Declare malloc, free, and atexit if inhibit_libc is defined.
[official-gcc.git] / gcc / final.c
blob7402e270e933198fa36d10589e77968aa8980af5
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-flags.h"
56 #include "insn-attr.h"
57 #include "insn-codes.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "defaults.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
71 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
72 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
73 #include "dbxout.h"
74 #if defined (USG) || !defined (HAVE_STAB_H)
75 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
76 #else
77 #include <stab.h>
78 #endif
80 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h"
84 #endif
86 #ifdef DWARF_DEBUGGING_INFO
87 #include "dwarfout.h"
88 #endif
90 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
91 #include "dwarf2out.h"
92 #endif
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
98 /* .stabd code for line number. */
99 #ifndef N_SLINE
100 #define N_SLINE 0x44
101 #endif
103 /* .stabs code for included file name. */
104 #ifndef N_SOL
105 #define N_SOL 0x84
106 #endif
108 #ifndef INT_TYPE_SIZE
109 #define INT_TYPE_SIZE BITS_PER_WORD
110 #endif
112 #ifndef LONG_TYPE_SIZE
113 #define LONG_TYPE_SIZE BITS_PER_WORD
114 #endif
116 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
117 null default for it to save conditionalization later. */
118 #ifndef CC_STATUS_INIT
119 #define CC_STATUS_INIT
120 #endif
122 /* How to start an assembler comment. */
123 #ifndef ASM_COMMENT_START
124 #define ASM_COMMENT_START ";#"
125 #endif
127 /* Is the given character a logical line separator for the assembler? */
128 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
129 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
130 #endif
132 #ifndef JUMP_TABLES_IN_TEXT_SECTION
133 #define JUMP_TABLES_IN_TEXT_SECTION 0
134 #endif
136 /* Last insn processed by final_scan_insn. */
137 static rtx debug_insn = 0;
139 /* Line number of last NOTE. */
140 static int last_linenum;
142 /* Highest line number in current block. */
143 static int high_block_linenum;
145 /* Likewise for function. */
146 static int high_function_linenum;
148 /* Filename of last NOTE. */
149 static char *last_filename;
151 /* Number of basic blocks seen so far;
152 used if profile_block_flag is set. */
153 static int count_basic_blocks;
155 /* Number of instrumented arcs when profile_arc_flag is set. */
156 extern int count_instrumented_arcs;
158 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
160 /* Nonzero while outputting an `asm' with operands.
161 This means that inconsistencies are the user's fault, so don't abort.
162 The precise value is the insn being output, to pass to error_for_asm. */
163 static rtx this_is_asm_operands;
165 /* Number of operands of this insn, for an `asm' with operands. */
166 static unsigned int insn_noperands;
168 /* Compare optimization flag. */
170 static rtx last_ignored_compare = 0;
172 /* Flag indicating this insn is the start of a new basic block. */
174 static int new_block = 1;
176 /* All the symbol-blocks (levels of scoping) in the compilation
177 are assigned sequence numbers in order of appearance of the
178 beginnings of the symbol-blocks. Both final and dbxout do this,
179 and assume that they will both give the same number to each block.
180 Final uses these sequence numbers to generate assembler label names
181 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
182 Dbxout uses the sequence numbers to generate references to the same labels
183 from the dbx debugging information.
185 Sdb records this level at the beginning of each function,
186 in order to find the current level when recursing down declarations.
187 It outputs the block beginning and endings
188 at the point in the asm file where the blocks would begin and end. */
190 int next_block_index;
192 /* Assign a unique number to each insn that is output.
193 This can be used to generate unique local labels. */
195 static int insn_counter = 0;
197 #ifdef HAVE_cc0
198 /* This variable contains machine-dependent flags (defined in tm.h)
199 set and examined by output routines
200 that describe how to interpret the condition codes properly. */
202 CC_STATUS cc_status;
204 /* During output of an insn, this contains a copy of cc_status
205 from before the insn. */
207 CC_STATUS cc_prev_status;
208 #endif
210 /* Indexed by hardware reg number, is 1 if that register is ever
211 used in the current function.
213 In life_analysis, or in stupid_life_analysis, this is set
214 up to record the hard regs used explicitly. Reload adds
215 in the hard regs used for holding pseudo regs. Final uses
216 it to generate the code in the function prologue and epilogue
217 to save and restore registers as needed. */
219 char regs_ever_live[FIRST_PSEUDO_REGISTER];
221 /* Nonzero means current function must be given a frame pointer.
222 Set in stmt.c if anything is allocated on the stack there.
223 Set in reload1.c if anything is allocated on the stack there. */
225 int frame_pointer_needed;
227 /* Assign unique numbers to labels generated for profiling. */
229 int profile_label_no;
231 /* Length so far allocated in PENDING_BLOCKS. */
233 static int max_block_depth;
235 /* Stack of sequence numbers of symbol-blocks of which we have seen the
236 beginning but not yet the end. Sequence numbers are assigned at
237 the beginning; this stack allows us to find the sequence number
238 of a block that is ending. */
240 static int *pending_blocks;
242 /* Number of elements currently in use in PENDING_BLOCKS. */
244 static int block_depth;
246 /* Nonzero if have enabled APP processing of our assembler output. */
248 static int app_on;
250 /* If we are outputting an insn sequence, this contains the sequence rtx.
251 Zero otherwise. */
253 rtx final_sequence;
255 #ifdef ASSEMBLER_DIALECT
257 /* Number of the assembler dialect to use, starting at 0. */
258 static int dialect_number;
259 #endif
261 /* Indexed by line number, nonzero if there is a note for that line. */
263 static char *line_note_exists;
265 /* Linked list to hold line numbers for each basic block. */
267 struct bb_list {
268 struct bb_list *next; /* pointer to next basic block */
269 int line_num; /* line number */
270 int file_label_num; /* LPBC<n> label # for stored filename */
271 int func_label_num; /* LPBC<n> label # for stored function name */
274 static struct bb_list *bb_head = 0; /* Head of basic block list */
275 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
276 static int bb_file_label_num = -1; /* Current label # for file */
277 static int bb_func_label_num = -1; /* Current label # for func */
279 /* Linked list to hold the strings for each file and function name output. */
281 struct bb_str {
282 struct bb_str *next; /* pointer to next string */
283 const char *string; /* string */
284 int label_num; /* label number */
285 int length; /* string length */
288 #ifdef HAVE_peephole
289 extern rtx peephole PROTO((rtx));
290 #endif
292 static struct bb_str *sbb_head = 0; /* Head of string list. */
293 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
294 static int sbb_label_num = 0; /* Last label used */
296 #ifdef HAVE_ATTR_length
297 static int asm_insn_count PROTO((rtx));
298 #endif
299 static void profile_function PROTO((FILE *));
300 static void profile_after_prologue PROTO((FILE *));
301 static void add_bb PROTO((FILE *));
302 static int add_bb_string PROTO((const char *, int));
303 static void output_source_line PROTO((FILE *, rtx));
304 static rtx walk_alter_subreg PROTO((rtx));
305 static void output_asm_name PROTO((void));
306 static void output_operand PROTO((rtx, int));
307 #ifdef LEAF_REGISTERS
308 static void leaf_renumber_regs PROTO((rtx));
309 #endif
310 #ifdef HAVE_cc0
311 static int alter_cond PROTO((rtx));
312 #endif
313 #ifndef ADDR_VEC_ALIGN
314 static int final_addr_vec_align PROTO ((rtx));
315 #endif
316 static int align_fuzz PROTO ((rtx, rtx, int, unsigned));
318 /* Initialize data in final at the beginning of a compilation. */
320 void
321 init_final (filename)
322 const char *filename ATTRIBUTE_UNUSED;
324 next_block_index = 2;
325 app_on = 0;
326 max_block_depth = 20;
327 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
328 final_sequence = 0;
330 #ifdef ASSEMBLER_DIALECT
331 dialect_number = ASSEMBLER_DIALECT;
332 #endif
335 /* Called at end of source file,
336 to output the block-profiling table for this entire compilation. */
338 void
339 end_final (filename)
340 const char *filename;
342 int i;
344 if (profile_block_flag || profile_arc_flag)
346 char name[20];
347 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
348 int size, rounded;
349 struct bb_list *ptr;
350 struct bb_str *sptr;
351 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
352 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
354 if (profile_block_flag)
355 size = long_bytes * count_basic_blocks;
356 else
357 size = long_bytes * count_instrumented_arcs;
358 rounded = size;
360 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
361 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
362 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
364 data_section ();
366 /* Output the main header, of 11 words:
367 0: 1 if this file is initialized, else 0.
368 1: address of file name (LPBX1).
369 2: address of table of counts (LPBX2).
370 3: number of counts in the table.
371 4: always 0, for compatibility with Sun.
373 The following are GNU extensions:
375 5: address of table of start addrs of basic blocks (LPBX3).
376 6: Number of bytes in this header.
377 7: address of table of function names (LPBX4).
378 8: address of table of line numbers (LPBX5) or 0.
379 9: address of table of file names (LPBX6) or 0.
380 10: space reserved for basic block profiling. */
382 ASM_OUTPUT_ALIGN (asm_out_file, align);
384 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
385 /* zero word */
386 assemble_integer (const0_rtx, long_bytes, 1);
388 /* address of filename */
389 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
390 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
392 /* address of count table */
393 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
394 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
396 /* count of the # of basic blocks or # of instrumented arcs */
397 if (profile_block_flag)
398 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
399 else
400 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
403 /* zero word (link field) */
404 assemble_integer (const0_rtx, pointer_bytes, 1);
406 /* address of basic block start address table */
407 if (profile_block_flag)
409 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
410 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
413 else
414 assemble_integer (const0_rtx, pointer_bytes, 1);
416 /* byte count for extended structure. */
417 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
419 /* address of function name table */
420 if (profile_block_flag)
422 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
423 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
426 else
427 assemble_integer (const0_rtx, pointer_bytes, 1);
429 /* address of line number and filename tables if debugging. */
430 if (write_symbols != NO_DEBUG && profile_block_flag)
432 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
433 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
434 pointer_bytes, 1);
435 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
436 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
437 pointer_bytes, 1);
439 else
441 assemble_integer (const0_rtx, pointer_bytes, 1);
442 assemble_integer (const0_rtx, pointer_bytes, 1);
445 /* space for extension ptr (link field) */
446 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
448 /* Output the file name changing the suffix to .d for Sun tcov
449 compatibility. */
450 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
452 char *cwd = getpwd ();
453 int len = strlen (filename) + strlen (cwd) + 1;
454 char *data_file = (char *) alloca (len + 4);
456 strcpy (data_file, cwd);
457 strcat (data_file, "/");
458 strcat (data_file, filename);
459 strip_off_ending (data_file, len);
460 if (profile_block_flag)
461 strcat (data_file, ".d");
462 else
463 strcat (data_file, ".da");
464 assemble_string (data_file, strlen (data_file) + 1);
467 /* Make space for the table of counts. */
468 if (size == 0)
470 /* Realign data section. */
471 ASM_OUTPUT_ALIGN (asm_out_file, align);
472 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
473 if (size != 0)
474 assemble_zeros (size);
476 else
478 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
479 #ifdef ASM_OUTPUT_SHARED_LOCAL
480 if (flag_shared_data)
481 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
482 else
483 #endif
484 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
485 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
486 BIGGEST_ALIGNMENT);
487 #else
488 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
489 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
490 BIGGEST_ALIGNMENT);
491 #else
492 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
493 #endif
494 #endif
497 /* Output any basic block strings */
498 if (profile_block_flag)
500 readonly_data_section ();
501 if (sbb_head)
503 ASM_OUTPUT_ALIGN (asm_out_file, align);
504 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
506 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
507 sptr->label_num);
508 assemble_string (sptr->string, sptr->length);
513 /* Output the table of addresses. */
514 if (profile_block_flag)
516 /* Realign in new section */
517 ASM_OUTPUT_ALIGN (asm_out_file, align);
518 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
519 for (i = 0; i < count_basic_blocks; i++)
521 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
522 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
523 pointer_bytes, 1);
527 /* Output the table of function names. */
528 if (profile_block_flag)
530 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
531 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
533 if (ptr->func_label_num >= 0)
535 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
536 ptr->func_label_num);
537 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
538 pointer_bytes, 1);
540 else
541 assemble_integer (const0_rtx, pointer_bytes, 1);
544 for ( ; i < count_basic_blocks; i++)
545 assemble_integer (const0_rtx, pointer_bytes, 1);
548 if (write_symbols != NO_DEBUG && profile_block_flag)
550 /* Output the table of line numbers. */
551 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
552 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
553 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
555 for ( ; i < count_basic_blocks; i++)
556 assemble_integer (const0_rtx, long_bytes, 1);
558 /* Output the table of file names. */
559 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
560 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
562 if (ptr->file_label_num >= 0)
564 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
565 ptr->file_label_num);
566 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
567 pointer_bytes, 1);
569 else
570 assemble_integer (const0_rtx, pointer_bytes, 1);
573 for ( ; i < count_basic_blocks; i++)
574 assemble_integer (const0_rtx, pointer_bytes, 1);
577 /* End with the address of the table of addresses,
578 so we can find it easily, as the last word in the file's text. */
579 if (profile_block_flag)
581 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
582 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
588 /* Enable APP processing of subsequent output.
589 Used before the output from an `asm' statement. */
591 void
592 app_enable ()
594 if (! app_on)
596 fputs (ASM_APP_ON, asm_out_file);
597 app_on = 1;
601 /* Disable APP processing of subsequent output.
602 Called from varasm.c before most kinds of output. */
604 void
605 app_disable ()
607 if (app_on)
609 fputs (ASM_APP_OFF, asm_out_file);
610 app_on = 0;
614 /* Return the number of slots filled in the current
615 delayed branch sequence (we don't count the insn needing the
616 delay slot). Zero if not in a delayed branch sequence. */
618 #ifdef DELAY_SLOTS
620 dbr_sequence_length ()
622 if (final_sequence != 0)
623 return XVECLEN (final_sequence, 0) - 1;
624 else
625 return 0;
627 #endif
629 /* The next two pages contain routines used to compute the length of an insn
630 and to shorten branches. */
632 /* Arrays for insn lengths, and addresses. The latter is referenced by
633 `insn_current_length'. */
635 static short *insn_lengths;
636 int *insn_addresses;
638 /* Max uid for which the above arrays are valid. */
639 static int insn_lengths_max_uid;
641 /* Address of insn being processed. Used by `insn_current_length'. */
642 int insn_current_address;
644 /* Address of insn being processed in previous iteration. */
645 int insn_last_address;
647 /* konwn invariant alignment of insn being processed. */
648 int insn_current_align;
650 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
651 gives the next following alignment insn that increases the known
652 alignment, or NULL_RTX if there is no such insn.
653 For any alignment obtained this way, we can again index uid_align with
654 its uid to obtain the next following align that in turn increases the
655 alignment, till we reach NULL_RTX; the sequence obtained this way
656 for each insn we'll call the alignment chain of this insn in the following
657 comments. */
659 struct label_alignment {
660 short alignment;
661 short max_skip;
664 static rtx *uid_align;
665 static int *uid_shuid;
666 static struct label_alignment *label_align;
668 /* Indicate that branch shortening hasn't yet been done. */
670 void
671 init_insn_lengths ()
673 if (label_align)
675 free (label_align);
676 label_align = 0;
678 if (uid_shuid)
680 free (uid_shuid);
681 uid_shuid = 0;
683 if (insn_lengths)
685 free (insn_lengths);
686 insn_lengths = 0;
687 insn_lengths_max_uid = 0;
689 if (insn_addresses)
691 free (insn_addresses);
692 insn_addresses = 0;
694 if (uid_align)
696 free (uid_align);
697 uid_align = 0;
701 /* Obtain the current length of an insn. If branch shortening has been done,
702 get its actual length. Otherwise, get its maximum length. */
705 get_attr_length (insn)
706 rtx insn;
708 #ifdef HAVE_ATTR_length
709 rtx body;
710 int i;
711 int length = 0;
713 if (insn_lengths_max_uid > INSN_UID (insn))
714 return insn_lengths[INSN_UID (insn)];
715 else
716 switch (GET_CODE (insn))
718 case NOTE:
719 case BARRIER:
720 case CODE_LABEL:
721 return 0;
723 case CALL_INSN:
724 length = insn_default_length (insn);
725 break;
727 case JUMP_INSN:
728 body = PATTERN (insn);
729 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
731 /* Alignment is machine-dependent and should be handled by
732 ADDR_VEC_ALIGN. */
734 else
735 length = insn_default_length (insn);
736 break;
738 case INSN:
739 body = PATTERN (insn);
740 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
741 return 0;
743 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
744 length = asm_insn_count (body) * insn_default_length (insn);
745 else if (GET_CODE (body) == SEQUENCE)
746 for (i = 0; i < XVECLEN (body, 0); i++)
747 length += get_attr_length (XVECEXP (body, 0, i));
748 else
749 length = insn_default_length (insn);
750 break;
752 default:
753 break;
756 #ifdef ADJUST_INSN_LENGTH
757 ADJUST_INSN_LENGTH (insn, length);
758 #endif
759 return length;
760 #else /* not HAVE_ATTR_length */
761 return 0;
762 #endif /* not HAVE_ATTR_length */
765 /* Code to handle alignment inside shorten_branches. */
767 /* Here is an explanation how the algorithm in align_fuzz can give
768 proper results:
770 Call a sequence of instructions beginning with alignment point X
771 and continuing until the next alignment point `block X'. When `X'
772 is used in an expression, it means the alignment value of the
773 alignment point.
775 Call the distance between the start of the first insn of block X, and
776 the end of the last insn of block X `IX', for the `inner size of X'.
777 This is clearly the sum of the instruction lengths.
779 Likewise with the next alignment-delimited block following X, which we
780 shall call block Y.
782 Call the distance between the start of the first insn of block X, and
783 the start of the first insn of block Y `OX', for the `outer size of X'.
785 The estimated padding is then OX - IX.
787 OX can be safely estimated as
789 if (X >= Y)
790 OX = round_up(IX, Y)
791 else
792 OX = round_up(IX, X) + Y - X
794 Clearly est(IX) >= real(IX), because that only depends on the
795 instruction lengths, and those being overestimated is a given.
797 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
798 we needn't worry about that when thinking about OX.
800 When X >= Y, the alignment provided by Y adds no uncertainty factor
801 for branch ranges starting before X, so we can just round what we have.
802 But when X < Y, we don't know anything about the, so to speak,
803 `middle bits', so we have to assume the worst when aligning up from an
804 address mod X to one mod Y, which is Y - X. */
806 #ifndef LABEL_ALIGN
807 #define LABEL_ALIGN(LABEL) align_labels_log
808 #endif
810 #ifndef LABEL_ALIGN_MAX_SKIP
811 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
812 #endif
814 #ifndef LOOP_ALIGN
815 #define LOOP_ALIGN(LABEL) align_loops_log
816 #endif
818 #ifndef LOOP_ALIGN_MAX_SKIP
819 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
820 #endif
822 #ifndef LABEL_ALIGN_AFTER_BARRIER
823 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
824 #endif
826 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
827 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
828 #endif
830 #ifndef ADDR_VEC_ALIGN
831 static int
832 final_addr_vec_align (addr_vec)
833 rtx addr_vec;
835 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
837 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
838 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
839 return align;
842 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
843 #endif
845 #ifndef INSN_LENGTH_ALIGNMENT
846 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
847 #endif
849 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
851 static int min_labelno, max_labelno;
853 #define LABEL_TO_ALIGNMENT(LABEL) \
854 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
856 #define LABEL_TO_MAX_SKIP(LABEL) \
857 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
859 /* For the benefit of port specific code do this also as a function. */
861 label_to_alignment (label)
862 rtx label;
864 return LABEL_TO_ALIGNMENT (label);
867 #ifdef HAVE_ATTR_length
868 /* The differences in addresses
869 between a branch and its target might grow or shrink depending on
870 the alignment the start insn of the range (the branch for a forward
871 branch or the label for a backward branch) starts out on; if these
872 differences are used naively, they can even oscillate infinitely.
873 We therefore want to compute a 'worst case' address difference that
874 is independent of the alignment the start insn of the range end
875 up on, and that is at least as large as the actual difference.
876 The function align_fuzz calculates the amount we have to add to the
877 naively computed difference, by traversing the part of the alignment
878 chain of the start insn of the range that is in front of the end insn
879 of the range, and considering for each alignment the maximum amount
880 that it might contribute to a size increase.
882 For casesi tables, we also want to know worst case minimum amounts of
883 address difference, in case a machine description wants to introduce
884 some common offset that is added to all offsets in a table.
885 For this purpose, align_fuzz with a growth argument of 0 comuptes the
886 appropriate adjustment. */
889 /* Compute the maximum delta by which the difference of the addresses of
890 START and END might grow / shrink due to a different address for start
891 which changes the size of alignment insns between START and END.
892 KNOWN_ALIGN_LOG is the alignment known for START.
893 GROWTH should be ~0 if the objective is to compute potential code size
894 increase, and 0 if the objective is to compute potential shrink.
895 The return value is undefined for any other value of GROWTH. */
896 static int
897 align_fuzz (start, end, known_align_log, growth)
898 rtx start, end;
899 int known_align_log;
900 unsigned growth;
902 int uid = INSN_UID (start);
903 rtx align_label;
904 int known_align = 1 << known_align_log;
905 int end_shuid = INSN_SHUID (end);
906 int fuzz = 0;
908 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
910 int align_addr, new_align;
912 uid = INSN_UID (align_label);
913 align_addr = insn_addresses[uid] - insn_lengths[uid];
914 if (uid_shuid[uid] > end_shuid)
915 break;
916 known_align_log = LABEL_TO_ALIGNMENT (align_label);
917 new_align = 1 << known_align_log;
918 if (new_align < known_align)
919 continue;
920 fuzz += (-align_addr ^ growth) & (new_align - known_align);
921 known_align = new_align;
923 return fuzz;
926 /* Compute a worst-case reference address of a branch so that it
927 can be safely used in the presence of aligned labels. Since the
928 size of the branch itself is unknown, the size of the branch is
929 not included in the range. I.e. for a forward branch, the reference
930 address is the end address of the branch as known from the previous
931 branch shortening pass, minus a value to account for possible size
932 increase due to alignment. For a backward branch, it is the start
933 address of the branch as known from the current pass, plus a value
934 to account for possible size increase due to alignment.
935 NB.: Therefore, the maximum offset allowed for backward branches needs
936 to exclude the branch size. */
938 insn_current_reference_address (branch)
939 rtx branch;
941 rtx dest;
942 rtx seq = NEXT_INSN (PREV_INSN (branch));
943 int seq_uid = INSN_UID (seq);
944 if (GET_CODE (branch) != JUMP_INSN)
945 /* This can happen for example on the PA; the objective is to know the
946 offset to address something in front of the start of the function.
947 Thus, we can treat it like a backward branch.
948 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
949 any alignment we'd encounter, so we skip the call to align_fuzz. */
950 return insn_current_address;
951 dest = JUMP_LABEL (branch);
952 /* BRANCH has no proper alignment chain set, so use SEQ. */
953 if (INSN_SHUID (branch) < INSN_SHUID (dest))
955 /* Forward branch. */
956 return (insn_last_address + insn_lengths[seq_uid]
957 - align_fuzz (seq, dest, length_unit_log, ~0));
959 else
961 /* Backward branch. */
962 return (insn_current_address
963 + align_fuzz (dest, seq, length_unit_log, ~0));
966 #endif /* HAVE_ATTR_length */
968 /* Make a pass over all insns and compute their actual lengths by shortening
969 any branches of variable length if possible. */
971 /* Give a default value for the lowest address in a function. */
973 #ifndef FIRST_INSN_ADDRESS
974 #define FIRST_INSN_ADDRESS 0
975 #endif
977 /* shorten_branches might be called multiple times: for example, the SH
978 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
979 In order to do this, it needs proper length information, which it obtains
980 by calling shorten_branches. This cannot be collapsed with
981 shorten_branches itself into a single pass unless we also want to intergate
982 reorg.c, since the branch splitting exposes new instructions with delay
983 slots. */
985 void
986 shorten_branches (first)
987 rtx first;
989 rtx insn;
990 int max_uid;
991 int i;
992 int max_log;
993 int max_skip;
994 #ifdef HAVE_ATTR_length
995 #define MAX_CODE_ALIGN 16
996 rtx seq;
997 int something_changed = 1;
998 char *varying_length;
999 rtx body;
1000 int uid;
1001 rtx align_tab[MAX_CODE_ALIGN];
1003 /* In order to make sure that all instructions have valid length info,
1004 we must split them before we compute the address/length info. */
1006 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1007 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1009 rtx old = insn;
1010 /* Don't split the insn if it has been deleted. */
1011 if (! INSN_DELETED_P (old))
1012 insn = try_split (PATTERN (old), old, 1);
1013 /* When not optimizing, the old insn will be still left around
1014 with only the 'deleted' bit set. Transform it into a note
1015 to avoid confusion of subsequent processing. */
1016 if (INSN_DELETED_P (old))
1018 PUT_CODE (old , NOTE);
1019 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1020 NOTE_SOURCE_FILE (old) = 0;
1023 #endif
1025 /* We must do some computations even when not actually shortening, in
1026 order to get the alignment information for the labels. */
1028 init_insn_lengths ();
1030 /* Compute maximum UID and allocate label_align / uid_shuid. */
1031 max_uid = get_max_uid ();
1033 max_labelno = max_label_num ();
1034 min_labelno = get_first_label_num ();
1035 label_align = (struct label_alignment *)
1036 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
1038 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1040 /* Initialize label_align and set up uid_shuid to be strictly
1041 monotonically rising with insn order. */
1042 /* We use max_log here to keep track of the maximum alignment we want to
1043 impose on the next CODE_LABEL (or the current one if we are processing
1044 the CODE_LABEL itself). */
1046 max_log = 0;
1047 max_skip = 0;
1049 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1051 int log;
1053 INSN_SHUID (insn) = i++;
1054 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1056 /* reorg might make the first insn of a loop being run once only,
1057 and delete the label in front of it. Then we want to apply
1058 the loop alignment to the new label created by reorg, which
1059 is separated by the former loop start insn from the
1060 NOTE_INSN_LOOP_BEG. */
1062 else if (GET_CODE (insn) == CODE_LABEL)
1064 rtx next;
1066 log = LABEL_ALIGN (insn);
1067 if (max_log < log)
1069 max_log = log;
1070 max_skip = LABEL_ALIGN_MAX_SKIP;
1072 next = NEXT_INSN (insn);
1073 /* ADDR_VECs only take room if read-only data goes into the text
1074 section. */
1075 if (JUMP_TABLES_IN_TEXT_SECTION
1076 #if !defined(READONLY_DATA_SECTION)
1077 || 1
1078 #endif
1080 if (next && GET_CODE (next) == JUMP_INSN)
1082 rtx nextbody = PATTERN (next);
1083 if (GET_CODE (nextbody) == ADDR_VEC
1084 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1086 log = ADDR_VEC_ALIGN (next);
1087 if (max_log < log)
1089 max_log = log;
1090 max_skip = LABEL_ALIGN_MAX_SKIP;
1094 LABEL_TO_ALIGNMENT (insn) = max_log;
1095 LABEL_TO_MAX_SKIP (insn) = max_skip;
1096 max_log = 0;
1097 max_skip = 0;
1099 else if (GET_CODE (insn) == BARRIER)
1101 rtx label;
1103 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1104 label = NEXT_INSN (label))
1105 if (GET_CODE (label) == CODE_LABEL)
1107 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1108 if (max_log < log)
1110 max_log = log;
1111 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1113 break;
1116 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1117 sequences in order to handle reorg output efficiently. */
1118 else if (GET_CODE (insn) == NOTE
1119 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1121 rtx label;
1122 int nest = 0;
1124 /* Search for the label that starts the loop.
1125 Don't skip past the end of the loop, since that could
1126 lead to putting an alignment where it does not belong.
1127 However, a label after a nested (non-)loop would be OK. */
1128 for (label = insn; label; label = NEXT_INSN (label))
1130 if (GET_CODE (label) == NOTE
1131 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1132 nest++;
1133 else if (GET_CODE (label) == NOTE
1134 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1135 && --nest == 0)
1136 break;
1137 else if (GET_CODE (label) == CODE_LABEL)
1139 log = LOOP_ALIGN (insn);
1140 if (max_log < log)
1142 max_log = log;
1143 max_skip = LOOP_ALIGN_MAX_SKIP;
1145 break;
1149 else
1150 continue;
1152 #ifdef HAVE_ATTR_length
1154 /* Allocate the rest of the arrays. */
1155 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1156 insn_lengths_max_uid = max_uid;
1157 /* Syntax errors can lead to labels being outside of the main insn stream.
1158 Initialize insn_addresses, so that we get reproducible results. */
1159 insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
1161 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1163 /* Initialize uid_align. We scan instructions
1164 from end to start, and keep in align_tab[n] the last seen insn
1165 that does an alignment of at least n+1, i.e. the successor
1166 in the alignment chain for an insn that does / has a known
1167 alignment of n. */
1168 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1170 for (i = MAX_CODE_ALIGN; --i >= 0; )
1171 align_tab[i] = NULL_RTX;
1172 seq = get_last_insn ();
1173 for (; seq; seq = PREV_INSN (seq))
1175 int uid = INSN_UID (seq);
1176 int log;
1177 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1178 uid_align[uid] = align_tab[0];
1179 if (log)
1181 /* Found an alignment label. */
1182 uid_align[uid] = align_tab[log];
1183 for (i = log - 1; i >= 0; i--)
1184 align_tab[i] = seq;
1187 #ifdef CASE_VECTOR_SHORTEN_MODE
1188 if (optimize)
1190 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1191 label fields. */
1193 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1194 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1195 int rel;
1197 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1199 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1200 int len, i, min, max, insn_shuid;
1201 int min_align;
1202 addr_diff_vec_flags flags;
1204 if (GET_CODE (insn) != JUMP_INSN
1205 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1206 continue;
1207 pat = PATTERN (insn);
1208 len = XVECLEN (pat, 1);
1209 if (len <= 0)
1210 abort ();
1211 min_align = MAX_CODE_ALIGN;
1212 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1214 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1215 int shuid = INSN_SHUID (lab);
1216 if (shuid < min)
1218 min = shuid;
1219 min_lab = lab;
1221 if (shuid > max)
1223 max = shuid;
1224 max_lab = lab;
1226 if (min_align > LABEL_TO_ALIGNMENT (lab))
1227 min_align = LABEL_TO_ALIGNMENT (lab);
1229 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1230 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1231 insn_shuid = INSN_SHUID (insn);
1232 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1233 flags.min_align = min_align;
1234 flags.base_after_vec = rel > insn_shuid;
1235 flags.min_after_vec = min > insn_shuid;
1236 flags.max_after_vec = max > insn_shuid;
1237 flags.min_after_base = min > rel;
1238 flags.max_after_base = max > rel;
1239 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1242 #endif /* CASE_VECTOR_SHORTEN_MODE */
1245 /* Compute initial lengths, addresses, and varying flags for each insn. */
1246 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1247 insn != 0;
1248 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1250 uid = INSN_UID (insn);
1252 insn_lengths[uid] = 0;
1254 if (GET_CODE (insn) == CODE_LABEL)
1256 int log = LABEL_TO_ALIGNMENT (insn);
1257 if (log)
1259 int align = 1 << log;
1260 int new_address = (insn_current_address + align - 1) & -align;
1261 insn_lengths[uid] = new_address - insn_current_address;
1262 insn_current_address = new_address;
1266 insn_addresses[uid] = insn_current_address;
1268 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1269 || GET_CODE (insn) == CODE_LABEL)
1270 continue;
1271 if (INSN_DELETED_P (insn))
1272 continue;
1274 body = PATTERN (insn);
1275 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1277 /* This only takes room if read-only data goes into the text
1278 section. */
1279 if (JUMP_TABLES_IN_TEXT_SECTION
1280 #if !defined(READONLY_DATA_SECTION)
1281 || 1
1282 #endif
1284 insn_lengths[uid] = (XVECLEN (body,
1285 GET_CODE (body) == ADDR_DIFF_VEC)
1286 * GET_MODE_SIZE (GET_MODE (body)));
1287 /* Alignment is handled by ADDR_VEC_ALIGN. */
1289 else if (asm_noperands (body) >= 0)
1290 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1291 else if (GET_CODE (body) == SEQUENCE)
1293 int i;
1294 int const_delay_slots;
1295 #ifdef DELAY_SLOTS
1296 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1297 #else
1298 const_delay_slots = 0;
1299 #endif
1300 /* Inside a delay slot sequence, we do not do any branch shortening
1301 if the shortening could change the number of delay slots
1302 of the branch. */
1303 for (i = 0; i < XVECLEN (body, 0); i++)
1305 rtx inner_insn = XVECEXP (body, 0, i);
1306 int inner_uid = INSN_UID (inner_insn);
1307 int inner_length;
1309 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1310 inner_length = (asm_insn_count (PATTERN (inner_insn))
1311 * insn_default_length (inner_insn));
1312 else
1313 inner_length = insn_default_length (inner_insn);
1315 insn_lengths[inner_uid] = inner_length;
1316 if (const_delay_slots)
1318 if ((varying_length[inner_uid]
1319 = insn_variable_length_p (inner_insn)) != 0)
1320 varying_length[uid] = 1;
1321 insn_addresses[inner_uid] = (insn_current_address +
1322 insn_lengths[uid]);
1324 else
1325 varying_length[inner_uid] = 0;
1326 insn_lengths[uid] += inner_length;
1329 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1331 insn_lengths[uid] = insn_default_length (insn);
1332 varying_length[uid] = insn_variable_length_p (insn);
1335 /* If needed, do any adjustment. */
1336 #ifdef ADJUST_INSN_LENGTH
1337 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1338 if (insn_lengths[uid] < 0)
1339 fatal_insn ("Negative insn length", insn);
1340 #endif
1343 /* Now loop over all the insns finding varying length insns. For each,
1344 get the current insn length. If it has changed, reflect the change.
1345 When nothing changes for a full pass, we are done. */
1347 while (something_changed)
1349 something_changed = 0;
1350 insn_current_align = MAX_CODE_ALIGN - 1;
1351 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1352 insn != 0;
1353 insn = NEXT_INSN (insn))
1355 int new_length;
1356 #ifdef ADJUST_INSN_LENGTH
1357 int tmp_length;
1358 #endif
1359 int length_align;
1361 uid = INSN_UID (insn);
1363 if (GET_CODE (insn) == CODE_LABEL)
1365 int log = LABEL_TO_ALIGNMENT (insn);
1366 if (log > insn_current_align)
1368 int align = 1 << log;
1369 int new_address= (insn_current_address + align - 1) & -align;
1370 insn_lengths[uid] = new_address - insn_current_address;
1371 insn_current_align = log;
1372 insn_current_address = new_address;
1374 else
1375 insn_lengths[uid] = 0;
1376 insn_addresses[uid] = insn_current_address;
1377 continue;
1380 length_align = INSN_LENGTH_ALIGNMENT (insn);
1381 if (length_align < insn_current_align)
1382 insn_current_align = length_align;
1384 insn_last_address = insn_addresses[uid];
1385 insn_addresses[uid] = insn_current_address;
1387 #ifdef CASE_VECTOR_SHORTEN_MODE
1388 if (optimize && GET_CODE (insn) == JUMP_INSN
1389 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1391 rtx body = PATTERN (insn);
1392 int old_length = insn_lengths[uid];
1393 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1394 rtx min_lab = XEXP (XEXP (body, 2), 0);
1395 rtx max_lab = XEXP (XEXP (body, 3), 0);
1396 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1397 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1398 int min_addr = insn_addresses[INSN_UID (min_lab)];
1399 int max_addr = insn_addresses[INSN_UID (max_lab)];
1400 rtx prev;
1401 int rel_align = 0;
1403 /* Try to find a known alignment for rel_lab. */
1404 for (prev = rel_lab;
1405 prev
1406 && ! insn_lengths[INSN_UID (prev)]
1407 && ! (varying_length[INSN_UID (prev)] & 1);
1408 prev = PREV_INSN (prev))
1409 if (varying_length[INSN_UID (prev)] & 2)
1411 rel_align = LABEL_TO_ALIGNMENT (prev);
1412 break;
1415 /* See the comment on addr_diff_vec_flags in rtl.h for the
1416 meaning of the flags values. base: REL_LAB vec: INSN */
1417 /* Anything after INSN has still addresses from the last
1418 pass; adjust these so that they reflect our current
1419 estimate for this pass. */
1420 if (flags.base_after_vec)
1421 rel_addr += insn_current_address - insn_last_address;
1422 if (flags.min_after_vec)
1423 min_addr += insn_current_address - insn_last_address;
1424 if (flags.max_after_vec)
1425 max_addr += insn_current_address - insn_last_address;
1426 /* We want to know the worst case, i.e. lowest possible value
1427 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1428 its offset is positive, and we have to be wary of code shrink;
1429 otherwise, it is negative, and we have to be vary of code
1430 size increase. */
1431 if (flags.min_after_base)
1433 /* If INSN is between REL_LAB and MIN_LAB, the size
1434 changes we are about to make can change the alignment
1435 within the observed offset, therefore we have to break
1436 it up into two parts that are independent. */
1437 if (! flags.base_after_vec && flags.min_after_vec)
1439 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1440 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1442 else
1443 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1445 else
1447 if (flags.base_after_vec && ! flags.min_after_vec)
1449 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1450 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1452 else
1453 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1455 /* Likewise, determine the highest lowest possible value
1456 for the offset of MAX_LAB. */
1457 if (flags.max_after_base)
1459 if (! flags.base_after_vec && flags.max_after_vec)
1461 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1462 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1464 else
1465 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1467 else
1469 if (flags.base_after_vec && ! flags.max_after_vec)
1471 max_addr += align_fuzz (max_lab, insn, 0, 0);
1472 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1474 else
1475 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1477 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1478 max_addr - rel_addr,
1479 body));
1480 if (JUMP_TABLES_IN_TEXT_SECTION
1481 #if !defined(READONLY_DATA_SECTION)
1482 || 1
1483 #endif
1486 insn_lengths[uid]
1487 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1488 insn_current_address += insn_lengths[uid];
1489 if (insn_lengths[uid] != old_length)
1490 something_changed = 1;
1493 continue;
1495 #endif /* CASE_VECTOR_SHORTEN_MODE */
1497 if (! (varying_length[uid]))
1499 insn_current_address += insn_lengths[uid];
1500 continue;
1502 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1504 int i;
1506 body = PATTERN (insn);
1507 new_length = 0;
1508 for (i = 0; i < XVECLEN (body, 0); i++)
1510 rtx inner_insn = XVECEXP (body, 0, i);
1511 int inner_uid = INSN_UID (inner_insn);
1512 int inner_length;
1514 insn_addresses[inner_uid] = insn_current_address;
1516 /* insn_current_length returns 0 for insns with a
1517 non-varying length. */
1518 if (! varying_length[inner_uid])
1519 inner_length = insn_lengths[inner_uid];
1520 else
1521 inner_length = insn_current_length (inner_insn);
1523 if (inner_length != insn_lengths[inner_uid])
1525 insn_lengths[inner_uid] = inner_length;
1526 something_changed = 1;
1528 insn_current_address += insn_lengths[inner_uid];
1529 new_length += inner_length;
1532 else
1534 new_length = insn_current_length (insn);
1535 insn_current_address += new_length;
1538 #ifdef ADJUST_INSN_LENGTH
1539 /* If needed, do any adjustment. */
1540 tmp_length = new_length;
1541 ADJUST_INSN_LENGTH (insn, new_length);
1542 insn_current_address += (new_length - tmp_length);
1543 #endif
1545 if (new_length != insn_lengths[uid])
1547 insn_lengths[uid] = new_length;
1548 something_changed = 1;
1551 /* For a non-optimizing compile, do only a single pass. */
1552 if (!optimize)
1553 break;
1556 free (varying_length);
1558 #endif /* HAVE_ATTR_length */
1561 #ifdef HAVE_ATTR_length
1562 /* Given the body of an INSN known to be generated by an ASM statement, return
1563 the number of machine instructions likely to be generated for this insn.
1564 This is used to compute its length. */
1566 static int
1567 asm_insn_count (body)
1568 rtx body;
1570 char *template;
1571 int count = 1;
1573 if (GET_CODE (body) == ASM_INPUT)
1574 template = XSTR (body, 0);
1575 else
1576 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1577 NULL_PTR, NULL_PTR);
1579 for ( ; *template; template++)
1580 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1581 count++;
1583 return count;
1585 #endif
1587 /* Output assembler code for the start of a function,
1588 and initialize some of the variables in this file
1589 for the new function. The label for the function and associated
1590 assembler pseudo-ops have already been output in `assemble_start_function'.
1592 FIRST is the first insn of the rtl for the function being compiled.
1593 FILE is the file to write assembler code to.
1594 OPTIMIZE is nonzero if we should eliminate redundant
1595 test and compare insns. */
1597 void
1598 final_start_function (first, file, optimize)
1599 rtx first;
1600 FILE *file;
1601 int optimize ATTRIBUTE_UNUSED;
1603 block_depth = 0;
1605 this_is_asm_operands = 0;
1607 #ifdef NON_SAVING_SETJMP
1608 /* A function that calls setjmp should save and restore all the
1609 call-saved registers on a system where longjmp clobbers them. */
1610 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1612 int i;
1614 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1615 if (!call_used_regs[i])
1616 regs_ever_live[i] = 1;
1618 #endif
1620 /* Initial line number is supposed to be output
1621 before the function's prologue and label
1622 so that the function's address will not appear to be
1623 in the last statement of the preceding function. */
1624 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1625 last_linenum = high_block_linenum = high_function_linenum
1626 = NOTE_LINE_NUMBER (first);
1628 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1629 /* Output DWARF definition of the function. */
1630 if (dwarf2out_do_frame ())
1631 dwarf2out_begin_prologue ();
1632 #endif
1634 /* For SDB and XCOFF, the function beginning must be marked between
1635 the function label and the prologue. We always need this, even when
1636 -g1 was used. Defer on MIPS systems so that parameter descriptions
1637 follow function entry. */
1638 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1639 if (write_symbols == SDB_DEBUG)
1640 sdbout_begin_function (last_linenum);
1641 else
1642 #endif
1643 #ifdef XCOFF_DEBUGGING_INFO
1644 if (write_symbols == XCOFF_DEBUG)
1645 xcoffout_begin_function (file, last_linenum);
1646 else
1647 #endif
1648 /* But only output line number for other debug info types if -g2
1649 or better. */
1650 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1651 output_source_line (file, first);
1653 #ifdef LEAF_REG_REMAP
1654 if (current_function_uses_only_leaf_regs)
1655 leaf_renumber_regs (first);
1656 #endif
1658 /* The Sun386i and perhaps other machines don't work right
1659 if the profiling code comes after the prologue. */
1660 #ifdef PROFILE_BEFORE_PROLOGUE
1661 if (profile_flag)
1662 profile_function (file);
1663 #endif /* PROFILE_BEFORE_PROLOGUE */
1665 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1666 if (dwarf2out_do_frame ())
1667 dwarf2out_frame_debug (NULL_RTX);
1668 #endif
1670 #ifdef FUNCTION_PROLOGUE
1671 /* First output the function prologue: code to set up the stack frame. */
1672 FUNCTION_PROLOGUE (file, get_frame_size ());
1673 #endif
1675 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1676 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1677 next_block_index = 1;
1678 #endif
1680 /* If the machine represents the prologue as RTL, the profiling code must
1681 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1682 #ifdef HAVE_prologue
1683 if (! HAVE_prologue)
1684 #endif
1685 profile_after_prologue (file);
1687 profile_label_no++;
1689 /* If we are doing basic block profiling, remember a printable version
1690 of the function name. */
1691 if (profile_block_flag)
1693 bb_func_label_num
1694 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1698 static void
1699 profile_after_prologue (file)
1700 FILE *file;
1702 #ifdef FUNCTION_BLOCK_PROFILER
1703 if (profile_block_flag)
1705 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1707 #endif /* FUNCTION_BLOCK_PROFILER */
1709 #ifndef PROFILE_BEFORE_PROLOGUE
1710 if (profile_flag)
1711 profile_function (file);
1712 #endif /* not PROFILE_BEFORE_PROLOGUE */
1715 static void
1716 profile_function (file)
1717 FILE *file;
1719 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1720 #if defined(ASM_OUTPUT_REG_PUSH)
1721 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1722 int sval = current_function_returns_struct;
1723 #endif
1724 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1725 int cxt = current_function_needs_context;
1726 #endif
1727 #endif /* ASM_OUTPUT_REG_PUSH */
1729 data_section ();
1730 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1731 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1732 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1734 function_section (current_function_decl);
1736 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 if (sval)
1738 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1739 #else
1740 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1741 if (sval)
1743 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1745 #endif
1746 #endif
1748 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1749 if (cxt)
1750 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1751 #else
1752 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1753 if (cxt)
1755 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1757 #endif
1758 #endif
1760 FUNCTION_PROFILER (file, profile_label_no);
1762 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 if (cxt)
1764 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1765 #else
1766 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1767 if (cxt)
1769 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1771 #endif
1772 #endif
1774 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1775 if (sval)
1776 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1777 #else
1778 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1779 if (sval)
1781 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1783 #endif
1784 #endif
1787 /* Output assembler code for the end of a function.
1788 For clarity, args are same as those of `final_start_function'
1789 even though not all of them are needed. */
1791 void
1792 final_end_function (first, file, optimize)
1793 rtx first ATTRIBUTE_UNUSED;
1794 FILE *file;
1795 int optimize ATTRIBUTE_UNUSED;
1797 if (app_on)
1799 fputs (ASM_APP_OFF, file);
1800 app_on = 0;
1803 #ifdef SDB_DEBUGGING_INFO
1804 if (write_symbols == SDB_DEBUG)
1805 sdbout_end_function (high_function_linenum);
1806 #endif
1808 #ifdef DWARF_DEBUGGING_INFO
1809 if (write_symbols == DWARF_DEBUG)
1810 dwarfout_end_function ();
1811 #endif
1813 #ifdef XCOFF_DEBUGGING_INFO
1814 if (write_symbols == XCOFF_DEBUG)
1815 xcoffout_end_function (file, high_function_linenum);
1816 #endif
1818 #ifdef FUNCTION_EPILOGUE
1819 /* Finally, output the function epilogue:
1820 code to restore the stack frame and return to the caller. */
1821 FUNCTION_EPILOGUE (file, get_frame_size ());
1822 #endif
1824 #ifdef SDB_DEBUGGING_INFO
1825 if (write_symbols == SDB_DEBUG)
1826 sdbout_end_epilogue ();
1827 #endif
1829 #ifdef DWARF_DEBUGGING_INFO
1830 if (write_symbols == DWARF_DEBUG)
1831 dwarfout_end_epilogue ();
1832 #endif
1834 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1835 if (dwarf2out_do_frame ())
1836 dwarf2out_end_epilogue ();
1837 #endif
1839 #ifdef XCOFF_DEBUGGING_INFO
1840 if (write_symbols == XCOFF_DEBUG)
1841 xcoffout_end_epilogue (file);
1842 #endif
1844 bb_func_label_num = -1; /* not in function, nuke label # */
1846 /* If FUNCTION_EPILOGUE is not defined, then the function body
1847 itself contains return instructions wherever needed. */
1850 /* Add a block to the linked list that remembers the current line/file/function
1851 for basic block profiling. Emit the label in front of the basic block and
1852 the instructions that increment the count field. */
1854 static void
1855 add_bb (file)
1856 FILE *file;
1858 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1860 /* Add basic block to linked list. */
1861 ptr->next = 0;
1862 ptr->line_num = last_linenum;
1863 ptr->file_label_num = bb_file_label_num;
1864 ptr->func_label_num = bb_func_label_num;
1865 *bb_tail = ptr;
1866 bb_tail = &ptr->next;
1868 /* Enable the table of basic-block use counts
1869 to point at the code it applies to. */
1870 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1872 /* Before first insn of this basic block, increment the
1873 count of times it was entered. */
1874 #ifdef BLOCK_PROFILER
1875 BLOCK_PROFILER (file, count_basic_blocks);
1876 #endif
1877 #ifdef HAVE_cc0
1878 CC_STATUS_INIT;
1879 #endif
1881 new_block = 0;
1882 count_basic_blocks++;
1885 /* Add a string to be used for basic block profiling. */
1887 static int
1888 add_bb_string (string, perm_p)
1889 const char *string;
1890 int perm_p;
1892 int len;
1893 struct bb_str *ptr = 0;
1895 if (!string)
1897 string = "<unknown>";
1898 perm_p = TRUE;
1901 /* Allocate a new string if the current string isn't permanent. If
1902 the string is permanent search for the same string in other
1903 allocations. */
1905 len = strlen (string) + 1;
1906 if (!perm_p)
1908 char *p = (char *) permalloc (len);
1909 bcopy (string, p, len);
1910 string = p;
1912 else
1913 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1914 if (ptr->string == string)
1915 break;
1917 /* Allocate a new string block if we need to. */
1918 if (!ptr)
1920 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1921 ptr->next = 0;
1922 ptr->length = len;
1923 ptr->label_num = sbb_label_num++;
1924 ptr->string = string;
1925 *sbb_tail = ptr;
1926 sbb_tail = &ptr->next;
1929 return ptr->label_num;
1933 /* Output assembler code for some insns: all or part of a function.
1934 For description of args, see `final_start_function', above.
1936 PRESCAN is 1 if we are not really outputting,
1937 just scanning as if we were outputting.
1938 Prescanning deletes and rearranges insns just like ordinary output.
1939 PRESCAN is -2 if we are outputting after having prescanned.
1940 In this case, don't try to delete or rearrange insns
1941 because that has already been done.
1942 Prescanning is done only on certain machines. */
1944 void
1945 final (first, file, optimize, prescan)
1946 rtx first;
1947 FILE *file;
1948 int optimize;
1949 int prescan;
1951 register rtx insn;
1952 int max_line = 0;
1953 int max_uid = 0;
1955 last_ignored_compare = 0;
1956 new_block = 1;
1958 check_exception_handler_labels ();
1960 /* Make a map indicating which line numbers appear in this function.
1961 When producing SDB debugging info, delete troublesome line number
1962 notes from inlined functions in other files as well as duplicate
1963 line number notes. */
1964 #ifdef SDB_DEBUGGING_INFO
1965 if (write_symbols == SDB_DEBUG)
1967 rtx last = 0;
1968 for (insn = first; insn; insn = NEXT_INSN (insn))
1969 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1971 if ((RTX_INTEGRATED_P (insn)
1972 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1973 || (last != 0
1974 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1975 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1977 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1978 NOTE_SOURCE_FILE (insn) = 0;
1979 continue;
1981 last = insn;
1982 if (NOTE_LINE_NUMBER (insn) > max_line)
1983 max_line = NOTE_LINE_NUMBER (insn);
1986 else
1987 #endif
1989 for (insn = first; insn; insn = NEXT_INSN (insn))
1990 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1991 max_line = NOTE_LINE_NUMBER (insn);
1994 line_note_exists = (char *) oballoc (max_line + 1);
1995 bzero (line_note_exists, max_line + 1);
1997 for (insn = first; insn; insn = NEXT_INSN (insn))
1999 if (INSN_UID (insn) > max_uid) /* find largest UID */
2000 max_uid = INSN_UID (insn);
2001 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
2002 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
2003 #ifdef HAVE_cc0
2004 /* If CC tracking across branches is enabled, record the insn which
2005 jumps to each branch only reached from one place. */
2006 if (optimize && GET_CODE (insn) == JUMP_INSN)
2008 rtx lab = JUMP_LABEL (insn);
2009 if (lab && LABEL_NUSES (lab) == 1)
2011 LABEL_REFS (lab) = insn;
2014 #endif
2017 /* Initialize insn_eh_region table if eh is being used. */
2019 init_insn_eh_region (first, max_uid);
2021 init_recog ();
2023 CC_STATUS_INIT;
2025 /* Output the insns. */
2026 for (insn = NEXT_INSN (first); insn;)
2028 #ifdef HAVE_ATTR_length
2029 insn_current_address = insn_addresses[INSN_UID (insn)];
2030 #endif
2031 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2034 /* Do basic-block profiling here
2035 if the last insn was a conditional branch. */
2036 if (profile_block_flag && new_block)
2037 add_bb (file);
2039 free_insn_eh_region ();
2042 const char *
2043 get_insn_template (code, insn)
2044 int code;
2045 rtx insn;
2047 const void *output = insn_data[code].output;
2048 switch (insn_data[code].output_format)
2050 case INSN_OUTPUT_FORMAT_SINGLE:
2051 return (const char *) output;
2052 case INSN_OUTPUT_FORMAT_MULTI:
2053 return ((const char * const *) output)[which_alternative];
2054 case INSN_OUTPUT_FORMAT_FUNCTION:
2055 if (insn == NULL)
2056 abort ();
2057 return (* (insn_output_fn) output) (recog_data.operand, insn);
2059 default:
2060 abort ();
2063 /* The final scan for one insn, INSN.
2064 Args are same as in `final', except that INSN
2065 is the insn being scanned.
2066 Value returned is the next insn to be scanned.
2068 NOPEEPHOLES is the flag to disallow peephole processing (currently
2069 used for within delayed branch sequence output). */
2072 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2073 rtx insn;
2074 FILE *file;
2075 int optimize;
2076 int prescan;
2077 int nopeepholes;
2079 #ifdef HAVE_cc0
2080 rtx set;
2081 #endif
2083 insn_counter++;
2085 /* Ignore deleted insns. These can occur when we split insns (due to a
2086 template of "#") while not optimizing. */
2087 if (INSN_DELETED_P (insn))
2088 return NEXT_INSN (insn);
2090 switch (GET_CODE (insn))
2092 case NOTE:
2093 if (prescan > 0)
2094 break;
2096 /* Align the beginning of a loop, for higher speed
2097 on certain machines. */
2099 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2100 break; /* This used to depend on optimize, but that was bogus. */
2101 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2102 break;
2104 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2105 && ! exceptions_via_longjmp)
2107 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
2108 if (! flag_new_exceptions)
2109 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2110 #ifdef ASM_OUTPUT_EH_REGION_BEG
2111 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
2112 #endif
2113 break;
2116 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2117 && ! exceptions_via_longjmp)
2119 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
2120 if (flag_new_exceptions)
2121 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2122 #ifdef ASM_OUTPUT_EH_REGION_END
2123 ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
2124 #endif
2125 break;
2128 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2130 #ifdef FUNCTION_END_PROLOGUE
2131 FUNCTION_END_PROLOGUE (file);
2132 #endif
2133 profile_after_prologue (file);
2134 break;
2137 #ifdef FUNCTION_BEGIN_EPILOGUE
2138 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2140 FUNCTION_BEGIN_EPILOGUE (file);
2141 break;
2143 #endif
2145 if (write_symbols == NO_DEBUG)
2146 break;
2147 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2149 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2150 /* MIPS stabs require the parameter descriptions to be after the
2151 function entry point rather than before. */
2152 if (write_symbols == SDB_DEBUG)
2153 sdbout_begin_function (last_linenum);
2154 else
2155 #endif
2156 #ifdef DWARF_DEBUGGING_INFO
2157 /* This outputs a marker where the function body starts, so it
2158 must be after the prologue. */
2159 if (write_symbols == DWARF_DEBUG)
2160 dwarfout_begin_function ();
2161 #endif
2162 break;
2164 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2165 break; /* An insn that was "deleted" */
2166 if (app_on)
2168 fputs (ASM_APP_OFF, file);
2169 app_on = 0;
2171 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2172 && (debug_info_level == DINFO_LEVEL_NORMAL
2173 || debug_info_level == DINFO_LEVEL_VERBOSE
2174 || write_symbols == DWARF_DEBUG
2175 || write_symbols == DWARF2_DEBUG))
2177 /* Beginning of a symbol-block. Assign it a sequence number
2178 and push the number onto the stack PENDING_BLOCKS. */
2180 if (block_depth == max_block_depth)
2182 /* PENDING_BLOCKS is full; make it longer. */
2183 max_block_depth *= 2;
2184 pending_blocks
2185 = (int *) xrealloc (pending_blocks,
2186 max_block_depth * sizeof (int));
2188 pending_blocks[block_depth++] = next_block_index;
2190 high_block_linenum = last_linenum;
2192 /* Output debugging info about the symbol-block beginning. */
2194 #ifdef SDB_DEBUGGING_INFO
2195 if (write_symbols == SDB_DEBUG)
2196 sdbout_begin_block (file, last_linenum, next_block_index);
2197 #endif
2198 #ifdef XCOFF_DEBUGGING_INFO
2199 if (write_symbols == XCOFF_DEBUG)
2200 xcoffout_begin_block (file, last_linenum, next_block_index);
2201 #endif
2202 #ifdef DBX_DEBUGGING_INFO
2203 if (write_symbols == DBX_DEBUG)
2204 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2205 #endif
2206 #ifdef DWARF_DEBUGGING_INFO
2207 if (write_symbols == DWARF_DEBUG)
2208 dwarfout_begin_block (next_block_index);
2209 #endif
2210 #ifdef DWARF2_DEBUGGING_INFO
2211 if (write_symbols == DWARF2_DEBUG)
2212 dwarf2out_begin_block (next_block_index);
2213 #endif
2215 next_block_index++;
2217 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2218 && (debug_info_level == DINFO_LEVEL_NORMAL
2219 || debug_info_level == DINFO_LEVEL_VERBOSE
2220 || write_symbols == DWARF_DEBUG
2221 || write_symbols == DWARF2_DEBUG))
2223 /* End of a symbol-block. Pop its sequence number off
2224 PENDING_BLOCKS and output debugging info based on that. */
2226 --block_depth;
2227 if (block_depth < 0)
2228 abort ();
2230 #ifdef XCOFF_DEBUGGING_INFO
2231 if (write_symbols == XCOFF_DEBUG)
2232 xcoffout_end_block (file, high_block_linenum,
2233 pending_blocks[block_depth]);
2234 #endif
2235 #ifdef DBX_DEBUGGING_INFO
2236 if (write_symbols == DBX_DEBUG)
2237 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2238 pending_blocks[block_depth]);
2239 #endif
2240 #ifdef SDB_DEBUGGING_INFO
2241 if (write_symbols == SDB_DEBUG)
2242 sdbout_end_block (file, high_block_linenum,
2243 pending_blocks[block_depth]);
2244 #endif
2245 #ifdef DWARF_DEBUGGING_INFO
2246 if (write_symbols == DWARF_DEBUG)
2247 dwarfout_end_block (pending_blocks[block_depth]);
2248 #endif
2249 #ifdef DWARF2_DEBUGGING_INFO
2250 if (write_symbols == DWARF2_DEBUG)
2251 dwarf2out_end_block (pending_blocks[block_depth]);
2252 #endif
2254 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2255 && (debug_info_level == DINFO_LEVEL_NORMAL
2256 || debug_info_level == DINFO_LEVEL_VERBOSE))
2258 #ifdef DWARF_DEBUGGING_INFO
2259 if (write_symbols == DWARF_DEBUG)
2260 dwarfout_label (insn);
2261 #endif
2262 #ifdef DWARF2_DEBUGGING_INFO
2263 if (write_symbols == DWARF2_DEBUG)
2264 dwarf2out_label (insn);
2265 #endif
2267 else if (NOTE_LINE_NUMBER (insn) > 0)
2268 /* This note is a line-number. */
2270 register rtx note;
2272 #if 0 /* This is what we used to do. */
2273 output_source_line (file, insn);
2274 #endif
2275 int note_after = 0;
2277 /* If there is anything real after this note,
2278 output it. If another line note follows, omit this one. */
2279 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2281 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2282 break;
2283 /* These types of notes can be significant
2284 so make sure the preceding line number stays. */
2285 else if (GET_CODE (note) == NOTE
2286 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2287 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2288 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2289 break;
2290 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2292 /* Another line note follows; we can delete this note
2293 if no intervening line numbers have notes elsewhere. */
2294 int num;
2295 for (num = NOTE_LINE_NUMBER (insn) + 1;
2296 num < NOTE_LINE_NUMBER (note);
2297 num++)
2298 if (line_note_exists[num])
2299 break;
2301 if (num >= NOTE_LINE_NUMBER (note))
2302 note_after = 1;
2303 break;
2307 /* Output this line note
2308 if it is the first or the last line note in a row. */
2309 if (!note_after)
2310 output_source_line (file, insn);
2312 break;
2314 case BARRIER:
2315 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2316 /* If we push arguments, we need to check all insns for stack
2317 adjustments. */
2318 if (dwarf2out_do_frame ())
2319 dwarf2out_frame_debug (insn);
2320 #endif
2321 break;
2323 case CODE_LABEL:
2324 /* The target port might emit labels in the output function for
2325 some insn, e.g. sh.c output_branchy_insn. */
2326 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2328 int align = LABEL_TO_ALIGNMENT (insn);
2329 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2330 int max_skip = LABEL_TO_MAX_SKIP (insn);
2331 #endif
2333 if (align && NEXT_INSN (insn))
2334 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2335 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2336 #else
2337 ASM_OUTPUT_ALIGN (file, align);
2338 #endif
2340 #ifdef HAVE_cc0
2341 CC_STATUS_INIT;
2342 /* If this label is reached from only one place, set the condition
2343 codes from the instruction just before the branch. */
2345 /* Disabled because some insns set cc_status in the C output code
2346 and NOTICE_UPDATE_CC alone can set incorrect status. */
2347 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2349 rtx jump = LABEL_REFS (insn);
2350 rtx barrier = prev_nonnote_insn (insn);
2351 rtx prev;
2352 /* If the LABEL_REFS field of this label has been set to point
2353 at a branch, the predecessor of the branch is a regular
2354 insn, and that branch is the only way to reach this label,
2355 set the condition codes based on the branch and its
2356 predecessor. */
2357 if (barrier && GET_CODE (barrier) == BARRIER
2358 && jump && GET_CODE (jump) == JUMP_INSN
2359 && (prev = prev_nonnote_insn (jump))
2360 && GET_CODE (prev) == INSN)
2362 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2363 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2366 #endif
2367 if (prescan > 0)
2368 break;
2369 new_block = 1;
2371 #ifdef FINAL_PRESCAN_LABEL
2372 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2373 #endif
2375 #ifdef SDB_DEBUGGING_INFO
2376 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2377 sdbout_label (insn);
2378 #endif
2379 #ifdef DWARF_DEBUGGING_INFO
2380 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2381 dwarfout_label (insn);
2382 #endif
2383 #ifdef DWARF2_DEBUGGING_INFO
2384 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2385 dwarf2out_label (insn);
2386 #endif
2387 if (app_on)
2389 fputs (ASM_APP_OFF, file);
2390 app_on = 0;
2392 if (NEXT_INSN (insn) != 0
2393 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2395 rtx nextbody = PATTERN (NEXT_INSN (insn));
2397 /* If this label is followed by a jump-table,
2398 make sure we put the label in the read-only section. Also
2399 possibly write the label and jump table together. */
2401 if (GET_CODE (nextbody) == ADDR_VEC
2402 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2404 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2405 /* In this case, the case vector is being moved by the
2406 target, so don't output the label at all. Leave that
2407 to the back end macros. */
2408 #else
2409 if (! JUMP_TABLES_IN_TEXT_SECTION)
2411 readonly_data_section ();
2412 #ifdef READONLY_DATA_SECTION
2413 ASM_OUTPUT_ALIGN (file,
2414 exact_log2 (BIGGEST_ALIGNMENT
2415 / BITS_PER_UNIT));
2416 #endif /* READONLY_DATA_SECTION */
2418 else
2419 function_section (current_function_decl);
2421 #ifdef ASM_OUTPUT_CASE_LABEL
2422 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2423 NEXT_INSN (insn));
2424 #else
2425 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2426 #endif
2427 #endif
2428 break;
2432 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2433 break;
2435 default:
2437 register rtx body = PATTERN (insn);
2438 int insn_code_number;
2439 const char *template;
2440 #ifdef HAVE_cc0
2441 rtx note;
2442 #endif
2444 /* An INSN, JUMP_INSN or CALL_INSN.
2445 First check for special kinds that recog doesn't recognize. */
2447 if (GET_CODE (body) == USE /* These are just declarations */
2448 || GET_CODE (body) == CLOBBER)
2449 break;
2451 #ifdef HAVE_cc0
2452 /* If there is a REG_CC_SETTER note on this insn, it means that
2453 the setting of the condition code was done in the delay slot
2454 of the insn that branched here. So recover the cc status
2455 from the insn that set it. */
2457 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2458 if (note)
2460 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2461 cc_prev_status = cc_status;
2463 #endif
2465 /* Detect insns that are really jump-tables
2466 and output them as such. */
2468 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2470 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2471 register int vlen, idx;
2472 #endif
2474 if (prescan > 0)
2475 break;
2477 if (app_on)
2479 fputs (ASM_APP_OFF, file);
2480 app_on = 0;
2483 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2484 if (GET_CODE (body) == ADDR_VEC)
2486 #ifdef ASM_OUTPUT_ADDR_VEC
2487 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2488 #else
2489 abort();
2490 #endif
2492 else
2494 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2495 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2496 #else
2497 abort();
2498 #endif
2500 #else
2501 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2502 for (idx = 0; idx < vlen; idx++)
2504 if (GET_CODE (body) == ADDR_VEC)
2506 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2507 ASM_OUTPUT_ADDR_VEC_ELT
2508 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2509 #else
2510 abort ();
2511 #endif
2513 else
2515 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2516 ASM_OUTPUT_ADDR_DIFF_ELT
2517 (file,
2518 body,
2519 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2520 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2521 #else
2522 abort ();
2523 #endif
2526 #ifdef ASM_OUTPUT_CASE_END
2527 ASM_OUTPUT_CASE_END (file,
2528 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2529 insn);
2530 #endif
2531 #endif
2533 function_section (current_function_decl);
2535 break;
2538 /* Do basic-block profiling when we reach a new block.
2539 Done here to avoid jump tables. */
2540 if (profile_block_flag && new_block)
2541 add_bb (file);
2543 if (GET_CODE (body) == ASM_INPUT)
2545 /* There's no telling what that did to the condition codes. */
2546 CC_STATUS_INIT;
2547 if (prescan > 0)
2548 break;
2549 if (! app_on)
2551 fputs (ASM_APP_ON, file);
2552 app_on = 1;
2554 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2555 break;
2558 /* Detect `asm' construct with operands. */
2559 if (asm_noperands (body) >= 0)
2561 unsigned int noperands = asm_noperands (body);
2562 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2563 char *string;
2565 /* There's no telling what that did to the condition codes. */
2566 CC_STATUS_INIT;
2567 if (prescan > 0)
2568 break;
2570 if (! app_on)
2572 fputs (ASM_APP_ON, file);
2573 app_on = 1;
2576 /* Get out the operand values. */
2577 string = decode_asm_operands (body, ops, NULL_PTR,
2578 NULL_PTR, NULL_PTR);
2579 /* Inhibit aborts on what would otherwise be compiler bugs. */
2580 insn_noperands = noperands;
2581 this_is_asm_operands = insn;
2583 /* Output the insn using them. */
2584 output_asm_insn (string, ops);
2585 this_is_asm_operands = 0;
2586 break;
2589 if (prescan <= 0 && app_on)
2591 fputs (ASM_APP_OFF, file);
2592 app_on = 0;
2595 if (GET_CODE (body) == SEQUENCE)
2597 /* A delayed-branch sequence */
2598 register int i;
2599 rtx next;
2601 if (prescan > 0)
2602 break;
2603 final_sequence = body;
2605 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2606 force the restoration of a comparison that was previously
2607 thought unnecessary. If that happens, cancel this sequence
2608 and cause that insn to be restored. */
2610 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2611 if (next != XVECEXP (body, 0, 1))
2613 final_sequence = 0;
2614 return next;
2617 for (i = 1; i < XVECLEN (body, 0); i++)
2619 rtx insn = XVECEXP (body, 0, i);
2620 rtx next = NEXT_INSN (insn);
2621 /* We loop in case any instruction in a delay slot gets
2622 split. */
2624 insn = final_scan_insn (insn, file, 0, prescan, 1);
2625 while (insn != next);
2627 #ifdef DBR_OUTPUT_SEQEND
2628 DBR_OUTPUT_SEQEND (file);
2629 #endif
2630 final_sequence = 0;
2632 /* If the insn requiring the delay slot was a CALL_INSN, the
2633 insns in the delay slot are actually executed before the
2634 called function. Hence we don't preserve any CC-setting
2635 actions in these insns and the CC must be marked as being
2636 clobbered by the function. */
2637 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2639 CC_STATUS_INIT;
2642 /* Following a conditional branch sequence, we have a new basic
2643 block. */
2644 if (profile_block_flag)
2646 rtx insn = XVECEXP (body, 0, 0);
2647 rtx body = PATTERN (insn);
2649 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2650 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2651 || (GET_CODE (insn) == JUMP_INSN
2652 && GET_CODE (body) == PARALLEL
2653 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2654 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2655 new_block = 1;
2657 break;
2660 /* We have a real machine instruction as rtl. */
2662 body = PATTERN (insn);
2664 #ifdef HAVE_cc0
2665 set = single_set(insn);
2667 /* Check for redundant test and compare instructions
2668 (when the condition codes are already set up as desired).
2669 This is done only when optimizing; if not optimizing,
2670 it should be possible for the user to alter a variable
2671 with the debugger in between statements
2672 and the next statement should reexamine the variable
2673 to compute the condition codes. */
2675 if (optimize)
2677 #if 0
2678 rtx set = single_set(insn);
2679 #endif
2681 if (set
2682 && GET_CODE (SET_DEST (set)) == CC0
2683 && insn != last_ignored_compare)
2685 if (GET_CODE (SET_SRC (set)) == SUBREG)
2686 SET_SRC (set) = alter_subreg (SET_SRC (set));
2687 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2689 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2690 XEXP (SET_SRC (set), 0)
2691 = alter_subreg (XEXP (SET_SRC (set), 0));
2692 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2693 XEXP (SET_SRC (set), 1)
2694 = alter_subreg (XEXP (SET_SRC (set), 1));
2696 if ((cc_status.value1 != 0
2697 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2698 || (cc_status.value2 != 0
2699 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2701 /* Don't delete insn if it has an addressing side-effect. */
2702 if (! FIND_REG_INC_NOTE (insn, 0)
2703 /* or if anything in it is volatile. */
2704 && ! volatile_refs_p (PATTERN (insn)))
2706 /* We don't really delete the insn; just ignore it. */
2707 last_ignored_compare = insn;
2708 break;
2713 #endif
2715 /* Following a conditional branch, we have a new basic block.
2716 But if we are inside a sequence, the new block starts after the
2717 last insn of the sequence. */
2718 if (profile_block_flag && final_sequence == 0
2719 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2720 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2721 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2722 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2723 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2724 new_block = 1;
2726 #ifndef STACK_REGS
2727 /* Don't bother outputting obvious no-ops, even without -O.
2728 This optimization is fast and doesn't interfere with debugging.
2729 Don't do this if the insn is in a delay slot, since this
2730 will cause an improper number of delay insns to be written. */
2731 if (final_sequence == 0
2732 && prescan >= 0
2733 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2734 && GET_CODE (SET_SRC (body)) == REG
2735 && GET_CODE (SET_DEST (body)) == REG
2736 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2737 break;
2738 #endif
2740 #ifdef HAVE_cc0
2741 /* If this is a conditional branch, maybe modify it
2742 if the cc's are in a nonstandard state
2743 so that it accomplishes the same thing that it would
2744 do straightforwardly if the cc's were set up normally. */
2746 if (cc_status.flags != 0
2747 && GET_CODE (insn) == JUMP_INSN
2748 && GET_CODE (body) == SET
2749 && SET_DEST (body) == pc_rtx
2750 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2751 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2752 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2753 /* This is done during prescan; it is not done again
2754 in final scan when prescan has been done. */
2755 && prescan >= 0)
2757 /* This function may alter the contents of its argument
2758 and clear some of the cc_status.flags bits.
2759 It may also return 1 meaning condition now always true
2760 or -1 meaning condition now always false
2761 or 2 meaning condition nontrivial but altered. */
2762 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2763 /* If condition now has fixed value, replace the IF_THEN_ELSE
2764 with its then-operand or its else-operand. */
2765 if (result == 1)
2766 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2767 if (result == -1)
2768 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2770 /* The jump is now either unconditional or a no-op.
2771 If it has become a no-op, don't try to output it.
2772 (It would not be recognized.) */
2773 if (SET_SRC (body) == pc_rtx)
2775 PUT_CODE (insn, NOTE);
2776 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2777 NOTE_SOURCE_FILE (insn) = 0;
2778 break;
2780 else if (GET_CODE (SET_SRC (body)) == RETURN)
2781 /* Replace (set (pc) (return)) with (return). */
2782 PATTERN (insn) = body = SET_SRC (body);
2784 /* Rerecognize the instruction if it has changed. */
2785 if (result != 0)
2786 INSN_CODE (insn) = -1;
2789 /* Make same adjustments to instructions that examine the
2790 condition codes without jumping and instructions that
2791 handle conditional moves (if this machine has either one). */
2793 if (cc_status.flags != 0
2794 && set != 0)
2796 rtx cond_rtx, then_rtx, else_rtx;
2798 if (GET_CODE (insn) != JUMP_INSN
2799 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2801 cond_rtx = XEXP (SET_SRC (set), 0);
2802 then_rtx = XEXP (SET_SRC (set), 1);
2803 else_rtx = XEXP (SET_SRC (set), 2);
2805 else
2807 cond_rtx = SET_SRC (set);
2808 then_rtx = const_true_rtx;
2809 else_rtx = const0_rtx;
2812 switch (GET_CODE (cond_rtx))
2814 case GTU:
2815 case GT:
2816 case LTU:
2817 case LT:
2818 case GEU:
2819 case GE:
2820 case LEU:
2821 case LE:
2822 case EQ:
2823 case NE:
2825 register int result;
2826 if (XEXP (cond_rtx, 0) != cc0_rtx)
2827 break;
2828 result = alter_cond (cond_rtx);
2829 if (result == 1)
2830 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2831 else if (result == -1)
2832 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2833 else if (result == 2)
2834 INSN_CODE (insn) = -1;
2835 if (SET_DEST (set) == SET_SRC (set))
2837 PUT_CODE (insn, NOTE);
2838 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2839 NOTE_SOURCE_FILE (insn) = 0;
2842 break;
2844 default:
2845 break;
2849 #endif
2851 #ifdef HAVE_peephole
2852 /* Do machine-specific peephole optimizations if desired. */
2854 if (optimize && !flag_no_peephole && !nopeepholes)
2856 rtx next = peephole (insn);
2857 /* When peepholing, if there were notes within the peephole,
2858 emit them before the peephole. */
2859 if (next != 0 && next != NEXT_INSN (insn))
2861 rtx prev = PREV_INSN (insn);
2862 rtx note;
2864 for (note = NEXT_INSN (insn); note != next;
2865 note = NEXT_INSN (note))
2866 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2868 /* In case this is prescan, put the notes
2869 in proper position for later rescan. */
2870 note = NEXT_INSN (insn);
2871 PREV_INSN (note) = prev;
2872 NEXT_INSN (prev) = note;
2873 NEXT_INSN (PREV_INSN (next)) = insn;
2874 PREV_INSN (insn) = PREV_INSN (next);
2875 NEXT_INSN (insn) = next;
2876 PREV_INSN (next) = insn;
2879 /* PEEPHOLE might have changed this. */
2880 body = PATTERN (insn);
2882 #endif
2884 /* Try to recognize the instruction.
2885 If successful, verify that the operands satisfy the
2886 constraints for the instruction. Crash if they don't,
2887 since `reload' should have changed them so that they do. */
2889 insn_code_number = recog_memoized (insn);
2890 extract_insn (insn);
2891 cleanup_subreg_operands (insn);
2893 if (! constrain_operands (1))
2894 fatal_insn_not_found (insn);
2896 /* Some target machines need to prescan each insn before
2897 it is output. */
2899 #ifdef FINAL_PRESCAN_INSN
2900 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2901 #endif
2903 #ifdef HAVE_cc0
2904 cc_prev_status = cc_status;
2906 /* Update `cc_status' for this instruction.
2907 The instruction's output routine may change it further.
2908 If the output routine for a jump insn needs to depend
2909 on the cc status, it should look at cc_prev_status. */
2911 NOTICE_UPDATE_CC (body, insn);
2912 #endif
2914 debug_insn = insn;
2916 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2917 /* If we push arguments, we want to know where the calls are. */
2918 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2919 dwarf2out_frame_debug (insn);
2920 #endif
2922 /* Find the proper template for this insn. */
2923 template = get_insn_template (insn_code_number, insn);
2925 /* If the C code returns 0, it means that it is a jump insn
2926 which follows a deleted test insn, and that test insn
2927 needs to be reinserted. */
2928 if (template == 0)
2930 if (prev_nonnote_insn (insn) != last_ignored_compare)
2931 abort ();
2932 new_block = 0;
2933 return prev_nonnote_insn (insn);
2936 /* If the template is the string "#", it means that this insn must
2937 be split. */
2938 if (template[0] == '#' && template[1] == '\0')
2940 rtx new = try_split (body, insn, 0);
2942 /* If we didn't split the insn, go away. */
2943 if (new == insn && PATTERN (new) == body)
2944 fatal_insn ("Could not split insn", insn);
2946 #ifdef HAVE_ATTR_length
2947 /* This instruction should have been split in shorten_branches,
2948 to ensure that we would have valid length info for the
2949 splitees. */
2950 abort ();
2951 #endif
2953 new_block = 0;
2954 return new;
2957 if (prescan > 0)
2958 break;
2960 /* Output assembler code from the template. */
2962 output_asm_insn (template, recog_data.operand);
2964 #if defined (DWARF2_UNWIND_INFO)
2965 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2966 /* If we push arguments, we need to check all insns for stack
2967 adjustments. */
2968 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2969 dwarf2out_frame_debug (insn);
2970 #else
2971 #if defined (HAVE_prologue)
2972 /* If this insn is part of the prologue, emit DWARF v2
2973 call frame info. */
2974 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2975 dwarf2out_frame_debug (insn);
2976 #endif
2977 #endif
2978 #endif
2980 #if 0
2981 /* It's not at all clear why we did this and doing so interferes
2982 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2983 with this out. */
2985 /* Mark this insn as having been output. */
2986 INSN_DELETED_P (insn) = 1;
2987 #endif
2989 debug_insn = 0;
2992 return NEXT_INSN (insn);
2995 /* Output debugging info to the assembler file FILE
2996 based on the NOTE-insn INSN, assumed to be a line number. */
2998 static void
2999 output_source_line (file, insn)
3000 FILE *file ATTRIBUTE_UNUSED;
3001 rtx insn;
3003 register char *filename = NOTE_SOURCE_FILE (insn);
3005 /* Remember filename for basic block profiling.
3006 Filenames are allocated on the permanent obstack
3007 or are passed in ARGV, so we don't have to save
3008 the string. */
3010 if (profile_block_flag && last_filename != filename)
3011 bb_file_label_num = add_bb_string (filename, TRUE);
3013 last_filename = filename;
3014 last_linenum = NOTE_LINE_NUMBER (insn);
3015 high_block_linenum = MAX (last_linenum, high_block_linenum);
3016 high_function_linenum = MAX (last_linenum, high_function_linenum);
3018 if (write_symbols != NO_DEBUG)
3020 #ifdef SDB_DEBUGGING_INFO
3021 if (write_symbols == SDB_DEBUG
3022 #if 0 /* People like having line numbers even in wrong file! */
3023 /* COFF can't handle multiple source files--lose, lose. */
3024 && !strcmp (filename, main_input_filename)
3025 #endif
3026 /* COFF relative line numbers must be positive. */
3027 && last_linenum > sdb_begin_function_line)
3029 #ifdef ASM_OUTPUT_SOURCE_LINE
3030 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3031 #else
3032 fprintf (file, "\t.ln\t%d\n",
3033 ((sdb_begin_function_line > -1)
3034 ? last_linenum - sdb_begin_function_line : 1));
3035 #endif
3037 #endif
3039 #if defined (DBX_DEBUGGING_INFO)
3040 if (write_symbols == DBX_DEBUG)
3041 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3042 #endif
3044 #if defined (XCOFF_DEBUGGING_INFO)
3045 if (write_symbols == XCOFF_DEBUG)
3046 xcoffout_source_line (file, filename, insn);
3047 #endif
3049 #ifdef DWARF_DEBUGGING_INFO
3050 if (write_symbols == DWARF_DEBUG)
3051 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3052 #endif
3054 #ifdef DWARF2_DEBUGGING_INFO
3055 if (write_symbols == DWARF2_DEBUG)
3056 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3057 #endif
3062 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3063 directly to the desired hard register. */
3064 void
3065 cleanup_subreg_operands (insn)
3066 rtx insn;
3068 int i;
3070 extract_insn (insn);
3071 for (i = 0; i < recog_data.n_operands; i++)
3073 if (GET_CODE (recog_data.operand[i]) == SUBREG)
3074 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
3075 else if (GET_CODE (recog_data.operand[i]) == PLUS
3076 || GET_CODE (recog_data.operand[i]) == MULT)
3077 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
3080 for (i = 0; i < recog_data.n_dups; i++)
3082 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3083 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
3084 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3085 || GET_CODE (*recog_data.dup_loc[i]) == MULT)
3086 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
3090 /* If X is a SUBREG, replace it with a REG or a MEM,
3091 based on the thing it is a subreg of. */
3094 alter_subreg (x)
3095 register rtx x;
3097 register rtx y = SUBREG_REG (x);
3099 if (GET_CODE (y) == SUBREG)
3100 y = alter_subreg (y);
3102 /* If reload is operating, we may be replacing inside this SUBREG.
3103 Check for that and make a new one if so. */
3104 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3105 x = copy_rtx (x);
3107 if (GET_CODE (y) == REG)
3109 int regno;
3110 /* If the word size is larger than the size of this register,
3111 adjust the register number to compensate. */
3112 /* ??? Note that this just catches stragglers created by/for
3113 integrate. It would be better if we either caught these
3114 earlier, or kept _all_ subregs until now and eliminate
3115 gen_lowpart and friends. */
3117 #ifdef ALTER_HARD_SUBREG
3118 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3119 GET_MODE (y), REGNO (y));
3120 #else
3121 regno = REGNO (y) + SUBREG_WORD (x);
3122 #endif
3123 PUT_CODE (x, REG);
3124 REGNO (x) = regno;
3125 /* This field has a different meaning for REGs and SUBREGs. Make sure
3126 to clear it! */
3127 x->used = 0;
3129 else if (GET_CODE (y) == MEM)
3131 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3132 if (BYTES_BIG_ENDIAN)
3133 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3134 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3135 PUT_CODE (x, MEM);
3136 MEM_COPY_ATTRIBUTES (x, y);
3137 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3138 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3141 return x;
3144 /* Do alter_subreg on all the SUBREGs contained in X. */
3146 static rtx
3147 walk_alter_subreg (x)
3148 rtx x;
3150 switch (GET_CODE (x))
3152 case PLUS:
3153 case MULT:
3154 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3155 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3156 break;
3158 case MEM:
3159 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3160 break;
3162 case SUBREG:
3163 return alter_subreg (x);
3165 default:
3166 break;
3169 return x;
3172 #ifdef HAVE_cc0
3174 /* Given BODY, the body of a jump instruction, alter the jump condition
3175 as required by the bits that are set in cc_status.flags.
3176 Not all of the bits there can be handled at this level in all cases.
3178 The value is normally 0.
3179 1 means that the condition has become always true.
3180 -1 means that the condition has become always false.
3181 2 means that COND has been altered. */
3183 static int
3184 alter_cond (cond)
3185 register rtx cond;
3187 int value = 0;
3189 if (cc_status.flags & CC_REVERSED)
3191 value = 2;
3192 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3195 if (cc_status.flags & CC_INVERTED)
3197 value = 2;
3198 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3201 if (cc_status.flags & CC_NOT_POSITIVE)
3202 switch (GET_CODE (cond))
3204 case LE:
3205 case LEU:
3206 case GEU:
3207 /* Jump becomes unconditional. */
3208 return 1;
3210 case GT:
3211 case GTU:
3212 case LTU:
3213 /* Jump becomes no-op. */
3214 return -1;
3216 case GE:
3217 PUT_CODE (cond, EQ);
3218 value = 2;
3219 break;
3221 case LT:
3222 PUT_CODE (cond, NE);
3223 value = 2;
3224 break;
3226 default:
3227 break;
3230 if (cc_status.flags & CC_NOT_NEGATIVE)
3231 switch (GET_CODE (cond))
3233 case GE:
3234 case GEU:
3235 /* Jump becomes unconditional. */
3236 return 1;
3238 case LT:
3239 case LTU:
3240 /* Jump becomes no-op. */
3241 return -1;
3243 case LE:
3244 case LEU:
3245 PUT_CODE (cond, EQ);
3246 value = 2;
3247 break;
3249 case GT:
3250 case GTU:
3251 PUT_CODE (cond, NE);
3252 value = 2;
3253 break;
3255 default:
3256 break;
3259 if (cc_status.flags & CC_NO_OVERFLOW)
3260 switch (GET_CODE (cond))
3262 case GEU:
3263 /* Jump becomes unconditional. */
3264 return 1;
3266 case LEU:
3267 PUT_CODE (cond, EQ);
3268 value = 2;
3269 break;
3271 case GTU:
3272 PUT_CODE (cond, NE);
3273 value = 2;
3274 break;
3276 case LTU:
3277 /* Jump becomes no-op. */
3278 return -1;
3280 default:
3281 break;
3284 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3285 switch (GET_CODE (cond))
3287 default:
3288 abort ();
3290 case NE:
3291 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3292 value = 2;
3293 break;
3295 case EQ:
3296 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3297 value = 2;
3298 break;
3301 if (cc_status.flags & CC_NOT_SIGNED)
3302 /* The flags are valid if signed condition operators are converted
3303 to unsigned. */
3304 switch (GET_CODE (cond))
3306 case LE:
3307 PUT_CODE (cond, LEU);
3308 value = 2;
3309 break;
3311 case LT:
3312 PUT_CODE (cond, LTU);
3313 value = 2;
3314 break;
3316 case GT:
3317 PUT_CODE (cond, GTU);
3318 value = 2;
3319 break;
3321 case GE:
3322 PUT_CODE (cond, GEU);
3323 value = 2;
3324 break;
3326 default:
3327 break;
3330 return value;
3332 #endif
3334 /* Report inconsistency between the assembler template and the operands.
3335 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3337 void
3338 output_operand_lossage (msgid)
3339 const char *msgid;
3341 if (this_is_asm_operands)
3342 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3343 else
3345 error ("output_operand: %s", _(msgid));
3346 abort ();
3350 /* Output of assembler code from a template, and its subroutines. */
3352 /* Output text from TEMPLATE to the assembler output file,
3353 obeying %-directions to substitute operands taken from
3354 the vector OPERANDS.
3356 %N (for N a digit) means print operand N in usual manner.
3357 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3358 and print the label name with no punctuation.
3359 %cN means require operand N to be a constant
3360 and print the constant expression with no punctuation.
3361 %aN means expect operand N to be a memory address
3362 (not a memory reference!) and print a reference
3363 to that address.
3364 %nN means expect operand N to be a constant
3365 and print a constant expression for minus the value
3366 of the operand, with no other punctuation. */
3368 static void
3369 output_asm_name ()
3371 if (flag_print_asm_name)
3373 /* Annotate the assembly with a comment describing the pattern and
3374 alternative used. */
3375 if (debug_insn)
3377 register int num = INSN_CODE (debug_insn);
3378 fprintf (asm_out_file, "\t%s %d\t%s",
3379 ASM_COMMENT_START, INSN_UID (debug_insn),
3380 insn_data[num].name);
3381 if (insn_data[num].n_alternatives > 1)
3382 fprintf (asm_out_file, "/%d", which_alternative + 1);
3383 #ifdef HAVE_ATTR_length
3384 fprintf (asm_out_file, "\t[length = %d]",
3385 get_attr_length (debug_insn));
3386 #endif
3387 /* Clear this so only the first assembler insn
3388 of any rtl insn will get the special comment for -dp. */
3389 debug_insn = 0;
3394 void
3395 output_asm_insn (template, operands)
3396 const char *template;
3397 rtx *operands;
3399 register const char *p;
3400 register int c;
3402 /* An insn may return a null string template
3403 in a case where no assembler code is needed. */
3404 if (*template == 0)
3405 return;
3407 p = template;
3408 putc ('\t', asm_out_file);
3410 #ifdef ASM_OUTPUT_OPCODE
3411 ASM_OUTPUT_OPCODE (asm_out_file, p);
3412 #endif
3414 while ((c = *p++))
3415 switch (c)
3417 case '\n':
3418 output_asm_name ();
3419 putc (c, asm_out_file);
3420 #ifdef ASM_OUTPUT_OPCODE
3421 while ((c = *p) == '\t')
3423 putc (c, asm_out_file);
3424 p++;
3426 ASM_OUTPUT_OPCODE (asm_out_file, p);
3427 #endif
3428 break;
3430 #ifdef ASSEMBLER_DIALECT
3431 case '{':
3433 register int i;
3435 /* If we want the first dialect, do nothing. Otherwise, skip
3436 DIALECT_NUMBER of strings ending with '|'. */
3437 for (i = 0; i < dialect_number; i++)
3439 while (*p && *p != '}' && *p++ != '|')
3441 if (*p == '}')
3442 break;
3443 if (*p == '|')
3444 p++;
3447 break;
3449 case '|':
3450 /* Skip to close brace. */
3451 while (*p && *p++ != '}')
3453 break;
3455 case '}':
3456 break;
3457 #endif
3459 case '%':
3460 /* %% outputs a single %. */
3461 if (*p == '%')
3463 p++;
3464 putc (c, asm_out_file);
3466 /* %= outputs a number which is unique to each insn in the entire
3467 compilation. This is useful for making local labels that are
3468 referred to more than once in a given insn. */
3469 else if (*p == '=')
3471 p++;
3472 fprintf (asm_out_file, "%d", insn_counter);
3474 /* % followed by a letter and some digits
3475 outputs an operand in a special way depending on the letter.
3476 Letters `acln' are implemented directly.
3477 Other letters are passed to `output_operand' so that
3478 the PRINT_OPERAND macro can define them. */
3479 else if ((*p >= 'a' && *p <= 'z')
3480 || (*p >= 'A' && *p <= 'Z'))
3482 int letter = *p++;
3483 c = atoi (p);
3485 if (! (*p >= '0' && *p <= '9'))
3486 output_operand_lossage ("operand number missing after %-letter");
3487 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3488 output_operand_lossage ("operand number out of range");
3489 else if (letter == 'l')
3490 output_asm_label (operands[c]);
3491 else if (letter == 'a')
3492 output_address (operands[c]);
3493 else if (letter == 'c')
3495 if (CONSTANT_ADDRESS_P (operands[c]))
3496 output_addr_const (asm_out_file, operands[c]);
3497 else
3498 output_operand (operands[c], 'c');
3500 else if (letter == 'n')
3502 if (GET_CODE (operands[c]) == CONST_INT)
3503 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3504 - INTVAL (operands[c]));
3505 else
3507 putc ('-', asm_out_file);
3508 output_addr_const (asm_out_file, operands[c]);
3511 else
3512 output_operand (operands[c], letter);
3514 while ((c = *p) >= '0' && c <= '9') p++;
3516 /* % followed by a digit outputs an operand the default way. */
3517 else if (*p >= '0' && *p <= '9')
3519 c = atoi (p);
3520 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3521 output_operand_lossage ("operand number out of range");
3522 else
3523 output_operand (operands[c], 0);
3524 while ((c = *p) >= '0' && c <= '9') p++;
3526 /* % followed by punctuation: output something for that
3527 punctuation character alone, with no operand.
3528 The PRINT_OPERAND macro decides what is actually done. */
3529 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3530 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3531 output_operand (NULL_RTX, *p++);
3532 #endif
3533 else
3534 output_operand_lossage ("invalid %%-code");
3535 break;
3537 default:
3538 putc (c, asm_out_file);
3541 output_asm_name ();
3543 putc ('\n', asm_out_file);
3546 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3548 void
3549 output_asm_label (x)
3550 rtx x;
3552 char buf[256];
3554 if (GET_CODE (x) == LABEL_REF)
3555 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3556 else if (GET_CODE (x) == CODE_LABEL)
3557 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3558 else
3559 output_operand_lossage ("`%l' operand isn't a label");
3561 assemble_name (asm_out_file, buf);
3564 /* Print operand X using machine-dependent assembler syntax.
3565 The macro PRINT_OPERAND is defined just to control this function.
3566 CODE is a non-digit that preceded the operand-number in the % spec,
3567 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3568 between the % and the digits.
3569 When CODE is a non-letter, X is 0.
3571 The meanings of the letters are machine-dependent and controlled
3572 by PRINT_OPERAND. */
3574 static void
3575 output_operand (x, code)
3576 rtx x;
3577 int code;
3579 if (x && GET_CODE (x) == SUBREG)
3580 x = alter_subreg (x);
3582 /* If X is a pseudo-register, abort now rather than writing trash to the
3583 assembler file. */
3585 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3586 abort ();
3588 PRINT_OPERAND (asm_out_file, x, code);
3591 /* Print a memory reference operand for address X
3592 using machine-dependent assembler syntax.
3593 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3595 void
3596 output_address (x)
3597 rtx x;
3599 walk_alter_subreg (x);
3600 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3603 /* Print an integer constant expression in assembler syntax.
3604 Addition and subtraction are the only arithmetic
3605 that may appear in these expressions. */
3607 void
3608 output_addr_const (file, x)
3609 FILE *file;
3610 rtx x;
3612 char buf[256];
3614 restart:
3615 switch (GET_CODE (x))
3617 case PC:
3618 if (flag_pic)
3619 putc ('.', file);
3620 else
3621 abort ();
3622 break;
3624 case SYMBOL_REF:
3625 assemble_name (file, XSTR (x, 0));
3626 break;
3628 case LABEL_REF:
3629 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3630 assemble_name (file, buf);
3631 break;
3633 case CODE_LABEL:
3634 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3635 assemble_name (file, buf);
3636 break;
3638 case CONST_INT:
3639 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3640 break;
3642 case CONST:
3643 /* This used to output parentheses around the expression,
3644 but that does not work on the 386 (either ATT or BSD assembler). */
3645 output_addr_const (file, XEXP (x, 0));
3646 break;
3648 case CONST_DOUBLE:
3649 if (GET_MODE (x) == VOIDmode)
3651 /* We can use %d if the number is one word and positive. */
3652 if (CONST_DOUBLE_HIGH (x))
3653 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3654 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3655 else if (CONST_DOUBLE_LOW (x) < 0)
3656 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3657 else
3658 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3660 else
3661 /* We can't handle floating point constants;
3662 PRINT_OPERAND must handle them. */
3663 output_operand_lossage ("floating constant misused");
3664 break;
3666 case PLUS:
3667 /* Some assemblers need integer constants to appear last (eg masm). */
3668 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3670 output_addr_const (file, XEXP (x, 1));
3671 if (INTVAL (XEXP (x, 0)) >= 0)
3672 fprintf (file, "+");
3673 output_addr_const (file, XEXP (x, 0));
3675 else
3677 output_addr_const (file, XEXP (x, 0));
3678 if (INTVAL (XEXP (x, 1)) >= 0)
3679 fprintf (file, "+");
3680 output_addr_const (file, XEXP (x, 1));
3682 break;
3684 case MINUS:
3685 /* Avoid outputting things like x-x or x+5-x,
3686 since some assemblers can't handle that. */
3687 x = simplify_subtraction (x);
3688 if (GET_CODE (x) != MINUS)
3689 goto restart;
3691 output_addr_const (file, XEXP (x, 0));
3692 fprintf (file, "-");
3693 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3694 && INTVAL (XEXP (x, 1)) < 0)
3696 fprintf (file, "%s", ASM_OPEN_PAREN);
3697 output_addr_const (file, XEXP (x, 1));
3698 fprintf (file, "%s", ASM_CLOSE_PAREN);
3700 else
3701 output_addr_const (file, XEXP (x, 1));
3702 break;
3704 case ZERO_EXTEND:
3705 case SIGN_EXTEND:
3706 output_addr_const (file, XEXP (x, 0));
3707 break;
3709 default:
3710 output_operand_lossage ("invalid expression as operand");
3714 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3715 %R prints the value of REGISTER_PREFIX.
3716 %L prints the value of LOCAL_LABEL_PREFIX.
3717 %U prints the value of USER_LABEL_PREFIX.
3718 %I prints the value of IMMEDIATE_PREFIX.
3719 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3720 Also supported are %d, %x, %s, %e, %f, %g and %%.
3722 We handle alternate assembler dialects here, just like output_asm_insn. */
3724 void
3725 asm_fprintf VPROTO((FILE *file, const char *p, ...))
3727 #ifndef ANSI_PROTOTYPES
3728 FILE *file;
3729 const char *p;
3730 #endif
3731 va_list argptr;
3732 char buf[10];
3733 char *q, c;
3735 VA_START (argptr, p);
3737 #ifndef ANSI_PROTOTYPES
3738 file = va_arg (argptr, FILE *);
3739 p = va_arg (argptr, const char *);
3740 #endif
3742 buf[0] = '%';
3744 while ((c = *p++))
3745 switch (c)
3747 #ifdef ASSEMBLER_DIALECT
3748 case '{':
3750 int i;
3752 /* If we want the first dialect, do nothing. Otherwise, skip
3753 DIALECT_NUMBER of strings ending with '|'. */
3754 for (i = 0; i < dialect_number; i++)
3756 while (*p && *p++ != '|')
3759 if (*p == '|')
3760 p++;
3763 break;
3765 case '|':
3766 /* Skip to close brace. */
3767 while (*p && *p++ != '}')
3769 break;
3771 case '}':
3772 break;
3773 #endif
3775 case '%':
3776 c = *p++;
3777 q = &buf[1];
3778 while ((c >= '0' && c <= '9') || c == '.')
3780 *q++ = c;
3781 c = *p++;
3783 switch (c)
3785 case '%':
3786 fprintf (file, "%%");
3787 break;
3789 case 'd': case 'i': case 'u':
3790 case 'x': case 'p': case 'X':
3791 case 'o':
3792 *q++ = c;
3793 *q = 0;
3794 fprintf (file, buf, va_arg (argptr, int));
3795 break;
3797 case 'w':
3798 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3799 but we do not check for those cases. It means that the value
3800 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3802 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3803 #else
3804 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3805 *q++ = 'l';
3806 #else
3807 *q++ = 'l';
3808 *q++ = 'l';
3809 #endif
3810 #endif
3812 *q++ = *p++;
3813 *q = 0;
3814 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3815 break;
3817 case 'l':
3818 *q++ = c;
3819 *q++ = *p++;
3820 *q = 0;
3821 fprintf (file, buf, va_arg (argptr, long));
3822 break;
3824 case 'e':
3825 case 'f':
3826 case 'g':
3827 *q++ = c;
3828 *q = 0;
3829 fprintf (file, buf, va_arg (argptr, double));
3830 break;
3832 case 's':
3833 *q++ = c;
3834 *q = 0;
3835 fprintf (file, buf, va_arg (argptr, char *));
3836 break;
3838 case 'O':
3839 #ifdef ASM_OUTPUT_OPCODE
3840 ASM_OUTPUT_OPCODE (asm_out_file, p);
3841 #endif
3842 break;
3844 case 'R':
3845 #ifdef REGISTER_PREFIX
3846 fprintf (file, "%s", REGISTER_PREFIX);
3847 #endif
3848 break;
3850 case 'I':
3851 #ifdef IMMEDIATE_PREFIX
3852 fprintf (file, "%s", IMMEDIATE_PREFIX);
3853 #endif
3854 break;
3856 case 'L':
3857 #ifdef LOCAL_LABEL_PREFIX
3858 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3859 #endif
3860 break;
3862 case 'U':
3863 fputs (user_label_prefix, file);
3864 break;
3866 #ifdef ASM_FPRINTF_EXTENSIONS
3867 /* Upper case letters are reserved for general use by asm_fprintf
3868 and so are not available to target specific code. In order to
3869 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3870 they are defined here. As they get turned into real extensions
3871 to asm_fprintf they should be removed from this list. */
3872 case 'A': case 'B': case 'C': case 'D': case 'E':
3873 case 'F': case 'G': case 'H': case 'J': case 'K':
3874 case 'M': case 'N': case 'P': case 'Q': case 'S':
3875 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3876 break;
3878 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3879 #endif
3880 default:
3881 abort ();
3883 break;
3885 default:
3886 fputc (c, file);
3888 va_end (argptr);
3891 /* Split up a CONST_DOUBLE or integer constant rtx
3892 into two rtx's for single words,
3893 storing in *FIRST the word that comes first in memory in the target
3894 and in *SECOND the other. */
3896 void
3897 split_double (value, first, second)
3898 rtx value;
3899 rtx *first, *second;
3901 if (GET_CODE (value) == CONST_INT)
3903 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3905 /* In this case the CONST_INT holds both target words.
3906 Extract the bits from it into two word-sized pieces.
3907 Sign extend each half to HOST_WIDE_INT. */
3908 rtx low, high;
3909 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3910 the shift below will cause a compiler warning, even though
3911 this code won't be executed. So put the shift amounts in
3912 variables to avoid the warning. */
3913 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3914 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3916 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3917 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3918 if (WORDS_BIG_ENDIAN)
3920 *first = high;
3921 *second = low;
3923 else
3925 *first = low;
3926 *second = high;
3929 else
3931 /* The rule for using CONST_INT for a wider mode
3932 is that we regard the value as signed.
3933 So sign-extend it. */
3934 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3935 if (WORDS_BIG_ENDIAN)
3937 *first = high;
3938 *second = value;
3940 else
3942 *first = value;
3943 *second = high;
3947 else if (GET_CODE (value) != CONST_DOUBLE)
3949 if (WORDS_BIG_ENDIAN)
3951 *first = const0_rtx;
3952 *second = value;
3954 else
3956 *first = value;
3957 *second = const0_rtx;
3960 else if (GET_MODE (value) == VOIDmode
3961 /* This is the old way we did CONST_DOUBLE integers. */
3962 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3964 /* In an integer, the words are defined as most and least significant.
3965 So order them by the target's convention. */
3966 if (WORDS_BIG_ENDIAN)
3968 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3969 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3971 else
3973 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3974 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3977 else
3979 #ifdef REAL_ARITHMETIC
3980 REAL_VALUE_TYPE r; long l[2];
3981 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3983 /* Note, this converts the REAL_VALUE_TYPE to the target's
3984 format, splits up the floating point double and outputs
3985 exactly 32 bits of it into each of l[0] and l[1] --
3986 not necessarily BITS_PER_WORD bits. */
3987 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3989 /* If 32 bits is an entire word for the target, but not for the host,
3990 then sign-extend on the host so that the number will look the same
3991 way on the host that it would on the target. See for instance
3992 simplify_unary_operation. The #if is needed to avoid compiler
3993 warnings. */
3995 #if HOST_BITS_PER_LONG > 32
3996 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3998 if (l[0] & ((long) 1 << 31))
3999 l[0] |= ((long) (-1) << 32);
4000 if (l[1] & ((long) 1 << 31))
4001 l[1] |= ((long) (-1) << 32);
4003 #endif
4005 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
4006 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
4007 #else
4008 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
4009 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
4010 && ! flag_pretend_float)
4011 abort ();
4013 if (
4014 #ifdef HOST_WORDS_BIG_ENDIAN
4015 WORDS_BIG_ENDIAN
4016 #else
4017 ! WORDS_BIG_ENDIAN
4018 #endif
4021 /* Host and target agree => no need to swap. */
4022 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4023 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4025 else
4027 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4028 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4030 #endif /* no REAL_ARITHMETIC */
4034 /* Return nonzero if this function has no function calls. */
4037 leaf_function_p ()
4039 rtx insn;
4041 if (profile_flag || profile_block_flag || profile_arc_flag)
4042 return 0;
4044 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4046 if (GET_CODE (insn) == CALL_INSN)
4047 return 0;
4048 if (GET_CODE (insn) == INSN
4049 && GET_CODE (PATTERN (insn)) == SEQUENCE
4050 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
4051 return 0;
4053 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4055 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
4056 return 0;
4057 if (GET_CODE (XEXP (insn, 0)) == INSN
4058 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4059 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
4060 return 0;
4063 return 1;
4066 /* On some machines, a function with no call insns
4067 can run faster if it doesn't create its own register window.
4068 When output, the leaf function should use only the "output"
4069 registers. Ordinarily, the function would be compiled to use
4070 the "input" registers to find its arguments; it is a candidate
4071 for leaf treatment if it uses only the "input" registers.
4072 Leaf function treatment means renumbering so the function
4073 uses the "output" registers instead. */
4075 #ifdef LEAF_REGISTERS
4077 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
4079 /* Return 1 if this function uses only the registers that can be
4080 safely renumbered. */
4083 only_leaf_regs_used ()
4085 int i;
4087 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4088 if ((regs_ever_live[i] || global_regs[i])
4089 && ! permitted_reg_in_leaf_functions[i])
4090 return 0;
4092 if (current_function_uses_pic_offset_table
4093 && pic_offset_table_rtx != 0
4094 && GET_CODE (pic_offset_table_rtx) == REG
4095 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4096 return 0;
4098 return 1;
4101 /* Scan all instructions and renumber all registers into those
4102 available in leaf functions. */
4104 static void
4105 leaf_renumber_regs (first)
4106 rtx first;
4108 rtx insn;
4110 /* Renumber only the actual patterns.
4111 The reg-notes can contain frame pointer refs,
4112 and renumbering them could crash, and should not be needed. */
4113 for (insn = first; insn; insn = NEXT_INSN (insn))
4114 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4115 leaf_renumber_regs_insn (PATTERN (insn));
4116 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4117 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4118 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4121 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4122 available in leaf functions. */
4124 void
4125 leaf_renumber_regs_insn (in_rtx)
4126 register rtx in_rtx;
4128 register int i, j;
4129 register const char *format_ptr;
4131 if (in_rtx == 0)
4132 return;
4134 /* Renumber all input-registers into output-registers.
4135 renumbered_regs would be 1 for an output-register;
4136 they */
4138 if (GET_CODE (in_rtx) == REG)
4140 int newreg;
4142 /* Don't renumber the same reg twice. */
4143 if (in_rtx->used)
4144 return;
4146 newreg = REGNO (in_rtx);
4147 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4148 to reach here as part of a REG_NOTE. */
4149 if (newreg >= FIRST_PSEUDO_REGISTER)
4151 in_rtx->used = 1;
4152 return;
4154 newreg = LEAF_REG_REMAP (newreg);
4155 if (newreg < 0)
4156 abort ();
4157 regs_ever_live[REGNO (in_rtx)] = 0;
4158 regs_ever_live[newreg] = 1;
4159 REGNO (in_rtx) = newreg;
4160 in_rtx->used = 1;
4163 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4165 /* Inside a SEQUENCE, we find insns.
4166 Renumber just the patterns of these insns,
4167 just as we do for the top-level insns. */
4168 leaf_renumber_regs_insn (PATTERN (in_rtx));
4169 return;
4172 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4174 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4175 switch (*format_ptr++)
4177 case 'e':
4178 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4179 break;
4181 case 'E':
4182 if (NULL != XVEC (in_rtx, i))
4184 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4185 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4187 break;
4189 case 'S':
4190 case 's':
4191 case '0':
4192 case 'i':
4193 case 'w':
4194 case 'n':
4195 case 'u':
4196 break;
4198 default:
4199 abort ();
4202 #endif