* invoke.texi: Add more options to summary list.
[official-gcc.git] / gcc / emit-rtl.c
blobe1e26df102272a4c2670224ead1318cb5555b2a3
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
58 /* Commonly used modes. */
60 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
61 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
62 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
63 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
66 /* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
69 static int label_num = 1;
71 /* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
75 static int last_label_num;
77 /* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
80 static int base_label_num;
82 /* Nonzero means do not generate NOTEs for source line numbers. */
84 static int no_line_numbers;
86 /* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
91 rtx global_rtl[GR_MAX];
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
97 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
106 /* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
120 same.
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
124 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130 /* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134 /* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
137 integers. */
139 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141 /* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
144 static htab_t const_int_htab;
146 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
154 redone.
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
159 #define SEQUENCE_RESULT_SIZE 5
161 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
163 /* During RTL generation, we also keep a list of free INSN rtl codes. */
164 static rtx free_insn;
166 #define first_insn (cfun->emit->x_first_insn)
167 #define last_insn (cfun->emit->x_last_insn)
168 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169 #define last_linenum (cfun->emit->x_last_linenum)
170 #define last_filename (cfun->emit->x_last_filename)
171 #define first_label_num (cfun->emit->x_first_label_num)
173 static rtx make_jump_insn_raw PARAMS ((rtx));
174 static rtx make_call_insn_raw PARAMS ((rtx));
175 static rtx find_line_note PARAMS ((rtx));
176 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
177 static void unshare_all_rtl_1 PARAMS ((rtx));
178 static void unshare_all_decls PARAMS ((tree));
179 static void reset_used_decls PARAMS ((tree));
180 static void mark_label_nuses PARAMS ((rtx));
181 static hashval_t const_int_htab_hash PARAMS ((const void *));
182 static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184 static int rtx_htab_mark_1 PARAMS ((void **, void *));
185 static void rtx_htab_mark PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
190 static hashval_t
191 const_int_htab_hash (x)
192 const void *x;
194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
201 static int
202 const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
209 /* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
212 static int
213 rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
217 ggc_mark_rtx (*x);
218 return 1;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
224 static void
225 rtx_htab_mark (htab)
226 void *htab;
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode, regno)
237 enum machine_mode mode;
238 int regno;
240 rtx x = gen_rtx_raw_REG (mode, regno);
241 ORIGINAL_REGNO (x) = regno;
242 return x;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode, arg)
251 enum machine_mode mode ATTRIBUTE_UNUSED;
252 HOST_WIDE_INT arg;
254 void **slot;
256 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
257 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx && arg == STORE_FLAG_VALUE)
261 return const_true_rtx;
262 #endif
264 /* Look up the CONST_INT in the hash table. */
265 slot = htab_find_slot_with_hash (const_int_htab, &arg,
266 (hashval_t) arg, INSERT);
267 if (*slot == 0)
268 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
270 return (rtx) *slot;
273 /* CONST_DOUBLEs needs special handling because their length is known
274 only at run-time. */
277 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
278 enum machine_mode mode;
279 rtx arg0;
280 HOST_WIDE_INT arg1, arg2;
282 rtx r = rtx_alloc (CONST_DOUBLE);
283 int i;
285 PUT_MODE (r, mode);
286 XEXP (r, 0) = arg0;
287 X0EXP (r, 1) = NULL_RTX;
288 XWINT (r, 2) = arg1;
289 XWINT (r, 3) = arg2;
291 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
292 XWINT (r, i) = 0;
294 return r;
298 gen_rtx_REG (mode, regno)
299 enum machine_mode mode;
300 int regno;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
306 assigned to them.
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode == Pmode && !reload_in_progress)
318 if (regno == FRAME_POINTER_REGNUM)
319 return frame_pointer_rtx;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno == HARD_FRAME_POINTER_REGNUM)
322 return hard_frame_pointer_rtx;
323 #endif
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno == ARG_POINTER_REGNUM)
326 return arg_pointer_rtx;
327 #endif
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
330 return return_address_pointer_rtx;
331 #endif
332 if (regno == STACK_POINTER_REGNUM)
333 return stack_pointer_rtx;
336 return gen_raw_REG (mode, regno);
340 gen_rtx_MEM (mode, addr)
341 enum machine_mode mode;
342 rtx addr;
344 rtx rt = gen_rtx_raw_MEM (mode, addr);
346 /* This field is not cleared by the mere allocation of the rtx, so
347 we clear it here. */
348 MEM_ALIAS_SET (rt) = 0;
350 return rt;
354 gen_rtx_SUBREG (mode, reg, offset)
355 enum machine_mode mode;
356 rtx reg;
357 int offset;
359 /* This is the most common failure type.
360 Catch it early so we can see who does it. */
361 if ((offset % GET_MODE_SIZE (mode)) != 0)
362 abort ();
364 /* This check isn't usable right now because combine will
365 throw arbitrary crap like a CALL into a SUBREG in
366 gen_lowpart_for_combine so we must just eat it. */
367 #if 0
368 /* Check for this too. */
369 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
370 abort ();
371 #endif
372 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
375 /* Generate a SUBREG representing the least-significant part
376 * of REG if MODE is smaller than mode of REG, otherwise
377 * paradoxical SUBREG. */
379 gen_lowpart_SUBREG (mode, reg)
380 enum machine_mode mode;
381 rtx reg;
383 enum machine_mode inmode;
384 int offset;
386 inmode = GET_MODE (reg);
387 if (inmode == VOIDmode)
388 inmode = mode;
389 offset = 0;
390 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (inmode)
391 && (WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN))
393 offset = GET_MODE_SIZE (inmode) - GET_MODE_SIZE (mode);
394 if (! BYTES_BIG_ENDIAN)
395 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
396 else if (! WORDS_BIG_ENDIAN)
397 offset %= UNITS_PER_WORD;
399 return gen_rtx_SUBREG (mode, reg, offset);
402 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
404 ** This routine generates an RTX of the size specified by
405 ** <code>, which is an RTX code. The RTX structure is initialized
406 ** from the arguments <element1> through <elementn>, which are
407 ** interpreted according to the specific RTX type's format. The
408 ** special machine mode associated with the rtx (if any) is specified
409 ** in <mode>.
411 ** gen_rtx can be invoked in a way which resembles the lisp-like
412 ** rtx it will generate. For example, the following rtx structure:
414 ** (plus:QI (mem:QI (reg:SI 1))
415 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
417 ** ...would be generated by the following C code:
419 ** gen_rtx (PLUS, QImode,
420 ** gen_rtx (MEM, QImode,
421 ** gen_rtx (REG, SImode, 1)),
422 ** gen_rtx (MEM, QImode,
423 ** gen_rtx (PLUS, SImode,
424 ** gen_rtx (REG, SImode, 2),
425 ** gen_rtx (REG, SImode, 3)))),
428 /*VARARGS2*/
430 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
432 #ifndef ANSI_PROTOTYPES
433 enum rtx_code code;
434 enum machine_mode mode;
435 #endif
436 va_list p;
437 register int i; /* Array indices... */
438 register const char *fmt; /* Current rtx's format... */
439 register rtx rt_val; /* RTX to return to caller... */
441 VA_START (p, mode);
443 #ifndef ANSI_PROTOTYPES
444 code = va_arg (p, enum rtx_code);
445 mode = va_arg (p, enum machine_mode);
446 #endif
448 switch (code)
450 case CONST_INT:
451 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
452 break;
454 case CONST_DOUBLE:
456 rtx arg0 = va_arg (p, rtx);
457 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
458 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
459 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
461 break;
463 case REG:
464 rt_val = gen_rtx_REG (mode, va_arg (p, int));
465 break;
467 case MEM:
468 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
469 break;
471 default:
472 rt_val = rtx_alloc (code); /* Allocate the storage space. */
473 rt_val->mode = mode; /* Store the machine mode... */
475 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
476 for (i = 0; i < GET_RTX_LENGTH (code); i++)
478 switch (*fmt++)
480 case '0': /* Unused field. */
481 break;
483 case 'i': /* An integer? */
484 XINT (rt_val, i) = va_arg (p, int);
485 break;
487 case 'w': /* A wide integer? */
488 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
489 break;
491 case 's': /* A string? */
492 XSTR (rt_val, i) = va_arg (p, char *);
493 break;
495 case 'e': /* An expression? */
496 case 'u': /* An insn? Same except when printing. */
497 XEXP (rt_val, i) = va_arg (p, rtx);
498 break;
500 case 'E': /* An RTX vector? */
501 XVEC (rt_val, i) = va_arg (p, rtvec);
502 break;
504 case 'b': /* A bitmap? */
505 XBITMAP (rt_val, i) = va_arg (p, bitmap);
506 break;
508 case 't': /* A tree? */
509 XTREE (rt_val, i) = va_arg (p, tree);
510 break;
512 default:
513 abort ();
516 break;
519 va_end (p);
520 return rt_val;
523 /* gen_rtvec (n, [rt1, ..., rtn])
525 ** This routine creates an rtvec and stores within it the
526 ** pointers to rtx's which are its arguments.
529 /*VARARGS1*/
530 rtvec
531 gen_rtvec VPARAMS ((int n, ...))
533 #ifndef ANSI_PROTOTYPES
534 int n;
535 #endif
536 int i;
537 va_list p;
538 rtx *vector;
540 VA_START (p, n);
542 #ifndef ANSI_PROTOTYPES
543 n = va_arg (p, int);
544 #endif
546 if (n == 0)
547 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
549 vector = (rtx *) alloca (n * sizeof (rtx));
551 for (i = 0; i < n; i++)
552 vector[i] = va_arg (p, rtx);
553 va_end (p);
555 return gen_rtvec_v (n, vector);
558 rtvec
559 gen_rtvec_v (n, argp)
560 int n;
561 rtx *argp;
563 register int i;
564 register rtvec rt_val;
566 if (n == 0)
567 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
569 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
571 for (i = 0; i < n; i++)
572 rt_val->elem[i] = *argp++;
574 return rt_val;
578 /* Generate a REG rtx for a new pseudo register of mode MODE.
579 This pseudo is assigned the next sequential register number. */
582 gen_reg_rtx (mode)
583 enum machine_mode mode;
585 struct function *f = cfun;
586 register rtx val;
588 /* Don't let anything called after initial flow analysis create new
589 registers. */
590 if (no_new_pseudos)
591 abort ();
593 if (generating_concat_p
594 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
595 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
597 /* For complex modes, don't make a single pseudo.
598 Instead, make a CONCAT of two pseudos.
599 This allows noncontiguous allocation of the real and imaginary parts,
600 which makes much better code. Besides, allocating DCmode
601 pseudos overstrains reload on some machines like the 386. */
602 rtx realpart, imagpart;
603 int size = GET_MODE_UNIT_SIZE (mode);
604 enum machine_mode partmode
605 = mode_for_size (size * BITS_PER_UNIT,
606 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
607 ? MODE_FLOAT : MODE_INT),
610 realpart = gen_reg_rtx (partmode);
611 imagpart = gen_reg_rtx (partmode);
612 return gen_rtx_CONCAT (mode, realpart, imagpart);
615 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
616 to have an element for this pseudo reg number. */
618 if (reg_rtx_no == f->emit->regno_pointer_align_length)
620 int old_size = f->emit->regno_pointer_align_length;
621 rtx *new1;
622 char *new;
623 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
624 memset (new + old_size, 0, old_size);
625 f->emit->regno_pointer_align = (unsigned char *) new;
627 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
628 old_size * 2 * sizeof (rtx));
629 memset (new1 + old_size, 0, old_size * sizeof (rtx));
630 regno_reg_rtx = new1;
632 f->emit->regno_pointer_align_length = old_size * 2;
635 val = gen_raw_REG (mode, reg_rtx_no);
636 regno_reg_rtx[reg_rtx_no++] = val;
637 return val;
640 /* Identify REG (which may be a CONCAT) as a user register. */
642 void
643 mark_user_reg (reg)
644 rtx reg;
646 if (GET_CODE (reg) == CONCAT)
648 REG_USERVAR_P (XEXP (reg, 0)) = 1;
649 REG_USERVAR_P (XEXP (reg, 1)) = 1;
651 else if (GET_CODE (reg) == REG)
652 REG_USERVAR_P (reg) = 1;
653 else
654 abort ();
657 /* Identify REG as a probable pointer register and show its alignment
658 as ALIGN, if nonzero. */
660 void
661 mark_reg_pointer (reg, align)
662 rtx reg;
663 int align;
665 if (! REG_POINTER (reg))
667 REG_POINTER (reg) = 1;
669 if (align)
670 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
672 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
673 /* We can no-longer be sure just how aligned this pointer is */
674 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
677 /* Return 1 plus largest pseudo reg number used in the current function. */
680 max_reg_num ()
682 return reg_rtx_no;
685 /* Return 1 + the largest label number used so far in the current function. */
688 max_label_num ()
690 if (last_label_num && label_num == base_label_num)
691 return last_label_num;
692 return label_num;
695 /* Return first label number used in this function (if any were used). */
698 get_first_label_num ()
700 return first_label_num;
703 /* Return the final regno of X, which is a SUBREG of a hard
704 register. */
706 subreg_hard_regno (x, check_mode)
707 register rtx x;
708 int check_mode;
710 enum machine_mode mode = GET_MODE (x);
711 unsigned int byte_offset, base_regno, final_regno;
712 rtx reg = SUBREG_REG (x);
714 /* This is where we attempt to catch illegal subregs
715 created by the compiler. */
716 if (GET_CODE (x) != SUBREG
717 || GET_CODE (reg) != REG)
718 abort ();
719 base_regno = REGNO (reg);
720 if (base_regno >= FIRST_PSEUDO_REGISTER)
721 abort ();
722 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
723 abort ();
725 /* Catch non-congruent offsets too. */
726 byte_offset = SUBREG_BYTE (x);
727 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
728 abort ();
730 final_regno = subreg_regno (x);
732 return final_regno;
735 /* Return a value representing some low-order bits of X, where the number
736 of low-order bits is given by MODE. Note that no conversion is done
737 between floating-point and fixed-point values, rather, the bit
738 representation is returned.
740 This function handles the cases in common between gen_lowpart, below,
741 and two variants in cse.c and combine.c. These are the cases that can
742 be safely handled at all points in the compilation.
744 If this is not a case we can handle, return 0. */
747 gen_lowpart_common (mode, x)
748 enum machine_mode mode;
749 register rtx x;
751 int msize = GET_MODE_SIZE (mode);
752 int xsize = GET_MODE_SIZE (GET_MODE (x));
753 int offset = 0;
755 if (GET_MODE (x) == mode)
756 return x;
758 /* MODE must occupy no more words than the mode of X. */
759 if (GET_MODE (x) != VOIDmode
760 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
761 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
762 return 0;
764 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
765 && xsize > msize)
767 int difference = xsize - msize;
769 if (WORDS_BIG_ENDIAN)
770 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
771 if (BYTES_BIG_ENDIAN)
772 offset += difference % UNITS_PER_WORD;
775 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
776 && (GET_MODE_CLASS (mode) == MODE_INT
777 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
779 /* If we are getting the low-order part of something that has been
780 sign- or zero-extended, we can either just use the object being
781 extended or make a narrower extension. If we want an even smaller
782 piece than the size of the object being extended, call ourselves
783 recursively.
785 This case is used mostly by combine and cse. */
787 if (GET_MODE (XEXP (x, 0)) == mode)
788 return XEXP (x, 0);
789 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
790 return gen_lowpart_common (mode, XEXP (x, 0));
791 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
792 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
794 else if (GET_CODE (x) == SUBREG
795 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
796 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
798 int final_offset;
800 if (GET_MODE (SUBREG_REG (x)) == mode && subreg_lowpart_p (x))
801 return SUBREG_REG (x);
803 /* When working with SUBREGs the rule is that the byte
804 offset must be a multiple of the SUBREG's mode. */
805 final_offset = SUBREG_BYTE (x) + offset;
806 final_offset = (final_offset / GET_MODE_SIZE (mode));
807 final_offset = (final_offset * GET_MODE_SIZE (mode));
808 return gen_rtx_SUBREG (mode, SUBREG_REG (x), final_offset);
810 else if (GET_CODE (x) == REG)
812 /* Hard registers are done specially in certain cases. */
813 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
815 int final_regno = REGNO (x) +
816 subreg_regno_offset (REGNO (x), GET_MODE (x),
817 offset, mode);
819 /* If the final regno is not valid for MODE, punt. */
820 /* ??? We do allow it if the current REG is not valid for
821 ??? it's mode. It is a kludge to work around how float/complex
822 ??? arguments are passed on 32-bit Sparc and should be fixed. */
823 if (! HARD_REGNO_MODE_OK (final_regno, mode)
824 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
825 return 0;
827 /* integrate.c can't handle parts of a return value register. */
828 if ((! REG_FUNCTION_VALUE_P (x)
829 || ! rtx_equal_function_value_matters)
830 #ifdef CLASS_CANNOT_CHANGE_MODE
831 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
832 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
833 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
834 && (TEST_HARD_REG_BIT
835 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
836 REGNO (x))))
837 #endif
838 /* We want to keep the stack, frame, and arg pointers
839 special. */
840 && x != frame_pointer_rtx
841 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
842 && x != arg_pointer_rtx
843 #endif
844 && x != stack_pointer_rtx)
845 return gen_rtx_REG (mode, final_regno);
847 return gen_rtx_SUBREG (mode, x, offset);
849 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
850 from the low-order part of the constant. */
851 else if ((GET_MODE_CLASS (mode) == MODE_INT
852 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
853 && GET_MODE (x) == VOIDmode
854 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
856 /* If MODE is twice the host word size, X is already the desired
857 representation. Otherwise, if MODE is wider than a word, we can't
858 do this. If MODE is exactly a word, return just one CONST_INT. */
860 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
861 return x;
862 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
863 return 0;
864 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
865 return (GET_CODE (x) == CONST_INT ? x
866 : GEN_INT (CONST_DOUBLE_LOW (x)));
867 else
869 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
870 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
871 : CONST_DOUBLE_LOW (x));
873 /* Sign extend to HOST_WIDE_INT. */
874 val = trunc_int_for_mode (val, mode);
876 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
877 : GEN_INT (val));
881 #ifndef REAL_ARITHMETIC
882 /* If X is an integral constant but we want it in floating-point, it
883 must be the case that we have a union of an integer and a floating-point
884 value. If the machine-parameters allow it, simulate that union here
885 and return the result. The two-word and single-word cases are
886 different. */
888 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
889 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
890 || flag_pretend_float)
891 && GET_MODE_CLASS (mode) == MODE_FLOAT
892 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
893 && GET_CODE (x) == CONST_INT
894 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
896 union {HOST_WIDE_INT i; float d; } u;
898 u.i = INTVAL (x);
899 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
901 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
902 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
903 || flag_pretend_float)
904 && GET_MODE_CLASS (mode) == MODE_FLOAT
905 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
906 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
907 && GET_MODE (x) == VOIDmode
908 && (sizeof (double) * HOST_BITS_PER_CHAR
909 == 2 * HOST_BITS_PER_WIDE_INT))
911 union {HOST_WIDE_INT i[2]; double d; } u;
912 HOST_WIDE_INT low, high;
914 if (GET_CODE (x) == CONST_INT)
915 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
916 else
917 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
919 #ifdef HOST_WORDS_BIG_ENDIAN
920 u.i[0] = high, u.i[1] = low;
921 #else
922 u.i[0] = low, u.i[1] = high;
923 #endif
925 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
928 /* Similarly, if this is converting a floating-point value into a
929 single-word integer. Only do this is the host and target parameters are
930 compatible. */
932 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
933 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
934 || flag_pretend_float)
935 && (GET_MODE_CLASS (mode) == MODE_INT
936 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
937 && GET_CODE (x) == CONST_DOUBLE
938 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
939 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
940 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
942 /* Similarly, if this is converting a floating-point value into a
943 two-word integer, we can do this one word at a time and make an
944 integer. Only do this is the host and target parameters are
945 compatible. */
947 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
948 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
949 || flag_pretend_float)
950 && (GET_MODE_CLASS (mode) == MODE_INT
951 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
952 && GET_CODE (x) == CONST_DOUBLE
953 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
954 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
956 rtx lowpart, highpart;
958 lowpart = constant_subword (x,
959 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
960 GET_MODE (x));
961 highpart = constant_subword (x,
962 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
963 GET_MODE (x));
964 if (lowpart && GET_CODE (lowpart) == CONST_INT
965 && highpart && GET_CODE (highpart) == CONST_INT)
966 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
968 #else /* ifndef REAL_ARITHMETIC */
970 /* When we have a FP emulator, we can handle all conversions between
971 FP and integer operands. This simplifies reload because it
972 doesn't have to deal with constructs like (subreg:DI
973 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
975 else if (mode == SFmode
976 && GET_CODE (x) == CONST_INT)
978 REAL_VALUE_TYPE r;
979 HOST_WIDE_INT i;
981 i = INTVAL (x);
982 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
983 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
985 else if (mode == DFmode
986 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
987 && GET_MODE (x) == VOIDmode)
989 REAL_VALUE_TYPE r;
990 HOST_WIDE_INT i[2];
991 HOST_WIDE_INT low, high;
993 if (GET_CODE (x) == CONST_INT)
995 low = INTVAL (x);
996 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
998 else
1000 low = CONST_DOUBLE_LOW (x);
1001 high = CONST_DOUBLE_HIGH (x);
1004 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1005 target machine. */
1006 if (WORDS_BIG_ENDIAN)
1007 i[0] = high, i[1] = low;
1008 else
1009 i[0] = low, i[1] = high;
1011 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1012 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1014 else if ((GET_MODE_CLASS (mode) == MODE_INT
1015 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1016 && GET_CODE (x) == CONST_DOUBLE
1017 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1019 REAL_VALUE_TYPE r;
1020 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1021 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1023 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1024 switch (GET_MODE (x))
1026 case SFmode:
1027 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
1028 i[1 - endian] = 0;
1029 break;
1030 case DFmode:
1031 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
1032 break;
1033 #if LONG_DOUBLE_TYPE_SIZE == 96
1034 case XFmode:
1035 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1036 i[3-3*endian] = 0;
1037 #else
1038 case TFmode:
1039 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1040 #endif
1041 break;
1042 default:
1043 abort ();
1046 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1047 and return it. */
1048 #if HOST_BITS_PER_WIDE_INT == 32
1049 return immed_double_const (i[endian], i[1 - endian], mode);
1050 #else
1052 int c;
1054 if (HOST_BITS_PER_WIDE_INT != 64)
1055 abort ();
1057 for (c = 0; c < 4; c++)
1058 i[c] &= ~ (0L);
1060 switch (GET_MODE (x))
1062 case SFmode:
1063 case DFmode:
1064 return immed_double_const (((unsigned long) i[endian]) |
1065 (((HOST_WIDE_INT) i[1-endian]) << 32),
1066 0, mode);
1067 default:
1068 return immed_double_const (((unsigned long) i[endian*3]) |
1069 (((HOST_WIDE_INT) i[1+endian]) << 32),
1070 ((unsigned long) i[2-endian]) |
1071 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
1072 mode);
1075 #endif
1077 #endif /* ifndef REAL_ARITHMETIC */
1079 /* Otherwise, we can't do this. */
1080 return 0;
1083 /* Return the real part (which has mode MODE) of a complex value X.
1084 This always comes at the low address in memory. */
1087 gen_realpart (mode, x)
1088 enum machine_mode mode;
1089 register rtx x;
1091 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1092 return XEXP (x, 0);
1093 else if (WORDS_BIG_ENDIAN
1094 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1095 && REG_P (x)
1096 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1097 internal_error
1098 ("Can't access real part of complex value in hard register");
1099 else if (WORDS_BIG_ENDIAN)
1100 return gen_highpart (mode, x);
1101 else
1102 return gen_lowpart (mode, x);
1105 /* Return the imaginary part (which has mode MODE) of a complex value X.
1106 This always comes at the high address in memory. */
1109 gen_imagpart (mode, x)
1110 enum machine_mode mode;
1111 register rtx x;
1113 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1114 return XEXP (x, 1);
1115 else if (WORDS_BIG_ENDIAN)
1116 return gen_lowpart (mode, x);
1117 else if (! WORDS_BIG_ENDIAN
1118 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1119 && REG_P (x)
1120 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1121 internal_error
1122 ("can't access imaginary part of complex value in hard register");
1123 else
1124 return gen_highpart (mode, x);
1127 /* Return 1 iff X, assumed to be a SUBREG,
1128 refers to the real part of the complex value in its containing reg.
1129 Complex values are always stored with the real part in the first word,
1130 regardless of WORDS_BIG_ENDIAN. */
1133 subreg_realpart_p (x)
1134 rtx x;
1136 if (GET_CODE (x) != SUBREG)
1137 abort ();
1139 return ((unsigned int) SUBREG_BYTE (x)
1140 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1143 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1144 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1145 least-significant part of X.
1146 MODE specifies how big a part of X to return;
1147 it usually should not be larger than a word.
1148 If X is a MEM whose address is a QUEUED, the value may be so also. */
1151 gen_lowpart (mode, x)
1152 enum machine_mode mode;
1153 register rtx x;
1155 rtx result = gen_lowpart_common (mode, x);
1157 if (result)
1158 return result;
1159 else if (GET_CODE (x) == REG)
1161 /* Must be a hard reg that's not valid in MODE. */
1162 result = gen_lowpart_common (mode, copy_to_reg (x));
1163 if (result == 0)
1164 abort ();
1165 return result;
1167 else if (GET_CODE (x) == MEM)
1169 /* The only additional case we can do is MEM. */
1170 register int offset = 0;
1171 if (WORDS_BIG_ENDIAN)
1172 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1173 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1175 if (BYTES_BIG_ENDIAN)
1176 /* Adjust the address so that the address-after-the-data
1177 is unchanged. */
1178 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1179 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1181 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1183 else if (GET_CODE (x) == ADDRESSOF)
1184 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1185 else
1186 abort ();
1189 /* Like `gen_lowpart', but refer to the most significant part.
1190 This is used to access the imaginary part of a complex number. */
1193 gen_highpart (mode, x)
1194 enum machine_mode mode;
1195 register rtx x;
1197 unsigned int msize = GET_MODE_SIZE (mode);
1198 unsigned int xsize = GET_MODE_SIZE (GET_MODE (x));
1200 /* This case loses if X is a subreg. To catch bugs early,
1201 complain if an invalid MODE is used even in other cases. */
1202 if (msize > UNITS_PER_WORD
1203 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1204 abort ();
1205 if (GET_CODE (x) == CONST_DOUBLE
1206 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1207 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1208 #endif
1210 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1211 else if (GET_CODE (x) == CONST_INT)
1213 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1214 return const0_rtx;
1215 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1217 else if (GET_CODE (x) == MEM)
1219 register int offset = 0;
1221 if (! WORDS_BIG_ENDIAN)
1222 offset = (MAX (xsize, UNITS_PER_WORD)
1223 - MAX (msize, UNITS_PER_WORD));
1225 if (! BYTES_BIG_ENDIAN
1226 && msize < UNITS_PER_WORD)
1227 offset -= (msize - MIN (UNITS_PER_WORD, xsize));
1229 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1231 else if (GET_CODE (x) == SUBREG)
1233 /* The only time this should occur is when we are looking at a
1234 multi-word item with a SUBREG whose mode is the same as that of the
1235 item. It isn't clear what we would do if it wasn't. */
1236 if (SUBREG_BYTE (x) != 0)
1237 abort ();
1238 return gen_highpart (mode, SUBREG_REG (x));
1240 else if (GET_CODE (x) == REG)
1242 int offset = 0;
1244 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1245 abort ();
1247 if ((! WORDS_BIG_ENDIAN || ! BYTES_BIG_ENDIAN)
1248 && xsize > msize)
1250 int difference = xsize - msize;
1252 if (! WORDS_BIG_ENDIAN)
1253 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1254 if (! BYTES_BIG_ENDIAN)
1255 offset += difference % UNITS_PER_WORD;
1257 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1259 int final_regno = REGNO (x) +
1260 subreg_regno_offset (REGNO (x), GET_MODE (x), offset, mode);
1262 /* integrate.c can't handle parts of a return value register.
1263 ??? Then integrate.c should be fixed!
1264 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1265 if ((! REG_FUNCTION_VALUE_P (x)
1266 || ! rtx_equal_function_value_matters)
1267 /* We want to keep the stack, frame, and arg pointers special. */
1268 && x != frame_pointer_rtx
1269 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1270 && x != arg_pointer_rtx
1271 #endif
1272 && x != stack_pointer_rtx)
1273 return gen_rtx_REG (mode, final_regno);
1275 /* Just generate a normal SUBREG. */
1276 return gen_rtx_SUBREG (mode, x, offset);
1278 else
1279 abort ();
1281 /* Return 1 iff (SUBREG:outermode (OP:innermode) byte)
1282 refers to the least significant part of its containing reg. */
1285 subreg_lowpart_parts_p (outermode, innermode, byte)
1286 enum machine_mode outermode, innermode;
1287 unsigned int byte;
1289 unsigned int offset = 0;
1290 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1292 if (difference > 0)
1294 if (WORDS_BIG_ENDIAN)
1295 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1296 if (BYTES_BIG_ENDIAN)
1297 offset += difference % UNITS_PER_WORD;
1300 return byte == offset;
1303 /* Return 1 iff X, assumed to be a SUBREG,
1304 refers to the least significant part of its containing reg.
1305 If X is not a SUBREG, always return 1 (it is its own low part!). */
1308 subreg_lowpart_p (x)
1309 rtx x;
1311 if (GET_CODE (x) != SUBREG)
1312 return 1;
1313 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1314 return 0;
1316 return subreg_lowpart_parts_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1317 SUBREG_BYTE (x));
1321 /* Helper routine for all the constant cases of operand_subword.
1322 Some places invoke this directly. */
1325 constant_subword (op, offset, mode)
1326 rtx op;
1327 int offset;
1328 enum machine_mode mode;
1330 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1331 HOST_WIDE_INT val;
1333 /* If OP is already an integer word, return it. */
1334 if (GET_MODE_CLASS (mode) == MODE_INT
1335 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1336 return op;
1338 #ifdef REAL_ARITHMETIC
1339 /* The output is some bits, the width of the target machine's word.
1340 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1341 host can't. */
1342 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1343 && GET_MODE_CLASS (mode) == MODE_FLOAT
1344 && GET_MODE_BITSIZE (mode) == 64
1345 && GET_CODE (op) == CONST_DOUBLE)
1347 long k[2];
1348 REAL_VALUE_TYPE rv;
1350 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1351 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1353 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1354 which the words are written depends on the word endianness.
1355 ??? This is a potential portability problem and should
1356 be fixed at some point.
1358 We must excercise caution with the sign bit. By definition there
1359 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1360 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1361 So we explicitly mask and sign-extend as necessary. */
1362 if (BITS_PER_WORD == 32)
1364 val = k[offset];
1365 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1366 return GEN_INT (val);
1368 #if HOST_BITS_PER_WIDE_INT >= 64
1369 else if (BITS_PER_WORD >= 64 && offset == 0)
1371 val = k[! WORDS_BIG_ENDIAN];
1372 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1373 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1374 return GEN_INT (val);
1376 #endif
1377 else if (BITS_PER_WORD == 16)
1379 val = k[offset >> 1];
1380 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1381 val >>= 16;
1382 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1383 return GEN_INT (val);
1385 else
1386 abort ();
1388 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1389 && GET_MODE_CLASS (mode) == MODE_FLOAT
1390 && GET_MODE_BITSIZE (mode) > 64
1391 && GET_CODE (op) == CONST_DOUBLE)
1393 long k[4];
1394 REAL_VALUE_TYPE rv;
1396 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1397 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1399 if (BITS_PER_WORD == 32)
1401 val = k[offset];
1402 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1403 return GEN_INT (val);
1405 #if HOST_BITS_PER_WIDE_INT >= 64
1406 else if (BITS_PER_WORD >= 64 && offset <= 1)
1408 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1409 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1410 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1411 return GEN_INT (val);
1413 #endif
1414 else
1415 abort ();
1417 #else /* no REAL_ARITHMETIC */
1418 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1419 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1420 || flag_pretend_float)
1421 && GET_MODE_CLASS (mode) == MODE_FLOAT
1422 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1423 && GET_CODE (op) == CONST_DOUBLE)
1425 /* The constant is stored in the host's word-ordering,
1426 but we want to access it in the target's word-ordering. Some
1427 compilers don't like a conditional inside macro args, so we have two
1428 copies of the return. */
1429 #ifdef HOST_WORDS_BIG_ENDIAN
1430 return GEN_INT (offset == WORDS_BIG_ENDIAN
1431 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1432 #else
1433 return GEN_INT (offset != WORDS_BIG_ENDIAN
1434 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1435 #endif
1437 #endif /* no REAL_ARITHMETIC */
1439 /* Single word float is a little harder, since single- and double-word
1440 values often do not have the same high-order bits. We have already
1441 verified that we want the only defined word of the single-word value. */
1442 #ifdef REAL_ARITHMETIC
1443 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1444 && GET_MODE_BITSIZE (mode) == 32
1445 && GET_CODE (op) == CONST_DOUBLE)
1447 long l;
1448 REAL_VALUE_TYPE rv;
1450 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1451 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1453 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1454 val = l;
1455 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1457 if (BITS_PER_WORD == 16)
1459 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1460 val >>= 16;
1461 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1464 return GEN_INT (val);
1466 #else
1467 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1468 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1469 || flag_pretend_float)
1470 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1471 && GET_MODE_CLASS (mode) == MODE_FLOAT
1472 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1473 && GET_CODE (op) == CONST_DOUBLE)
1475 double d;
1476 union {float f; HOST_WIDE_INT i; } u;
1478 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1480 u.f = d;
1481 return GEN_INT (u.i);
1483 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1484 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1485 || flag_pretend_float)
1486 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1487 && GET_MODE_CLASS (mode) == MODE_FLOAT
1488 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1489 && GET_CODE (op) == CONST_DOUBLE)
1491 double d;
1492 union {double d; HOST_WIDE_INT i; } u;
1494 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1496 u.d = d;
1497 return GEN_INT (u.i);
1499 #endif /* no REAL_ARITHMETIC */
1501 /* The only remaining cases that we can handle are integers.
1502 Convert to proper endianness now since these cases need it.
1503 At this point, offset == 0 means the low-order word.
1505 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1506 in general. However, if OP is (const_int 0), we can just return
1507 it for any word. */
1509 if (op == const0_rtx)
1510 return op;
1512 if (GET_MODE_CLASS (mode) != MODE_INT
1513 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1514 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1515 return 0;
1517 if (WORDS_BIG_ENDIAN)
1518 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1520 /* Find out which word on the host machine this value is in and get
1521 it from the constant. */
1522 val = (offset / size_ratio == 0
1523 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1524 : (GET_CODE (op) == CONST_INT
1525 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1527 /* Get the value we want into the low bits of val. */
1528 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1529 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1531 val = trunc_int_for_mode (val, word_mode);
1533 return GEN_INT (val);
1536 /* Return subword OFFSET of operand OP.
1537 The word number, OFFSET, is interpreted as the word number starting
1538 at the low-order address. OFFSET 0 is the low-order word if not
1539 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1541 If we cannot extract the required word, we return zero. Otherwise,
1542 an rtx corresponding to the requested word will be returned.
1544 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1545 reload has completed, a valid address will always be returned. After
1546 reload, if a valid address cannot be returned, we return zero.
1548 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1549 it is the responsibility of the caller.
1551 MODE is the mode of OP in case it is a CONST_INT.
1553 ??? This is still rather broken for some cases. The problem for the
1554 moment is that all callers of this thing provide no 'goal mode' to
1555 tell us to work with. This exists because all callers were written
1556 in a word based SUBREG world. */
1559 operand_subword (op, offset, validate_address, mode)
1560 rtx op;
1561 unsigned int offset;
1562 int validate_address;
1563 enum machine_mode mode;
1565 if (mode == VOIDmode)
1566 mode = GET_MODE (op);
1568 if (mode == VOIDmode)
1569 abort ();
1571 /* If OP is narrower than a word, fail. */
1572 if (mode != BLKmode
1573 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1574 return 0;
1576 /* If we want a word outside OP, return zero. */
1577 if (mode != BLKmode
1578 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1579 return const0_rtx;
1581 switch (GET_CODE (op))
1583 case REG:
1584 case SUBREG:
1585 case CONCAT:
1586 case MEM:
1587 break;
1589 default:
1590 /* The only remaining cases are when OP is a constant. If the host and
1591 target floating formats are the same, handling two-word floating
1592 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1593 are defined as returning one or two 32 bit values, respectively,
1594 and not values of BITS_PER_WORD bits. */
1595 return constant_subword (op, offset, mode);
1598 /* If OP is already an integer word, return it. */
1599 if (GET_MODE_CLASS (mode) == MODE_INT
1600 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1601 return op;
1603 /* If OP is a REG or SUBREG, we can handle it very simply. */
1604 if (GET_CODE (op) == REG)
1606 if (REGNO (op) < FIRST_PSEUDO_REGISTER)
1608 int final_regno = REGNO (op) +
1609 subreg_regno_offset (REGNO (op), GET_MODE (op),
1610 offset * UNITS_PER_WORD,
1611 word_mode);
1613 /* If the register is not valid for MODE, return 0. If we don't
1614 do this, there is no way to fix up the resulting REG later. */
1615 if (! HARD_REGNO_MODE_OK (final_regno, word_mode))
1616 return 0;
1618 /* integrate.c can't handle parts of a return value register.
1619 ??? Then integrate.c should be fixed!
1620 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1621 if ((! REG_FUNCTION_VALUE_P (op)
1622 || ! rtx_equal_function_value_matters)
1623 /* ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1624 /* We want to keep the stack, frame, and arg pointers
1625 special. */
1626 && op != frame_pointer_rtx
1627 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1628 && op != arg_pointer_rtx
1629 #endif
1630 && op != stack_pointer_rtx)
1631 return gen_rtx_REG (word_mode, final_regno);
1634 /* Just return a normal SUBREG. */
1635 return gen_rtx_SUBREG (word_mode, op,
1636 (offset * UNITS_PER_WORD));
1638 else if (GET_CODE (op) == SUBREG)
1640 int final_offset = ((offset * UNITS_PER_WORD) + SUBREG_BYTE (op));
1642 /* When working with SUBREGs the rule is that the byte
1643 offset must be a multiple of the SUBREG's mode. */
1644 final_offset = (final_offset / GET_MODE_SIZE (word_mode));
1645 final_offset = (final_offset * GET_MODE_SIZE (word_mode));
1646 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), final_offset);
1648 else if (GET_CODE (op) == CONCAT)
1650 unsigned int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1651 if (offset < partwords)
1652 return operand_subword (XEXP (op, 0), offset, validate_address, mode);
1653 return operand_subword (XEXP (op, 1), offset - partwords,
1654 validate_address, mode);
1657 /* Form a new MEM at the requested address. */
1658 if (GET_CODE (op) == MEM)
1660 rtx addr = plus_constant (XEXP (op, 0), (offset * UNITS_PER_WORD));
1661 rtx new;
1663 if (validate_address)
1665 if (reload_completed)
1667 if (! strict_memory_address_p (word_mode, addr))
1668 return 0;
1670 else
1671 addr = memory_address (word_mode, addr);
1674 new = gen_rtx_MEM (word_mode, addr);
1675 MEM_COPY_ATTRIBUTES (new, op);
1676 return new;
1679 /* Unreachable... (famous last words) */
1680 abort ();
1683 /* Similar to `operand_subword', but never return 0. If we can't extract
1684 the required subword, put OP into a register and try again. If that fails,
1685 abort. We always validate the address in this case.
1687 MODE is the mode of OP, in case it is CONST_INT. */
1690 operand_subword_force (op, offset, mode)
1691 rtx op;
1692 unsigned int offset;
1693 enum machine_mode mode;
1695 rtx result = operand_subword (op, offset, 1, mode);
1697 if (result)
1698 return result;
1700 if (mode != BLKmode && mode != VOIDmode)
1702 /* If this is a register which can not be accessed by words, copy it
1703 to a pseudo register. */
1704 if (GET_CODE (op) == REG)
1705 op = copy_to_reg (op);
1706 else
1707 op = force_reg (mode, op);
1710 result = operand_subword (op, offset, 1, mode);
1711 if (result == 0)
1712 abort ();
1714 return result;
1717 /* Given a compare instruction, swap the operands.
1718 A test instruction is changed into a compare of 0 against the operand. */
1720 void
1721 reverse_comparison (insn)
1722 rtx insn;
1724 rtx body = PATTERN (insn);
1725 rtx comp;
1727 if (GET_CODE (body) == SET)
1728 comp = SET_SRC (body);
1729 else
1730 comp = SET_SRC (XVECEXP (body, 0, 0));
1732 if (GET_CODE (comp) == COMPARE)
1734 rtx op0 = XEXP (comp, 0);
1735 rtx op1 = XEXP (comp, 1);
1736 XEXP (comp, 0) = op1;
1737 XEXP (comp, 1) = op0;
1739 else
1741 rtx new = gen_rtx_COMPARE (VOIDmode,
1742 CONST0_RTX (GET_MODE (comp)), comp);
1743 if (GET_CODE (body) == SET)
1744 SET_SRC (body) = new;
1745 else
1746 SET_SRC (XVECEXP (body, 0, 0)) = new;
1750 /* Return a memory reference like MEMREF, but with its mode changed
1751 to MODE and its address changed to ADDR.
1752 (VOIDmode means don't change the mode.
1753 NULL for ADDR means don't change the address.) */
1756 change_address (memref, mode, addr)
1757 rtx memref;
1758 enum machine_mode mode;
1759 rtx addr;
1761 rtx new;
1763 if (GET_CODE (memref) != MEM)
1764 abort ();
1765 if (mode == VOIDmode)
1766 mode = GET_MODE (memref);
1767 if (addr == 0)
1768 addr = XEXP (memref, 0);
1770 /* If reload is in progress or has completed, ADDR must be valid.
1771 Otherwise, we can call memory_address to make it valid. */
1772 if (reload_completed || reload_in_progress)
1774 if (! memory_address_p (mode, addr))
1775 abort ();
1777 else
1778 addr = memory_address (mode, addr);
1780 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1781 return memref;
1783 new = gen_rtx_MEM (mode, addr);
1784 MEM_COPY_ATTRIBUTES (new, memref);
1785 return new;
1788 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1791 gen_label_rtx ()
1793 register rtx label;
1795 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1796 NULL_RTX, label_num++, NULL, NULL);
1798 LABEL_NUSES (label) = 0;
1799 LABEL_ALTERNATE_NAME (label) = NULL;
1800 return label;
1803 /* For procedure integration. */
1805 /* Install new pointers to the first and last insns in the chain.
1806 Also, set cur_insn_uid to one higher than the last in use.
1807 Used for an inline-procedure after copying the insn chain. */
1809 void
1810 set_new_first_and_last_insn (first, last)
1811 rtx first, last;
1813 rtx insn;
1815 first_insn = first;
1816 last_insn = last;
1817 cur_insn_uid = 0;
1819 for (insn = first; insn; insn = NEXT_INSN (insn))
1820 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1822 cur_insn_uid++;
1825 /* Set the range of label numbers found in the current function.
1826 This is used when belatedly compiling an inline function. */
1828 void
1829 set_new_first_and_last_label_num (first, last)
1830 int first, last;
1832 base_label_num = label_num;
1833 first_label_num = first;
1834 last_label_num = last;
1837 /* Set the last label number found in the current function.
1838 This is used when belatedly compiling an inline function. */
1840 void
1841 set_new_last_label_num (last)
1842 int last;
1844 base_label_num = label_num;
1845 last_label_num = last;
1848 /* Restore all variables describing the current status from the structure *P.
1849 This is used after a nested function. */
1851 void
1852 restore_emit_status (p)
1853 struct function *p ATTRIBUTE_UNUSED;
1855 last_label_num = 0;
1856 clear_emit_caches ();
1859 /* Clear out all parts of the state in F that can safely be discarded
1860 after the function has been compiled, to let garbage collection
1861 reclaim the memory. */
1863 void
1864 free_emit_status (f)
1865 struct function *f;
1867 free (f->emit->x_regno_reg_rtx);
1868 free (f->emit->regno_pointer_align);
1869 free (f->emit);
1870 f->emit = NULL;
1873 /* Go through all the RTL insn bodies and copy any invalid shared
1874 structure. This routine should only be called once. */
1876 void
1877 unshare_all_rtl (fndecl, insn)
1878 tree fndecl;
1879 rtx insn;
1881 tree decl;
1883 /* Make sure that virtual parameters are not shared. */
1884 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1885 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
1887 /* Make sure that virtual stack slots are not shared. */
1888 unshare_all_decls (DECL_INITIAL (fndecl));
1890 /* Unshare just about everything else. */
1891 unshare_all_rtl_1 (insn);
1893 /* Make sure the addresses of stack slots found outside the insn chain
1894 (such as, in DECL_RTL of a variable) are not shared
1895 with the insn chain.
1897 This special care is necessary when the stack slot MEM does not
1898 actually appear in the insn chain. If it does appear, its address
1899 is unshared from all else at that point. */
1900 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1903 /* Go through all the RTL insn bodies and copy any invalid shared
1904 structure, again. This is a fairly expensive thing to do so it
1905 should be done sparingly. */
1907 void
1908 unshare_all_rtl_again (insn)
1909 rtx insn;
1911 rtx p;
1912 tree decl;
1914 for (p = insn; p; p = NEXT_INSN (p))
1915 if (INSN_P (p))
1917 reset_used_flags (PATTERN (p));
1918 reset_used_flags (REG_NOTES (p));
1919 reset_used_flags (LOG_LINKS (p));
1922 /* Make sure that virtual stack slots are not shared. */
1923 reset_used_decls (DECL_INITIAL (cfun->decl));
1925 /* Make sure that virtual parameters are not shared. */
1926 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1927 reset_used_flags (DECL_RTL (decl));
1929 reset_used_flags (stack_slot_list);
1931 unshare_all_rtl (cfun->decl, insn);
1934 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1935 Assumes the mark bits are cleared at entry. */
1937 static void
1938 unshare_all_rtl_1 (insn)
1939 rtx insn;
1941 for (; insn; insn = NEXT_INSN (insn))
1942 if (INSN_P (insn))
1944 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1945 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1946 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1950 /* Go through all virtual stack slots of a function and copy any
1951 shared structure. */
1952 static void
1953 unshare_all_decls (blk)
1954 tree blk;
1956 tree t;
1958 /* Copy shared decls. */
1959 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1960 if (DECL_RTL_SET_P (t))
1961 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
1963 /* Now process sub-blocks. */
1964 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1965 unshare_all_decls (t);
1968 /* Go through all virtual stack slots of a function and mark them as
1969 not shared. */
1970 static void
1971 reset_used_decls (blk)
1972 tree blk;
1974 tree t;
1976 /* Mark decls. */
1977 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1978 if (DECL_RTL_SET_P (t))
1979 reset_used_flags (DECL_RTL (t));
1981 /* Now process sub-blocks. */
1982 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1983 reset_used_decls (t);
1986 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1987 Recursively does the same for subexpressions. */
1990 copy_rtx_if_shared (orig)
1991 rtx orig;
1993 register rtx x = orig;
1994 register int i;
1995 register enum rtx_code code;
1996 register const char *format_ptr;
1997 int copied = 0;
1999 if (x == 0)
2000 return 0;
2002 code = GET_CODE (x);
2004 /* These types may be freely shared. */
2006 switch (code)
2008 case REG:
2009 case QUEUED:
2010 case CONST_INT:
2011 case CONST_DOUBLE:
2012 case SYMBOL_REF:
2013 case CODE_LABEL:
2014 case PC:
2015 case CC0:
2016 case SCRATCH:
2017 /* SCRATCH must be shared because they represent distinct values. */
2018 return x;
2020 case CONST:
2021 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2022 a LABEL_REF, it isn't sharable. */
2023 if (GET_CODE (XEXP (x, 0)) == PLUS
2024 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2025 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2026 return x;
2027 break;
2029 case INSN:
2030 case JUMP_INSN:
2031 case CALL_INSN:
2032 case NOTE:
2033 case BARRIER:
2034 /* The chain of insns is not being copied. */
2035 return x;
2037 case MEM:
2038 /* A MEM is allowed to be shared if its address is constant.
2040 We used to allow sharing of MEMs which referenced
2041 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2042 that can lose. instantiate_virtual_regs will not unshare
2043 the MEMs, and combine may change the structure of the address
2044 because it looks safe and profitable in one context, but
2045 in some other context it creates unrecognizable RTL. */
2046 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2047 return x;
2049 break;
2051 default:
2052 break;
2055 /* This rtx may not be shared. If it has already been seen,
2056 replace it with a copy of itself. */
2058 if (x->used)
2060 register rtx copy;
2062 copy = rtx_alloc (code);
2063 memcpy (copy, x,
2064 (sizeof (*copy) - sizeof (copy->fld)
2065 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2066 x = copy;
2067 copied = 1;
2069 x->used = 1;
2071 /* Now scan the subexpressions recursively.
2072 We can store any replaced subexpressions directly into X
2073 since we know X is not shared! Any vectors in X
2074 must be copied if X was copied. */
2076 format_ptr = GET_RTX_FORMAT (code);
2078 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2080 switch (*format_ptr++)
2082 case 'e':
2083 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2084 break;
2086 case 'E':
2087 if (XVEC (x, i) != NULL)
2089 register int j;
2090 int len = XVECLEN (x, i);
2092 if (copied && len > 0)
2093 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2094 for (j = 0; j < len; j++)
2095 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2097 break;
2100 return x;
2103 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2104 to look for shared sub-parts. */
2106 void
2107 reset_used_flags (x)
2108 rtx x;
2110 register int i, j;
2111 register enum rtx_code code;
2112 register const char *format_ptr;
2114 if (x == 0)
2115 return;
2117 code = GET_CODE (x);
2119 /* These types may be freely shared so we needn't do any resetting
2120 for them. */
2122 switch (code)
2124 case REG:
2125 case QUEUED:
2126 case CONST_INT:
2127 case CONST_DOUBLE:
2128 case SYMBOL_REF:
2129 case CODE_LABEL:
2130 case PC:
2131 case CC0:
2132 return;
2134 case INSN:
2135 case JUMP_INSN:
2136 case CALL_INSN:
2137 case NOTE:
2138 case LABEL_REF:
2139 case BARRIER:
2140 /* The chain of insns is not being copied. */
2141 return;
2143 default:
2144 break;
2147 x->used = 0;
2149 format_ptr = GET_RTX_FORMAT (code);
2150 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2152 switch (*format_ptr++)
2154 case 'e':
2155 reset_used_flags (XEXP (x, i));
2156 break;
2158 case 'E':
2159 for (j = 0; j < XVECLEN (x, i); j++)
2160 reset_used_flags (XVECEXP (x, i, j));
2161 break;
2166 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2167 Return X or the rtx for the pseudo reg the value of X was copied into.
2168 OTHER must be valid as a SET_DEST. */
2171 make_safe_from (x, other)
2172 rtx x, other;
2174 while (1)
2175 switch (GET_CODE (other))
2177 case SUBREG:
2178 other = SUBREG_REG (other);
2179 break;
2180 case STRICT_LOW_PART:
2181 case SIGN_EXTEND:
2182 case ZERO_EXTEND:
2183 other = XEXP (other, 0);
2184 break;
2185 default:
2186 goto done;
2188 done:
2189 if ((GET_CODE (other) == MEM
2190 && ! CONSTANT_P (x)
2191 && GET_CODE (x) != REG
2192 && GET_CODE (x) != SUBREG)
2193 || (GET_CODE (other) == REG
2194 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2195 || reg_mentioned_p (other, x))))
2197 rtx temp = gen_reg_rtx (GET_MODE (x));
2198 emit_move_insn (temp, x);
2199 return temp;
2201 return x;
2204 /* Emission of insns (adding them to the doubly-linked list). */
2206 /* Return the first insn of the current sequence or current function. */
2209 get_insns ()
2211 return first_insn;
2214 /* Return the last insn emitted in current sequence or current function. */
2217 get_last_insn ()
2219 return last_insn;
2222 /* Specify a new insn as the last in the chain. */
2224 void
2225 set_last_insn (insn)
2226 rtx insn;
2228 if (NEXT_INSN (insn) != 0)
2229 abort ();
2230 last_insn = insn;
2233 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2236 get_last_insn_anywhere ()
2238 struct sequence_stack *stack;
2239 if (last_insn)
2240 return last_insn;
2241 for (stack = seq_stack; stack; stack = stack->next)
2242 if (stack->last != 0)
2243 return stack->last;
2244 return 0;
2247 /* Return a number larger than any instruction's uid in this function. */
2250 get_max_uid ()
2252 return cur_insn_uid;
2255 /* Renumber instructions so that no instruction UIDs are wasted. */
2257 void
2258 renumber_insns (stream)
2259 FILE *stream;
2261 rtx insn;
2263 /* If we're not supposed to renumber instructions, don't. */
2264 if (!flag_renumber_insns)
2265 return;
2267 /* If there aren't that many instructions, then it's not really
2268 worth renumbering them. */
2269 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2270 return;
2272 cur_insn_uid = 1;
2274 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2276 if (stream)
2277 fprintf (stream, "Renumbering insn %d to %d\n",
2278 INSN_UID (insn), cur_insn_uid);
2279 INSN_UID (insn) = cur_insn_uid++;
2283 /* Return the next insn. If it is a SEQUENCE, return the first insn
2284 of the sequence. */
2287 next_insn (insn)
2288 rtx insn;
2290 if (insn)
2292 insn = NEXT_INSN (insn);
2293 if (insn && GET_CODE (insn) == INSN
2294 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2295 insn = XVECEXP (PATTERN (insn), 0, 0);
2298 return insn;
2301 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2302 of the sequence. */
2305 previous_insn (insn)
2306 rtx insn;
2308 if (insn)
2310 insn = PREV_INSN (insn);
2311 if (insn && GET_CODE (insn) == INSN
2312 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2313 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2316 return insn;
2319 /* Return the next insn after INSN that is not a NOTE. This routine does not
2320 look inside SEQUENCEs. */
2323 next_nonnote_insn (insn)
2324 rtx insn;
2326 while (insn)
2328 insn = NEXT_INSN (insn);
2329 if (insn == 0 || GET_CODE (insn) != NOTE)
2330 break;
2333 return insn;
2336 /* Return the previous insn before INSN that is not a NOTE. This routine does
2337 not look inside SEQUENCEs. */
2340 prev_nonnote_insn (insn)
2341 rtx insn;
2343 while (insn)
2345 insn = PREV_INSN (insn);
2346 if (insn == 0 || GET_CODE (insn) != NOTE)
2347 break;
2350 return insn;
2353 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2354 or 0, if there is none. This routine does not look inside
2355 SEQUENCEs. */
2358 next_real_insn (insn)
2359 rtx insn;
2361 while (insn)
2363 insn = NEXT_INSN (insn);
2364 if (insn == 0 || GET_CODE (insn) == INSN
2365 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2366 break;
2369 return insn;
2372 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2373 or 0, if there is none. This routine does not look inside
2374 SEQUENCEs. */
2377 prev_real_insn (insn)
2378 rtx insn;
2380 while (insn)
2382 insn = PREV_INSN (insn);
2383 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2384 || GET_CODE (insn) == JUMP_INSN)
2385 break;
2388 return insn;
2391 /* Find the next insn after INSN that really does something. This routine
2392 does not look inside SEQUENCEs. Until reload has completed, this is the
2393 same as next_real_insn. */
2396 active_insn_p (insn)
2397 rtx insn;
2399 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2400 || (GET_CODE (insn) == INSN
2401 && (! reload_completed
2402 || (GET_CODE (PATTERN (insn)) != USE
2403 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2407 next_active_insn (insn)
2408 rtx insn;
2410 while (insn)
2412 insn = NEXT_INSN (insn);
2413 if (insn == 0 || active_insn_p (insn))
2414 break;
2417 return insn;
2420 /* Find the last insn before INSN that really does something. This routine
2421 does not look inside SEQUENCEs. Until reload has completed, this is the
2422 same as prev_real_insn. */
2425 prev_active_insn (insn)
2426 rtx insn;
2428 while (insn)
2430 insn = PREV_INSN (insn);
2431 if (insn == 0 || active_insn_p (insn))
2432 break;
2435 return insn;
2438 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2441 next_label (insn)
2442 rtx insn;
2444 while (insn)
2446 insn = NEXT_INSN (insn);
2447 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2448 break;
2451 return insn;
2454 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2457 prev_label (insn)
2458 rtx insn;
2460 while (insn)
2462 insn = PREV_INSN (insn);
2463 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2464 break;
2467 return insn;
2470 #ifdef HAVE_cc0
2471 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2472 and REG_CC_USER notes so we can find it. */
2474 void
2475 link_cc0_insns (insn)
2476 rtx insn;
2478 rtx user = next_nonnote_insn (insn);
2480 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2481 user = XVECEXP (PATTERN (user), 0, 0);
2483 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2484 REG_NOTES (user));
2485 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2488 /* Return the next insn that uses CC0 after INSN, which is assumed to
2489 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2490 applied to the result of this function should yield INSN).
2492 Normally, this is simply the next insn. However, if a REG_CC_USER note
2493 is present, it contains the insn that uses CC0.
2495 Return 0 if we can't find the insn. */
2498 next_cc0_user (insn)
2499 rtx insn;
2501 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2503 if (note)
2504 return XEXP (note, 0);
2506 insn = next_nonnote_insn (insn);
2507 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2508 insn = XVECEXP (PATTERN (insn), 0, 0);
2510 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2511 return insn;
2513 return 0;
2516 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2517 note, it is the previous insn. */
2520 prev_cc0_setter (insn)
2521 rtx insn;
2523 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2525 if (note)
2526 return XEXP (note, 0);
2528 insn = prev_nonnote_insn (insn);
2529 if (! sets_cc0_p (PATTERN (insn)))
2530 abort ();
2532 return insn;
2534 #endif
2536 /* Increment the label uses for all labels present in rtx. */
2538 static void
2539 mark_label_nuses(x)
2540 rtx x;
2542 register enum rtx_code code;
2543 register int i, j;
2544 register const char *fmt;
2546 code = GET_CODE (x);
2547 if (code == LABEL_REF)
2548 LABEL_NUSES (XEXP (x, 0))++;
2550 fmt = GET_RTX_FORMAT (code);
2551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2553 if (fmt[i] == 'e')
2554 mark_label_nuses (XEXP (x, i));
2555 else if (fmt[i] == 'E')
2556 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2557 mark_label_nuses (XVECEXP (x, i, j));
2562 /* Try splitting insns that can be split for better scheduling.
2563 PAT is the pattern which might split.
2564 TRIAL is the insn providing PAT.
2565 LAST is non-zero if we should return the last insn of the sequence produced.
2567 If this routine succeeds in splitting, it returns the first or last
2568 replacement insn depending on the value of LAST. Otherwise, it
2569 returns TRIAL. If the insn to be returned can be split, it will be. */
2572 try_split (pat, trial, last)
2573 rtx pat, trial;
2574 int last;
2576 rtx before = PREV_INSN (trial);
2577 rtx after = NEXT_INSN (trial);
2578 rtx seq = split_insns (pat, trial);
2579 int has_barrier = 0;
2580 rtx tem;
2582 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2583 We may need to handle this specially. */
2584 if (after && GET_CODE (after) == BARRIER)
2586 has_barrier = 1;
2587 after = NEXT_INSN (after);
2590 if (seq)
2592 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2593 The latter case will normally arise only when being done so that
2594 it, in turn, will be split (SFmode on the 29k is an example). */
2595 if (GET_CODE (seq) == SEQUENCE)
2597 int i;
2598 rtx eh_note;
2600 /* Avoid infinite loop if any insn of the result matches
2601 the original pattern. */
2602 for (i = 0; i < XVECLEN (seq, 0); i++)
2603 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2604 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2605 return trial;
2607 /* Mark labels. */
2608 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2609 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2610 mark_jump_label (PATTERN (XVECEXP (seq, 0, i)),
2611 XVECEXP (seq, 0, i), 0, 0);
2613 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2614 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2615 if (GET_CODE (trial) == CALL_INSN)
2616 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2617 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2618 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2619 = CALL_INSN_FUNCTION_USAGE (trial);
2621 /* Copy EH notes. */
2622 if ((eh_note = find_reg_note (trial, REG_EH_REGION, NULL_RTX)))
2623 for (i = 0; i < XVECLEN (seq, 0); i++)
2625 rtx insn = XVECEXP (seq, 0, i);
2626 if (GET_CODE (insn) == CALL_INSN
2627 || (flag_non_call_exceptions
2628 && may_trap_p (PATTERN (insn))))
2629 REG_NOTES (insn)
2630 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
2631 REG_NOTES (insn));
2634 /* If there are LABELS inside the split insns increment the
2635 usage count so we don't delete the label. */
2636 if (GET_CODE (trial) == INSN)
2637 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2638 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2639 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2641 tem = emit_insn_after (seq, before);
2643 delete_insn (trial);
2644 if (has_barrier)
2645 emit_barrier_after (tem);
2647 /* Recursively call try_split for each new insn created; by the
2648 time control returns here that insn will be fully split, so
2649 set LAST and continue from the insn after the one returned.
2650 We can't use next_active_insn here since AFTER may be a note.
2651 Ignore deleted insns, which can be occur if not optimizing. */
2652 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2653 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2654 tem = try_split (PATTERN (tem), tem, 1);
2656 /* Avoid infinite loop if the result matches the original pattern. */
2657 else if (rtx_equal_p (seq, pat))
2658 return trial;
2659 else
2661 PATTERN (trial) = seq;
2662 INSN_CODE (trial) = -1;
2663 try_split (seq, trial, last);
2666 /* Return either the first or the last insn, depending on which was
2667 requested. */
2668 return last
2669 ? (after ? prev_active_insn (after) : last_insn)
2670 : next_active_insn (before);
2673 return trial;
2676 /* Make and return an INSN rtx, initializing all its slots.
2677 Store PATTERN in the pattern slots. */
2680 make_insn_raw (pattern)
2681 rtx pattern;
2683 register rtx insn;
2685 insn = rtx_alloc (INSN);
2687 INSN_UID (insn) = cur_insn_uid++;
2688 PATTERN (insn) = pattern;
2689 INSN_CODE (insn) = -1;
2690 LOG_LINKS (insn) = NULL;
2691 REG_NOTES (insn) = NULL;
2693 #ifdef ENABLE_RTL_CHECKING
2694 if (insn
2695 && INSN_P (insn)
2696 && (returnjump_p (insn)
2697 || (GET_CODE (insn) == SET
2698 && SET_DEST (insn) == pc_rtx)))
2700 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2701 debug_rtx (insn);
2703 #endif
2705 return insn;
2708 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2710 static rtx
2711 make_jump_insn_raw (pattern)
2712 rtx pattern;
2714 register rtx insn;
2716 insn = rtx_alloc (JUMP_INSN);
2717 INSN_UID (insn) = cur_insn_uid++;
2719 PATTERN (insn) = pattern;
2720 INSN_CODE (insn) = -1;
2721 LOG_LINKS (insn) = NULL;
2722 REG_NOTES (insn) = NULL;
2723 JUMP_LABEL (insn) = NULL;
2725 return insn;
2728 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2730 static rtx
2731 make_call_insn_raw (pattern)
2732 rtx pattern;
2734 register rtx insn;
2736 insn = rtx_alloc (CALL_INSN);
2737 INSN_UID (insn) = cur_insn_uid++;
2739 PATTERN (insn) = pattern;
2740 INSN_CODE (insn) = -1;
2741 LOG_LINKS (insn) = NULL;
2742 REG_NOTES (insn) = NULL;
2743 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2745 return insn;
2748 /* Add INSN to the end of the doubly-linked list.
2749 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2751 void
2752 add_insn (insn)
2753 register rtx insn;
2755 PREV_INSN (insn) = last_insn;
2756 NEXT_INSN (insn) = 0;
2758 if (NULL != last_insn)
2759 NEXT_INSN (last_insn) = insn;
2761 if (NULL == first_insn)
2762 first_insn = insn;
2764 last_insn = insn;
2767 /* Add INSN into the doubly-linked list after insn AFTER. This and
2768 the next should be the only functions called to insert an insn once
2769 delay slots have been filled since only they know how to update a
2770 SEQUENCE. */
2772 void
2773 add_insn_after (insn, after)
2774 rtx insn, after;
2776 rtx next = NEXT_INSN (after);
2778 if (optimize && INSN_DELETED_P (after))
2779 abort ();
2781 NEXT_INSN (insn) = next;
2782 PREV_INSN (insn) = after;
2784 if (next)
2786 PREV_INSN (next) = insn;
2787 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2788 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2790 else if (last_insn == after)
2791 last_insn = insn;
2792 else
2794 struct sequence_stack *stack = seq_stack;
2795 /* Scan all pending sequences too. */
2796 for (; stack; stack = stack->next)
2797 if (after == stack->last)
2799 stack->last = insn;
2800 break;
2803 if (stack == 0)
2804 abort ();
2807 NEXT_INSN (after) = insn;
2808 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2810 rtx sequence = PATTERN (after);
2811 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2815 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2816 the previous should be the only functions called to insert an insn once
2817 delay slots have been filled since only they know how to update a
2818 SEQUENCE. */
2820 void
2821 add_insn_before (insn, before)
2822 rtx insn, before;
2824 rtx prev = PREV_INSN (before);
2826 if (optimize && INSN_DELETED_P (before))
2827 abort ();
2829 PREV_INSN (insn) = prev;
2830 NEXT_INSN (insn) = before;
2832 if (prev)
2834 NEXT_INSN (prev) = insn;
2835 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2837 rtx sequence = PATTERN (prev);
2838 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2841 else if (first_insn == before)
2842 first_insn = insn;
2843 else
2845 struct sequence_stack *stack = seq_stack;
2846 /* Scan all pending sequences too. */
2847 for (; stack; stack = stack->next)
2848 if (before == stack->first)
2850 stack->first = insn;
2851 break;
2854 if (stack == 0)
2855 abort ();
2858 PREV_INSN (before) = insn;
2859 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2860 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2863 /* Remove an insn from its doubly-linked list. This function knows how
2864 to handle sequences. */
2865 void
2866 remove_insn (insn)
2867 rtx insn;
2869 rtx next = NEXT_INSN (insn);
2870 rtx prev = PREV_INSN (insn);
2871 if (prev)
2873 NEXT_INSN (prev) = next;
2874 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2876 rtx sequence = PATTERN (prev);
2877 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2880 else if (first_insn == insn)
2881 first_insn = next;
2882 else
2884 struct sequence_stack *stack = seq_stack;
2885 /* Scan all pending sequences too. */
2886 for (; stack; stack = stack->next)
2887 if (insn == stack->first)
2889 stack->first = next;
2890 break;
2893 if (stack == 0)
2894 abort ();
2897 if (next)
2899 PREV_INSN (next) = prev;
2900 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2901 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2903 else if (last_insn == insn)
2904 last_insn = prev;
2905 else
2907 struct sequence_stack *stack = seq_stack;
2908 /* Scan all pending sequences too. */
2909 for (; stack; stack = stack->next)
2910 if (insn == stack->last)
2912 stack->last = prev;
2913 break;
2916 if (stack == 0)
2917 abort ();
2921 /* Delete all insns made since FROM.
2922 FROM becomes the new last instruction. */
2924 void
2925 delete_insns_since (from)
2926 rtx from;
2928 if (from == 0)
2929 first_insn = 0;
2930 else
2931 NEXT_INSN (from) = 0;
2932 last_insn = from;
2935 /* This function is deprecated, please use sequences instead.
2937 Move a consecutive bunch of insns to a different place in the chain.
2938 The insns to be moved are those between FROM and TO.
2939 They are moved to a new position after the insn AFTER.
2940 AFTER must not be FROM or TO or any insn in between.
2942 This function does not know about SEQUENCEs and hence should not be
2943 called after delay-slot filling has been done. */
2945 void
2946 reorder_insns (from, to, after)
2947 rtx from, to, after;
2949 /* Splice this bunch out of where it is now. */
2950 if (PREV_INSN (from))
2951 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2952 if (NEXT_INSN (to))
2953 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2954 if (last_insn == to)
2955 last_insn = PREV_INSN (from);
2956 if (first_insn == from)
2957 first_insn = NEXT_INSN (to);
2959 /* Make the new neighbors point to it and it to them. */
2960 if (NEXT_INSN (after))
2961 PREV_INSN (NEXT_INSN (after)) = to;
2963 NEXT_INSN (to) = NEXT_INSN (after);
2964 PREV_INSN (from) = after;
2965 NEXT_INSN (after) = from;
2966 if (after == last_insn)
2967 last_insn = to;
2970 /* Return the line note insn preceding INSN. */
2972 static rtx
2973 find_line_note (insn)
2974 rtx insn;
2976 if (no_line_numbers)
2977 return 0;
2979 for (; insn; insn = PREV_INSN (insn))
2980 if (GET_CODE (insn) == NOTE
2981 && NOTE_LINE_NUMBER (insn) >= 0)
2982 break;
2984 return insn;
2987 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2988 of the moved insns when debugging. This may insert a note between AFTER
2989 and FROM, and another one after TO. */
2991 void
2992 reorder_insns_with_line_notes (from, to, after)
2993 rtx from, to, after;
2995 rtx from_line = find_line_note (from);
2996 rtx after_line = find_line_note (after);
2998 reorder_insns (from, to, after);
3000 if (from_line == after_line)
3001 return;
3003 if (from_line)
3004 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3005 NOTE_LINE_NUMBER (from_line),
3006 after);
3007 if (after_line)
3008 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3009 NOTE_LINE_NUMBER (after_line),
3010 to);
3013 /* Remove unnecessary notes from the instruction stream. */
3015 void
3016 remove_unnecessary_notes ()
3018 rtx block_stack = NULL_RTX;
3019 rtx eh_stack = NULL_RTX;
3020 rtx insn;
3021 rtx next;
3022 rtx tmp;
3024 /* We must not remove the first instruction in the function because
3025 the compiler depends on the first instruction being a note. */
3026 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3028 /* Remember what's next. */
3029 next = NEXT_INSN (insn);
3031 /* We're only interested in notes. */
3032 if (GET_CODE (insn) != NOTE)
3033 continue;
3035 switch (NOTE_LINE_NUMBER (insn))
3037 case NOTE_INSN_DELETED:
3038 remove_insn (insn);
3039 break;
3041 case NOTE_INSN_EH_REGION_BEG:
3042 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3043 break;
3045 case NOTE_INSN_EH_REGION_END:
3046 /* Too many end notes. */
3047 if (eh_stack == NULL_RTX)
3048 abort ();
3049 /* Mismatched nesting. */
3050 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3051 abort ();
3052 tmp = eh_stack;
3053 eh_stack = XEXP (eh_stack, 1);
3054 free_INSN_LIST_node (tmp);
3055 break;
3057 case NOTE_INSN_BLOCK_BEG:
3058 /* By now, all notes indicating lexical blocks should have
3059 NOTE_BLOCK filled in. */
3060 if (NOTE_BLOCK (insn) == NULL_TREE)
3061 abort ();
3062 block_stack = alloc_INSN_LIST (insn, block_stack);
3063 break;
3065 case NOTE_INSN_BLOCK_END:
3066 /* Too many end notes. */
3067 if (block_stack == NULL_RTX)
3068 abort ();
3069 /* Mismatched nesting. */
3070 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3071 abort ();
3072 tmp = block_stack;
3073 block_stack = XEXP (block_stack, 1);
3074 free_INSN_LIST_node (tmp);
3076 /* Scan back to see if there are any non-note instructions
3077 between INSN and the beginning of this block. If not,
3078 then there is no PC range in the generated code that will
3079 actually be in this block, so there's no point in
3080 remembering the existence of the block. */
3081 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
3083 /* This block contains a real instruction. Note that we
3084 don't include labels; if the only thing in the block
3085 is a label, then there are still no PC values that
3086 lie within the block. */
3087 if (INSN_P (tmp))
3088 break;
3090 /* We're only interested in NOTEs. */
3091 if (GET_CODE (tmp) != NOTE)
3092 continue;
3094 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3096 /* We just verified that this BLOCK matches us
3097 with the block_stack check above. */
3098 if (debug_ignore_block (NOTE_BLOCK (insn)))
3100 remove_insn (tmp);
3101 remove_insn (insn);
3103 break;
3105 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3106 /* There's a nested block. We need to leave the
3107 current block in place since otherwise the debugger
3108 wouldn't be able to show symbols from our block in
3109 the nested block. */
3110 break;
3115 /* Too many begin notes. */
3116 if (block_stack || eh_stack)
3117 abort ();
3121 /* Emit an insn of given code and pattern
3122 at a specified place within the doubly-linked list. */
3124 /* Make an instruction with body PATTERN
3125 and output it before the instruction BEFORE. */
3128 emit_insn_before (pattern, before)
3129 register rtx pattern, before;
3131 register rtx insn = before;
3133 if (GET_CODE (pattern) == SEQUENCE)
3135 register int i;
3137 for (i = 0; i < XVECLEN (pattern, 0); i++)
3139 insn = XVECEXP (pattern, 0, i);
3140 add_insn_before (insn, before);
3143 else
3145 insn = make_insn_raw (pattern);
3146 add_insn_before (insn, before);
3149 return insn;
3152 /* Similar to emit_insn_before, but update basic block boundaries as well. */
3155 emit_block_insn_before (pattern, before, block)
3156 rtx pattern, before;
3157 basic_block block;
3159 rtx prev = PREV_INSN (before);
3160 rtx r = emit_insn_before (pattern, before);
3161 if (block && block->head == before)
3162 block->head = NEXT_INSN (prev);
3163 return r;
3166 /* Make an instruction with body PATTERN and code JUMP_INSN
3167 and output it before the instruction BEFORE. */
3170 emit_jump_insn_before (pattern, before)
3171 register rtx pattern, before;
3173 register rtx insn;
3175 if (GET_CODE (pattern) == SEQUENCE)
3176 insn = emit_insn_before (pattern, before);
3177 else
3179 insn = make_jump_insn_raw (pattern);
3180 add_insn_before (insn, before);
3183 return insn;
3186 /* Make an instruction with body PATTERN and code CALL_INSN
3187 and output it before the instruction BEFORE. */
3190 emit_call_insn_before (pattern, before)
3191 register rtx pattern, before;
3193 register rtx insn;
3195 if (GET_CODE (pattern) == SEQUENCE)
3196 insn = emit_insn_before (pattern, before);
3197 else
3199 insn = make_call_insn_raw (pattern);
3200 add_insn_before (insn, before);
3201 PUT_CODE (insn, CALL_INSN);
3204 return insn;
3207 /* Make an insn of code BARRIER
3208 and output it before the insn BEFORE. */
3211 emit_barrier_before (before)
3212 register rtx before;
3214 register rtx insn = rtx_alloc (BARRIER);
3216 INSN_UID (insn) = cur_insn_uid++;
3218 add_insn_before (insn, before);
3219 return insn;
3222 /* Emit the label LABEL before the insn BEFORE. */
3225 emit_label_before (label, before)
3226 rtx label, before;
3228 /* This can be called twice for the same label as a result of the
3229 confusion that follows a syntax error! So make it harmless. */
3230 if (INSN_UID (label) == 0)
3232 INSN_UID (label) = cur_insn_uid++;
3233 add_insn_before (label, before);
3236 return label;
3239 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3242 emit_note_before (subtype, before)
3243 int subtype;
3244 rtx before;
3246 register rtx note = rtx_alloc (NOTE);
3247 INSN_UID (note) = cur_insn_uid++;
3248 NOTE_SOURCE_FILE (note) = 0;
3249 NOTE_LINE_NUMBER (note) = subtype;
3251 add_insn_before (note, before);
3252 return note;
3255 /* Make an insn of code INSN with body PATTERN
3256 and output it after the insn AFTER. */
3259 emit_insn_after (pattern, after)
3260 register rtx pattern, after;
3262 register rtx insn = after;
3264 if (GET_CODE (pattern) == SEQUENCE)
3266 register int i;
3268 for (i = 0; i < XVECLEN (pattern, 0); i++)
3270 insn = XVECEXP (pattern, 0, i);
3271 add_insn_after (insn, after);
3272 after = insn;
3275 else
3277 insn = make_insn_raw (pattern);
3278 add_insn_after (insn, after);
3281 return insn;
3284 /* Similar to emit_insn_after, except that line notes are to be inserted so
3285 as to act as if this insn were at FROM. */
3287 void
3288 emit_insn_after_with_line_notes (pattern, after, from)
3289 rtx pattern, after, from;
3291 rtx from_line = find_line_note (from);
3292 rtx after_line = find_line_note (after);
3293 rtx insn = emit_insn_after (pattern, after);
3295 if (from_line)
3296 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3297 NOTE_LINE_NUMBER (from_line),
3298 after);
3300 if (after_line)
3301 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3302 NOTE_LINE_NUMBER (after_line),
3303 insn);
3306 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3309 emit_block_insn_after (pattern, after, block)
3310 rtx pattern, after;
3311 basic_block block;
3313 rtx r = emit_insn_after (pattern, after);
3314 if (block && block->end == after)
3315 block->end = r;
3316 return r;
3319 /* Make an insn of code JUMP_INSN with body PATTERN
3320 and output it after the insn AFTER. */
3323 emit_jump_insn_after (pattern, after)
3324 register rtx pattern, after;
3326 register rtx insn;
3328 if (GET_CODE (pattern) == SEQUENCE)
3329 insn = emit_insn_after (pattern, after);
3330 else
3332 insn = make_jump_insn_raw (pattern);
3333 add_insn_after (insn, after);
3336 return insn;
3339 /* Make an insn of code BARRIER
3340 and output it after the insn AFTER. */
3343 emit_barrier_after (after)
3344 register rtx after;
3346 register rtx insn = rtx_alloc (BARRIER);
3348 INSN_UID (insn) = cur_insn_uid++;
3350 add_insn_after (insn, after);
3351 return insn;
3354 /* Emit the label LABEL after the insn AFTER. */
3357 emit_label_after (label, after)
3358 rtx label, after;
3360 /* This can be called twice for the same label
3361 as a result of the confusion that follows a syntax error!
3362 So make it harmless. */
3363 if (INSN_UID (label) == 0)
3365 INSN_UID (label) = cur_insn_uid++;
3366 add_insn_after (label, after);
3369 return label;
3372 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3375 emit_note_after (subtype, after)
3376 int subtype;
3377 rtx after;
3379 register rtx note = rtx_alloc (NOTE);
3380 INSN_UID (note) = cur_insn_uid++;
3381 NOTE_SOURCE_FILE (note) = 0;
3382 NOTE_LINE_NUMBER (note) = subtype;
3383 add_insn_after (note, after);
3384 return note;
3387 /* Emit a line note for FILE and LINE after the insn AFTER. */
3390 emit_line_note_after (file, line, after)
3391 const char *file;
3392 int line;
3393 rtx after;
3395 register rtx note;
3397 if (no_line_numbers && line > 0)
3399 cur_insn_uid++;
3400 return 0;
3403 note = rtx_alloc (NOTE);
3404 INSN_UID (note) = cur_insn_uid++;
3405 NOTE_SOURCE_FILE (note) = file;
3406 NOTE_LINE_NUMBER (note) = line;
3407 add_insn_after (note, after);
3408 return note;
3411 /* Make an insn of code INSN with pattern PATTERN
3412 and add it to the end of the doubly-linked list.
3413 If PATTERN is a SEQUENCE, take the elements of it
3414 and emit an insn for each element.
3416 Returns the last insn emitted. */
3419 emit_insn (pattern)
3420 rtx pattern;
3422 rtx insn = last_insn;
3424 if (GET_CODE (pattern) == SEQUENCE)
3426 register int i;
3428 for (i = 0; i < XVECLEN (pattern, 0); i++)
3430 insn = XVECEXP (pattern, 0, i);
3431 add_insn (insn);
3434 else
3436 insn = make_insn_raw (pattern);
3437 add_insn (insn);
3440 return insn;
3443 /* Emit the insns in a chain starting with INSN.
3444 Return the last insn emitted. */
3447 emit_insns (insn)
3448 rtx insn;
3450 rtx last = 0;
3452 while (insn)
3454 rtx next = NEXT_INSN (insn);
3455 add_insn (insn);
3456 last = insn;
3457 insn = next;
3460 return last;
3463 /* Emit the insns in a chain starting with INSN and place them in front of
3464 the insn BEFORE. Return the last insn emitted. */
3467 emit_insns_before (insn, before)
3468 rtx insn;
3469 rtx before;
3471 rtx last = 0;
3473 while (insn)
3475 rtx next = NEXT_INSN (insn);
3476 add_insn_before (insn, before);
3477 last = insn;
3478 insn = next;
3481 return last;
3484 /* Emit the insns in a chain starting with FIRST and place them in back of
3485 the insn AFTER. Return the last insn emitted. */
3488 emit_insns_after (first, after)
3489 register rtx first;
3490 register rtx after;
3492 register rtx last;
3493 register rtx after_after;
3495 if (!after)
3496 abort ();
3498 if (!first)
3499 return first;
3501 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3502 continue;
3504 after_after = NEXT_INSN (after);
3506 NEXT_INSN (after) = first;
3507 PREV_INSN (first) = after;
3508 NEXT_INSN (last) = after_after;
3509 if (after_after)
3510 PREV_INSN (after_after) = last;
3512 if (after == last_insn)
3513 last_insn = last;
3514 return last;
3517 /* Make an insn of code JUMP_INSN with pattern PATTERN
3518 and add it to the end of the doubly-linked list. */
3521 emit_jump_insn (pattern)
3522 rtx pattern;
3524 if (GET_CODE (pattern) == SEQUENCE)
3525 return emit_insn (pattern);
3526 else
3528 register rtx insn = make_jump_insn_raw (pattern);
3529 add_insn (insn);
3530 return insn;
3534 /* Make an insn of code CALL_INSN with pattern PATTERN
3535 and add it to the end of the doubly-linked list. */
3538 emit_call_insn (pattern)
3539 rtx pattern;
3541 if (GET_CODE (pattern) == SEQUENCE)
3542 return emit_insn (pattern);
3543 else
3545 register rtx insn = make_call_insn_raw (pattern);
3546 add_insn (insn);
3547 PUT_CODE (insn, CALL_INSN);
3548 return insn;
3552 /* Add the label LABEL to the end of the doubly-linked list. */
3555 emit_label (label)
3556 rtx label;
3558 /* This can be called twice for the same label
3559 as a result of the confusion that follows a syntax error!
3560 So make it harmless. */
3561 if (INSN_UID (label) == 0)
3563 INSN_UID (label) = cur_insn_uid++;
3564 add_insn (label);
3566 return label;
3569 /* Make an insn of code BARRIER
3570 and add it to the end of the doubly-linked list. */
3573 emit_barrier ()
3575 register rtx barrier = rtx_alloc (BARRIER);
3576 INSN_UID (barrier) = cur_insn_uid++;
3577 add_insn (barrier);
3578 return barrier;
3581 /* Make an insn of code NOTE
3582 with data-fields specified by FILE and LINE
3583 and add it to the end of the doubly-linked list,
3584 but only if line-numbers are desired for debugging info. */
3587 emit_line_note (file, line)
3588 const char *file;
3589 int line;
3591 set_file_and_line_for_stmt (file, line);
3593 #if 0
3594 if (no_line_numbers)
3595 return 0;
3596 #endif
3598 return emit_note (file, line);
3601 /* Make an insn of code NOTE
3602 with data-fields specified by FILE and LINE
3603 and add it to the end of the doubly-linked list.
3604 If it is a line-number NOTE, omit it if it matches the previous one. */
3607 emit_note (file, line)
3608 const char *file;
3609 int line;
3611 register rtx note;
3613 if (line > 0)
3615 if (file && last_filename && !strcmp (file, last_filename)
3616 && line == last_linenum)
3617 return 0;
3618 last_filename = file;
3619 last_linenum = line;
3622 if (no_line_numbers && line > 0)
3624 cur_insn_uid++;
3625 return 0;
3628 note = rtx_alloc (NOTE);
3629 INSN_UID (note) = cur_insn_uid++;
3630 NOTE_SOURCE_FILE (note) = file;
3631 NOTE_LINE_NUMBER (note) = line;
3632 add_insn (note);
3633 return note;
3636 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3639 emit_line_note_force (file, line)
3640 const char *file;
3641 int line;
3643 last_linenum = -1;
3644 return emit_line_note (file, line);
3647 /* Cause next statement to emit a line note even if the line number
3648 has not changed. This is used at the beginning of a function. */
3650 void
3651 force_next_line_note ()
3653 last_linenum = -1;
3656 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3657 note of this type already exists, remove it first. */
3659 void
3660 set_unique_reg_note (insn, kind, datum)
3661 rtx insn;
3662 enum reg_note kind;
3663 rtx datum;
3665 rtx note = find_reg_note (insn, kind, NULL_RTX);
3667 /* First remove the note if there already is one. */
3668 if (note)
3669 remove_note (insn, note);
3671 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3674 /* Return an indication of which type of insn should have X as a body.
3675 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3677 enum rtx_code
3678 classify_insn (x)
3679 rtx x;
3681 if (GET_CODE (x) == CODE_LABEL)
3682 return CODE_LABEL;
3683 if (GET_CODE (x) == CALL)
3684 return CALL_INSN;
3685 if (GET_CODE (x) == RETURN)
3686 return JUMP_INSN;
3687 if (GET_CODE (x) == SET)
3689 if (SET_DEST (x) == pc_rtx)
3690 return JUMP_INSN;
3691 else if (GET_CODE (SET_SRC (x)) == CALL)
3692 return CALL_INSN;
3693 else
3694 return INSN;
3696 if (GET_CODE (x) == PARALLEL)
3698 register int j;
3699 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3700 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3701 return CALL_INSN;
3702 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3703 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3704 return JUMP_INSN;
3705 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3706 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3707 return CALL_INSN;
3709 return INSN;
3712 /* Emit the rtl pattern X as an appropriate kind of insn.
3713 If X is a label, it is simply added into the insn chain. */
3716 emit (x)
3717 rtx x;
3719 enum rtx_code code = classify_insn (x);
3721 if (code == CODE_LABEL)
3722 return emit_label (x);
3723 else if (code == INSN)
3724 return emit_insn (x);
3725 else if (code == JUMP_INSN)
3727 register rtx insn = emit_jump_insn (x);
3728 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3729 return emit_barrier ();
3730 return insn;
3732 else if (code == CALL_INSN)
3733 return emit_call_insn (x);
3734 else
3735 abort ();
3738 /* Begin emitting insns to a sequence which can be packaged in an
3739 RTL_EXPR. If this sequence will contain something that might cause
3740 the compiler to pop arguments to function calls (because those
3741 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3742 details), use do_pending_stack_adjust before calling this function.
3743 That will ensure that the deferred pops are not accidentally
3744 emitted in the middle of this sequence. */
3746 void
3747 start_sequence ()
3749 struct sequence_stack *tem;
3751 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3753 tem->next = seq_stack;
3754 tem->first = first_insn;
3755 tem->last = last_insn;
3756 tem->sequence_rtl_expr = seq_rtl_expr;
3758 seq_stack = tem;
3760 first_insn = 0;
3761 last_insn = 0;
3764 /* Similarly, but indicate that this sequence will be placed in T, an
3765 RTL_EXPR. See the documentation for start_sequence for more
3766 information about how to use this function. */
3768 void
3769 start_sequence_for_rtl_expr (t)
3770 tree t;
3772 start_sequence ();
3774 seq_rtl_expr = t;
3777 /* Set up the insn chain starting with FIRST as the current sequence,
3778 saving the previously current one. See the documentation for
3779 start_sequence for more information about how to use this function. */
3781 void
3782 push_to_sequence (first)
3783 rtx first;
3785 rtx last;
3787 start_sequence ();
3789 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3791 first_insn = first;
3792 last_insn = last;
3795 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3797 void
3798 push_to_full_sequence (first, last)
3799 rtx first, last;
3801 start_sequence ();
3802 first_insn = first;
3803 last_insn = last;
3804 /* We really should have the end of the insn chain here. */
3805 if (last && NEXT_INSN (last))
3806 abort ();
3809 /* Set up the outer-level insn chain
3810 as the current sequence, saving the previously current one. */
3812 void
3813 push_topmost_sequence ()
3815 struct sequence_stack *stack, *top = NULL;
3817 start_sequence ();
3819 for (stack = seq_stack; stack; stack = stack->next)
3820 top = stack;
3822 first_insn = top->first;
3823 last_insn = top->last;
3824 seq_rtl_expr = top->sequence_rtl_expr;
3827 /* After emitting to the outer-level insn chain, update the outer-level
3828 insn chain, and restore the previous saved state. */
3830 void
3831 pop_topmost_sequence ()
3833 struct sequence_stack *stack, *top = NULL;
3835 for (stack = seq_stack; stack; stack = stack->next)
3836 top = stack;
3838 top->first = first_insn;
3839 top->last = last_insn;
3840 /* ??? Why don't we save seq_rtl_expr here? */
3842 end_sequence ();
3845 /* After emitting to a sequence, restore previous saved state.
3847 To get the contents of the sequence just made, you must call
3848 `gen_sequence' *before* calling here.
3850 If the compiler might have deferred popping arguments while
3851 generating this sequence, and this sequence will not be immediately
3852 inserted into the instruction stream, use do_pending_stack_adjust
3853 before calling gen_sequence. That will ensure that the deferred
3854 pops are inserted into this sequence, and not into some random
3855 location in the instruction stream. See INHIBIT_DEFER_POP for more
3856 information about deferred popping of arguments. */
3858 void
3859 end_sequence ()
3861 struct sequence_stack *tem = seq_stack;
3863 first_insn = tem->first;
3864 last_insn = tem->last;
3865 seq_rtl_expr = tem->sequence_rtl_expr;
3866 seq_stack = tem->next;
3868 free (tem);
3871 /* This works like end_sequence, but records the old sequence in FIRST
3872 and LAST. */
3874 void
3875 end_full_sequence (first, last)
3876 rtx *first, *last;
3878 *first = first_insn;
3879 *last = last_insn;
3880 end_sequence();
3883 /* Return 1 if currently emitting into a sequence. */
3886 in_sequence_p ()
3888 return seq_stack != 0;
3891 /* Generate a SEQUENCE rtx containing the insns already emitted
3892 to the current sequence.
3894 This is how the gen_... function from a DEFINE_EXPAND
3895 constructs the SEQUENCE that it returns. */
3898 gen_sequence ()
3900 rtx result;
3901 rtx tem;
3902 int i;
3903 int len;
3905 /* Count the insns in the chain. */
3906 len = 0;
3907 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3908 len++;
3910 /* If only one insn, return it rather than a SEQUENCE.
3911 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3912 the case of an empty list.)
3913 We only return the pattern of an insn if its code is INSN and it
3914 has no notes. This ensures that no information gets lost. */
3915 if (len == 1
3916 && ! RTX_FRAME_RELATED_P (first_insn)
3917 && GET_CODE (first_insn) == INSN
3918 /* Don't throw away any reg notes. */
3919 && REG_NOTES (first_insn) == 0)
3920 return PATTERN (first_insn);
3922 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3924 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3925 XVECEXP (result, 0, i) = tem;
3927 return result;
3930 /* Put the various virtual registers into REGNO_REG_RTX. */
3932 void
3933 init_virtual_regs (es)
3934 struct emit_status *es;
3936 rtx *ptr = es->x_regno_reg_rtx;
3937 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3938 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3939 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3940 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3941 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3944 void
3945 clear_emit_caches ()
3947 int i;
3949 /* Clear the start_sequence/gen_sequence cache. */
3950 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3951 sequence_result[i] = 0;
3952 free_insn = 0;
3955 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3956 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3957 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3958 static int copy_insn_n_scratches;
3960 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3961 copied an ASM_OPERANDS.
3962 In that case, it is the original input-operand vector. */
3963 static rtvec orig_asm_operands_vector;
3965 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3966 copied an ASM_OPERANDS.
3967 In that case, it is the copied input-operand vector. */
3968 static rtvec copy_asm_operands_vector;
3970 /* Likewise for the constraints vector. */
3971 static rtvec orig_asm_constraints_vector;
3972 static rtvec copy_asm_constraints_vector;
3974 /* Recursively create a new copy of an rtx for copy_insn.
3975 This function differs from copy_rtx in that it handles SCRATCHes and
3976 ASM_OPERANDs properly.
3977 Normally, this function is not used directly; use copy_insn as front end.
3978 However, you could first copy an insn pattern with copy_insn and then use
3979 this function afterwards to properly copy any REG_NOTEs containing
3980 SCRATCHes. */
3983 copy_insn_1 (orig)
3984 register rtx orig;
3986 register rtx copy;
3987 register int i, j;
3988 register RTX_CODE code;
3989 register const char *format_ptr;
3991 code = GET_CODE (orig);
3993 switch (code)
3995 case REG:
3996 case QUEUED:
3997 case CONST_INT:
3998 case CONST_DOUBLE:
3999 case SYMBOL_REF:
4000 case CODE_LABEL:
4001 case PC:
4002 case CC0:
4003 case ADDRESSOF:
4004 return orig;
4006 case SCRATCH:
4007 for (i = 0; i < copy_insn_n_scratches; i++)
4008 if (copy_insn_scratch_in[i] == orig)
4009 return copy_insn_scratch_out[i];
4010 break;
4012 case CONST:
4013 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4014 a LABEL_REF, it isn't sharable. */
4015 if (GET_CODE (XEXP (orig, 0)) == PLUS
4016 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4017 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4018 return orig;
4019 break;
4021 /* A MEM with a constant address is not sharable. The problem is that
4022 the constant address may need to be reloaded. If the mem is shared,
4023 then reloading one copy of this mem will cause all copies to appear
4024 to have been reloaded. */
4026 default:
4027 break;
4030 copy = rtx_alloc (code);
4032 /* Copy the various flags, and other information. We assume that
4033 all fields need copying, and then clear the fields that should
4034 not be copied. That is the sensible default behavior, and forces
4035 us to explicitly document why we are *not* copying a flag. */
4036 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4038 /* We do not copy the USED flag, which is used as a mark bit during
4039 walks over the RTL. */
4040 copy->used = 0;
4042 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4043 if (GET_RTX_CLASS (code) == 'i')
4045 copy->jump = 0;
4046 copy->call = 0;
4047 copy->frame_related = 0;
4050 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4052 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4054 copy->fld[i] = orig->fld[i];
4055 switch (*format_ptr++)
4057 case 'e':
4058 if (XEXP (orig, i) != NULL)
4059 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4060 break;
4062 case 'E':
4063 case 'V':
4064 if (XVEC (orig, i) == orig_asm_constraints_vector)
4065 XVEC (copy, i) = copy_asm_constraints_vector;
4066 else if (XVEC (orig, i) == orig_asm_operands_vector)
4067 XVEC (copy, i) = copy_asm_operands_vector;
4068 else if (XVEC (orig, i) != NULL)
4070 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4071 for (j = 0; j < XVECLEN (copy, i); j++)
4072 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4074 break;
4076 case 't':
4077 case 'w':
4078 case 'i':
4079 case 's':
4080 case 'S':
4081 case 'u':
4082 case '0':
4083 /* These are left unchanged. */
4084 break;
4086 default:
4087 abort ();
4091 if (code == SCRATCH)
4093 i = copy_insn_n_scratches++;
4094 if (i >= MAX_RECOG_OPERANDS)
4095 abort ();
4096 copy_insn_scratch_in[i] = orig;
4097 copy_insn_scratch_out[i] = copy;
4099 else if (code == ASM_OPERANDS)
4101 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4102 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4103 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4104 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4107 return copy;
4110 /* Create a new copy of an rtx.
4111 This function differs from copy_rtx in that it handles SCRATCHes and
4112 ASM_OPERANDs properly.
4113 INSN doesn't really have to be a full INSN; it could be just the
4114 pattern. */
4116 copy_insn (insn)
4117 rtx insn;
4119 copy_insn_n_scratches = 0;
4120 orig_asm_operands_vector = 0;
4121 orig_asm_constraints_vector = 0;
4122 copy_asm_operands_vector = 0;
4123 copy_asm_constraints_vector = 0;
4124 return copy_insn_1 (insn);
4127 /* Initialize data structures and variables in this file
4128 before generating rtl for each function. */
4130 void
4131 init_emit ()
4133 struct function *f = cfun;
4135 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
4136 first_insn = NULL;
4137 last_insn = NULL;
4138 seq_rtl_expr = NULL;
4139 cur_insn_uid = 1;
4140 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4141 last_linenum = 0;
4142 last_filename = 0;
4143 first_label_num = label_num;
4144 last_label_num = 0;
4145 seq_stack = NULL;
4147 clear_emit_caches ();
4149 /* Init the tables that describe all the pseudo regs. */
4151 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4153 f->emit->regno_pointer_align
4154 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4155 sizeof (unsigned char));
4157 regno_reg_rtx
4158 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
4159 sizeof (rtx));
4161 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4162 init_virtual_regs (f->emit);
4164 /* Indicate that the virtual registers and stack locations are
4165 all pointers. */
4166 REG_POINTER (stack_pointer_rtx) = 1;
4167 REG_POINTER (frame_pointer_rtx) = 1;
4168 REG_POINTER (hard_frame_pointer_rtx) = 1;
4169 REG_POINTER (arg_pointer_rtx) = 1;
4171 REG_POINTER (virtual_incoming_args_rtx) = 1;
4172 REG_POINTER (virtual_stack_vars_rtx) = 1;
4173 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4174 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4175 REG_POINTER (virtual_cfa_rtx) = 1;
4177 #ifdef STACK_BOUNDARY
4178 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4179 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4180 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4181 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4183 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4184 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4185 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4186 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4187 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4188 #endif
4190 #ifdef INIT_EXPANDERS
4191 INIT_EXPANDERS;
4192 #endif
4195 /* Mark SS for GC. */
4197 static void
4198 mark_sequence_stack (ss)
4199 struct sequence_stack *ss;
4201 while (ss)
4203 ggc_mark_rtx (ss->first);
4204 ggc_mark_tree (ss->sequence_rtl_expr);
4205 ss = ss->next;
4209 /* Mark ES for GC. */
4211 void
4212 mark_emit_status (es)
4213 struct emit_status *es;
4215 rtx *r;
4216 int i;
4218 if (es == 0)
4219 return;
4221 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
4222 i > 0; --i, ++r)
4223 ggc_mark_rtx (*r);
4225 mark_sequence_stack (es->sequence_stack);
4226 ggc_mark_tree (es->sequence_rtl_expr);
4227 ggc_mark_rtx (es->x_first_insn);
4230 /* Create some permanent unique rtl objects shared between all functions.
4231 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4233 void
4234 init_emit_once (line_numbers)
4235 int line_numbers;
4237 int i;
4238 enum machine_mode mode;
4239 enum machine_mode double_mode;
4241 /* Initialize the CONST_INT hash table. */
4242 const_int_htab = htab_create (37, const_int_htab_hash,
4243 const_int_htab_eq, NULL);
4244 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4245 rtx_htab_mark);
4247 no_line_numbers = ! line_numbers;
4249 /* Compute the word and byte modes. */
4251 byte_mode = VOIDmode;
4252 word_mode = VOIDmode;
4253 double_mode = VOIDmode;
4255 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4256 mode = GET_MODE_WIDER_MODE (mode))
4258 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4259 && byte_mode == VOIDmode)
4260 byte_mode = mode;
4262 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4263 && word_mode == VOIDmode)
4264 word_mode = mode;
4267 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4268 mode = GET_MODE_WIDER_MODE (mode))
4270 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4271 && double_mode == VOIDmode)
4272 double_mode = mode;
4275 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4277 /* Assign register numbers to the globally defined register rtx.
4278 This must be done at runtime because the register number field
4279 is in a union and some compilers can't initialize unions. */
4281 pc_rtx = gen_rtx (PC, VOIDmode);
4282 cc0_rtx = gen_rtx (CC0, VOIDmode);
4283 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4284 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4285 if (hard_frame_pointer_rtx == 0)
4286 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4287 HARD_FRAME_POINTER_REGNUM);
4288 if (arg_pointer_rtx == 0)
4289 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
4290 virtual_incoming_args_rtx =
4291 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4292 virtual_stack_vars_rtx =
4293 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4294 virtual_stack_dynamic_rtx =
4295 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4296 virtual_outgoing_args_rtx =
4297 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4298 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4300 /* These rtx must be roots if GC is enabled. */
4301 ggc_add_rtx_root (global_rtl, GR_MAX);
4303 #ifdef INIT_EXPANDERS
4304 /* This is to initialize {init|mark|free}_machine_status before the first
4305 call to push_function_context_to. This is needed by the Chill front
4306 end which calls push_function_context_to before the first cal to
4307 init_function_start. */
4308 INIT_EXPANDERS;
4309 #endif
4311 /* Create the unique rtx's for certain rtx codes and operand values. */
4313 /* Don't use gen_rtx here since gen_rtx in this case
4314 tries to use these variables. */
4315 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4316 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4317 gen_rtx_raw_CONST_INT (VOIDmode, i);
4318 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4320 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4321 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4322 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4323 else
4324 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4326 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4327 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4328 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4329 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4331 for (i = 0; i <= 2; i++)
4333 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4334 mode = GET_MODE_WIDER_MODE (mode))
4336 rtx tem = rtx_alloc (CONST_DOUBLE);
4337 union real_extract u;
4339 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
4340 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4342 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
4343 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4344 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4345 PUT_MODE (tem, mode);
4347 const_tiny_rtx[i][(int) mode] = tem;
4350 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4353 mode = GET_MODE_WIDER_MODE (mode))
4354 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4356 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4357 mode != VOIDmode;
4358 mode = GET_MODE_WIDER_MODE (mode))
4359 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4362 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4363 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4364 const_tiny_rtx[0][i] = const0_rtx;
4366 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4367 if (STORE_FLAG_VALUE == 1)
4368 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4370 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4371 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4372 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4373 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4374 ggc_add_rtx_root (&const_true_rtx, 1);
4376 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4377 return_address_pointer_rtx
4378 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4379 #endif
4381 #ifdef STRUCT_VALUE
4382 struct_value_rtx = STRUCT_VALUE;
4383 #else
4384 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4385 #endif
4387 #ifdef STRUCT_VALUE_INCOMING
4388 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4389 #else
4390 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4391 struct_value_incoming_rtx
4392 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4393 #else
4394 struct_value_incoming_rtx = struct_value_rtx;
4395 #endif
4396 #endif
4398 #ifdef STATIC_CHAIN_REGNUM
4399 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4401 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4402 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4403 static_chain_incoming_rtx
4404 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4405 else
4406 #endif
4407 static_chain_incoming_rtx = static_chain_rtx;
4408 #endif
4410 #ifdef STATIC_CHAIN
4411 static_chain_rtx = STATIC_CHAIN;
4413 #ifdef STATIC_CHAIN_INCOMING
4414 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4415 #else
4416 static_chain_incoming_rtx = static_chain_rtx;
4417 #endif
4418 #endif
4420 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4421 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4423 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4424 ggc_add_rtx_root (&struct_value_rtx, 1);
4425 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4426 ggc_add_rtx_root (&static_chain_rtx, 1);
4427 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4428 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4431 /* Query and clear/ restore no_line_numbers. This is used by the
4432 switch / case handling in stmt.c to give proper line numbers in
4433 warnings about unreachable code. */
4436 force_line_numbers ()
4438 int old = no_line_numbers;
4440 no_line_numbers = 0;
4441 if (old)
4442 force_next_line_note ();
4443 return old;
4446 void
4447 restore_line_number_status (old_value)
4448 int old_value;
4450 no_line_numbers = old_value;