (olabel);
3425 /* Handle return insns. */
3426 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3427 index = 0;
3428 else
3429 return;
3431 if (jump_chain[index] == jump)
3432 jump_chain[index] = jump_chain[INSN_UID (jump)];
3433 else
3435 rtx insn;
3437 for (insn = jump_chain[index];
3438 insn != 0;
3439 insn = jump_chain[INSN_UID (insn)])
3440 if (jump_chain[INSN_UID (insn)] == jump)
3442 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3443 break;
3448 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3450 If the old jump target label (before the dispatch table) becomes unused,
3451 it and the dispatch table may be deleted. In that case, find the insn
3452 before the jump references that label and delete it and logical successors
3453 too. */
3455 static void
3456 redirect_tablejump (jump, nlabel)
3457 rtx jump, nlabel;
3459 register rtx olabel = JUMP_LABEL (jump);
3460 rtx *notep, note, next;
3462 /* Add this jump to the jump_chain of NLABEL. */
3463 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3464 && INSN_UID (jump) < max_jump_chain)
3466 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3467 jump_chain[INSN_UID (nlabel)] = jump;
3470 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3472 next = XEXP (note, 1);
3474 if (REG_NOTE_KIND (note) != REG_DEAD
3475 /* Verify that the REG_NOTE is legitimate. */
3476 || GET_CODE (XEXP (note, 0)) != REG
3477 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3478 notep = &XEXP (note, 1);
3479 else
3481 delete_prior_computation (note, jump);
3482 *notep = next;
3486 PATTERN (jump) = gen_jump (nlabel);
3487 JUMP_LABEL (jump) = nlabel;
3488 ++LABEL_NUSES (nlabel);
3489 INSN_CODE (jump) = -1;
3491 if (--LABEL_NUSES (olabel) == 0)
3493 delete_labelref_insn (jump, olabel, 0);
3494 delete_insn (olabel);
3498 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3499 If we found one, delete it and then delete this insn if DELETE_THIS is
3500 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3502 static int
3503 delete_labelref_insn (insn, label, delete_this)
3504 rtx insn, label;
3505 int delete_this;
3507 int deleted = 0;
3508 rtx link;
3510 if (GET_CODE (insn) != NOTE
3511 && reg_mentioned_p (label, PATTERN (insn)))
3513 if (delete_this)
3515 delete_insn (insn);
3516 deleted = 1;
3518 else
3519 return 1;
3522 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3523 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3525 if (delete_this)
3527 delete_insn (insn);
3528 deleted = 1;
3530 else
3531 return 1;
3534 return deleted;
3537 /* Like rtx_equal_p except that it considers two REGs as equal
3538 if they renumber to the same value and considers two commutative
3539 operations to be the same if the order of the operands has been
3540 reversed.
3542 ??? Addition is not commutative on the PA due to the weird implicit
3543 space register selection rules for memory addresses. Therefore, we
3544 don't consider a + b == b + a.
3546 We could/should make this test a little tighter. Possibly only
3547 disabling it on the PA via some backend macro or only disabling this
3548 case when the PLUS is inside a MEM. */
3551 rtx_renumbered_equal_p (x, y)
3552 rtx x, y;
3554 register int i;
3555 register RTX_CODE code = GET_CODE (x);
3556 register const char *fmt;
3558 if (x == y)
3559 return 1;
3561 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3562 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3563 && GET_CODE (SUBREG_REG (y)) == REG)))
3565 int reg_x = -1, reg_y = -1;
3566 int word_x = 0, word_y = 0;
3568 if (GET_MODE (x) != GET_MODE (y))
3569 return 0;
3571 /* If we haven't done any renumbering, don't
3572 make any assumptions. */
3573 if (reg_renumber == 0)
3574 return rtx_equal_p (x, y);
3576 if (code == SUBREG)
3578 reg_x = REGNO (SUBREG_REG (x));
3579 word_x = SUBREG_WORD (x);
3581 if (reg_renumber[reg_x] >= 0)
3583 reg_x = reg_renumber[reg_x] + word_x;
3584 word_x = 0;
3588 else
3590 reg_x = REGNO (x);
3591 if (reg_renumber[reg_x] >= 0)
3592 reg_x = reg_renumber[reg_x];
3595 if (GET_CODE (y) == SUBREG)
3597 reg_y = REGNO (SUBREG_REG (y));
3598 word_y = SUBREG_WORD (y);
3600 if (reg_renumber[reg_y] >= 0)
3602 reg_y = reg_renumber[reg_y];
3603 word_y = 0;
3607 else
3609 reg_y = REGNO (y);
3610 if (reg_renumber[reg_y] >= 0)
3611 reg_y = reg_renumber[reg_y];
3614 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3617 /* Now we have disposed of all the cases
3618 in which different rtx codes can match. */
3619 if (code != GET_CODE (y))
3620 return 0;
3622 switch (code)
3624 case PC:
3625 case CC0:
3626 case ADDR_VEC:
3627 case ADDR_DIFF_VEC:
3628 return 0;
3630 case CONST_INT:
3631 return INTVAL (x) == INTVAL (y);
3633 case LABEL_REF:
3634 /* We can't assume nonlocal labels have their following insns yet. */
3635 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3636 return XEXP (x, 0) == XEXP (y, 0);
3638 /* Two label-refs are equivalent if they point at labels
3639 in the same position in the instruction stream. */
3640 return (next_real_insn (XEXP (x, 0))
3641 == next_real_insn (XEXP (y, 0)));
3643 case SYMBOL_REF:
3644 return XSTR (x, 0) == XSTR (y, 0);
3646 case CODE_LABEL:
3647 /* If we didn't match EQ equality above, they aren't the same. */
3648 return 0;
3650 default:
3651 break;
3654 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3656 if (GET_MODE (x) != GET_MODE (y))
3657 return 0;
3659 /* For commutative operations, the RTX match if the operand match in any
3660 order. Also handle the simple binary and unary cases without a loop.
3662 ??? Don't consider PLUS a commutative operator; see comments above. */
3663 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3664 && code != PLUS)
3665 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3666 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3667 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3668 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3669 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3670 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3671 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3672 else if (GET_RTX_CLASS (code) == '1')
3673 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3675 /* Compare the elements. If any pair of corresponding elements
3676 fail to match, return 0 for the whole things. */
3678 fmt = GET_RTX_FORMAT (code);
3679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3681 register int j;
3682 switch (fmt[i])
3684 case 'w':
3685 if (XWINT (x, i) != XWINT (y, i))
3686 return 0;
3687 break;
3689 case 'i':
3690 if (XINT (x, i) != XINT (y, i))
3691 return 0;
3692 break;
3694 case 's':
3695 if (strcmp (XSTR (x, i), XSTR (y, i)))
3696 return 0;
3697 break;
3699 case 'e':
3700 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3701 return 0;
3702 break;
3704 case 'u':
3705 if (XEXP (x, i) != XEXP (y, i))
3706 return 0;
3707 /* fall through. */
3708 case '0':
3709 break;
3711 case 'E':
3712 if (XVECLEN (x, i) != XVECLEN (y, i))
3713 return 0;
3714 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3715 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3716 return 0;
3717 break;
3719 default:
3720 abort ();
3723 return 1;
3726 /* If X is a hard register or equivalent to one or a subregister of one,
3727 return the hard register number. If X is a pseudo register that was not
3728 assigned a hard register, return the pseudo register number. Otherwise,
3729 return -1. Any rtx is valid for X. */
3732 true_regnum (x)
3733 rtx x;
3735 if (GET_CODE (x) == REG)
3737 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3738 return reg_renumber[REGNO (x)];
3739 return REGNO (x);
3741 if (GET_CODE (x) == SUBREG)
3743 int base = true_regnum (SUBREG_REG (x));
3744 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3745 return SUBREG_WORD (x) + base;
3747 return -1;
3750 /* Optimize code of the form:
3752 for (x = a[i]; x; ...)
3754 for (x = a[i]; x; ...)
3756 foo:
3758 Loop optimize will change the above code into
3760 if (x = a[i])
3761 for (;;)
3762 { ...; if (! (x = ...)) break; }
3763 if (x = a[i])
3764 for (;;)
3765 { ...; if (! (x = ...)) break; }
3766 foo:
3768 In general, if the first test fails, the program can branch
3769 directly to `foo' and skip the second try which is doomed to fail.
3770 We run this after loop optimization and before flow analysis. */
3772 /* When comparing the insn patterns, we track the fact that different
3773 pseudo-register numbers may have been used in each computation.
3774 The following array stores an equivalence -- same_regs[I] == J means
3775 that pseudo register I was used in the first set of tests in a context
3776 where J was used in the second set. We also count the number of such
3777 pending equivalences. If nonzero, the expressions really aren't the
3778 same. */
3780 static int *same_regs;
3782 static int num_same_regs;
3784 /* Track any registers modified between the target of the first jump and
3785 the second jump. They never compare equal. */
3787 static char *modified_regs;
3789 /* Record if memory was modified. */
3791 static int modified_mem;
3793 /* Called via note_stores on each insn between the target of the first
3794 branch and the second branch. It marks any changed registers. */
3796 static void
3797 mark_modified_reg (dest, x, data)
3798 rtx dest;
3799 rtx x ATTRIBUTE_UNUSED;
3800 void *data ATTRIBUTE_UNUSED;
3802 int regno;
3803 unsigned int i;
3805 if (GET_CODE (dest) == SUBREG)
3806 dest = SUBREG_REG (dest);
3808 if (GET_CODE (dest) == MEM)
3809 modified_mem = 1;
3811 if (GET_CODE (dest) != REG)
3812 return;
3814 regno = REGNO (dest);
3815 if (regno >= FIRST_PSEUDO_REGISTER)
3816 modified_regs[regno] = 1;
3817 else
3818 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3819 modified_regs[regno + i] = 1;
3822 /* F is the first insn in the chain of insns. */
3824 void
3825 thread_jumps (f, max_reg, flag_before_loop)
3826 rtx f;
3827 int max_reg;
3828 int flag_before_loop;
3830 /* Basic algorithm is to find a conditional branch,
3831 the label it may branch to, and the branch after
3832 that label. If the two branches test the same condition,
3833 walk back from both branch paths until the insn patterns
3834 differ, or code labels are hit. If we make it back to
3835 the target of the first branch, then we know that the first branch
3836 will either always succeed or always fail depending on the relative
3837 senses of the two branches. So adjust the first branch accordingly
3838 in this case. */
3840 rtx label, b1, b2, t1, t2;
3841 enum rtx_code code1, code2;
3842 rtx b1op0, b1op1, b2op0, b2op1;
3843 int changed = 1;
3844 int i;
3845 int *all_reset;
3846 enum rtx_code reversed_code1, reversed_code2;
3848 /* Allocate register tables and quick-reset table. */
3849 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3850 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3851 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3852 for (i = 0; i < max_reg; i++)
3853 all_reset[i] = -1;
3855 while (changed)
3857 changed = 0;
3859 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3861 rtx set;
3862 rtx set2;
3864 /* Get to a candidate branch insn. */
3865 if (GET_CODE (b1) != JUMP_INSN
3866 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3867 continue;
3869 memset (modified_regs, 0, max_reg * sizeof (char));
3870 modified_mem = 0;
3872 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3873 num_same_regs = 0;
3875 label = JUMP_LABEL (b1);
3877 /* Look for a branch after the target. Record any registers and
3878 memory modified between the target and the branch. Stop when we
3879 get to a label since we can't know what was changed there. */
3880 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3882 if (GET_CODE (b2) == CODE_LABEL)
3883 break;
3885 else if (GET_CODE (b2) == JUMP_INSN)
3887 /* If this is an unconditional jump and is the only use of
3888 its target label, we can follow it. */
3889 if (any_uncondjump_p (b2)
3890 && onlyjump_p (b2)
3891 && JUMP_LABEL (b2) != 0
3892 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3894 b2 = JUMP_LABEL (b2);
3895 continue;
3897 else
3898 break;
3901 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3902 continue;
3904 if (GET_CODE (b2) == CALL_INSN)
3906 modified_mem = 1;
3907 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3908 if (call_used_regs[i] && ! fixed_regs[i]
3909 && i != STACK_POINTER_REGNUM
3910 && i != FRAME_POINTER_REGNUM
3911 && i != HARD_FRAME_POINTER_REGNUM
3912 && i != ARG_POINTER_REGNUM)
3913 modified_regs[i] = 1;
3916 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3919 /* Check the next candidate branch insn from the label
3920 of the first. */
3921 if (b2 == 0
3922 || GET_CODE (b2) != JUMP_INSN
3923 || b2 == b1
3924 || !any_condjump_p (b2)
3925 || !onlyjump_p (b2))
3926 continue;
3927 set = pc_set (b1);
3928 set2 = pc_set (b2);
3930 /* Get the comparison codes and operands, reversing the
3931 codes if appropriate. If we don't have comparison codes,
3932 we can't do anything. */
3933 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3934 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3935 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3936 reversed_code1 = code1;
3937 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3938 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3939 else
3940 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3942 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3943 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3944 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3945 reversed_code2 = code2;
3946 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3947 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3948 else
3949 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3951 /* If they test the same things and knowing that B1 branches
3952 tells us whether or not B2 branches, check if we
3953 can thread the branch. */
3954 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3955 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3956 && (comparison_dominates_p (code1, code2)
3957 || comparison_dominates_p (code1, reversed_code2)))
3960 t1 = prev_nonnote_insn (b1);
3961 t2 = prev_nonnote_insn (b2);
3963 while (t1 != 0 && t2 != 0)
3965 if (t2 == label)
3967 /* We have reached the target of the first branch.
3968 If there are no pending register equivalents,
3969 we know that this branch will either always
3970 succeed (if the senses of the two branches are
3971 the same) or always fail (if not). */
3972 rtx new_label;
3974 if (num_same_regs != 0)
3975 break;
3977 if (comparison_dominates_p (code1, code2))
3978 new_label = JUMP_LABEL (b2);
3979 else
3980 new_label = get_label_after (b2);
3982 if (JUMP_LABEL (b1) != new_label)
3984 rtx prev = PREV_INSN (new_label);
3986 if (flag_before_loop
3987 && GET_CODE (prev) == NOTE
3988 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3990 /* Don't thread to the loop label. If a loop
3991 label is reused, loop optimization will
3992 be disabled for that loop. */
3993 new_label = gen_label_rtx ();
3994 emit_label_after (new_label, PREV_INSN (prev));
3996 changed |= redirect_jump (b1, new_label, 1);
3998 break;
4001 /* If either of these is not a normal insn (it might be
4002 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4003 have already been skipped above.) Similarly, fail
4004 if the insns are different. */
4005 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
4006 || recog_memoized (t1) != recog_memoized (t2)
4007 || ! rtx_equal_for_thread_p (PATTERN (t1),
4008 PATTERN (t2), t2))
4009 break;
4011 t1 = prev_nonnote_insn (t1);
4012 t2 = prev_nonnote_insn (t2);
4018 /* Clean up. */
4019 free (modified_regs);
4020 free (same_regs);
4021 free (all_reset);
4024 /* This is like RTX_EQUAL_P except that it knows about our handling of
4025 possibly equivalent registers and knows to consider volatile and
4026 modified objects as not equal.
4028 YINSN is the insn containing Y. */
4031 rtx_equal_for_thread_p (x, y, yinsn)
4032 rtx x, y;
4033 rtx yinsn;
4035 register int i;
4036 register int j;
4037 register enum rtx_code code;
4038 register const char *fmt;
4040 code = GET_CODE (x);
4041 /* Rtx's of different codes cannot be equal. */
4042 if (code != GET_CODE (y))
4043 return 0;
4045 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4046 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4048 if (GET_MODE (x) != GET_MODE (y))
4049 return 0;
4051 /* For floating-point, consider everything unequal. This is a bit
4052 pessimistic, but this pass would only rarely do anything for FP
4053 anyway. */
4054 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4055 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
4056 return 0;
4058 /* For commutative operations, the RTX match if the operand match in any
4059 order. Also handle the simple binary and unary cases without a loop. */
4060 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4061 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4062 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4063 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4064 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4065 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4066 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4067 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4068 else if (GET_RTX_CLASS (code) == '1')
4069 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4071 /* Handle special-cases first. */
4072 switch (code)
4074 case REG:
4075 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4076 return 1;
4078 /* If neither is user variable or hard register, check for possible
4079 equivalence. */
4080 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4081 || REGNO (x) < FIRST_PSEUDO_REGISTER
4082 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4083 return 0;
4085 if (same_regs[REGNO (x)] == -1)
4087 same_regs[REGNO (x)] = REGNO (y);
4088 num_same_regs++;
4090 /* If this is the first time we are seeing a register on the `Y'
4091 side, see if it is the last use. If not, we can't thread the
4092 jump, so mark it as not equivalent. */
4093 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4094 return 0;
4096 return 1;
4098 else
4099 return (same_regs[REGNO (x)] == (int) REGNO (y));
4101 break;
4103 case MEM:
4104 /* If memory modified or either volatile, not equivalent.
4105 Else, check address. */
4106 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4107 return 0;
4109 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4111 case ASM_INPUT:
4112 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4113 return 0;
4115 break;
4117 case SET:
4118 /* Cancel a pending `same_regs' if setting equivalenced registers.
4119 Then process source. */
4120 if (GET_CODE (SET_DEST (x)) == REG
4121 && GET_CODE (SET_DEST (y)) == REG)
4123 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4125 same_regs[REGNO (SET_DEST (x))] = -1;
4126 num_same_regs--;
4128 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4129 return 0;
4131 else
4133 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4134 return 0;
4137 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4139 case LABEL_REF:
4140 return XEXP (x, 0) == XEXP (y, 0);
4142 case SYMBOL_REF:
4143 return XSTR (x, 0) == XSTR (y, 0);
4145 default:
4146 break;
4149 if (x == y)
4150 return 1;
4152 fmt = GET_RTX_FORMAT (code);
4153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4155 switch (fmt[i])
4157 case 'w':
4158 if (XWINT (x, i) != XWINT (y, i))
4159 return 0;
4160 break;
4162 case 'n':
4163 case 'i':
4164 if (XINT (x, i) != XINT (y, i))
4165 return 0;
4166 break;
4168 case 'V':
4169 case 'E':
4170 /* Two vectors must have the same length. */
4171 if (XVECLEN (x, i) != XVECLEN (y, i))
4172 return 0;
4174 /* And the corresponding elements must match. */
4175 for (j = 0; j < XVECLEN (x, i); j++)
4176 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4177 XVECEXP (y, i, j), yinsn) == 0)
4178 return 0;
4179 break;
4181 case 'e':
4182 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4183 return 0;
4184 break;
4186 case 'S':
4187 case 's':
4188 if (strcmp (XSTR (x, i), XSTR (y, i)))
4189 return 0;
4190 break;
4192 case 'u':
4193 /* These are just backpointers, so they don't matter. */
4194 break;
4196 case '0':
4197 case 't':
4198 break;
4200 /* It is believed that rtx's at this level will never
4201 contain anything but integers and other rtx's,
4202 except for within LABEL_REFs and SYMBOL_REFs. */
4203 default:
4204 abort ();
4207 return 1;