* invoke.texi: Add more options to summary list.
[official-gcc.git] / gcc / gcse.c
blob2b1bdee68b3eead9f950619e92c4b4b1d57672d7
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "ggc.h"
163 #include "params.h"
165 #include "obstack.h"
166 #define obstack_chunk_alloc gmalloc
167 #define obstack_chunk_free free
169 /* Maximum number of passes to perform. */
170 #define MAX_PASSES 1
172 /* Propagate flow information through back edges and thus enable PRE's
173 moving loop invariant calculations out of loops.
175 Originally this tended to create worse overall code, but several
176 improvements during the development of PRE seem to have made following
177 back edges generally a win.
179 Note much of the loop invariant code motion done here would normally
180 be done by loop.c, which has more heuristics for when to move invariants
181 out of loops. At some point we might need to move some of those
182 heuristics into gcse.c. */
183 #define FOLLOW_BACK_EDGES 1
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse.
198 5) Perform another pass of copy/constant propagation.
200 Two passes of copy/constant propagation are done because the first one
201 enables more GCSE and the second one helps to clean up the copies that
202 GCSE creates. This is needed more for PRE than for Classic because Classic
203 GCSE will try to use an existing register containing the common
204 subexpression rather than create a new one. This is harder to do for PRE
205 because of the code motion (which Classic GCSE doesn't do).
207 Expressions we are interested in GCSE-ing are of the form
208 (set (pseudo-reg) (expression)).
209 Function want_to_gcse_p says what these are.
211 PRE handles moving invariant expressions out of loops (by treating them as
212 partially redundant).
214 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
215 assignment) based GVN (global value numbering). L. T. Simpson's paper
216 (Rice University) on value numbering is a useful reference for this.
218 **********************
220 We used to support multiple passes but there are diminishing returns in
221 doing so. The first pass usually makes 90% of the changes that are doable.
222 A second pass can make a few more changes made possible by the first pass.
223 Experiments show any further passes don't make enough changes to justify
224 the expense.
226 A study of spec92 using an unlimited number of passes:
227 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
228 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
229 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
231 It was found doing copy propagation between each pass enables further
232 substitutions.
234 PRE is quite expensive in complicated functions because the DFA can take
235 awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
236 be modified if one wants to experiment.
238 **********************
240 The steps for PRE are:
242 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
244 2) Perform the data flow analysis for PRE.
246 3) Delete the redundant instructions
248 4) Insert the required copies [if any] that make the partially
249 redundant instructions fully redundant.
251 5) For other reaching expressions, insert an instruction to copy the value
252 to a newly created pseudo that will reach the redundant instruction.
254 The deletion is done first so that when we do insertions we
255 know which pseudo reg to use.
257 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
258 argue it is not. The number of iterations for the algorithm to converge
259 is typically 2-4 so I don't view it as that expensive (relatively speaking).
261 PRE GCSE depends heavily on the second CSE pass to clean up the copies
262 we create. To make an expression reach the place where it's redundant,
263 the result of the expression is copied to a new register, and the redundant
264 expression is deleted by replacing it with this new register. Classic GCSE
265 doesn't have this problem as much as it computes the reaching defs of
266 each register in each block and thus can try to use an existing register.
268 **********************
270 A fair bit of simplicity is created by creating small functions for simple
271 tasks, even when the function is only called in one place. This may
272 measurably slow things down [or may not] by creating more function call
273 overhead than is necessary. The source is laid out so that it's trivial
274 to make the affected functions inline so that one can measure what speed
275 up, if any, can be achieved, and maybe later when things settle things can
276 be rearranged.
278 Help stamp out big monolithic functions! */
280 /* GCSE global vars. */
282 /* -dG dump file. */
283 static FILE *gcse_file;
285 /* Note whether or not we should run jump optimization after gcse. We
286 want to do this for two cases.
288 * If we changed any jumps via cprop.
290 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 /* Non-zero for each mode that supports (set (reg) (reg)).
305 This is trivially true for integer and floating point values.
306 It may or may not be true for condition codes. */
307 static char can_copy_p[(int) NUM_MACHINE_MODES];
309 /* Non-zero if can_copy_p has been initialized. */
310 static int can_copy_init_p;
312 struct reg_use {rtx reg_rtx; };
314 /* Hash table of expressions. */
316 struct expr
318 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
319 rtx expr;
320 /* Index in the available expression bitmaps. */
321 int bitmap_index;
322 /* Next entry with the same hash. */
323 struct expr *next_same_hash;
324 /* List of anticipatable occurrences in basic blocks in the function.
325 An "anticipatable occurrence" is one that is the first occurrence in the
326 basic block, the operands are not modified in the basic block prior
327 to the occurrence and the output is not used between the start of
328 the block and the occurrence. */
329 struct occr *antic_occr;
330 /* List of available occurrence in basic blocks in the function.
331 An "available occurrence" is one that is the last occurrence in the
332 basic block and the operands are not modified by following statements in
333 the basic block [including this insn]. */
334 struct occr *avail_occr;
335 /* Non-null if the computation is PRE redundant.
336 The value is the newly created pseudo-reg to record a copy of the
337 expression in all the places that reach the redundant copy. */
338 rtx reaching_reg;
341 /* Occurrence of an expression.
342 There is one per basic block. If a pattern appears more than once the
343 last appearance is used [or first for anticipatable expressions]. */
345 struct occr
347 /* Next occurrence of this expression. */
348 struct occr *next;
349 /* The insn that computes the expression. */
350 rtx insn;
351 /* Non-zero if this [anticipatable] occurrence has been deleted. */
352 char deleted_p;
353 /* Non-zero if this [available] occurrence has been copied to
354 reaching_reg. */
355 /* ??? This is mutually exclusive with deleted_p, so they could share
356 the same byte. */
357 char copied_p;
360 /* Expression and copy propagation hash tables.
361 Each hash table is an array of buckets.
362 ??? It is known that if it were an array of entries, structure elements
363 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
364 not clear whether in the final analysis a sufficient amount of memory would
365 be saved as the size of the available expression bitmaps would be larger
366 [one could build a mapping table without holes afterwards though].
367 Someday I'll perform the computation and figure it out. */
369 /* Total size of the expression hash table, in elements. */
370 static unsigned int expr_hash_table_size;
372 /* The table itself.
373 This is an array of `expr_hash_table_size' elements. */
374 static struct expr **expr_hash_table;
376 /* Total size of the copy propagation hash table, in elements. */
377 static unsigned int set_hash_table_size;
379 /* The table itself.
380 This is an array of `set_hash_table_size' elements. */
381 static struct expr **set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
393 #else
394 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
395 #endif
397 /* Number of cuids. */
398 static int max_cuid;
400 /* Mapping of cuids to insns. */
401 static rtx *cuid_insn;
403 /* Get insn from cuid. */
404 #define CUID_INSN(CUID) (cuid_insn[CUID])
406 /* Maximum register number in function prior to doing gcse + 1.
407 Registers created during this pass have regno >= max_gcse_regno.
408 This is named with "gcse" to not collide with global of same name. */
409 static unsigned int max_gcse_regno;
411 /* Maximum number of cse-able expressions found. */
412 static int n_exprs;
414 /* Maximum number of assignments for copy propagation found. */
415 static int n_sets;
417 /* Table of registers that are modified.
419 For each register, each element is a list of places where the pseudo-reg
420 is set.
422 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
423 requires knowledge of which blocks kill which regs [and thus could use
424 a bitmap instead of the lists `reg_set_table' uses].
426 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
427 num-regs) [however perhaps it may be useful to keep the data as is]. One
428 advantage of recording things this way is that `reg_set_table' is fairly
429 sparse with respect to pseudo regs but for hard regs could be fairly dense
430 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
431 up functions like compute_transp since in the case of pseudo-regs we only
432 need to iterate over the number of times a pseudo-reg is set, not over the
433 number of basic blocks [clearly there is a bit of a slow down in the cases
434 where a pseudo is set more than once in a block, however it is believed
435 that the net effect is to speed things up]. This isn't done for hard-regs
436 because recording call-clobbered hard-regs in `reg_set_table' at each
437 function call can consume a fair bit of memory, and iterating over
438 hard-regs stored this way in compute_transp will be more expensive. */
440 typedef struct reg_set
442 /* The next setting of this register. */
443 struct reg_set *next;
444 /* The insn where it was set. */
445 rtx insn;
446 } reg_set;
448 static reg_set **reg_set_table;
450 /* Size of `reg_set_table'.
451 The table starts out at max_gcse_regno + slop, and is enlarged as
452 necessary. */
453 static int reg_set_table_size;
455 /* Amount to grow `reg_set_table' by when it's full. */
456 #define REG_SET_TABLE_SLOP 100
458 /* This is a list of expressions which are MEMs and will be used by load
459 or store motion.
460 Load motion tracks MEMs which aren't killed by
461 anything except itself. (ie, loads and stores to a single location).
462 We can then allow movement of these MEM refs with a little special
463 allowance. (all stores copy the same value to the reaching reg used
464 for the loads). This means all values used to store into memory must have
465 no side effects so we can re-issue the setter value.
466 Store Motion uses this structure as an expression table to track stores
467 which look interesting, and might be moveable towards the exit block. */
469 struct ls_expr
471 struct expr * expr; /* Gcse expression reference for LM. */
472 rtx pattern; /* Pattern of this mem. */
473 rtx loads; /* INSN list of loads seen. */
474 rtx stores; /* INSN list of stores seen. */
475 struct ls_expr * next; /* Next in the list. */
476 int invalid; /* Invalid for some reason. */
477 int index; /* If it maps to a bitmap index. */
478 int hash_index; /* Index when in a hash table. */
479 rtx reaching_reg; /* Register to use when re-writing. */
482 /* Head of the list of load/store memory refs. */
483 static struct ls_expr * pre_ldst_mems = NULL;
485 /* Bitmap containing one bit for each register in the program.
486 Used when performing GCSE to track which registers have been set since
487 the start of the basic block. */
488 static sbitmap reg_set_bitmap;
490 /* For each block, a bitmap of registers set in the block.
491 This is used by expr_killed_p and compute_transp.
492 It is computed during hash table computation and not by compute_sets
493 as it includes registers added since the last pass (or between cprop and
494 gcse) and it's currently not easy to realloc sbitmap vectors. */
495 static sbitmap *reg_set_in_block;
497 /* Array, indexed by basic block number for a list of insns which modify
498 memory within that block. */
499 static rtx * modify_mem_list;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
504 /* For each block, non-zero if memory is set in that block.
505 This is computed during hash table computation and is used by
506 expr_killed_p and compute_transp.
507 ??? Handling of memory is very simple, we don't make any attempt
508 to optimize things (later).
509 ??? This can be computed by compute_sets since the information
510 doesn't change. */
511 static char *mem_set_in_block;
513 /* Various variables for statistics gathering. */
515 /* Memory used in a pass.
516 This isn't intended to be absolutely precise. Its intent is only
517 to keep an eye on memory usage. */
518 static int bytes_used;
520 /* GCSE substitutions made. */
521 static int gcse_subst_count;
522 /* Number of copy instructions created. */
523 static int gcse_create_count;
524 /* Number of constants propagated. */
525 static int const_prop_count;
526 /* Number of copys propagated. */
527 static int copy_prop_count;
529 /* These variables are used by classic GCSE.
530 Normally they'd be defined a bit later, but `rd_gen' needs to
531 be declared sooner. */
533 /* Each block has a bitmap of each type.
534 The length of each blocks bitmap is:
536 max_cuid - for reaching definitions
537 n_exprs - for available expressions
539 Thus we view the bitmaps as 2 dimensional arrays. i.e.
540 rd_kill[block_num][cuid_num]
541 ae_kill[block_num][expr_num] */
543 /* For reaching defs */
544 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
546 /* for available exprs */
547 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
549 /* Objects of this type are passed around by the null-pointer check
550 removal routines. */
551 struct null_pointer_info
553 /* The basic block being processed. */
554 int current_block;
555 /* The first register to be handled in this pass. */
556 unsigned int min_reg;
557 /* One greater than the last register to be handled in this pass. */
558 unsigned int max_reg;
559 sbitmap *nonnull_local;
560 sbitmap *nonnull_killed;
563 static void compute_can_copy PARAMS ((void));
564 static char *gmalloc PARAMS ((unsigned int));
565 static char *grealloc PARAMS ((char *, unsigned int));
566 static char *gcse_alloc PARAMS ((unsigned long));
567 static void alloc_gcse_mem PARAMS ((rtx));
568 static void free_gcse_mem PARAMS ((void));
569 static void alloc_reg_set_mem PARAMS ((int));
570 static void free_reg_set_mem PARAMS ((void));
571 static int get_bitmap_width PARAMS ((int, int, int));
572 static void record_one_set PARAMS ((int, rtx));
573 static void record_set_info PARAMS ((rtx, rtx, void *));
574 static void compute_sets PARAMS ((rtx));
575 static void hash_scan_insn PARAMS ((rtx, int, int));
576 static void hash_scan_set PARAMS ((rtx, rtx, int));
577 static void hash_scan_clobber PARAMS ((rtx, rtx));
578 static void hash_scan_call PARAMS ((rtx, rtx));
579 static int want_to_gcse_p PARAMS ((rtx));
580 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
581 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
582 static int oprs_available_p PARAMS ((rtx, rtx));
583 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
584 int, int));
585 static void insert_set_in_table PARAMS ((rtx, rtx));
586 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
587 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
588 static unsigned int hash_string_1 PARAMS ((const char *));
589 static unsigned int hash_set PARAMS ((int, int));
590 static int expr_equiv_p PARAMS ((rtx, rtx));
591 static void record_last_reg_set_info PARAMS ((rtx, int));
592 static void record_last_mem_set_info PARAMS ((rtx));
593 static void record_last_set_info PARAMS ((rtx, rtx, void *));
594 static void compute_hash_table PARAMS ((int));
595 static void alloc_set_hash_table PARAMS ((int));
596 static void free_set_hash_table PARAMS ((void));
597 static void compute_set_hash_table PARAMS ((void));
598 static void alloc_expr_hash_table PARAMS ((unsigned int));
599 static void free_expr_hash_table PARAMS ((void));
600 static void compute_expr_hash_table PARAMS ((void));
601 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
602 int, int));
603 static struct expr *lookup_expr PARAMS ((rtx));
604 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
605 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
606 static void reset_opr_set_tables PARAMS ((void));
607 static int oprs_not_set_p PARAMS ((rtx, rtx));
608 static void mark_call PARAMS ((rtx));
609 static void mark_set PARAMS ((rtx, rtx));
610 static void mark_clobber PARAMS ((rtx, rtx));
611 static void mark_oprs_set PARAMS ((rtx));
612 static void alloc_cprop_mem PARAMS ((int, int));
613 static void free_cprop_mem PARAMS ((void));
614 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
615 static void compute_transpout PARAMS ((void));
616 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
617 int));
618 static void compute_cprop_data PARAMS ((void));
619 static void find_used_regs PARAMS ((rtx *, void *));
620 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
621 static struct expr *find_avail_set PARAMS ((int, rtx));
622 static int cprop_jump PARAMS ((rtx, rtx, rtx));
623 #ifdef HAVE_cc0
624 static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx));
625 #endif
626 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
627 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
628 static void canon_list_insert PARAMS ((rtx, rtx, void *));
629 static int cprop_insn PARAMS ((rtx, int));
630 static int cprop PARAMS ((int));
631 static int one_cprop_pass PARAMS ((int, int));
632 static void alloc_pre_mem PARAMS ((int, int));
633 static void free_pre_mem PARAMS ((void));
634 static void compute_pre_data PARAMS ((void));
635 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
636 basic_block));
637 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
638 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
639 static void pre_insert_copies PARAMS ((void));
640 static int pre_delete PARAMS ((void));
641 static int pre_gcse PARAMS ((void));
642 static int one_pre_gcse_pass PARAMS ((int));
643 static void add_label_notes PARAMS ((rtx, rtx));
644 static void alloc_code_hoist_mem PARAMS ((int, int));
645 static void free_code_hoist_mem PARAMS ((void));
646 static void compute_code_hoist_vbeinout PARAMS ((void));
647 static void compute_code_hoist_data PARAMS ((void));
648 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
649 char *));
650 static void hoist_code PARAMS ((void));
651 static int one_code_hoisting_pass PARAMS ((void));
652 static void alloc_rd_mem PARAMS ((int, int));
653 static void free_rd_mem PARAMS ((void));
654 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
655 static void compute_kill_rd PARAMS ((void));
656 static void compute_rd PARAMS ((void));
657 static void alloc_avail_expr_mem PARAMS ((int, int));
658 static void free_avail_expr_mem PARAMS ((void));
659 static void compute_ae_gen PARAMS ((void));
660 static int expr_killed_p PARAMS ((rtx, basic_block));
661 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
662 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
663 basic_block, int));
664 static rtx computing_insn PARAMS ((struct expr *, rtx));
665 static int def_reaches_here_p PARAMS ((rtx, rtx));
666 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
667 static int handle_avail_expr PARAMS ((rtx, struct expr *));
668 static int classic_gcse PARAMS ((void));
669 static int one_classic_gcse_pass PARAMS ((int));
670 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
671 static void delete_null_pointer_checks_1 PARAMS ((varray_type *, unsigned int *,
672 sbitmap *, sbitmap *,
673 struct null_pointer_info *));
674 static rtx process_insert_insn PARAMS ((struct expr *));
675 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
676 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
677 basic_block, int, char *));
678 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
679 basic_block, char *));
680 static struct ls_expr * ldst_entry PARAMS ((rtx));
681 static void free_ldst_entry PARAMS ((struct ls_expr *));
682 static void free_ldst_mems PARAMS ((void));
683 static void print_ldst_list PARAMS ((FILE *));
684 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
685 static int enumerate_ldsts PARAMS ((void));
686 static inline struct ls_expr * first_ls_expr PARAMS ((void));
687 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
688 static int simple_mem PARAMS ((rtx));
689 static void invalidate_any_buried_refs PARAMS ((rtx));
690 static void compute_ld_motion_mems PARAMS ((void));
691 static void trim_ld_motion_mems PARAMS ((void));
692 static void update_ld_motion_stores PARAMS ((struct expr *));
693 static void reg_set_info PARAMS ((rtx, rtx, void *));
694 static int store_ops_ok PARAMS ((rtx, basic_block));
695 static void find_moveable_store PARAMS ((rtx));
696 static int compute_store_table PARAMS ((void));
697 static int load_kills_store PARAMS ((rtx, rtx));
698 static int find_loads PARAMS ((rtx, rtx));
699 static int store_killed_in_insn PARAMS ((rtx, rtx));
700 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
701 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
702 static void build_store_vectors PARAMS ((void));
703 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
704 static int insert_store PARAMS ((struct ls_expr *, edge));
705 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
706 static void delete_store PARAMS ((struct ls_expr *,
707 basic_block));
708 static void free_store_memory PARAMS ((void));
709 static void store_motion PARAMS ((void));
711 /* Entry point for global common subexpression elimination.
712 F is the first instruction in the function. */
715 gcse_main (f, file)
716 rtx f;
717 FILE *file;
719 int changed, pass;
720 /* Bytes used at start of pass. */
721 int initial_bytes_used;
722 /* Maximum number of bytes used by a pass. */
723 int max_pass_bytes;
724 /* Point to release obstack data from for each pass. */
725 char *gcse_obstack_bottom;
727 /* Insertion of instructions on edges can create new basic blocks; we
728 need the original basic block count so that we can properly deallocate
729 arrays sized on the number of basic blocks originally in the cfg. */
730 int orig_bb_count;
731 /* We do not construct an accurate cfg in functions which call
732 setjmp, so just punt to be safe. */
733 if (current_function_calls_setjmp)
734 return 0;
736 /* Assume that we do not need to run jump optimizations after gcse. */
737 run_jump_opt_after_gcse = 0;
739 /* For calling dump_foo fns from gdb. */
740 debug_stderr = stderr;
741 gcse_file = file;
743 /* Identify the basic block information for this function, including
744 successors and predecessors. */
745 max_gcse_regno = max_reg_num ();
747 if (file)
748 dump_flow_info (file);
750 orig_bb_count = n_basic_blocks;
751 /* Return if there's nothing to do. */
752 if (n_basic_blocks <= 1)
753 return 0;
755 /* Trying to perform global optimizations on flow graphs which have
756 a high connectivity will take a long time and is unlikely to be
757 particularly useful.
759 In normal circumstances a cfg should have about twice as many edges
760 as blocks. But we do not want to punish small functions which have
761 a couple switch statements. So we require a relatively large number
762 of basic blocks and the ratio of edges to blocks to be high. */
763 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
765 if (warn_disabled_optimization)
766 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
767 n_basic_blocks, n_edges / n_basic_blocks);
768 return 0;
771 /* If allocating memory for the cprop bitmap would take up too much
772 storage it's better just to disable the optimization. */
773 if ((n_basic_blocks
774 * SBITMAP_SET_SIZE (max_gcse_regno)
775 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
777 if (warn_disabled_optimization)
778 warning ("GCSE disabled: %d basic blocks and %d registers",
779 n_basic_blocks, max_gcse_regno);
781 return 0;
784 /* See what modes support reg/reg copy operations. */
785 if (! can_copy_init_p)
787 compute_can_copy ();
788 can_copy_init_p = 1;
791 gcc_obstack_init (&gcse_obstack);
792 bytes_used = 0;
794 /* We need alias. */
795 init_alias_analysis ();
796 /* Record where pseudo-registers are set. This data is kept accurate
797 during each pass. ??? We could also record hard-reg information here
798 [since it's unchanging], however it is currently done during hash table
799 computation.
801 It may be tempting to compute MEM set information here too, but MEM sets
802 will be subject to code motion one day and thus we need to compute
803 information about memory sets when we build the hash tables. */
805 alloc_reg_set_mem (max_gcse_regno);
806 compute_sets (f);
808 pass = 0;
809 initial_bytes_used = bytes_used;
810 max_pass_bytes = 0;
811 gcse_obstack_bottom = gcse_alloc (1);
812 changed = 1;
813 while (changed && pass < MAX_PASSES)
815 changed = 0;
816 if (file)
817 fprintf (file, "GCSE pass %d\n\n", pass + 1);
819 /* Initialize bytes_used to the space for the pred/succ lists,
820 and the reg_set_table data. */
821 bytes_used = initial_bytes_used;
823 /* Each pass may create new registers, so recalculate each time. */
824 max_gcse_regno = max_reg_num ();
826 alloc_gcse_mem (f);
828 /* Don't allow constant propagation to modify jumps
829 during this pass. */
830 changed = one_cprop_pass (pass + 1, 0);
832 if (optimize_size)
833 changed |= one_classic_gcse_pass (pass + 1);
834 else
836 changed |= one_pre_gcse_pass (pass + 1);
837 /* We may have just created new basic blocks. Release and
838 recompute various things which are sized on the number of
839 basic blocks. */
840 if (changed)
842 int i;
844 for (i = 0; i < orig_bb_count; i++)
846 if (modify_mem_list[i])
847 free_INSN_LIST_list (modify_mem_list + i);
848 if (canon_modify_mem_list[i])
849 free_INSN_LIST_list (canon_modify_mem_list + i);
851 modify_mem_list
852 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
853 canon_modify_mem_list
854 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
855 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
856 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
857 orig_bb_count = n_basic_blocks;
859 free_reg_set_mem ();
860 alloc_reg_set_mem (max_reg_num ());
861 compute_sets (f);
862 run_jump_opt_after_gcse = 1;
865 if (max_pass_bytes < bytes_used)
866 max_pass_bytes = bytes_used;
868 /* Free up memory, then reallocate for code hoisting. We can
869 not re-use the existing allocated memory because the tables
870 will not have info for the insns or registers created by
871 partial redundancy elimination. */
872 free_gcse_mem ();
874 /* It does not make sense to run code hoisting unless we optimizing
875 for code size -- it rarely makes programs faster, and can make
876 them bigger if we did partial redundancy elimination (when optimizing
877 for space, we use a classic gcse algorithm instead of partial
878 redundancy algorithms). */
879 if (optimize_size)
881 max_gcse_regno = max_reg_num ();
882 alloc_gcse_mem (f);
883 changed |= one_code_hoisting_pass ();
884 free_gcse_mem ();
886 if (max_pass_bytes < bytes_used)
887 max_pass_bytes = bytes_used;
890 if (file)
892 fprintf (file, "\n");
893 fflush (file);
896 obstack_free (&gcse_obstack, gcse_obstack_bottom);
897 pass++;
900 /* Do one last pass of copy propagation, including cprop into
901 conditional jumps. */
903 max_gcse_regno = max_reg_num ();
904 alloc_gcse_mem (f);
905 /* This time, go ahead and allow cprop to alter jumps. */
906 one_cprop_pass (pass + 1, 1);
907 free_gcse_mem ();
909 if (file)
911 fprintf (file, "GCSE of %s: %d basic blocks, ",
912 current_function_name, n_basic_blocks);
913 fprintf (file, "%d pass%s, %d bytes\n\n",
914 pass, pass > 1 ? "es" : "", max_pass_bytes);
917 obstack_free (&gcse_obstack, NULL);
918 free_reg_set_mem ();
919 /* We are finished with alias. */
920 end_alias_analysis ();
921 allocate_reg_info (max_reg_num (), FALSE, FALSE);
923 if (!optimize_size && flag_gcse_sm)
924 store_motion ();
925 /* Record where pseudo-registers are set. */
926 return run_jump_opt_after_gcse;
929 /* Misc. utilities. */
931 /* Compute which modes support reg/reg copy operations. */
933 static void
934 compute_can_copy ()
936 int i;
937 #ifndef AVOID_CCMODE_COPIES
938 rtx reg,insn;
939 #endif
940 memset (can_copy_p, 0, NUM_MACHINE_MODES);
942 start_sequence ();
943 for (i = 0; i < NUM_MACHINE_MODES; i++)
944 if (GET_MODE_CLASS (i) == MODE_CC)
946 #ifdef AVOID_CCMODE_COPIES
947 can_copy_p[i] = 0;
948 #else
949 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
950 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
951 if (recog (PATTERN (insn), insn, NULL) >= 0)
952 can_copy_p[i] = 1;
953 #endif
955 else
956 can_copy_p[i] = 1;
958 end_sequence ();
961 /* Cover function to xmalloc to record bytes allocated. */
963 static char *
964 gmalloc (size)
965 unsigned int size;
967 bytes_used += size;
968 return xmalloc (size);
971 /* Cover function to xrealloc.
972 We don't record the additional size since we don't know it.
973 It won't affect memory usage stats much anyway. */
975 static char *
976 grealloc (ptr, size)
977 char *ptr;
978 unsigned int size;
980 return xrealloc (ptr, size);
983 /* Cover function to obstack_alloc.
984 We don't need to record the bytes allocated here since
985 obstack_chunk_alloc is set to gmalloc. */
987 static char *
988 gcse_alloc (size)
989 unsigned long size;
991 return (char *) obstack_alloc (&gcse_obstack, size);
994 /* Allocate memory for the cuid mapping array,
995 and reg/memory set tracking tables.
997 This is called at the start of each pass. */
999 static void
1000 alloc_gcse_mem (f)
1001 rtx f;
1003 int i,n;
1004 rtx insn;
1006 /* Find the largest UID and create a mapping from UIDs to CUIDs.
1007 CUIDs are like UIDs except they increase monotonically, have no gaps,
1008 and only apply to real insns. */
1010 max_uid = get_max_uid ();
1011 n = (max_uid + 1) * sizeof (int);
1012 uid_cuid = (int *) gmalloc (n);
1013 memset ((char *) uid_cuid, 0, n);
1014 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1016 if (INSN_P (insn))
1017 uid_cuid[INSN_UID (insn)] = i++;
1018 else
1019 uid_cuid[INSN_UID (insn)] = i;
1022 /* Create a table mapping cuids to insns. */
1024 max_cuid = i;
1025 n = (max_cuid + 1) * sizeof (rtx);
1026 cuid_insn = (rtx *) gmalloc (n);
1027 memset ((char *) cuid_insn, 0, n);
1028 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1029 if (INSN_P (insn))
1030 CUID_INSN (i++) = insn;
1032 /* Allocate vars to track sets of regs. */
1033 reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
1035 /* Allocate vars to track sets of regs, memory per block. */
1036 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
1037 max_gcse_regno);
1038 mem_set_in_block = (char *) gmalloc (n_basic_blocks);
1039 /* Allocate array to keep a list of insns which modify memory in each
1040 basic block. */
1041 modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
1042 canon_modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
1043 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
1044 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
1047 /* Free memory allocated by alloc_gcse_mem. */
1049 static void
1050 free_gcse_mem ()
1052 free (uid_cuid);
1053 free (cuid_insn);
1055 free (reg_set_bitmap);
1057 free (reg_set_in_block);
1058 free (mem_set_in_block);
1059 /* re-Cache any INSN_LIST nodes we have allocated. */
1061 int i;
1063 for (i = 0; i < n_basic_blocks; i++)
1065 if (modify_mem_list[i])
1066 free_INSN_LIST_list (modify_mem_list + i);
1067 if (canon_modify_mem_list[i])
1068 free_INSN_LIST_list (canon_modify_mem_list + i);
1071 free (modify_mem_list);
1072 free (canon_modify_mem_list);
1073 modify_mem_list = 0;
1074 canon_modify_mem_list = 0;
1078 /* Many of the global optimization algorithms work by solving dataflow
1079 equations for various expressions. Initially, some local value is
1080 computed for each expression in each block. Then, the values across the
1081 various blocks are combined (by following flow graph edges) to arrive at
1082 global values. Conceptually, each set of equations is independent. We
1083 may therefore solve all the equations in parallel, solve them one at a
1084 time, or pick any intermediate approach.
1086 When you're going to need N two-dimensional bitmaps, each X (say, the
1087 number of blocks) by Y (say, the number of expressions), call this
1088 function. It's not important what X and Y represent; only that Y
1089 correspond to the things that can be done in parallel. This function will
1090 return an appropriate chunking factor C; you should solve C sets of
1091 equations in parallel. By going through this function, we can easily
1092 trade space against time; by solving fewer equations in parallel we use
1093 less space. */
1095 static int
1096 get_bitmap_width (n, x, y)
1097 int n;
1098 int x;
1099 int y;
1101 /* It's not really worth figuring out *exactly* how much memory will
1102 be used by a particular choice. The important thing is to get
1103 something approximately right. */
1104 size_t max_bitmap_memory = 10 * 1024 * 1024;
1106 /* The number of bytes we'd use for a single column of minimum
1107 width. */
1108 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1110 /* Often, it's reasonable just to solve all the equations in
1111 parallel. */
1112 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1113 return y;
1115 /* Otherwise, pick the largest width we can, without going over the
1116 limit. */
1117 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1118 / column_size);
1121 /* Compute the local properties of each recorded expression.
1123 Local properties are those that are defined by the block, irrespective of
1124 other blocks.
1126 An expression is transparent in a block if its operands are not modified
1127 in the block.
1129 An expression is computed (locally available) in a block if it is computed
1130 at least once and expression would contain the same value if the
1131 computation was moved to the end of the block.
1133 An expression is locally anticipatable in a block if it is computed at
1134 least once and expression would contain the same value if the computation
1135 was moved to the beginning of the block.
1137 We call this routine for cprop, pre and code hoisting. They all compute
1138 basically the same information and thus can easily share this code.
1140 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1141 properties. If NULL, then it is not necessary to compute or record that
1142 particular property.
1144 SETP controls which hash table to look at. If zero, this routine looks at
1145 the expr hash table; if nonzero this routine looks at the set hash table.
1146 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1147 ABSALTERED. */
1149 static void
1150 compute_local_properties (transp, comp, antloc, setp)
1151 sbitmap *transp;
1152 sbitmap *comp;
1153 sbitmap *antloc;
1154 int setp;
1156 unsigned int i, hash_table_size;
1157 struct expr **hash_table;
1159 /* Initialize any bitmaps that were passed in. */
1160 if (transp)
1162 if (setp)
1163 sbitmap_vector_zero (transp, n_basic_blocks);
1164 else
1165 sbitmap_vector_ones (transp, n_basic_blocks);
1168 if (comp)
1169 sbitmap_vector_zero (comp, n_basic_blocks);
1170 if (antloc)
1171 sbitmap_vector_zero (antloc, n_basic_blocks);
1173 /* We use the same code for cprop, pre and hoisting. For cprop
1174 we care about the set hash table, for pre and hoisting we
1175 care about the expr hash table. */
1176 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1177 hash_table = setp ? set_hash_table : expr_hash_table;
1179 for (i = 0; i < hash_table_size; i++)
1181 struct expr *expr;
1183 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1185 int indx = expr->bitmap_index;
1186 struct occr *occr;
1188 /* The expression is transparent in this block if it is not killed.
1189 We start by assuming all are transparent [none are killed], and
1190 then reset the bits for those that are. */
1191 if (transp)
1192 compute_transp (expr->expr, indx, transp, setp);
1194 /* The occurrences recorded in antic_occr are exactly those that
1195 we want to set to non-zero in ANTLOC. */
1196 if (antloc)
1197 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1199 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1201 /* While we're scanning the table, this is a good place to
1202 initialize this. */
1203 occr->deleted_p = 0;
1206 /* The occurrences recorded in avail_occr are exactly those that
1207 we want to set to non-zero in COMP. */
1208 if (comp)
1209 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1211 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1213 /* While we're scanning the table, this is a good place to
1214 initialize this. */
1215 occr->copied_p = 0;
1218 /* While we're scanning the table, this is a good place to
1219 initialize this. */
1220 expr->reaching_reg = 0;
1225 /* Register set information.
1227 `reg_set_table' records where each register is set or otherwise
1228 modified. */
1230 static struct obstack reg_set_obstack;
1232 static void
1233 alloc_reg_set_mem (n_regs)
1234 int n_regs;
1236 unsigned int n;
1238 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1239 n = reg_set_table_size * sizeof (struct reg_set *);
1240 reg_set_table = (struct reg_set **) gmalloc (n);
1241 memset ((char *) reg_set_table, 0, n);
1243 gcc_obstack_init (&reg_set_obstack);
1246 static void
1247 free_reg_set_mem ()
1249 free (reg_set_table);
1250 obstack_free (&reg_set_obstack, NULL);
1253 /* Record REGNO in the reg_set table. */
1255 static void
1256 record_one_set (regno, insn)
1257 int regno;
1258 rtx insn;
1260 /* Allocate a new reg_set element and link it onto the list. */
1261 struct reg_set *new_reg_info;
1263 /* If the table isn't big enough, enlarge it. */
1264 if (regno >= reg_set_table_size)
1266 int new_size = regno + REG_SET_TABLE_SLOP;
1268 reg_set_table
1269 = (struct reg_set **) grealloc ((char *) reg_set_table,
1270 new_size * sizeof (struct reg_set *));
1271 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1272 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1273 reg_set_table_size = new_size;
1276 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1277 sizeof (struct reg_set));
1278 bytes_used += sizeof (struct reg_set);
1279 new_reg_info->insn = insn;
1280 new_reg_info->next = reg_set_table[regno];
1281 reg_set_table[regno] = new_reg_info;
1284 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1285 an insn. The DATA is really the instruction in which the SET is
1286 occurring. */
1288 static void
1289 record_set_info (dest, setter, data)
1290 rtx dest, setter ATTRIBUTE_UNUSED;
1291 void *data;
1293 rtx record_set_insn = (rtx) data;
1295 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1296 record_one_set (REGNO (dest), record_set_insn);
1299 /* Scan the function and record each set of each pseudo-register.
1301 This is called once, at the start of the gcse pass. See the comments for
1302 `reg_set_table' for further documenation. */
1304 static void
1305 compute_sets (f)
1306 rtx f;
1308 rtx insn;
1310 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1311 if (INSN_P (insn))
1312 note_stores (PATTERN (insn), record_set_info, insn);
1315 /* Hash table support. */
1317 /* For each register, the cuid of the first/last insn in the block to set it,
1318 or -1 if not set. */
1319 #define NEVER_SET -1
1320 static int *reg_first_set;
1321 static int *reg_last_set;
1323 /* While computing "first/last set" info, this is the CUID of first/last insn
1324 to set memory or -1 if not set. `mem_last_set' is also used when
1325 performing GCSE to record whether memory has been set since the beginning
1326 of the block.
1328 Note that handling of memory is very simple, we don't make any attempt
1329 to optimize things (later). */
1330 static int mem_first_set;
1331 static int mem_last_set;
1333 /* See whether X, the source of a set, is something we want to consider for
1334 GCSE. */
1336 static int
1337 want_to_gcse_p (x)
1338 rtx x;
1340 static rtx test_insn = 0;
1341 int num_clobbers = 0;
1342 int icode;
1344 switch (GET_CODE (x))
1346 case REG:
1347 case SUBREG:
1348 case CONST_INT:
1349 case CONST_DOUBLE:
1350 case CALL:
1351 return 0;
1353 default:
1354 break;
1357 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1358 if (general_operand (x, GET_MODE (x)))
1359 return 1;
1360 else if (GET_MODE (x) == VOIDmode)
1361 return 0;
1363 /* Otherwise, check if we can make a valid insn from it. First initialize
1364 our test insn if we haven't already. */
1365 if (test_insn == 0)
1367 test_insn
1368 = make_insn_raw (gen_rtx_SET (VOIDmode,
1369 gen_rtx_REG (word_mode,
1370 FIRST_PSEUDO_REGISTER * 2),
1371 const0_rtx));
1372 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1373 ggc_add_rtx_root (&test_insn, 1);
1376 /* Now make an insn like the one we would make when GCSE'ing and see if
1377 valid. */
1378 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1379 SET_SRC (PATTERN (test_insn)) = x;
1380 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1381 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1384 /* Return non-zero if the operands of expression X are unchanged from the
1385 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1386 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1388 static int
1389 oprs_unchanged_p (x, insn, avail_p)
1390 rtx x, insn;
1391 int avail_p;
1393 int i, j;
1394 enum rtx_code code;
1395 const char *fmt;
1397 if (x == 0)
1398 return 1;
1400 code = GET_CODE (x);
1401 switch (code)
1403 case REG:
1404 if (avail_p)
1405 return (reg_last_set[REGNO (x)] == NEVER_SET
1406 || reg_last_set[REGNO (x)] < INSN_CUID (insn));
1407 else
1408 return (reg_first_set[REGNO (x)] == NEVER_SET
1409 || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
1411 case MEM:
1412 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn), INSN_CUID (insn),
1413 x, avail_p))
1414 return 0;
1415 if (avail_p && mem_last_set != NEVER_SET
1416 && mem_last_set >= INSN_CUID (insn))
1417 return 0;
1418 else if (! avail_p && mem_first_set != NEVER_SET
1419 && mem_first_set < INSN_CUID (insn))
1420 return 0;
1421 else
1422 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1424 case PRE_DEC:
1425 case PRE_INC:
1426 case POST_DEC:
1427 case POST_INC:
1428 case PRE_MODIFY:
1429 case POST_MODIFY:
1430 return 0;
1432 case PC:
1433 case CC0: /*FIXME*/
1434 case CONST:
1435 case CONST_INT:
1436 case CONST_DOUBLE:
1437 case SYMBOL_REF:
1438 case LABEL_REF:
1439 case ADDR_VEC:
1440 case ADDR_DIFF_VEC:
1441 return 1;
1443 default:
1444 break;
1447 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1449 if (fmt[i] == 'e')
1451 /* If we are about to do the last recursive call needed at this
1452 level, change it into iteration. This function is called enough
1453 to be worth it. */
1454 if (i == 0)
1455 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1457 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1458 return 0;
1460 else if (fmt[i] == 'E')
1461 for (j = 0; j < XVECLEN (x, i); j++)
1462 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1463 return 0;
1466 return 1;
1469 /* Used for communication between mems_conflict_for_gcse_p and
1470 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1471 conflict between two memory references. */
1472 static int gcse_mems_conflict_p;
1474 /* Used for communication between mems_conflict_for_gcse_p and
1475 load_killed_in_block_p. A memory reference for a load instruction,
1476 mems_conflict_for_gcse_p will see if a memory store conflicts with
1477 this memory load. */
1478 static rtx gcse_mem_operand;
1480 /* DEST is the output of an instruction. If it is a memory reference, and
1481 possibly conflicts with the load found in gcse_mem_operand, then set
1482 gcse_mems_conflict_p to a nonzero value. */
1484 static void
1485 mems_conflict_for_gcse_p (dest, setter, data)
1486 rtx dest, setter ATTRIBUTE_UNUSED;
1487 void *data ATTRIBUTE_UNUSED;
1489 while (GET_CODE (dest) == SUBREG
1490 || GET_CODE (dest) == ZERO_EXTRACT
1491 || GET_CODE (dest) == SIGN_EXTRACT
1492 || GET_CODE (dest) == STRICT_LOW_PART)
1493 dest = XEXP (dest, 0);
1495 /* If DEST is not a MEM, then it will not conflict with the load. Note
1496 that function calls are assumed to clobber memory, but are handled
1497 elsewhere. */
1498 if (GET_CODE (dest) != MEM)
1499 return;
1501 /* If we are setting a MEM in our list of specially recognized MEMs,
1502 don't mark as killed this time. */
1504 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1506 if (!find_rtx_in_ldst (dest))
1507 gcse_mems_conflict_p = 1;
1508 return;
1511 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1512 rtx_addr_varies_p))
1513 gcse_mems_conflict_p = 1;
1516 /* Return nonzero if the expression in X (a memory reference) is killed
1517 in block BB before or after the insn with the CUID in UID_LIMIT.
1518 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1519 before UID_LIMIT.
1521 To check the entire block, set UID_LIMIT to max_uid + 1 and
1522 AVAIL_P to 0. */
1524 static int
1525 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1526 basic_block bb;
1527 int uid_limit;
1528 rtx x;
1529 int avail_p;
1531 rtx list_entry = modify_mem_list[bb->index];
1532 while (list_entry)
1534 rtx setter;
1535 /* Ignore entries in the list that do not apply. */
1536 if ((avail_p
1537 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1538 || (! avail_p
1539 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1541 list_entry = XEXP (list_entry, 1);
1542 continue;
1545 setter = XEXP (list_entry, 0);
1547 /* If SETTER is a call everything is clobbered. Note that calls
1548 to pure functions are never put on the list, so we need not
1549 worry about them. */
1550 if (GET_CODE (setter) == CALL_INSN)
1551 return 1;
1553 /* SETTER must be an INSN of some kind that sets memory. Call
1554 note_stores to examine each hunk of memory that is modified.
1556 The note_stores interface is pretty limited, so we have to
1557 communicate via global variables. Yuk. */
1558 gcse_mem_operand = x;
1559 gcse_mems_conflict_p = 0;
1560 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1561 if (gcse_mems_conflict_p)
1562 return 1;
1563 list_entry = XEXP (list_entry, 1);
1565 return 0;
1568 /* Return non-zero if the operands of expression X are unchanged from
1569 the start of INSN's basic block up to but not including INSN. */
1571 static int
1572 oprs_anticipatable_p (x, insn)
1573 rtx x, insn;
1575 return oprs_unchanged_p (x, insn, 0);
1578 /* Return non-zero if the operands of expression X are unchanged from
1579 INSN to the end of INSN's basic block. */
1581 static int
1582 oprs_available_p (x, insn)
1583 rtx x, insn;
1585 return oprs_unchanged_p (x, insn, 1);
1588 /* Hash expression X.
1590 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1591 indicating if a volatile operand is found or if the expression contains
1592 something we don't want to insert in the table.
1594 ??? One might want to merge this with canon_hash. Later. */
1596 static unsigned int
1597 hash_expr (x, mode, do_not_record_p, hash_table_size)
1598 rtx x;
1599 enum machine_mode mode;
1600 int *do_not_record_p;
1601 int hash_table_size;
1603 unsigned int hash;
1605 *do_not_record_p = 0;
1607 hash = hash_expr_1 (x, mode, do_not_record_p);
1608 return hash % hash_table_size;
1611 /* Hash a string. Just add its bytes up. */
1613 static inline unsigned
1614 hash_string_1 (ps)
1615 const char *ps;
1617 unsigned hash = 0;
1618 const unsigned char *p = (const unsigned char *)ps;
1620 if (p)
1621 while (*p)
1622 hash += *p++;
1624 return hash;
1627 /* Subroutine of hash_expr to do the actual work. */
1629 static unsigned int
1630 hash_expr_1 (x, mode, do_not_record_p)
1631 rtx x;
1632 enum machine_mode mode;
1633 int *do_not_record_p;
1635 int i, j;
1636 unsigned hash = 0;
1637 enum rtx_code code;
1638 const char *fmt;
1640 /* Used to turn recursion into iteration. We can't rely on GCC's
1641 tail-recursion eliminatio since we need to keep accumulating values
1642 in HASH. */
1644 if (x == 0)
1645 return hash;
1647 repeat:
1648 code = GET_CODE (x);
1649 switch (code)
1651 case REG:
1652 hash += ((unsigned int) REG << 7) + REGNO (x);
1653 return hash;
1655 case CONST_INT:
1656 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1657 + (unsigned int) INTVAL (x));
1658 return hash;
1660 case CONST_DOUBLE:
1661 /* This is like the general case, except that it only counts
1662 the integers representing the constant. */
1663 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1664 if (GET_MODE (x) != VOIDmode)
1665 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1666 hash += (unsigned int) XWINT (x, i);
1667 else
1668 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1669 + (unsigned int) CONST_DOUBLE_HIGH (x));
1670 return hash;
1672 /* Assume there is only one rtx object for any given label. */
1673 case LABEL_REF:
1674 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1675 differences and differences between each stage's debugging dumps. */
1676 hash += (((unsigned int) LABEL_REF << 7)
1677 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1678 return hash;
1680 case SYMBOL_REF:
1682 /* Don't hash on the symbol's address to avoid bootstrap differences.
1683 Different hash values may cause expressions to be recorded in
1684 different orders and thus different registers to be used in the
1685 final assembler. This also avoids differences in the dump files
1686 between various stages. */
1687 unsigned int h = 0;
1688 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1690 while (*p)
1691 h += (h << 7) + *p++; /* ??? revisit */
1693 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1694 return hash;
1697 case MEM:
1698 if (MEM_VOLATILE_P (x))
1700 *do_not_record_p = 1;
1701 return 0;
1704 hash += (unsigned int) MEM;
1705 hash += MEM_ALIAS_SET (x);
1706 x = XEXP (x, 0);
1707 goto repeat;
1709 case PRE_DEC:
1710 case PRE_INC:
1711 case POST_DEC:
1712 case POST_INC:
1713 case PC:
1714 case CC0:
1715 case CALL:
1716 case UNSPEC_VOLATILE:
1717 *do_not_record_p = 1;
1718 return 0;
1720 case ASM_OPERANDS:
1721 if (MEM_VOLATILE_P (x))
1723 *do_not_record_p = 1;
1724 return 0;
1726 else
1728 /* We don't want to take the filename and line into account. */
1729 hash += (unsigned) code + (unsigned) GET_MODE (x)
1730 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1731 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1732 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1734 if (ASM_OPERANDS_INPUT_LENGTH (x))
1736 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1738 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1739 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1740 do_not_record_p)
1741 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1742 (x, i)));
1745 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1746 x = ASM_OPERANDS_INPUT (x, 0);
1747 mode = GET_MODE (x);
1748 goto repeat;
1750 return hash;
1753 default:
1754 break;
1757 hash += (unsigned) code + (unsigned) GET_MODE (x);
1758 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1760 if (fmt[i] == 'e')
1762 /* If we are about to do the last recursive call
1763 needed at this level, change it into iteration.
1764 This function is called enough to be worth it. */
1765 if (i == 0)
1767 x = XEXP (x, i);
1768 goto repeat;
1771 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1772 if (*do_not_record_p)
1773 return 0;
1776 else if (fmt[i] == 'E')
1777 for (j = 0; j < XVECLEN (x, i); j++)
1779 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1780 if (*do_not_record_p)
1781 return 0;
1784 else if (fmt[i] == 's')
1785 hash += hash_string_1 (XSTR (x, i));
1786 else if (fmt[i] == 'i')
1787 hash += (unsigned int) XINT (x, i);
1788 else
1789 abort ();
1792 return hash;
1795 /* Hash a set of register REGNO.
1797 Sets are hashed on the register that is set. This simplifies the PRE copy
1798 propagation code.
1800 ??? May need to make things more elaborate. Later, as necessary. */
1802 static unsigned int
1803 hash_set (regno, hash_table_size)
1804 int regno;
1805 int hash_table_size;
1807 unsigned int hash;
1809 hash = regno;
1810 return hash % hash_table_size;
1813 /* Return non-zero if exp1 is equivalent to exp2.
1814 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1816 static int
1817 expr_equiv_p (x, y)
1818 rtx x, y;
1820 register int i, j;
1821 register enum rtx_code code;
1822 register const char *fmt;
1824 if (x == y)
1825 return 1;
1827 if (x == 0 || y == 0)
1828 return x == y;
1830 code = GET_CODE (x);
1831 if (code != GET_CODE (y))
1832 return 0;
1834 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1835 if (GET_MODE (x) != GET_MODE (y))
1836 return 0;
1838 switch (code)
1840 case PC:
1841 case CC0:
1842 return x == y;
1844 case CONST_INT:
1845 return INTVAL (x) == INTVAL (y);
1847 case LABEL_REF:
1848 return XEXP (x, 0) == XEXP (y, 0);
1850 case SYMBOL_REF:
1851 return XSTR (x, 0) == XSTR (y, 0);
1853 case REG:
1854 return REGNO (x) == REGNO (y);
1856 case MEM:
1857 /* Can't merge two expressions in different alias sets, since we can
1858 decide that the expression is transparent in a block when it isn't,
1859 due to it being set with the different alias set. */
1860 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1861 return 0;
1862 break;
1864 /* For commutative operations, check both orders. */
1865 case PLUS:
1866 case MULT:
1867 case AND:
1868 case IOR:
1869 case XOR:
1870 case NE:
1871 case EQ:
1872 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1873 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1874 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1875 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1877 case ASM_OPERANDS:
1878 /* We don't use the generic code below because we want to
1879 disregard filename and line numbers. */
1881 /* A volatile asm isn't equivalent to any other. */
1882 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1883 return 0;
1885 if (GET_MODE (x) != GET_MODE (y)
1886 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1887 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1888 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1889 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1890 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1891 return 0;
1893 if (ASM_OPERANDS_INPUT_LENGTH (x))
1895 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1896 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1897 ASM_OPERANDS_INPUT (y, i))
1898 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1899 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1900 return 0;
1903 return 1;
1905 default:
1906 break;
1909 /* Compare the elements. If any pair of corresponding elements
1910 fail to match, return 0 for the whole thing. */
1912 fmt = GET_RTX_FORMAT (code);
1913 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1915 switch (fmt[i])
1917 case 'e':
1918 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1919 return 0;
1920 break;
1922 case 'E':
1923 if (XVECLEN (x, i) != XVECLEN (y, i))
1924 return 0;
1925 for (j = 0; j < XVECLEN (x, i); j++)
1926 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1927 return 0;
1928 break;
1930 case 's':
1931 if (strcmp (XSTR (x, i), XSTR (y, i)))
1932 return 0;
1933 break;
1935 case 'i':
1936 if (XINT (x, i) != XINT (y, i))
1937 return 0;
1938 break;
1940 case 'w':
1941 if (XWINT (x, i) != XWINT (y, i))
1942 return 0;
1943 break;
1945 case '0':
1946 break;
1948 default:
1949 abort ();
1953 return 1;
1956 /* Insert expression X in INSN in the hash table.
1957 If it is already present, record it as the last occurrence in INSN's
1958 basic block.
1960 MODE is the mode of the value X is being stored into.
1961 It is only used if X is a CONST_INT.
1963 ANTIC_P is non-zero if X is an anticipatable expression.
1964 AVAIL_P is non-zero if X is an available expression. */
1966 static void
1967 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1968 rtx x;
1969 enum machine_mode mode;
1970 rtx insn;
1971 int antic_p, avail_p;
1973 int found, do_not_record_p;
1974 unsigned int hash;
1975 struct expr *cur_expr, *last_expr = NULL;
1976 struct occr *antic_occr, *avail_occr;
1977 struct occr *last_occr = NULL;
1979 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1981 /* Do not insert expression in table if it contains volatile operands,
1982 or if hash_expr determines the expression is something we don't want
1983 to or can't handle. */
1984 if (do_not_record_p)
1985 return;
1987 cur_expr = expr_hash_table[hash];
1988 found = 0;
1990 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1992 /* If the expression isn't found, save a pointer to the end of
1993 the list. */
1994 last_expr = cur_expr;
1995 cur_expr = cur_expr->next_same_hash;
1998 if (! found)
2000 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2001 bytes_used += sizeof (struct expr);
2002 if (expr_hash_table[hash] == NULL)
2003 /* This is the first pattern that hashed to this index. */
2004 expr_hash_table[hash] = cur_expr;
2005 else
2006 /* Add EXPR to end of this hash chain. */
2007 last_expr->next_same_hash = cur_expr;
2009 /* Set the fields of the expr element. */
2010 cur_expr->expr = x;
2011 cur_expr->bitmap_index = n_exprs++;
2012 cur_expr->next_same_hash = NULL;
2013 cur_expr->antic_occr = NULL;
2014 cur_expr->avail_occr = NULL;
2017 /* Now record the occurrence(s). */
2018 if (antic_p)
2020 antic_occr = cur_expr->antic_occr;
2022 /* Search for another occurrence in the same basic block. */
2023 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2025 /* If an occurrence isn't found, save a pointer to the end of
2026 the list. */
2027 last_occr = antic_occr;
2028 antic_occr = antic_occr->next;
2031 if (antic_occr)
2032 /* Found another instance of the expression in the same basic block.
2033 Prefer the currently recorded one. We want the first one in the
2034 block and the block is scanned from start to end. */
2035 ; /* nothing to do */
2036 else
2038 /* First occurrence of this expression in this basic block. */
2039 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2040 bytes_used += sizeof (struct occr);
2041 /* First occurrence of this expression in any block? */
2042 if (cur_expr->antic_occr == NULL)
2043 cur_expr->antic_occr = antic_occr;
2044 else
2045 last_occr->next = antic_occr;
2047 antic_occr->insn = insn;
2048 antic_occr->next = NULL;
2052 if (avail_p)
2054 avail_occr = cur_expr->avail_occr;
2056 /* Search for another occurrence in the same basic block. */
2057 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2059 /* If an occurrence isn't found, save a pointer to the end of
2060 the list. */
2061 last_occr = avail_occr;
2062 avail_occr = avail_occr->next;
2065 if (avail_occr)
2066 /* Found another instance of the expression in the same basic block.
2067 Prefer this occurrence to the currently recorded one. We want
2068 the last one in the block and the block is scanned from start
2069 to end. */
2070 avail_occr->insn = insn;
2071 else
2073 /* First occurrence of this expression in this basic block. */
2074 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2075 bytes_used += sizeof (struct occr);
2077 /* First occurrence of this expression in any block? */
2078 if (cur_expr->avail_occr == NULL)
2079 cur_expr->avail_occr = avail_occr;
2080 else
2081 last_occr->next = avail_occr;
2083 avail_occr->insn = insn;
2084 avail_occr->next = NULL;
2089 /* Insert pattern X in INSN in the hash table.
2090 X is a SET of a reg to either another reg or a constant.
2091 If it is already present, record it as the last occurrence in INSN's
2092 basic block. */
2094 static void
2095 insert_set_in_table (x, insn)
2096 rtx x;
2097 rtx insn;
2099 int found;
2100 unsigned int hash;
2101 struct expr *cur_expr, *last_expr = NULL;
2102 struct occr *cur_occr, *last_occr = NULL;
2104 if (GET_CODE (x) != SET
2105 || GET_CODE (SET_DEST (x)) != REG)
2106 abort ();
2108 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2110 cur_expr = set_hash_table[hash];
2111 found = 0;
2113 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2115 /* If the expression isn't found, save a pointer to the end of
2116 the list. */
2117 last_expr = cur_expr;
2118 cur_expr = cur_expr->next_same_hash;
2121 if (! found)
2123 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2124 bytes_used += sizeof (struct expr);
2125 if (set_hash_table[hash] == NULL)
2126 /* This is the first pattern that hashed to this index. */
2127 set_hash_table[hash] = cur_expr;
2128 else
2129 /* Add EXPR to end of this hash chain. */
2130 last_expr->next_same_hash = cur_expr;
2132 /* Set the fields of the expr element.
2133 We must copy X because it can be modified when copy propagation is
2134 performed on its operands. */
2135 cur_expr->expr = copy_rtx (x);
2136 cur_expr->bitmap_index = n_sets++;
2137 cur_expr->next_same_hash = NULL;
2138 cur_expr->antic_occr = NULL;
2139 cur_expr->avail_occr = NULL;
2142 /* Now record the occurrence. */
2143 cur_occr = cur_expr->avail_occr;
2145 /* Search for another occurrence in the same basic block. */
2146 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2148 /* If an occurrence isn't found, save a pointer to the end of
2149 the list. */
2150 last_occr = cur_occr;
2151 cur_occr = cur_occr->next;
2154 if (cur_occr)
2155 /* Found another instance of the expression in the same basic block.
2156 Prefer this occurrence to the currently recorded one. We want the
2157 last one in the block and the block is scanned from start to end. */
2158 cur_occr->insn = insn;
2159 else
2161 /* First occurrence of this expression in this basic block. */
2162 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2163 bytes_used += sizeof (struct occr);
2165 /* First occurrence of this expression in any block? */
2166 if (cur_expr->avail_occr == NULL)
2167 cur_expr->avail_occr = cur_occr;
2168 else
2169 last_occr->next = cur_occr;
2171 cur_occr->insn = insn;
2172 cur_occr->next = NULL;
2176 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2177 non-zero, this is for the assignment hash table, otherwise it is for the
2178 expression hash table. */
2180 static void
2181 hash_scan_set (pat, insn, set_p)
2182 rtx pat, insn;
2183 int set_p;
2185 rtx src = SET_SRC (pat);
2186 rtx dest = SET_DEST (pat);
2187 rtx note;
2189 if (GET_CODE (src) == CALL)
2190 hash_scan_call (src, insn);
2192 else if (GET_CODE (dest) == REG)
2194 unsigned int regno = REGNO (dest);
2195 rtx tmp;
2197 /* If this is a single set and we are doing constant propagation,
2198 see if a REG_NOTE shows this equivalent to a constant. */
2199 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2200 && CONSTANT_P (XEXP (note, 0)))
2201 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2203 /* Only record sets of pseudo-regs in the hash table. */
2204 if (! set_p
2205 && regno >= FIRST_PSEUDO_REGISTER
2206 /* Don't GCSE something if we can't do a reg/reg copy. */
2207 && can_copy_p [GET_MODE (dest)]
2208 /* Is SET_SRC something we want to gcse? */
2209 && want_to_gcse_p (src)
2210 /* Don't CSE a nop. */
2211 && ! set_noop_p (pat)
2212 /* Don't GCSE if it has attached REG_EQUIV note.
2213 At this point this only function parameters should have
2214 REG_EQUIV notes and if the argument slot is used somewhere
2215 explicitely, it means address of parameter has been taken,
2216 so we should not extend the lifetime of the pseudo. */
2217 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2218 || GET_CODE (XEXP (note, 0)) != MEM))
2220 /* An expression is not anticipatable if its operands are
2221 modified before this insn or if this is not the only SET in
2222 this insn. */
2223 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2224 /* An expression is not available if its operands are
2225 subsequently modified, including this insn. */
2226 int avail_p = oprs_available_p (src, insn);
2228 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2231 /* Record sets for constant/copy propagation. */
2232 else if (set_p
2233 && regno >= FIRST_PSEUDO_REGISTER
2234 && ((GET_CODE (src) == REG
2235 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2236 && can_copy_p [GET_MODE (dest)]
2237 && REGNO (src) != regno)
2238 || GET_CODE (src) == CONST_INT
2239 || GET_CODE (src) == SYMBOL_REF
2240 || GET_CODE (src) == CONST_DOUBLE)
2241 /* A copy is not available if its src or dest is subsequently
2242 modified. Here we want to search from INSN+1 on, but
2243 oprs_available_p searches from INSN on. */
2244 && (insn == BLOCK_END (BLOCK_NUM (insn))
2245 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2246 && oprs_available_p (pat, tmp))))
2247 insert_set_in_table (pat, insn);
2251 static void
2252 hash_scan_clobber (x, insn)
2253 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2255 /* Currently nothing to do. */
2258 static void
2259 hash_scan_call (x, insn)
2260 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2262 /* Currently nothing to do. */
2265 /* Process INSN and add hash table entries as appropriate.
2267 Only available expressions that set a single pseudo-reg are recorded.
2269 Single sets in a PARALLEL could be handled, but it's an extra complication
2270 that isn't dealt with right now. The trick is handling the CLOBBERs that
2271 are also in the PARALLEL. Later.
2273 If SET_P is non-zero, this is for the assignment hash table,
2274 otherwise it is for the expression hash table.
2275 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2276 not record any expressions. */
2278 static void
2279 hash_scan_insn (insn, set_p, in_libcall_block)
2280 rtx insn;
2281 int set_p;
2282 int in_libcall_block;
2284 rtx pat = PATTERN (insn);
2285 int i;
2287 if (in_libcall_block)
2288 return;
2290 /* Pick out the sets of INSN and for other forms of instructions record
2291 what's been modified. */
2293 if (GET_CODE (pat) == SET)
2294 hash_scan_set (pat, insn, set_p);
2295 else if (GET_CODE (pat) == PARALLEL)
2296 for (i = 0; i < XVECLEN (pat, 0); i++)
2298 rtx x = XVECEXP (pat, 0, i);
2300 if (GET_CODE (x) == SET)
2301 hash_scan_set (x, insn, set_p);
2302 else if (GET_CODE (x) == CLOBBER)
2303 hash_scan_clobber (x, insn);
2304 else if (GET_CODE (x) == CALL)
2305 hash_scan_call (x, insn);
2308 else if (GET_CODE (pat) == CLOBBER)
2309 hash_scan_clobber (pat, insn);
2310 else if (GET_CODE (pat) == CALL)
2311 hash_scan_call (pat, insn);
2314 static void
2315 dump_hash_table (file, name, table, table_size, total_size)
2316 FILE *file;
2317 const char *name;
2318 struct expr **table;
2319 int table_size, total_size;
2321 int i;
2322 /* Flattened out table, so it's printed in proper order. */
2323 struct expr **flat_table;
2324 unsigned int *hash_val;
2325 struct expr *expr;
2327 flat_table
2328 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2329 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2331 for (i = 0; i < table_size; i++)
2332 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2334 flat_table[expr->bitmap_index] = expr;
2335 hash_val[expr->bitmap_index] = i;
2338 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2339 name, table_size, total_size);
2341 for (i = 0; i < total_size; i++)
2342 if (flat_table[i] != 0)
2344 expr = flat_table[i];
2345 fprintf (file, "Index %d (hash value %d)\n ",
2346 expr->bitmap_index, hash_val[i]);
2347 print_rtl (file, expr->expr);
2348 fprintf (file, "\n");
2351 fprintf (file, "\n");
2353 free (flat_table);
2354 free (hash_val);
2357 /* Record register first/last/block set information for REGNO in INSN.
2359 reg_first_set records the first place in the block where the register
2360 is set and is used to compute "anticipatability".
2362 reg_last_set records the last place in the block where the register
2363 is set and is used to compute "availability".
2365 reg_set_in_block records whether the register is set in the block
2366 and is used to compute "transparency". */
2368 static void
2369 record_last_reg_set_info (insn, regno)
2370 rtx insn;
2371 int regno;
2373 if (reg_first_set[regno] == NEVER_SET)
2374 reg_first_set[regno] = INSN_CUID (insn);
2376 reg_last_set[regno] = INSN_CUID (insn);
2377 SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
2381 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2382 Note we store a pair of elements in the list, so they have to be
2383 taken off pairwise. */
2385 static void
2386 canon_list_insert (dest, unused1, v_insn)
2387 rtx dest ATTRIBUTE_UNUSED;
2388 rtx unused1 ATTRIBUTE_UNUSED;
2389 void * v_insn;
2391 rtx dest_addr, insn;
2393 while (GET_CODE (dest) == SUBREG
2394 || GET_CODE (dest) == ZERO_EXTRACT
2395 || GET_CODE (dest) == SIGN_EXTRACT
2396 || GET_CODE (dest) == STRICT_LOW_PART)
2397 dest = XEXP (dest, 0);
2399 /* If DEST is not a MEM, then it will not conflict with a load. Note
2400 that function calls are assumed to clobber memory, but are handled
2401 elsewhere. */
2403 if (GET_CODE (dest) != MEM)
2404 return;
2406 dest_addr = get_addr (XEXP (dest, 0));
2407 dest_addr = canon_rtx (dest_addr);
2408 insn = (rtx) v_insn;
2410 canon_modify_mem_list[BLOCK_NUM (insn)] =
2411 alloc_INSN_LIST (dest_addr, canon_modify_mem_list[BLOCK_NUM (insn)]);
2412 canon_modify_mem_list[BLOCK_NUM (insn)] =
2413 alloc_INSN_LIST (dest, canon_modify_mem_list[BLOCK_NUM (insn)]);
2416 /* Record memory first/last/block set information for INSN. */
2417 /* Record memory modification information for INSN. We do not actually care
2418 about the memory location(s) that are set, or even how they are set (consider
2419 a CALL_INSN). We merely need to record which insns modify memory. */
2421 static void
2422 record_last_mem_set_info (insn)
2423 rtx insn;
2425 if (mem_first_set == NEVER_SET)
2426 mem_first_set = INSN_CUID (insn);
2428 mem_last_set = INSN_CUID (insn);
2429 mem_set_in_block[BLOCK_NUM (insn)] = 1;
2430 modify_mem_list[BLOCK_NUM (insn)] =
2431 alloc_INSN_LIST (insn, modify_mem_list[BLOCK_NUM (insn)]);
2433 if (GET_CODE (insn) == CALL_INSN)
2435 /* Note that traversals of this loop (other than for free-ing)
2436 will break after encountering a CALL_INSN. So, there's no
2437 need to insert a pair of items, as canon_list_insert does. */
2438 canon_modify_mem_list[BLOCK_NUM (insn)] =
2439 alloc_INSN_LIST (insn, canon_modify_mem_list[BLOCK_NUM (insn)]);
2441 else
2442 note_stores (PATTERN (insn), canon_list_insert, (void*)insn );
2445 /* Called from compute_hash_table via note_stores to handle one
2446 SET or CLOBBER in an insn. DATA is really the instruction in which
2447 the SET is taking place. */
2449 static void
2450 record_last_set_info (dest, setter, data)
2451 rtx dest, setter ATTRIBUTE_UNUSED;
2452 void *data;
2454 rtx last_set_insn = (rtx) data;
2456 if (GET_CODE (dest) == SUBREG)
2457 dest = SUBREG_REG (dest);
2459 if (GET_CODE (dest) == REG)
2460 record_last_reg_set_info (last_set_insn, REGNO (dest));
2461 else if (GET_CODE (dest) == MEM
2462 /* Ignore pushes, they clobber nothing. */
2463 && ! push_operand (dest, GET_MODE (dest)))
2464 record_last_mem_set_info (last_set_insn);
2467 /* Top level function to create an expression or assignment hash table.
2469 Expression entries are placed in the hash table if
2470 - they are of the form (set (pseudo-reg) src),
2471 - src is something we want to perform GCSE on,
2472 - none of the operands are subsequently modified in the block
2474 Assignment entries are placed in the hash table if
2475 - they are of the form (set (pseudo-reg) src),
2476 - src is something we want to perform const/copy propagation on,
2477 - none of the operands or target are subsequently modified in the block
2479 Currently src must be a pseudo-reg or a const_int.
2481 F is the first insn.
2482 SET_P is non-zero for computing the assignment hash table. */
2484 static void
2485 compute_hash_table (set_p)
2486 int set_p;
2488 int bb;
2490 /* While we compute the hash table we also compute a bit array of which
2491 registers are set in which blocks.
2492 We also compute which blocks set memory, in the absence of aliasing
2493 support [which is TODO].
2494 ??? This isn't needed during const/copy propagation, but it's cheap to
2495 compute. Later. */
2496 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2497 memset ((char *) mem_set_in_block, 0, n_basic_blocks);
2499 /* re-Cache any INSN_LIST nodes we have allocated. */
2501 int i;
2502 for (i = 0; i < n_basic_blocks; i++)
2504 if (modify_mem_list[i])
2505 free_INSN_LIST_list (modify_mem_list + i);
2506 if (canon_modify_mem_list[i])
2507 free_INSN_LIST_list (canon_modify_mem_list + i);
2510 /* Some working arrays used to track first and last set in each block. */
2511 /* ??? One could use alloca here, but at some size a threshold is crossed
2512 beyond which one should use malloc. Are we at that threshold here? */
2513 reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2514 reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2516 for (bb = 0; bb < n_basic_blocks; bb++)
2518 rtx insn;
2519 unsigned int regno;
2520 int in_libcall_block;
2521 unsigned int i;
2523 /* First pass over the instructions records information used to
2524 determine when registers and memory are first and last set.
2525 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2526 could be moved to compute_sets since they currently don't change. */
2528 for (i = 0; i < max_gcse_regno; i++)
2529 reg_first_set[i] = reg_last_set[i] = NEVER_SET;
2531 mem_first_set = NEVER_SET;
2532 mem_last_set = NEVER_SET;
2534 for (insn = BLOCK_HEAD (bb);
2535 insn && insn != NEXT_INSN (BLOCK_END (bb));
2536 insn = NEXT_INSN (insn))
2538 #ifdef NON_SAVING_SETJMP
2539 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
2540 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
2542 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2543 record_last_reg_set_info (insn, regno);
2544 continue;
2546 #endif
2548 if (! INSN_P (insn))
2549 continue;
2551 if (GET_CODE (insn) == CALL_INSN)
2553 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2554 if ((call_used_regs[regno]
2555 && regno != STACK_POINTER_REGNUM
2556 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2557 && regno != HARD_FRAME_POINTER_REGNUM
2558 #endif
2559 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2560 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2561 #endif
2562 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2563 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2564 #endif
2566 && regno != FRAME_POINTER_REGNUM)
2567 || global_regs[regno])
2568 record_last_reg_set_info (insn, regno);
2570 if (! CONST_CALL_P (insn))
2571 record_last_mem_set_info (insn);
2574 note_stores (PATTERN (insn), record_last_set_info, insn);
2577 /* The next pass builds the hash table. */
2579 for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
2580 insn && insn != NEXT_INSN (BLOCK_END (bb));
2581 insn = NEXT_INSN (insn))
2582 if (INSN_P (insn))
2584 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2585 in_libcall_block = 1;
2586 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
2587 in_libcall_block = 0;
2588 hash_scan_insn (insn, set_p, in_libcall_block);
2592 free (reg_first_set);
2593 free (reg_last_set);
2595 /* Catch bugs early. */
2596 reg_first_set = reg_last_set = 0;
2599 /* Allocate space for the set hash table.
2600 N_INSNS is the number of instructions in the function.
2601 It is used to determine the number of buckets to use. */
2603 static void
2604 alloc_set_hash_table (n_insns)
2605 int n_insns;
2607 int n;
2609 set_hash_table_size = n_insns / 4;
2610 if (set_hash_table_size < 11)
2611 set_hash_table_size = 11;
2613 /* Attempt to maintain efficient use of hash table.
2614 Making it an odd number is simplest for now.
2615 ??? Later take some measurements. */
2616 set_hash_table_size |= 1;
2617 n = set_hash_table_size * sizeof (struct expr *);
2618 set_hash_table = (struct expr **) gmalloc (n);
2621 /* Free things allocated by alloc_set_hash_table. */
2623 static void
2624 free_set_hash_table ()
2626 free (set_hash_table);
2629 /* Compute the hash table for doing copy/const propagation. */
2631 static void
2632 compute_set_hash_table ()
2634 /* Initialize count of number of entries in hash table. */
2635 n_sets = 0;
2636 memset ((char *) set_hash_table, 0,
2637 set_hash_table_size * sizeof (struct expr *));
2639 compute_hash_table (1);
2642 /* Allocate space for the expression hash table.
2643 N_INSNS is the number of instructions in the function.
2644 It is used to determine the number of buckets to use. */
2646 static void
2647 alloc_expr_hash_table (n_insns)
2648 unsigned int n_insns;
2650 int n;
2652 expr_hash_table_size = n_insns / 2;
2653 /* Make sure the amount is usable. */
2654 if (expr_hash_table_size < 11)
2655 expr_hash_table_size = 11;
2657 /* Attempt to maintain efficient use of hash table.
2658 Making it an odd number is simplest for now.
2659 ??? Later take some measurements. */
2660 expr_hash_table_size |= 1;
2661 n = expr_hash_table_size * sizeof (struct expr *);
2662 expr_hash_table = (struct expr **) gmalloc (n);
2665 /* Free things allocated by alloc_expr_hash_table. */
2667 static void
2668 free_expr_hash_table ()
2670 free (expr_hash_table);
2673 /* Compute the hash table for doing GCSE. */
2675 static void
2676 compute_expr_hash_table ()
2678 /* Initialize count of number of entries in hash table. */
2679 n_exprs = 0;
2680 memset ((char *) expr_hash_table, 0,
2681 expr_hash_table_size * sizeof (struct expr *));
2683 compute_hash_table (0);
2686 /* Expression tracking support. */
2688 /* Lookup pattern PAT in the expression table.
2689 The result is a pointer to the table entry, or NULL if not found. */
2691 static struct expr *
2692 lookup_expr (pat)
2693 rtx pat;
2695 int do_not_record_p;
2696 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2697 expr_hash_table_size);
2698 struct expr *expr;
2700 if (do_not_record_p)
2701 return NULL;
2703 expr = expr_hash_table[hash];
2705 while (expr && ! expr_equiv_p (expr->expr, pat))
2706 expr = expr->next_same_hash;
2708 return expr;
2711 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2712 matches it, otherwise return the first entry for REGNO. The result is a
2713 pointer to the table entry, or NULL if not found. */
2715 static struct expr *
2716 lookup_set (regno, pat)
2717 unsigned int regno;
2718 rtx pat;
2720 unsigned int hash = hash_set (regno, set_hash_table_size);
2721 struct expr *expr;
2723 expr = set_hash_table[hash];
2725 if (pat)
2727 while (expr && ! expr_equiv_p (expr->expr, pat))
2728 expr = expr->next_same_hash;
2730 else
2732 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2733 expr = expr->next_same_hash;
2736 return expr;
2739 /* Return the next entry for REGNO in list EXPR. */
2741 static struct expr *
2742 next_set (regno, expr)
2743 unsigned int regno;
2744 struct expr *expr;
2747 expr = expr->next_same_hash;
2748 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2750 return expr;
2753 /* Reset tables used to keep track of what's still available [since the
2754 start of the block]. */
2756 static void
2757 reset_opr_set_tables ()
2759 /* Maintain a bitmap of which regs have been set since beginning of
2760 the block. */
2761 sbitmap_zero (reg_set_bitmap);
2763 /* Also keep a record of the last instruction to modify memory.
2764 For now this is very trivial, we only record whether any memory
2765 location has been modified. */
2766 mem_last_set = 0;
2768 int i;
2770 /* re-Cache any INSN_LIST nodes we have allocated. */
2771 for (i = 0; i < n_basic_blocks; i++)
2773 if (modify_mem_list[i])
2774 free_INSN_LIST_list (modify_mem_list + i);
2775 if (canon_modify_mem_list[i])
2776 free_INSN_LIST_list (canon_modify_mem_list + i);
2781 /* Return non-zero if the operands of X are not set before INSN in
2782 INSN's basic block. */
2784 static int
2785 oprs_not_set_p (x, insn)
2786 rtx x, insn;
2788 int i, j;
2789 enum rtx_code code;
2790 const char *fmt;
2792 if (x == 0)
2793 return 1;
2795 code = GET_CODE (x);
2796 switch (code)
2798 case PC:
2799 case CC0:
2800 case CONST:
2801 case CONST_INT:
2802 case CONST_DOUBLE:
2803 case SYMBOL_REF:
2804 case LABEL_REF:
2805 case ADDR_VEC:
2806 case ADDR_DIFF_VEC:
2807 return 1;
2809 case MEM:
2810 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2811 INSN_CUID (insn), x, 0))
2812 return 0;
2813 if (mem_last_set != 0)
2814 return 0;
2815 else
2816 return oprs_not_set_p (XEXP (x, 0), insn);
2818 case REG:
2819 return ! TEST_BIT (reg_set_bitmap, REGNO (x));
2821 default:
2822 break;
2825 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2827 if (fmt[i] == 'e')
2829 /* If we are about to do the last recursive call
2830 needed at this level, change it into iteration.
2831 This function is called enough to be worth it. */
2832 if (i == 0)
2833 return oprs_not_set_p (XEXP (x, i), insn);
2835 if (! oprs_not_set_p (XEXP (x, i), insn))
2836 return 0;
2838 else if (fmt[i] == 'E')
2839 for (j = 0; j < XVECLEN (x, i); j++)
2840 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2841 return 0;
2844 return 1;
2847 /* Mark things set by a CALL. */
2849 static void
2850 mark_call (insn)
2851 rtx insn;
2853 mem_last_set = INSN_CUID (insn);
2854 if (! CONST_CALL_P (insn))
2855 record_last_mem_set_info (insn);
2858 /* Mark things set by a SET. */
2860 static void
2861 mark_set (pat, insn)
2862 rtx pat, insn;
2864 rtx dest = SET_DEST (pat);
2866 while (GET_CODE (dest) == SUBREG
2867 || GET_CODE (dest) == ZERO_EXTRACT
2868 || GET_CODE (dest) == SIGN_EXTRACT
2869 || GET_CODE (dest) == STRICT_LOW_PART)
2870 dest = XEXP (dest, 0);
2872 if (GET_CODE (dest) == REG)
2873 SET_BIT (reg_set_bitmap, REGNO (dest));
2874 else if (GET_CODE (dest) == MEM)
2875 record_last_mem_set_info (insn);
2877 if (GET_CODE (dest) == REG)
2878 SET_BIT (reg_set_bitmap, REGNO (dest));
2879 else if (GET_CODE (dest) == MEM)
2880 mem_last_set = INSN_CUID (insn);
2882 if (GET_CODE (SET_SRC (pat)) == CALL)
2883 mark_call (insn);
2886 /* Record things set by a CLOBBER. */
2888 static void
2889 mark_clobber (pat, insn)
2890 rtx pat, insn;
2892 rtx clob = XEXP (pat, 0);
2894 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2895 clob = XEXP (clob, 0);
2897 if (GET_CODE (clob) == REG)
2898 SET_BIT (reg_set_bitmap, REGNO (clob));
2899 else
2900 mem_last_set = INSN_CUID (insn);
2901 if (GET_CODE (clob) == REG)
2902 SET_BIT (reg_set_bitmap, REGNO (clob));
2903 else
2904 record_last_mem_set_info (insn);
2907 /* Record things set by INSN.
2908 This data is used by oprs_not_set_p. */
2910 static void
2911 mark_oprs_set (insn)
2912 rtx insn;
2914 rtx pat = PATTERN (insn);
2915 int i;
2917 if (GET_CODE (pat) == SET)
2918 mark_set (pat, insn);
2919 else if (GET_CODE (pat) == PARALLEL)
2920 for (i = 0; i < XVECLEN (pat, 0); i++)
2922 rtx x = XVECEXP (pat, 0, i);
2924 if (GET_CODE (x) == SET)
2925 mark_set (x, insn);
2926 else if (GET_CODE (x) == CLOBBER)
2927 mark_clobber (x, insn);
2928 else if (GET_CODE (x) == CALL)
2929 mark_call (insn);
2932 else if (GET_CODE (pat) == CLOBBER)
2933 mark_clobber (pat, insn);
2934 else if (GET_CODE (pat) == CALL)
2935 mark_call (insn);
2939 /* Classic GCSE reaching definition support. */
2941 /* Allocate reaching def variables. */
2943 static void
2944 alloc_rd_mem (n_blocks, n_insns)
2945 int n_blocks, n_insns;
2947 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2948 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2950 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2951 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2953 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2954 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2956 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2957 sbitmap_vector_zero (rd_out, n_basic_blocks);
2960 /* Free reaching def variables. */
2962 static void
2963 free_rd_mem ()
2965 free (rd_kill);
2966 free (rd_gen);
2967 free (reaching_defs);
2968 free (rd_out);
2971 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2973 static void
2974 handle_rd_kill_set (insn, regno, bb)
2975 rtx insn;
2976 int regno;
2977 basic_block bb;
2979 struct reg_set *this_reg;
2981 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2982 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2983 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2986 /* Compute the set of kill's for reaching definitions. */
2988 static void
2989 compute_kill_rd ()
2991 int bb, cuid;
2992 unsigned int regno;
2993 int i;
2995 /* For each block
2996 For each set bit in `gen' of the block (i.e each insn which
2997 generates a definition in the block)
2998 Call the reg set by the insn corresponding to that bit regx
2999 Look at the linked list starting at reg_set_table[regx]
3000 For each setting of regx in the linked list, which is not in
3001 this block
3002 Set the bit in `kill' corresponding to that insn. */
3003 for (bb = 0; bb < n_basic_blocks; bb++)
3004 for (cuid = 0; cuid < max_cuid; cuid++)
3005 if (TEST_BIT (rd_gen[bb], cuid))
3007 rtx insn = CUID_INSN (cuid);
3008 rtx pat = PATTERN (insn);
3010 if (GET_CODE (insn) == CALL_INSN)
3012 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3014 if ((call_used_regs[regno]
3015 && regno != STACK_POINTER_REGNUM
3016 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3017 && regno != HARD_FRAME_POINTER_REGNUM
3018 #endif
3019 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
3020 && ! (regno == ARG_POINTER_REGNUM
3021 && fixed_regs[regno])
3022 #endif
3023 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
3024 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
3025 #endif
3026 && regno != FRAME_POINTER_REGNUM)
3027 || global_regs[regno])
3028 handle_rd_kill_set (insn, regno, BASIC_BLOCK (bb));
3032 if (GET_CODE (pat) == PARALLEL)
3034 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3036 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3038 if ((code == SET || code == CLOBBER)
3039 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3040 handle_rd_kill_set (insn,
3041 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3042 BASIC_BLOCK (bb));
3045 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3046 /* Each setting of this register outside of this block
3047 must be marked in the set of kills in this block. */
3048 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), BASIC_BLOCK (bb));
3052 /* Compute the reaching definitions as in
3053 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3054 Chapter 10. It is the same algorithm as used for computing available
3055 expressions but applied to the gens and kills of reaching definitions. */
3057 static void
3058 compute_rd ()
3060 int bb, changed, passes;
3062 for (bb = 0; bb < n_basic_blocks; bb++)
3063 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
3065 passes = 0;
3066 changed = 1;
3067 while (changed)
3069 changed = 0;
3070 for (bb = 0; bb < n_basic_blocks; bb++)
3072 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
3073 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
3074 reaching_defs[bb], rd_kill[bb]);
3076 passes++;
3079 if (gcse_file)
3080 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3083 /* Classic GCSE available expression support. */
3085 /* Allocate memory for available expression computation. */
3087 static void
3088 alloc_avail_expr_mem (n_blocks, n_exprs)
3089 int n_blocks, n_exprs;
3091 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3092 sbitmap_vector_zero (ae_kill, n_basic_blocks);
3094 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3095 sbitmap_vector_zero (ae_gen, n_basic_blocks);
3097 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3098 sbitmap_vector_zero (ae_in, n_basic_blocks);
3100 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3101 sbitmap_vector_zero (ae_out, n_basic_blocks);
3104 static void
3105 free_avail_expr_mem ()
3107 free (ae_kill);
3108 free (ae_gen);
3109 free (ae_in);
3110 free (ae_out);
3113 /* Compute the set of available expressions generated in each basic block. */
3115 static void
3116 compute_ae_gen ()
3118 unsigned int i;
3119 struct expr *expr;
3120 struct occr *occr;
3122 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3123 This is all we have to do because an expression is not recorded if it
3124 is not available, and the only expressions we want to work with are the
3125 ones that are recorded. */
3126 for (i = 0; i < expr_hash_table_size; i++)
3127 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3128 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3129 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3132 /* Return non-zero if expression X is killed in BB. */
3134 static int
3135 expr_killed_p (x, bb)
3136 rtx x;
3137 basic_block bb;
3139 int i, j;
3140 enum rtx_code code;
3141 const char *fmt;
3143 if (x == 0)
3144 return 1;
3146 code = GET_CODE (x);
3147 switch (code)
3149 case REG:
3150 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3152 case MEM:
3153 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3154 return 1;
3155 if (mem_set_in_block[bb->index])
3156 return 1;
3157 else
3158 return expr_killed_p (XEXP (x, 0), bb);
3160 case PC:
3161 case CC0: /*FIXME*/
3162 case CONST:
3163 case CONST_INT:
3164 case CONST_DOUBLE:
3165 case SYMBOL_REF:
3166 case LABEL_REF:
3167 case ADDR_VEC:
3168 case ADDR_DIFF_VEC:
3169 return 0;
3171 default:
3172 break;
3175 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3177 if (fmt[i] == 'e')
3179 /* If we are about to do the last recursive call
3180 needed at this level, change it into iteration.
3181 This function is called enough to be worth it. */
3182 if (i == 0)
3183 return expr_killed_p (XEXP (x, i), bb);
3184 else if (expr_killed_p (XEXP (x, i), bb))
3185 return 1;
3187 else if (fmt[i] == 'E')
3188 for (j = 0; j < XVECLEN (x, i); j++)
3189 if (expr_killed_p (XVECEXP (x, i, j), bb))
3190 return 1;
3193 return 0;
3196 /* Compute the set of available expressions killed in each basic block. */
3198 static void
3199 compute_ae_kill (ae_gen, ae_kill)
3200 sbitmap *ae_gen, *ae_kill;
3202 int bb;
3203 unsigned int i;
3204 struct expr *expr;
3206 for (bb = 0; bb < n_basic_blocks; bb++)
3207 for (i = 0; i < expr_hash_table_size; i++)
3208 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3210 /* Skip EXPR if generated in this block. */
3211 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
3212 continue;
3214 if (expr_killed_p (expr->expr, BASIC_BLOCK (bb)))
3215 SET_BIT (ae_kill[bb], expr->bitmap_index);
3219 /* Actually perform the Classic GCSE optimizations. */
3221 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3223 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3224 as a positive reach. We want to do this when there are two computations
3225 of the expression in the block.
3227 VISITED is a pointer to a working buffer for tracking which BB's have
3228 been visited. It is NULL for the top-level call.
3230 We treat reaching expressions that go through blocks containing the same
3231 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3232 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3233 2 as not reaching. The intent is to improve the probability of finding
3234 only one reaching expression and to reduce register lifetimes by picking
3235 the closest such expression. */
3237 static int
3238 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3239 struct occr *occr;
3240 struct expr *expr;
3241 basic_block bb;
3242 int check_self_loop;
3243 char *visited;
3245 edge pred;
3247 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3249 basic_block pred_bb = pred->src;
3251 if (visited[pred_bb->index])
3252 /* This predecessor has already been visited. Nothing to do. */
3254 else if (pred_bb == bb)
3256 /* BB loops on itself. */
3257 if (check_self_loop
3258 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3259 && BLOCK_NUM (occr->insn) == pred_bb->index)
3260 return 1;
3262 visited[pred_bb->index] = 1;
3265 /* Ignore this predecessor if it kills the expression. */
3266 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3267 visited[pred_bb->index] = 1;
3269 /* Does this predecessor generate this expression? */
3270 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3272 /* Is this the occurrence we're looking for?
3273 Note that there's only one generating occurrence per block
3274 so we just need to check the block number. */
3275 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3276 return 1;
3278 visited[pred_bb->index] = 1;
3281 /* Neither gen nor kill. */
3282 else
3284 visited[pred_bb->index] = 1;
3285 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3286 visited))
3288 return 1;
3292 /* All paths have been checked. */
3293 return 0;
3296 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3297 memory allocated for that function is returned. */
3299 static int
3300 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3301 struct occr *occr;
3302 struct expr *expr;
3303 basic_block bb;
3304 int check_self_loop;
3306 int rval;
3307 char *visited = (char *) xcalloc (n_basic_blocks, 1);
3309 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3311 free (visited);
3312 return rval;
3315 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3316 If there is more than one such instruction, return NULL.
3318 Called only by handle_avail_expr. */
3320 static rtx
3321 computing_insn (expr, insn)
3322 struct expr *expr;
3323 rtx insn;
3325 basic_block bb = BLOCK_FOR_INSN (insn);
3327 if (expr->avail_occr->next == NULL)
3329 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3330 /* The available expression is actually itself
3331 (i.e. a loop in the flow graph) so do nothing. */
3332 return NULL;
3334 /* (FIXME) Case that we found a pattern that was created by
3335 a substitution that took place. */
3336 return expr->avail_occr->insn;
3338 else
3340 /* Pattern is computed more than once.
3341 Search backwards from this insn to see how many of these
3342 computations actually reach this insn. */
3343 struct occr *occr;
3344 rtx insn_computes_expr = NULL;
3345 int can_reach = 0;
3347 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3349 if (BLOCK_FOR_INSN (occr->insn) == bb)
3351 /* The expression is generated in this block.
3352 The only time we care about this is when the expression
3353 is generated later in the block [and thus there's a loop].
3354 We let the normal cse pass handle the other cases. */
3355 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3356 && expr_reaches_here_p (occr, expr, bb, 1))
3358 can_reach++;
3359 if (can_reach > 1)
3360 return NULL;
3362 insn_computes_expr = occr->insn;
3365 else if (expr_reaches_here_p (occr, expr, bb, 0))
3367 can_reach++;
3368 if (can_reach > 1)
3369 return NULL;
3371 insn_computes_expr = occr->insn;
3375 if (insn_computes_expr == NULL)
3376 abort ();
3378 return insn_computes_expr;
3382 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3383 Only called by can_disregard_other_sets. */
3385 static int
3386 def_reaches_here_p (insn, def_insn)
3387 rtx insn, def_insn;
3389 rtx reg;
3391 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3392 return 1;
3394 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3396 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3398 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3399 return 1;
3400 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3401 reg = XEXP (PATTERN (def_insn), 0);
3402 else if (GET_CODE (PATTERN (def_insn)) == SET)
3403 reg = SET_DEST (PATTERN (def_insn));
3404 else
3405 abort ();
3407 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3409 else
3410 return 0;
3413 return 0;
3416 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3417 value returned is the number of definitions that reach INSN. Returning a
3418 value of zero means that [maybe] more than one definition reaches INSN and
3419 the caller can't perform whatever optimization it is trying. i.e. it is
3420 always safe to return zero. */
3422 static int
3423 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3424 struct reg_set **addr_this_reg;
3425 rtx insn;
3426 int for_combine;
3428 int number_of_reaching_defs = 0;
3429 struct reg_set *this_reg;
3431 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3432 if (def_reaches_here_p (insn, this_reg->insn))
3434 number_of_reaching_defs++;
3435 /* Ignore parallels for now. */
3436 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3437 return 0;
3439 if (!for_combine
3440 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3441 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3442 SET_SRC (PATTERN (insn)))))
3443 /* A setting of the reg to a different value reaches INSN. */
3444 return 0;
3446 if (number_of_reaching_defs > 1)
3448 /* If in this setting the value the register is being set to is
3449 equal to the previous value the register was set to and this
3450 setting reaches the insn we are trying to do the substitution
3451 on then we are ok. */
3452 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3453 return 0;
3454 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3455 SET_SRC (PATTERN (insn))))
3456 return 0;
3459 *addr_this_reg = this_reg;
3462 return number_of_reaching_defs;
3465 /* Expression computed by insn is available and the substitution is legal,
3466 so try to perform the substitution.
3468 The result is non-zero if any changes were made. */
3470 static int
3471 handle_avail_expr (insn, expr)
3472 rtx insn;
3473 struct expr *expr;
3475 rtx pat, insn_computes_expr;
3476 rtx to;
3477 struct reg_set *this_reg;
3478 int found_setting, use_src;
3479 int changed = 0;
3481 /* We only handle the case where one computation of the expression
3482 reaches this instruction. */
3483 insn_computes_expr = computing_insn (expr, insn);
3484 if (insn_computes_expr == NULL)
3485 return 0;
3487 found_setting = 0;
3488 use_src = 0;
3490 /* At this point we know only one computation of EXPR outside of this
3491 block reaches this insn. Now try to find a register that the
3492 expression is computed into. */
3493 if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
3495 /* This is the case when the available expression that reaches
3496 here has already been handled as an available expression. */
3497 unsigned int regnum_for_replacing
3498 = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
3500 /* If the register was created by GCSE we can't use `reg_set_table',
3501 however we know it's set only once. */
3502 if (regnum_for_replacing >= max_gcse_regno
3503 /* If the register the expression is computed into is set only once,
3504 or only one set reaches this insn, we can use it. */
3505 || (((this_reg = reg_set_table[regnum_for_replacing]),
3506 this_reg->next == NULL)
3507 || can_disregard_other_sets (&this_reg, insn, 0)))
3509 use_src = 1;
3510 found_setting = 1;
3514 if (!found_setting)
3516 unsigned int regnum_for_replacing
3517 = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
3519 /* This shouldn't happen. */
3520 if (regnum_for_replacing >= max_gcse_regno)
3521 abort ();
3523 this_reg = reg_set_table[regnum_for_replacing];
3525 /* If the register the expression is computed into is set only once,
3526 or only one set reaches this insn, use it. */
3527 if (this_reg->next == NULL
3528 || can_disregard_other_sets (&this_reg, insn, 0))
3529 found_setting = 1;
3532 if (found_setting)
3534 pat = PATTERN (insn);
3535 if (use_src)
3536 to = SET_SRC (PATTERN (insn_computes_expr));
3537 else
3538 to = SET_DEST (PATTERN (insn_computes_expr));
3539 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3541 /* We should be able to ignore the return code from validate_change but
3542 to play it safe we check. */
3543 if (changed)
3545 gcse_subst_count++;
3546 if (gcse_file != NULL)
3548 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3549 INSN_UID (insn));
3550 fprintf (gcse_file, " reg %d %s insn %d\n",
3551 REGNO (to), use_src ? "from" : "set in",
3552 INSN_UID (insn_computes_expr));
3557 /* The register that the expr is computed into is set more than once. */
3558 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3560 /* Insert an insn after insnx that copies the reg set in insnx
3561 into a new pseudo register call this new register REGN.
3562 From insnb until end of basic block or until REGB is set
3563 replace all uses of REGB with REGN. */
3564 rtx new_insn;
3566 to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
3568 /* Generate the new insn. */
3569 /* ??? If the change fails, we return 0, even though we created
3570 an insn. I think this is ok. */
3571 new_insn
3572 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3573 SET_DEST (PATTERN
3574 (insn_computes_expr))),
3575 insn_computes_expr);
3577 /* Keep block number table up to date. */
3578 set_block_for_new_insns (new_insn, BLOCK_FOR_INSN (insn_computes_expr));
3580 /* Keep register set table up to date. */
3581 record_one_set (REGNO (to), new_insn);
3583 gcse_create_count++;
3584 if (gcse_file != NULL)
3586 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3587 INSN_UID (NEXT_INSN (insn_computes_expr)),
3588 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3589 fprintf (gcse_file, ", computed in insn %d,\n",
3590 INSN_UID (insn_computes_expr));
3591 fprintf (gcse_file, " into newly allocated reg %d\n",
3592 REGNO (to));
3595 pat = PATTERN (insn);
3597 /* Do register replacement for INSN. */
3598 changed = validate_change (insn, &SET_SRC (pat),
3599 SET_DEST (PATTERN
3600 (NEXT_INSN (insn_computes_expr))),
3603 /* We should be able to ignore the return code from validate_change but
3604 to play it safe we check. */
3605 if (changed)
3607 gcse_subst_count++;
3608 if (gcse_file != NULL)
3610 fprintf (gcse_file,
3611 "GCSE: Replacing the source in insn %d with reg %d ",
3612 INSN_UID (insn),
3613 REGNO (SET_DEST (PATTERN (NEXT_INSN
3614 (insn_computes_expr)))));
3615 fprintf (gcse_file, "set in insn %d\n",
3616 INSN_UID (insn_computes_expr));
3621 return changed;
3624 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3625 the dataflow analysis has been done.
3627 The result is non-zero if a change was made. */
3629 static int
3630 classic_gcse ()
3632 int bb, changed;
3633 rtx insn;
3635 /* Note we start at block 1. */
3637 changed = 0;
3638 for (bb = 1; bb < n_basic_blocks; bb++)
3640 /* Reset tables used to keep track of what's still valid [since the
3641 start of the block]. */
3642 reset_opr_set_tables ();
3644 for (insn = BLOCK_HEAD (bb);
3645 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3646 insn = NEXT_INSN (insn))
3648 /* Is insn of form (set (pseudo-reg) ...)? */
3649 if (GET_CODE (insn) == INSN
3650 && GET_CODE (PATTERN (insn)) == SET
3651 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3652 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3654 rtx pat = PATTERN (insn);
3655 rtx src = SET_SRC (pat);
3656 struct expr *expr;
3658 if (want_to_gcse_p (src)
3659 /* Is the expression recorded? */
3660 && ((expr = lookup_expr (src)) != NULL)
3661 /* Is the expression available [at the start of the
3662 block]? */
3663 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3664 /* Are the operands unchanged since the start of the
3665 block? */
3666 && oprs_not_set_p (src, insn))
3667 changed |= handle_avail_expr (insn, expr);
3670 /* Keep track of everything modified by this insn. */
3671 /* ??? Need to be careful w.r.t. mods done to INSN. */
3672 if (INSN_P (insn))
3673 mark_oprs_set (insn);
3677 return changed;
3680 /* Top level routine to perform one classic GCSE pass.
3682 Return non-zero if a change was made. */
3684 static int
3685 one_classic_gcse_pass (pass)
3686 int pass;
3688 int changed = 0;
3690 gcse_subst_count = 0;
3691 gcse_create_count = 0;
3693 alloc_expr_hash_table (max_cuid);
3694 alloc_rd_mem (n_basic_blocks, max_cuid);
3695 compute_expr_hash_table ();
3696 if (gcse_file)
3697 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3698 expr_hash_table_size, n_exprs);
3700 if (n_exprs > 0)
3702 compute_kill_rd ();
3703 compute_rd ();
3704 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3705 compute_ae_gen ();
3706 compute_ae_kill (ae_gen, ae_kill);
3707 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3708 changed = classic_gcse ();
3709 free_avail_expr_mem ();
3712 free_rd_mem ();
3713 free_expr_hash_table ();
3715 if (gcse_file)
3717 fprintf (gcse_file, "\n");
3718 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3719 current_function_name, pass, bytes_used, gcse_subst_count);
3720 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3723 return changed;
3726 /* Compute copy/constant propagation working variables. */
3728 /* Local properties of assignments. */
3729 static sbitmap *cprop_pavloc;
3730 static sbitmap *cprop_absaltered;
3732 /* Global properties of assignments (computed from the local properties). */
3733 static sbitmap *cprop_avin;
3734 static sbitmap *cprop_avout;
3736 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3737 basic blocks. N_SETS is the number of sets. */
3739 static void
3740 alloc_cprop_mem (n_blocks, n_sets)
3741 int n_blocks, n_sets;
3743 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3744 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3746 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3747 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3750 /* Free vars used by copy/const propagation. */
3752 static void
3753 free_cprop_mem ()
3755 free (cprop_pavloc);
3756 free (cprop_absaltered);
3757 free (cprop_avin);
3758 free (cprop_avout);
3761 /* For each block, compute whether X is transparent. X is either an
3762 expression or an assignment [though we don't care which, for this context
3763 an assignment is treated as an expression]. For each block where an
3764 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3765 bit in BMAP. */
3767 static void
3768 compute_transp (x, indx, bmap, set_p)
3769 rtx x;
3770 int indx;
3771 sbitmap *bmap;
3772 int set_p;
3774 int bb, i, j;
3775 enum rtx_code code;
3776 reg_set *r;
3777 const char *fmt;
3779 /* repeat is used to turn tail-recursion into iteration since GCC
3780 can't do it when there's no return value. */
3781 repeat:
3783 if (x == 0)
3784 return;
3786 code = GET_CODE (x);
3787 switch (code)
3789 case REG:
3790 if (set_p)
3792 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3794 for (bb = 0; bb < n_basic_blocks; bb++)
3795 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3796 SET_BIT (bmap[bb], indx);
3798 else
3800 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3801 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3804 else
3806 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3808 for (bb = 0; bb < n_basic_blocks; bb++)
3809 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3810 RESET_BIT (bmap[bb], indx);
3812 else
3814 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3815 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3819 return;
3821 case MEM:
3822 for (bb = 0; bb < n_basic_blocks; bb++)
3824 rtx list_entry = canon_modify_mem_list[bb];
3826 while (list_entry)
3828 rtx dest, dest_addr;
3830 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3832 if (set_p)
3833 SET_BIT (bmap[bb], indx);
3834 else
3835 RESET_BIT (bmap[bb], indx);
3836 break;
3838 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3839 Examine each hunk of memory that is modified. */
3841 dest = XEXP (list_entry, 0);
3842 list_entry = XEXP (list_entry, 1);
3843 dest_addr = XEXP (list_entry, 0);
3845 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3846 x, rtx_addr_varies_p))
3848 if (set_p)
3849 SET_BIT (bmap[bb], indx);
3850 else
3851 RESET_BIT (bmap[bb], indx);
3852 break;
3854 list_entry = XEXP (list_entry, 1);
3857 if (set_p)
3859 for (bb = 0; bb < n_basic_blocks; bb++)
3860 if (mem_set_in_block[bb])
3861 SET_BIT (bmap[bb], indx);
3863 else
3865 for (bb = 0; bb < n_basic_blocks; bb++)
3866 if (mem_set_in_block[bb])
3867 RESET_BIT (bmap[bb], indx);
3870 x = XEXP (x, 0);
3871 goto repeat;
3873 case PC:
3874 case CC0: /*FIXME*/
3875 case CONST:
3876 case CONST_INT:
3877 case CONST_DOUBLE:
3878 case SYMBOL_REF:
3879 case LABEL_REF:
3880 case ADDR_VEC:
3881 case ADDR_DIFF_VEC:
3882 return;
3884 default:
3885 break;
3888 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3890 if (fmt[i] == 'e')
3892 /* If we are about to do the last recursive call
3893 needed at this level, change it into iteration.
3894 This function is called enough to be worth it. */
3895 if (i == 0)
3897 x = XEXP (x, i);
3898 goto repeat;
3901 compute_transp (XEXP (x, i), indx, bmap, set_p);
3903 else if (fmt[i] == 'E')
3904 for (j = 0; j < XVECLEN (x, i); j++)
3905 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3909 /* Top level routine to do the dataflow analysis needed by copy/const
3910 propagation. */
3912 static void
3913 compute_cprop_data ()
3915 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3916 compute_available (cprop_pavloc, cprop_absaltered,
3917 cprop_avout, cprop_avin);
3920 /* Copy/constant propagation. */
3922 /* Maximum number of register uses in an insn that we handle. */
3923 #define MAX_USES 8
3925 /* Table of uses found in an insn.
3926 Allocated statically to avoid alloc/free complexity and overhead. */
3927 static struct reg_use reg_use_table[MAX_USES];
3929 /* Index into `reg_use_table' while building it. */
3930 static int reg_use_count;
3932 /* Set up a list of register numbers used in INSN. The found uses are stored
3933 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3934 and contains the number of uses in the table upon exit.
3936 ??? If a register appears multiple times we will record it multiple times.
3937 This doesn't hurt anything but it will slow things down. */
3939 static void
3940 find_used_regs (xptr, data)
3941 rtx *xptr;
3942 void *data ATTRIBUTE_UNUSED;
3944 int i, j;
3945 enum rtx_code code;
3946 const char *fmt;
3947 rtx x = *xptr;
3949 /* repeat is used to turn tail-recursion into iteration since GCC
3950 can't do it when there's no return value. */
3951 repeat:
3952 if (x == 0)
3953 return;
3955 code = GET_CODE (x);
3956 if (REG_P (x))
3958 if (reg_use_count == MAX_USES)
3959 return;
3961 reg_use_table[reg_use_count].reg_rtx = x;
3962 reg_use_count++;
3965 /* Recursively scan the operands of this expression. */
3967 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3969 if (fmt[i] == 'e')
3971 /* If we are about to do the last recursive call
3972 needed at this level, change it into iteration.
3973 This function is called enough to be worth it. */
3974 if (i == 0)
3976 x = XEXP (x, 0);
3977 goto repeat;
3980 find_used_regs (&XEXP (x, i), data);
3982 else if (fmt[i] == 'E')
3983 for (j = 0; j < XVECLEN (x, i); j++)
3984 find_used_regs (&XVECEXP (x, i, j), data);
3988 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3989 Returns non-zero is successful. */
3991 static int
3992 try_replace_reg (from, to, insn)
3993 rtx from, to, insn;
3995 rtx note = find_reg_equal_equiv_note (insn);
3996 rtx src = 0;
3997 int success = 0;
3998 rtx set = single_set (insn);
4000 success = validate_replace_src (from, to, insn);
4002 /* If above failed and this is a single set, try to simplify the source of
4003 the set given our substitution. We could perhaps try this for multiple
4004 SETs, but it probably won't buy us anything. */
4005 if (!success && set != 0)
4007 src = simplify_replace_rtx (SET_SRC (set), from, to);
4009 if (!rtx_equal_p (src, SET_SRC (set))
4010 && validate_change (insn, &SET_SRC (set), src, 0))
4011 success = 1;
4014 /* If we've failed to do replacement, have a single SET, and don't already
4015 have a note, add a REG_EQUAL note to not lose information. */
4016 if (!success && note == 0 && set != 0)
4017 note = REG_NOTES (insn)
4018 = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
4020 /* If there is already a NOTE, update the expression in it with our
4021 replacement. */
4022 else if (note != 0)
4023 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
4025 /* REG_EQUAL may get simplified into register.
4026 We don't allow that. Remove that note. This code ought
4027 not to hapen, because previous code ought to syntetize
4028 reg-reg move, but be on the safe side. */
4029 if (note && REG_P (XEXP (note, 0)))
4030 remove_note (insn, note);
4032 return success;
4035 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4036 NULL no such set is found. */
4038 static struct expr *
4039 find_avail_set (regno, insn)
4040 int regno;
4041 rtx insn;
4043 /* SET1 contains the last set found that can be returned to the caller for
4044 use in a substitution. */
4045 struct expr *set1 = 0;
4047 /* Loops are not possible here. To get a loop we would need two sets
4048 available at the start of the block containing INSN. ie we would
4049 need two sets like this available at the start of the block:
4051 (set (reg X) (reg Y))
4052 (set (reg Y) (reg X))
4054 This can not happen since the set of (reg Y) would have killed the
4055 set of (reg X) making it unavailable at the start of this block. */
4056 while (1)
4058 rtx src;
4059 struct expr *set = lookup_set (regno, NULL_RTX);
4061 /* Find a set that is available at the start of the block
4062 which contains INSN. */
4063 while (set)
4065 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4066 break;
4067 set = next_set (regno, set);
4070 /* If no available set was found we've reached the end of the
4071 (possibly empty) copy chain. */
4072 if (set == 0)
4073 break;
4075 if (GET_CODE (set->expr) != SET)
4076 abort ();
4078 src = SET_SRC (set->expr);
4080 /* We know the set is available.
4081 Now check that SRC is ANTLOC (i.e. none of the source operands
4082 have changed since the start of the block).
4084 If the source operand changed, we may still use it for the next
4085 iteration of this loop, but we may not use it for substitutions. */
4087 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4088 set1 = set;
4090 /* If the source of the set is anything except a register, then
4091 we have reached the end of the copy chain. */
4092 if (GET_CODE (src) != REG)
4093 break;
4095 /* Follow the copy chain, ie start another iteration of the loop
4096 and see if we have an available copy into SRC. */
4097 regno = REGNO (src);
4100 /* SET1 holds the last set that was available and anticipatable at
4101 INSN. */
4102 return set1;
4105 /* Subroutine of cprop_insn that tries to propagate constants into
4106 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4107 replace, SRC is the constant we will try to substitute for it. Returns
4108 nonzero if a change was made. We know INSN has just a SET. */
4110 static int
4111 cprop_jump (insn, from, src)
4112 rtx insn;
4113 rtx from;
4114 rtx src;
4116 rtx set = PATTERN (insn);
4117 rtx new = simplify_replace_rtx (SET_SRC (set), from, src);
4119 /* If no simplification can be made, then try the next
4120 register. */
4121 if (rtx_equal_p (new, SET_SRC (set)))
4122 return 0;
4124 /* If this is now a no-op leave it that way, but update LABEL_NUSED if
4125 necessary. */
4126 if (new == pc_rtx)
4128 SET_SRC (set) = new;
4130 if (JUMP_LABEL (insn) != 0)
4131 --LABEL_NUSES (JUMP_LABEL (insn));
4134 /* Otherwise, this must be a valid instruction. */
4135 else if (! validate_change (insn, &SET_SRC (set), new, 0))
4136 return 0;
4138 /* If this has turned into an unconditional jump,
4139 then put a barrier after it so that the unreachable
4140 code will be deleted. */
4141 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4142 emit_barrier_after (insn);
4144 run_jump_opt_after_gcse = 1;
4146 const_prop_count++;
4147 if (gcse_file != NULL)
4149 fprintf (gcse_file,
4150 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4151 REGNO (from), INSN_UID (insn));
4152 print_rtl (gcse_file, src);
4153 fprintf (gcse_file, "\n");
4156 return 1;
4159 #ifdef HAVE_cc0
4161 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4162 for machines that have CC0. INSN is a single set that stores into CC0;
4163 the insn following it is a conditional jump. REG_USED is the use we will
4164 try to replace, SRC is the constant we will try to substitute for it.
4165 Returns nonzero if a change was made. */
4167 static int
4168 cprop_cc0_jump (insn, reg_used, src)
4169 rtx insn;
4170 struct reg_use *reg_used;
4171 rtx src;
4173 /* First substitute in the SET_SRC of INSN, then substitute that for
4174 CC0 in JUMP. */
4175 rtx jump = NEXT_INSN (insn);
4176 rtx new_src = simplify_replace_rtx (SET_SRC (PATTERN (insn)),
4177 reg_used->reg_rtx, src);
4179 if (! cprop_jump (jump, cc0_rtx, new_src))
4180 return 0;
4182 /* If we succeeded, delete the cc0 setter. */
4183 PUT_CODE (insn, NOTE);
4184 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4185 NOTE_SOURCE_FILE (insn) = 0;
4187 return 1;
4189 #endif
4191 /* Perform constant and copy propagation on INSN.
4192 The result is non-zero if a change was made. */
4194 static int
4195 cprop_insn (insn, alter_jumps)
4196 rtx insn;
4197 int alter_jumps;
4199 struct reg_use *reg_used;
4200 int changed = 0;
4201 rtx note;
4203 if (!INSN_P (insn))
4204 return 0;
4206 reg_use_count = 0;
4207 note_uses (&PATTERN (insn), find_used_regs, NULL);
4209 note = find_reg_equal_equiv_note (insn);
4211 /* We may win even when propagating constants into notes. */
4212 if (note)
4213 find_used_regs (&XEXP (note, 0), NULL);
4215 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4216 reg_used++, reg_use_count--)
4218 unsigned int regno = REGNO (reg_used->reg_rtx);
4219 rtx pat, src;
4220 struct expr *set;
4222 /* Ignore registers created by GCSE.
4223 We do this because ... */
4224 if (regno >= max_gcse_regno)
4225 continue;
4227 /* If the register has already been set in this block, there's
4228 nothing we can do. */
4229 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4230 continue;
4232 /* Find an assignment that sets reg_used and is available
4233 at the start of the block. */
4234 set = find_avail_set (regno, insn);
4235 if (! set)
4236 continue;
4238 pat = set->expr;
4239 /* ??? We might be able to handle PARALLELs. Later. */
4240 if (GET_CODE (pat) != SET)
4241 abort ();
4243 src = SET_SRC (pat);
4245 /* Constant propagation. */
4246 if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
4247 || GET_CODE (src) == SYMBOL_REF)
4249 /* Handle normal insns first. */
4250 if (GET_CODE (insn) == INSN
4251 && try_replace_reg (reg_used->reg_rtx, src, insn))
4253 changed = 1;
4254 const_prop_count++;
4255 if (gcse_file != NULL)
4257 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4258 regno);
4259 fprintf (gcse_file, "insn %d with constant ",
4260 INSN_UID (insn));
4261 print_rtl (gcse_file, src);
4262 fprintf (gcse_file, "\n");
4265 /* The original insn setting reg_used may or may not now be
4266 deletable. We leave the deletion to flow. */
4269 /* Try to propagate a CONST_INT into a conditional jump.
4270 We're pretty specific about what we will handle in this
4271 code, we can extend this as necessary over time.
4273 Right now the insn in question must look like
4274 (set (pc) (if_then_else ...)) */
4275 else if (alter_jumps
4276 && GET_CODE (insn) == JUMP_INSN
4277 && condjump_p (insn)
4278 && ! simplejump_p (insn))
4279 changed |= cprop_jump (insn, reg_used->reg_rtx, src);
4281 #ifdef HAVE_cc0
4282 /* Similar code for machines that use a pair of CC0 setter and
4283 conditional jump insn. */
4284 else if (alter_jumps
4285 && GET_CODE (PATTERN (insn)) == SET
4286 && SET_DEST (PATTERN (insn)) == cc0_rtx
4287 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4288 && condjump_p (NEXT_INSN (insn))
4289 && ! simplejump_p (NEXT_INSN (insn))
4290 && cprop_cc0_jump (insn, reg_used, src))
4292 changed = 1;
4293 break;
4295 #endif
4297 else if (GET_CODE (src) == REG
4298 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4299 && REGNO (src) != regno)
4301 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4303 changed = 1;
4304 copy_prop_count++;
4305 if (gcse_file != NULL)
4307 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4308 regno, INSN_UID (insn));
4309 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4312 /* The original insn setting reg_used may or may not now be
4313 deletable. We leave the deletion to flow. */
4314 /* FIXME: If it turns out that the insn isn't deletable,
4315 then we may have unnecessarily extended register lifetimes
4316 and made things worse. */
4321 return changed;
4324 /* Forward propagate copies. This includes copies and constants. Return
4325 non-zero if a change was made. */
4327 static int
4328 cprop (alter_jumps)
4329 int alter_jumps;
4331 int bb, changed;
4332 rtx insn;
4334 /* Note we start at block 1. */
4336 changed = 0;
4337 for (bb = 1; bb < n_basic_blocks; bb++)
4339 /* Reset tables used to keep track of what's still valid [since the
4340 start of the block]. */
4341 reset_opr_set_tables ();
4343 for (insn = BLOCK_HEAD (bb);
4344 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4345 insn = NEXT_INSN (insn))
4346 if (INSN_P (insn))
4348 changed |= cprop_insn (insn, alter_jumps);
4350 /* Keep track of everything modified by this insn. */
4351 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4352 call mark_oprs_set if we turned the insn into a NOTE. */
4353 if (GET_CODE (insn) != NOTE)
4354 mark_oprs_set (insn);
4358 if (gcse_file != NULL)
4359 fprintf (gcse_file, "\n");
4361 return changed;
4364 /* Perform one copy/constant propagation pass.
4365 F is the first insn in the function.
4366 PASS is the pass count. */
4368 static int
4369 one_cprop_pass (pass, alter_jumps)
4370 int pass;
4371 int alter_jumps;
4373 int changed = 0;
4375 const_prop_count = 0;
4376 copy_prop_count = 0;
4378 alloc_set_hash_table (max_cuid);
4379 compute_set_hash_table ();
4380 if (gcse_file)
4381 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4382 n_sets);
4383 if (n_sets > 0)
4385 alloc_cprop_mem (n_basic_blocks, n_sets);
4386 compute_cprop_data ();
4387 changed = cprop (alter_jumps);
4388 free_cprop_mem ();
4391 free_set_hash_table ();
4393 if (gcse_file)
4395 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4396 current_function_name, pass, bytes_used);
4397 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4398 const_prop_count, copy_prop_count);
4401 return changed;
4404 /* Compute PRE+LCM working variables. */
4406 /* Local properties of expressions. */
4407 /* Nonzero for expressions that are transparent in the block. */
4408 static sbitmap *transp;
4410 /* Nonzero for expressions that are transparent at the end of the block.
4411 This is only zero for expressions killed by abnormal critical edge
4412 created by a calls. */
4413 static sbitmap *transpout;
4415 /* Nonzero for expressions that are computed (available) in the block. */
4416 static sbitmap *comp;
4418 /* Nonzero for expressions that are locally anticipatable in the block. */
4419 static sbitmap *antloc;
4421 /* Nonzero for expressions where this block is an optimal computation
4422 point. */
4423 static sbitmap *pre_optimal;
4425 /* Nonzero for expressions which are redundant in a particular block. */
4426 static sbitmap *pre_redundant;
4428 /* Nonzero for expressions which should be inserted on a specific edge. */
4429 static sbitmap *pre_insert_map;
4431 /* Nonzero for expressions which should be deleted in a specific block. */
4432 static sbitmap *pre_delete_map;
4434 /* Contains the edge_list returned by pre_edge_lcm. */
4435 static struct edge_list *edge_list;
4437 /* Redundant insns. */
4438 static sbitmap pre_redundant_insns;
4440 /* Allocate vars used for PRE analysis. */
4442 static void
4443 alloc_pre_mem (n_blocks, n_exprs)
4444 int n_blocks, n_exprs;
4446 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4447 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4448 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4450 pre_optimal = NULL;
4451 pre_redundant = NULL;
4452 pre_insert_map = NULL;
4453 pre_delete_map = NULL;
4454 ae_in = NULL;
4455 ae_out = NULL;
4456 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4458 /* pre_insert and pre_delete are allocated later. */
4461 /* Free vars used for PRE analysis. */
4463 static void
4464 free_pre_mem ()
4466 free (transp);
4467 free (comp);
4469 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4471 if (pre_optimal)
4472 free (pre_optimal);
4473 if (pre_redundant)
4474 free (pre_redundant);
4475 if (pre_insert_map)
4476 free (pre_insert_map);
4477 if (pre_delete_map)
4478 free (pre_delete_map);
4480 if (ae_in)
4481 free (ae_in);
4482 if (ae_out)
4483 free (ae_out);
4485 transp = comp = NULL;
4486 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4487 ae_in = ae_out = NULL;
4490 /* Top level routine to do the dataflow analysis needed by PRE. */
4492 static void
4493 compute_pre_data ()
4495 sbitmap trapping_expr;
4496 int i;
4497 unsigned int ui;
4499 compute_local_properties (transp, comp, antloc, 0);
4500 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4502 /* Collect expressions which might trap. */
4503 trapping_expr = sbitmap_alloc (n_exprs);
4504 sbitmap_zero (trapping_expr);
4505 for (ui = 0; ui < expr_hash_table_size; ui++)
4507 struct expr *e;
4508 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4509 if (may_trap_p (e->expr))
4510 SET_BIT (trapping_expr, e->bitmap_index);
4513 /* Compute ae_kill for each basic block using:
4515 ~(TRANSP | COMP)
4517 This is significantly faster than compute_ae_kill. */
4519 for (i = 0; i < n_basic_blocks; i++)
4521 edge e;
4523 /* If the current block is the destination of an abnormal edge, we
4524 kill all trapping expressions because we won't be able to properly
4525 place the instruction on the edge. So make them neither
4526 anticipatable nor transparent. This is fairly conservative. */
4527 for (e = BASIC_BLOCK (i)->pred; e ; e = e->pred_next)
4528 if (e->flags & EDGE_ABNORMAL)
4530 sbitmap_difference (antloc[i], antloc[i], trapping_expr);
4531 sbitmap_difference (transp[i], transp[i], trapping_expr);
4532 break;
4535 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4536 sbitmap_not (ae_kill[i], ae_kill[i]);
4539 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4540 ae_kill, &pre_insert_map, &pre_delete_map);
4541 free (antloc);
4542 antloc = NULL;
4543 free (ae_kill);
4544 ae_kill = NULL;
4545 free (trapping_expr);
4548 /* PRE utilities */
4550 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4551 block BB.
4553 VISITED is a pointer to a working buffer for tracking which BB's have
4554 been visited. It is NULL for the top-level call.
4556 We treat reaching expressions that go through blocks containing the same
4557 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4558 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4559 2 as not reaching. The intent is to improve the probability of finding
4560 only one reaching expression and to reduce register lifetimes by picking
4561 the closest such expression. */
4563 static int
4564 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4565 basic_block occr_bb;
4566 struct expr *expr;
4567 basic_block bb;
4568 char *visited;
4570 edge pred;
4572 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4574 basic_block pred_bb = pred->src;
4576 if (pred->src == ENTRY_BLOCK_PTR
4577 /* Has predecessor has already been visited? */
4578 || visited[pred_bb->index])
4579 ;/* Nothing to do. */
4581 /* Does this predecessor generate this expression? */
4582 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4584 /* Is this the occurrence we're looking for?
4585 Note that there's only one generating occurrence per block
4586 so we just need to check the block number. */
4587 if (occr_bb == pred_bb)
4588 return 1;
4590 visited[pred_bb->index] = 1;
4592 /* Ignore this predecessor if it kills the expression. */
4593 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4594 visited[pred_bb->index] = 1;
4596 /* Neither gen nor kill. */
4597 else
4599 visited[pred_bb->index] = 1;
4600 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4601 return 1;
4605 /* All paths have been checked. */
4606 return 0;
4609 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4610 memory allocated for that function is returned. */
4612 static int
4613 pre_expr_reaches_here_p (occr_bb, expr, bb)
4614 basic_block occr_bb;
4615 struct expr *expr;
4616 basic_block bb;
4618 int rval;
4619 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4621 rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
4623 free (visited);
4624 return rval;
4628 /* Given an expr, generate RTL which we can insert at the end of a BB,
4629 or on an edge. Set the block number of any insns generated to
4630 the value of BB. */
4632 static rtx
4633 process_insert_insn (expr)
4634 struct expr *expr;
4636 rtx reg = expr->reaching_reg;
4637 rtx exp = copy_rtx (expr->expr);
4638 rtx pat;
4640 start_sequence ();
4642 /* If the expression is something that's an operand, like a constant,
4643 just copy it to a register. */
4644 if (general_operand (exp, GET_MODE (reg)))
4645 emit_move_insn (reg, exp);
4647 /* Otherwise, make a new insn to compute this expression and make sure the
4648 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4649 expression to make sure we don't have any sharing issues. */
4650 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4651 abort ();
4653 pat = gen_sequence ();
4654 end_sequence ();
4656 return pat;
4659 /* Add EXPR to the end of basic block BB.
4661 This is used by both the PRE and code hoisting.
4663 For PRE, we want to verify that the expr is either transparent
4664 or locally anticipatable in the target block. This check makes
4665 no sense for code hoisting. */
4667 static void
4668 insert_insn_end_bb (expr, bb, pre)
4669 struct expr *expr;
4670 basic_block bb;
4671 int pre;
4673 rtx insn = bb->end;
4674 rtx new_insn;
4675 rtx reg = expr->reaching_reg;
4676 int regno = REGNO (reg);
4677 rtx pat;
4678 int i;
4680 pat = process_insert_insn (expr);
4682 /* If the last insn is a jump, insert EXPR in front [taking care to
4683 handle cc0, etc. properly]. */
4685 if (GET_CODE (insn) == JUMP_INSN)
4687 #ifdef HAVE_cc0
4688 rtx note;
4689 #endif
4691 /* If this is a jump table, then we can't insert stuff here. Since
4692 we know the previous real insn must be the tablejump, we insert
4693 the new instruction just before the tablejump. */
4694 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4695 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4696 insn = prev_real_insn (insn);
4698 #ifdef HAVE_cc0
4699 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4700 if cc0 isn't set. */
4701 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4702 if (note)
4703 insn = XEXP (note, 0);
4704 else
4706 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4707 if (maybe_cc0_setter
4708 && INSN_P (maybe_cc0_setter)
4709 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4710 insn = maybe_cc0_setter;
4712 #endif
4713 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4714 new_insn = emit_block_insn_before (pat, insn, bb);
4717 /* Likewise if the last insn is a call, as will happen in the presence
4718 of exception handling. */
4719 else if (GET_CODE (insn) == CALL_INSN)
4721 HARD_REG_SET parm_regs;
4722 int nparm_regs;
4723 rtx p;
4725 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4726 we search backward and place the instructions before the first
4727 parameter is loaded. Do this for everyone for consistency and a
4728 presumtion that we'll get better code elsewhere as well.
4730 It should always be the case that we can put these instructions
4731 anywhere in the basic block with performing PRE optimizations.
4732 Check this. */
4734 if (pre
4735 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4736 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4737 abort ();
4739 /* Since different machines initialize their parameter registers
4740 in different orders, assume nothing. Collect the set of all
4741 parameter registers. */
4742 CLEAR_HARD_REG_SET (parm_regs);
4743 nparm_regs = 0;
4744 for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
4745 if (GET_CODE (XEXP (p, 0)) == USE
4746 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
4748 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
4749 abort ();
4751 /* We only care about registers which can hold function
4752 arguments. */
4753 if (! FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4754 continue;
4756 SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
4757 nparm_regs++;
4760 /* Search backward for the first set of a register in this set. */
4761 while (nparm_regs && bb->head != insn)
4763 insn = PREV_INSN (insn);
4764 p = single_set (insn);
4765 if (p && GET_CODE (SET_DEST (p)) == REG
4766 && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
4767 && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
4769 CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
4770 nparm_regs--;
4774 /* If we found all the parameter loads, then we want to insert
4775 before the first parameter load.
4777 If we did not find all the parameter loads, then we might have
4778 stopped on the head of the block, which could be a CODE_LABEL.
4779 If we inserted before the CODE_LABEL, then we would be putting
4780 the insn in the wrong basic block. In that case, put the insn
4781 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4782 while (GET_CODE (insn) == CODE_LABEL
4783 || NOTE_INSN_BASIC_BLOCK_P (insn))
4784 insn = NEXT_INSN (insn);
4786 new_insn = emit_block_insn_before (pat, insn, bb);
4788 else
4790 new_insn = emit_insn_after (pat, insn);
4791 bb->end = new_insn;
4794 /* Keep block number table up to date.
4795 Note, PAT could be a multiple insn sequence, we have to make
4796 sure that each insn in the sequence is handled. */
4797 if (GET_CODE (pat) == SEQUENCE)
4799 for (i = 0; i < XVECLEN (pat, 0); i++)
4801 rtx insn = XVECEXP (pat, 0, i);
4803 set_block_for_insn (insn, bb);
4804 if (INSN_P (insn))
4805 add_label_notes (PATTERN (insn), new_insn);
4807 note_stores (PATTERN (insn), record_set_info, insn);
4810 else
4812 add_label_notes (SET_SRC (pat), new_insn);
4813 set_block_for_new_insns (new_insn, bb);
4815 /* Keep register set table up to date. */
4816 record_one_set (regno, new_insn);
4819 gcse_create_count++;
4821 if (gcse_file)
4823 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4824 bb->index, INSN_UID (new_insn));
4825 fprintf (gcse_file, "copying expression %d to reg %d\n",
4826 expr->bitmap_index, regno);
4830 /* Insert partially redundant expressions on edges in the CFG to make
4831 the expressions fully redundant. */
4833 static int
4834 pre_edge_insert (edge_list, index_map)
4835 struct edge_list *edge_list;
4836 struct expr **index_map;
4838 int e, i, j, num_edges, set_size, did_insert = 0;
4839 sbitmap *inserted;
4841 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4842 if it reaches any of the deleted expressions. */
4844 set_size = pre_insert_map[0]->size;
4845 num_edges = NUM_EDGES (edge_list);
4846 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4847 sbitmap_vector_zero (inserted, num_edges);
4849 for (e = 0; e < num_edges; e++)
4851 int indx;
4852 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4854 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4856 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4858 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4859 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4861 struct expr *expr = index_map[j];
4862 struct occr *occr;
4864 /* Now look at each deleted occurence of this expression. */
4865 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4867 if (! occr->deleted_p)
4868 continue;
4870 /* Insert this expression on this edge if if it would
4871 reach the deleted occurence in BB. */
4872 if (!TEST_BIT (inserted[e], j))
4874 rtx insn;
4875 edge eg = INDEX_EDGE (edge_list, e);
4877 /* We can't insert anything on an abnormal and
4878 critical edge, so we insert the insn at the end of
4879 the previous block. There are several alternatives
4880 detailed in Morgans book P277 (sec 10.5) for
4881 handling this situation. This one is easiest for
4882 now. */
4884 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4885 insert_insn_end_bb (index_map[j], bb, 0);
4886 else
4888 insn = process_insert_insn (index_map[j]);
4889 insert_insn_on_edge (insn, eg);
4892 if (gcse_file)
4894 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4895 bb->index,
4896 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4897 fprintf (gcse_file, "copy expression %d\n",
4898 expr->bitmap_index);
4901 update_ld_motion_stores (expr);
4902 SET_BIT (inserted[e], j);
4903 did_insert = 1;
4904 gcse_create_count++;
4911 free (inserted);
4912 return did_insert;
4915 /* Copy the result of INSN to REG. INDX is the expression number. */
4917 static void
4918 pre_insert_copy_insn (expr, insn)
4919 struct expr *expr;
4920 rtx insn;
4922 rtx reg = expr->reaching_reg;
4923 int regno = REGNO (reg);
4924 int indx = expr->bitmap_index;
4925 rtx set = single_set (insn);
4926 rtx new_insn;
4927 basic_block bb = BLOCK_FOR_INSN (insn);
4929 if (!set)
4930 abort ();
4932 new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
4933 insn);
4935 /* Keep block number table up to date. */
4936 set_block_for_new_insns (new_insn, bb);
4938 /* Keep register set table up to date. */
4939 record_one_set (regno, new_insn);
4940 if (insn == bb->end)
4941 bb->end = new_insn;
4943 gcse_create_count++;
4945 if (gcse_file)
4946 fprintf (gcse_file,
4947 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4948 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4949 INSN_UID (insn), regno);
4952 /* Copy available expressions that reach the redundant expression
4953 to `reaching_reg'. */
4955 static void
4956 pre_insert_copies ()
4958 unsigned int i;
4959 struct expr *expr;
4960 struct occr *occr;
4961 struct occr *avail;
4963 /* For each available expression in the table, copy the result to
4964 `reaching_reg' if the expression reaches a deleted one.
4966 ??? The current algorithm is rather brute force.
4967 Need to do some profiling. */
4969 for (i = 0; i < expr_hash_table_size; i++)
4970 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4972 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4973 we don't want to insert a copy here because the expression may not
4974 really be redundant. So only insert an insn if the expression was
4975 deleted. This test also avoids further processing if the
4976 expression wasn't deleted anywhere. */
4977 if (expr->reaching_reg == NULL)
4978 continue;
4980 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4982 if (! occr->deleted_p)
4983 continue;
4985 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4987 rtx insn = avail->insn;
4989 /* No need to handle this one if handled already. */
4990 if (avail->copied_p)
4991 continue;
4993 /* Don't handle this one if it's a redundant one. */
4994 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4995 continue;
4997 /* Or if the expression doesn't reach the deleted one. */
4998 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4999 expr,
5000 BLOCK_FOR_INSN (occr->insn)))
5001 continue;
5003 /* Copy the result of avail to reaching_reg. */
5004 pre_insert_copy_insn (expr, insn);
5005 avail->copied_p = 1;
5011 /* Delete redundant computations.
5012 Deletion is done by changing the insn to copy the `reaching_reg' of
5013 the expression into the result of the SET. It is left to later passes
5014 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5016 Returns non-zero if a change is made. */
5018 static int
5019 pre_delete ()
5021 unsigned int i;
5022 int changed;
5023 struct expr *expr;
5024 struct occr *occr;
5026 changed = 0;
5027 for (i = 0; i < expr_hash_table_size; i++)
5028 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5030 int indx = expr->bitmap_index;
5032 /* We only need to search antic_occr since we require
5033 ANTLOC != 0. */
5035 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5037 rtx insn = occr->insn;
5038 rtx set;
5039 basic_block bb = BLOCK_FOR_INSN (insn);
5041 if (TEST_BIT (pre_delete_map[bb->index], indx))
5043 set = single_set (insn);
5044 if (! set)
5045 abort ();
5047 /* Create a pseudo-reg to store the result of reaching
5048 expressions into. Get the mode for the new pseudo from
5049 the mode of the original destination pseudo. */
5050 if (expr->reaching_reg == NULL)
5051 expr->reaching_reg
5052 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5054 /* In theory this should never fail since we're creating
5055 a reg->reg copy.
5057 However, on the x86 some of the movXX patterns actually
5058 contain clobbers of scratch regs. This may cause the
5059 insn created by validate_change to not match any pattern
5060 and thus cause validate_change to fail. */
5061 if (validate_change (insn, &SET_SRC (set),
5062 expr->reaching_reg, 0))
5064 occr->deleted_p = 1;
5065 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5066 changed = 1;
5067 gcse_subst_count++;
5070 if (gcse_file)
5072 fprintf (gcse_file,
5073 "PRE: redundant insn %d (expression %d) in ",
5074 INSN_UID (insn), indx);
5075 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5076 bb->index, REGNO (expr->reaching_reg));
5082 return changed;
5085 /* Perform GCSE optimizations using PRE.
5086 This is called by one_pre_gcse_pass after all the dataflow analysis
5087 has been done.
5089 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5090 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5091 Compiler Design and Implementation.
5093 ??? A new pseudo reg is created to hold the reaching expression. The nice
5094 thing about the classical approach is that it would try to use an existing
5095 reg. If the register can't be adequately optimized [i.e. we introduce
5096 reload problems], one could add a pass here to propagate the new register
5097 through the block.
5099 ??? We don't handle single sets in PARALLELs because we're [currently] not
5100 able to copy the rest of the parallel when we insert copies to create full
5101 redundancies from partial redundancies. However, there's no reason why we
5102 can't handle PARALLELs in the cases where there are no partial
5103 redundancies. */
5105 static int
5106 pre_gcse ()
5108 unsigned int i;
5109 int did_insert, changed;
5110 struct expr **index_map;
5111 struct expr *expr;
5113 /* Compute a mapping from expression number (`bitmap_index') to
5114 hash table entry. */
5116 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5117 for (i = 0; i < expr_hash_table_size; i++)
5118 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5119 index_map[expr->bitmap_index] = expr;
5121 /* Reset bitmap used to track which insns are redundant. */
5122 pre_redundant_insns = sbitmap_alloc (max_cuid);
5123 sbitmap_zero (pre_redundant_insns);
5125 /* Delete the redundant insns first so that
5126 - we know what register to use for the new insns and for the other
5127 ones with reaching expressions
5128 - we know which insns are redundant when we go to create copies */
5130 changed = pre_delete ();
5132 did_insert = pre_edge_insert (edge_list, index_map);
5134 /* In other places with reaching expressions, copy the expression to the
5135 specially allocated pseudo-reg that reaches the redundant expr. */
5136 pre_insert_copies ();
5137 if (did_insert)
5139 commit_edge_insertions ();
5140 changed = 1;
5143 free (index_map);
5144 free (pre_redundant_insns);
5145 return changed;
5148 /* Top level routine to perform one PRE GCSE pass.
5150 Return non-zero if a change was made. */
5152 static int
5153 one_pre_gcse_pass (pass)
5154 int pass;
5156 int changed = 0;
5158 gcse_subst_count = 0;
5159 gcse_create_count = 0;
5161 alloc_expr_hash_table (max_cuid);
5162 add_noreturn_fake_exit_edges ();
5163 if (flag_gcse_lm)
5164 compute_ld_motion_mems ();
5166 compute_expr_hash_table ();
5167 trim_ld_motion_mems ();
5168 if (gcse_file)
5169 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5170 expr_hash_table_size, n_exprs);
5172 if (n_exprs > 0)
5174 alloc_pre_mem (n_basic_blocks, n_exprs);
5175 compute_pre_data ();
5176 changed |= pre_gcse ();
5177 free_edge_list (edge_list);
5178 free_pre_mem ();
5181 free_ldst_mems ();
5182 remove_fake_edges ();
5183 free_expr_hash_table ();
5185 if (gcse_file)
5187 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5188 current_function_name, pass, bytes_used);
5189 fprintf (gcse_file, "%d substs, %d insns created\n",
5190 gcse_subst_count, gcse_create_count);
5193 return changed;
5196 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5197 If notes are added to an insn which references a CODE_LABEL, the
5198 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5199 because the following loop optimization pass requires them. */
5201 /* ??? This is very similar to the loop.c add_label_notes function. We
5202 could probably share code here. */
5204 /* ??? If there was a jump optimization pass after gcse and before loop,
5205 then we would not need to do this here, because jump would add the
5206 necessary REG_LABEL notes. */
5208 static void
5209 add_label_notes (x, insn)
5210 rtx x;
5211 rtx insn;
5213 enum rtx_code code = GET_CODE (x);
5214 int i, j;
5215 const char *fmt;
5217 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5219 /* This code used to ignore labels that referred to dispatch tables to
5220 avoid flow generating (slighly) worse code.
5222 We no longer ignore such label references (see LABEL_REF handling in
5223 mark_jump_label for additional information). */
5225 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
5226 REG_NOTES (insn));
5227 if (LABEL_P (XEXP (x, 0)))
5228 LABEL_NUSES (XEXP (x, 0))++;
5229 return;
5232 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5234 if (fmt[i] == 'e')
5235 add_label_notes (XEXP (x, i), insn);
5236 else if (fmt[i] == 'E')
5237 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5238 add_label_notes (XVECEXP (x, i, j), insn);
5242 /* Compute transparent outgoing information for each block.
5244 An expression is transparent to an edge unless it is killed by
5245 the edge itself. This can only happen with abnormal control flow,
5246 when the edge is traversed through a call. This happens with
5247 non-local labels and exceptions.
5249 This would not be necessary if we split the edge. While this is
5250 normally impossible for abnormal critical edges, with some effort
5251 it should be possible with exception handling, since we still have
5252 control over which handler should be invoked. But due to increased
5253 EH table sizes, this may not be worthwhile. */
5255 static void
5256 compute_transpout ()
5258 int bb;
5259 unsigned int i;
5260 struct expr *expr;
5262 sbitmap_vector_ones (transpout, n_basic_blocks);
5264 for (bb = 0; bb < n_basic_blocks; ++bb)
5266 /* Note that flow inserted a nop a the end of basic blocks that
5267 end in call instructions for reasons other than abnormal
5268 control flow. */
5269 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
5270 continue;
5272 for (i = 0; i < expr_hash_table_size; i++)
5273 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5274 if (GET_CODE (expr->expr) == MEM)
5276 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5277 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5278 continue;
5280 /* ??? Optimally, we would use interprocedural alias
5281 analysis to determine if this mem is actually killed
5282 by this call. */
5283 RESET_BIT (transpout[bb], expr->bitmap_index);
5288 /* Removal of useless null pointer checks */
5290 /* Called via note_stores. X is set by SETTER. If X is a register we must
5291 invalidate nonnull_local and set nonnull_killed. DATA is really a
5292 `null_pointer_info *'.
5294 We ignore hard registers. */
5296 static void
5297 invalidate_nonnull_info (x, setter, data)
5298 rtx x;
5299 rtx setter ATTRIBUTE_UNUSED;
5300 void *data;
5302 unsigned int regno;
5303 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5305 while (GET_CODE (x) == SUBREG)
5306 x = SUBREG_REG (x);
5308 /* Ignore anything that is not a register or is a hard register. */
5309 if (GET_CODE (x) != REG
5310 || REGNO (x) < npi->min_reg
5311 || REGNO (x) >= npi->max_reg)
5312 return;
5314 regno = REGNO (x) - npi->min_reg;
5316 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
5317 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
5320 /* Do null-pointer check elimination for the registers indicated in
5321 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5322 they are not our responsibility to free. */
5324 static void
5325 delete_null_pointer_checks_1 (delete_list, block_reg, nonnull_avin,
5326 nonnull_avout, npi)
5327 varray_type *delete_list;
5328 unsigned int *block_reg;
5329 sbitmap *nonnull_avin;
5330 sbitmap *nonnull_avout;
5331 struct null_pointer_info *npi;
5333 int bb;
5334 int current_block;
5335 sbitmap *nonnull_local = npi->nonnull_local;
5336 sbitmap *nonnull_killed = npi->nonnull_killed;
5338 /* Compute local properties, nonnull and killed. A register will have
5339 the nonnull property if at the end of the current block its value is
5340 known to be nonnull. The killed property indicates that somewhere in
5341 the block any information we had about the register is killed.
5343 Note that a register can have both properties in a single block. That
5344 indicates that it's killed, then later in the block a new value is
5345 computed. */
5346 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
5347 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
5349 for (current_block = 0; current_block < n_basic_blocks; current_block++)
5351 rtx insn, stop_insn;
5353 /* Set the current block for invalidate_nonnull_info. */
5354 npi->current_block = current_block;
5356 /* Scan each insn in the basic block looking for memory references and
5357 register sets. */
5358 stop_insn = NEXT_INSN (BLOCK_END (current_block));
5359 for (insn = BLOCK_HEAD (current_block);
5360 insn != stop_insn;
5361 insn = NEXT_INSN (insn))
5363 rtx set;
5364 rtx reg;
5366 /* Ignore anything that is not a normal insn. */
5367 if (! INSN_P (insn))
5368 continue;
5370 /* Basically ignore anything that is not a simple SET. We do have
5371 to make sure to invalidate nonnull_local and set nonnull_killed
5372 for such insns though. */
5373 set = single_set (insn);
5374 if (!set)
5376 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5377 continue;
5380 /* See if we've got a useable memory load. We handle it first
5381 in case it uses its address register as a dest (which kills
5382 the nonnull property). */
5383 if (GET_CODE (SET_SRC (set)) == MEM
5384 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5385 && REGNO (reg) >= npi->min_reg
5386 && REGNO (reg) < npi->max_reg)
5387 SET_BIT (nonnull_local[current_block],
5388 REGNO (reg) - npi->min_reg);
5390 /* Now invalidate stuff clobbered by this insn. */
5391 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5393 /* And handle stores, we do these last since any sets in INSN can
5394 not kill the nonnull property if it is derived from a MEM
5395 appearing in a SET_DEST. */
5396 if (GET_CODE (SET_DEST (set)) == MEM
5397 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5398 && REGNO (reg) >= npi->min_reg
5399 && REGNO (reg) < npi->max_reg)
5400 SET_BIT (nonnull_local[current_block],
5401 REGNO (reg) - npi->min_reg);
5405 /* Now compute global properties based on the local properties. This
5406 is a classic global availablity algorithm. */
5407 compute_available (nonnull_local, nonnull_killed,
5408 nonnull_avout, nonnull_avin);
5410 /* Now look at each bb and see if it ends with a compare of a value
5411 against zero. */
5412 for (bb = 0; bb < n_basic_blocks; bb++)
5414 rtx last_insn = BLOCK_END (bb);
5415 rtx condition, earliest;
5416 int compare_and_branch;
5418 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5419 since BLOCK_REG[BB] is zero if this block did not end with a
5420 comparison against zero, this condition works. */
5421 if (block_reg[bb] < npi->min_reg
5422 || block_reg[bb] >= npi->max_reg)
5423 continue;
5425 /* LAST_INSN is a conditional jump. Get its condition. */
5426 condition = get_condition (last_insn, &earliest);
5428 /* If we can't determine the condition then skip. */
5429 if (! condition)
5430 continue;
5432 /* Is the register known to have a nonzero value? */
5433 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
5434 continue;
5436 /* Try to compute whether the compare/branch at the loop end is one or
5437 two instructions. */
5438 if (earliest == last_insn)
5439 compare_and_branch = 1;
5440 else if (earliest == prev_nonnote_insn (last_insn))
5441 compare_and_branch = 2;
5442 else
5443 continue;
5445 /* We know the register in this comparison is nonnull at exit from
5446 this block. We can optimize this comparison. */
5447 if (GET_CODE (condition) == NE)
5449 rtx new_jump;
5451 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
5452 last_insn);
5453 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5454 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5455 emit_barrier_after (new_jump);
5457 if (!*delete_list)
5458 VARRAY_RTX_INIT (*delete_list, 10, "delete_list");
5460 VARRAY_PUSH_RTX (*delete_list, last_insn);
5461 if (compare_and_branch == 2)
5462 VARRAY_PUSH_RTX (*delete_list, earliest);
5464 /* Don't check this block again. (Note that BLOCK_END is
5465 invalid here; we deleted the last instruction in the
5466 block.) */
5467 block_reg[bb] = 0;
5471 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5472 at compile time.
5474 This is conceptually similar to global constant/copy propagation and
5475 classic global CSE (it even uses the same dataflow equations as cprop).
5477 If a register is used as memory address with the form (mem (reg)), then we
5478 know that REG can not be zero at that point in the program. Any instruction
5479 which sets REG "kills" this property.
5481 So, if every path leading to a conditional branch has an available memory
5482 reference of that form, then we know the register can not have the value
5483 zero at the conditional branch.
5485 So we merely need to compute the local properies and propagate that data
5486 around the cfg, then optimize where possible.
5488 We run this pass two times. Once before CSE, then again after CSE. This
5489 has proven to be the most profitable approach. It is rare for new
5490 optimization opportunities of this nature to appear after the first CSE
5491 pass.
5493 This could probably be integrated with global cprop with a little work. */
5495 void
5496 delete_null_pointer_checks (f)
5497 rtx f ATTRIBUTE_UNUSED;
5499 sbitmap *nonnull_avin, *nonnull_avout;
5500 unsigned int *block_reg;
5501 varray_type delete_list = NULL;
5502 int bb;
5503 int reg;
5504 int regs_per_pass;
5505 int max_reg;
5506 unsigned int i;
5507 struct null_pointer_info npi;
5509 /* If we have only a single block, then there's nothing to do. */
5510 if (n_basic_blocks <= 1)
5511 return;
5513 /* Trying to perform global optimizations on flow graphs which have
5514 a high connectivity will take a long time and is unlikely to be
5515 particularly useful.
5517 In normal circumstances a cfg should have about twice as many edges
5518 as blocks. But we do not want to punish small functions which have
5519 a couple switch statements. So we require a relatively large number
5520 of basic blocks and the ratio of edges to blocks to be high. */
5521 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5522 return;
5524 /* We need four bitmaps, each with a bit for each register in each
5525 basic block. */
5526 max_reg = max_reg_num ();
5527 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5529 /* Allocate bitmaps to hold local and global properties. */
5530 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5531 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5532 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5533 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5535 /* Go through the basic blocks, seeing whether or not each block
5536 ends with a conditional branch whose condition is a comparison
5537 against zero. Record the register compared in BLOCK_REG. */
5538 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5539 for (bb = 0; bb < n_basic_blocks; bb++)
5541 rtx last_insn = BLOCK_END (bb);
5542 rtx condition, earliest, reg;
5544 /* We only want conditional branches. */
5545 if (GET_CODE (last_insn) != JUMP_INSN
5546 || !any_condjump_p (last_insn)
5547 || !onlyjump_p (last_insn))
5548 continue;
5550 /* LAST_INSN is a conditional jump. Get its condition. */
5551 condition = get_condition (last_insn, &earliest);
5553 /* If we were unable to get the condition, or it is not a equality
5554 comparison against zero then there's nothing we can do. */
5555 if (!condition
5556 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5557 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5558 || (XEXP (condition, 1)
5559 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5560 continue;
5562 /* We must be checking a register against zero. */
5563 reg = XEXP (condition, 0);
5564 if (GET_CODE (reg) != REG)
5565 continue;
5567 block_reg[bb] = REGNO (reg);
5570 /* Go through the algorithm for each block of registers. */
5571 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5573 npi.min_reg = reg;
5574 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5575 delete_null_pointer_checks_1 (&delete_list, block_reg, nonnull_avin,
5576 nonnull_avout, &npi);
5579 /* Now delete the instructions all at once. This breaks the CFG. */
5580 if (delete_list)
5582 for (i = 0; i < VARRAY_ACTIVE_SIZE (delete_list); i++)
5583 delete_insn (VARRAY_RTX (delete_list, i));
5584 VARRAY_FREE (delete_list);
5587 /* Free the table of registers compared at the end of every block. */
5588 free (block_reg);
5590 /* Free bitmaps. */
5591 free (npi.nonnull_local);
5592 free (npi.nonnull_killed);
5593 free (nonnull_avin);
5594 free (nonnull_avout);
5597 /* Code Hoisting variables and subroutines. */
5599 /* Very busy expressions. */
5600 static sbitmap *hoist_vbein;
5601 static sbitmap *hoist_vbeout;
5603 /* Hoistable expressions. */
5604 static sbitmap *hoist_exprs;
5606 /* Dominator bitmaps. */
5607 static sbitmap *dominators;
5609 /* ??? We could compute post dominators and run this algorithm in
5610 reverse to to perform tail merging, doing so would probably be
5611 more effective than the tail merging code in jump.c.
5613 It's unclear if tail merging could be run in parallel with
5614 code hoisting. It would be nice. */
5616 /* Allocate vars used for code hoisting analysis. */
5618 static void
5619 alloc_code_hoist_mem (n_blocks, n_exprs)
5620 int n_blocks, n_exprs;
5622 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5623 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5624 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5626 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5627 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5628 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5629 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5631 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5634 /* Free vars used for code hoisting analysis. */
5636 static void
5637 free_code_hoist_mem ()
5639 free (antloc);
5640 free (transp);
5641 free (comp);
5643 free (hoist_vbein);
5644 free (hoist_vbeout);
5645 free (hoist_exprs);
5646 free (transpout);
5648 free (dominators);
5651 /* Compute the very busy expressions at entry/exit from each block.
5653 An expression is very busy if all paths from a given point
5654 compute the expression. */
5656 static void
5657 compute_code_hoist_vbeinout ()
5659 int bb, changed, passes;
5661 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5662 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5664 passes = 0;
5665 changed = 1;
5667 while (changed)
5669 changed = 0;
5671 /* We scan the blocks in the reverse order to speed up
5672 the convergence. */
5673 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5675 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5676 hoist_vbeout[bb], transp[bb]);
5677 if (bb != n_basic_blocks - 1)
5678 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5681 passes++;
5684 if (gcse_file)
5685 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5688 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5690 static void
5691 compute_code_hoist_data ()
5693 compute_local_properties (transp, comp, antloc, 0);
5694 compute_transpout ();
5695 compute_code_hoist_vbeinout ();
5696 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5697 if (gcse_file)
5698 fprintf (gcse_file, "\n");
5701 /* Determine if the expression identified by EXPR_INDEX would
5702 reach BB unimpared if it was placed at the end of EXPR_BB.
5704 It's unclear exactly what Muchnick meant by "unimpared". It seems
5705 to me that the expression must either be computed or transparent in
5706 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5707 would allow the expression to be hoisted out of loops, even if
5708 the expression wasn't a loop invariant.
5710 Contrast this to reachability for PRE where an expression is
5711 considered reachable if *any* path reaches instead of *all*
5712 paths. */
5714 static int
5715 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5716 basic_block expr_bb;
5717 int expr_index;
5718 basic_block bb;
5719 char *visited;
5721 edge pred;
5722 int visited_allocated_locally = 0;
5725 if (visited == NULL)
5727 visited_allocated_locally = 1;
5728 visited = xcalloc (n_basic_blocks, 1);
5731 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5733 basic_block pred_bb = pred->src;
5735 if (pred->src == ENTRY_BLOCK_PTR)
5736 break;
5737 else if (visited[pred_bb->index])
5738 continue;
5740 /* Does this predecessor generate this expression? */
5741 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5742 break;
5743 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5744 break;
5746 /* Not killed. */
5747 else
5749 visited[pred_bb->index] = 1;
5750 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5751 pred_bb, visited))
5752 break;
5755 if (visited_allocated_locally)
5756 free (visited);
5758 return (pred == NULL);
5761 /* Actually perform code hoisting. */
5763 static void
5764 hoist_code ()
5766 int bb, dominated;
5767 unsigned int i;
5768 struct expr **index_map;
5769 struct expr *expr;
5771 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5773 /* Compute a mapping from expression number (`bitmap_index') to
5774 hash table entry. */
5776 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5777 for (i = 0; i < expr_hash_table_size; i++)
5778 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5779 index_map[expr->bitmap_index] = expr;
5781 /* Walk over each basic block looking for potentially hoistable
5782 expressions, nothing gets hoisted from the entry block. */
5783 for (bb = 0; bb < n_basic_blocks; bb++)
5785 int found = 0;
5786 int insn_inserted_p;
5788 /* Examine each expression that is very busy at the exit of this
5789 block. These are the potentially hoistable expressions. */
5790 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5792 int hoistable = 0;
5794 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5796 /* We've found a potentially hoistable expression, now
5797 we look at every block BB dominates to see if it
5798 computes the expression. */
5799 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5801 /* Ignore self dominance. */
5802 if (bb == dominated
5803 || ! TEST_BIT (dominators[dominated], bb))
5804 continue;
5806 /* We've found a dominated block, now see if it computes
5807 the busy expression and whether or not moving that
5808 expression to the "beginning" of that block is safe. */
5809 if (!TEST_BIT (antloc[dominated], i))
5810 continue;
5812 /* Note if the expression would reach the dominated block
5813 unimpared if it was placed at the end of BB.
5815 Keep track of how many times this expression is hoistable
5816 from a dominated block into BB. */
5817 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5818 BASIC_BLOCK (dominated), NULL))
5819 hoistable++;
5822 /* If we found more than one hoistable occurence of this
5823 expression, then note it in the bitmap of expressions to
5824 hoist. It makes no sense to hoist things which are computed
5825 in only one BB, and doing so tends to pessimize register
5826 allocation. One could increase this value to try harder
5827 to avoid any possible code expansion due to register
5828 allocation issues; however experiments have shown that
5829 the vast majority of hoistable expressions are only movable
5830 from two successors, so raising this threshhold is likely
5831 to nullify any benefit we get from code hoisting. */
5832 if (hoistable > 1)
5834 SET_BIT (hoist_exprs[bb], i);
5835 found = 1;
5840 /* If we found nothing to hoist, then quit now. */
5841 if (! found)
5842 continue;
5844 /* Loop over all the hoistable expressions. */
5845 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5847 /* We want to insert the expression into BB only once, so
5848 note when we've inserted it. */
5849 insn_inserted_p = 0;
5851 /* These tests should be the same as the tests above. */
5852 if (TEST_BIT (hoist_vbeout[bb], i))
5854 /* We've found a potentially hoistable expression, now
5855 we look at every block BB dominates to see if it
5856 computes the expression. */
5857 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5859 /* Ignore self dominance. */
5860 if (bb == dominated
5861 || ! TEST_BIT (dominators[dominated], bb))
5862 continue;
5864 /* We've found a dominated block, now see if it computes
5865 the busy expression and whether or not moving that
5866 expression to the "beginning" of that block is safe. */
5867 if (!TEST_BIT (antloc[dominated], i))
5868 continue;
5870 /* The expression is computed in the dominated block and
5871 it would be safe to compute it at the start of the
5872 dominated block. Now we have to determine if the
5873 expresion would reach the dominated block if it was
5874 placed at the end of BB. */
5875 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5876 BASIC_BLOCK (dominated), NULL))
5878 struct expr *expr = index_map[i];
5879 struct occr *occr = expr->antic_occr;
5880 rtx insn;
5881 rtx set;
5883 /* Find the right occurence of this expression. */
5884 while (BLOCK_NUM (occr->insn) != dominated && occr)
5885 occr = occr->next;
5887 /* Should never happen. */
5888 if (!occr)
5889 abort ();
5891 insn = occr->insn;
5893 set = single_set (insn);
5894 if (! set)
5895 abort ();
5897 /* Create a pseudo-reg to store the result of reaching
5898 expressions into. Get the mode for the new pseudo
5899 from the mode of the original destination pseudo. */
5900 if (expr->reaching_reg == NULL)
5901 expr->reaching_reg
5902 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5904 /* In theory this should never fail since we're creating
5905 a reg->reg copy.
5907 However, on the x86 some of the movXX patterns
5908 actually contain clobbers of scratch regs. This may
5909 cause the insn created by validate_change to not
5910 match any pattern and thus cause validate_change to
5911 fail. */
5912 if (validate_change (insn, &SET_SRC (set),
5913 expr->reaching_reg, 0))
5915 occr->deleted_p = 1;
5916 if (!insn_inserted_p)
5918 insert_insn_end_bb (index_map[i],
5919 BASIC_BLOCK (bb), 0);
5920 insn_inserted_p = 1;
5929 free (index_map);
5932 /* Top level routine to perform one code hoisting (aka unification) pass
5934 Return non-zero if a change was made. */
5936 static int
5937 one_code_hoisting_pass ()
5939 int changed = 0;
5941 alloc_expr_hash_table (max_cuid);
5942 compute_expr_hash_table ();
5943 if (gcse_file)
5944 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5945 expr_hash_table_size, n_exprs);
5947 if (n_exprs > 0)
5949 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5950 compute_code_hoist_data ();
5951 hoist_code ();
5952 free_code_hoist_mem ();
5955 free_expr_hash_table ();
5957 return changed;
5960 /* Here we provide the things required to do store motion towards
5961 the exit. In order for this to be effective, gcse also needed to
5962 be taught how to move a load when it is kill only by a store to itself.
5964 int i;
5965 float a[10];
5967 void foo(float scale)
5969 for (i=0; i<10; i++)
5970 a[i] *= scale;
5973 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5974 the load out since its live around the loop, and stored at the bottom
5975 of the loop.
5977 The 'Load Motion' referred to and implemented in this file is
5978 an enhancement to gcse which when using edge based lcm, recognizes
5979 this situation and allows gcse to move the load out of the loop.
5981 Once gcse has hoisted the load, store motion can then push this
5982 load towards the exit, and we end up with no loads or stores of 'i'
5983 in the loop. */
5985 /* This will search the ldst list for a matching expresion. If it
5986 doesn't find one, we create one and initialize it. */
5988 static struct ls_expr *
5989 ldst_entry (x)
5990 rtx x;
5992 struct ls_expr * ptr;
5994 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5995 if (expr_equiv_p (ptr->pattern, x))
5996 break;
5998 if (!ptr)
6000 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6002 ptr->next = pre_ldst_mems;
6003 ptr->expr = NULL;
6004 ptr->pattern = x;
6005 ptr->loads = NULL_RTX;
6006 ptr->stores = NULL_RTX;
6007 ptr->reaching_reg = NULL_RTX;
6008 ptr->invalid = 0;
6009 ptr->index = 0;
6010 ptr->hash_index = 0;
6011 pre_ldst_mems = ptr;
6014 return ptr;
6017 /* Free up an individual ldst entry. */
6019 static void
6020 free_ldst_entry (ptr)
6021 struct ls_expr * ptr;
6023 free_INSN_LIST_list (& ptr->loads);
6024 free_INSN_LIST_list (& ptr->stores);
6026 free (ptr);
6029 /* Free up all memory associated with the ldst list. */
6031 static void
6032 free_ldst_mems ()
6034 while (pre_ldst_mems)
6036 struct ls_expr * tmp = pre_ldst_mems;
6038 pre_ldst_mems = pre_ldst_mems->next;
6040 free_ldst_entry (tmp);
6043 pre_ldst_mems = NULL;
6046 /* Dump debugging info about the ldst list. */
6048 static void
6049 print_ldst_list (file)
6050 FILE * file;
6052 struct ls_expr * ptr;
6054 fprintf (file, "LDST list: \n");
6056 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6058 fprintf (file, " Pattern (%3d): ", ptr->index);
6060 print_rtl (file, ptr->pattern);
6062 fprintf (file, "\n Loads : ");
6064 if (ptr->loads)
6065 print_rtl (file, ptr->loads);
6066 else
6067 fprintf (file, "(nil)");
6069 fprintf (file, "\n Stores : ");
6071 if (ptr->stores)
6072 print_rtl (file, ptr->stores);
6073 else
6074 fprintf (file, "(nil)");
6076 fprintf (file, "\n\n");
6079 fprintf (file, "\n");
6082 /* Returns 1 if X is in the list of ldst only expressions. */
6084 static struct ls_expr *
6085 find_rtx_in_ldst (x)
6086 rtx x;
6088 struct ls_expr * ptr;
6090 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6091 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6092 return ptr;
6094 return NULL;
6097 /* Assign each element of the list of mems a monotonically increasing value. */
6099 static int
6100 enumerate_ldsts ()
6102 struct ls_expr * ptr;
6103 int n = 0;
6105 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6106 ptr->index = n++;
6108 return n;
6111 /* Return first item in the list. */
6113 static inline struct ls_expr *
6114 first_ls_expr ()
6116 return pre_ldst_mems;
6119 /* Return the next item in ther list after the specified one. */
6121 static inline struct ls_expr *
6122 next_ls_expr (ptr)
6123 struct ls_expr * ptr;
6125 return ptr->next;
6128 /* Load Motion for loads which only kill themselves. */
6130 /* Return true if x is a simple MEM operation, with no registers or
6131 side effects. These are the types of loads we consider for the
6132 ld_motion list, otherwise we let the usual aliasing take care of it. */
6134 static int
6135 simple_mem (x)
6136 rtx x;
6138 if (GET_CODE (x) != MEM)
6139 return 0;
6141 if (MEM_VOLATILE_P (x))
6142 return 0;
6144 if (GET_MODE (x) == BLKmode)
6145 return 0;
6147 if (!rtx_varies_p (XEXP (x, 0), 0))
6148 return 1;
6150 return 0;
6153 /* Make sure there isn't a buried reference in this pattern anywhere.
6154 If there is, invalidate the entry for it since we're not capable
6155 of fixing it up just yet.. We have to be sure we know about ALL
6156 loads since the aliasing code will allow all entries in the
6157 ld_motion list to not-alias itself. If we miss a load, we will get
6158 the wrong value since gcse might common it and we won't know to
6159 fix it up. */
6161 static void
6162 invalidate_any_buried_refs (x)
6163 rtx x;
6165 const char * fmt;
6166 int i,j;
6167 struct ls_expr * ptr;
6169 /* Invalidate it in the list. */
6170 if (GET_CODE (x) == MEM && simple_mem (x))
6172 ptr = ldst_entry (x);
6173 ptr->invalid = 1;
6176 /* Recursively process the insn. */
6177 fmt = GET_RTX_FORMAT (GET_CODE (x));
6179 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6181 if (fmt[i] == 'e')
6182 invalidate_any_buried_refs (XEXP (x, i));
6183 else if (fmt[i] == 'E')
6184 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6185 invalidate_any_buried_refs (XVECEXP (x, i, j));
6189 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6190 being defined as MEM loads and stores to symbols, with no
6191 side effects and no registers in the expression. If there are any
6192 uses/defs which dont match this criteria, it is invalidated and
6193 trimmed out later. */
6195 static void
6196 compute_ld_motion_mems ()
6198 struct ls_expr * ptr;
6199 int bb;
6200 rtx insn;
6202 pre_ldst_mems = NULL;
6204 for (bb = 0; bb < n_basic_blocks; bb++)
6206 for (insn = BLOCK_HEAD (bb);
6207 insn && insn != NEXT_INSN (BLOCK_END (bb));
6208 insn = NEXT_INSN (insn))
6210 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6212 if (GET_CODE (PATTERN (insn)) == SET)
6214 rtx src = SET_SRC (PATTERN (insn));
6215 rtx dest = SET_DEST (PATTERN (insn));
6217 /* Check for a simple LOAD... */
6218 if (GET_CODE (src) == MEM && simple_mem (src))
6220 ptr = ldst_entry (src);
6221 if (GET_CODE (dest) == REG)
6222 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6223 else
6224 ptr->invalid = 1;
6226 else
6228 /* Make sure there isn't a buried load somewhere. */
6229 invalidate_any_buried_refs (src);
6232 /* Check for stores. Don't worry about aliased ones, they
6233 will block any movement we might do later. We only care
6234 about this exact pattern since those are the only
6235 circumstance that we will ignore the aliasing info. */
6236 if (GET_CODE (dest) == MEM && simple_mem (dest))
6238 ptr = ldst_entry (dest);
6240 if (GET_CODE (src) != MEM
6241 && GET_CODE (src) != ASM_OPERANDS)
6242 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6243 else
6244 ptr->invalid = 1;
6247 else
6248 invalidate_any_buried_refs (PATTERN (insn));
6254 /* Remove any references that have been either invalidated or are not in the
6255 expression list for pre gcse. */
6257 static void
6258 trim_ld_motion_mems ()
6260 struct ls_expr * last = NULL;
6261 struct ls_expr * ptr = first_ls_expr ();
6263 while (ptr != NULL)
6265 int del = ptr->invalid;
6266 struct expr * expr = NULL;
6268 /* Delete if entry has been made invalid. */
6269 if (!del)
6271 unsigned int i;
6273 del = 1;
6274 /* Delete if we cannot find this mem in the expression list. */
6275 for (i = 0; i < expr_hash_table_size && del; i++)
6277 for (expr = expr_hash_table[i];
6278 expr != NULL;
6279 expr = expr->next_same_hash)
6280 if (expr_equiv_p (expr->expr, ptr->pattern))
6282 del = 0;
6283 break;
6288 if (del)
6290 if (last != NULL)
6292 last->next = ptr->next;
6293 free_ldst_entry (ptr);
6294 ptr = last->next;
6296 else
6298 pre_ldst_mems = pre_ldst_mems->next;
6299 free_ldst_entry (ptr);
6300 ptr = pre_ldst_mems;
6303 else
6305 /* Set the expression field if we are keeping it. */
6306 last = ptr;
6307 ptr->expr = expr;
6308 ptr = ptr->next;
6312 /* Show the world what we've found. */
6313 if (gcse_file && pre_ldst_mems != NULL)
6314 print_ldst_list (gcse_file);
6317 /* This routine will take an expression which we are replacing with
6318 a reaching register, and update any stores that are needed if
6319 that expression is in the ld_motion list. Stores are updated by
6320 copying their SRC to the reaching register, and then storeing
6321 the reaching register into the store location. These keeps the
6322 correct value in the reaching register for the loads. */
6324 static void
6325 update_ld_motion_stores (expr)
6326 struct expr * expr;
6328 struct ls_expr * mem_ptr;
6330 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6332 /* We can try to find just the REACHED stores, but is shouldn't
6333 matter to set the reaching reg everywhere... some might be
6334 dead and should be eliminated later. */
6336 /* We replace SET mem = expr with
6337 SET reg = expr
6338 SET mem = reg , where reg is the
6339 reaching reg used in the load. */
6340 rtx list = mem_ptr->stores;
6342 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6344 rtx insn = XEXP (list, 0);
6345 rtx pat = PATTERN (insn);
6346 rtx src = SET_SRC (pat);
6347 rtx reg = expr->reaching_reg;
6348 rtx copy, new;
6350 /* If we've already copied it, continue. */
6351 if (expr->reaching_reg == src)
6352 continue;
6354 if (gcse_file)
6356 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6357 print_rtl (gcse_file, expr->reaching_reg);
6358 fprintf (gcse_file, ":\n ");
6359 print_inline_rtx (gcse_file, insn, 8);
6360 fprintf (gcse_file, "\n");
6363 copy = gen_move_insn ( reg, SET_SRC (pat));
6364 new = emit_insn_before (copy, insn);
6365 record_one_set (REGNO (reg), new);
6366 set_block_for_new_insns (new, BLOCK_FOR_INSN (insn));
6367 SET_SRC (pat) = reg;
6369 /* un-recognize this pattern since it's probably different now. */
6370 INSN_CODE (insn) = -1;
6371 gcse_create_count++;
6376 /* Store motion code. */
6378 /* This is used to communicate the target bitvector we want to use in the
6379 reg_set_info routine when called via the note_stores mechanism. */
6380 static sbitmap * regvec;
6382 /* Used in computing the reverse edge graph bit vectors. */
6383 static sbitmap * st_antloc;
6385 /* Global holding the number of store expressions we are dealing with. */
6386 static int num_stores;
6388 /* Checks to set if we need to mark a register set. Called from note_stores. */
6390 static void
6391 reg_set_info (dest, setter, data)
6392 rtx dest, setter ATTRIBUTE_UNUSED;
6393 void * data ATTRIBUTE_UNUSED;
6395 if (GET_CODE (dest) == SUBREG)
6396 dest = SUBREG_REG (dest);
6398 if (GET_CODE (dest) == REG)
6399 SET_BIT (*regvec, REGNO (dest));
6402 /* Return non-zero if the register operands of expression X are killed
6403 anywhere in basic block BB. */
6405 static int
6406 store_ops_ok (x, bb)
6407 rtx x;
6408 basic_block bb;
6410 int i;
6411 enum rtx_code code;
6412 const char * fmt;
6414 /* Repeat is used to turn tail-recursion into iteration. */
6415 repeat:
6417 if (x == 0)
6418 return 1;
6420 code = GET_CODE (x);
6421 switch (code)
6423 case REG:
6424 /* If a reg has changed after us in this
6425 block, the operand has been killed. */
6426 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6428 case MEM:
6429 x = XEXP (x, 0);
6430 goto repeat;
6432 case PRE_DEC:
6433 case PRE_INC:
6434 case POST_DEC:
6435 case POST_INC:
6436 return 0;
6438 case PC:
6439 case CC0: /*FIXME*/
6440 case CONST:
6441 case CONST_INT:
6442 case CONST_DOUBLE:
6443 case SYMBOL_REF:
6444 case LABEL_REF:
6445 case ADDR_VEC:
6446 case ADDR_DIFF_VEC:
6447 return 1;
6449 default:
6450 break;
6453 i = GET_RTX_LENGTH (code) - 1;
6454 fmt = GET_RTX_FORMAT (code);
6456 for (; i >= 0; i--)
6458 if (fmt[i] == 'e')
6460 rtx tem = XEXP (x, i);
6462 /* If we are about to do the last recursive call
6463 needed at this level, change it into iteration.
6464 This function is called enough to be worth it. */
6465 if (i == 0)
6467 x = tem;
6468 goto repeat;
6471 if (! store_ops_ok (tem, bb))
6472 return 0;
6474 else if (fmt[i] == 'E')
6476 int j;
6478 for (j = 0; j < XVECLEN (x, i); j++)
6480 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6481 return 0;
6486 return 1;
6489 /* Determine whether insn is MEM store pattern that we will consider moving. */
6491 static void
6492 find_moveable_store (insn)
6493 rtx insn;
6495 struct ls_expr * ptr;
6496 rtx dest = PATTERN (insn);
6498 if (GET_CODE (dest) != SET
6499 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6500 return;
6502 dest = SET_DEST (dest);
6504 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6505 || GET_MODE (dest) == BLKmode)
6506 return;
6508 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6509 return;
6511 if (rtx_varies_p (XEXP (dest, 0), 0))
6512 return;
6514 ptr = ldst_entry (dest);
6515 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6518 /* Perform store motion. Much like gcse, except we move expressions the
6519 other way by looking at the flowgraph in reverse. */
6521 static int
6522 compute_store_table ()
6524 int bb, ret;
6525 unsigned regno;
6526 rtx insn, pat;
6528 max_gcse_regno = max_reg_num ();
6530 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
6531 max_gcse_regno);
6532 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
6533 pre_ldst_mems = 0;
6535 /* Find all the stores we care about. */
6536 for (bb = 0; bb < n_basic_blocks; bb++)
6538 regvec = & (reg_set_in_block[bb]);
6539 for (insn = BLOCK_END (bb);
6540 insn && insn != PREV_INSN (BLOCK_HEAD (bb));
6541 insn = PREV_INSN (insn))
6543 #ifdef NON_SAVING_SETJMP
6544 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
6545 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
6547 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6548 SET_BIT (reg_set_in_block[bb], regno);
6549 continue;
6551 #endif
6552 /* Ignore anything that is not a normal insn. */
6553 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6554 continue;
6556 if (GET_CODE (insn) == CALL_INSN)
6558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6559 if ((call_used_regs[regno]
6560 && regno != STACK_POINTER_REGNUM
6561 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6562 && regno != HARD_FRAME_POINTER_REGNUM
6563 #endif
6564 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
6565 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
6566 #endif
6567 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
6568 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
6569 #endif
6571 && regno != FRAME_POINTER_REGNUM)
6572 || global_regs[regno])
6573 SET_BIT (reg_set_in_block[bb], regno);
6576 pat = PATTERN (insn);
6577 note_stores (pat, reg_set_info, NULL);
6579 /* Now that we've marked regs, look for stores. */
6580 if (GET_CODE (pat) == SET)
6581 find_moveable_store (insn);
6585 ret = enumerate_ldsts ();
6587 if (gcse_file)
6589 fprintf (gcse_file, "Store Motion Expressions.\n");
6590 print_ldst_list (gcse_file);
6593 return ret;
6596 /* Check to see if the load X is aliased with STORE_PATTERN. */
6598 static int
6599 load_kills_store (x, store_pattern)
6600 rtx x, store_pattern;
6602 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6603 return 1;
6604 return 0;
6607 /* Go through the entire insn X, looking for any loads which might alias
6608 STORE_PATTERN. Return 1 if found. */
6610 static int
6611 find_loads (x, store_pattern)
6612 rtx x, store_pattern;
6614 const char * fmt;
6615 int i,j;
6616 int ret = 0;
6618 if (GET_CODE (x) == SET)
6619 x = SET_SRC (x);
6621 if (GET_CODE (x) == MEM)
6623 if (load_kills_store (x, store_pattern))
6624 return 1;
6627 /* Recursively process the insn. */
6628 fmt = GET_RTX_FORMAT (GET_CODE (x));
6630 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6632 if (fmt[i] == 'e')
6633 ret |= find_loads (XEXP (x, i), store_pattern);
6634 else if (fmt[i] == 'E')
6635 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6636 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6638 return ret;
6641 /* Check if INSN kills the store pattern X (is aliased with it).
6642 Return 1 if it it does. */
6644 static int
6645 store_killed_in_insn (x, insn)
6646 rtx x, insn;
6648 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6649 return 0;
6651 if (GET_CODE (insn) == CALL_INSN)
6653 if (CONST_CALL_P (insn))
6654 return 0;
6655 else
6656 return 1;
6659 if (GET_CODE (PATTERN (insn)) == SET)
6661 rtx pat = PATTERN (insn);
6662 /* Check for memory stores to aliased objects. */
6663 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6664 /* pretend its a load and check for aliasing. */
6665 if (find_loads (SET_DEST (pat), x))
6666 return 1;
6667 return find_loads (SET_SRC (pat), x);
6669 else
6670 return find_loads (PATTERN (insn), x);
6673 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6674 within basic block BB. */
6676 static int
6677 store_killed_after (x, insn, bb)
6678 rtx x, insn;
6679 basic_block bb;
6681 rtx last = bb->end;
6683 if (insn == last)
6684 return 0;
6686 /* Check if the register operands of the store are OK in this block.
6687 Note that if registers are changed ANYWHERE in the block, we'll
6688 decide we can't move it, regardless of whether it changed above
6689 or below the store. This could be improved by checking the register
6690 operands while lookinng for aliasing in each insn. */
6691 if (!store_ops_ok (XEXP (x, 0), bb))
6692 return 1;
6694 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6695 if (store_killed_in_insn (x, insn))
6696 return 1;
6698 return 0;
6701 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6702 within basic block BB. */
6703 static int
6704 store_killed_before (x, insn, bb)
6705 rtx x, insn;
6706 basic_block bb;
6708 rtx first = bb->head;
6710 if (insn == first)
6711 return store_killed_in_insn (x, insn);
6713 /* Check if the register operands of the store are OK in this block.
6714 Note that if registers are changed ANYWHERE in the block, we'll
6715 decide we can't move it, regardless of whether it changed above
6716 or below the store. This could be improved by checking the register
6717 operands while lookinng for aliasing in each insn. */
6718 if (!store_ops_ok (XEXP (x, 0), bb))
6719 return 1;
6721 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6722 if (store_killed_in_insn (x, insn))
6723 return 1;
6725 return 0;
6728 #define ANTIC_STORE_LIST(x) ((x)->loads)
6729 #define AVAIL_STORE_LIST(x) ((x)->stores)
6731 /* Given the table of available store insns at the end of blocks,
6732 determine which ones are not killed by aliasing, and generate
6733 the appropriate vectors for gen and killed. */
6734 static void
6735 build_store_vectors ()
6737 basic_block bb;
6738 int b;
6739 rtx insn, st;
6740 struct ls_expr * ptr;
6742 /* Build the gen_vector. This is any store in the table which is not killed
6743 by aliasing later in its block. */
6744 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6745 sbitmap_vector_zero (ae_gen, n_basic_blocks);
6747 st_antloc = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6748 sbitmap_vector_zero (st_antloc, n_basic_blocks);
6750 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6752 /* Put all the stores into either the antic list, or the avail list,
6753 or both. */
6754 rtx store_list = ptr->stores;
6755 ptr->stores = NULL_RTX;
6757 for (st = store_list; st != NULL; st = XEXP (st, 1))
6759 insn = XEXP (st, 0);
6760 bb = BLOCK_FOR_INSN (insn);
6762 if (!store_killed_after (ptr->pattern, insn, bb))
6764 /* If we've already seen an availale expression in this block,
6765 we can delete the one we saw already (It occurs earlier in
6766 the block), and replace it with this one). We'll copy the
6767 old SRC expression to an unused register in case there
6768 are any side effects. */
6769 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6771 /* Find previous store. */
6772 rtx st;
6773 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6774 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6775 break;
6776 if (st)
6778 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6779 if (gcse_file)
6780 fprintf(gcse_file, "Removing redundant store:\n");
6781 replace_store_insn (r, XEXP (st, 0), bb);
6782 XEXP (st, 0) = insn;
6783 continue;
6786 SET_BIT (ae_gen[bb->index], ptr->index);
6787 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6788 AVAIL_STORE_LIST (ptr));
6791 if (!store_killed_before (ptr->pattern, insn, bb))
6793 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6794 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6795 ANTIC_STORE_LIST (ptr));
6799 /* Free the original list of store insns. */
6800 free_INSN_LIST_list (&store_list);
6803 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6804 sbitmap_vector_zero (ae_kill, n_basic_blocks);
6806 transp = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6807 sbitmap_vector_zero (transp, n_basic_blocks);
6809 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6810 for (b = 0; b < n_basic_blocks; b++)
6812 if (store_killed_after (ptr->pattern, BLOCK_HEAD (b), BASIC_BLOCK (b)))
6814 /* The anticipatable expression is not killed if it's gen'd. */
6816 We leave this check out for now. If we have a code sequence
6817 in a block which looks like:
6818 ST MEMa = x
6819 L y = MEMa
6820 ST MEMa = z
6821 We should flag this as having an ANTIC expression, NOT
6822 transparent, NOT killed, and AVAIL.
6823 Unfortunately, since we haven't re-written all loads to
6824 use the reaching reg, we'll end up doing an incorrect
6825 Load in the middle here if we push the store down. It happens in
6826 gcc.c-torture/execute/960311-1.c with -O3
6827 If we always kill it in this case, we'll sometimes do
6828 uneccessary work, but it shouldn't actually hurt anything.
6829 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6830 SET_BIT (ae_kill[b], ptr->index);
6832 else
6833 SET_BIT (transp[b], ptr->index);
6836 /* Any block with no exits calls some non-returning function, so
6837 we better mark the store killed here, or we might not store to
6838 it at all. If we knew it was abort, we wouldn't have to store,
6839 but we don't know that for sure. */
6840 if (gcse_file)
6842 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6843 print_ldst_list (gcse_file);
6844 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, n_basic_blocks);
6845 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, n_basic_blocks);
6846 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, n_basic_blocks);
6847 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, n_basic_blocks);
6851 /* Insert an instruction at the begining of a basic block, and update
6852 the BLOCK_HEAD if needed. */
6854 static void
6855 insert_insn_start_bb (insn, bb)
6856 rtx insn;
6857 basic_block bb;
6859 /* Insert at start of successor block. */
6860 rtx prev = PREV_INSN (bb->head);
6861 rtx before = bb->head;
6862 while (before != 0)
6864 if (GET_CODE (before) != CODE_LABEL
6865 && (GET_CODE (before) != NOTE
6866 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6867 break;
6868 prev = before;
6869 if (prev == bb->end)
6870 break;
6871 before = NEXT_INSN (before);
6874 insn = emit_insn_after (insn, prev);
6876 if (prev == bb->end)
6877 bb->end = insn;
6879 set_block_for_new_insns (insn, bb);
6881 if (gcse_file)
6883 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6884 bb->index);
6885 print_inline_rtx (gcse_file, insn, 6);
6886 fprintf (gcse_file, "\n");
6890 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6891 the memory reference, and E is the edge to insert it on. Returns non-zero
6892 if an edge insertion was performed. */
6894 static int
6895 insert_store (expr, e)
6896 struct ls_expr * expr;
6897 edge e;
6899 rtx reg, insn;
6900 basic_block bb;
6901 edge tmp;
6903 /* We did all the deleted before this insert, so if we didn't delete a
6904 store, then we haven't set the reaching reg yet either. */
6905 if (expr->reaching_reg == NULL_RTX)
6906 return 0;
6908 reg = expr->reaching_reg;
6909 insn = gen_move_insn (expr->pattern, reg);
6911 /* If we are inserting this expression on ALL predecessor edges of a BB,
6912 insert it at the start of the BB, and reset the insert bits on the other
6913 edges so we don;t try to insert it on the other edges. */
6914 bb = e->dest;
6915 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6917 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6918 if (index == EDGE_INDEX_NO_EDGE)
6919 abort ();
6920 if (! TEST_BIT (pre_insert_map[index], expr->index))
6921 break;
6924 /* If tmp is NULL, we found an insertion on every edge, blank the
6925 insertion vector for these edges, and insert at the start of the BB. */
6926 if (!tmp && bb != EXIT_BLOCK_PTR)
6928 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6930 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6931 RESET_BIT (pre_insert_map[index], expr->index);
6933 insert_insn_start_bb (insn, bb);
6934 return 0;
6937 /* We can't insert on this edge, so we'll insert at the head of the
6938 successors block. See Morgan, sec 10.5. */
6939 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6941 insert_insn_start_bb (insn, bb);
6942 return 0;
6945 insert_insn_on_edge (insn, e);
6947 if (gcse_file)
6949 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6950 e->src->index, e->dest->index);
6951 print_inline_rtx (gcse_file, insn, 6);
6952 fprintf (gcse_file, "\n");
6955 return 1;
6958 /* This routine will replace a store with a SET to a specified register. */
6960 static void
6961 replace_store_insn (reg, del, bb)
6962 rtx reg, del;
6963 basic_block bb;
6965 rtx insn;
6967 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
6968 insn = emit_insn_after (insn, del);
6969 set_block_for_new_insns (insn, bb);
6971 if (gcse_file)
6973 fprintf (gcse_file,
6974 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6975 print_inline_rtx (gcse_file, del, 6);
6976 fprintf(gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6977 print_inline_rtx (gcse_file, insn, 6);
6978 fprintf(gcse_file, "\n");
6981 if (bb->end == del)
6982 bb->end = insn;
6984 if (bb->head == del)
6985 bb->head = insn;
6987 delete_insn (del);
6991 /* Delete a store, but copy the value that would have been stored into
6992 the reaching_reg for later storing. */
6994 static void
6995 delete_store (expr, bb)
6996 struct ls_expr * expr;
6997 basic_block bb;
6999 rtx reg, i, del;
7001 if (expr->reaching_reg == NULL_RTX)
7002 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7005 /* If there is more than 1 store, the earlier ones will be dead,
7006 but it doesn't hurt to replace them here. */
7007 reg = expr->reaching_reg;
7009 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7011 del = XEXP (i, 0);
7012 if (BLOCK_FOR_INSN (del) == bb)
7014 /* We know there is only one since we deleted redundant
7015 ones during the available computation. */
7016 replace_store_insn (reg, del, bb);
7017 break;
7022 /* Free memory used by store motion. */
7024 static void
7025 free_store_memory ()
7027 free_ldst_mems ();
7029 if (ae_gen)
7030 free (ae_gen);
7031 if (ae_kill)
7032 free (ae_kill);
7033 if (transp)
7034 free (transp);
7035 if (st_antloc)
7036 free (st_antloc);
7037 if (pre_insert_map)
7038 free (pre_insert_map);
7039 if (pre_delete_map)
7040 free (pre_delete_map);
7041 if (reg_set_in_block)
7042 free (reg_set_in_block);
7044 ae_gen = ae_kill = transp = st_antloc = NULL;
7045 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7048 /* Perform store motion. Much like gcse, except we move expressions the
7049 other way by looking at the flowgraph in reverse. */
7051 static void
7052 store_motion ()
7054 int x;
7055 struct ls_expr * ptr;
7056 int update_flow = 0;
7058 if (gcse_file)
7060 fprintf (gcse_file, "before store motion\n");
7061 print_rtl (gcse_file, get_insns ());
7065 init_alias_analysis ();
7067 /* Find all the stores that are live to the end of their block. */
7068 num_stores = compute_store_table ();
7069 if (num_stores == 0)
7071 free (reg_set_in_block);
7072 end_alias_analysis ();
7073 return;
7076 /* Now compute whats actually available to move. */
7077 add_noreturn_fake_exit_edges ();
7078 build_store_vectors ();
7080 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7081 st_antloc, ae_kill, &pre_insert_map,
7082 &pre_delete_map);
7084 /* Now we want to insert the new stores which are going to be needed. */
7085 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7087 for (x = 0; x < n_basic_blocks; x++)
7088 if (TEST_BIT (pre_delete_map[x], ptr->index))
7089 delete_store (ptr, BASIC_BLOCK (x));
7091 for (x = 0; x < NUM_EDGES (edge_list); x++)
7092 if (TEST_BIT (pre_insert_map[x], ptr->index))
7093 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7096 if (update_flow)
7097 commit_edge_insertions ();
7099 free_store_memory ();
7100 free_edge_list (edge_list);
7101 remove_fake_edges ();
7102 end_alias_analysis ();