2009-01-30 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / emit-rtl.c
blob679e95ea8a24eba266edb6d1c561ed98ebf9ad17
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return (mem_attrs *) *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return (reg_attrs *) *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!cfun->calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 rtvec
800 gen_rtvec (int n, ...)
802 int i;
803 rtvec rt_val;
804 va_list p;
806 va_start (p, n);
808 /* Don't allocate an empty rtvec... */
809 if (n == 0)
810 return NULL_RTVEC;
812 rt_val = rtvec_alloc (n);
814 for (i = 0; i < n; i++)
815 rt_val->elem[i] = va_arg (p, rtx);
817 va_end (p);
818 return rt_val;
821 rtvec
822 gen_rtvec_v (int n, rtx *argp)
824 int i;
825 rtvec rt_val;
827 /* Don't allocate an empty rtvec... */
828 if (n == 0)
829 return NULL_RTVEC;
831 rt_val = rtvec_alloc (n);
833 for (i = 0; i < n; i++)
834 rt_val->elem[i] = *argp++;
836 return rt_val;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode,
847 enum machine_mode inner_mode)
849 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
850 return subreg_lowpart_offset (outer_mode, inner_mode);
851 else
852 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode)
861 rtx val;
862 unsigned int align = GET_MODE_ALIGNMENT (mode);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
868 to stack later. */
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl->stack_alignment_estimated < align
871 && !crtl->stack_realign_processed)
872 crtl->stack_alignment_estimated = align;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart, imagpart;
884 enum machine_mode partmode = GET_MODE_INNER (mode);
886 realpart = gen_reg_rtx (partmode);
887 imagpart = gen_reg_rtx (partmode);
888 return gen_rtx_CONCAT (mode, realpart, imagpart);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
896 int old_size = crtl->emit.regno_pointer_align_length;
897 char *tmp;
898 rtx *new1;
900 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
901 memset (tmp + old_size, 0, old_size);
902 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
904 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
905 memset (new1 + old_size, 0, old_size * sizeof (rtx));
906 regno_reg_rtx = new1;
908 crtl->emit.regno_pointer_align_length = old_size * 2;
911 val = gen_raw_REG (mode, reg_rtx_no);
912 regno_reg_rtx[reg_rtx_no++] = val;
913 return val;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
919 static void
920 update_reg_offset (rtx new_rtx, rtx reg, int offset)
922 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
923 REG_OFFSET (reg) + offset);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
931 int offset)
933 rtx new_rtx = gen_rtx_REG (mode, regno);
935 update_reg_offset (new_rtx, reg, offset);
936 return new_rtx;
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
945 rtx new_rtx = gen_reg_rtx (mode);
947 update_reg_offset (new_rtx, reg, offset);
948 return new_rtx;
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
954 void
955 adjust_reg_mode (rtx reg, enum machine_mode mode)
957 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
958 PUT_MODE (reg, mode);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964 void
965 set_reg_attrs_from_value (rtx reg, rtx x)
967 int offset;
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
971 on them is wrong. */
972 if (HARD_REGISTER_P (reg))
973 return;
975 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
976 if (MEM_P (x))
978 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
979 REG_ATTRS (reg)
980 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
981 if (MEM_POINTER (x))
982 mark_reg_pointer (reg, 0);
984 else if (REG_P (x))
986 if (REG_ATTRS (x))
987 update_reg_offset (reg, x, offset);
988 if (REG_POINTER (x))
989 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x)
999 rtx reg = gen_reg_rtx (GET_MODE (x));
1000 set_reg_attrs_from_value (reg, x);
1001 return reg;
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1007 void
1008 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1010 if (REG_P (parm_rtx))
1011 set_reg_attrs_from_value (parm_rtx, mem);
1012 else if (GET_CODE (parm_rtx) == PARALLEL)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1017 for (; i < XVECLEN (parm_rtx, 0); i++)
1019 rtx x = XVECEXP (parm_rtx, 0, i);
1020 if (REG_P (XEXP (x, 0)))
1021 REG_ATTRS (XEXP (x, 0))
1022 = get_reg_attrs (MEM_EXPR (mem),
1023 INTVAL (XEXP (x, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1029 decl T. */
1031 static void
1032 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1034 if (GET_CODE (x) == SUBREG)
1036 gcc_assert (subreg_lowpart_p (x));
1037 x = SUBREG_REG (x);
1039 if (REG_P (x))
1040 REG_ATTRS (x)
1041 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1042 DECL_MODE (t)));
1043 if (GET_CODE (x) == CONCAT)
1045 if (REG_P (XEXP (x, 0)))
1046 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1047 if (REG_P (XEXP (x, 1)))
1048 REG_ATTRS (XEXP (x, 1))
1049 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1051 if (GET_CODE (x) == PARALLEL)
1053 int i, start;
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x, 0, 0), 0))
1058 start = 0;
1059 else
1060 start = 1;
1062 for (i = start; i < XVECLEN (x, 0); i++)
1064 rtx y = XVECEXP (x, 0, i);
1065 if (REG_P (XEXP (y, 0)))
1066 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1071 /* Assign the RTX X to declaration T. */
1073 void
1074 set_decl_rtl (tree t, rtx x)
1076 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1077 if (x)
1078 set_reg_attrs_for_decl_rtl (t, x);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1084 void
1085 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1087 DECL_INCOMING_RTL (t) = x;
1088 if (x && !by_reference_p)
1089 set_reg_attrs_for_decl_rtl (t, x);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1094 void
1095 mark_user_reg (rtx reg)
1097 if (GET_CODE (reg) == CONCAT)
1099 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1102 else
1104 gcc_assert (REG_P (reg));
1105 REG_USERVAR_P (reg) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1112 void
1113 mark_reg_pointer (rtx reg, int align)
1115 if (! REG_POINTER (reg))
1117 REG_POINTER (reg) = 1;
1119 if (align)
1120 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1122 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1130 max_reg_num (void)
1132 return reg_rtx_no;
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1140 return label_num;
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1155 void
1156 maybe_set_first_label_num (rtx x)
1158 if (CODE_LABEL_NUMBER (x) < first_label_num)
1159 first_label_num = CODE_LABEL_NUMBER (x);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode, rtx x)
1176 int msize = GET_MODE_SIZE (mode);
1177 int xsize;
1178 int offset = 0;
1179 enum machine_mode innermode;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode = GET_MODE (x);
1184 if (GET_CODE (x) == CONST_INT
1185 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1186 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1187 else if (innermode == VOIDmode)
1188 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1190 xsize = GET_MODE_SIZE (innermode);
1192 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1194 if (innermode == mode)
1195 return x;
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1199 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1200 return 0;
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1204 return 0;
1206 offset = subreg_lowpart_offset (mode, innermode);
1208 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1209 && (GET_MODE_CLASS (mode) == MODE_INT
1210 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1216 recursively.
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x, 0)) == mode)
1221 return XEXP (x, 0);
1222 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1223 return gen_lowpart_common (mode, XEXP (x, 0));
1224 else if (msize < xsize)
1225 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1227 else if (GET_CODE (x) == SUBREG || REG_P (x)
1228 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1229 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1230 return simplify_gen_subreg (mode, x, innermode, offset);
1232 /* Otherwise, we can't do this. */
1233 return 0;
1237 gen_highpart (enum machine_mode mode, rtx x)
1239 unsigned int msize = GET_MODE_SIZE (mode);
1240 rtx result;
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize <= UNITS_PER_WORD
1245 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1247 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1248 subreg_highpart_offset (mode, GET_MODE (x)));
1249 gcc_assert (result);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1254 if (MEM_P (result))
1256 result = validize_mem (result);
1257 gcc_assert (result);
1260 return result;
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1268 if (GET_MODE (exp) != VOIDmode)
1270 gcc_assert (GET_MODE (exp) == innermode);
1271 return gen_highpart (outermode, exp);
1273 return simplify_gen_subreg (outermode, exp, innermode,
1274 subreg_highpart_offset (outermode, innermode));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1279 unsigned int
1280 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1282 unsigned int offset = 0;
1283 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1285 if (difference > 0)
1287 if (WORDS_BIG_ENDIAN)
1288 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1289 if (BYTES_BIG_ENDIAN)
1290 offset += difference % UNITS_PER_WORD;
1293 return offset;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1298 unsigned int
1299 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1304 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1306 if (difference > 0)
1308 if (! WORDS_BIG_ENDIAN)
1309 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1310 if (! BYTES_BIG_ENDIAN)
1311 offset += difference % UNITS_PER_WORD;
1314 return offset;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x)
1324 if (GET_CODE (x) != SUBREG)
1325 return 1;
1326 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1327 return 0;
1329 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1330 == SUBREG_BYTE (x));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1355 cases.
1359 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1361 if (mode == VOIDmode)
1362 mode = GET_MODE (op);
1364 gcc_assert (mode != VOIDmode);
1366 /* If OP is narrower than a word, fail. */
1367 if (mode != BLKmode
1368 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1369 return 0;
1371 /* If we want a word outside OP, return zero. */
1372 if (mode != BLKmode
1373 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1374 return const0_rtx;
1376 /* Form a new MEM at the requested address. */
1377 if (MEM_P (op))
1379 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1381 if (! validate_address)
1382 return new_rtx;
1384 else if (reload_completed)
1386 if (! strict_memory_address_p (word_mode, XEXP (new_rtx, 0)))
1387 return 0;
1389 else
1390 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1400 this case.
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1407 rtx result = operand_subword (op, offset, 1, mode);
1409 if (result)
1410 return result;
1412 if (mode != BLKmode && mode != VOIDmode)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1416 if (REG_P (op))
1417 op = copy_to_reg (op);
1418 else
1419 op = force_reg (mode, op);
1422 result = operand_subword (op, offset, 1, mode);
1423 gcc_assert (result);
1425 return result;
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1432 static tree
1433 component_ref_for_mem_expr (tree ref)
1435 tree inner = TREE_OPERAND (ref, 0);
1437 if (TREE_CODE (inner) == COMPONENT_REF)
1438 inner = component_ref_for_mem_expr (inner);
1439 else
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner)
1444 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner) == SAVE_EXPR)
1446 inner = TREE_OPERAND (inner, 0);
1448 if (! DECL_P (inner))
1449 inner = NULL_TREE;
1452 if (inner == TREE_OPERAND (ref, 0))
1453 return ref;
1454 else
1455 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1456 TREE_OPERAND (ref, 1), NULL_TREE);
1459 /* Returns 1 if both MEM_EXPR can be considered equal
1460 and 0 otherwise. */
1463 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1465 if (expr1 == expr2)
1466 return 1;
1468 if (! expr1 || ! expr2)
1469 return 0;
1471 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1472 return 0;
1474 if (TREE_CODE (expr1) == COMPONENT_REF)
1475 return
1476 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1477 TREE_OPERAND (expr2, 0))
1478 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1479 TREE_OPERAND (expr2, 1));
1481 if (INDIRECT_REF_P (expr1))
1482 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1483 TREE_OPERAND (expr2, 0));
1485 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1486 have been resolved here. */
1487 gcc_assert (DECL_P (expr1));
1489 /* Decls with different pointers can't be equal. */
1490 return 0;
1493 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1494 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1495 -1 if not known. */
1498 get_mem_align_offset (rtx mem, int align)
1500 tree expr;
1501 unsigned HOST_WIDE_INT offset;
1503 /* This function can't use
1504 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1505 || !CONST_INT_P (MEM_OFFSET (mem))
1506 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1507 < align))
1508 return -1;
1509 else
1510 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1511 for two reasons:
1512 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1513 for <variable>. get_inner_reference doesn't handle it and
1514 even if it did, the alignment in that case needs to be determined
1515 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1516 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1517 isn't sufficiently aligned, the object it is in might be. */
1518 gcc_assert (MEM_P (mem));
1519 expr = MEM_EXPR (mem);
1520 if (expr == NULL_TREE
1521 || MEM_OFFSET (mem) == NULL_RTX
1522 || !CONST_INT_P (MEM_OFFSET (mem)))
1523 return -1;
1525 offset = INTVAL (MEM_OFFSET (mem));
1526 if (DECL_P (expr))
1528 if (DECL_ALIGN (expr) < align)
1529 return -1;
1531 else if (INDIRECT_REF_P (expr))
1533 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1534 return -1;
1536 else if (TREE_CODE (expr) == COMPONENT_REF)
1538 while (1)
1540 tree inner = TREE_OPERAND (expr, 0);
1541 tree field = TREE_OPERAND (expr, 1);
1542 tree byte_offset = component_ref_field_offset (expr);
1543 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1545 if (!byte_offset
1546 || !host_integerp (byte_offset, 1)
1547 || !host_integerp (bit_offset, 1))
1548 return -1;
1550 offset += tree_low_cst (byte_offset, 1);
1551 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1553 if (inner == NULL_TREE)
1555 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1556 < (unsigned int) align)
1557 return -1;
1558 break;
1560 else if (DECL_P (inner))
1562 if (DECL_ALIGN (inner) < align)
1563 return -1;
1564 break;
1566 else if (TREE_CODE (inner) != COMPONENT_REF)
1567 return -1;
1568 expr = inner;
1571 else
1572 return -1;
1574 return offset & ((align / BITS_PER_UNIT) - 1);
1577 /* Given REF (a MEM) and T, either the type of X or the expression
1578 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1579 if we are making a new object of this type. BITPOS is nonzero if
1580 there is an offset outstanding on T that will be applied later. */
1582 void
1583 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1584 HOST_WIDE_INT bitpos)
1586 alias_set_type alias = MEM_ALIAS_SET (ref);
1587 tree expr = MEM_EXPR (ref);
1588 rtx offset = MEM_OFFSET (ref);
1589 rtx size = MEM_SIZE (ref);
1590 unsigned int align = MEM_ALIGN (ref);
1591 HOST_WIDE_INT apply_bitpos = 0;
1592 tree type;
1594 /* It can happen that type_for_mode was given a mode for which there
1595 is no language-level type. In which case it returns NULL, which
1596 we can see here. */
1597 if (t == NULL_TREE)
1598 return;
1600 type = TYPE_P (t) ? t : TREE_TYPE (t);
1601 if (type == error_mark_node)
1602 return;
1604 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1605 wrong answer, as it assumes that DECL_RTL already has the right alias
1606 info. Callers should not set DECL_RTL until after the call to
1607 set_mem_attributes. */
1608 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1610 /* Get the alias set from the expression or type (perhaps using a
1611 front-end routine) and use it. */
1612 alias = get_alias_set (t);
1614 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1615 MEM_IN_STRUCT_P (ref)
1616 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1617 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1619 /* If we are making an object of this type, or if this is a DECL, we know
1620 that it is a scalar if the type is not an aggregate. */
1621 if ((objectp || DECL_P (t))
1622 && ! AGGREGATE_TYPE_P (type)
1623 && TREE_CODE (type) != COMPLEX_TYPE)
1624 MEM_SCALAR_P (ref) = 1;
1626 /* We can set the alignment from the type if we are making an object,
1627 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1628 if (objectp || TREE_CODE (t) == INDIRECT_REF
1629 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1630 || TYPE_ALIGN_OK (type))
1631 align = MAX (align, TYPE_ALIGN (type));
1632 else
1633 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1635 if (integer_zerop (TREE_OPERAND (t, 1)))
1636 /* We don't know anything about the alignment. */
1637 align = BITS_PER_UNIT;
1638 else
1639 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1642 /* If the size is known, we can set that. */
1643 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1644 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1646 /* If T is not a type, we may be able to deduce some more information about
1647 the expression. */
1648 if (! TYPE_P (t))
1650 tree base;
1651 bool align_computed = false;
1653 if (TREE_THIS_VOLATILE (t))
1654 MEM_VOLATILE_P (ref) = 1;
1656 /* Now remove any conversions: they don't change what the underlying
1657 object is. Likewise for SAVE_EXPR. */
1658 while (CONVERT_EXPR_P (t)
1659 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1660 || TREE_CODE (t) == SAVE_EXPR)
1661 t = TREE_OPERAND (t, 0);
1663 /* We may look through structure-like accesses for the purposes of
1664 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1665 base = t;
1666 while (TREE_CODE (base) == COMPONENT_REF
1667 || TREE_CODE (base) == REALPART_EXPR
1668 || TREE_CODE (base) == IMAGPART_EXPR
1669 || TREE_CODE (base) == BIT_FIELD_REF)
1670 base = TREE_OPERAND (base, 0);
1672 if (DECL_P (base))
1674 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1675 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1676 else
1677 MEM_NOTRAP_P (ref) = 1;
1679 else
1680 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1682 base = get_base_address (base);
1683 if (base && DECL_P (base)
1684 && TREE_READONLY (base)
1685 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1687 tree base_type = TREE_TYPE (base);
1688 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1689 || DECL_ARTIFICIAL (base));
1690 MEM_READONLY_P (ref) = 1;
1693 /* If this expression uses it's parent's alias set, mark it such
1694 that we won't change it. */
1695 if (component_uses_parent_alias_set (t))
1696 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1698 /* If this is a decl, set the attributes of the MEM from it. */
1699 if (DECL_P (t))
1701 expr = t;
1702 offset = const0_rtx;
1703 apply_bitpos = bitpos;
1704 size = (DECL_SIZE_UNIT (t)
1705 && host_integerp (DECL_SIZE_UNIT (t), 1)
1706 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1707 align = DECL_ALIGN (t);
1708 align_computed = true;
1711 /* If this is a constant, we know the alignment. */
1712 else if (CONSTANT_CLASS_P (t))
1714 align = TYPE_ALIGN (type);
1715 #ifdef CONSTANT_ALIGNMENT
1716 align = CONSTANT_ALIGNMENT (t, align);
1717 #endif
1718 align_computed = true;
1721 /* If this is a field reference and not a bit-field, record it. */
1722 /* ??? There is some information that can be gleaned from bit-fields,
1723 such as the word offset in the structure that might be modified.
1724 But skip it for now. */
1725 else if (TREE_CODE (t) == COMPONENT_REF
1726 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1728 expr = component_ref_for_mem_expr (t);
1729 offset = const0_rtx;
1730 apply_bitpos = bitpos;
1731 /* ??? Any reason the field size would be different than
1732 the size we got from the type? */
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t) == ARRAY_REF)
1738 tree off_tree = size_zero_node;
1739 /* We can't modify t, because we use it at the end of the
1740 function. */
1741 tree t2 = t;
1745 tree index = TREE_OPERAND (t2, 1);
1746 tree low_bound = array_ref_low_bound (t2);
1747 tree unit_size = array_ref_element_size (t2);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound))
1754 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1755 index, low_bound);
1757 off_tree = size_binop (PLUS_EXPR,
1758 size_binop (MULT_EXPR,
1759 fold_convert (sizetype,
1760 index),
1761 unit_size),
1762 off_tree);
1763 t2 = TREE_OPERAND (t2, 0);
1765 while (TREE_CODE (t2) == ARRAY_REF);
1767 if (DECL_P (t2))
1769 expr = t2;
1770 offset = NULL;
1771 if (host_integerp (off_tree, 1))
1773 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1774 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1775 align = DECL_ALIGN (t2);
1776 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1777 align = aoff;
1778 align_computed = true;
1779 offset = GEN_INT (ioff);
1780 apply_bitpos = bitpos;
1783 else if (TREE_CODE (t2) == COMPONENT_REF)
1785 expr = component_ref_for_mem_expr (t2);
1786 if (host_integerp (off_tree, 1))
1788 offset = GEN_INT (tree_low_cst (off_tree, 1));
1789 apply_bitpos = bitpos;
1791 /* ??? Any reason the field size would be different than
1792 the size we got from the type? */
1794 else if (flag_argument_noalias > 1
1795 && (INDIRECT_REF_P (t2))
1796 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1798 expr = t2;
1799 offset = NULL;
1803 /* If this is a Fortran indirect argument reference, record the
1804 parameter decl. */
1805 else if (flag_argument_noalias > 1
1806 && (INDIRECT_REF_P (t))
1807 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1809 expr = t;
1810 offset = NULL;
1813 if (!align_computed && !INDIRECT_REF_P (t))
1815 unsigned int obj_align
1816 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1817 align = MAX (align, obj_align);
1821 /* If we modified OFFSET based on T, then subtract the outstanding
1822 bit position offset. Similarly, increase the size of the accessed
1823 object to contain the negative offset. */
1824 if (apply_bitpos)
1826 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1827 if (size)
1828 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1831 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1833 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1834 we're overlapping. */
1835 offset = NULL;
1836 expr = NULL;
1839 /* Now set the attributes we computed above. */
1840 MEM_ATTRS (ref)
1841 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1843 /* If this is already known to be a scalar or aggregate, we are done. */
1844 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1845 return;
1847 /* If it is a reference into an aggregate, this is part of an aggregate.
1848 Otherwise we don't know. */
1849 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1850 || TREE_CODE (t) == ARRAY_RANGE_REF
1851 || TREE_CODE (t) == BIT_FIELD_REF)
1852 MEM_IN_STRUCT_P (ref) = 1;
1855 void
1856 set_mem_attributes (rtx ref, tree t, int objectp)
1858 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1861 /* Set MEM to the decl that REG refers to. */
1863 void
1864 set_mem_attrs_from_reg (rtx mem, rtx reg)
1866 MEM_ATTRS (mem)
1867 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1868 GEN_INT (REG_OFFSET (reg)),
1869 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1872 /* Set the alias set of MEM to SET. */
1874 void
1875 set_mem_alias_set (rtx mem, alias_set_type set)
1877 #ifdef ENABLE_CHECKING
1878 /* If the new and old alias sets don't conflict, something is wrong. */
1879 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1880 #endif
1882 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1883 MEM_SIZE (mem), MEM_ALIGN (mem),
1884 GET_MODE (mem));
1887 /* Set the alignment of MEM to ALIGN bits. */
1889 void
1890 set_mem_align (rtx mem, unsigned int align)
1892 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1893 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1894 GET_MODE (mem));
1897 /* Set the expr for MEM to EXPR. */
1899 void
1900 set_mem_expr (rtx mem, tree expr)
1902 MEM_ATTRS (mem)
1903 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1904 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1907 /* Set the offset of MEM to OFFSET. */
1909 void
1910 set_mem_offset (rtx mem, rtx offset)
1912 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1913 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1914 GET_MODE (mem));
1917 /* Set the size of MEM to SIZE. */
1919 void
1920 set_mem_size (rtx mem, rtx size)
1922 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1923 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1924 GET_MODE (mem));
1927 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1928 and its address changed to ADDR. (VOIDmode means don't change the mode.
1929 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1930 returned memory location is required to be valid. The memory
1931 attributes are not changed. */
1933 static rtx
1934 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1936 rtx new_rtx;
1938 gcc_assert (MEM_P (memref));
1939 if (mode == VOIDmode)
1940 mode = GET_MODE (memref);
1941 if (addr == 0)
1942 addr = XEXP (memref, 0);
1943 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1944 && (!validate || memory_address_p (mode, addr)))
1945 return memref;
1947 if (validate)
1949 if (reload_in_progress || reload_completed)
1950 gcc_assert (memory_address_p (mode, addr));
1951 else
1952 addr = memory_address (mode, addr);
1955 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1956 return memref;
1958 new_rtx = gen_rtx_MEM (mode, addr);
1959 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1960 return new_rtx;
1963 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1964 way we are changing MEMREF, so we only preserve the alias set. */
1967 change_address (rtx memref, enum machine_mode mode, rtx addr)
1969 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1970 enum machine_mode mmode = GET_MODE (new_rtx);
1971 unsigned int align;
1973 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1974 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1976 /* If there are no changes, just return the original memory reference. */
1977 if (new_rtx == memref)
1979 if (MEM_ATTRS (memref) == 0
1980 || (MEM_EXPR (memref) == NULL
1981 && MEM_OFFSET (memref) == NULL
1982 && MEM_SIZE (memref) == size
1983 && MEM_ALIGN (memref) == align))
1984 return new_rtx;
1986 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1987 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1990 MEM_ATTRS (new_rtx)
1991 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1993 return new_rtx;
1996 /* Return a memory reference like MEMREF, but with its mode changed
1997 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1998 nonzero, the memory address is forced to be valid.
1999 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2000 and caller is responsible for adjusting MEMREF base register. */
2003 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2004 int validate, int adjust)
2006 rtx addr = XEXP (memref, 0);
2007 rtx new_rtx;
2008 rtx memoffset = MEM_OFFSET (memref);
2009 rtx size = 0;
2010 unsigned int memalign = MEM_ALIGN (memref);
2012 /* If there are no changes, just return the original memory reference. */
2013 if (mode == GET_MODE (memref) && !offset
2014 && (!validate || memory_address_p (mode, addr)))
2015 return memref;
2017 /* ??? Prefer to create garbage instead of creating shared rtl.
2018 This may happen even if offset is nonzero -- consider
2019 (plus (plus reg reg) const_int) -- so do this always. */
2020 addr = copy_rtx (addr);
2022 if (adjust)
2024 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2025 object, we can merge it into the LO_SUM. */
2026 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2027 && offset >= 0
2028 && (unsigned HOST_WIDE_INT) offset
2029 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2030 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2031 plus_constant (XEXP (addr, 1), offset));
2032 else
2033 addr = plus_constant (addr, offset);
2036 new_rtx = change_address_1 (memref, mode, addr, validate);
2038 /* If the address is a REG, change_address_1 rightfully returns memref,
2039 but this would destroy memref's MEM_ATTRS. */
2040 if (new_rtx == memref && offset != 0)
2041 new_rtx = copy_rtx (new_rtx);
2043 /* Compute the new values of the memory attributes due to this adjustment.
2044 We add the offsets and update the alignment. */
2045 if (memoffset)
2046 memoffset = GEN_INT (offset + INTVAL (memoffset));
2048 /* Compute the new alignment by taking the MIN of the alignment and the
2049 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2050 if zero. */
2051 if (offset != 0)
2052 memalign
2053 = MIN (memalign,
2054 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2056 /* We can compute the size in a number of ways. */
2057 if (GET_MODE (new_rtx) != BLKmode)
2058 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2059 else if (MEM_SIZE (memref))
2060 size = plus_constant (MEM_SIZE (memref), -offset);
2062 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2063 memoffset, size, memalign, GET_MODE (new_rtx));
2065 /* At some point, we should validate that this offset is within the object,
2066 if all the appropriate values are known. */
2067 return new_rtx;
2070 /* Return a memory reference like MEMREF, but with its mode changed
2071 to MODE and its address changed to ADDR, which is assumed to be
2072 MEMREF offset by OFFSET bytes. If VALIDATE is
2073 nonzero, the memory address is forced to be valid. */
2076 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2077 HOST_WIDE_INT offset, int validate)
2079 memref = change_address_1 (memref, VOIDmode, addr, validate);
2080 return adjust_address_1 (memref, mode, offset, validate, 0);
2083 /* Return a memory reference like MEMREF, but whose address is changed by
2084 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2085 known to be in OFFSET (possibly 1). */
2088 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2090 rtx new_rtx, addr = XEXP (memref, 0);
2092 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2094 /* At this point we don't know _why_ the address is invalid. It
2095 could have secondary memory references, multiplies or anything.
2097 However, if we did go and rearrange things, we can wind up not
2098 being able to recognize the magic around pic_offset_table_rtx.
2099 This stuff is fragile, and is yet another example of why it is
2100 bad to expose PIC machinery too early. */
2101 if (! memory_address_p (GET_MODE (memref), new_rtx)
2102 && GET_CODE (addr) == PLUS
2103 && XEXP (addr, 0) == pic_offset_table_rtx)
2105 addr = force_reg (GET_MODE (addr), addr);
2106 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2109 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2110 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2112 /* If there are no changes, just return the original memory reference. */
2113 if (new_rtx == memref)
2114 return new_rtx;
2116 /* Update the alignment to reflect the offset. Reset the offset, which
2117 we don't know. */
2118 MEM_ATTRS (new_rtx)
2119 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2120 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2121 GET_MODE (new_rtx));
2122 return new_rtx;
2125 /* Return a memory reference like MEMREF, but with its address changed to
2126 ADDR. The caller is asserting that the actual piece of memory pointed
2127 to is the same, just the form of the address is being changed, such as
2128 by putting something into a register. */
2131 replace_equiv_address (rtx memref, rtx addr)
2133 /* change_address_1 copies the memory attribute structure without change
2134 and that's exactly what we want here. */
2135 update_temp_slot_address (XEXP (memref, 0), addr);
2136 return change_address_1 (memref, VOIDmode, addr, 1);
2139 /* Likewise, but the reference is not required to be valid. */
2142 replace_equiv_address_nv (rtx memref, rtx addr)
2144 return change_address_1 (memref, VOIDmode, addr, 0);
2147 /* Return a memory reference like MEMREF, but with its mode widened to
2148 MODE and offset by OFFSET. This would be used by targets that e.g.
2149 cannot issue QImode memory operations and have to use SImode memory
2150 operations plus masking logic. */
2153 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2155 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2156 tree expr = MEM_EXPR (new_rtx);
2157 rtx memoffset = MEM_OFFSET (new_rtx);
2158 unsigned int size = GET_MODE_SIZE (mode);
2160 /* If there are no changes, just return the original memory reference. */
2161 if (new_rtx == memref)
2162 return new_rtx;
2164 /* If we don't know what offset we were at within the expression, then
2165 we can't know if we've overstepped the bounds. */
2166 if (! memoffset)
2167 expr = NULL_TREE;
2169 while (expr)
2171 if (TREE_CODE (expr) == COMPONENT_REF)
2173 tree field = TREE_OPERAND (expr, 1);
2174 tree offset = component_ref_field_offset (expr);
2176 if (! DECL_SIZE_UNIT (field))
2178 expr = NULL_TREE;
2179 break;
2182 /* Is the field at least as large as the access? If so, ok,
2183 otherwise strip back to the containing structure. */
2184 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2185 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2186 && INTVAL (memoffset) >= 0)
2187 break;
2189 if (! host_integerp (offset, 1))
2191 expr = NULL_TREE;
2192 break;
2195 expr = TREE_OPERAND (expr, 0);
2196 memoffset
2197 = (GEN_INT (INTVAL (memoffset)
2198 + tree_low_cst (offset, 1)
2199 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2200 / BITS_PER_UNIT)));
2202 /* Similarly for the decl. */
2203 else if (DECL_P (expr)
2204 && DECL_SIZE_UNIT (expr)
2205 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2206 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2207 && (! memoffset || INTVAL (memoffset) >= 0))
2208 break;
2209 else
2211 /* The widened memory access overflows the expression, which means
2212 that it could alias another expression. Zap it. */
2213 expr = NULL_TREE;
2214 break;
2218 if (! expr)
2219 memoffset = NULL_RTX;
2221 /* The widened memory may alias other stuff, so zap the alias set. */
2222 /* ??? Maybe use get_alias_set on any remaining expression. */
2224 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2225 MEM_ALIGN (new_rtx), mode);
2227 return new_rtx;
2230 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2231 static GTY(()) tree spill_slot_decl;
2233 tree
2234 get_spill_slot_decl (bool force_build_p)
2236 tree d = spill_slot_decl;
2237 rtx rd;
2239 if (d || !force_build_p)
2240 return d;
2242 d = build_decl (VAR_DECL, get_identifier ("%sfp"), void_type_node);
2243 DECL_ARTIFICIAL (d) = 1;
2244 DECL_IGNORED_P (d) = 1;
2245 TREE_USED (d) = 1;
2246 TREE_THIS_NOTRAP (d) = 1;
2247 spill_slot_decl = d;
2249 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2250 MEM_NOTRAP_P (rd) = 1;
2251 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2252 NULL_RTX, 0, BLKmode);
2253 SET_DECL_RTL (d, rd);
2255 return d;
2258 /* Given MEM, a result from assign_stack_local, fill in the memory
2259 attributes as appropriate for a register allocator spill slot.
2260 These slots are not aliasable by other memory. We arrange for
2261 them all to use a single MEM_EXPR, so that the aliasing code can
2262 work properly in the case of shared spill slots. */
2264 void
2265 set_mem_attrs_for_spill (rtx mem)
2267 alias_set_type alias;
2268 rtx addr, offset;
2269 tree expr;
2271 expr = get_spill_slot_decl (true);
2272 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2274 /* We expect the incoming memory to be of the form:
2275 (mem:MODE (plus (reg sfp) (const_int offset)))
2276 with perhaps the plus missing for offset = 0. */
2277 addr = XEXP (mem, 0);
2278 offset = const0_rtx;
2279 if (GET_CODE (addr) == PLUS
2280 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2281 offset = XEXP (addr, 1);
2283 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2284 MEM_SIZE (mem), MEM_ALIGN (mem),
2285 GET_MODE (mem));
2286 MEM_NOTRAP_P (mem) = 1;
2289 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2292 gen_label_rtx (void)
2294 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2295 NULL, label_num++, NULL);
2298 /* For procedure integration. */
2300 /* Install new pointers to the first and last insns in the chain.
2301 Also, set cur_insn_uid to one higher than the last in use.
2302 Used for an inline-procedure after copying the insn chain. */
2304 void
2305 set_new_first_and_last_insn (rtx first, rtx last)
2307 rtx insn;
2309 first_insn = first;
2310 last_insn = last;
2311 cur_insn_uid = 0;
2313 for (insn = first; insn; insn = NEXT_INSN (insn))
2314 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2316 cur_insn_uid++;
2319 /* Go through all the RTL insn bodies and copy any invalid shared
2320 structure. This routine should only be called once. */
2322 static void
2323 unshare_all_rtl_1 (rtx insn)
2325 /* Unshare just about everything else. */
2326 unshare_all_rtl_in_chain (insn);
2328 /* Make sure the addresses of stack slots found outside the insn chain
2329 (such as, in DECL_RTL of a variable) are not shared
2330 with the insn chain.
2332 This special care is necessary when the stack slot MEM does not
2333 actually appear in the insn chain. If it does appear, its address
2334 is unshared from all else at that point. */
2335 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2338 /* Go through all the RTL insn bodies and copy any invalid shared
2339 structure, again. This is a fairly expensive thing to do so it
2340 should be done sparingly. */
2342 void
2343 unshare_all_rtl_again (rtx insn)
2345 rtx p;
2346 tree decl;
2348 for (p = insn; p; p = NEXT_INSN (p))
2349 if (INSN_P (p))
2351 reset_used_flags (PATTERN (p));
2352 reset_used_flags (REG_NOTES (p));
2355 /* Make sure that virtual stack slots are not shared. */
2356 set_used_decls (DECL_INITIAL (cfun->decl));
2358 /* Make sure that virtual parameters are not shared. */
2359 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2360 set_used_flags (DECL_RTL (decl));
2362 reset_used_flags (stack_slot_list);
2364 unshare_all_rtl_1 (insn);
2367 unsigned int
2368 unshare_all_rtl (void)
2370 unshare_all_rtl_1 (get_insns ());
2371 return 0;
2374 struct rtl_opt_pass pass_unshare_all_rtl =
2377 RTL_PASS,
2378 "unshare", /* name */
2379 NULL, /* gate */
2380 unshare_all_rtl, /* execute */
2381 NULL, /* sub */
2382 NULL, /* next */
2383 0, /* static_pass_number */
2384 0, /* tv_id */
2385 0, /* properties_required */
2386 0, /* properties_provided */
2387 0, /* properties_destroyed */
2388 0, /* todo_flags_start */
2389 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2394 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2395 Recursively does the same for subexpressions. */
2397 static void
2398 verify_rtx_sharing (rtx orig, rtx insn)
2400 rtx x = orig;
2401 int i;
2402 enum rtx_code code;
2403 const char *format_ptr;
2405 if (x == 0)
2406 return;
2408 code = GET_CODE (x);
2410 /* These types may be freely shared. */
2412 switch (code)
2414 case REG:
2415 case CONST_INT:
2416 case CONST_DOUBLE:
2417 case CONST_FIXED:
2418 case CONST_VECTOR:
2419 case SYMBOL_REF:
2420 case LABEL_REF:
2421 case CODE_LABEL:
2422 case PC:
2423 case CC0:
2424 case SCRATCH:
2425 return;
2426 /* SCRATCH must be shared because they represent distinct values. */
2427 case CLOBBER:
2428 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2429 return;
2430 break;
2432 case CONST:
2433 if (shared_const_p (orig))
2434 return;
2435 break;
2437 case MEM:
2438 /* A MEM is allowed to be shared if its address is constant. */
2439 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2440 || reload_completed || reload_in_progress)
2441 return;
2443 break;
2445 default:
2446 break;
2449 /* This rtx may not be shared. If it has already been seen,
2450 replace it with a copy of itself. */
2451 #ifdef ENABLE_CHECKING
2452 if (RTX_FLAG (x, used))
2454 error ("invalid rtl sharing found in the insn");
2455 debug_rtx (insn);
2456 error ("shared rtx");
2457 debug_rtx (x);
2458 internal_error ("internal consistency failure");
2460 #endif
2461 gcc_assert (!RTX_FLAG (x, used));
2463 RTX_FLAG (x, used) = 1;
2465 /* Now scan the subexpressions recursively. */
2467 format_ptr = GET_RTX_FORMAT (code);
2469 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2471 switch (*format_ptr++)
2473 case 'e':
2474 verify_rtx_sharing (XEXP (x, i), insn);
2475 break;
2477 case 'E':
2478 if (XVEC (x, i) != NULL)
2480 int j;
2481 int len = XVECLEN (x, i);
2483 for (j = 0; j < len; j++)
2485 /* We allow sharing of ASM_OPERANDS inside single
2486 instruction. */
2487 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2488 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2489 == ASM_OPERANDS))
2490 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2491 else
2492 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2495 break;
2498 return;
2501 /* Go through all the RTL insn bodies and check that there is no unexpected
2502 sharing in between the subexpressions. */
2504 void
2505 verify_rtl_sharing (void)
2507 rtx p;
2509 for (p = get_insns (); p; p = NEXT_INSN (p))
2510 if (INSN_P (p))
2512 reset_used_flags (PATTERN (p));
2513 reset_used_flags (REG_NOTES (p));
2514 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2516 int i;
2517 rtx q, sequence = PATTERN (p);
2519 for (i = 0; i < XVECLEN (sequence, 0); i++)
2521 q = XVECEXP (sequence, 0, i);
2522 gcc_assert (INSN_P (q));
2523 reset_used_flags (PATTERN (q));
2524 reset_used_flags (REG_NOTES (q));
2529 for (p = get_insns (); p; p = NEXT_INSN (p))
2530 if (INSN_P (p))
2532 verify_rtx_sharing (PATTERN (p), p);
2533 verify_rtx_sharing (REG_NOTES (p), p);
2537 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2538 Assumes the mark bits are cleared at entry. */
2540 void
2541 unshare_all_rtl_in_chain (rtx insn)
2543 for (; insn; insn = NEXT_INSN (insn))
2544 if (INSN_P (insn))
2546 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2547 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2551 /* Go through all virtual stack slots of a function and mark them as
2552 shared. We never replace the DECL_RTLs themselves with a copy,
2553 but expressions mentioned into a DECL_RTL cannot be shared with
2554 expressions in the instruction stream.
2556 Note that reload may convert pseudo registers into memories in-place.
2557 Pseudo registers are always shared, but MEMs never are. Thus if we
2558 reset the used flags on MEMs in the instruction stream, we must set
2559 them again on MEMs that appear in DECL_RTLs. */
2561 static void
2562 set_used_decls (tree blk)
2564 tree t;
2566 /* Mark decls. */
2567 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2568 if (DECL_RTL_SET_P (t))
2569 set_used_flags (DECL_RTL (t));
2571 /* Now process sub-blocks. */
2572 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2573 set_used_decls (t);
2576 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2577 Recursively does the same for subexpressions. Uses
2578 copy_rtx_if_shared_1 to reduce stack space. */
2581 copy_rtx_if_shared (rtx orig)
2583 copy_rtx_if_shared_1 (&orig);
2584 return orig;
2587 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2588 use. Recursively does the same for subexpressions. */
2590 static void
2591 copy_rtx_if_shared_1 (rtx *orig1)
2593 rtx x;
2594 int i;
2595 enum rtx_code code;
2596 rtx *last_ptr;
2597 const char *format_ptr;
2598 int copied = 0;
2599 int length;
2601 /* Repeat is used to turn tail-recursion into iteration. */
2602 repeat:
2603 x = *orig1;
2605 if (x == 0)
2606 return;
2608 code = GET_CODE (x);
2610 /* These types may be freely shared. */
2612 switch (code)
2614 case REG:
2615 case CONST_INT:
2616 case CONST_DOUBLE:
2617 case CONST_FIXED:
2618 case CONST_VECTOR:
2619 case SYMBOL_REF:
2620 case LABEL_REF:
2621 case CODE_LABEL:
2622 case PC:
2623 case CC0:
2624 case SCRATCH:
2625 /* SCRATCH must be shared because they represent distinct values. */
2626 return;
2627 case CLOBBER:
2628 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2629 return;
2630 break;
2632 case CONST:
2633 if (shared_const_p (x))
2634 return;
2635 break;
2637 case INSN:
2638 case JUMP_INSN:
2639 case CALL_INSN:
2640 case NOTE:
2641 case BARRIER:
2642 /* The chain of insns is not being copied. */
2643 return;
2645 default:
2646 break;
2649 /* This rtx may not be shared. If it has already been seen,
2650 replace it with a copy of itself. */
2652 if (RTX_FLAG (x, used))
2654 x = shallow_copy_rtx (x);
2655 copied = 1;
2657 RTX_FLAG (x, used) = 1;
2659 /* Now scan the subexpressions recursively.
2660 We can store any replaced subexpressions directly into X
2661 since we know X is not shared! Any vectors in X
2662 must be copied if X was copied. */
2664 format_ptr = GET_RTX_FORMAT (code);
2665 length = GET_RTX_LENGTH (code);
2666 last_ptr = NULL;
2668 for (i = 0; i < length; i++)
2670 switch (*format_ptr++)
2672 case 'e':
2673 if (last_ptr)
2674 copy_rtx_if_shared_1 (last_ptr);
2675 last_ptr = &XEXP (x, i);
2676 break;
2678 case 'E':
2679 if (XVEC (x, i) != NULL)
2681 int j;
2682 int len = XVECLEN (x, i);
2684 /* Copy the vector iff I copied the rtx and the length
2685 is nonzero. */
2686 if (copied && len > 0)
2687 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2689 /* Call recursively on all inside the vector. */
2690 for (j = 0; j < len; j++)
2692 if (last_ptr)
2693 copy_rtx_if_shared_1 (last_ptr);
2694 last_ptr = &XVECEXP (x, i, j);
2697 break;
2700 *orig1 = x;
2701 if (last_ptr)
2703 orig1 = last_ptr;
2704 goto repeat;
2706 return;
2709 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2710 to look for shared sub-parts. */
2712 void
2713 reset_used_flags (rtx x)
2715 int i, j;
2716 enum rtx_code code;
2717 const char *format_ptr;
2718 int length;
2720 /* Repeat is used to turn tail-recursion into iteration. */
2721 repeat:
2722 if (x == 0)
2723 return;
2725 code = GET_CODE (x);
2727 /* These types may be freely shared so we needn't do any resetting
2728 for them. */
2730 switch (code)
2732 case REG:
2733 case CONST_INT:
2734 case CONST_DOUBLE:
2735 case CONST_FIXED:
2736 case CONST_VECTOR:
2737 case SYMBOL_REF:
2738 case CODE_LABEL:
2739 case PC:
2740 case CC0:
2741 return;
2743 case INSN:
2744 case JUMP_INSN:
2745 case CALL_INSN:
2746 case NOTE:
2747 case LABEL_REF:
2748 case BARRIER:
2749 /* The chain of insns is not being copied. */
2750 return;
2752 default:
2753 break;
2756 RTX_FLAG (x, used) = 0;
2758 format_ptr = GET_RTX_FORMAT (code);
2759 length = GET_RTX_LENGTH (code);
2761 for (i = 0; i < length; i++)
2763 switch (*format_ptr++)
2765 case 'e':
2766 if (i == length-1)
2768 x = XEXP (x, i);
2769 goto repeat;
2771 reset_used_flags (XEXP (x, i));
2772 break;
2774 case 'E':
2775 for (j = 0; j < XVECLEN (x, i); j++)
2776 reset_used_flags (XVECEXP (x, i, j));
2777 break;
2782 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2783 to look for shared sub-parts. */
2785 void
2786 set_used_flags (rtx x)
2788 int i, j;
2789 enum rtx_code code;
2790 const char *format_ptr;
2792 if (x == 0)
2793 return;
2795 code = GET_CODE (x);
2797 /* These types may be freely shared so we needn't do any resetting
2798 for them. */
2800 switch (code)
2802 case REG:
2803 case CONST_INT:
2804 case CONST_DOUBLE:
2805 case CONST_FIXED:
2806 case CONST_VECTOR:
2807 case SYMBOL_REF:
2808 case CODE_LABEL:
2809 case PC:
2810 case CC0:
2811 return;
2813 case INSN:
2814 case JUMP_INSN:
2815 case CALL_INSN:
2816 case NOTE:
2817 case LABEL_REF:
2818 case BARRIER:
2819 /* The chain of insns is not being copied. */
2820 return;
2822 default:
2823 break;
2826 RTX_FLAG (x, used) = 1;
2828 format_ptr = GET_RTX_FORMAT (code);
2829 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2831 switch (*format_ptr++)
2833 case 'e':
2834 set_used_flags (XEXP (x, i));
2835 break;
2837 case 'E':
2838 for (j = 0; j < XVECLEN (x, i); j++)
2839 set_used_flags (XVECEXP (x, i, j));
2840 break;
2845 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2846 Return X or the rtx for the pseudo reg the value of X was copied into.
2847 OTHER must be valid as a SET_DEST. */
2850 make_safe_from (rtx x, rtx other)
2852 while (1)
2853 switch (GET_CODE (other))
2855 case SUBREG:
2856 other = SUBREG_REG (other);
2857 break;
2858 case STRICT_LOW_PART:
2859 case SIGN_EXTEND:
2860 case ZERO_EXTEND:
2861 other = XEXP (other, 0);
2862 break;
2863 default:
2864 goto done;
2866 done:
2867 if ((MEM_P (other)
2868 && ! CONSTANT_P (x)
2869 && !REG_P (x)
2870 && GET_CODE (x) != SUBREG)
2871 || (REG_P (other)
2872 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2873 || reg_mentioned_p (other, x))))
2875 rtx temp = gen_reg_rtx (GET_MODE (x));
2876 emit_move_insn (temp, x);
2877 return temp;
2879 return x;
2882 /* Emission of insns (adding them to the doubly-linked list). */
2884 /* Return the first insn of the current sequence or current function. */
2887 get_insns (void)
2889 return first_insn;
2892 /* Specify a new insn as the first in the chain. */
2894 void
2895 set_first_insn (rtx insn)
2897 gcc_assert (!PREV_INSN (insn));
2898 first_insn = insn;
2901 /* Return the last insn emitted in current sequence or current function. */
2904 get_last_insn (void)
2906 return last_insn;
2909 /* Specify a new insn as the last in the chain. */
2911 void
2912 set_last_insn (rtx insn)
2914 gcc_assert (!NEXT_INSN (insn));
2915 last_insn = insn;
2918 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2921 get_last_insn_anywhere (void)
2923 struct sequence_stack *stack;
2924 if (last_insn)
2925 return last_insn;
2926 for (stack = seq_stack; stack; stack = stack->next)
2927 if (stack->last != 0)
2928 return stack->last;
2929 return 0;
2932 /* Return the first nonnote insn emitted in current sequence or current
2933 function. This routine looks inside SEQUENCEs. */
2936 get_first_nonnote_insn (void)
2938 rtx insn = first_insn;
2940 if (insn)
2942 if (NOTE_P (insn))
2943 for (insn = next_insn (insn);
2944 insn && NOTE_P (insn);
2945 insn = next_insn (insn))
2946 continue;
2947 else
2949 if (NONJUMP_INSN_P (insn)
2950 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2951 insn = XVECEXP (PATTERN (insn), 0, 0);
2955 return insn;
2958 /* Return the last nonnote insn emitted in current sequence or current
2959 function. This routine looks inside SEQUENCEs. */
2962 get_last_nonnote_insn (void)
2964 rtx insn = last_insn;
2966 if (insn)
2968 if (NOTE_P (insn))
2969 for (insn = previous_insn (insn);
2970 insn && NOTE_P (insn);
2971 insn = previous_insn (insn))
2972 continue;
2973 else
2975 if (NONJUMP_INSN_P (insn)
2976 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2977 insn = XVECEXP (PATTERN (insn), 0,
2978 XVECLEN (PATTERN (insn), 0) - 1);
2982 return insn;
2985 /* Return a number larger than any instruction's uid in this function. */
2988 get_max_uid (void)
2990 return cur_insn_uid;
2993 /* Return the next insn. If it is a SEQUENCE, return the first insn
2994 of the sequence. */
2997 next_insn (rtx insn)
2999 if (insn)
3001 insn = NEXT_INSN (insn);
3002 if (insn && NONJUMP_INSN_P (insn)
3003 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3004 insn = XVECEXP (PATTERN (insn), 0, 0);
3007 return insn;
3010 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3011 of the sequence. */
3014 previous_insn (rtx insn)
3016 if (insn)
3018 insn = PREV_INSN (insn);
3019 if (insn && NONJUMP_INSN_P (insn)
3020 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3021 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3024 return insn;
3027 /* Return the next insn after INSN that is not a NOTE. This routine does not
3028 look inside SEQUENCEs. */
3031 next_nonnote_insn (rtx insn)
3033 while (insn)
3035 insn = NEXT_INSN (insn);
3036 if (insn == 0 || !NOTE_P (insn))
3037 break;
3040 return insn;
3043 /* Return the previous insn before INSN that is not a NOTE. This routine does
3044 not look inside SEQUENCEs. */
3047 prev_nonnote_insn (rtx insn)
3049 while (insn)
3051 insn = PREV_INSN (insn);
3052 if (insn == 0 || !NOTE_P (insn))
3053 break;
3056 return insn;
3059 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3060 or 0, if there is none. This routine does not look inside
3061 SEQUENCEs. */
3064 next_real_insn (rtx insn)
3066 while (insn)
3068 insn = NEXT_INSN (insn);
3069 if (insn == 0 || INSN_P (insn))
3070 break;
3073 return insn;
3076 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3077 or 0, if there is none. This routine does not look inside
3078 SEQUENCEs. */
3081 prev_real_insn (rtx insn)
3083 while (insn)
3085 insn = PREV_INSN (insn);
3086 if (insn == 0 || INSN_P (insn))
3087 break;
3090 return insn;
3093 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3094 This routine does not look inside SEQUENCEs. */
3097 last_call_insn (void)
3099 rtx insn;
3101 for (insn = get_last_insn ();
3102 insn && !CALL_P (insn);
3103 insn = PREV_INSN (insn))
3106 return insn;
3109 /* Find the next insn after INSN that really does something. This routine
3110 does not look inside SEQUENCEs. Until reload has completed, this is the
3111 same as next_real_insn. */
3114 active_insn_p (const_rtx insn)
3116 return (CALL_P (insn) || JUMP_P (insn)
3117 || (NONJUMP_INSN_P (insn)
3118 && (! reload_completed
3119 || (GET_CODE (PATTERN (insn)) != USE
3120 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3124 next_active_insn (rtx insn)
3126 while (insn)
3128 insn = NEXT_INSN (insn);
3129 if (insn == 0 || active_insn_p (insn))
3130 break;
3133 return insn;
3136 /* Find the last insn before INSN that really does something. This routine
3137 does not look inside SEQUENCEs. Until reload has completed, this is the
3138 same as prev_real_insn. */
3141 prev_active_insn (rtx insn)
3143 while (insn)
3145 insn = PREV_INSN (insn);
3146 if (insn == 0 || active_insn_p (insn))
3147 break;
3150 return insn;
3153 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3156 next_label (rtx insn)
3158 while (insn)
3160 insn = NEXT_INSN (insn);
3161 if (insn == 0 || LABEL_P (insn))
3162 break;
3165 return insn;
3168 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3171 prev_label (rtx insn)
3173 while (insn)
3175 insn = PREV_INSN (insn);
3176 if (insn == 0 || LABEL_P (insn))
3177 break;
3180 return insn;
3183 /* Return the last label to mark the same position as LABEL. Return null
3184 if LABEL itself is null. */
3187 skip_consecutive_labels (rtx label)
3189 rtx insn;
3191 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3192 if (LABEL_P (insn))
3193 label = insn;
3195 return label;
3198 #ifdef HAVE_cc0
3199 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3200 and REG_CC_USER notes so we can find it. */
3202 void
3203 link_cc0_insns (rtx insn)
3205 rtx user = next_nonnote_insn (insn);
3207 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3208 user = XVECEXP (PATTERN (user), 0, 0);
3210 add_reg_note (user, REG_CC_SETTER, insn);
3211 add_reg_note (insn, REG_CC_USER, user);
3214 /* Return the next insn that uses CC0 after INSN, which is assumed to
3215 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3216 applied to the result of this function should yield INSN).
3218 Normally, this is simply the next insn. However, if a REG_CC_USER note
3219 is present, it contains the insn that uses CC0.
3221 Return 0 if we can't find the insn. */
3224 next_cc0_user (rtx insn)
3226 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3228 if (note)
3229 return XEXP (note, 0);
3231 insn = next_nonnote_insn (insn);
3232 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3233 insn = XVECEXP (PATTERN (insn), 0, 0);
3235 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3236 return insn;
3238 return 0;
3241 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3242 note, it is the previous insn. */
3245 prev_cc0_setter (rtx insn)
3247 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3249 if (note)
3250 return XEXP (note, 0);
3252 insn = prev_nonnote_insn (insn);
3253 gcc_assert (sets_cc0_p (PATTERN (insn)));
3255 return insn;
3257 #endif
3259 #ifdef AUTO_INC_DEC
3260 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3262 static int
3263 find_auto_inc (rtx *xp, void *data)
3265 rtx x = *xp;
3266 rtx reg = (rtx) data;
3268 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3269 return 0;
3271 switch (GET_CODE (x))
3273 case PRE_DEC:
3274 case PRE_INC:
3275 case POST_DEC:
3276 case POST_INC:
3277 case PRE_MODIFY:
3278 case POST_MODIFY:
3279 if (rtx_equal_p (reg, XEXP (x, 0)))
3280 return 1;
3281 break;
3283 default:
3284 gcc_unreachable ();
3286 return -1;
3288 #endif
3290 /* Increment the label uses for all labels present in rtx. */
3292 static void
3293 mark_label_nuses (rtx x)
3295 enum rtx_code code;
3296 int i, j;
3297 const char *fmt;
3299 code = GET_CODE (x);
3300 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3301 LABEL_NUSES (XEXP (x, 0))++;
3303 fmt = GET_RTX_FORMAT (code);
3304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3306 if (fmt[i] == 'e')
3307 mark_label_nuses (XEXP (x, i));
3308 else if (fmt[i] == 'E')
3309 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3310 mark_label_nuses (XVECEXP (x, i, j));
3315 /* Try splitting insns that can be split for better scheduling.
3316 PAT is the pattern which might split.
3317 TRIAL is the insn providing PAT.
3318 LAST is nonzero if we should return the last insn of the sequence produced.
3320 If this routine succeeds in splitting, it returns the first or last
3321 replacement insn depending on the value of LAST. Otherwise, it
3322 returns TRIAL. If the insn to be returned can be split, it will be. */
3325 try_split (rtx pat, rtx trial, int last)
3327 rtx before = PREV_INSN (trial);
3328 rtx after = NEXT_INSN (trial);
3329 int has_barrier = 0;
3330 rtx note, seq, tem;
3331 int probability;
3332 rtx insn_last, insn;
3333 int njumps = 0;
3335 if (any_condjump_p (trial)
3336 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3337 split_branch_probability = INTVAL (XEXP (note, 0));
3338 probability = split_branch_probability;
3340 seq = split_insns (pat, trial);
3342 split_branch_probability = -1;
3344 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3345 We may need to handle this specially. */
3346 if (after && BARRIER_P (after))
3348 has_barrier = 1;
3349 after = NEXT_INSN (after);
3352 if (!seq)
3353 return trial;
3355 /* Avoid infinite loop if any insn of the result matches
3356 the original pattern. */
3357 insn_last = seq;
3358 while (1)
3360 if (INSN_P (insn_last)
3361 && rtx_equal_p (PATTERN (insn_last), pat))
3362 return trial;
3363 if (!NEXT_INSN (insn_last))
3364 break;
3365 insn_last = NEXT_INSN (insn_last);
3368 /* We will be adding the new sequence to the function. The splitters
3369 may have introduced invalid RTL sharing, so unshare the sequence now. */
3370 unshare_all_rtl_in_chain (seq);
3372 /* Mark labels. */
3373 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3375 if (JUMP_P (insn))
3377 mark_jump_label (PATTERN (insn), insn, 0);
3378 njumps++;
3379 if (probability != -1
3380 && any_condjump_p (insn)
3381 && !find_reg_note (insn, REG_BR_PROB, 0))
3383 /* We can preserve the REG_BR_PROB notes only if exactly
3384 one jump is created, otherwise the machine description
3385 is responsible for this step using
3386 split_branch_probability variable. */
3387 gcc_assert (njumps == 1);
3388 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3393 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3394 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3395 if (CALL_P (trial))
3397 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3398 if (CALL_P (insn))
3400 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3401 while (*p)
3402 p = &XEXP (*p, 1);
3403 *p = CALL_INSN_FUNCTION_USAGE (trial);
3404 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3408 /* Copy notes, particularly those related to the CFG. */
3409 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3411 switch (REG_NOTE_KIND (note))
3413 case REG_EH_REGION:
3414 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3416 if (CALL_P (insn)
3417 || (flag_non_call_exceptions && INSN_P (insn)
3418 && may_trap_p (PATTERN (insn))))
3419 add_reg_note (insn, REG_EH_REGION, XEXP (note, 0));
3421 break;
3423 case REG_NORETURN:
3424 case REG_SETJMP:
3425 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3427 if (CALL_P (insn))
3428 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3430 break;
3432 case REG_NON_LOCAL_GOTO:
3433 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3435 if (JUMP_P (insn))
3436 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3438 break;
3440 #ifdef AUTO_INC_DEC
3441 case REG_INC:
3442 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3444 rtx reg = XEXP (note, 0);
3445 if (!FIND_REG_INC_NOTE (insn, reg)
3446 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3447 add_reg_note (insn, REG_INC, reg);
3449 break;
3450 #endif
3452 default:
3453 break;
3457 /* If there are LABELS inside the split insns increment the
3458 usage count so we don't delete the label. */
3459 if (INSN_P (trial))
3461 insn = insn_last;
3462 while (insn != NULL_RTX)
3464 /* JUMP_P insns have already been "marked" above. */
3465 if (NONJUMP_INSN_P (insn))
3466 mark_label_nuses (PATTERN (insn));
3468 insn = PREV_INSN (insn);
3472 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3474 delete_insn (trial);
3475 if (has_barrier)
3476 emit_barrier_after (tem);
3478 /* Recursively call try_split for each new insn created; by the
3479 time control returns here that insn will be fully split, so
3480 set LAST and continue from the insn after the one returned.
3481 We can't use next_active_insn here since AFTER may be a note.
3482 Ignore deleted insns, which can be occur if not optimizing. */
3483 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3484 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3485 tem = try_split (PATTERN (tem), tem, 1);
3487 /* Return either the first or the last insn, depending on which was
3488 requested. */
3489 return last
3490 ? (after ? PREV_INSN (after) : last_insn)
3491 : NEXT_INSN (before);
3494 /* Make and return an INSN rtx, initializing all its slots.
3495 Store PATTERN in the pattern slots. */
3498 make_insn_raw (rtx pattern)
3500 rtx insn;
3502 insn = rtx_alloc (INSN);
3504 INSN_UID (insn) = cur_insn_uid++;
3505 PATTERN (insn) = pattern;
3506 INSN_CODE (insn) = -1;
3507 REG_NOTES (insn) = NULL;
3508 INSN_LOCATOR (insn) = curr_insn_locator ();
3509 BLOCK_FOR_INSN (insn) = NULL;
3511 #ifdef ENABLE_RTL_CHECKING
3512 if (insn
3513 && INSN_P (insn)
3514 && (returnjump_p (insn)
3515 || (GET_CODE (insn) == SET
3516 && SET_DEST (insn) == pc_rtx)))
3518 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3519 debug_rtx (insn);
3521 #endif
3523 return insn;
3526 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3529 make_jump_insn_raw (rtx pattern)
3531 rtx insn;
3533 insn = rtx_alloc (JUMP_INSN);
3534 INSN_UID (insn) = cur_insn_uid++;
3536 PATTERN (insn) = pattern;
3537 INSN_CODE (insn) = -1;
3538 REG_NOTES (insn) = NULL;
3539 JUMP_LABEL (insn) = NULL;
3540 INSN_LOCATOR (insn) = curr_insn_locator ();
3541 BLOCK_FOR_INSN (insn) = NULL;
3543 return insn;
3546 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3548 static rtx
3549 make_call_insn_raw (rtx pattern)
3551 rtx insn;
3553 insn = rtx_alloc (CALL_INSN);
3554 INSN_UID (insn) = cur_insn_uid++;
3556 PATTERN (insn) = pattern;
3557 INSN_CODE (insn) = -1;
3558 REG_NOTES (insn) = NULL;
3559 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3560 INSN_LOCATOR (insn) = curr_insn_locator ();
3561 BLOCK_FOR_INSN (insn) = NULL;
3563 return insn;
3566 /* Add INSN to the end of the doubly-linked list.
3567 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3569 void
3570 add_insn (rtx insn)
3572 PREV_INSN (insn) = last_insn;
3573 NEXT_INSN (insn) = 0;
3575 if (NULL != last_insn)
3576 NEXT_INSN (last_insn) = insn;
3578 if (NULL == first_insn)
3579 first_insn = insn;
3581 last_insn = insn;
3584 /* Add INSN into the doubly-linked list after insn AFTER. This and
3585 the next should be the only functions called to insert an insn once
3586 delay slots have been filled since only they know how to update a
3587 SEQUENCE. */
3589 void
3590 add_insn_after (rtx insn, rtx after, basic_block bb)
3592 rtx next = NEXT_INSN (after);
3594 gcc_assert (!optimize || !INSN_DELETED_P (after));
3596 NEXT_INSN (insn) = next;
3597 PREV_INSN (insn) = after;
3599 if (next)
3601 PREV_INSN (next) = insn;
3602 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3603 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3605 else if (last_insn == after)
3606 last_insn = insn;
3607 else
3609 struct sequence_stack *stack = seq_stack;
3610 /* Scan all pending sequences too. */
3611 for (; stack; stack = stack->next)
3612 if (after == stack->last)
3614 stack->last = insn;
3615 break;
3618 gcc_assert (stack);
3621 if (!BARRIER_P (after)
3622 && !BARRIER_P (insn)
3623 && (bb = BLOCK_FOR_INSN (after)))
3625 set_block_for_insn (insn, bb);
3626 if (INSN_P (insn))
3627 df_insn_rescan (insn);
3628 /* Should not happen as first in the BB is always
3629 either NOTE or LABEL. */
3630 if (BB_END (bb) == after
3631 /* Avoid clobbering of structure when creating new BB. */
3632 && !BARRIER_P (insn)
3633 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3634 BB_END (bb) = insn;
3637 NEXT_INSN (after) = insn;
3638 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3640 rtx sequence = PATTERN (after);
3641 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3645 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3646 the previous should be the only functions called to insert an insn
3647 once delay slots have been filled since only they know how to
3648 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3649 bb from before. */
3651 void
3652 add_insn_before (rtx insn, rtx before, basic_block bb)
3654 rtx prev = PREV_INSN (before);
3656 gcc_assert (!optimize || !INSN_DELETED_P (before));
3658 PREV_INSN (insn) = prev;
3659 NEXT_INSN (insn) = before;
3661 if (prev)
3663 NEXT_INSN (prev) = insn;
3664 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3666 rtx sequence = PATTERN (prev);
3667 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3670 else if (first_insn == before)
3671 first_insn = insn;
3672 else
3674 struct sequence_stack *stack = seq_stack;
3675 /* Scan all pending sequences too. */
3676 for (; stack; stack = stack->next)
3677 if (before == stack->first)
3679 stack->first = insn;
3680 break;
3683 gcc_assert (stack);
3686 if (!bb
3687 && !BARRIER_P (before)
3688 && !BARRIER_P (insn))
3689 bb = BLOCK_FOR_INSN (before);
3691 if (bb)
3693 set_block_for_insn (insn, bb);
3694 if (INSN_P (insn))
3695 df_insn_rescan (insn);
3696 /* Should not happen as first in the BB is always either NOTE or
3697 LABEL. */
3698 gcc_assert (BB_HEAD (bb) != insn
3699 /* Avoid clobbering of structure when creating new BB. */
3700 || BARRIER_P (insn)
3701 || NOTE_INSN_BASIC_BLOCK_P (insn));
3704 PREV_INSN (before) = insn;
3705 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3706 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3710 /* Replace insn with an deleted instruction note. */
3712 void
3713 set_insn_deleted (rtx insn)
3715 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3716 PUT_CODE (insn, NOTE);
3717 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3721 /* Remove an insn from its doubly-linked list. This function knows how
3722 to handle sequences. */
3723 void
3724 remove_insn (rtx insn)
3726 rtx next = NEXT_INSN (insn);
3727 rtx prev = PREV_INSN (insn);
3728 basic_block bb;
3730 /* Later in the code, the block will be marked dirty. */
3731 df_insn_delete (NULL, INSN_UID (insn));
3733 if (prev)
3735 NEXT_INSN (prev) = next;
3736 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3738 rtx sequence = PATTERN (prev);
3739 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3742 else if (first_insn == insn)
3743 first_insn = next;
3744 else
3746 struct sequence_stack *stack = seq_stack;
3747 /* Scan all pending sequences too. */
3748 for (; stack; stack = stack->next)
3749 if (insn == stack->first)
3751 stack->first = next;
3752 break;
3755 gcc_assert (stack);
3758 if (next)
3760 PREV_INSN (next) = prev;
3761 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3762 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3764 else if (last_insn == insn)
3765 last_insn = prev;
3766 else
3768 struct sequence_stack *stack = seq_stack;
3769 /* Scan all pending sequences too. */
3770 for (; stack; stack = stack->next)
3771 if (insn == stack->last)
3773 stack->last = prev;
3774 break;
3777 gcc_assert (stack);
3779 if (!BARRIER_P (insn)
3780 && (bb = BLOCK_FOR_INSN (insn)))
3782 if (INSN_P (insn))
3783 df_set_bb_dirty (bb);
3784 if (BB_HEAD (bb) == insn)
3786 /* Never ever delete the basic block note without deleting whole
3787 basic block. */
3788 gcc_assert (!NOTE_P (insn));
3789 BB_HEAD (bb) = next;
3791 if (BB_END (bb) == insn)
3792 BB_END (bb) = prev;
3796 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3798 void
3799 add_function_usage_to (rtx call_insn, rtx call_fusage)
3801 gcc_assert (call_insn && CALL_P (call_insn));
3803 /* Put the register usage information on the CALL. If there is already
3804 some usage information, put ours at the end. */
3805 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3807 rtx link;
3809 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3810 link = XEXP (link, 1))
3813 XEXP (link, 1) = call_fusage;
3815 else
3816 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3819 /* Delete all insns made since FROM.
3820 FROM becomes the new last instruction. */
3822 void
3823 delete_insns_since (rtx from)
3825 if (from == 0)
3826 first_insn = 0;
3827 else
3828 NEXT_INSN (from) = 0;
3829 last_insn = from;
3832 /* This function is deprecated, please use sequences instead.
3834 Move a consecutive bunch of insns to a different place in the chain.
3835 The insns to be moved are those between FROM and TO.
3836 They are moved to a new position after the insn AFTER.
3837 AFTER must not be FROM or TO or any insn in between.
3839 This function does not know about SEQUENCEs and hence should not be
3840 called after delay-slot filling has been done. */
3842 void
3843 reorder_insns_nobb (rtx from, rtx to, rtx after)
3845 /* Splice this bunch out of where it is now. */
3846 if (PREV_INSN (from))
3847 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3848 if (NEXT_INSN (to))
3849 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3850 if (last_insn == to)
3851 last_insn = PREV_INSN (from);
3852 if (first_insn == from)
3853 first_insn = NEXT_INSN (to);
3855 /* Make the new neighbors point to it and it to them. */
3856 if (NEXT_INSN (after))
3857 PREV_INSN (NEXT_INSN (after)) = to;
3859 NEXT_INSN (to) = NEXT_INSN (after);
3860 PREV_INSN (from) = after;
3861 NEXT_INSN (after) = from;
3862 if (after == last_insn)
3863 last_insn = to;
3866 /* Same as function above, but take care to update BB boundaries. */
3867 void
3868 reorder_insns (rtx from, rtx to, rtx after)
3870 rtx prev = PREV_INSN (from);
3871 basic_block bb, bb2;
3873 reorder_insns_nobb (from, to, after);
3875 if (!BARRIER_P (after)
3876 && (bb = BLOCK_FOR_INSN (after)))
3878 rtx x;
3879 df_set_bb_dirty (bb);
3881 if (!BARRIER_P (from)
3882 && (bb2 = BLOCK_FOR_INSN (from)))
3884 if (BB_END (bb2) == to)
3885 BB_END (bb2) = prev;
3886 df_set_bb_dirty (bb2);
3889 if (BB_END (bb) == after)
3890 BB_END (bb) = to;
3892 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3893 if (!BARRIER_P (x))
3894 df_insn_change_bb (x, bb);
3899 /* Emit insn(s) of given code and pattern
3900 at a specified place within the doubly-linked list.
3902 All of the emit_foo global entry points accept an object
3903 X which is either an insn list or a PATTERN of a single
3904 instruction.
3906 There are thus a few canonical ways to generate code and
3907 emit it at a specific place in the instruction stream. For
3908 example, consider the instruction named SPOT and the fact that
3909 we would like to emit some instructions before SPOT. We might
3910 do it like this:
3912 start_sequence ();
3913 ... emit the new instructions ...
3914 insns_head = get_insns ();
3915 end_sequence ();
3917 emit_insn_before (insns_head, SPOT);
3919 It used to be common to generate SEQUENCE rtl instead, but that
3920 is a relic of the past which no longer occurs. The reason is that
3921 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3922 generated would almost certainly die right after it was created. */
3924 /* Make X be output before the instruction BEFORE. */
3927 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3929 rtx last = before;
3930 rtx insn;
3932 gcc_assert (before);
3934 if (x == NULL_RTX)
3935 return last;
3937 switch (GET_CODE (x))
3939 case INSN:
3940 case JUMP_INSN:
3941 case CALL_INSN:
3942 case CODE_LABEL:
3943 case BARRIER:
3944 case NOTE:
3945 insn = x;
3946 while (insn)
3948 rtx next = NEXT_INSN (insn);
3949 add_insn_before (insn, before, bb);
3950 last = insn;
3951 insn = next;
3953 break;
3955 #ifdef ENABLE_RTL_CHECKING
3956 case SEQUENCE:
3957 gcc_unreachable ();
3958 break;
3959 #endif
3961 default:
3962 last = make_insn_raw (x);
3963 add_insn_before (last, before, bb);
3964 break;
3967 return last;
3970 /* Make an instruction with body X and code JUMP_INSN
3971 and output it before the instruction BEFORE. */
3974 emit_jump_insn_before_noloc (rtx x, rtx before)
3976 rtx insn, last = NULL_RTX;
3978 gcc_assert (before);
3980 switch (GET_CODE (x))
3982 case INSN:
3983 case JUMP_INSN:
3984 case CALL_INSN:
3985 case CODE_LABEL:
3986 case BARRIER:
3987 case NOTE:
3988 insn = x;
3989 while (insn)
3991 rtx next = NEXT_INSN (insn);
3992 add_insn_before (insn, before, NULL);
3993 last = insn;
3994 insn = next;
3996 break;
3998 #ifdef ENABLE_RTL_CHECKING
3999 case SEQUENCE:
4000 gcc_unreachable ();
4001 break;
4002 #endif
4004 default:
4005 last = make_jump_insn_raw (x);
4006 add_insn_before (last, before, NULL);
4007 break;
4010 return last;
4013 /* Make an instruction with body X and code CALL_INSN
4014 and output it before the instruction BEFORE. */
4017 emit_call_insn_before_noloc (rtx x, rtx before)
4019 rtx last = NULL_RTX, insn;
4021 gcc_assert (before);
4023 switch (GET_CODE (x))
4025 case INSN:
4026 case JUMP_INSN:
4027 case CALL_INSN:
4028 case CODE_LABEL:
4029 case BARRIER:
4030 case NOTE:
4031 insn = x;
4032 while (insn)
4034 rtx next = NEXT_INSN (insn);
4035 add_insn_before (insn, before, NULL);
4036 last = insn;
4037 insn = next;
4039 break;
4041 #ifdef ENABLE_RTL_CHECKING
4042 case SEQUENCE:
4043 gcc_unreachable ();
4044 break;
4045 #endif
4047 default:
4048 last = make_call_insn_raw (x);
4049 add_insn_before (last, before, NULL);
4050 break;
4053 return last;
4056 /* Make an insn of code BARRIER
4057 and output it before the insn BEFORE. */
4060 emit_barrier_before (rtx before)
4062 rtx insn = rtx_alloc (BARRIER);
4064 INSN_UID (insn) = cur_insn_uid++;
4066 add_insn_before (insn, before, NULL);
4067 return insn;
4070 /* Emit the label LABEL before the insn BEFORE. */
4073 emit_label_before (rtx label, rtx before)
4075 /* This can be called twice for the same label as a result of the
4076 confusion that follows a syntax error! So make it harmless. */
4077 if (INSN_UID (label) == 0)
4079 INSN_UID (label) = cur_insn_uid++;
4080 add_insn_before (label, before, NULL);
4083 return label;
4086 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4089 emit_note_before (enum insn_note subtype, rtx before)
4091 rtx note = rtx_alloc (NOTE);
4092 INSN_UID (note) = cur_insn_uid++;
4093 NOTE_KIND (note) = subtype;
4094 BLOCK_FOR_INSN (note) = NULL;
4095 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4097 add_insn_before (note, before, NULL);
4098 return note;
4101 /* Helper for emit_insn_after, handles lists of instructions
4102 efficiently. */
4104 static rtx
4105 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4107 rtx last;
4108 rtx after_after;
4109 if (!bb && !BARRIER_P (after))
4110 bb = BLOCK_FOR_INSN (after);
4112 if (bb)
4114 df_set_bb_dirty (bb);
4115 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4116 if (!BARRIER_P (last))
4118 set_block_for_insn (last, bb);
4119 df_insn_rescan (last);
4121 if (!BARRIER_P (last))
4123 set_block_for_insn (last, bb);
4124 df_insn_rescan (last);
4126 if (BB_END (bb) == after)
4127 BB_END (bb) = last;
4129 else
4130 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4131 continue;
4133 after_after = NEXT_INSN (after);
4135 NEXT_INSN (after) = first;
4136 PREV_INSN (first) = after;
4137 NEXT_INSN (last) = after_after;
4138 if (after_after)
4139 PREV_INSN (after_after) = last;
4141 if (after == last_insn)
4142 last_insn = last;
4144 return last;
4147 /* Make X be output after the insn AFTER and set the BB of insn. If
4148 BB is NULL, an attempt is made to infer the BB from AFTER. */
4151 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4153 rtx last = after;
4155 gcc_assert (after);
4157 if (x == NULL_RTX)
4158 return last;
4160 switch (GET_CODE (x))
4162 case INSN:
4163 case JUMP_INSN:
4164 case CALL_INSN:
4165 case CODE_LABEL:
4166 case BARRIER:
4167 case NOTE:
4168 last = emit_insn_after_1 (x, after, bb);
4169 break;
4171 #ifdef ENABLE_RTL_CHECKING
4172 case SEQUENCE:
4173 gcc_unreachable ();
4174 break;
4175 #endif
4177 default:
4178 last = make_insn_raw (x);
4179 add_insn_after (last, after, bb);
4180 break;
4183 return last;
4187 /* Make an insn of code JUMP_INSN with body X
4188 and output it after the insn AFTER. */
4191 emit_jump_insn_after_noloc (rtx x, rtx after)
4193 rtx last;
4195 gcc_assert (after);
4197 switch (GET_CODE (x))
4199 case INSN:
4200 case JUMP_INSN:
4201 case CALL_INSN:
4202 case CODE_LABEL:
4203 case BARRIER:
4204 case NOTE:
4205 last = emit_insn_after_1 (x, after, NULL);
4206 break;
4208 #ifdef ENABLE_RTL_CHECKING
4209 case SEQUENCE:
4210 gcc_unreachable ();
4211 break;
4212 #endif
4214 default:
4215 last = make_jump_insn_raw (x);
4216 add_insn_after (last, after, NULL);
4217 break;
4220 return last;
4223 /* Make an instruction with body X and code CALL_INSN
4224 and output it after the instruction AFTER. */
4227 emit_call_insn_after_noloc (rtx x, rtx after)
4229 rtx last;
4231 gcc_assert (after);
4233 switch (GET_CODE (x))
4235 case INSN:
4236 case JUMP_INSN:
4237 case CALL_INSN:
4238 case CODE_LABEL:
4239 case BARRIER:
4240 case NOTE:
4241 last = emit_insn_after_1 (x, after, NULL);
4242 break;
4244 #ifdef ENABLE_RTL_CHECKING
4245 case SEQUENCE:
4246 gcc_unreachable ();
4247 break;
4248 #endif
4250 default:
4251 last = make_call_insn_raw (x);
4252 add_insn_after (last, after, NULL);
4253 break;
4256 return last;
4259 /* Make an insn of code BARRIER
4260 and output it after the insn AFTER. */
4263 emit_barrier_after (rtx after)
4265 rtx insn = rtx_alloc (BARRIER);
4267 INSN_UID (insn) = cur_insn_uid++;
4269 add_insn_after (insn, after, NULL);
4270 return insn;
4273 /* Emit the label LABEL after the insn AFTER. */
4276 emit_label_after (rtx label, rtx after)
4278 /* This can be called twice for the same label
4279 as a result of the confusion that follows a syntax error!
4280 So make it harmless. */
4281 if (INSN_UID (label) == 0)
4283 INSN_UID (label) = cur_insn_uid++;
4284 add_insn_after (label, after, NULL);
4287 return label;
4290 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4293 emit_note_after (enum insn_note subtype, rtx after)
4295 rtx note = rtx_alloc (NOTE);
4296 INSN_UID (note) = cur_insn_uid++;
4297 NOTE_KIND (note) = subtype;
4298 BLOCK_FOR_INSN (note) = NULL;
4299 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4300 add_insn_after (note, after, NULL);
4301 return note;
4304 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4306 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4308 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4310 if (pattern == NULL_RTX || !loc)
4311 return last;
4313 after = NEXT_INSN (after);
4314 while (1)
4316 if (active_insn_p (after) && !INSN_LOCATOR (after))
4317 INSN_LOCATOR (after) = loc;
4318 if (after == last)
4319 break;
4320 after = NEXT_INSN (after);
4322 return last;
4325 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4327 emit_insn_after (rtx pattern, rtx after)
4329 if (INSN_P (after))
4330 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4331 else
4332 return emit_insn_after_noloc (pattern, after, NULL);
4335 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4337 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4339 rtx last = emit_jump_insn_after_noloc (pattern, after);
4341 if (pattern == NULL_RTX || !loc)
4342 return last;
4344 after = NEXT_INSN (after);
4345 while (1)
4347 if (active_insn_p (after) && !INSN_LOCATOR (after))
4348 INSN_LOCATOR (after) = loc;
4349 if (after == last)
4350 break;
4351 after = NEXT_INSN (after);
4353 return last;
4356 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4358 emit_jump_insn_after (rtx pattern, rtx after)
4360 if (INSN_P (after))
4361 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4362 else
4363 return emit_jump_insn_after_noloc (pattern, after);
4366 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4368 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4370 rtx last = emit_call_insn_after_noloc (pattern, after);
4372 if (pattern == NULL_RTX || !loc)
4373 return last;
4375 after = NEXT_INSN (after);
4376 while (1)
4378 if (active_insn_p (after) && !INSN_LOCATOR (after))
4379 INSN_LOCATOR (after) = loc;
4380 if (after == last)
4381 break;
4382 after = NEXT_INSN (after);
4384 return last;
4387 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4389 emit_call_insn_after (rtx pattern, rtx after)
4391 if (INSN_P (after))
4392 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4393 else
4394 return emit_call_insn_after_noloc (pattern, after);
4397 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4399 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4401 rtx first = PREV_INSN (before);
4402 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4404 if (pattern == NULL_RTX || !loc)
4405 return last;
4407 if (!first)
4408 first = get_insns ();
4409 else
4410 first = NEXT_INSN (first);
4411 while (1)
4413 if (active_insn_p (first) && !INSN_LOCATOR (first))
4414 INSN_LOCATOR (first) = loc;
4415 if (first == last)
4416 break;
4417 first = NEXT_INSN (first);
4419 return last;
4422 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4424 emit_insn_before (rtx pattern, rtx before)
4426 if (INSN_P (before))
4427 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4428 else
4429 return emit_insn_before_noloc (pattern, before, NULL);
4432 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4434 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4436 rtx first = PREV_INSN (before);
4437 rtx last = emit_jump_insn_before_noloc (pattern, before);
4439 if (pattern == NULL_RTX)
4440 return last;
4442 first = NEXT_INSN (first);
4443 while (1)
4445 if (active_insn_p (first) && !INSN_LOCATOR (first))
4446 INSN_LOCATOR (first) = loc;
4447 if (first == last)
4448 break;
4449 first = NEXT_INSN (first);
4451 return last;
4454 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4456 emit_jump_insn_before (rtx pattern, rtx before)
4458 if (INSN_P (before))
4459 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4460 else
4461 return emit_jump_insn_before_noloc (pattern, before);
4464 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4466 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4468 rtx first = PREV_INSN (before);
4469 rtx last = emit_call_insn_before_noloc (pattern, before);
4471 if (pattern == NULL_RTX)
4472 return last;
4474 first = NEXT_INSN (first);
4475 while (1)
4477 if (active_insn_p (first) && !INSN_LOCATOR (first))
4478 INSN_LOCATOR (first) = loc;
4479 if (first == last)
4480 break;
4481 first = NEXT_INSN (first);
4483 return last;
4486 /* like emit_call_insn_before_noloc,
4487 but set insn_locator according to before. */
4489 emit_call_insn_before (rtx pattern, rtx before)
4491 if (INSN_P (before))
4492 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4493 else
4494 return emit_call_insn_before_noloc (pattern, before);
4497 /* Take X and emit it at the end of the doubly-linked
4498 INSN list.
4500 Returns the last insn emitted. */
4503 emit_insn (rtx x)
4505 rtx last = last_insn;
4506 rtx insn;
4508 if (x == NULL_RTX)
4509 return last;
4511 switch (GET_CODE (x))
4513 case INSN:
4514 case JUMP_INSN:
4515 case CALL_INSN:
4516 case CODE_LABEL:
4517 case BARRIER:
4518 case NOTE:
4519 insn = x;
4520 while (insn)
4522 rtx next = NEXT_INSN (insn);
4523 add_insn (insn);
4524 last = insn;
4525 insn = next;
4527 break;
4529 #ifdef ENABLE_RTL_CHECKING
4530 case SEQUENCE:
4531 gcc_unreachable ();
4532 break;
4533 #endif
4535 default:
4536 last = make_insn_raw (x);
4537 add_insn (last);
4538 break;
4541 return last;
4544 /* Make an insn of code JUMP_INSN with pattern X
4545 and add it to the end of the doubly-linked list. */
4548 emit_jump_insn (rtx x)
4550 rtx last = NULL_RTX, insn;
4552 switch (GET_CODE (x))
4554 case INSN:
4555 case JUMP_INSN:
4556 case CALL_INSN:
4557 case CODE_LABEL:
4558 case BARRIER:
4559 case NOTE:
4560 insn = x;
4561 while (insn)
4563 rtx next = NEXT_INSN (insn);
4564 add_insn (insn);
4565 last = insn;
4566 insn = next;
4568 break;
4570 #ifdef ENABLE_RTL_CHECKING
4571 case SEQUENCE:
4572 gcc_unreachable ();
4573 break;
4574 #endif
4576 default:
4577 last = make_jump_insn_raw (x);
4578 add_insn (last);
4579 break;
4582 return last;
4585 /* Make an insn of code CALL_INSN with pattern X
4586 and add it to the end of the doubly-linked list. */
4589 emit_call_insn (rtx x)
4591 rtx insn;
4593 switch (GET_CODE (x))
4595 case INSN:
4596 case JUMP_INSN:
4597 case CALL_INSN:
4598 case CODE_LABEL:
4599 case BARRIER:
4600 case NOTE:
4601 insn = emit_insn (x);
4602 break;
4604 #ifdef ENABLE_RTL_CHECKING
4605 case SEQUENCE:
4606 gcc_unreachable ();
4607 break;
4608 #endif
4610 default:
4611 insn = make_call_insn_raw (x);
4612 add_insn (insn);
4613 break;
4616 return insn;
4619 /* Add the label LABEL to the end of the doubly-linked list. */
4622 emit_label (rtx label)
4624 /* This can be called twice for the same label
4625 as a result of the confusion that follows a syntax error!
4626 So make it harmless. */
4627 if (INSN_UID (label) == 0)
4629 INSN_UID (label) = cur_insn_uid++;
4630 add_insn (label);
4632 return label;
4635 /* Make an insn of code BARRIER
4636 and add it to the end of the doubly-linked list. */
4639 emit_barrier (void)
4641 rtx barrier = rtx_alloc (BARRIER);
4642 INSN_UID (barrier) = cur_insn_uid++;
4643 add_insn (barrier);
4644 return barrier;
4647 /* Emit a copy of note ORIG. */
4650 emit_note_copy (rtx orig)
4652 rtx note;
4654 note = rtx_alloc (NOTE);
4656 INSN_UID (note) = cur_insn_uid++;
4657 NOTE_DATA (note) = NOTE_DATA (orig);
4658 NOTE_KIND (note) = NOTE_KIND (orig);
4659 BLOCK_FOR_INSN (note) = NULL;
4660 add_insn (note);
4662 return note;
4665 /* Make an insn of code NOTE or type NOTE_NO
4666 and add it to the end of the doubly-linked list. */
4669 emit_note (enum insn_note kind)
4671 rtx note;
4673 note = rtx_alloc (NOTE);
4674 INSN_UID (note) = cur_insn_uid++;
4675 NOTE_KIND (note) = kind;
4676 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4677 BLOCK_FOR_INSN (note) = NULL;
4678 add_insn (note);
4679 return note;
4682 /* Emit a clobber of lvalue X. */
4685 emit_clobber (rtx x)
4687 /* CONCATs should not appear in the insn stream. */
4688 if (GET_CODE (x) == CONCAT)
4690 emit_clobber (XEXP (x, 0));
4691 return emit_clobber (XEXP (x, 1));
4693 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4696 /* Return a sequence of insns to clobber lvalue X. */
4699 gen_clobber (rtx x)
4701 rtx seq;
4703 start_sequence ();
4704 emit_clobber (x);
4705 seq = get_insns ();
4706 end_sequence ();
4707 return seq;
4710 /* Emit a use of rvalue X. */
4713 emit_use (rtx x)
4715 /* CONCATs should not appear in the insn stream. */
4716 if (GET_CODE (x) == CONCAT)
4718 emit_use (XEXP (x, 0));
4719 return emit_use (XEXP (x, 1));
4721 return emit_insn (gen_rtx_USE (VOIDmode, x));
4724 /* Return a sequence of insns to use rvalue X. */
4727 gen_use (rtx x)
4729 rtx seq;
4731 start_sequence ();
4732 emit_use (x);
4733 seq = get_insns ();
4734 end_sequence ();
4735 return seq;
4738 /* Cause next statement to emit a line note even if the line number
4739 has not changed. */
4741 void
4742 force_next_line_note (void)
4744 last_location = -1;
4747 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4748 note of this type already exists, remove it first. */
4751 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4753 rtx note = find_reg_note (insn, kind, NULL_RTX);
4755 switch (kind)
4757 case REG_EQUAL:
4758 case REG_EQUIV:
4759 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4760 has multiple sets (some callers assume single_set
4761 means the insn only has one set, when in fact it
4762 means the insn only has one * useful * set). */
4763 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4765 gcc_assert (!note);
4766 return NULL_RTX;
4769 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4770 It serves no useful purpose and breaks eliminate_regs. */
4771 if (GET_CODE (datum) == ASM_OPERANDS)
4772 return NULL_RTX;
4774 if (note)
4776 XEXP (note, 0) = datum;
4777 df_notes_rescan (insn);
4778 return note;
4780 break;
4782 default:
4783 if (note)
4785 XEXP (note, 0) = datum;
4786 return note;
4788 break;
4791 add_reg_note (insn, kind, datum);
4793 switch (kind)
4795 case REG_EQUAL:
4796 case REG_EQUIV:
4797 df_notes_rescan (insn);
4798 break;
4799 default:
4800 break;
4803 return REG_NOTES (insn);
4806 /* Return an indication of which type of insn should have X as a body.
4807 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4809 static enum rtx_code
4810 classify_insn (rtx x)
4812 if (LABEL_P (x))
4813 return CODE_LABEL;
4814 if (GET_CODE (x) == CALL)
4815 return CALL_INSN;
4816 if (GET_CODE (x) == RETURN)
4817 return JUMP_INSN;
4818 if (GET_CODE (x) == SET)
4820 if (SET_DEST (x) == pc_rtx)
4821 return JUMP_INSN;
4822 else if (GET_CODE (SET_SRC (x)) == CALL)
4823 return CALL_INSN;
4824 else
4825 return INSN;
4827 if (GET_CODE (x) == PARALLEL)
4829 int j;
4830 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4831 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4832 return CALL_INSN;
4833 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4834 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4835 return JUMP_INSN;
4836 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4837 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4838 return CALL_INSN;
4840 return INSN;
4843 /* Emit the rtl pattern X as an appropriate kind of insn.
4844 If X is a label, it is simply added into the insn chain. */
4847 emit (rtx x)
4849 enum rtx_code code = classify_insn (x);
4851 switch (code)
4853 case CODE_LABEL:
4854 return emit_label (x);
4855 case INSN:
4856 return emit_insn (x);
4857 case JUMP_INSN:
4859 rtx insn = emit_jump_insn (x);
4860 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4861 return emit_barrier ();
4862 return insn;
4864 case CALL_INSN:
4865 return emit_call_insn (x);
4866 default:
4867 gcc_unreachable ();
4871 /* Space for free sequence stack entries. */
4872 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4874 /* Begin emitting insns to a sequence. If this sequence will contain
4875 something that might cause the compiler to pop arguments to function
4876 calls (because those pops have previously been deferred; see
4877 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4878 before calling this function. That will ensure that the deferred
4879 pops are not accidentally emitted in the middle of this sequence. */
4881 void
4882 start_sequence (void)
4884 struct sequence_stack *tem;
4886 if (free_sequence_stack != NULL)
4888 tem = free_sequence_stack;
4889 free_sequence_stack = tem->next;
4891 else
4892 tem = GGC_NEW (struct sequence_stack);
4894 tem->next = seq_stack;
4895 tem->first = first_insn;
4896 tem->last = last_insn;
4898 seq_stack = tem;
4900 first_insn = 0;
4901 last_insn = 0;
4904 /* Set up the insn chain starting with FIRST as the current sequence,
4905 saving the previously current one. See the documentation for
4906 start_sequence for more information about how to use this function. */
4908 void
4909 push_to_sequence (rtx first)
4911 rtx last;
4913 start_sequence ();
4915 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4917 first_insn = first;
4918 last_insn = last;
4921 /* Like push_to_sequence, but take the last insn as an argument to avoid
4922 looping through the list. */
4924 void
4925 push_to_sequence2 (rtx first, rtx last)
4927 start_sequence ();
4929 first_insn = first;
4930 last_insn = last;
4933 /* Set up the outer-level insn chain
4934 as the current sequence, saving the previously current one. */
4936 void
4937 push_topmost_sequence (void)
4939 struct sequence_stack *stack, *top = NULL;
4941 start_sequence ();
4943 for (stack = seq_stack; stack; stack = stack->next)
4944 top = stack;
4946 first_insn = top->first;
4947 last_insn = top->last;
4950 /* After emitting to the outer-level insn chain, update the outer-level
4951 insn chain, and restore the previous saved state. */
4953 void
4954 pop_topmost_sequence (void)
4956 struct sequence_stack *stack, *top = NULL;
4958 for (stack = seq_stack; stack; stack = stack->next)
4959 top = stack;
4961 top->first = first_insn;
4962 top->last = last_insn;
4964 end_sequence ();
4967 /* After emitting to a sequence, restore previous saved state.
4969 To get the contents of the sequence just made, you must call
4970 `get_insns' *before* calling here.
4972 If the compiler might have deferred popping arguments while
4973 generating this sequence, and this sequence will not be immediately
4974 inserted into the instruction stream, use do_pending_stack_adjust
4975 before calling get_insns. That will ensure that the deferred
4976 pops are inserted into this sequence, and not into some random
4977 location in the instruction stream. See INHIBIT_DEFER_POP for more
4978 information about deferred popping of arguments. */
4980 void
4981 end_sequence (void)
4983 struct sequence_stack *tem = seq_stack;
4985 first_insn = tem->first;
4986 last_insn = tem->last;
4987 seq_stack = tem->next;
4989 memset (tem, 0, sizeof (*tem));
4990 tem->next = free_sequence_stack;
4991 free_sequence_stack = tem;
4994 /* Return 1 if currently emitting into a sequence. */
4997 in_sequence_p (void)
4999 return seq_stack != 0;
5002 /* Put the various virtual registers into REGNO_REG_RTX. */
5004 static void
5005 init_virtual_regs (void)
5007 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5008 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5009 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5010 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5011 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5015 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5016 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5017 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5018 static int copy_insn_n_scratches;
5020 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5021 copied an ASM_OPERANDS.
5022 In that case, it is the original input-operand vector. */
5023 static rtvec orig_asm_operands_vector;
5025 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5026 copied an ASM_OPERANDS.
5027 In that case, it is the copied input-operand vector. */
5028 static rtvec copy_asm_operands_vector;
5030 /* Likewise for the constraints vector. */
5031 static rtvec orig_asm_constraints_vector;
5032 static rtvec copy_asm_constraints_vector;
5034 /* Recursively create a new copy of an rtx for copy_insn.
5035 This function differs from copy_rtx in that it handles SCRATCHes and
5036 ASM_OPERANDs properly.
5037 Normally, this function is not used directly; use copy_insn as front end.
5038 However, you could first copy an insn pattern with copy_insn and then use
5039 this function afterwards to properly copy any REG_NOTEs containing
5040 SCRATCHes. */
5043 copy_insn_1 (rtx orig)
5045 rtx copy;
5046 int i, j;
5047 RTX_CODE code;
5048 const char *format_ptr;
5050 code = GET_CODE (orig);
5052 switch (code)
5054 case REG:
5055 case CONST_INT:
5056 case CONST_DOUBLE:
5057 case CONST_FIXED:
5058 case CONST_VECTOR:
5059 case SYMBOL_REF:
5060 case CODE_LABEL:
5061 case PC:
5062 case CC0:
5063 return orig;
5064 case CLOBBER:
5065 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5066 return orig;
5067 break;
5069 case SCRATCH:
5070 for (i = 0; i < copy_insn_n_scratches; i++)
5071 if (copy_insn_scratch_in[i] == orig)
5072 return copy_insn_scratch_out[i];
5073 break;
5075 case CONST:
5076 if (shared_const_p (orig))
5077 return orig;
5078 break;
5080 /* A MEM with a constant address is not sharable. The problem is that
5081 the constant address may need to be reloaded. If the mem is shared,
5082 then reloading one copy of this mem will cause all copies to appear
5083 to have been reloaded. */
5085 default:
5086 break;
5089 /* Copy the various flags, fields, and other information. We assume
5090 that all fields need copying, and then clear the fields that should
5091 not be copied. That is the sensible default behavior, and forces
5092 us to explicitly document why we are *not* copying a flag. */
5093 copy = shallow_copy_rtx (orig);
5095 /* We do not copy the USED flag, which is used as a mark bit during
5096 walks over the RTL. */
5097 RTX_FLAG (copy, used) = 0;
5099 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5100 if (INSN_P (orig))
5102 RTX_FLAG (copy, jump) = 0;
5103 RTX_FLAG (copy, call) = 0;
5104 RTX_FLAG (copy, frame_related) = 0;
5107 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5109 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5110 switch (*format_ptr++)
5112 case 'e':
5113 if (XEXP (orig, i) != NULL)
5114 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5115 break;
5117 case 'E':
5118 case 'V':
5119 if (XVEC (orig, i) == orig_asm_constraints_vector)
5120 XVEC (copy, i) = copy_asm_constraints_vector;
5121 else if (XVEC (orig, i) == orig_asm_operands_vector)
5122 XVEC (copy, i) = copy_asm_operands_vector;
5123 else if (XVEC (orig, i) != NULL)
5125 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5126 for (j = 0; j < XVECLEN (copy, i); j++)
5127 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5129 break;
5131 case 't':
5132 case 'w':
5133 case 'i':
5134 case 's':
5135 case 'S':
5136 case 'u':
5137 case '0':
5138 /* These are left unchanged. */
5139 break;
5141 default:
5142 gcc_unreachable ();
5145 if (code == SCRATCH)
5147 i = copy_insn_n_scratches++;
5148 gcc_assert (i < MAX_RECOG_OPERANDS);
5149 copy_insn_scratch_in[i] = orig;
5150 copy_insn_scratch_out[i] = copy;
5152 else if (code == ASM_OPERANDS)
5154 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5155 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5156 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5157 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5160 return copy;
5163 /* Create a new copy of an rtx.
5164 This function differs from copy_rtx in that it handles SCRATCHes and
5165 ASM_OPERANDs properly.
5166 INSN doesn't really have to be a full INSN; it could be just the
5167 pattern. */
5169 copy_insn (rtx insn)
5171 copy_insn_n_scratches = 0;
5172 orig_asm_operands_vector = 0;
5173 orig_asm_constraints_vector = 0;
5174 copy_asm_operands_vector = 0;
5175 copy_asm_constraints_vector = 0;
5176 return copy_insn_1 (insn);
5179 /* Initialize data structures and variables in this file
5180 before generating rtl for each function. */
5182 void
5183 init_emit (void)
5185 first_insn = NULL;
5186 last_insn = NULL;
5187 cur_insn_uid = 1;
5188 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5189 last_location = UNKNOWN_LOCATION;
5190 first_label_num = label_num;
5191 seq_stack = NULL;
5193 /* Init the tables that describe all the pseudo regs. */
5195 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5197 crtl->emit.regno_pointer_align
5198 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5200 regno_reg_rtx
5201 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5203 /* Put copies of all the hard registers into regno_reg_rtx. */
5204 memcpy (regno_reg_rtx,
5205 static_regno_reg_rtx,
5206 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5208 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5209 init_virtual_regs ();
5211 /* Indicate that the virtual registers and stack locations are
5212 all pointers. */
5213 REG_POINTER (stack_pointer_rtx) = 1;
5214 REG_POINTER (frame_pointer_rtx) = 1;
5215 REG_POINTER (hard_frame_pointer_rtx) = 1;
5216 REG_POINTER (arg_pointer_rtx) = 1;
5218 REG_POINTER (virtual_incoming_args_rtx) = 1;
5219 REG_POINTER (virtual_stack_vars_rtx) = 1;
5220 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5221 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5222 REG_POINTER (virtual_cfa_rtx) = 1;
5224 #ifdef STACK_BOUNDARY
5225 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5226 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5227 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5228 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5230 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5231 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5232 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5233 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5234 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5235 #endif
5237 #ifdef INIT_EXPANDERS
5238 INIT_EXPANDERS;
5239 #endif
5242 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5244 static rtx
5245 gen_const_vector (enum machine_mode mode, int constant)
5247 rtx tem;
5248 rtvec v;
5249 int units, i;
5250 enum machine_mode inner;
5252 units = GET_MODE_NUNITS (mode);
5253 inner = GET_MODE_INNER (mode);
5255 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5257 v = rtvec_alloc (units);
5259 /* We need to call this function after we set the scalar const_tiny_rtx
5260 entries. */
5261 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5263 for (i = 0; i < units; ++i)
5264 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5266 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5267 return tem;
5270 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5271 all elements are zero, and the one vector when all elements are one. */
5273 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5275 enum machine_mode inner = GET_MODE_INNER (mode);
5276 int nunits = GET_MODE_NUNITS (mode);
5277 rtx x;
5278 int i;
5280 /* Check to see if all of the elements have the same value. */
5281 x = RTVEC_ELT (v, nunits - 1);
5282 for (i = nunits - 2; i >= 0; i--)
5283 if (RTVEC_ELT (v, i) != x)
5284 break;
5286 /* If the values are all the same, check to see if we can use one of the
5287 standard constant vectors. */
5288 if (i == -1)
5290 if (x == CONST0_RTX (inner))
5291 return CONST0_RTX (mode);
5292 else if (x == CONST1_RTX (inner))
5293 return CONST1_RTX (mode);
5296 return gen_rtx_raw_CONST_VECTOR (mode, v);
5299 /* Initialise global register information required by all functions. */
5301 void
5302 init_emit_regs (void)
5304 int i;
5306 /* Reset register attributes */
5307 htab_empty (reg_attrs_htab);
5309 /* We need reg_raw_mode, so initialize the modes now. */
5310 init_reg_modes_target ();
5312 /* Assign register numbers to the globally defined register rtx. */
5313 pc_rtx = gen_rtx_PC (VOIDmode);
5314 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5315 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5316 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5317 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5318 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5319 virtual_incoming_args_rtx =
5320 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5321 virtual_stack_vars_rtx =
5322 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5323 virtual_stack_dynamic_rtx =
5324 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5325 virtual_outgoing_args_rtx =
5326 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5327 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5329 /* Initialize RTL for commonly used hard registers. These are
5330 copied into regno_reg_rtx as we begin to compile each function. */
5331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5332 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5334 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5335 return_address_pointer_rtx
5336 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5337 #endif
5339 #ifdef STATIC_CHAIN_REGNUM
5340 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5342 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5343 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5344 static_chain_incoming_rtx
5345 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5346 else
5347 #endif
5348 static_chain_incoming_rtx = static_chain_rtx;
5349 #endif
5351 #ifdef STATIC_CHAIN
5352 static_chain_rtx = STATIC_CHAIN;
5354 #ifdef STATIC_CHAIN_INCOMING
5355 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5356 #else
5357 static_chain_incoming_rtx = static_chain_rtx;
5358 #endif
5359 #endif
5361 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5362 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5363 else
5364 pic_offset_table_rtx = NULL_RTX;
5367 /* Create some permanent unique rtl objects shared between all functions.
5368 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5370 void
5371 init_emit_once (int line_numbers)
5373 int i;
5374 enum machine_mode mode;
5375 enum machine_mode double_mode;
5377 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5378 hash tables. */
5379 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5380 const_int_htab_eq, NULL);
5382 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5383 const_double_htab_eq, NULL);
5385 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5386 const_fixed_htab_eq, NULL);
5388 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5389 mem_attrs_htab_eq, NULL);
5390 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5391 reg_attrs_htab_eq, NULL);
5393 no_line_numbers = ! line_numbers;
5395 /* Compute the word and byte modes. */
5397 byte_mode = VOIDmode;
5398 word_mode = VOIDmode;
5399 double_mode = VOIDmode;
5401 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5402 mode != VOIDmode;
5403 mode = GET_MODE_WIDER_MODE (mode))
5405 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5406 && byte_mode == VOIDmode)
5407 byte_mode = mode;
5409 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5410 && word_mode == VOIDmode)
5411 word_mode = mode;
5414 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5415 mode != VOIDmode;
5416 mode = GET_MODE_WIDER_MODE (mode))
5418 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5419 && double_mode == VOIDmode)
5420 double_mode = mode;
5423 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5425 #ifdef INIT_EXPANDERS
5426 /* This is to initialize {init|mark|free}_machine_status before the first
5427 call to push_function_context_to. This is needed by the Chill front
5428 end which calls push_function_context_to before the first call to
5429 init_function_start. */
5430 INIT_EXPANDERS;
5431 #endif
5433 /* Create the unique rtx's for certain rtx codes and operand values. */
5435 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5436 tries to use these variables. */
5437 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5438 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5439 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5441 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5442 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5443 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5444 else
5445 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5447 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5448 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5449 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5451 dconstm1 = dconst1;
5452 dconstm1.sign = 1;
5454 dconsthalf = dconst1;
5455 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5457 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5459 const REAL_VALUE_TYPE *const r =
5460 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5462 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5463 mode != VOIDmode;
5464 mode = GET_MODE_WIDER_MODE (mode))
5465 const_tiny_rtx[i][(int) mode] =
5466 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5468 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5469 mode != VOIDmode;
5470 mode = GET_MODE_WIDER_MODE (mode))
5471 const_tiny_rtx[i][(int) mode] =
5472 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5474 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5476 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5477 mode != VOIDmode;
5478 mode = GET_MODE_WIDER_MODE (mode))
5479 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5481 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5482 mode != VOIDmode;
5483 mode = GET_MODE_WIDER_MODE (mode))
5484 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5487 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5488 mode != VOIDmode;
5489 mode = GET_MODE_WIDER_MODE (mode))
5491 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5492 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5495 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5496 mode != VOIDmode;
5497 mode = GET_MODE_WIDER_MODE (mode))
5499 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5500 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5503 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5504 mode != VOIDmode;
5505 mode = GET_MODE_WIDER_MODE (mode))
5507 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5508 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5511 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5512 mode != VOIDmode;
5513 mode = GET_MODE_WIDER_MODE (mode))
5515 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5516 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5519 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5520 mode != VOIDmode;
5521 mode = GET_MODE_WIDER_MODE (mode))
5523 FCONST0(mode).data.high = 0;
5524 FCONST0(mode).data.low = 0;
5525 FCONST0(mode).mode = mode;
5526 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5527 FCONST0 (mode), mode);
5530 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5531 mode != VOIDmode;
5532 mode = GET_MODE_WIDER_MODE (mode))
5534 FCONST0(mode).data.high = 0;
5535 FCONST0(mode).data.low = 0;
5536 FCONST0(mode).mode = mode;
5537 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5538 FCONST0 (mode), mode);
5541 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5542 mode != VOIDmode;
5543 mode = GET_MODE_WIDER_MODE (mode))
5545 FCONST0(mode).data.high = 0;
5546 FCONST0(mode).data.low = 0;
5547 FCONST0(mode).mode = mode;
5548 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5549 FCONST0 (mode), mode);
5551 /* We store the value 1. */
5552 FCONST1(mode).data.high = 0;
5553 FCONST1(mode).data.low = 0;
5554 FCONST1(mode).mode = mode;
5555 lshift_double (1, 0, GET_MODE_FBIT (mode),
5556 2 * HOST_BITS_PER_WIDE_INT,
5557 &FCONST1(mode).data.low,
5558 &FCONST1(mode).data.high,
5559 SIGNED_FIXED_POINT_MODE_P (mode));
5560 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5561 FCONST1 (mode), mode);
5564 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5565 mode != VOIDmode;
5566 mode = GET_MODE_WIDER_MODE (mode))
5568 FCONST0(mode).data.high = 0;
5569 FCONST0(mode).data.low = 0;
5570 FCONST0(mode).mode = mode;
5571 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5572 FCONST0 (mode), mode);
5574 /* We store the value 1. */
5575 FCONST1(mode).data.high = 0;
5576 FCONST1(mode).data.low = 0;
5577 FCONST1(mode).mode = mode;
5578 lshift_double (1, 0, GET_MODE_FBIT (mode),
5579 2 * HOST_BITS_PER_WIDE_INT,
5580 &FCONST1(mode).data.low,
5581 &FCONST1(mode).data.high,
5582 SIGNED_FIXED_POINT_MODE_P (mode));
5583 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5584 FCONST1 (mode), mode);
5587 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5588 mode != VOIDmode;
5589 mode = GET_MODE_WIDER_MODE (mode))
5591 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5594 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5595 mode != VOIDmode;
5596 mode = GET_MODE_WIDER_MODE (mode))
5598 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5602 mode != VOIDmode;
5603 mode = GET_MODE_WIDER_MODE (mode))
5605 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5606 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5609 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5610 mode != VOIDmode;
5611 mode = GET_MODE_WIDER_MODE (mode))
5613 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5614 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5617 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5618 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5619 const_tiny_rtx[0][i] = const0_rtx;
5621 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5622 if (STORE_FLAG_VALUE == 1)
5623 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5626 /* Produce exact duplicate of insn INSN after AFTER.
5627 Care updating of libcall regions if present. */
5630 emit_copy_of_insn_after (rtx insn, rtx after)
5632 rtx new_rtx, link;
5634 switch (GET_CODE (insn))
5636 case INSN:
5637 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5638 break;
5640 case JUMP_INSN:
5641 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5642 break;
5644 case CALL_INSN:
5645 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5646 if (CALL_INSN_FUNCTION_USAGE (insn))
5647 CALL_INSN_FUNCTION_USAGE (new_rtx)
5648 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5649 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5650 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5651 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5652 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5653 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5654 break;
5656 default:
5657 gcc_unreachable ();
5660 /* Update LABEL_NUSES. */
5661 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5663 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5665 /* If the old insn is frame related, then so is the new one. This is
5666 primarily needed for IA-64 unwind info which marks epilogue insns,
5667 which may be duplicated by the basic block reordering code. */
5668 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5670 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5671 will make them. REG_LABEL_TARGETs are created there too, but are
5672 supposed to be sticky, so we copy them. */
5673 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5674 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5676 if (GET_CODE (link) == EXPR_LIST)
5677 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5678 copy_insn_1 (XEXP (link, 0)));
5679 else
5680 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5683 INSN_CODE (new_rtx) = INSN_CODE (insn);
5684 return new_rtx;
5687 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5689 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5691 if (hard_reg_clobbers[mode][regno])
5692 return hard_reg_clobbers[mode][regno];
5693 else
5694 return (hard_reg_clobbers[mode][regno] =
5695 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5698 #include "gt-emit-rtl.h"