2009-01-30 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / cse.c
blob91cb108e94c7cf0133f9d9b39f4dc767fa6c08d5
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
286 static bool optimize_this_for_speed_p;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_extended_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* True if CSE has altered the CFG. */
353 static bool cse_cfg_altered;
355 /* True if CSE has altered conditional jump insns in such a way
356 that jump optimization should be redone. */
357 static bool cse_jumps_altered;
359 /* True if we put a LABEL_REF into the hash table for an INSN
360 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361 to put in the note. */
362 static bool recorded_label_ref;
364 /* canon_hash stores 1 in do_not_record
365 if it notices a reference to CC0, PC, or some other volatile
366 subexpression. */
368 static int do_not_record;
370 /* canon_hash stores 1 in hash_arg_in_memory
371 if it notices a reference to memory within the expression being hashed. */
373 static int hash_arg_in_memory;
375 /* The hash table contains buckets which are chains of `struct table_elt's,
376 each recording one expression's information.
377 That expression is in the `exp' field.
379 The canon_exp field contains a canonical (from the point of view of
380 alias analysis) version of the `exp' field.
382 Those elements with the same hash code are chained in both directions
383 through the `next_same_hash' and `prev_same_hash' fields.
385 Each set of expressions with equivalent values
386 are on a two-way chain through the `next_same_value'
387 and `prev_same_value' fields, and all point with
388 the `first_same_value' field at the first element in
389 that chain. The chain is in order of increasing cost.
390 Each element's cost value is in its `cost' field.
392 The `in_memory' field is nonzero for elements that
393 involve any reference to memory. These elements are removed
394 whenever a write is done to an unidentified location in memory.
395 To be safe, we assume that a memory address is unidentified unless
396 the address is either a symbol constant or a constant plus
397 the frame pointer or argument pointer.
399 The `related_value' field is used to connect related expressions
400 (that differ by adding an integer).
401 The related expressions are chained in a circular fashion.
402 `related_value' is zero for expressions for which this
403 chain is not useful.
405 The `cost' field stores the cost of this element's expression.
406 The `regcost' field stores the value returned by approx_reg_cost for
407 this element's expression.
409 The `is_const' flag is set if the element is a constant (including
410 a fixed address).
412 The `flag' field is used as a temporary during some search routines.
414 The `mode' field is usually the same as GET_MODE (`exp'), but
415 if `exp' is a CONST_INT and has no machine mode then the `mode'
416 field is the mode it was being used as. Each constant is
417 recorded separately for each mode it is used with. */
419 struct table_elt
421 rtx exp;
422 rtx canon_exp;
423 struct table_elt *next_same_hash;
424 struct table_elt *prev_same_hash;
425 struct table_elt *next_same_value;
426 struct table_elt *prev_same_value;
427 struct table_elt *first_same_value;
428 struct table_elt *related_value;
429 int cost;
430 int regcost;
431 /* The size of this field should match the size
432 of the mode field of struct rtx_def (see rtl.h). */
433 ENUM_BITFIELD(machine_mode) mode : 8;
434 char in_memory;
435 char is_const;
436 char flag;
439 /* We don't want a lot of buckets, because we rarely have very many
440 things stored in the hash table, and a lot of buckets slows
441 down a lot of loops that happen frequently. */
442 #define HASH_SHIFT 5
443 #define HASH_SIZE (1 << HASH_SHIFT)
444 #define HASH_MASK (HASH_SIZE - 1)
446 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
447 register (hard registers may require `do_not_record' to be set). */
449 #define HASH(X, M) \
450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : canon_hash (X, M)) & HASH_MASK)
454 /* Like HASH, but without side-effects. */
455 #define SAFE_HASH(X, M) \
456 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
458 : safe_hash (X, M)) & HASH_MASK)
460 /* Determine whether register number N is considered a fixed register for the
461 purpose of approximating register costs.
462 It is desirable to replace other regs with fixed regs, to reduce need for
463 non-fixed hard regs.
464 A reg wins if it is either the frame pointer or designated as fixed. */
465 #define FIXED_REGNO_P(N) \
466 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467 || fixed_regs[N] || global_regs[N])
469 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
470 hard registers and pointers into the frame are the cheapest with a cost
471 of 0. Next come pseudos with a cost of one and other hard registers with
472 a cost of 2. Aside from these special cases, call `rtx_cost'. */
474 #define CHEAP_REGNO(N) \
475 (REGNO_PTR_FRAME_P(N) \
476 || (HARD_REGISTER_NUM_P (N) \
477 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
479 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
482 /* Get the number of times this register has been updated in this
483 basic block. */
485 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
487 /* Get the point at which REG was recorded in the table. */
489 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
491 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492 SUBREG). */
494 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
496 /* Get the quantity number for REG. */
498 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
500 /* Determine if the quantity number for register X represents a valid index
501 into the qty_table. */
503 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
505 static struct table_elt *table[HASH_SIZE];
507 /* Chain of `struct table_elt's made so far for this function
508 but currently removed from the table. */
510 static struct table_elt *free_element_chain;
512 /* Set to the cost of a constant pool reference if one was found for a
513 symbolic constant. If this was found, it means we should try to
514 convert constants into constant pool entries if they don't fit in
515 the insn. */
517 static int constant_pool_entries_cost;
518 static int constant_pool_entries_regcost;
520 /* This data describes a block that will be processed by
521 cse_extended_basic_block. */
523 struct cse_basic_block_data
525 /* Total number of SETs in block. */
526 int nsets;
527 /* Size of current branch path, if any. */
528 int path_size;
529 /* Current path, indicating which basic_blocks will be processed. */
530 struct branch_path
532 /* The basic block for this path entry. */
533 basic_block bb;
534 } *path;
538 /* Pointers to the live in/live out bitmaps for the boundaries of the
539 current EBB. */
540 static bitmap cse_ebb_live_in, cse_ebb_live_out;
542 /* A simple bitmap to track which basic blocks have been visited
543 already as part of an already processed extended basic block. */
544 static sbitmap cse_visited_basic_blocks;
546 static bool fixed_base_plus_p (rtx x);
547 static int notreg_cost (rtx, enum rtx_code);
548 static int approx_reg_cost_1 (rtx *, void *);
549 static int approx_reg_cost (rtx);
550 static int preferable (int, int, int, int);
551 static void new_basic_block (void);
552 static void make_new_qty (unsigned int, enum machine_mode);
553 static void make_regs_eqv (unsigned int, unsigned int);
554 static void delete_reg_equiv (unsigned int);
555 static int mention_regs (rtx);
556 static int insert_regs (rtx, struct table_elt *, int);
557 static void remove_from_table (struct table_elt *, unsigned);
558 static void remove_pseudo_from_table (rtx, unsigned);
559 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
560 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
561 static rtx lookup_as_function (rtx, enum rtx_code);
562 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
563 enum machine_mode);
564 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
565 static void invalidate (rtx, enum machine_mode);
566 static bool cse_rtx_varies_p (const_rtx, bool);
567 static void remove_invalid_refs (unsigned int);
568 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
569 enum machine_mode);
570 static void rehash_using_reg (rtx);
571 static void invalidate_memory (void);
572 static void invalidate_for_call (void);
573 static rtx use_related_value (rtx, struct table_elt *);
575 static inline unsigned canon_hash (rtx, enum machine_mode);
576 static inline unsigned safe_hash (rtx, enum machine_mode);
577 static inline unsigned hash_rtx_string (const char *);
579 static rtx canon_reg (rtx, rtx);
580 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
581 enum machine_mode *,
582 enum machine_mode *);
583 static rtx fold_rtx (rtx, rtx);
584 static rtx equiv_constant (rtx);
585 static void record_jump_equiv (rtx, bool);
586 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
587 int);
588 static void cse_insn (rtx);
589 static void cse_prescan_path (struct cse_basic_block_data *);
590 static void invalidate_from_clobbers (rtx);
591 static rtx cse_process_notes (rtx, rtx, bool *);
592 static void cse_extended_basic_block (struct cse_basic_block_data *);
593 static void count_reg_usage (rtx, int *, rtx, int);
594 static int check_for_label_ref (rtx *, void *);
595 extern void dump_class (struct table_elt*);
596 static void get_cse_reg_info_1 (unsigned int regno);
597 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
598 static int check_dependence (rtx *, void *);
600 static void flush_hash_table (void);
601 static bool insn_live_p (rtx, int *);
602 static bool set_live_p (rtx, rtx, int *);
603 static int cse_change_cc_mode (rtx *, void *);
604 static void cse_change_cc_mode_insn (rtx, rtx);
605 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
606 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
607 bool);
610 #undef RTL_HOOKS_GEN_LOWPART
611 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
613 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
615 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
616 virtual regs here because the simplify_*_operation routines are called
617 by integrate.c, which is called before virtual register instantiation. */
619 static bool
620 fixed_base_plus_p (rtx x)
622 switch (GET_CODE (x))
624 case REG:
625 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
626 return true;
627 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
628 return true;
629 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
630 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
631 return true;
632 return false;
634 case PLUS:
635 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
636 return false;
637 return fixed_base_plus_p (XEXP (x, 0));
639 default:
640 return false;
644 /* Dump the expressions in the equivalence class indicated by CLASSP.
645 This function is used only for debugging. */
646 void
647 dump_class (struct table_elt *classp)
649 struct table_elt *elt;
651 fprintf (stderr, "Equivalence chain for ");
652 print_rtl (stderr, classp->exp);
653 fprintf (stderr, ": \n");
655 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 print_rtl (stderr, elt->exp);
658 fprintf (stderr, "\n");
662 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
664 static int
665 approx_reg_cost_1 (rtx *xp, void *data)
667 rtx x = *xp;
668 int *cost_p = (int *) data;
670 if (x && REG_P (x))
672 unsigned int regno = REGNO (x);
674 if (! CHEAP_REGNO (regno))
676 if (regno < FIRST_PSEUDO_REGISTER)
678 if (SMALL_REGISTER_CLASSES)
679 return 1;
680 *cost_p += 2;
682 else
683 *cost_p += 1;
687 return 0;
690 /* Return an estimate of the cost of the registers used in an rtx.
691 This is mostly the number of different REG expressions in the rtx;
692 however for some exceptions like fixed registers we use a cost of
693 0. If any other hard register reference occurs, return MAX_COST. */
695 static int
696 approx_reg_cost (rtx x)
698 int cost = 0;
700 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
701 return MAX_COST;
703 return cost;
706 /* Return a negative value if an rtx A, whose costs are given by COST_A
707 and REGCOST_A, is more desirable than an rtx B.
708 Return a positive value if A is less desirable, or 0 if the two are
709 equally good. */
710 static int
711 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 /* First, get rid of cases involving expressions that are entirely
714 unwanted. */
715 if (cost_a != cost_b)
717 if (cost_a == MAX_COST)
718 return 1;
719 if (cost_b == MAX_COST)
720 return -1;
723 /* Avoid extending lifetimes of hardregs. */
724 if (regcost_a != regcost_b)
726 if (regcost_a == MAX_COST)
727 return 1;
728 if (regcost_b == MAX_COST)
729 return -1;
732 /* Normal operation costs take precedence. */
733 if (cost_a != cost_b)
734 return cost_a - cost_b;
735 /* Only if these are identical consider effects on register pressure. */
736 if (regcost_a != regcost_b)
737 return regcost_a - regcost_b;
738 return 0;
741 /* Internal function, to compute cost when X is not a register; called
742 from COST macro to keep it simple. */
744 static int
745 notreg_cost (rtx x, enum rtx_code outer)
747 return ((GET_CODE (x) == SUBREG
748 && REG_P (SUBREG_REG (x))
749 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
750 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
751 && (GET_MODE_SIZE (GET_MODE (x))
752 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
753 && subreg_lowpart_p (x)
754 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
755 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
757 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
761 /* Initialize CSE_REG_INFO_TABLE. */
763 static void
764 init_cse_reg_info (unsigned int nregs)
766 /* Do we need to grow the table? */
767 if (nregs > cse_reg_info_table_size)
769 unsigned int new_size;
771 if (cse_reg_info_table_size < 2048)
773 /* Compute a new size that is a power of 2 and no smaller
774 than the large of NREGS and 64. */
775 new_size = (cse_reg_info_table_size
776 ? cse_reg_info_table_size : 64);
778 while (new_size < nregs)
779 new_size *= 2;
781 else
783 /* If we need a big table, allocate just enough to hold
784 NREGS registers. */
785 new_size = nregs;
788 /* Reallocate the table with NEW_SIZE entries. */
789 if (cse_reg_info_table)
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
809 cse_reg_info_table_first_uninitialized = nregs;
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
829 /* Find a cse_reg_info entry for REGNO. */
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
841 return p;
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
847 static void
848 new_basic_block (void)
850 int i;
852 next_qty = 0;
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
863 for (i = 0; i < HASH_SIZE; i++)
865 struct table_elt *first;
867 first = table[i];
868 if (first != NULL)
870 struct table_elt *last = first;
872 table[i] = NULL;
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
877 /* Now relink this hash entire chain into
878 the free element list. */
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
900 gcc_assert (next_qty < max_qty);
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
924 ent = &qty_table[q];
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
956 else
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
976 /* Remove REG from its equivalence class. */
978 static void
979 delete_reg_equiv (unsigned int reg)
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
989 ent = &qty_table[q];
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1003 REG_QTY (reg) = -reg - 1;
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1018 static int
1019 mention_regs (rtx x)
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1026 if (x == 0)
1027 return 0;
1029 code = GET_CODE (x);
1030 if (code == REG)
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1036 for (i = regno; i < endregno; i++)
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1045 return 0;
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1054 unsigned int i = REGNO (SUBREG_REG (x));
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1085 if (code == COMPARE || COMPARISON_P (x))
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1112 return changed;
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1128 if (REG_P (x))
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1145 if (modified || ! qty_valid)
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1154 unsigned c_regno = REGNO (classp->exp);
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1192 return 0;
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1208 else
1209 return mention_regs (x);
1212 /* Look in or update the hash table. */
1214 /* Remove table element ELT from use in the table.
1215 HASH is its hash code, made using the HASH macro.
1216 It's an argument because often that is known in advance
1217 and we save much time not recomputing it. */
1219 static void
1220 remove_from_table (struct table_elt *elt, unsigned int hash)
1222 if (elt == 0)
1223 return;
1225 /* Mark this element as removed. See cse_insn. */
1226 elt->first_same_value = 0;
1228 /* Remove the table element from its equivalence class. */
1231 struct table_elt *prev = elt->prev_same_value;
1232 struct table_elt *next = elt->next_same_value;
1234 if (next)
1235 next->prev_same_value = prev;
1237 if (prev)
1238 prev->next_same_value = next;
1239 else
1241 struct table_elt *newfirst = next;
1242 while (next)
1244 next->first_same_value = newfirst;
1245 next = next->next_same_value;
1250 /* Remove the table element from its hash bucket. */
1253 struct table_elt *prev = elt->prev_same_hash;
1254 struct table_elt *next = elt->next_same_hash;
1256 if (next)
1257 next->prev_same_hash = prev;
1259 if (prev)
1260 prev->next_same_hash = next;
1261 else if (table[hash] == elt)
1262 table[hash] = next;
1263 else
1265 /* This entry is not in the proper hash bucket. This can happen
1266 when two classes were merged by `merge_equiv_classes'. Search
1267 for the hash bucket that it heads. This happens only very
1268 rarely, so the cost is acceptable. */
1269 for (hash = 0; hash < HASH_SIZE; hash++)
1270 if (table[hash] == elt)
1271 table[hash] = next;
1275 /* Remove the table element from its related-value circular chain. */
1277 if (elt->related_value != 0 && elt->related_value != elt)
1279 struct table_elt *p = elt->related_value;
1281 while (p->related_value != elt)
1282 p = p->related_value;
1283 p->related_value = elt->related_value;
1284 if (p->related_value == p)
1285 p->related_value = 0;
1288 /* Now add it to the free element chain. */
1289 elt->next_same_hash = free_element_chain;
1290 free_element_chain = elt;
1293 /* Same as above, but X is a pseudo-register. */
1295 static void
1296 remove_pseudo_from_table (rtx x, unsigned int hash)
1298 struct table_elt *elt;
1300 /* Because a pseudo-register can be referenced in more than one
1301 mode, we might have to remove more than one table entry. */
1302 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1303 remove_from_table (elt, hash);
1306 /* Look up X in the hash table and return its table element,
1307 or 0 if X is not in the table.
1309 MODE is the machine-mode of X, or if X is an integer constant
1310 with VOIDmode then MODE is the mode with which X will be used.
1312 Here we are satisfied to find an expression whose tree structure
1313 looks like X. */
1315 static struct table_elt *
1316 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1318 struct table_elt *p;
1320 for (p = table[hash]; p; p = p->next_same_hash)
1321 if (mode == p->mode && ((x == p->exp && REG_P (x))
1322 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1323 return p;
1325 return 0;
1328 /* Like `lookup' but don't care whether the table element uses invalid regs.
1329 Also ignore discrepancies in the machine mode of a register. */
1331 static struct table_elt *
1332 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1334 struct table_elt *p;
1336 if (REG_P (x))
1338 unsigned int regno = REGNO (x);
1340 /* Don't check the machine mode when comparing registers;
1341 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1342 for (p = table[hash]; p; p = p->next_same_hash)
1343 if (REG_P (p->exp)
1344 && REGNO (p->exp) == regno)
1345 return p;
1347 else
1349 for (p = table[hash]; p; p = p->next_same_hash)
1350 if (mode == p->mode
1351 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1352 return p;
1355 return 0;
1358 /* Look for an expression equivalent to X and with code CODE.
1359 If one is found, return that expression. */
1361 static rtx
1362 lookup_as_function (rtx x, enum rtx_code code)
1364 struct table_elt *p
1365 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1367 if (p == 0)
1368 return 0;
1370 for (p = p->first_same_value; p; p = p->next_same_value)
1371 if (GET_CODE (p->exp) == code
1372 /* Make sure this is a valid entry in the table. */
1373 && exp_equiv_p (p->exp, p->exp, 1, false))
1374 return p->exp;
1376 return 0;
1379 /* Insert X in the hash table, assuming HASH is its hash code
1380 and CLASSP is an element of the class it should go in
1381 (or 0 if a new class should be made).
1382 It is inserted at the proper position to keep the class in
1383 the order cheapest first.
1385 MODE is the machine-mode of X, or if X is an integer constant
1386 with VOIDmode then MODE is the mode with which X will be used.
1388 For elements of equal cheapness, the most recent one
1389 goes in front, except that the first element in the list
1390 remains first unless a cheaper element is added. The order of
1391 pseudo-registers does not matter, as canon_reg will be called to
1392 find the cheapest when a register is retrieved from the table.
1394 The in_memory field in the hash table element is set to 0.
1395 The caller must set it nonzero if appropriate.
1397 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1398 and if insert_regs returns a nonzero value
1399 you must then recompute its hash code before calling here.
1401 If necessary, update table showing constant values of quantities. */
1403 #define CHEAPER(X, Y) \
1404 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1406 static struct table_elt *
1407 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1409 struct table_elt *elt;
1411 /* If X is a register and we haven't made a quantity for it,
1412 something is wrong. */
1413 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1415 /* If X is a hard register, show it is being put in the table. */
1416 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1417 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1419 /* Put an element for X into the right hash bucket. */
1421 elt = free_element_chain;
1422 if (elt)
1423 free_element_chain = elt->next_same_hash;
1424 else
1425 elt = XNEW (struct table_elt);
1427 elt->exp = x;
1428 elt->canon_exp = NULL_RTX;
1429 elt->cost = COST (x);
1430 elt->regcost = approx_reg_cost (x);
1431 elt->next_same_value = 0;
1432 elt->prev_same_value = 0;
1433 elt->next_same_hash = table[hash];
1434 elt->prev_same_hash = 0;
1435 elt->related_value = 0;
1436 elt->in_memory = 0;
1437 elt->mode = mode;
1438 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1440 if (table[hash])
1441 table[hash]->prev_same_hash = elt;
1442 table[hash] = elt;
1444 /* Put it into the proper value-class. */
1445 if (classp)
1447 classp = classp->first_same_value;
1448 if (CHEAPER (elt, classp))
1449 /* Insert at the head of the class. */
1451 struct table_elt *p;
1452 elt->next_same_value = classp;
1453 classp->prev_same_value = elt;
1454 elt->first_same_value = elt;
1456 for (p = classp; p; p = p->next_same_value)
1457 p->first_same_value = elt;
1459 else
1461 /* Insert not at head of the class. */
1462 /* Put it after the last element cheaper than X. */
1463 struct table_elt *p, *next;
1465 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1466 p = next);
1468 /* Put it after P and before NEXT. */
1469 elt->next_same_value = next;
1470 if (next)
1471 next->prev_same_value = elt;
1473 elt->prev_same_value = p;
1474 p->next_same_value = elt;
1475 elt->first_same_value = classp;
1478 else
1479 elt->first_same_value = elt;
1481 /* If this is a constant being set equivalent to a register or a register
1482 being set equivalent to a constant, note the constant equivalence.
1484 If this is a constant, it cannot be equivalent to a different constant,
1485 and a constant is the only thing that can be cheaper than a register. So
1486 we know the register is the head of the class (before the constant was
1487 inserted).
1489 If this is a register that is not already known equivalent to a
1490 constant, we must check the entire class.
1492 If this is a register that is already known equivalent to an insn,
1493 update the qtys `const_insn' to show that `this_insn' is the latest
1494 insn making that quantity equivalent to the constant. */
1496 if (elt->is_const && classp && REG_P (classp->exp)
1497 && !REG_P (x))
1499 int exp_q = REG_QTY (REGNO (classp->exp));
1500 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1502 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1503 exp_ent->const_insn = this_insn;
1506 else if (REG_P (x)
1507 && classp
1508 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1509 && ! elt->is_const)
1511 struct table_elt *p;
1513 for (p = classp; p != 0; p = p->next_same_value)
1515 if (p->is_const && !REG_P (p->exp))
1517 int x_q = REG_QTY (REGNO (x));
1518 struct qty_table_elem *x_ent = &qty_table[x_q];
1520 x_ent->const_rtx
1521 = gen_lowpart (GET_MODE (x), p->exp);
1522 x_ent->const_insn = this_insn;
1523 break;
1528 else if (REG_P (x)
1529 && qty_table[REG_QTY (REGNO (x))].const_rtx
1530 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1531 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1533 /* If this is a constant with symbolic value,
1534 and it has a term with an explicit integer value,
1535 link it up with related expressions. */
1536 if (GET_CODE (x) == CONST)
1538 rtx subexp = get_related_value (x);
1539 unsigned subhash;
1540 struct table_elt *subelt, *subelt_prev;
1542 if (subexp != 0)
1544 /* Get the integer-free subexpression in the hash table. */
1545 subhash = SAFE_HASH (subexp, mode);
1546 subelt = lookup (subexp, subhash, mode);
1547 if (subelt == 0)
1548 subelt = insert (subexp, NULL, subhash, mode);
1549 /* Initialize SUBELT's circular chain if it has none. */
1550 if (subelt->related_value == 0)
1551 subelt->related_value = subelt;
1552 /* Find the element in the circular chain that precedes SUBELT. */
1553 subelt_prev = subelt;
1554 while (subelt_prev->related_value != subelt)
1555 subelt_prev = subelt_prev->related_value;
1556 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1557 This way the element that follows SUBELT is the oldest one. */
1558 elt->related_value = subelt_prev->related_value;
1559 subelt_prev->related_value = elt;
1563 return elt;
1566 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1567 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1568 the two classes equivalent.
1570 CLASS1 will be the surviving class; CLASS2 should not be used after this
1571 call.
1573 Any invalid entries in CLASS2 will not be copied. */
1575 static void
1576 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1578 struct table_elt *elt, *next, *new_elt;
1580 /* Ensure we start with the head of the classes. */
1581 class1 = class1->first_same_value;
1582 class2 = class2->first_same_value;
1584 /* If they were already equal, forget it. */
1585 if (class1 == class2)
1586 return;
1588 for (elt = class2; elt; elt = next)
1590 unsigned int hash;
1591 rtx exp = elt->exp;
1592 enum machine_mode mode = elt->mode;
1594 next = elt->next_same_value;
1596 /* Remove old entry, make a new one in CLASS1's class.
1597 Don't do this for invalid entries as we cannot find their
1598 hash code (it also isn't necessary). */
1599 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1601 bool need_rehash = false;
1603 hash_arg_in_memory = 0;
1604 hash = HASH (exp, mode);
1606 if (REG_P (exp))
1608 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1609 delete_reg_equiv (REGNO (exp));
1612 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1613 remove_pseudo_from_table (exp, hash);
1614 else
1615 remove_from_table (elt, hash);
1617 if (insert_regs (exp, class1, 0) || need_rehash)
1619 rehash_using_reg (exp);
1620 hash = HASH (exp, mode);
1622 new_elt = insert (exp, class1, hash, mode);
1623 new_elt->in_memory = hash_arg_in_memory;
1628 /* Flush the entire hash table. */
1630 static void
1631 flush_hash_table (void)
1633 int i;
1634 struct table_elt *p;
1636 for (i = 0; i < HASH_SIZE; i++)
1637 for (p = table[i]; p; p = table[i])
1639 /* Note that invalidate can remove elements
1640 after P in the current hash chain. */
1641 if (REG_P (p->exp))
1642 invalidate (p->exp, VOIDmode);
1643 else
1644 remove_from_table (p, i);
1648 /* Function called for each rtx to check whether true dependence exist. */
1649 struct check_dependence_data
1651 enum machine_mode mode;
1652 rtx exp;
1653 rtx addr;
1656 static int
1657 check_dependence (rtx *x, void *data)
1659 struct check_dependence_data *d = (struct check_dependence_data *) data;
1660 if (*x && MEM_P (*x))
1661 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1662 cse_rtx_varies_p);
1663 else
1664 return 0;
1667 /* Remove from the hash table, or mark as invalid, all expressions whose
1668 values could be altered by storing in X. X is a register, a subreg, or
1669 a memory reference with nonvarying address (because, when a memory
1670 reference with a varying address is stored in, all memory references are
1671 removed by invalidate_memory so specific invalidation is superfluous).
1672 FULL_MODE, if not VOIDmode, indicates that this much should be
1673 invalidated instead of just the amount indicated by the mode of X. This
1674 is only used for bitfield stores into memory.
1676 A nonvarying address may be just a register or just a symbol reference,
1677 or it may be either of those plus a numeric offset. */
1679 static void
1680 invalidate (rtx x, enum machine_mode full_mode)
1682 int i;
1683 struct table_elt *p;
1684 rtx addr;
1686 switch (GET_CODE (x))
1688 case REG:
1690 /* If X is a register, dependencies on its contents are recorded
1691 through the qty number mechanism. Just change the qty number of
1692 the register, mark it as invalid for expressions that refer to it,
1693 and remove it itself. */
1694 unsigned int regno = REGNO (x);
1695 unsigned int hash = HASH (x, GET_MODE (x));
1697 /* Remove REGNO from any quantity list it might be on and indicate
1698 that its value might have changed. If it is a pseudo, remove its
1699 entry from the hash table.
1701 For a hard register, we do the first two actions above for any
1702 additional hard registers corresponding to X. Then, if any of these
1703 registers are in the table, we must remove any REG entries that
1704 overlap these registers. */
1706 delete_reg_equiv (regno);
1707 REG_TICK (regno)++;
1708 SUBREG_TICKED (regno) = -1;
1710 if (regno >= FIRST_PSEUDO_REGISTER)
1711 remove_pseudo_from_table (x, hash);
1712 else
1714 HOST_WIDE_INT in_table
1715 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1716 unsigned int endregno = END_HARD_REGNO (x);
1717 unsigned int tregno, tendregno, rn;
1718 struct table_elt *p, *next;
1720 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1722 for (rn = regno + 1; rn < endregno; rn++)
1724 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1725 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1726 delete_reg_equiv (rn);
1727 REG_TICK (rn)++;
1728 SUBREG_TICKED (rn) = -1;
1731 if (in_table)
1732 for (hash = 0; hash < HASH_SIZE; hash++)
1733 for (p = table[hash]; p; p = next)
1735 next = p->next_same_hash;
1737 if (!REG_P (p->exp)
1738 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1739 continue;
1741 tregno = REGNO (p->exp);
1742 tendregno = END_HARD_REGNO (p->exp);
1743 if (tendregno > regno && tregno < endregno)
1744 remove_from_table (p, hash);
1748 return;
1750 case SUBREG:
1751 invalidate (SUBREG_REG (x), VOIDmode);
1752 return;
1754 case PARALLEL:
1755 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1756 invalidate (XVECEXP (x, 0, i), VOIDmode);
1757 return;
1759 case EXPR_LIST:
1760 /* This is part of a disjoint return value; extract the location in
1761 question ignoring the offset. */
1762 invalidate (XEXP (x, 0), VOIDmode);
1763 return;
1765 case MEM:
1766 addr = canon_rtx (get_addr (XEXP (x, 0)));
1767 /* Calculate the canonical version of X here so that
1768 true_dependence doesn't generate new RTL for X on each call. */
1769 x = canon_rtx (x);
1771 /* Remove all hash table elements that refer to overlapping pieces of
1772 memory. */
1773 if (full_mode == VOIDmode)
1774 full_mode = GET_MODE (x);
1776 for (i = 0; i < HASH_SIZE; i++)
1778 struct table_elt *next;
1780 for (p = table[i]; p; p = next)
1782 next = p->next_same_hash;
1783 if (p->in_memory)
1785 struct check_dependence_data d;
1787 /* Just canonicalize the expression once;
1788 otherwise each time we call invalidate
1789 true_dependence will canonicalize the
1790 expression again. */
1791 if (!p->canon_exp)
1792 p->canon_exp = canon_rtx (p->exp);
1793 d.exp = x;
1794 d.addr = addr;
1795 d.mode = full_mode;
1796 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1797 remove_from_table (p, i);
1801 return;
1803 default:
1804 gcc_unreachable ();
1808 /* Remove all expressions that refer to register REGNO,
1809 since they are already invalid, and we are about to
1810 mark that register valid again and don't want the old
1811 expressions to reappear as valid. */
1813 static void
1814 remove_invalid_refs (unsigned int regno)
1816 unsigned int i;
1817 struct table_elt *p, *next;
1819 for (i = 0; i < HASH_SIZE; i++)
1820 for (p = table[i]; p; p = next)
1822 next = p->next_same_hash;
1823 if (!REG_P (p->exp)
1824 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1825 remove_from_table (p, i);
1829 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1830 and mode MODE. */
1831 static void
1832 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1833 enum machine_mode mode)
1835 unsigned int i;
1836 struct table_elt *p, *next;
1837 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1839 for (i = 0; i < HASH_SIZE; i++)
1840 for (p = table[i]; p; p = next)
1842 rtx exp = p->exp;
1843 next = p->next_same_hash;
1845 if (!REG_P (exp)
1846 && (GET_CODE (exp) != SUBREG
1847 || !REG_P (SUBREG_REG (exp))
1848 || REGNO (SUBREG_REG (exp)) != regno
1849 || (((SUBREG_BYTE (exp)
1850 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1851 && SUBREG_BYTE (exp) <= end))
1852 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1853 remove_from_table (p, i);
1857 /* Recompute the hash codes of any valid entries in the hash table that
1858 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1860 This is called when we make a jump equivalence. */
1862 static void
1863 rehash_using_reg (rtx x)
1865 unsigned int i;
1866 struct table_elt *p, *next;
1867 unsigned hash;
1869 if (GET_CODE (x) == SUBREG)
1870 x = SUBREG_REG (x);
1872 /* If X is not a register or if the register is known not to be in any
1873 valid entries in the table, we have no work to do. */
1875 if (!REG_P (x)
1876 || REG_IN_TABLE (REGNO (x)) < 0
1877 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1878 return;
1880 /* Scan all hash chains looking for valid entries that mention X.
1881 If we find one and it is in the wrong hash chain, move it. */
1883 for (i = 0; i < HASH_SIZE; i++)
1884 for (p = table[i]; p; p = next)
1886 next = p->next_same_hash;
1887 if (reg_mentioned_p (x, p->exp)
1888 && exp_equiv_p (p->exp, p->exp, 1, false)
1889 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1891 if (p->next_same_hash)
1892 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1894 if (p->prev_same_hash)
1895 p->prev_same_hash->next_same_hash = p->next_same_hash;
1896 else
1897 table[i] = p->next_same_hash;
1899 p->next_same_hash = table[hash];
1900 p->prev_same_hash = 0;
1901 if (table[hash])
1902 table[hash]->prev_same_hash = p;
1903 table[hash] = p;
1908 /* Remove from the hash table any expression that is a call-clobbered
1909 register. Also update their TICK values. */
1911 static void
1912 invalidate_for_call (void)
1914 unsigned int regno, endregno;
1915 unsigned int i;
1916 unsigned hash;
1917 struct table_elt *p, *next;
1918 int in_table = 0;
1920 /* Go through all the hard registers. For each that is clobbered in
1921 a CALL_INSN, remove the register from quantity chains and update
1922 reg_tick if defined. Also see if any of these registers is currently
1923 in the table. */
1925 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1926 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1928 delete_reg_equiv (regno);
1929 if (REG_TICK (regno) >= 0)
1931 REG_TICK (regno)++;
1932 SUBREG_TICKED (regno) = -1;
1935 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1938 /* In the case where we have no call-clobbered hard registers in the
1939 table, we are done. Otherwise, scan the table and remove any
1940 entry that overlaps a call-clobbered register. */
1942 if (in_table)
1943 for (hash = 0; hash < HASH_SIZE; hash++)
1944 for (p = table[hash]; p; p = next)
1946 next = p->next_same_hash;
1948 if (!REG_P (p->exp)
1949 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1950 continue;
1952 regno = REGNO (p->exp);
1953 endregno = END_HARD_REGNO (p->exp);
1955 for (i = regno; i < endregno; i++)
1956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1958 remove_from_table (p, hash);
1959 break;
1964 /* Given an expression X of type CONST,
1965 and ELT which is its table entry (or 0 if it
1966 is not in the hash table),
1967 return an alternate expression for X as a register plus integer.
1968 If none can be found, return 0. */
1970 static rtx
1971 use_related_value (rtx x, struct table_elt *elt)
1973 struct table_elt *relt = 0;
1974 struct table_elt *p, *q;
1975 HOST_WIDE_INT offset;
1977 /* First, is there anything related known?
1978 If we have a table element, we can tell from that.
1979 Otherwise, must look it up. */
1981 if (elt != 0 && elt->related_value != 0)
1982 relt = elt;
1983 else if (elt == 0 && GET_CODE (x) == CONST)
1985 rtx subexp = get_related_value (x);
1986 if (subexp != 0)
1987 relt = lookup (subexp,
1988 SAFE_HASH (subexp, GET_MODE (subexp)),
1989 GET_MODE (subexp));
1992 if (relt == 0)
1993 return 0;
1995 /* Search all related table entries for one that has an
1996 equivalent register. */
1998 p = relt;
1999 while (1)
2001 /* This loop is strange in that it is executed in two different cases.
2002 The first is when X is already in the table. Then it is searching
2003 the RELATED_VALUE list of X's class (RELT). The second case is when
2004 X is not in the table. Then RELT points to a class for the related
2005 value.
2007 Ensure that, whatever case we are in, that we ignore classes that have
2008 the same value as X. */
2010 if (rtx_equal_p (x, p->exp))
2011 q = 0;
2012 else
2013 for (q = p->first_same_value; q; q = q->next_same_value)
2014 if (REG_P (q->exp))
2015 break;
2017 if (q)
2018 break;
2020 p = p->related_value;
2022 /* We went all the way around, so there is nothing to be found.
2023 Alternatively, perhaps RELT was in the table for some other reason
2024 and it has no related values recorded. */
2025 if (p == relt || p == 0)
2026 break;
2029 if (q == 0)
2030 return 0;
2032 offset = (get_integer_term (x) - get_integer_term (p->exp));
2033 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2034 return plus_constant (q->exp, offset);
2038 /* Hash a string. Just add its bytes up. */
2039 static inline unsigned
2040 hash_rtx_string (const char *ps)
2042 unsigned hash = 0;
2043 const unsigned char *p = (const unsigned char *) ps;
2045 if (p)
2046 while (*p)
2047 hash += *p++;
2049 return hash;
2052 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2053 When the callback returns true, we continue with the new rtx. */
2055 unsigned
2056 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2057 int *do_not_record_p, int *hash_arg_in_memory_p,
2058 bool have_reg_qty, hash_rtx_callback_function cb)
2060 int i, j;
2061 unsigned hash = 0;
2062 enum rtx_code code;
2063 const char *fmt;
2064 enum machine_mode newmode;
2065 rtx newx;
2067 /* Used to turn recursion into iteration. We can't rely on GCC's
2068 tail-recursion elimination since we need to keep accumulating values
2069 in HASH. */
2070 repeat:
2071 if (x == 0)
2072 return hash;
2074 /* Invoke the callback first. */
2075 if (cb != NULL
2076 && ((*cb) (x, mode, &newx, &newmode)))
2078 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2079 hash_arg_in_memory_p, have_reg_qty, cb);
2080 return hash;
2083 code = GET_CODE (x);
2084 switch (code)
2086 case REG:
2088 unsigned int regno = REGNO (x);
2090 if (do_not_record_p && !reload_completed)
2092 /* On some machines, we can't record any non-fixed hard register,
2093 because extending its life will cause reload problems. We
2094 consider ap, fp, sp, gp to be fixed for this purpose.
2096 We also consider CCmode registers to be fixed for this purpose;
2097 failure to do so leads to failure to simplify 0<100 type of
2098 conditionals.
2100 On all machines, we can't record any global registers.
2101 Nor should we record any register that is in a small
2102 class, as defined by CLASS_LIKELY_SPILLED_P. */
2103 bool record;
2105 if (regno >= FIRST_PSEUDO_REGISTER)
2106 record = true;
2107 else if (x == frame_pointer_rtx
2108 || x == hard_frame_pointer_rtx
2109 || x == arg_pointer_rtx
2110 || x == stack_pointer_rtx
2111 || x == pic_offset_table_rtx)
2112 record = true;
2113 else if (global_regs[regno])
2114 record = false;
2115 else if (fixed_regs[regno])
2116 record = true;
2117 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2118 record = true;
2119 else if (SMALL_REGISTER_CLASSES)
2120 record = false;
2121 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2122 record = false;
2123 else
2124 record = true;
2126 if (!record)
2128 *do_not_record_p = 1;
2129 return 0;
2133 hash += ((unsigned int) REG << 7);
2134 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2135 return hash;
2138 /* We handle SUBREG of a REG specially because the underlying
2139 reg changes its hash value with every value change; we don't
2140 want to have to forget unrelated subregs when one subreg changes. */
2141 case SUBREG:
2143 if (REG_P (SUBREG_REG (x)))
2145 hash += (((unsigned int) SUBREG << 7)
2146 + REGNO (SUBREG_REG (x))
2147 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2148 return hash;
2150 break;
2153 case CONST_INT:
2154 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2155 + (unsigned int) INTVAL (x));
2156 return hash;
2158 case CONST_DOUBLE:
2159 /* This is like the general case, except that it only counts
2160 the integers representing the constant. */
2161 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2162 if (GET_MODE (x) != VOIDmode)
2163 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2164 else
2165 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2166 + (unsigned int) CONST_DOUBLE_HIGH (x));
2167 return hash;
2169 case CONST_FIXED:
2170 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2171 hash += fixed_hash (CONST_FIXED_VALUE (x));
2172 return hash;
2174 case CONST_VECTOR:
2176 int units;
2177 rtx elt;
2179 units = CONST_VECTOR_NUNITS (x);
2181 for (i = 0; i < units; ++i)
2183 elt = CONST_VECTOR_ELT (x, i);
2184 hash += hash_rtx_cb (elt, GET_MODE (elt),
2185 do_not_record_p, hash_arg_in_memory_p,
2186 have_reg_qty, cb);
2189 return hash;
2192 /* Assume there is only one rtx object for any given label. */
2193 case LABEL_REF:
2194 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2195 differences and differences between each stage's debugging dumps. */
2196 hash += (((unsigned int) LABEL_REF << 7)
2197 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2198 return hash;
2200 case SYMBOL_REF:
2202 /* Don't hash on the symbol's address to avoid bootstrap differences.
2203 Different hash values may cause expressions to be recorded in
2204 different orders and thus different registers to be used in the
2205 final assembler. This also avoids differences in the dump files
2206 between various stages. */
2207 unsigned int h = 0;
2208 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2210 while (*p)
2211 h += (h << 7) + *p++; /* ??? revisit */
2213 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2214 return hash;
2217 case MEM:
2218 /* We don't record if marked volatile or if BLKmode since we don't
2219 know the size of the move. */
2220 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2222 *do_not_record_p = 1;
2223 return 0;
2225 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2226 *hash_arg_in_memory_p = 1;
2228 /* Now that we have already found this special case,
2229 might as well speed it up as much as possible. */
2230 hash += (unsigned) MEM;
2231 x = XEXP (x, 0);
2232 goto repeat;
2234 case USE:
2235 /* A USE that mentions non-volatile memory needs special
2236 handling since the MEM may be BLKmode which normally
2237 prevents an entry from being made. Pure calls are
2238 marked by a USE which mentions BLKmode memory.
2239 See calls.c:emit_call_1. */
2240 if (MEM_P (XEXP (x, 0))
2241 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2243 hash += (unsigned) USE;
2244 x = XEXP (x, 0);
2246 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2247 *hash_arg_in_memory_p = 1;
2249 /* Now that we have already found this special case,
2250 might as well speed it up as much as possible. */
2251 hash += (unsigned) MEM;
2252 x = XEXP (x, 0);
2253 goto repeat;
2255 break;
2257 case PRE_DEC:
2258 case PRE_INC:
2259 case POST_DEC:
2260 case POST_INC:
2261 case PRE_MODIFY:
2262 case POST_MODIFY:
2263 case PC:
2264 case CC0:
2265 case CALL:
2266 case UNSPEC_VOLATILE:
2267 if (do_not_record_p) {
2268 *do_not_record_p = 1;
2269 return 0;
2271 else
2272 return hash;
2273 break;
2275 case ASM_OPERANDS:
2276 if (do_not_record_p && MEM_VOLATILE_P (x))
2278 *do_not_record_p = 1;
2279 return 0;
2281 else
2283 /* We don't want to take the filename and line into account. */
2284 hash += (unsigned) code + (unsigned) GET_MODE (x)
2285 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2286 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2287 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2289 if (ASM_OPERANDS_INPUT_LENGTH (x))
2291 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2293 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2294 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2295 do_not_record_p, hash_arg_in_memory_p,
2296 have_reg_qty, cb)
2297 + hash_rtx_string
2298 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2301 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2302 x = ASM_OPERANDS_INPUT (x, 0);
2303 mode = GET_MODE (x);
2304 goto repeat;
2307 return hash;
2309 break;
2311 default:
2312 break;
2315 i = GET_RTX_LENGTH (code) - 1;
2316 hash += (unsigned) code + (unsigned) GET_MODE (x);
2317 fmt = GET_RTX_FORMAT (code);
2318 for (; i >= 0; i--)
2320 switch (fmt[i])
2322 case 'e':
2323 /* If we are about to do the last recursive call
2324 needed at this level, change it into iteration.
2325 This function is called enough to be worth it. */
2326 if (i == 0)
2328 x = XEXP (x, i);
2329 goto repeat;
2332 hash += hash_rtx_cb (XEXP (x, i), 0, do_not_record_p,
2333 hash_arg_in_memory_p,
2334 have_reg_qty, cb);
2335 break;
2337 case 'E':
2338 for (j = 0; j < XVECLEN (x, i); j++)
2339 hash += hash_rtx_cb (XVECEXP (x, i, j), 0, do_not_record_p,
2340 hash_arg_in_memory_p,
2341 have_reg_qty, cb);
2342 break;
2344 case 's':
2345 hash += hash_rtx_string (XSTR (x, i));
2346 break;
2348 case 'i':
2349 hash += (unsigned int) XINT (x, i);
2350 break;
2352 case '0': case 't':
2353 /* Unused. */
2354 break;
2356 default:
2357 gcc_unreachable ();
2361 return hash;
2364 /* Hash an rtx. We are careful to make sure the value is never negative.
2365 Equivalent registers hash identically.
2366 MODE is used in hashing for CONST_INTs only;
2367 otherwise the mode of X is used.
2369 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2371 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2372 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2374 Note that cse_insn knows that the hash code of a MEM expression
2375 is just (int) MEM plus the hash code of the address. */
2377 unsigned
2378 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2379 int *hash_arg_in_memory_p, bool have_reg_qty)
2381 return hash_rtx_cb (x, mode, do_not_record_p,
2382 hash_arg_in_memory_p, have_reg_qty, NULL);
2385 /* Hash an rtx X for cse via hash_rtx.
2386 Stores 1 in do_not_record if any subexpression is volatile.
2387 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2388 does not have the RTX_UNCHANGING_P bit set. */
2390 static inline unsigned
2391 canon_hash (rtx x, enum machine_mode mode)
2393 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2396 /* Like canon_hash but with no side effects, i.e. do_not_record
2397 and hash_arg_in_memory are not changed. */
2399 static inline unsigned
2400 safe_hash (rtx x, enum machine_mode mode)
2402 int dummy_do_not_record;
2403 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2406 /* Return 1 iff X and Y would canonicalize into the same thing,
2407 without actually constructing the canonicalization of either one.
2408 If VALIDATE is nonzero,
2409 we assume X is an expression being processed from the rtl
2410 and Y was found in the hash table. We check register refs
2411 in Y for being marked as valid.
2413 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2416 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2418 int i, j;
2419 enum rtx_code code;
2420 const char *fmt;
2422 /* Note: it is incorrect to assume an expression is equivalent to itself
2423 if VALIDATE is nonzero. */
2424 if (x == y && !validate)
2425 return 1;
2427 if (x == 0 || y == 0)
2428 return x == y;
2430 code = GET_CODE (x);
2431 if (code != GET_CODE (y))
2432 return 0;
2434 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2435 if (GET_MODE (x) != GET_MODE (y))
2436 return 0;
2438 switch (code)
2440 case PC:
2441 case CC0:
2442 case CONST_INT:
2443 case CONST_DOUBLE:
2444 case CONST_FIXED:
2445 return x == y;
2447 case LABEL_REF:
2448 return XEXP (x, 0) == XEXP (y, 0);
2450 case SYMBOL_REF:
2451 return XSTR (x, 0) == XSTR (y, 0);
2453 case REG:
2454 if (for_gcse)
2455 return REGNO (x) == REGNO (y);
2456 else
2458 unsigned int regno = REGNO (y);
2459 unsigned int i;
2460 unsigned int endregno = END_REGNO (y);
2462 /* If the quantities are not the same, the expressions are not
2463 equivalent. If there are and we are not to validate, they
2464 are equivalent. Otherwise, ensure all regs are up-to-date. */
2466 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2467 return 0;
2469 if (! validate)
2470 return 1;
2472 for (i = regno; i < endregno; i++)
2473 if (REG_IN_TABLE (i) != REG_TICK (i))
2474 return 0;
2476 return 1;
2479 case MEM:
2480 if (for_gcse)
2482 /* A volatile mem should not be considered equivalent to any
2483 other. */
2484 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2485 return 0;
2487 /* Can't merge two expressions in different alias sets, since we
2488 can decide that the expression is transparent in a block when
2489 it isn't, due to it being set with the different alias set.
2491 Also, can't merge two expressions with different MEM_ATTRS.
2492 They could e.g. be two different entities allocated into the
2493 same space on the stack (see e.g. PR25130). In that case, the
2494 MEM addresses can be the same, even though the two MEMs are
2495 absolutely not equivalent.
2497 But because really all MEM attributes should be the same for
2498 equivalent MEMs, we just use the invariant that MEMs that have
2499 the same attributes share the same mem_attrs data structure. */
2500 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2501 return 0;
2503 break;
2505 /* For commutative operations, check both orders. */
2506 case PLUS:
2507 case MULT:
2508 case AND:
2509 case IOR:
2510 case XOR:
2511 case NE:
2512 case EQ:
2513 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2514 validate, for_gcse)
2515 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2516 validate, for_gcse))
2517 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2518 validate, for_gcse)
2519 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2520 validate, for_gcse)));
2522 case ASM_OPERANDS:
2523 /* We don't use the generic code below because we want to
2524 disregard filename and line numbers. */
2526 /* A volatile asm isn't equivalent to any other. */
2527 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2528 return 0;
2530 if (GET_MODE (x) != GET_MODE (y)
2531 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2532 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2533 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2534 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2535 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2536 return 0;
2538 if (ASM_OPERANDS_INPUT_LENGTH (x))
2540 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2541 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2542 ASM_OPERANDS_INPUT (y, i),
2543 validate, for_gcse)
2544 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2545 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2546 return 0;
2549 return 1;
2551 default:
2552 break;
2555 /* Compare the elements. If any pair of corresponding elements
2556 fail to match, return 0 for the whole thing. */
2558 fmt = GET_RTX_FORMAT (code);
2559 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2561 switch (fmt[i])
2563 case 'e':
2564 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2565 validate, for_gcse))
2566 return 0;
2567 break;
2569 case 'E':
2570 if (XVECLEN (x, i) != XVECLEN (y, i))
2571 return 0;
2572 for (j = 0; j < XVECLEN (x, i); j++)
2573 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2574 validate, for_gcse))
2575 return 0;
2576 break;
2578 case 's':
2579 if (strcmp (XSTR (x, i), XSTR (y, i)))
2580 return 0;
2581 break;
2583 case 'i':
2584 if (XINT (x, i) != XINT (y, i))
2585 return 0;
2586 break;
2588 case 'w':
2589 if (XWINT (x, i) != XWINT (y, i))
2590 return 0;
2591 break;
2593 case '0':
2594 case 't':
2595 break;
2597 default:
2598 gcc_unreachable ();
2602 return 1;
2605 /* Return 1 if X has a value that can vary even between two
2606 executions of the program. 0 means X can be compared reliably
2607 against certain constants or near-constants. */
2609 static bool
2610 cse_rtx_varies_p (const_rtx x, bool from_alias)
2612 /* We need not check for X and the equivalence class being of the same
2613 mode because if X is equivalent to a constant in some mode, it
2614 doesn't vary in any mode. */
2616 if (REG_P (x)
2617 && REGNO_QTY_VALID_P (REGNO (x)))
2619 int x_q = REG_QTY (REGNO (x));
2620 struct qty_table_elem *x_ent = &qty_table[x_q];
2622 if (GET_MODE (x) == x_ent->mode
2623 && x_ent->const_rtx != NULL_RTX)
2624 return 0;
2627 if (GET_CODE (x) == PLUS
2628 && GET_CODE (XEXP (x, 1)) == CONST_INT
2629 && REG_P (XEXP (x, 0))
2630 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2632 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2633 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2635 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2636 && x0_ent->const_rtx != NULL_RTX)
2637 return 0;
2640 /* This can happen as the result of virtual register instantiation, if
2641 the initial constant is too large to be a valid address. This gives
2642 us a three instruction sequence, load large offset into a register,
2643 load fp minus a constant into a register, then a MEM which is the
2644 sum of the two `constant' registers. */
2645 if (GET_CODE (x) == PLUS
2646 && REG_P (XEXP (x, 0))
2647 && REG_P (XEXP (x, 1))
2648 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2649 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2651 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2652 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2653 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2654 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2656 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2657 && x0_ent->const_rtx != NULL_RTX
2658 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2659 && x1_ent->const_rtx != NULL_RTX)
2660 return 0;
2663 return rtx_varies_p (x, from_alias);
2666 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2667 the result if necessary. INSN is as for canon_reg. */
2669 static void
2670 validate_canon_reg (rtx *xloc, rtx insn)
2672 if (*xloc)
2674 rtx new_rtx = canon_reg (*xloc, insn);
2676 /* If replacing pseudo with hard reg or vice versa, ensure the
2677 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2678 gcc_assert (insn && new_rtx);
2679 validate_change (insn, xloc, new_rtx, 1);
2683 /* Canonicalize an expression:
2684 replace each register reference inside it
2685 with the "oldest" equivalent register.
2687 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2688 after we make our substitution. The calls are made with IN_GROUP nonzero
2689 so apply_change_group must be called upon the outermost return from this
2690 function (unless INSN is zero). The result of apply_change_group can
2691 generally be discarded since the changes we are making are optional. */
2693 static rtx
2694 canon_reg (rtx x, rtx insn)
2696 int i;
2697 enum rtx_code code;
2698 const char *fmt;
2700 if (x == 0)
2701 return x;
2703 code = GET_CODE (x);
2704 switch (code)
2706 case PC:
2707 case CC0:
2708 case CONST:
2709 case CONST_INT:
2710 case CONST_DOUBLE:
2711 case CONST_FIXED:
2712 case CONST_VECTOR:
2713 case SYMBOL_REF:
2714 case LABEL_REF:
2715 case ADDR_VEC:
2716 case ADDR_DIFF_VEC:
2717 return x;
2719 case REG:
2721 int first;
2722 int q;
2723 struct qty_table_elem *ent;
2725 /* Never replace a hard reg, because hard regs can appear
2726 in more than one machine mode, and we must preserve the mode
2727 of each occurrence. Also, some hard regs appear in
2728 MEMs that are shared and mustn't be altered. Don't try to
2729 replace any reg that maps to a reg of class NO_REGS. */
2730 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2731 || ! REGNO_QTY_VALID_P (REGNO (x)))
2732 return x;
2734 q = REG_QTY (REGNO (x));
2735 ent = &qty_table[q];
2736 first = ent->first_reg;
2737 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2738 : REGNO_REG_CLASS (first) == NO_REGS ? x
2739 : gen_rtx_REG (ent->mode, first));
2742 default:
2743 break;
2746 fmt = GET_RTX_FORMAT (code);
2747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2749 int j;
2751 if (fmt[i] == 'e')
2752 validate_canon_reg (&XEXP (x, i), insn);
2753 else if (fmt[i] == 'E')
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 validate_canon_reg (&XVECEXP (x, i, j), insn);
2758 return x;
2761 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2762 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2763 what values are being compared.
2765 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2766 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2767 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2768 compared to produce cc0.
2770 The return value is the comparison operator and is either the code of
2771 A or the code corresponding to the inverse of the comparison. */
2773 static enum rtx_code
2774 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2775 enum machine_mode *pmode1, enum machine_mode *pmode2)
2777 rtx arg1, arg2;
2779 arg1 = *parg1, arg2 = *parg2;
2781 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2783 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2785 /* Set nonzero when we find something of interest. */
2786 rtx x = 0;
2787 int reverse_code = 0;
2788 struct table_elt *p = 0;
2790 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2791 On machines with CC0, this is the only case that can occur, since
2792 fold_rtx will return the COMPARE or item being compared with zero
2793 when given CC0. */
2795 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2796 x = arg1;
2798 /* If ARG1 is a comparison operator and CODE is testing for
2799 STORE_FLAG_VALUE, get the inner arguments. */
2801 else if (COMPARISON_P (arg1))
2803 #ifdef FLOAT_STORE_FLAG_VALUE
2804 REAL_VALUE_TYPE fsfv;
2805 #endif
2807 if (code == NE
2808 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2809 && code == LT && STORE_FLAG_VALUE == -1)
2810 #ifdef FLOAT_STORE_FLAG_VALUE
2811 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2812 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2813 REAL_VALUE_NEGATIVE (fsfv)))
2814 #endif
2816 x = arg1;
2817 else if (code == EQ
2818 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2819 && code == GE && STORE_FLAG_VALUE == -1)
2820 #ifdef FLOAT_STORE_FLAG_VALUE
2821 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2822 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2823 REAL_VALUE_NEGATIVE (fsfv)))
2824 #endif
2826 x = arg1, reverse_code = 1;
2829 /* ??? We could also check for
2831 (ne (and (eq (...) (const_int 1))) (const_int 0))
2833 and related forms, but let's wait until we see them occurring. */
2835 if (x == 0)
2836 /* Look up ARG1 in the hash table and see if it has an equivalence
2837 that lets us see what is being compared. */
2838 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2839 if (p)
2841 p = p->first_same_value;
2843 /* If what we compare is already known to be constant, that is as
2844 good as it gets.
2845 We need to break the loop in this case, because otherwise we
2846 can have an infinite loop when looking at a reg that is known
2847 to be a constant which is the same as a comparison of a reg
2848 against zero which appears later in the insn stream, which in
2849 turn is constant and the same as the comparison of the first reg
2850 against zero... */
2851 if (p->is_const)
2852 break;
2855 for (; p; p = p->next_same_value)
2857 enum machine_mode inner_mode = GET_MODE (p->exp);
2858 #ifdef FLOAT_STORE_FLAG_VALUE
2859 REAL_VALUE_TYPE fsfv;
2860 #endif
2862 /* If the entry isn't valid, skip it. */
2863 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2864 continue;
2866 if (GET_CODE (p->exp) == COMPARE
2867 /* Another possibility is that this machine has a compare insn
2868 that includes the comparison code. In that case, ARG1 would
2869 be equivalent to a comparison operation that would set ARG1 to
2870 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2871 ORIG_CODE is the actual comparison being done; if it is an EQ,
2872 we must reverse ORIG_CODE. On machine with a negative value
2873 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2874 || ((code == NE
2875 || (code == LT
2876 && GET_MODE_CLASS (inner_mode) == MODE_INT
2877 && (GET_MODE_BITSIZE (inner_mode)
2878 <= HOST_BITS_PER_WIDE_INT)
2879 && (STORE_FLAG_VALUE
2880 & ((HOST_WIDE_INT) 1
2881 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2882 #ifdef FLOAT_STORE_FLAG_VALUE
2883 || (code == LT
2884 && SCALAR_FLOAT_MODE_P (inner_mode)
2885 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2886 REAL_VALUE_NEGATIVE (fsfv)))
2887 #endif
2889 && COMPARISON_P (p->exp)))
2891 x = p->exp;
2892 break;
2894 else if ((code == EQ
2895 || (code == GE
2896 && GET_MODE_CLASS (inner_mode) == MODE_INT
2897 && (GET_MODE_BITSIZE (inner_mode)
2898 <= HOST_BITS_PER_WIDE_INT)
2899 && (STORE_FLAG_VALUE
2900 & ((HOST_WIDE_INT) 1
2901 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2902 #ifdef FLOAT_STORE_FLAG_VALUE
2903 || (code == GE
2904 && SCALAR_FLOAT_MODE_P (inner_mode)
2905 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2906 REAL_VALUE_NEGATIVE (fsfv)))
2907 #endif
2909 && COMPARISON_P (p->exp))
2911 reverse_code = 1;
2912 x = p->exp;
2913 break;
2916 /* If this non-trapping address, e.g. fp + constant, the
2917 equivalent is a better operand since it may let us predict
2918 the value of the comparison. */
2919 else if (!rtx_addr_can_trap_p (p->exp))
2921 arg1 = p->exp;
2922 continue;
2926 /* If we didn't find a useful equivalence for ARG1, we are done.
2927 Otherwise, set up for the next iteration. */
2928 if (x == 0)
2929 break;
2931 /* If we need to reverse the comparison, make sure that that is
2932 possible -- we can't necessarily infer the value of GE from LT
2933 with floating-point operands. */
2934 if (reverse_code)
2936 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2937 if (reversed == UNKNOWN)
2938 break;
2939 else
2940 code = reversed;
2942 else if (COMPARISON_P (x))
2943 code = GET_CODE (x);
2944 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2947 /* Return our results. Return the modes from before fold_rtx
2948 because fold_rtx might produce const_int, and then it's too late. */
2949 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2950 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2952 return code;
2955 /* If X is a nontrivial arithmetic operation on an argument for which
2956 a constant value can be determined, return the result of operating
2957 on that value, as a constant. Otherwise, return X, possibly with
2958 one or more operands changed to a forward-propagated constant.
2960 If X is a register whose contents are known, we do NOT return
2961 those contents here; equiv_constant is called to perform that task.
2962 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2964 INSN is the insn that we may be modifying. If it is 0, make a copy
2965 of X before modifying it. */
2967 static rtx
2968 fold_rtx (rtx x, rtx insn)
2970 enum rtx_code code;
2971 enum machine_mode mode;
2972 const char *fmt;
2973 int i;
2974 rtx new_rtx = 0;
2975 int changed = 0;
2977 /* Operands of X. */
2978 rtx folded_arg0;
2979 rtx folded_arg1;
2981 /* Constant equivalents of first three operands of X;
2982 0 when no such equivalent is known. */
2983 rtx const_arg0;
2984 rtx const_arg1;
2985 rtx const_arg2;
2987 /* The mode of the first operand of X. We need this for sign and zero
2988 extends. */
2989 enum machine_mode mode_arg0;
2991 if (x == 0)
2992 return x;
2994 /* Try to perform some initial simplifications on X. */
2995 code = GET_CODE (x);
2996 switch (code)
2998 case MEM:
2999 case SUBREG:
3000 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3001 return new_rtx;
3002 return x;
3004 case CONST:
3005 case CONST_INT:
3006 case CONST_DOUBLE:
3007 case CONST_FIXED:
3008 case CONST_VECTOR:
3009 case SYMBOL_REF:
3010 case LABEL_REF:
3011 case REG:
3012 case PC:
3013 /* No use simplifying an EXPR_LIST
3014 since they are used only for lists of args
3015 in a function call's REG_EQUAL note. */
3016 case EXPR_LIST:
3017 return x;
3019 #ifdef HAVE_cc0
3020 case CC0:
3021 return prev_insn_cc0;
3022 #endif
3024 case ASM_OPERANDS:
3025 if (insn)
3027 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3028 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3029 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3031 return x;
3033 #ifdef NO_FUNCTION_CSE
3034 case CALL:
3035 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3036 return x;
3037 break;
3038 #endif
3040 /* Anything else goes through the loop below. */
3041 default:
3042 break;
3045 mode = GET_MODE (x);
3046 const_arg0 = 0;
3047 const_arg1 = 0;
3048 const_arg2 = 0;
3049 mode_arg0 = VOIDmode;
3051 /* Try folding our operands.
3052 Then see which ones have constant values known. */
3054 fmt = GET_RTX_FORMAT (code);
3055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3056 if (fmt[i] == 'e')
3058 rtx folded_arg = XEXP (x, i), const_arg;
3059 enum machine_mode mode_arg = GET_MODE (folded_arg);
3061 switch (GET_CODE (folded_arg))
3063 case MEM:
3064 case REG:
3065 case SUBREG:
3066 const_arg = equiv_constant (folded_arg);
3067 break;
3069 case CONST:
3070 case CONST_INT:
3071 case SYMBOL_REF:
3072 case LABEL_REF:
3073 case CONST_DOUBLE:
3074 case CONST_FIXED:
3075 case CONST_VECTOR:
3076 const_arg = folded_arg;
3077 break;
3079 #ifdef HAVE_cc0
3080 case CC0:
3081 folded_arg = prev_insn_cc0;
3082 mode_arg = prev_insn_cc0_mode;
3083 const_arg = equiv_constant (folded_arg);
3084 break;
3085 #endif
3087 default:
3088 folded_arg = fold_rtx (folded_arg, insn);
3089 const_arg = equiv_constant (folded_arg);
3090 break;
3093 /* For the first three operands, see if the operand
3094 is constant or equivalent to a constant. */
3095 switch (i)
3097 case 0:
3098 folded_arg0 = folded_arg;
3099 const_arg0 = const_arg;
3100 mode_arg0 = mode_arg;
3101 break;
3102 case 1:
3103 folded_arg1 = folded_arg;
3104 const_arg1 = const_arg;
3105 break;
3106 case 2:
3107 const_arg2 = const_arg;
3108 break;
3111 /* Pick the least expensive of the argument and an equivalent constant
3112 argument. */
3113 if (const_arg != 0
3114 && const_arg != folded_arg
3115 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3117 /* It's not safe to substitute the operand of a conversion
3118 operator with a constant, as the conversion's identity
3119 depends upon the mode of its operand. This optimization
3120 is handled by the call to simplify_unary_operation. */
3121 && (GET_RTX_CLASS (code) != RTX_UNARY
3122 || GET_MODE (const_arg) == mode_arg0
3123 || (code != ZERO_EXTEND
3124 && code != SIGN_EXTEND
3125 && code != TRUNCATE
3126 && code != FLOAT_TRUNCATE
3127 && code != FLOAT_EXTEND
3128 && code != FLOAT
3129 && code != FIX
3130 && code != UNSIGNED_FLOAT
3131 && code != UNSIGNED_FIX)))
3132 folded_arg = const_arg;
3134 if (folded_arg == XEXP (x, i))
3135 continue;
3137 if (insn == NULL_RTX && !changed)
3138 x = copy_rtx (x);
3139 changed = 1;
3140 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3143 if (changed)
3145 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3146 consistent with the order in X. */
3147 if (canonicalize_change_group (insn, x))
3149 rtx tem;
3150 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3151 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3154 apply_change_group ();
3157 /* If X is an arithmetic operation, see if we can simplify it. */
3159 switch (GET_RTX_CLASS (code))
3161 case RTX_UNARY:
3163 /* We can't simplify extension ops unless we know the
3164 original mode. */
3165 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3166 && mode_arg0 == VOIDmode)
3167 break;
3169 new_rtx = simplify_unary_operation (code, mode,
3170 const_arg0 ? const_arg0 : folded_arg0,
3171 mode_arg0);
3173 break;
3175 case RTX_COMPARE:
3176 case RTX_COMM_COMPARE:
3177 /* See what items are actually being compared and set FOLDED_ARG[01]
3178 to those values and CODE to the actual comparison code. If any are
3179 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3180 do anything if both operands are already known to be constant. */
3182 /* ??? Vector mode comparisons are not supported yet. */
3183 if (VECTOR_MODE_P (mode))
3184 break;
3186 if (const_arg0 == 0 || const_arg1 == 0)
3188 struct table_elt *p0, *p1;
3189 rtx true_rtx, false_rtx;
3190 enum machine_mode mode_arg1;
3192 if (SCALAR_FLOAT_MODE_P (mode))
3194 #ifdef FLOAT_STORE_FLAG_VALUE
3195 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3196 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3197 #else
3198 true_rtx = NULL_RTX;
3199 #endif
3200 false_rtx = CONST0_RTX (mode);
3202 else
3204 true_rtx = const_true_rtx;
3205 false_rtx = const0_rtx;
3208 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3209 &mode_arg0, &mode_arg1);
3211 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3212 what kinds of things are being compared, so we can't do
3213 anything with this comparison. */
3215 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3216 break;
3218 const_arg0 = equiv_constant (folded_arg0);
3219 const_arg1 = equiv_constant (folded_arg1);
3221 /* If we do not now have two constants being compared, see
3222 if we can nevertheless deduce some things about the
3223 comparison. */
3224 if (const_arg0 == 0 || const_arg1 == 0)
3226 if (const_arg1 != NULL)
3228 rtx cheapest_simplification;
3229 int cheapest_cost;
3230 rtx simp_result;
3231 struct table_elt *p;
3233 /* See if we can find an equivalent of folded_arg0
3234 that gets us a cheaper expression, possibly a
3235 constant through simplifications. */
3236 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3237 mode_arg0);
3239 if (p != NULL)
3241 cheapest_simplification = x;
3242 cheapest_cost = COST (x);
3244 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3246 int cost;
3248 /* If the entry isn't valid, skip it. */
3249 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3250 continue;
3252 /* Try to simplify using this equivalence. */
3253 simp_result
3254 = simplify_relational_operation (code, mode,
3255 mode_arg0,
3256 p->exp,
3257 const_arg1);
3259 if (simp_result == NULL)
3260 continue;
3262 cost = COST (simp_result);
3263 if (cost < cheapest_cost)
3265 cheapest_cost = cost;
3266 cheapest_simplification = simp_result;
3270 /* If we have a cheaper expression now, use that
3271 and try folding it further, from the top. */
3272 if (cheapest_simplification != x)
3273 return fold_rtx (copy_rtx (cheapest_simplification),
3274 insn);
3278 /* See if the two operands are the same. */
3280 if ((REG_P (folded_arg0)
3281 && REG_P (folded_arg1)
3282 && (REG_QTY (REGNO (folded_arg0))
3283 == REG_QTY (REGNO (folded_arg1))))
3284 || ((p0 = lookup (folded_arg0,
3285 SAFE_HASH (folded_arg0, mode_arg0),
3286 mode_arg0))
3287 && (p1 = lookup (folded_arg1,
3288 SAFE_HASH (folded_arg1, mode_arg0),
3289 mode_arg0))
3290 && p0->first_same_value == p1->first_same_value))
3291 folded_arg1 = folded_arg0;
3293 /* If FOLDED_ARG0 is a register, see if the comparison we are
3294 doing now is either the same as we did before or the reverse
3295 (we only check the reverse if not floating-point). */
3296 else if (REG_P (folded_arg0))
3298 int qty = REG_QTY (REGNO (folded_arg0));
3300 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3302 struct qty_table_elem *ent = &qty_table[qty];
3304 if ((comparison_dominates_p (ent->comparison_code, code)
3305 || (! FLOAT_MODE_P (mode_arg0)
3306 && comparison_dominates_p (ent->comparison_code,
3307 reverse_condition (code))))
3308 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3309 || (const_arg1
3310 && rtx_equal_p (ent->comparison_const,
3311 const_arg1))
3312 || (REG_P (folded_arg1)
3313 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3315 if (comparison_dominates_p (ent->comparison_code, code))
3317 if (true_rtx)
3318 return true_rtx;
3319 else
3320 break;
3322 else
3323 return false_rtx;
3330 /* If we are comparing against zero, see if the first operand is
3331 equivalent to an IOR with a constant. If so, we may be able to
3332 determine the result of this comparison. */
3333 if (const_arg1 == const0_rtx && !const_arg0)
3335 rtx y = lookup_as_function (folded_arg0, IOR);
3336 rtx inner_const;
3338 if (y != 0
3339 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3340 && GET_CODE (inner_const) == CONST_INT
3341 && INTVAL (inner_const) != 0)
3342 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3346 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3347 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3348 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3350 break;
3352 case RTX_BIN_ARITH:
3353 case RTX_COMM_ARITH:
3354 switch (code)
3356 case PLUS:
3357 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3358 with that LABEL_REF as its second operand. If so, the result is
3359 the first operand of that MINUS. This handles switches with an
3360 ADDR_DIFF_VEC table. */
3361 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3363 rtx y
3364 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3365 : lookup_as_function (folded_arg0, MINUS);
3367 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3368 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3369 return XEXP (y, 0);
3371 /* Now try for a CONST of a MINUS like the above. */
3372 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3373 : lookup_as_function (folded_arg0, CONST))) != 0
3374 && GET_CODE (XEXP (y, 0)) == MINUS
3375 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3376 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3377 return XEXP (XEXP (y, 0), 0);
3380 /* Likewise if the operands are in the other order. */
3381 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3383 rtx y
3384 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3385 : lookup_as_function (folded_arg1, MINUS);
3387 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3388 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3389 return XEXP (y, 0);
3391 /* Now try for a CONST of a MINUS like the above. */
3392 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3393 : lookup_as_function (folded_arg1, CONST))) != 0
3394 && GET_CODE (XEXP (y, 0)) == MINUS
3395 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3396 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3397 return XEXP (XEXP (y, 0), 0);
3400 /* If second operand is a register equivalent to a negative
3401 CONST_INT, see if we can find a register equivalent to the
3402 positive constant. Make a MINUS if so. Don't do this for
3403 a non-negative constant since we might then alternate between
3404 choosing positive and negative constants. Having the positive
3405 constant previously-used is the more common case. Be sure
3406 the resulting constant is non-negative; if const_arg1 were
3407 the smallest negative number this would overflow: depending
3408 on the mode, this would either just be the same value (and
3409 hence not save anything) or be incorrect. */
3410 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3411 && INTVAL (const_arg1) < 0
3412 /* This used to test
3414 -INTVAL (const_arg1) >= 0
3416 But The Sun V5.0 compilers mis-compiled that test. So
3417 instead we test for the problematic value in a more direct
3418 manner and hope the Sun compilers get it correct. */
3419 && INTVAL (const_arg1) !=
3420 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3421 && REG_P (folded_arg1))
3423 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3424 struct table_elt *p
3425 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3427 if (p)
3428 for (p = p->first_same_value; p; p = p->next_same_value)
3429 if (REG_P (p->exp))
3430 return simplify_gen_binary (MINUS, mode, folded_arg0,
3431 canon_reg (p->exp, NULL_RTX));
3433 goto from_plus;
3435 case MINUS:
3436 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3437 If so, produce (PLUS Z C2-C). */
3438 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3440 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3441 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3442 return fold_rtx (plus_constant (copy_rtx (y),
3443 -INTVAL (const_arg1)),
3444 NULL_RTX);
3447 /* Fall through. */
3449 from_plus:
3450 case SMIN: case SMAX: case UMIN: case UMAX:
3451 case IOR: case AND: case XOR:
3452 case MULT:
3453 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3454 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3455 is known to be of similar form, we may be able to replace the
3456 operation with a combined operation. This may eliminate the
3457 intermediate operation if every use is simplified in this way.
3458 Note that the similar optimization done by combine.c only works
3459 if the intermediate operation's result has only one reference. */
3461 if (REG_P (folded_arg0)
3462 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3464 int is_shift
3465 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3466 rtx y, inner_const, new_const;
3467 enum rtx_code associate_code;
3469 if (is_shift
3470 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3471 || INTVAL (const_arg1) < 0))
3473 if (SHIFT_COUNT_TRUNCATED)
3474 const_arg1 = GEN_INT (INTVAL (const_arg1)
3475 & (GET_MODE_BITSIZE (mode) - 1));
3476 else
3477 break;
3480 y = lookup_as_function (folded_arg0, code);
3481 if (y == 0)
3482 break;
3484 /* If we have compiled a statement like
3485 "if (x == (x & mask1))", and now are looking at
3486 "x & mask2", we will have a case where the first operand
3487 of Y is the same as our first operand. Unless we detect
3488 this case, an infinite loop will result. */
3489 if (XEXP (y, 0) == folded_arg0)
3490 break;
3492 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3493 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3494 break;
3496 /* Don't associate these operations if they are a PLUS with the
3497 same constant and it is a power of two. These might be doable
3498 with a pre- or post-increment. Similarly for two subtracts of
3499 identical powers of two with post decrement. */
3501 if (code == PLUS && const_arg1 == inner_const
3502 && ((HAVE_PRE_INCREMENT
3503 && exact_log2 (INTVAL (const_arg1)) >= 0)
3504 || (HAVE_POST_INCREMENT
3505 && exact_log2 (INTVAL (const_arg1)) >= 0)
3506 || (HAVE_PRE_DECREMENT
3507 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3508 || (HAVE_POST_DECREMENT
3509 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3510 break;
3512 /* ??? Vector mode shifts by scalar
3513 shift operand are not supported yet. */
3514 if (is_shift && VECTOR_MODE_P (mode))
3515 break;
3517 if (is_shift
3518 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3519 || INTVAL (inner_const) < 0))
3521 if (SHIFT_COUNT_TRUNCATED)
3522 inner_const = GEN_INT (INTVAL (inner_const)
3523 & (GET_MODE_BITSIZE (mode) - 1));
3524 else
3525 break;
3528 /* Compute the code used to compose the constants. For example,
3529 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3531 associate_code = (is_shift || code == MINUS ? PLUS : code);
3533 new_const = simplify_binary_operation (associate_code, mode,
3534 const_arg1, inner_const);
3536 if (new_const == 0)
3537 break;
3539 /* If we are associating shift operations, don't let this
3540 produce a shift of the size of the object or larger.
3541 This could occur when we follow a sign-extend by a right
3542 shift on a machine that does a sign-extend as a pair
3543 of shifts. */
3545 if (is_shift
3546 && GET_CODE (new_const) == CONST_INT
3547 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3549 /* As an exception, we can turn an ASHIFTRT of this
3550 form into a shift of the number of bits - 1. */
3551 if (code == ASHIFTRT)
3552 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3553 else if (!side_effects_p (XEXP (y, 0)))
3554 return CONST0_RTX (mode);
3555 else
3556 break;
3559 y = copy_rtx (XEXP (y, 0));
3561 /* If Y contains our first operand (the most common way this
3562 can happen is if Y is a MEM), we would do into an infinite
3563 loop if we tried to fold it. So don't in that case. */
3565 if (! reg_mentioned_p (folded_arg0, y))
3566 y = fold_rtx (y, insn);
3568 return simplify_gen_binary (code, mode, y, new_const);
3570 break;
3572 case DIV: case UDIV:
3573 /* ??? The associative optimization performed immediately above is
3574 also possible for DIV and UDIV using associate_code of MULT.
3575 However, we would need extra code to verify that the
3576 multiplication does not overflow, that is, there is no overflow
3577 in the calculation of new_const. */
3578 break;
3580 default:
3581 break;
3584 new_rtx = simplify_binary_operation (code, mode,
3585 const_arg0 ? const_arg0 : folded_arg0,
3586 const_arg1 ? const_arg1 : folded_arg1);
3587 break;
3589 case RTX_OBJ:
3590 /* (lo_sum (high X) X) is simply X. */
3591 if (code == LO_SUM && const_arg0 != 0
3592 && GET_CODE (const_arg0) == HIGH
3593 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3594 return const_arg1;
3595 break;
3597 case RTX_TERNARY:
3598 case RTX_BITFIELD_OPS:
3599 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3600 const_arg0 ? const_arg0 : folded_arg0,
3601 const_arg1 ? const_arg1 : folded_arg1,
3602 const_arg2 ? const_arg2 : XEXP (x, 2));
3603 break;
3605 default:
3606 break;
3609 return new_rtx ? new_rtx : x;
3612 /* Return a constant value currently equivalent to X.
3613 Return 0 if we don't know one. */
3615 static rtx
3616 equiv_constant (rtx x)
3618 if (REG_P (x)
3619 && REGNO_QTY_VALID_P (REGNO (x)))
3621 int x_q = REG_QTY (REGNO (x));
3622 struct qty_table_elem *x_ent = &qty_table[x_q];
3624 if (x_ent->const_rtx)
3625 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3628 if (x == 0 || CONSTANT_P (x))
3629 return x;
3631 if (GET_CODE (x) == SUBREG)
3633 enum machine_mode mode = GET_MODE (x);
3634 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3635 rtx new_rtx;
3637 /* See if we previously assigned a constant value to this SUBREG. */
3638 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3639 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3640 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3641 return new_rtx;
3643 /* If we didn't and if doing so makes sense, see if we previously
3644 assigned a constant value to the enclosing word mode SUBREG. */
3645 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3646 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3648 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3649 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3651 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3652 new_rtx = lookup_as_function (y, CONST_INT);
3653 if (new_rtx)
3654 return gen_lowpart (mode, new_rtx);
3658 /* Otherwise see if we already have a constant for the inner REG. */
3659 if (REG_P (SUBREG_REG (x))
3660 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3661 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3663 return 0;
3666 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3667 the hash table in case its value was seen before. */
3669 if (MEM_P (x))
3671 struct table_elt *elt;
3673 x = avoid_constant_pool_reference (x);
3674 if (CONSTANT_P (x))
3675 return x;
3677 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3678 if (elt == 0)
3679 return 0;
3681 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3682 if (elt->is_const && CONSTANT_P (elt->exp))
3683 return elt->exp;
3686 return 0;
3689 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3690 "taken" branch.
3692 In certain cases, this can cause us to add an equivalence. For example,
3693 if we are following the taken case of
3694 if (i == 2)
3695 we can add the fact that `i' and '2' are now equivalent.
3697 In any case, we can record that this comparison was passed. If the same
3698 comparison is seen later, we will know its value. */
3700 static void
3701 record_jump_equiv (rtx insn, bool taken)
3703 int cond_known_true;
3704 rtx op0, op1;
3705 rtx set;
3706 enum machine_mode mode, mode0, mode1;
3707 int reversed_nonequality = 0;
3708 enum rtx_code code;
3710 /* Ensure this is the right kind of insn. */
3711 gcc_assert (any_condjump_p (insn));
3713 set = pc_set (insn);
3715 /* See if this jump condition is known true or false. */
3716 if (taken)
3717 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3718 else
3719 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3721 /* Get the type of comparison being done and the operands being compared.
3722 If we had to reverse a non-equality condition, record that fact so we
3723 know that it isn't valid for floating-point. */
3724 code = GET_CODE (XEXP (SET_SRC (set), 0));
3725 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3726 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3728 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3729 if (! cond_known_true)
3731 code = reversed_comparison_code_parts (code, op0, op1, insn);
3733 /* Don't remember if we can't find the inverse. */
3734 if (code == UNKNOWN)
3735 return;
3738 /* The mode is the mode of the non-constant. */
3739 mode = mode0;
3740 if (mode1 != VOIDmode)
3741 mode = mode1;
3743 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3746 /* Yet another form of subreg creation. In this case, we want something in
3747 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3749 static rtx
3750 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3752 enum machine_mode op_mode = GET_MODE (op);
3753 if (op_mode == mode || op_mode == VOIDmode)
3754 return op;
3755 return lowpart_subreg (mode, op, op_mode);
3758 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3759 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3760 Make any useful entries we can with that information. Called from
3761 above function and called recursively. */
3763 static void
3764 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3765 rtx op1, int reversed_nonequality)
3767 unsigned op0_hash, op1_hash;
3768 int op0_in_memory, op1_in_memory;
3769 struct table_elt *op0_elt, *op1_elt;
3771 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3772 we know that they are also equal in the smaller mode (this is also
3773 true for all smaller modes whether or not there is a SUBREG, but
3774 is not worth testing for with no SUBREG). */
3776 /* Note that GET_MODE (op0) may not equal MODE. */
3777 if (code == EQ && GET_CODE (op0) == SUBREG
3778 && (GET_MODE_SIZE (GET_MODE (op0))
3779 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3781 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3782 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3783 if (tem)
3784 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3785 reversed_nonequality);
3788 if (code == EQ && GET_CODE (op1) == SUBREG
3789 && (GET_MODE_SIZE (GET_MODE (op1))
3790 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3792 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3793 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3794 if (tem)
3795 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3796 reversed_nonequality);
3799 /* Similarly, if this is an NE comparison, and either is a SUBREG
3800 making a smaller mode, we know the whole thing is also NE. */
3802 /* Note that GET_MODE (op0) may not equal MODE;
3803 if we test MODE instead, we can get an infinite recursion
3804 alternating between two modes each wider than MODE. */
3806 if (code == NE && GET_CODE (op0) == SUBREG
3807 && subreg_lowpart_p (op0)
3808 && (GET_MODE_SIZE (GET_MODE (op0))
3809 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3811 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3812 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3813 if (tem)
3814 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3815 reversed_nonequality);
3818 if (code == NE && GET_CODE (op1) == SUBREG
3819 && subreg_lowpart_p (op1)
3820 && (GET_MODE_SIZE (GET_MODE (op1))
3821 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3823 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3824 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3825 if (tem)
3826 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3827 reversed_nonequality);
3830 /* Hash both operands. */
3832 do_not_record = 0;
3833 hash_arg_in_memory = 0;
3834 op0_hash = HASH (op0, mode);
3835 op0_in_memory = hash_arg_in_memory;
3837 if (do_not_record)
3838 return;
3840 do_not_record = 0;
3841 hash_arg_in_memory = 0;
3842 op1_hash = HASH (op1, mode);
3843 op1_in_memory = hash_arg_in_memory;
3845 if (do_not_record)
3846 return;
3848 /* Look up both operands. */
3849 op0_elt = lookup (op0, op0_hash, mode);
3850 op1_elt = lookup (op1, op1_hash, mode);
3852 /* If both operands are already equivalent or if they are not in the
3853 table but are identical, do nothing. */
3854 if ((op0_elt != 0 && op1_elt != 0
3855 && op0_elt->first_same_value == op1_elt->first_same_value)
3856 || op0 == op1 || rtx_equal_p (op0, op1))
3857 return;
3859 /* If we aren't setting two things equal all we can do is save this
3860 comparison. Similarly if this is floating-point. In the latter
3861 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3862 If we record the equality, we might inadvertently delete code
3863 whose intent was to change -0 to +0. */
3865 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3867 struct qty_table_elem *ent;
3868 int qty;
3870 /* If we reversed a floating-point comparison, if OP0 is not a
3871 register, or if OP1 is neither a register or constant, we can't
3872 do anything. */
3874 if (!REG_P (op1))
3875 op1 = equiv_constant (op1);
3877 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3878 || !REG_P (op0) || op1 == 0)
3879 return;
3881 /* Put OP0 in the hash table if it isn't already. This gives it a
3882 new quantity number. */
3883 if (op0_elt == 0)
3885 if (insert_regs (op0, NULL, 0))
3887 rehash_using_reg (op0);
3888 op0_hash = HASH (op0, mode);
3890 /* If OP0 is contained in OP1, this changes its hash code
3891 as well. Faster to rehash than to check, except
3892 for the simple case of a constant. */
3893 if (! CONSTANT_P (op1))
3894 op1_hash = HASH (op1,mode);
3897 op0_elt = insert (op0, NULL, op0_hash, mode);
3898 op0_elt->in_memory = op0_in_memory;
3901 qty = REG_QTY (REGNO (op0));
3902 ent = &qty_table[qty];
3904 ent->comparison_code = code;
3905 if (REG_P (op1))
3907 /* Look it up again--in case op0 and op1 are the same. */
3908 op1_elt = lookup (op1, op1_hash, mode);
3910 /* Put OP1 in the hash table so it gets a new quantity number. */
3911 if (op1_elt == 0)
3913 if (insert_regs (op1, NULL, 0))
3915 rehash_using_reg (op1);
3916 op1_hash = HASH (op1, mode);
3919 op1_elt = insert (op1, NULL, op1_hash, mode);
3920 op1_elt->in_memory = op1_in_memory;
3923 ent->comparison_const = NULL_RTX;
3924 ent->comparison_qty = REG_QTY (REGNO (op1));
3926 else
3928 ent->comparison_const = op1;
3929 ent->comparison_qty = -1;
3932 return;
3935 /* If either side is still missing an equivalence, make it now,
3936 then merge the equivalences. */
3938 if (op0_elt == 0)
3940 if (insert_regs (op0, NULL, 0))
3942 rehash_using_reg (op0);
3943 op0_hash = HASH (op0, mode);
3946 op0_elt = insert (op0, NULL, op0_hash, mode);
3947 op0_elt->in_memory = op0_in_memory;
3950 if (op1_elt == 0)
3952 if (insert_regs (op1, NULL, 0))
3954 rehash_using_reg (op1);
3955 op1_hash = HASH (op1, mode);
3958 op1_elt = insert (op1, NULL, op1_hash, mode);
3959 op1_elt->in_memory = op1_in_memory;
3962 merge_equiv_classes (op0_elt, op1_elt);
3965 /* CSE processing for one instruction.
3966 First simplify sources and addresses of all assignments
3967 in the instruction, using previously-computed equivalents values.
3968 Then install the new sources and destinations in the table
3969 of available values. */
3971 /* Data on one SET contained in the instruction. */
3973 struct set
3975 /* The SET rtx itself. */
3976 rtx rtl;
3977 /* The SET_SRC of the rtx (the original value, if it is changing). */
3978 rtx src;
3979 /* The hash-table element for the SET_SRC of the SET. */
3980 struct table_elt *src_elt;
3981 /* Hash value for the SET_SRC. */
3982 unsigned src_hash;
3983 /* Hash value for the SET_DEST. */
3984 unsigned dest_hash;
3985 /* The SET_DEST, with SUBREG, etc., stripped. */
3986 rtx inner_dest;
3987 /* Nonzero if the SET_SRC is in memory. */
3988 char src_in_memory;
3989 /* Nonzero if the SET_SRC contains something
3990 whose value cannot be predicted and understood. */
3991 char src_volatile;
3992 /* Original machine mode, in case it becomes a CONST_INT.
3993 The size of this field should match the size of the mode
3994 field of struct rtx_def (see rtl.h). */
3995 ENUM_BITFIELD(machine_mode) mode : 8;
3996 /* A constant equivalent for SET_SRC, if any. */
3997 rtx src_const;
3998 /* Hash value of constant equivalent for SET_SRC. */
3999 unsigned src_const_hash;
4000 /* Table entry for constant equivalent for SET_SRC, if any. */
4001 struct table_elt *src_const_elt;
4002 /* Table entry for the destination address. */
4003 struct table_elt *dest_addr_elt;
4006 static void
4007 cse_insn (rtx insn)
4009 rtx x = PATTERN (insn);
4010 int i;
4011 rtx tem;
4012 int n_sets = 0;
4014 rtx src_eqv = 0;
4015 struct table_elt *src_eqv_elt = 0;
4016 int src_eqv_volatile = 0;
4017 int src_eqv_in_memory = 0;
4018 unsigned src_eqv_hash = 0;
4020 struct set *sets = (struct set *) 0;
4022 this_insn = insn;
4023 #ifdef HAVE_cc0
4024 /* Records what this insn does to set CC0. */
4025 this_insn_cc0 = 0;
4026 this_insn_cc0_mode = VOIDmode;
4027 #endif
4029 /* Find all the SETs and CLOBBERs in this instruction.
4030 Record all the SETs in the array `set' and count them.
4031 Also determine whether there is a CLOBBER that invalidates
4032 all memory references, or all references at varying addresses. */
4034 if (CALL_P (insn))
4036 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4038 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4039 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4040 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4044 if (GET_CODE (x) == SET)
4046 sets = XALLOCA (struct set);
4047 sets[0].rtl = x;
4049 /* Ignore SETs that are unconditional jumps.
4050 They never need cse processing, so this does not hurt.
4051 The reason is not efficiency but rather
4052 so that we can test at the end for instructions
4053 that have been simplified to unconditional jumps
4054 and not be misled by unchanged instructions
4055 that were unconditional jumps to begin with. */
4056 if (SET_DEST (x) == pc_rtx
4057 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4060 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4061 The hard function value register is used only once, to copy to
4062 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4063 Ensure we invalidate the destination register. On the 80386 no
4064 other code would invalidate it since it is a fixed_reg.
4065 We need not check the return of apply_change_group; see canon_reg. */
4067 else if (GET_CODE (SET_SRC (x)) == CALL)
4069 canon_reg (SET_SRC (x), insn);
4070 apply_change_group ();
4071 fold_rtx (SET_SRC (x), insn);
4072 invalidate (SET_DEST (x), VOIDmode);
4074 else
4075 n_sets = 1;
4077 else if (GET_CODE (x) == PARALLEL)
4079 int lim = XVECLEN (x, 0);
4081 sets = XALLOCAVEC (struct set, lim);
4083 /* Find all regs explicitly clobbered in this insn,
4084 and ensure they are not replaced with any other regs
4085 elsewhere in this insn.
4086 When a reg that is clobbered is also used for input,
4087 we should presume that that is for a reason,
4088 and we should not substitute some other register
4089 which is not supposed to be clobbered.
4090 Therefore, this loop cannot be merged into the one below
4091 because a CALL may precede a CLOBBER and refer to the
4092 value clobbered. We must not let a canonicalization do
4093 anything in that case. */
4094 for (i = 0; i < lim; i++)
4096 rtx y = XVECEXP (x, 0, i);
4097 if (GET_CODE (y) == CLOBBER)
4099 rtx clobbered = XEXP (y, 0);
4101 if (REG_P (clobbered)
4102 || GET_CODE (clobbered) == SUBREG)
4103 invalidate (clobbered, VOIDmode);
4104 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4105 || GET_CODE (clobbered) == ZERO_EXTRACT)
4106 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4110 for (i = 0; i < lim; i++)
4112 rtx y = XVECEXP (x, 0, i);
4113 if (GET_CODE (y) == SET)
4115 /* As above, we ignore unconditional jumps and call-insns and
4116 ignore the result of apply_change_group. */
4117 if (GET_CODE (SET_SRC (y)) == CALL)
4119 canon_reg (SET_SRC (y), insn);
4120 apply_change_group ();
4121 fold_rtx (SET_SRC (y), insn);
4122 invalidate (SET_DEST (y), VOIDmode);
4124 else if (SET_DEST (y) == pc_rtx
4125 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4127 else
4128 sets[n_sets++].rtl = y;
4130 else if (GET_CODE (y) == CLOBBER)
4132 /* If we clobber memory, canon the address.
4133 This does nothing when a register is clobbered
4134 because we have already invalidated the reg. */
4135 if (MEM_P (XEXP (y, 0)))
4136 canon_reg (XEXP (y, 0), insn);
4138 else if (GET_CODE (y) == USE
4139 && ! (REG_P (XEXP (y, 0))
4140 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4141 canon_reg (y, insn);
4142 else if (GET_CODE (y) == CALL)
4144 /* The result of apply_change_group can be ignored; see
4145 canon_reg. */
4146 canon_reg (y, insn);
4147 apply_change_group ();
4148 fold_rtx (y, insn);
4152 else if (GET_CODE (x) == CLOBBER)
4154 if (MEM_P (XEXP (x, 0)))
4155 canon_reg (XEXP (x, 0), insn);
4158 /* Canonicalize a USE of a pseudo register or memory location. */
4159 else if (GET_CODE (x) == USE
4160 && ! (REG_P (XEXP (x, 0))
4161 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4162 canon_reg (XEXP (x, 0), insn);
4163 else if (GET_CODE (x) == CALL)
4165 /* The result of apply_change_group can be ignored; see canon_reg. */
4166 canon_reg (x, insn);
4167 apply_change_group ();
4168 fold_rtx (x, insn);
4171 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4172 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4173 is handled specially for this case, and if it isn't set, then there will
4174 be no equivalence for the destination. */
4175 if (n_sets == 1 && REG_NOTES (insn) != 0
4176 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4177 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4178 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4180 /* The result of apply_change_group can be ignored; see canon_reg. */
4181 canon_reg (XEXP (tem, 0), insn);
4182 apply_change_group ();
4183 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4184 XEXP (tem, 0) = copy_rtx (src_eqv);
4185 df_notes_rescan (insn);
4188 /* Canonicalize sources and addresses of destinations.
4189 We do this in a separate pass to avoid problems when a MATCH_DUP is
4190 present in the insn pattern. In that case, we want to ensure that
4191 we don't break the duplicate nature of the pattern. So we will replace
4192 both operands at the same time. Otherwise, we would fail to find an
4193 equivalent substitution in the loop calling validate_change below.
4195 We used to suppress canonicalization of DEST if it appears in SRC,
4196 but we don't do this any more. */
4198 for (i = 0; i < n_sets; i++)
4200 rtx dest = SET_DEST (sets[i].rtl);
4201 rtx src = SET_SRC (sets[i].rtl);
4202 rtx new_rtx = canon_reg (src, insn);
4204 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4206 if (GET_CODE (dest) == ZERO_EXTRACT)
4208 validate_change (insn, &XEXP (dest, 1),
4209 canon_reg (XEXP (dest, 1), insn), 1);
4210 validate_change (insn, &XEXP (dest, 2),
4211 canon_reg (XEXP (dest, 2), insn), 1);
4214 while (GET_CODE (dest) == SUBREG
4215 || GET_CODE (dest) == ZERO_EXTRACT
4216 || GET_CODE (dest) == STRICT_LOW_PART)
4217 dest = XEXP (dest, 0);
4219 if (MEM_P (dest))
4220 canon_reg (dest, insn);
4223 /* Now that we have done all the replacements, we can apply the change
4224 group and see if they all work. Note that this will cause some
4225 canonicalizations that would have worked individually not to be applied
4226 because some other canonicalization didn't work, but this should not
4227 occur often.
4229 The result of apply_change_group can be ignored; see canon_reg. */
4231 apply_change_group ();
4233 /* Set sets[i].src_elt to the class each source belongs to.
4234 Detect assignments from or to volatile things
4235 and set set[i] to zero so they will be ignored
4236 in the rest of this function.
4238 Nothing in this loop changes the hash table or the register chains. */
4240 for (i = 0; i < n_sets; i++)
4242 rtx src, dest;
4243 rtx src_folded;
4244 struct table_elt *elt = 0, *p;
4245 enum machine_mode mode;
4246 rtx src_eqv_here;
4247 rtx src_const = 0;
4248 rtx src_related = 0;
4249 struct table_elt *src_const_elt = 0;
4250 int src_cost = MAX_COST;
4251 int src_eqv_cost = MAX_COST;
4252 int src_folded_cost = MAX_COST;
4253 int src_related_cost = MAX_COST;
4254 int src_elt_cost = MAX_COST;
4255 int src_regcost = MAX_COST;
4256 int src_eqv_regcost = MAX_COST;
4257 int src_folded_regcost = MAX_COST;
4258 int src_related_regcost = MAX_COST;
4259 int src_elt_regcost = MAX_COST;
4260 /* Set nonzero if we need to call force_const_mem on with the
4261 contents of src_folded before using it. */
4262 int src_folded_force_flag = 0;
4264 dest = SET_DEST (sets[i].rtl);
4265 src = SET_SRC (sets[i].rtl);
4267 /* If SRC is a constant that has no machine mode,
4268 hash it with the destination's machine mode.
4269 This way we can keep different modes separate. */
4271 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4272 sets[i].mode = mode;
4274 if (src_eqv)
4276 enum machine_mode eqvmode = mode;
4277 if (GET_CODE (dest) == STRICT_LOW_PART)
4278 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4279 do_not_record = 0;
4280 hash_arg_in_memory = 0;
4281 src_eqv_hash = HASH (src_eqv, eqvmode);
4283 /* Find the equivalence class for the equivalent expression. */
4285 if (!do_not_record)
4286 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4288 src_eqv_volatile = do_not_record;
4289 src_eqv_in_memory = hash_arg_in_memory;
4292 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4293 value of the INNER register, not the destination. So it is not
4294 a valid substitution for the source. But save it for later. */
4295 if (GET_CODE (dest) == STRICT_LOW_PART)
4296 src_eqv_here = 0;
4297 else
4298 src_eqv_here = src_eqv;
4300 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4301 simplified result, which may not necessarily be valid. */
4302 src_folded = fold_rtx (src, insn);
4304 #if 0
4305 /* ??? This caused bad code to be generated for the m68k port with -O2.
4306 Suppose src is (CONST_INT -1), and that after truncation src_folded
4307 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4308 At the end we will add src and src_const to the same equivalence
4309 class. We now have 3 and -1 on the same equivalence class. This
4310 causes later instructions to be mis-optimized. */
4311 /* If storing a constant in a bitfield, pre-truncate the constant
4312 so we will be able to record it later. */
4313 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4315 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4317 if (GET_CODE (src) == CONST_INT
4318 && GET_CODE (width) == CONST_INT
4319 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4320 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4321 src_folded
4322 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4323 << INTVAL (width)) - 1));
4325 #endif
4327 /* Compute SRC's hash code, and also notice if it
4328 should not be recorded at all. In that case,
4329 prevent any further processing of this assignment. */
4330 do_not_record = 0;
4331 hash_arg_in_memory = 0;
4333 sets[i].src = src;
4334 sets[i].src_hash = HASH (src, mode);
4335 sets[i].src_volatile = do_not_record;
4336 sets[i].src_in_memory = hash_arg_in_memory;
4338 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4339 a pseudo, do not record SRC. Using SRC as a replacement for
4340 anything else will be incorrect in that situation. Note that
4341 this usually occurs only for stack slots, in which case all the
4342 RTL would be referring to SRC, so we don't lose any optimization
4343 opportunities by not having SRC in the hash table. */
4345 if (MEM_P (src)
4346 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4347 && REG_P (dest)
4348 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4349 sets[i].src_volatile = 1;
4351 #if 0
4352 /* It is no longer clear why we used to do this, but it doesn't
4353 appear to still be needed. So let's try without it since this
4354 code hurts cse'ing widened ops. */
4355 /* If source is a paradoxical subreg (such as QI treated as an SI),
4356 treat it as volatile. It may do the work of an SI in one context
4357 where the extra bits are not being used, but cannot replace an SI
4358 in general. */
4359 if (GET_CODE (src) == SUBREG
4360 && (GET_MODE_SIZE (GET_MODE (src))
4361 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4362 sets[i].src_volatile = 1;
4363 #endif
4365 /* Locate all possible equivalent forms for SRC. Try to replace
4366 SRC in the insn with each cheaper equivalent.
4368 We have the following types of equivalents: SRC itself, a folded
4369 version, a value given in a REG_EQUAL note, or a value related
4370 to a constant.
4372 Each of these equivalents may be part of an additional class
4373 of equivalents (if more than one is in the table, they must be in
4374 the same class; we check for this).
4376 If the source is volatile, we don't do any table lookups.
4378 We note any constant equivalent for possible later use in a
4379 REG_NOTE. */
4381 if (!sets[i].src_volatile)
4382 elt = lookup (src, sets[i].src_hash, mode);
4384 sets[i].src_elt = elt;
4386 if (elt && src_eqv_here && src_eqv_elt)
4388 if (elt->first_same_value != src_eqv_elt->first_same_value)
4390 /* The REG_EQUAL is indicating that two formerly distinct
4391 classes are now equivalent. So merge them. */
4392 merge_equiv_classes (elt, src_eqv_elt);
4393 src_eqv_hash = HASH (src_eqv, elt->mode);
4394 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4397 src_eqv_here = 0;
4400 else if (src_eqv_elt)
4401 elt = src_eqv_elt;
4403 /* Try to find a constant somewhere and record it in `src_const'.
4404 Record its table element, if any, in `src_const_elt'. Look in
4405 any known equivalences first. (If the constant is not in the
4406 table, also set `sets[i].src_const_hash'). */
4407 if (elt)
4408 for (p = elt->first_same_value; p; p = p->next_same_value)
4409 if (p->is_const)
4411 src_const = p->exp;
4412 src_const_elt = elt;
4413 break;
4416 if (src_const == 0
4417 && (CONSTANT_P (src_folded)
4418 /* Consider (minus (label_ref L1) (label_ref L2)) as
4419 "constant" here so we will record it. This allows us
4420 to fold switch statements when an ADDR_DIFF_VEC is used. */
4421 || (GET_CODE (src_folded) == MINUS
4422 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4423 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4424 src_const = src_folded, src_const_elt = elt;
4425 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4426 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4428 /* If we don't know if the constant is in the table, get its
4429 hash code and look it up. */
4430 if (src_const && src_const_elt == 0)
4432 sets[i].src_const_hash = HASH (src_const, mode);
4433 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4436 sets[i].src_const = src_const;
4437 sets[i].src_const_elt = src_const_elt;
4439 /* If the constant and our source are both in the table, mark them as
4440 equivalent. Otherwise, if a constant is in the table but the source
4441 isn't, set ELT to it. */
4442 if (src_const_elt && elt
4443 && src_const_elt->first_same_value != elt->first_same_value)
4444 merge_equiv_classes (elt, src_const_elt);
4445 else if (src_const_elt && elt == 0)
4446 elt = src_const_elt;
4448 /* See if there is a register linearly related to a constant
4449 equivalent of SRC. */
4450 if (src_const
4451 && (GET_CODE (src_const) == CONST
4452 || (src_const_elt && src_const_elt->related_value != 0)))
4454 src_related = use_related_value (src_const, src_const_elt);
4455 if (src_related)
4457 struct table_elt *src_related_elt
4458 = lookup (src_related, HASH (src_related, mode), mode);
4459 if (src_related_elt && elt)
4461 if (elt->first_same_value
4462 != src_related_elt->first_same_value)
4463 /* This can occur when we previously saw a CONST
4464 involving a SYMBOL_REF and then see the SYMBOL_REF
4465 twice. Merge the involved classes. */
4466 merge_equiv_classes (elt, src_related_elt);
4468 src_related = 0;
4469 src_related_elt = 0;
4471 else if (src_related_elt && elt == 0)
4472 elt = src_related_elt;
4476 /* See if we have a CONST_INT that is already in a register in a
4477 wider mode. */
4479 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4480 && GET_MODE_CLASS (mode) == MODE_INT
4481 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4483 enum machine_mode wider_mode;
4485 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4486 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4487 && src_related == 0;
4488 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4490 struct table_elt *const_elt
4491 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4493 if (const_elt == 0)
4494 continue;
4496 for (const_elt = const_elt->first_same_value;
4497 const_elt; const_elt = const_elt->next_same_value)
4498 if (REG_P (const_elt->exp))
4500 src_related = gen_lowpart (mode, const_elt->exp);
4501 break;
4506 /* Another possibility is that we have an AND with a constant in
4507 a mode narrower than a word. If so, it might have been generated
4508 as part of an "if" which would narrow the AND. If we already
4509 have done the AND in a wider mode, we can use a SUBREG of that
4510 value. */
4512 if (flag_expensive_optimizations && ! src_related
4513 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4514 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4516 enum machine_mode tmode;
4517 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4519 for (tmode = GET_MODE_WIDER_MODE (mode);
4520 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4521 tmode = GET_MODE_WIDER_MODE (tmode))
4523 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4524 struct table_elt *larger_elt;
4526 if (inner)
4528 PUT_MODE (new_and, tmode);
4529 XEXP (new_and, 0) = inner;
4530 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4531 if (larger_elt == 0)
4532 continue;
4534 for (larger_elt = larger_elt->first_same_value;
4535 larger_elt; larger_elt = larger_elt->next_same_value)
4536 if (REG_P (larger_elt->exp))
4538 src_related
4539 = gen_lowpart (mode, larger_elt->exp);
4540 break;
4543 if (src_related)
4544 break;
4549 #ifdef LOAD_EXTEND_OP
4550 /* See if a MEM has already been loaded with a widening operation;
4551 if it has, we can use a subreg of that. Many CISC machines
4552 also have such operations, but this is only likely to be
4553 beneficial on these machines. */
4555 if (flag_expensive_optimizations && src_related == 0
4556 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4557 && GET_MODE_CLASS (mode) == MODE_INT
4558 && MEM_P (src) && ! do_not_record
4559 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4561 struct rtx_def memory_extend_buf;
4562 rtx memory_extend_rtx = &memory_extend_buf;
4563 enum machine_mode tmode;
4565 /* Set what we are trying to extend and the operation it might
4566 have been extended with. */
4567 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4568 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4569 XEXP (memory_extend_rtx, 0) = src;
4571 for (tmode = GET_MODE_WIDER_MODE (mode);
4572 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4573 tmode = GET_MODE_WIDER_MODE (tmode))
4575 struct table_elt *larger_elt;
4577 PUT_MODE (memory_extend_rtx, tmode);
4578 larger_elt = lookup (memory_extend_rtx,
4579 HASH (memory_extend_rtx, tmode), tmode);
4580 if (larger_elt == 0)
4581 continue;
4583 for (larger_elt = larger_elt->first_same_value;
4584 larger_elt; larger_elt = larger_elt->next_same_value)
4585 if (REG_P (larger_elt->exp))
4587 src_related = gen_lowpart (mode, larger_elt->exp);
4588 break;
4591 if (src_related)
4592 break;
4595 #endif /* LOAD_EXTEND_OP */
4597 if (src == src_folded)
4598 src_folded = 0;
4600 /* At this point, ELT, if nonzero, points to a class of expressions
4601 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4602 and SRC_RELATED, if nonzero, each contain additional equivalent
4603 expressions. Prune these latter expressions by deleting expressions
4604 already in the equivalence class.
4606 Check for an equivalent identical to the destination. If found,
4607 this is the preferred equivalent since it will likely lead to
4608 elimination of the insn. Indicate this by placing it in
4609 `src_related'. */
4611 if (elt)
4612 elt = elt->first_same_value;
4613 for (p = elt; p; p = p->next_same_value)
4615 enum rtx_code code = GET_CODE (p->exp);
4617 /* If the expression is not valid, ignore it. Then we do not
4618 have to check for validity below. In most cases, we can use
4619 `rtx_equal_p', since canonicalization has already been done. */
4620 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4621 continue;
4623 /* Also skip paradoxical subregs, unless that's what we're
4624 looking for. */
4625 if (code == SUBREG
4626 && (GET_MODE_SIZE (GET_MODE (p->exp))
4627 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4628 && ! (src != 0
4629 && GET_CODE (src) == SUBREG
4630 && GET_MODE (src) == GET_MODE (p->exp)
4631 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4632 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4633 continue;
4635 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4636 src = 0;
4637 else if (src_folded && GET_CODE (src_folded) == code
4638 && rtx_equal_p (src_folded, p->exp))
4639 src_folded = 0;
4640 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4641 && rtx_equal_p (src_eqv_here, p->exp))
4642 src_eqv_here = 0;
4643 else if (src_related && GET_CODE (src_related) == code
4644 && rtx_equal_p (src_related, p->exp))
4645 src_related = 0;
4647 /* This is the same as the destination of the insns, we want
4648 to prefer it. Copy it to src_related. The code below will
4649 then give it a negative cost. */
4650 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4651 src_related = dest;
4654 /* Find the cheapest valid equivalent, trying all the available
4655 possibilities. Prefer items not in the hash table to ones
4656 that are when they are equal cost. Note that we can never
4657 worsen an insn as the current contents will also succeed.
4658 If we find an equivalent identical to the destination, use it as best,
4659 since this insn will probably be eliminated in that case. */
4660 if (src)
4662 if (rtx_equal_p (src, dest))
4663 src_cost = src_regcost = -1;
4664 else
4666 src_cost = COST (src);
4667 src_regcost = approx_reg_cost (src);
4671 if (src_eqv_here)
4673 if (rtx_equal_p (src_eqv_here, dest))
4674 src_eqv_cost = src_eqv_regcost = -1;
4675 else
4677 src_eqv_cost = COST (src_eqv_here);
4678 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4682 if (src_folded)
4684 if (rtx_equal_p (src_folded, dest))
4685 src_folded_cost = src_folded_regcost = -1;
4686 else
4688 src_folded_cost = COST (src_folded);
4689 src_folded_regcost = approx_reg_cost (src_folded);
4693 if (src_related)
4695 if (rtx_equal_p (src_related, dest))
4696 src_related_cost = src_related_regcost = -1;
4697 else
4699 src_related_cost = COST (src_related);
4700 src_related_regcost = approx_reg_cost (src_related);
4704 /* If this was an indirect jump insn, a known label will really be
4705 cheaper even though it looks more expensive. */
4706 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4707 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4709 /* Terminate loop when replacement made. This must terminate since
4710 the current contents will be tested and will always be valid. */
4711 while (1)
4713 rtx trial;
4715 /* Skip invalid entries. */
4716 while (elt && !REG_P (elt->exp)
4717 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4718 elt = elt->next_same_value;
4720 /* A paradoxical subreg would be bad here: it'll be the right
4721 size, but later may be adjusted so that the upper bits aren't
4722 what we want. So reject it. */
4723 if (elt != 0
4724 && GET_CODE (elt->exp) == SUBREG
4725 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4726 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4727 /* It is okay, though, if the rtx we're trying to match
4728 will ignore any of the bits we can't predict. */
4729 && ! (src != 0
4730 && GET_CODE (src) == SUBREG
4731 && GET_MODE (src) == GET_MODE (elt->exp)
4732 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4733 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4735 elt = elt->next_same_value;
4736 continue;
4739 if (elt)
4741 src_elt_cost = elt->cost;
4742 src_elt_regcost = elt->regcost;
4745 /* Find cheapest and skip it for the next time. For items
4746 of equal cost, use this order:
4747 src_folded, src, src_eqv, src_related and hash table entry. */
4748 if (src_folded
4749 && preferable (src_folded_cost, src_folded_regcost,
4750 src_cost, src_regcost) <= 0
4751 && preferable (src_folded_cost, src_folded_regcost,
4752 src_eqv_cost, src_eqv_regcost) <= 0
4753 && preferable (src_folded_cost, src_folded_regcost,
4754 src_related_cost, src_related_regcost) <= 0
4755 && preferable (src_folded_cost, src_folded_regcost,
4756 src_elt_cost, src_elt_regcost) <= 0)
4758 trial = src_folded, src_folded_cost = MAX_COST;
4759 if (src_folded_force_flag)
4761 rtx forced = force_const_mem (mode, trial);
4762 if (forced)
4763 trial = forced;
4766 else if (src
4767 && preferable (src_cost, src_regcost,
4768 src_eqv_cost, src_eqv_regcost) <= 0
4769 && preferable (src_cost, src_regcost,
4770 src_related_cost, src_related_regcost) <= 0
4771 && preferable (src_cost, src_regcost,
4772 src_elt_cost, src_elt_regcost) <= 0)
4773 trial = src, src_cost = MAX_COST;
4774 else if (src_eqv_here
4775 && preferable (src_eqv_cost, src_eqv_regcost,
4776 src_related_cost, src_related_regcost) <= 0
4777 && preferable (src_eqv_cost, src_eqv_regcost,
4778 src_elt_cost, src_elt_regcost) <= 0)
4779 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4780 else if (src_related
4781 && preferable (src_related_cost, src_related_regcost,
4782 src_elt_cost, src_elt_regcost) <= 0)
4783 trial = src_related, src_related_cost = MAX_COST;
4784 else
4786 trial = elt->exp;
4787 elt = elt->next_same_value;
4788 src_elt_cost = MAX_COST;
4791 /* Avoid creation of overlapping memory moves. */
4792 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4794 rtx src, dest;
4796 /* BLKmode moves are not handled by cse anyway. */
4797 if (GET_MODE (trial) == BLKmode)
4798 break;
4800 src = canon_rtx (trial);
4801 dest = canon_rtx (SET_DEST (sets[i].rtl));
4803 if (!MEM_P (src) || !MEM_P (dest)
4804 || !nonoverlapping_memrefs_p (src, dest))
4805 break;
4808 /* We don't normally have an insn matching (set (pc) (pc)), so
4809 check for this separately here. We will delete such an
4810 insn below.
4812 For other cases such as a table jump or conditional jump
4813 where we know the ultimate target, go ahead and replace the
4814 operand. While that may not make a valid insn, we will
4815 reemit the jump below (and also insert any necessary
4816 barriers). */
4817 if (n_sets == 1 && dest == pc_rtx
4818 && (trial == pc_rtx
4819 || (GET_CODE (trial) == LABEL_REF
4820 && ! condjump_p (insn))))
4822 /* Don't substitute non-local labels, this confuses CFG. */
4823 if (GET_CODE (trial) == LABEL_REF
4824 && LABEL_REF_NONLOCAL_P (trial))
4825 continue;
4827 SET_SRC (sets[i].rtl) = trial;
4828 cse_jumps_altered = true;
4829 break;
4832 /* Reject certain invalid forms of CONST that we create. */
4833 else if (CONSTANT_P (trial)
4834 && GET_CODE (trial) == CONST
4835 /* Reject cases that will cause decode_rtx_const to
4836 die. On the alpha when simplifying a switch, we
4837 get (const (truncate (minus (label_ref)
4838 (label_ref)))). */
4839 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4840 /* Likewise on IA-64, except without the
4841 truncate. */
4842 || (GET_CODE (XEXP (trial, 0)) == MINUS
4843 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4844 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4845 /* Do nothing for this case. */
4848 /* Look for a substitution that makes a valid insn. */
4849 else if (validate_unshare_change
4850 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4852 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
4854 /* The result of apply_change_group can be ignored; see
4855 canon_reg. */
4857 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4858 apply_change_group ();
4860 break;
4863 /* If we previously found constant pool entries for
4864 constants and this is a constant, try making a
4865 pool entry. Put it in src_folded unless we already have done
4866 this since that is where it likely came from. */
4868 else if (constant_pool_entries_cost
4869 && CONSTANT_P (trial)
4870 && (src_folded == 0
4871 || (!MEM_P (src_folded)
4872 && ! src_folded_force_flag))
4873 && GET_MODE_CLASS (mode) != MODE_CC
4874 && mode != VOIDmode)
4876 src_folded_force_flag = 1;
4877 src_folded = trial;
4878 src_folded_cost = constant_pool_entries_cost;
4879 src_folded_regcost = constant_pool_entries_regcost;
4883 src = SET_SRC (sets[i].rtl);
4885 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4886 However, there is an important exception: If both are registers
4887 that are not the head of their equivalence class, replace SET_SRC
4888 with the head of the class. If we do not do this, we will have
4889 both registers live over a portion of the basic block. This way,
4890 their lifetimes will likely abut instead of overlapping. */
4891 if (REG_P (dest)
4892 && REGNO_QTY_VALID_P (REGNO (dest)))
4894 int dest_q = REG_QTY (REGNO (dest));
4895 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4897 if (dest_ent->mode == GET_MODE (dest)
4898 && dest_ent->first_reg != REGNO (dest)
4899 && REG_P (src) && REGNO (src) == REGNO (dest)
4900 /* Don't do this if the original insn had a hard reg as
4901 SET_SRC or SET_DEST. */
4902 && (!REG_P (sets[i].src)
4903 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4904 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4905 /* We can't call canon_reg here because it won't do anything if
4906 SRC is a hard register. */
4908 int src_q = REG_QTY (REGNO (src));
4909 struct qty_table_elem *src_ent = &qty_table[src_q];
4910 int first = src_ent->first_reg;
4911 rtx new_src
4912 = (first >= FIRST_PSEUDO_REGISTER
4913 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4915 /* We must use validate-change even for this, because this
4916 might be a special no-op instruction, suitable only to
4917 tag notes onto. */
4918 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4920 src = new_src;
4921 /* If we had a constant that is cheaper than what we are now
4922 setting SRC to, use that constant. We ignored it when we
4923 thought we could make this into a no-op. */
4924 if (src_const && COST (src_const) < COST (src)
4925 && validate_change (insn, &SET_SRC (sets[i].rtl),
4926 src_const, 0))
4927 src = src_const;
4932 /* If we made a change, recompute SRC values. */
4933 if (src != sets[i].src)
4935 do_not_record = 0;
4936 hash_arg_in_memory = 0;
4937 sets[i].src = src;
4938 sets[i].src_hash = HASH (src, mode);
4939 sets[i].src_volatile = do_not_record;
4940 sets[i].src_in_memory = hash_arg_in_memory;
4941 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4944 /* If this is a single SET, we are setting a register, and we have an
4945 equivalent constant, we want to add a REG_NOTE. We don't want
4946 to write a REG_EQUAL note for a constant pseudo since verifying that
4947 that pseudo hasn't been eliminated is a pain. Such a note also
4948 won't help anything.
4950 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4951 which can be created for a reference to a compile time computable
4952 entry in a jump table. */
4954 if (n_sets == 1 && src_const && REG_P (dest)
4955 && !REG_P (src_const)
4956 && ! (GET_CODE (src_const) == CONST
4957 && GET_CODE (XEXP (src_const, 0)) == MINUS
4958 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4959 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4961 /* We only want a REG_EQUAL note if src_const != src. */
4962 if (! rtx_equal_p (src, src_const))
4964 /* Make sure that the rtx is not shared. */
4965 src_const = copy_rtx (src_const);
4967 /* Record the actual constant value in a REG_EQUAL note,
4968 making a new one if one does not already exist. */
4969 set_unique_reg_note (insn, REG_EQUAL, src_const);
4970 df_notes_rescan (insn);
4974 /* Now deal with the destination. */
4975 do_not_record = 0;
4977 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4978 while (GET_CODE (dest) == SUBREG
4979 || GET_CODE (dest) == ZERO_EXTRACT
4980 || GET_CODE (dest) == STRICT_LOW_PART)
4981 dest = XEXP (dest, 0);
4983 sets[i].inner_dest = dest;
4985 if (MEM_P (dest))
4987 #ifdef PUSH_ROUNDING
4988 /* Stack pushes invalidate the stack pointer. */
4989 rtx addr = XEXP (dest, 0);
4990 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4991 && XEXP (addr, 0) == stack_pointer_rtx)
4992 invalidate (stack_pointer_rtx, VOIDmode);
4993 #endif
4994 dest = fold_rtx (dest, insn);
4997 /* Compute the hash code of the destination now,
4998 before the effects of this instruction are recorded,
4999 since the register values used in the address computation
5000 are those before this instruction. */
5001 sets[i].dest_hash = HASH (dest, mode);
5003 /* Don't enter a bit-field in the hash table
5004 because the value in it after the store
5005 may not equal what was stored, due to truncation. */
5007 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5009 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5011 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5012 && GET_CODE (width) == CONST_INT
5013 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5014 && ! (INTVAL (src_const)
5015 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5016 /* Exception: if the value is constant,
5017 and it won't be truncated, record it. */
5019 else
5021 /* This is chosen so that the destination will be invalidated
5022 but no new value will be recorded.
5023 We must invalidate because sometimes constant
5024 values can be recorded for bitfields. */
5025 sets[i].src_elt = 0;
5026 sets[i].src_volatile = 1;
5027 src_eqv = 0;
5028 src_eqv_elt = 0;
5032 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5033 the insn. */
5034 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5036 /* One less use of the label this insn used to jump to. */
5037 delete_insn_and_edges (insn);
5038 cse_jumps_altered = true;
5039 /* No more processing for this set. */
5040 sets[i].rtl = 0;
5043 /* If this SET is now setting PC to a label, we know it used to
5044 be a conditional or computed branch. */
5045 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5046 && !LABEL_REF_NONLOCAL_P (src))
5048 /* We reemit the jump in as many cases as possible just in
5049 case the form of an unconditional jump is significantly
5050 different than a computed jump or conditional jump.
5052 If this insn has multiple sets, then reemitting the
5053 jump is nontrivial. So instead we just force rerecognition
5054 and hope for the best. */
5055 if (n_sets == 1)
5057 rtx new_rtx, note;
5059 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5060 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5061 LABEL_NUSES (XEXP (src, 0))++;
5063 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5064 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5065 if (note)
5067 XEXP (note, 1) = NULL_RTX;
5068 REG_NOTES (new_rtx) = note;
5071 delete_insn_and_edges (insn);
5072 insn = new_rtx;
5074 else
5075 INSN_CODE (insn) = -1;
5077 /* Do not bother deleting any unreachable code, let jump do it. */
5078 cse_jumps_altered = true;
5079 sets[i].rtl = 0;
5082 /* If destination is volatile, invalidate it and then do no further
5083 processing for this assignment. */
5085 else if (do_not_record)
5087 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5088 invalidate (dest, VOIDmode);
5089 else if (MEM_P (dest))
5090 invalidate (dest, VOIDmode);
5091 else if (GET_CODE (dest) == STRICT_LOW_PART
5092 || GET_CODE (dest) == ZERO_EXTRACT)
5093 invalidate (XEXP (dest, 0), GET_MODE (dest));
5094 sets[i].rtl = 0;
5097 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5098 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5100 #ifdef HAVE_cc0
5101 /* If setting CC0, record what it was set to, or a constant, if it
5102 is equivalent to a constant. If it is being set to a floating-point
5103 value, make a COMPARE with the appropriate constant of 0. If we
5104 don't do this, later code can interpret this as a test against
5105 const0_rtx, which can cause problems if we try to put it into an
5106 insn as a floating-point operand. */
5107 if (dest == cc0_rtx)
5109 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5110 this_insn_cc0_mode = mode;
5111 if (FLOAT_MODE_P (mode))
5112 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5113 CONST0_RTX (mode));
5115 #endif
5118 /* Now enter all non-volatile source expressions in the hash table
5119 if they are not already present.
5120 Record their equivalence classes in src_elt.
5121 This way we can insert the corresponding destinations into
5122 the same classes even if the actual sources are no longer in them
5123 (having been invalidated). */
5125 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5126 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5128 struct table_elt *elt;
5129 struct table_elt *classp = sets[0].src_elt;
5130 rtx dest = SET_DEST (sets[0].rtl);
5131 enum machine_mode eqvmode = GET_MODE (dest);
5133 if (GET_CODE (dest) == STRICT_LOW_PART)
5135 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5136 classp = 0;
5138 if (insert_regs (src_eqv, classp, 0))
5140 rehash_using_reg (src_eqv);
5141 src_eqv_hash = HASH (src_eqv, eqvmode);
5143 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5144 elt->in_memory = src_eqv_in_memory;
5145 src_eqv_elt = elt;
5147 /* Check to see if src_eqv_elt is the same as a set source which
5148 does not yet have an elt, and if so set the elt of the set source
5149 to src_eqv_elt. */
5150 for (i = 0; i < n_sets; i++)
5151 if (sets[i].rtl && sets[i].src_elt == 0
5152 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5153 sets[i].src_elt = src_eqv_elt;
5156 for (i = 0; i < n_sets; i++)
5157 if (sets[i].rtl && ! sets[i].src_volatile
5158 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5160 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5162 /* REG_EQUAL in setting a STRICT_LOW_PART
5163 gives an equivalent for the entire destination register,
5164 not just for the subreg being stored in now.
5165 This is a more interesting equivalence, so we arrange later
5166 to treat the entire reg as the destination. */
5167 sets[i].src_elt = src_eqv_elt;
5168 sets[i].src_hash = src_eqv_hash;
5170 else
5172 /* Insert source and constant equivalent into hash table, if not
5173 already present. */
5174 struct table_elt *classp = src_eqv_elt;
5175 rtx src = sets[i].src;
5176 rtx dest = SET_DEST (sets[i].rtl);
5177 enum machine_mode mode
5178 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5180 /* It's possible that we have a source value known to be
5181 constant but don't have a REG_EQUAL note on the insn.
5182 Lack of a note will mean src_eqv_elt will be NULL. This
5183 can happen where we've generated a SUBREG to access a
5184 CONST_INT that is already in a register in a wider mode.
5185 Ensure that the source expression is put in the proper
5186 constant class. */
5187 if (!classp)
5188 classp = sets[i].src_const_elt;
5190 if (sets[i].src_elt == 0)
5192 struct table_elt *elt;
5194 /* Note that these insert_regs calls cannot remove
5195 any of the src_elt's, because they would have failed to
5196 match if not still valid. */
5197 if (insert_regs (src, classp, 0))
5199 rehash_using_reg (src);
5200 sets[i].src_hash = HASH (src, mode);
5202 elt = insert (src, classp, sets[i].src_hash, mode);
5203 elt->in_memory = sets[i].src_in_memory;
5204 sets[i].src_elt = classp = elt;
5206 if (sets[i].src_const && sets[i].src_const_elt == 0
5207 && src != sets[i].src_const
5208 && ! rtx_equal_p (sets[i].src_const, src))
5209 sets[i].src_elt = insert (sets[i].src_const, classp,
5210 sets[i].src_const_hash, mode);
5213 else if (sets[i].src_elt == 0)
5214 /* If we did not insert the source into the hash table (e.g., it was
5215 volatile), note the equivalence class for the REG_EQUAL value, if any,
5216 so that the destination goes into that class. */
5217 sets[i].src_elt = src_eqv_elt;
5219 /* Record destination addresses in the hash table. This allows us to
5220 check if they are invalidated by other sets. */
5221 for (i = 0; i < n_sets; i++)
5223 if (sets[i].rtl)
5225 rtx x = sets[i].inner_dest;
5226 struct table_elt *elt;
5227 enum machine_mode mode;
5228 unsigned hash;
5230 if (MEM_P (x))
5232 x = XEXP (x, 0);
5233 mode = GET_MODE (x);
5234 hash = HASH (x, mode);
5235 elt = lookup (x, hash, mode);
5236 if (!elt)
5238 if (insert_regs (x, NULL, 0))
5240 rtx dest = SET_DEST (sets[i].rtl);
5242 rehash_using_reg (x);
5243 hash = HASH (x, mode);
5244 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5246 elt = insert (x, NULL, hash, mode);
5249 sets[i].dest_addr_elt = elt;
5251 else
5252 sets[i].dest_addr_elt = NULL;
5256 invalidate_from_clobbers (x);
5258 /* Some registers are invalidated by subroutine calls. Memory is
5259 invalidated by non-constant calls. */
5261 if (CALL_P (insn))
5263 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5264 invalidate_memory ();
5265 invalidate_for_call ();
5268 /* Now invalidate everything set by this instruction.
5269 If a SUBREG or other funny destination is being set,
5270 sets[i].rtl is still nonzero, so here we invalidate the reg
5271 a part of which is being set. */
5273 for (i = 0; i < n_sets; i++)
5274 if (sets[i].rtl)
5276 /* We can't use the inner dest, because the mode associated with
5277 a ZERO_EXTRACT is significant. */
5278 rtx dest = SET_DEST (sets[i].rtl);
5280 /* Needed for registers to remove the register from its
5281 previous quantity's chain.
5282 Needed for memory if this is a nonvarying address, unless
5283 we have just done an invalidate_memory that covers even those. */
5284 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5285 invalidate (dest, VOIDmode);
5286 else if (MEM_P (dest))
5287 invalidate (dest, VOIDmode);
5288 else if (GET_CODE (dest) == STRICT_LOW_PART
5289 || GET_CODE (dest) == ZERO_EXTRACT)
5290 invalidate (XEXP (dest, 0), GET_MODE (dest));
5293 /* A volatile ASM invalidates everything. */
5294 if (NONJUMP_INSN_P (insn)
5295 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5296 && MEM_VOLATILE_P (PATTERN (insn)))
5297 flush_hash_table ();
5299 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5300 the regs restored by the longjmp come from a later time
5301 than the setjmp. */
5302 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5304 flush_hash_table ();
5305 goto done;
5308 /* Make sure registers mentioned in destinations
5309 are safe for use in an expression to be inserted.
5310 This removes from the hash table
5311 any invalid entry that refers to one of these registers.
5313 We don't care about the return value from mention_regs because
5314 we are going to hash the SET_DEST values unconditionally. */
5316 for (i = 0; i < n_sets; i++)
5318 if (sets[i].rtl)
5320 rtx x = SET_DEST (sets[i].rtl);
5322 if (!REG_P (x))
5323 mention_regs (x);
5324 else
5326 /* We used to rely on all references to a register becoming
5327 inaccessible when a register changes to a new quantity,
5328 since that changes the hash code. However, that is not
5329 safe, since after HASH_SIZE new quantities we get a
5330 hash 'collision' of a register with its own invalid
5331 entries. And since SUBREGs have been changed not to
5332 change their hash code with the hash code of the register,
5333 it wouldn't work any longer at all. So we have to check
5334 for any invalid references lying around now.
5335 This code is similar to the REG case in mention_regs,
5336 but it knows that reg_tick has been incremented, and
5337 it leaves reg_in_table as -1 . */
5338 unsigned int regno = REGNO (x);
5339 unsigned int endregno = END_REGNO (x);
5340 unsigned int i;
5342 for (i = regno; i < endregno; i++)
5344 if (REG_IN_TABLE (i) >= 0)
5346 remove_invalid_refs (i);
5347 REG_IN_TABLE (i) = -1;
5354 /* We may have just removed some of the src_elt's from the hash table.
5355 So replace each one with the current head of the same class.
5356 Also check if destination addresses have been removed. */
5358 for (i = 0; i < n_sets; i++)
5359 if (sets[i].rtl)
5361 if (sets[i].dest_addr_elt
5362 && sets[i].dest_addr_elt->first_same_value == 0)
5364 /* The elt was removed, which means this destination is not
5365 valid after this instruction. */
5366 sets[i].rtl = NULL_RTX;
5368 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5369 /* If elt was removed, find current head of same class,
5370 or 0 if nothing remains of that class. */
5372 struct table_elt *elt = sets[i].src_elt;
5374 while (elt && elt->prev_same_value)
5375 elt = elt->prev_same_value;
5377 while (elt && elt->first_same_value == 0)
5378 elt = elt->next_same_value;
5379 sets[i].src_elt = elt ? elt->first_same_value : 0;
5383 /* Now insert the destinations into their equivalence classes. */
5385 for (i = 0; i < n_sets; i++)
5386 if (sets[i].rtl)
5388 rtx dest = SET_DEST (sets[i].rtl);
5389 struct table_elt *elt;
5391 /* Don't record value if we are not supposed to risk allocating
5392 floating-point values in registers that might be wider than
5393 memory. */
5394 if ((flag_float_store
5395 && MEM_P (dest)
5396 && FLOAT_MODE_P (GET_MODE (dest)))
5397 /* Don't record BLKmode values, because we don't know the
5398 size of it, and can't be sure that other BLKmode values
5399 have the same or smaller size. */
5400 || GET_MODE (dest) == BLKmode
5401 /* If we didn't put a REG_EQUAL value or a source into the hash
5402 table, there is no point is recording DEST. */
5403 || sets[i].src_elt == 0
5404 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5405 or SIGN_EXTEND, don't record DEST since it can cause
5406 some tracking to be wrong.
5408 ??? Think about this more later. */
5409 || (GET_CODE (dest) == SUBREG
5410 && (GET_MODE_SIZE (GET_MODE (dest))
5411 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5412 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5413 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5414 continue;
5416 /* STRICT_LOW_PART isn't part of the value BEING set,
5417 and neither is the SUBREG inside it.
5418 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5419 if (GET_CODE (dest) == STRICT_LOW_PART)
5420 dest = SUBREG_REG (XEXP (dest, 0));
5422 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5423 /* Registers must also be inserted into chains for quantities. */
5424 if (insert_regs (dest, sets[i].src_elt, 1))
5426 /* If `insert_regs' changes something, the hash code must be
5427 recalculated. */
5428 rehash_using_reg (dest);
5429 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5432 elt = insert (dest, sets[i].src_elt,
5433 sets[i].dest_hash, GET_MODE (dest));
5435 elt->in_memory = (MEM_P (sets[i].inner_dest)
5436 && !MEM_READONLY_P (sets[i].inner_dest));
5438 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5439 narrower than M2, and both M1 and M2 are the same number of words,
5440 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5441 make that equivalence as well.
5443 However, BAR may have equivalences for which gen_lowpart
5444 will produce a simpler value than gen_lowpart applied to
5445 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5446 BAR's equivalences. If we don't get a simplified form, make
5447 the SUBREG. It will not be used in an equivalence, but will
5448 cause two similar assignments to be detected.
5450 Note the loop below will find SUBREG_REG (DEST) since we have
5451 already entered SRC and DEST of the SET in the table. */
5453 if (GET_CODE (dest) == SUBREG
5454 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5455 / UNITS_PER_WORD)
5456 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5457 && (GET_MODE_SIZE (GET_MODE (dest))
5458 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5459 && sets[i].src_elt != 0)
5461 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5462 struct table_elt *elt, *classp = 0;
5464 for (elt = sets[i].src_elt->first_same_value; elt;
5465 elt = elt->next_same_value)
5467 rtx new_src = 0;
5468 unsigned src_hash;
5469 struct table_elt *src_elt;
5470 int byte = 0;
5472 /* Ignore invalid entries. */
5473 if (!REG_P (elt->exp)
5474 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5475 continue;
5477 /* We may have already been playing subreg games. If the
5478 mode is already correct for the destination, use it. */
5479 if (GET_MODE (elt->exp) == new_mode)
5480 new_src = elt->exp;
5481 else
5483 /* Calculate big endian correction for the SUBREG_BYTE.
5484 We have already checked that M1 (GET_MODE (dest))
5485 is not narrower than M2 (new_mode). */
5486 if (BYTES_BIG_ENDIAN)
5487 byte = (GET_MODE_SIZE (GET_MODE (dest))
5488 - GET_MODE_SIZE (new_mode));
5490 new_src = simplify_gen_subreg (new_mode, elt->exp,
5491 GET_MODE (dest), byte);
5494 /* The call to simplify_gen_subreg fails if the value
5495 is VOIDmode, yet we can't do any simplification, e.g.
5496 for EXPR_LISTs denoting function call results.
5497 It is invalid to construct a SUBREG with a VOIDmode
5498 SUBREG_REG, hence a zero new_src means we can't do
5499 this substitution. */
5500 if (! new_src)
5501 continue;
5503 src_hash = HASH (new_src, new_mode);
5504 src_elt = lookup (new_src, src_hash, new_mode);
5506 /* Put the new source in the hash table is if isn't
5507 already. */
5508 if (src_elt == 0)
5510 if (insert_regs (new_src, classp, 0))
5512 rehash_using_reg (new_src);
5513 src_hash = HASH (new_src, new_mode);
5515 src_elt = insert (new_src, classp, src_hash, new_mode);
5516 src_elt->in_memory = elt->in_memory;
5518 else if (classp && classp != src_elt->first_same_value)
5519 /* Show that two things that we've seen before are
5520 actually the same. */
5521 merge_equiv_classes (src_elt, classp);
5523 classp = src_elt->first_same_value;
5524 /* Ignore invalid entries. */
5525 while (classp
5526 && !REG_P (classp->exp)
5527 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5528 classp = classp->next_same_value;
5533 /* Special handling for (set REG0 REG1) where REG0 is the
5534 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5535 be used in the sequel, so (if easily done) change this insn to
5536 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5537 that computed their value. Then REG1 will become a dead store
5538 and won't cloud the situation for later optimizations.
5540 Do not make this change if REG1 is a hard register, because it will
5541 then be used in the sequel and we may be changing a two-operand insn
5542 into a three-operand insn.
5544 Also do not do this if we are operating on a copy of INSN. */
5546 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5547 && NEXT_INSN (PREV_INSN (insn)) == insn
5548 && REG_P (SET_SRC (sets[0].rtl))
5549 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5550 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5552 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5553 struct qty_table_elem *src_ent = &qty_table[src_q];
5555 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5557 /* Scan for the previous nonnote insn, but stop at a basic
5558 block boundary. */
5559 rtx prev = insn;
5560 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5563 prev = PREV_INSN (prev);
5565 while (prev != bb_head && NOTE_P (prev));
5567 /* Do not swap the registers around if the previous instruction
5568 attaches a REG_EQUIV note to REG1.
5570 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5571 from the pseudo that originally shadowed an incoming argument
5572 to another register. Some uses of REG_EQUIV might rely on it
5573 being attached to REG1 rather than REG2.
5575 This section previously turned the REG_EQUIV into a REG_EQUAL
5576 note. We cannot do that because REG_EQUIV may provide an
5577 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5578 if (NONJUMP_INSN_P (prev)
5579 && GET_CODE (PATTERN (prev)) == SET
5580 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5581 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5583 rtx dest = SET_DEST (sets[0].rtl);
5584 rtx src = SET_SRC (sets[0].rtl);
5585 rtx note;
5587 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5588 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5589 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5590 apply_change_group ();
5592 /* If INSN has a REG_EQUAL note, and this note mentions
5593 REG0, then we must delete it, because the value in
5594 REG0 has changed. If the note's value is REG1, we must
5595 also delete it because that is now this insn's dest. */
5596 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5597 if (note != 0
5598 && (reg_mentioned_p (dest, XEXP (note, 0))
5599 || rtx_equal_p (src, XEXP (note, 0))))
5600 remove_note (insn, note);
5605 done:;
5608 /* Remove from the hash table all expressions that reference memory. */
5610 static void
5611 invalidate_memory (void)
5613 int i;
5614 struct table_elt *p, *next;
5616 for (i = 0; i < HASH_SIZE; i++)
5617 for (p = table[i]; p; p = next)
5619 next = p->next_same_hash;
5620 if (p->in_memory)
5621 remove_from_table (p, i);
5625 /* Perform invalidation on the basis of everything about an insn
5626 except for invalidating the actual places that are SET in it.
5627 This includes the places CLOBBERed, and anything that might
5628 alias with something that is SET or CLOBBERed.
5630 X is the pattern of the insn. */
5632 static void
5633 invalidate_from_clobbers (rtx x)
5635 if (GET_CODE (x) == CLOBBER)
5637 rtx ref = XEXP (x, 0);
5638 if (ref)
5640 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5641 || MEM_P (ref))
5642 invalidate (ref, VOIDmode);
5643 else if (GET_CODE (ref) == STRICT_LOW_PART
5644 || GET_CODE (ref) == ZERO_EXTRACT)
5645 invalidate (XEXP (ref, 0), GET_MODE (ref));
5648 else if (GET_CODE (x) == PARALLEL)
5650 int i;
5651 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5653 rtx y = XVECEXP (x, 0, i);
5654 if (GET_CODE (y) == CLOBBER)
5656 rtx ref = XEXP (y, 0);
5657 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5658 || MEM_P (ref))
5659 invalidate (ref, VOIDmode);
5660 else if (GET_CODE (ref) == STRICT_LOW_PART
5661 || GET_CODE (ref) == ZERO_EXTRACT)
5662 invalidate (XEXP (ref, 0), GET_MODE (ref));
5668 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5669 and replace any registers in them with either an equivalent constant
5670 or the canonical form of the register. If we are inside an address,
5671 only do this if the address remains valid.
5673 OBJECT is 0 except when within a MEM in which case it is the MEM.
5675 Return the replacement for X. */
5677 static rtx
5678 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5680 enum rtx_code code = GET_CODE (x);
5681 const char *fmt = GET_RTX_FORMAT (code);
5682 int i;
5684 switch (code)
5686 case CONST_INT:
5687 case CONST:
5688 case SYMBOL_REF:
5689 case LABEL_REF:
5690 case CONST_DOUBLE:
5691 case CONST_FIXED:
5692 case CONST_VECTOR:
5693 case PC:
5694 case CC0:
5695 case LO_SUM:
5696 return x;
5698 case MEM:
5699 validate_change (x, &XEXP (x, 0),
5700 cse_process_notes (XEXP (x, 0), x, changed), 0);
5701 return x;
5703 case EXPR_LIST:
5704 case INSN_LIST:
5705 if (REG_NOTE_KIND (x) == REG_EQUAL)
5706 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5707 if (XEXP (x, 1))
5708 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5709 return x;
5711 case SIGN_EXTEND:
5712 case ZERO_EXTEND:
5713 case SUBREG:
5715 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5716 /* We don't substitute VOIDmode constants into these rtx,
5717 since they would impede folding. */
5718 if (GET_MODE (new_rtx) != VOIDmode)
5719 validate_change (object, &XEXP (x, 0), new_rtx, 0);
5720 return x;
5723 case REG:
5724 i = REG_QTY (REGNO (x));
5726 /* Return a constant or a constant register. */
5727 if (REGNO_QTY_VALID_P (REGNO (x)))
5729 struct qty_table_elem *ent = &qty_table[i];
5731 if (ent->const_rtx != NULL_RTX
5732 && (CONSTANT_P (ent->const_rtx)
5733 || REG_P (ent->const_rtx)))
5735 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5736 if (new_rtx)
5737 return copy_rtx (new_rtx);
5741 /* Otherwise, canonicalize this register. */
5742 return canon_reg (x, NULL_RTX);
5744 default:
5745 break;
5748 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5749 if (fmt[i] == 'e')
5750 validate_change (object, &XEXP (x, i),
5751 cse_process_notes (XEXP (x, i), object, changed), 0);
5753 return x;
5756 static rtx
5757 cse_process_notes (rtx x, rtx object, bool *changed)
5759 rtx new_rtx = cse_process_notes_1 (x, object, changed);
5760 if (new_rtx != x)
5761 *changed = true;
5762 return new_rtx;
5766 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5768 DATA is a pointer to a struct cse_basic_block_data, that is used to
5769 describe the path.
5770 It is filled with a queue of basic blocks, starting with FIRST_BB
5771 and following a trace through the CFG.
5773 If all paths starting at FIRST_BB have been followed, or no new path
5774 starting at FIRST_BB can be constructed, this function returns FALSE.
5775 Otherwise, DATA->path is filled and the function returns TRUE indicating
5776 that a path to follow was found.
5778 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5779 block in the path will be FIRST_BB. */
5781 static bool
5782 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5783 int follow_jumps)
5785 basic_block bb;
5786 edge e;
5787 int path_size;
5789 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5791 /* See if there is a previous path. */
5792 path_size = data->path_size;
5794 /* There is a previous path. Make sure it started with FIRST_BB. */
5795 if (path_size)
5796 gcc_assert (data->path[0].bb == first_bb);
5798 /* There was only one basic block in the last path. Clear the path and
5799 return, so that paths starting at another basic block can be tried. */
5800 if (path_size == 1)
5802 path_size = 0;
5803 goto done;
5806 /* If the path was empty from the beginning, construct a new path. */
5807 if (path_size == 0)
5808 data->path[path_size++].bb = first_bb;
5809 else
5811 /* Otherwise, path_size must be equal to or greater than 2, because
5812 a previous path exists that is at least two basic blocks long.
5814 Update the previous branch path, if any. If the last branch was
5815 previously along the branch edge, take the fallthrough edge now. */
5816 while (path_size >= 2)
5818 basic_block last_bb_in_path, previous_bb_in_path;
5819 edge e;
5821 --path_size;
5822 last_bb_in_path = data->path[path_size].bb;
5823 previous_bb_in_path = data->path[path_size - 1].bb;
5825 /* If we previously followed a path along the branch edge, try
5826 the fallthru edge now. */
5827 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5828 && any_condjump_p (BB_END (previous_bb_in_path))
5829 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5830 && e == BRANCH_EDGE (previous_bb_in_path))
5832 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5833 if (bb != EXIT_BLOCK_PTR
5834 && single_pred_p (bb)
5835 /* We used to assert here that we would only see blocks
5836 that we have not visited yet. But we may end up
5837 visiting basic blocks twice if the CFG has changed
5838 in this run of cse_main, because when the CFG changes
5839 the topological sort of the CFG also changes. A basic
5840 blocks that previously had more than two predecessors
5841 may now have a single predecessor, and become part of
5842 a path that starts at another basic block.
5844 We still want to visit each basic block only once, so
5845 halt the path here if we have already visited BB. */
5846 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5848 SET_BIT (cse_visited_basic_blocks, bb->index);
5849 data->path[path_size++].bb = bb;
5850 break;
5854 data->path[path_size].bb = NULL;
5857 /* If only one block remains in the path, bail. */
5858 if (path_size == 1)
5860 path_size = 0;
5861 goto done;
5865 /* Extend the path if possible. */
5866 if (follow_jumps)
5868 bb = data->path[path_size - 1].bb;
5869 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5871 if (single_succ_p (bb))
5872 e = single_succ_edge (bb);
5873 else if (EDGE_COUNT (bb->succs) == 2
5874 && any_condjump_p (BB_END (bb)))
5876 /* First try to follow the branch. If that doesn't lead
5877 to a useful path, follow the fallthru edge. */
5878 e = BRANCH_EDGE (bb);
5879 if (!single_pred_p (e->dest))
5880 e = FALLTHRU_EDGE (bb);
5882 else
5883 e = NULL;
5885 if (e && e->dest != EXIT_BLOCK_PTR
5886 && single_pred_p (e->dest)
5887 /* Avoid visiting basic blocks twice. The large comment
5888 above explains why this can happen. */
5889 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5891 basic_block bb2 = e->dest;
5892 SET_BIT (cse_visited_basic_blocks, bb2->index);
5893 data->path[path_size++].bb = bb2;
5894 bb = bb2;
5896 else
5897 bb = NULL;
5901 done:
5902 data->path_size = path_size;
5903 return path_size != 0;
5906 /* Dump the path in DATA to file F. NSETS is the number of sets
5907 in the path. */
5909 static void
5910 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5912 int path_entry;
5914 fprintf (f, ";; Following path with %d sets: ", nsets);
5915 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5916 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5917 fputc ('\n', dump_file);
5918 fflush (f);
5922 /* Return true if BB has exception handling successor edges. */
5924 static bool
5925 have_eh_succ_edges (basic_block bb)
5927 edge e;
5928 edge_iterator ei;
5930 FOR_EACH_EDGE (e, ei, bb->succs)
5931 if (e->flags & EDGE_EH)
5932 return true;
5934 return false;
5938 /* Scan to the end of the path described by DATA. Return an estimate of
5939 the total number of SETs of all insns in the path. */
5941 static void
5942 cse_prescan_path (struct cse_basic_block_data *data)
5944 int nsets = 0;
5945 int path_size = data->path_size;
5946 int path_entry;
5948 /* Scan to end of each basic block in the path. */
5949 for (path_entry = 0; path_entry < path_size; path_entry++)
5951 basic_block bb;
5952 rtx insn;
5954 bb = data->path[path_entry].bb;
5956 FOR_BB_INSNS (bb, insn)
5958 if (!INSN_P (insn))
5959 continue;
5961 /* A PARALLEL can have lots of SETs in it,
5962 especially if it is really an ASM_OPERANDS. */
5963 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5964 nsets += XVECLEN (PATTERN (insn), 0);
5965 else
5966 nsets += 1;
5970 data->nsets = nsets;
5973 /* Process a single extended basic block described by EBB_DATA. */
5975 static void
5976 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5978 int path_size = ebb_data->path_size;
5979 int path_entry;
5980 int num_insns = 0;
5982 /* Allocate the space needed by qty_table. */
5983 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5985 new_basic_block ();
5986 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5987 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
5988 for (path_entry = 0; path_entry < path_size; path_entry++)
5990 basic_block bb;
5991 rtx insn;
5993 bb = ebb_data->path[path_entry].bb;
5995 /* Invalidate recorded information for eh regs if there is an EH
5996 edge pointing to that bb. */
5997 if (bb_has_eh_pred (bb))
5999 df_ref *def_rec;
6001 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6003 df_ref def = *def_rec;
6004 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6005 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6009 FOR_BB_INSNS (bb, insn)
6011 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6012 /* If we have processed 1,000 insns, flush the hash table to
6013 avoid extreme quadratic behavior. We must not include NOTEs
6014 in the count since there may be more of them when generating
6015 debugging information. If we clear the table at different
6016 times, code generated with -g -O might be different than code
6017 generated with -O but not -g.
6019 FIXME: This is a real kludge and needs to be done some other
6020 way. */
6021 if (INSN_P (insn)
6022 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6024 flush_hash_table ();
6025 num_insns = 0;
6028 if (INSN_P (insn))
6030 /* Process notes first so we have all notes in canonical forms
6031 when looking for duplicate operations. */
6032 if (REG_NOTES (insn))
6034 bool changed = false;
6035 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6036 NULL_RTX, &changed);
6037 if (changed)
6038 df_notes_rescan (insn);
6041 cse_insn (insn);
6043 /* If we haven't already found an insn where we added a LABEL_REF,
6044 check this one. */
6045 if (INSN_P (insn) && !recorded_label_ref
6046 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6047 (void *) insn))
6048 recorded_label_ref = true;
6050 #ifdef HAVE_cc0
6051 /* If the previous insn set CC0 and this insn no longer
6052 references CC0, delete the previous insn. Here we use
6053 fact that nothing expects CC0 to be valid over an insn,
6054 which is true until the final pass. */
6056 rtx prev_insn, tem;
6058 prev_insn = PREV_INSN (insn);
6059 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6060 && (tem = single_set (prev_insn)) != 0
6061 && SET_DEST (tem) == cc0_rtx
6062 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6063 delete_insn (prev_insn);
6066 /* If this insn is not the last insn in the basic block,
6067 it will be PREV_INSN(insn) in the next iteration. If
6068 we recorded any CC0-related information for this insn,
6069 remember it. */
6070 if (insn != BB_END (bb))
6072 prev_insn_cc0 = this_insn_cc0;
6073 prev_insn_cc0_mode = this_insn_cc0_mode;
6075 #endif
6079 /* With non-call exceptions, we are not always able to update
6080 the CFG properly inside cse_insn. So clean up possibly
6081 redundant EH edges here. */
6082 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6083 cse_cfg_altered |= purge_dead_edges (bb);
6085 /* If we changed a conditional jump, we may have terminated
6086 the path we are following. Check that by verifying that
6087 the edge we would take still exists. If the edge does
6088 not exist anymore, purge the remainder of the path.
6089 Note that this will cause us to return to the caller. */
6090 if (path_entry < path_size - 1)
6092 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6093 if (!find_edge (bb, next_bb))
6097 path_size--;
6099 /* If we truncate the path, we must also reset the
6100 visited bit on the remaining blocks in the path,
6101 or we will never visit them at all. */
6102 RESET_BIT (cse_visited_basic_blocks,
6103 ebb_data->path[path_size].bb->index);
6104 ebb_data->path[path_size].bb = NULL;
6106 while (path_size - 1 != path_entry);
6107 ebb_data->path_size = path_size;
6111 /* If this is a conditional jump insn, record any known
6112 equivalences due to the condition being tested. */
6113 insn = BB_END (bb);
6114 if (path_entry < path_size - 1
6115 && JUMP_P (insn)
6116 && single_set (insn)
6117 && any_condjump_p (insn))
6119 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6120 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6121 record_jump_equiv (insn, taken);
6124 #ifdef HAVE_cc0
6125 /* Clear the CC0-tracking related insns, they can't provide
6126 useful information across basic block boundaries. */
6127 prev_insn_cc0 = 0;
6128 #endif
6131 gcc_assert (next_qty <= max_qty);
6133 free (qty_table);
6137 /* Perform cse on the instructions of a function.
6138 F is the first instruction.
6139 NREGS is one plus the highest pseudo-reg number used in the instruction.
6141 Return 2 if jump optimizations should be redone due to simplifications
6142 in conditional jump instructions.
6143 Return 1 if the CFG should be cleaned up because it has been modified.
6144 Return 0 otherwise. */
6147 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6149 struct cse_basic_block_data ebb_data;
6150 basic_block bb;
6151 int *rc_order = XNEWVEC (int, last_basic_block);
6152 int i, n_blocks;
6154 df_set_flags (DF_LR_RUN_DCE);
6155 df_analyze ();
6156 df_set_flags (DF_DEFER_INSN_RESCAN);
6158 reg_scan (get_insns (), max_reg_num ());
6159 init_cse_reg_info (nregs);
6161 ebb_data.path = XNEWVEC (struct branch_path,
6162 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6164 cse_cfg_altered = false;
6165 cse_jumps_altered = false;
6166 recorded_label_ref = false;
6167 constant_pool_entries_cost = 0;
6168 constant_pool_entries_regcost = 0;
6169 ebb_data.path_size = 0;
6170 ebb_data.nsets = 0;
6171 rtl_hooks = cse_rtl_hooks;
6173 init_recog ();
6174 init_alias_analysis ();
6176 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6178 /* Set up the table of already visited basic blocks. */
6179 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6180 sbitmap_zero (cse_visited_basic_blocks);
6182 /* Loop over basic blocks in reverse completion order (RPO),
6183 excluding the ENTRY and EXIT blocks. */
6184 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6185 i = 0;
6186 while (i < n_blocks)
6188 /* Find the first block in the RPO queue that we have not yet
6189 processed before. */
6192 bb = BASIC_BLOCK (rc_order[i++]);
6194 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6195 && i < n_blocks);
6197 /* Find all paths starting with BB, and process them. */
6198 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6200 /* Pre-scan the path. */
6201 cse_prescan_path (&ebb_data);
6203 /* If this basic block has no sets, skip it. */
6204 if (ebb_data.nsets == 0)
6205 continue;
6207 /* Get a reasonable estimate for the maximum number of qty's
6208 needed for this path. For this, we take the number of sets
6209 and multiply that by MAX_RECOG_OPERANDS. */
6210 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6212 /* Dump the path we're about to process. */
6213 if (dump_file)
6214 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6216 cse_extended_basic_block (&ebb_data);
6220 /* Clean up. */
6221 end_alias_analysis ();
6222 free (reg_eqv_table);
6223 free (ebb_data.path);
6224 sbitmap_free (cse_visited_basic_blocks);
6225 free (rc_order);
6226 rtl_hooks = general_rtl_hooks;
6228 if (cse_jumps_altered || recorded_label_ref)
6229 return 2;
6230 else if (cse_cfg_altered)
6231 return 1;
6232 else
6233 return 0;
6236 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6237 which there isn't a REG_LABEL_OPERAND note.
6238 Return one if so. DATA is the insn. */
6240 static int
6241 check_for_label_ref (rtx *rtl, void *data)
6243 rtx insn = (rtx) data;
6245 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6246 note for it, we must rerun jump since it needs to place the note. If
6247 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6248 don't do this since no REG_LABEL_OPERAND will be added. */
6249 return (GET_CODE (*rtl) == LABEL_REF
6250 && ! LABEL_REF_NONLOCAL_P (*rtl)
6251 && (!JUMP_P (insn)
6252 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6253 && LABEL_P (XEXP (*rtl, 0))
6254 && INSN_UID (XEXP (*rtl, 0)) != 0
6255 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6258 /* Count the number of times registers are used (not set) in X.
6259 COUNTS is an array in which we accumulate the count, INCR is how much
6260 we count each register usage.
6262 Don't count a usage of DEST, which is the SET_DEST of a SET which
6263 contains X in its SET_SRC. This is because such a SET does not
6264 modify the liveness of DEST.
6265 DEST is set to pc_rtx for a trapping insn, which means that we must count
6266 uses of a SET_DEST regardless because the insn can't be deleted here. */
6268 static void
6269 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6271 enum rtx_code code;
6272 rtx note;
6273 const char *fmt;
6274 int i, j;
6276 if (x == 0)
6277 return;
6279 switch (code = GET_CODE (x))
6281 case REG:
6282 if (x != dest)
6283 counts[REGNO (x)] += incr;
6284 return;
6286 case PC:
6287 case CC0:
6288 case CONST:
6289 case CONST_INT:
6290 case CONST_DOUBLE:
6291 case CONST_FIXED:
6292 case CONST_VECTOR:
6293 case SYMBOL_REF:
6294 case LABEL_REF:
6295 return;
6297 case CLOBBER:
6298 /* If we are clobbering a MEM, mark any registers inside the address
6299 as being used. */
6300 if (MEM_P (XEXP (x, 0)))
6301 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6302 return;
6304 case SET:
6305 /* Unless we are setting a REG, count everything in SET_DEST. */
6306 if (!REG_P (SET_DEST (x)))
6307 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6308 count_reg_usage (SET_SRC (x), counts,
6309 dest ? dest : SET_DEST (x),
6310 incr);
6311 return;
6313 case CALL_INSN:
6314 case INSN:
6315 case JUMP_INSN:
6316 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6317 this fact by setting DEST to pc_rtx. */
6318 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6319 dest = pc_rtx;
6320 if (code == CALL_INSN)
6321 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6322 count_reg_usage (PATTERN (x), counts, dest, incr);
6324 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6325 use them. */
6327 note = find_reg_equal_equiv_note (x);
6328 if (note)
6330 rtx eqv = XEXP (note, 0);
6332 if (GET_CODE (eqv) == EXPR_LIST)
6333 /* This REG_EQUAL note describes the result of a function call.
6334 Process all the arguments. */
6337 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6338 eqv = XEXP (eqv, 1);
6340 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6341 else
6342 count_reg_usage (eqv, counts, dest, incr);
6344 return;
6346 case EXPR_LIST:
6347 if (REG_NOTE_KIND (x) == REG_EQUAL
6348 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6349 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6350 involving registers in the address. */
6351 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6352 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6354 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6355 return;
6357 case ASM_OPERANDS:
6358 /* If the asm is volatile, then this insn cannot be deleted,
6359 and so the inputs *must* be live. */
6360 if (MEM_VOLATILE_P (x))
6361 dest = NULL_RTX;
6362 /* Iterate over just the inputs, not the constraints as well. */
6363 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6364 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6365 return;
6367 case INSN_LIST:
6368 gcc_unreachable ();
6370 default:
6371 break;
6374 fmt = GET_RTX_FORMAT (code);
6375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6377 if (fmt[i] == 'e')
6378 count_reg_usage (XEXP (x, i), counts, dest, incr);
6379 else if (fmt[i] == 'E')
6380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6381 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6385 /* Return true if set is live. */
6386 static bool
6387 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6388 int *counts)
6390 #ifdef HAVE_cc0
6391 rtx tem;
6392 #endif
6394 if (set_noop_p (set))
6397 #ifdef HAVE_cc0
6398 else if (GET_CODE (SET_DEST (set)) == CC0
6399 && !side_effects_p (SET_SRC (set))
6400 && ((tem = next_nonnote_insn (insn)) == 0
6401 || !INSN_P (tem)
6402 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6403 return false;
6404 #endif
6405 else if (!REG_P (SET_DEST (set))
6406 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6407 || counts[REGNO (SET_DEST (set))] != 0
6408 || side_effects_p (SET_SRC (set)))
6409 return true;
6410 return false;
6413 /* Return true if insn is live. */
6415 static bool
6416 insn_live_p (rtx insn, int *counts)
6418 int i;
6419 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6420 return true;
6421 else if (GET_CODE (PATTERN (insn)) == SET)
6422 return set_live_p (PATTERN (insn), insn, counts);
6423 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6425 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6427 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6429 if (GET_CODE (elt) == SET)
6431 if (set_live_p (elt, insn, counts))
6432 return true;
6434 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6435 return true;
6437 return false;
6439 else
6440 return true;
6443 /* Scan all the insns and delete any that are dead; i.e., they store a register
6444 that is never used or they copy a register to itself.
6446 This is used to remove insns made obviously dead by cse, loop or other
6447 optimizations. It improves the heuristics in loop since it won't try to
6448 move dead invariants out of loops or make givs for dead quantities. The
6449 remaining passes of the compilation are also sped up. */
6452 delete_trivially_dead_insns (rtx insns, int nreg)
6454 int *counts;
6455 rtx insn, prev;
6456 int ndead = 0;
6458 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6459 /* First count the number of times each register is used. */
6460 counts = XCNEWVEC (int, nreg);
6461 for (insn = insns; insn; insn = NEXT_INSN (insn))
6462 if (INSN_P (insn))
6463 count_reg_usage (insn, counts, NULL_RTX, 1);
6465 /* Go from the last insn to the first and delete insns that only set unused
6466 registers or copy a register to itself. As we delete an insn, remove
6467 usage counts for registers it uses.
6469 The first jump optimization pass may leave a real insn as the last
6470 insn in the function. We must not skip that insn or we may end
6471 up deleting code that is not really dead. */
6472 for (insn = get_last_insn (); insn; insn = prev)
6474 int live_insn = 0;
6476 prev = PREV_INSN (insn);
6477 if (!INSN_P (insn))
6478 continue;
6480 live_insn = insn_live_p (insn, counts);
6482 /* If this is a dead insn, delete it and show registers in it aren't
6483 being used. */
6485 if (! live_insn && dbg_cnt (delete_trivial_dead))
6487 count_reg_usage (insn, counts, NULL_RTX, -1);
6488 delete_insn_and_edges (insn);
6489 ndead++;
6493 if (dump_file && ndead)
6494 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6495 ndead);
6496 /* Clean up. */
6497 free (counts);
6498 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6499 return ndead;
6502 /* This function is called via for_each_rtx. The argument, NEWREG, is
6503 a condition code register with the desired mode. If we are looking
6504 at the same register in a different mode, replace it with
6505 NEWREG. */
6507 static int
6508 cse_change_cc_mode (rtx *loc, void *data)
6510 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6512 if (*loc
6513 && REG_P (*loc)
6514 && REGNO (*loc) == REGNO (args->newreg)
6515 && GET_MODE (*loc) != GET_MODE (args->newreg))
6517 validate_change (args->insn, loc, args->newreg, 1);
6519 return -1;
6521 return 0;
6524 /* Change the mode of any reference to the register REGNO (NEWREG) to
6525 GET_MODE (NEWREG) in INSN. */
6527 static void
6528 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6530 struct change_cc_mode_args args;
6531 int success;
6533 if (!INSN_P (insn))
6534 return;
6536 args.insn = insn;
6537 args.newreg = newreg;
6539 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6540 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6542 /* If the following assertion was triggered, there is most probably
6543 something wrong with the cc_modes_compatible back end function.
6544 CC modes only can be considered compatible if the insn - with the mode
6545 replaced by any of the compatible modes - can still be recognized. */
6546 success = apply_change_group ();
6547 gcc_assert (success);
6550 /* Change the mode of any reference to the register REGNO (NEWREG) to
6551 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6552 any instruction which modifies NEWREG. */
6554 static void
6555 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6557 rtx insn;
6559 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6561 if (! INSN_P (insn))
6562 continue;
6564 if (reg_set_p (newreg, insn))
6565 return;
6567 cse_change_cc_mode_insn (insn, newreg);
6571 /* BB is a basic block which finishes with CC_REG as a condition code
6572 register which is set to CC_SRC. Look through the successors of BB
6573 to find blocks which have a single predecessor (i.e., this one),
6574 and look through those blocks for an assignment to CC_REG which is
6575 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6576 permitted to change the mode of CC_SRC to a compatible mode. This
6577 returns VOIDmode if no equivalent assignments were found.
6578 Otherwise it returns the mode which CC_SRC should wind up with.
6579 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6580 but is passed unmodified down to recursive calls in order to prevent
6581 endless recursion.
6583 The main complexity in this function is handling the mode issues.
6584 We may have more than one duplicate which we can eliminate, and we
6585 try to find a mode which will work for multiple duplicates. */
6587 static enum machine_mode
6588 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6589 bool can_change_mode)
6591 bool found_equiv;
6592 enum machine_mode mode;
6593 unsigned int insn_count;
6594 edge e;
6595 rtx insns[2];
6596 enum machine_mode modes[2];
6597 rtx last_insns[2];
6598 unsigned int i;
6599 rtx newreg;
6600 edge_iterator ei;
6602 /* We expect to have two successors. Look at both before picking
6603 the final mode for the comparison. If we have more successors
6604 (i.e., some sort of table jump, although that seems unlikely),
6605 then we require all beyond the first two to use the same
6606 mode. */
6608 found_equiv = false;
6609 mode = GET_MODE (cc_src);
6610 insn_count = 0;
6611 FOR_EACH_EDGE (e, ei, bb->succs)
6613 rtx insn;
6614 rtx end;
6616 if (e->flags & EDGE_COMPLEX)
6617 continue;
6619 if (EDGE_COUNT (e->dest->preds) != 1
6620 || e->dest == EXIT_BLOCK_PTR
6621 /* Avoid endless recursion on unreachable blocks. */
6622 || e->dest == orig_bb)
6623 continue;
6625 end = NEXT_INSN (BB_END (e->dest));
6626 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6628 rtx set;
6630 if (! INSN_P (insn))
6631 continue;
6633 /* If CC_SRC is modified, we have to stop looking for
6634 something which uses it. */
6635 if (modified_in_p (cc_src, insn))
6636 break;
6638 /* Check whether INSN sets CC_REG to CC_SRC. */
6639 set = single_set (insn);
6640 if (set
6641 && REG_P (SET_DEST (set))
6642 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6644 bool found;
6645 enum machine_mode set_mode;
6646 enum machine_mode comp_mode;
6648 found = false;
6649 set_mode = GET_MODE (SET_SRC (set));
6650 comp_mode = set_mode;
6651 if (rtx_equal_p (cc_src, SET_SRC (set)))
6652 found = true;
6653 else if (GET_CODE (cc_src) == COMPARE
6654 && GET_CODE (SET_SRC (set)) == COMPARE
6655 && mode != set_mode
6656 && rtx_equal_p (XEXP (cc_src, 0),
6657 XEXP (SET_SRC (set), 0))
6658 && rtx_equal_p (XEXP (cc_src, 1),
6659 XEXP (SET_SRC (set), 1)))
6662 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6663 if (comp_mode != VOIDmode
6664 && (can_change_mode || comp_mode == mode))
6665 found = true;
6668 if (found)
6670 found_equiv = true;
6671 if (insn_count < ARRAY_SIZE (insns))
6673 insns[insn_count] = insn;
6674 modes[insn_count] = set_mode;
6675 last_insns[insn_count] = end;
6676 ++insn_count;
6678 if (mode != comp_mode)
6680 gcc_assert (can_change_mode);
6681 mode = comp_mode;
6683 /* The modified insn will be re-recognized later. */
6684 PUT_MODE (cc_src, mode);
6687 else
6689 if (set_mode != mode)
6691 /* We found a matching expression in the
6692 wrong mode, but we don't have room to
6693 store it in the array. Punt. This case
6694 should be rare. */
6695 break;
6697 /* INSN sets CC_REG to a value equal to CC_SRC
6698 with the right mode. We can simply delete
6699 it. */
6700 delete_insn (insn);
6703 /* We found an instruction to delete. Keep looking,
6704 in the hopes of finding a three-way jump. */
6705 continue;
6708 /* We found an instruction which sets the condition
6709 code, so don't look any farther. */
6710 break;
6713 /* If INSN sets CC_REG in some other way, don't look any
6714 farther. */
6715 if (reg_set_p (cc_reg, insn))
6716 break;
6719 /* If we fell off the bottom of the block, we can keep looking
6720 through successors. We pass CAN_CHANGE_MODE as false because
6721 we aren't prepared to handle compatibility between the
6722 further blocks and this block. */
6723 if (insn == end)
6725 enum machine_mode submode;
6727 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
6728 if (submode != VOIDmode)
6730 gcc_assert (submode == mode);
6731 found_equiv = true;
6732 can_change_mode = false;
6737 if (! found_equiv)
6738 return VOIDmode;
6740 /* Now INSN_COUNT is the number of instructions we found which set
6741 CC_REG to a value equivalent to CC_SRC. The instructions are in
6742 INSNS. The modes used by those instructions are in MODES. */
6744 newreg = NULL_RTX;
6745 for (i = 0; i < insn_count; ++i)
6747 if (modes[i] != mode)
6749 /* We need to change the mode of CC_REG in INSNS[i] and
6750 subsequent instructions. */
6751 if (! newreg)
6753 if (GET_MODE (cc_reg) == mode)
6754 newreg = cc_reg;
6755 else
6756 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6758 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6759 newreg);
6762 delete_insn_and_edges (insns[i]);
6765 return mode;
6768 /* If we have a fixed condition code register (or two), walk through
6769 the instructions and try to eliminate duplicate assignments. */
6771 static void
6772 cse_condition_code_reg (void)
6774 unsigned int cc_regno_1;
6775 unsigned int cc_regno_2;
6776 rtx cc_reg_1;
6777 rtx cc_reg_2;
6778 basic_block bb;
6780 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6781 return;
6783 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6784 if (cc_regno_2 != INVALID_REGNUM)
6785 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6786 else
6787 cc_reg_2 = NULL_RTX;
6789 FOR_EACH_BB (bb)
6791 rtx last_insn;
6792 rtx cc_reg;
6793 rtx insn;
6794 rtx cc_src_insn;
6795 rtx cc_src;
6796 enum machine_mode mode;
6797 enum machine_mode orig_mode;
6799 /* Look for blocks which end with a conditional jump based on a
6800 condition code register. Then look for the instruction which
6801 sets the condition code register. Then look through the
6802 successor blocks for instructions which set the condition
6803 code register to the same value. There are other possible
6804 uses of the condition code register, but these are by far the
6805 most common and the ones which we are most likely to be able
6806 to optimize. */
6808 last_insn = BB_END (bb);
6809 if (!JUMP_P (last_insn))
6810 continue;
6812 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6813 cc_reg = cc_reg_1;
6814 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6815 cc_reg = cc_reg_2;
6816 else
6817 continue;
6819 cc_src_insn = NULL_RTX;
6820 cc_src = NULL_RTX;
6821 for (insn = PREV_INSN (last_insn);
6822 insn && insn != PREV_INSN (BB_HEAD (bb));
6823 insn = PREV_INSN (insn))
6825 rtx set;
6827 if (! INSN_P (insn))
6828 continue;
6829 set = single_set (insn);
6830 if (set
6831 && REG_P (SET_DEST (set))
6832 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6834 cc_src_insn = insn;
6835 cc_src = SET_SRC (set);
6836 break;
6838 else if (reg_set_p (cc_reg, insn))
6839 break;
6842 if (! cc_src_insn)
6843 continue;
6845 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6846 continue;
6848 /* Now CC_REG is a condition code register used for a
6849 conditional jump at the end of the block, and CC_SRC, in
6850 CC_SRC_INSN, is the value to which that condition code
6851 register is set, and CC_SRC is still meaningful at the end of
6852 the basic block. */
6854 orig_mode = GET_MODE (cc_src);
6855 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
6856 if (mode != VOIDmode)
6858 gcc_assert (mode == GET_MODE (cc_src));
6859 if (mode != orig_mode)
6861 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6863 cse_change_cc_mode_insn (cc_src_insn, newreg);
6865 /* Do the same in the following insns that use the
6866 current value of CC_REG within BB. */
6867 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6868 NEXT_INSN (last_insn),
6869 newreg);
6876 /* Perform common subexpression elimination. Nonzero value from
6877 `cse_main' means that jumps were simplified and some code may now
6878 be unreachable, so do jump optimization again. */
6879 static bool
6880 gate_handle_cse (void)
6882 return optimize > 0;
6885 static unsigned int
6886 rest_of_handle_cse (void)
6888 int tem;
6890 if (dump_file)
6891 dump_flow_info (dump_file, dump_flags);
6893 tem = cse_main (get_insns (), max_reg_num ());
6895 /* If we are not running more CSE passes, then we are no longer
6896 expecting CSE to be run. But always rerun it in a cheap mode. */
6897 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6899 if (tem == 2)
6901 timevar_push (TV_JUMP);
6902 rebuild_jump_labels (get_insns ());
6903 cleanup_cfg (0);
6904 timevar_pop (TV_JUMP);
6906 else if (tem == 1 || optimize > 1)
6907 cleanup_cfg (0);
6909 return 0;
6912 struct rtl_opt_pass pass_cse =
6915 RTL_PASS,
6916 "cse1", /* name */
6917 gate_handle_cse, /* gate */
6918 rest_of_handle_cse, /* execute */
6919 NULL, /* sub */
6920 NULL, /* next */
6921 0, /* static_pass_number */
6922 TV_CSE, /* tv_id */
6923 0, /* properties_required */
6924 0, /* properties_provided */
6925 0, /* properties_destroyed */
6926 0, /* todo_flags_start */
6927 TODO_df_finish | TODO_verify_rtl_sharing |
6928 TODO_dump_func |
6929 TODO_ggc_collect |
6930 TODO_verify_flow, /* todo_flags_finish */
6935 static bool
6936 gate_handle_cse2 (void)
6938 return optimize > 0 && flag_rerun_cse_after_loop;
6941 /* Run second CSE pass after loop optimizations. */
6942 static unsigned int
6943 rest_of_handle_cse2 (void)
6945 int tem;
6947 if (dump_file)
6948 dump_flow_info (dump_file, dump_flags);
6950 tem = cse_main (get_insns (), max_reg_num ());
6952 /* Run a pass to eliminate duplicated assignments to condition code
6953 registers. We have to run this after bypass_jumps, because it
6954 makes it harder for that pass to determine whether a jump can be
6955 bypassed safely. */
6956 cse_condition_code_reg ();
6958 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6960 if (tem == 2)
6962 timevar_push (TV_JUMP);
6963 rebuild_jump_labels (get_insns ());
6964 cleanup_cfg (0);
6965 timevar_pop (TV_JUMP);
6967 else if (tem == 1)
6968 cleanup_cfg (0);
6970 cse_not_expected = 1;
6971 return 0;
6975 struct rtl_opt_pass pass_cse2 =
6978 RTL_PASS,
6979 "cse2", /* name */
6980 gate_handle_cse2, /* gate */
6981 rest_of_handle_cse2, /* execute */
6982 NULL, /* sub */
6983 NULL, /* next */
6984 0, /* static_pass_number */
6985 TV_CSE2, /* tv_id */
6986 0, /* properties_required */
6987 0, /* properties_provided */
6988 0, /* properties_destroyed */
6989 0, /* todo_flags_start */
6990 TODO_df_finish | TODO_verify_rtl_sharing |
6991 TODO_dump_func |
6992 TODO_ggc_collect |
6993 TODO_verify_flow /* todo_flags_finish */