1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Freeze
; use Freeze
;
39 with Ghost
; use Ghost
;
40 with Inline
; use Inline
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
46 with Nlists
; use Nlists
;
48 with Output
; use Output
;
49 with Par_SCO
; use Par_SCO
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Aggr
; use Sem_Aggr
;
56 with Sem_Attr
; use Sem_Attr
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch4
; use Sem_Ch4
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elab
; use Sem_Elab
;
67 with Sem_Elim
; use Sem_Elim
;
68 with Sem_Eval
; use Sem_Eval
;
69 with Sem_Intr
; use Sem_Intr
;
70 with Sem_Util
; use Sem_Util
;
71 with Targparm
; use Targparm
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Sinfo
; use Sinfo
;
75 with Sinfo
.CN
; use Sinfo
.CN
;
76 with Snames
; use Snames
;
77 with Stand
; use Stand
;
78 with Stringt
; use Stringt
;
79 with Style
; use Style
;
80 with Tbuild
; use Tbuild
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Res
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use
(N
: Node_Id
);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
152 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
175 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
209 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
211 function Operator_Kind
213 Is_Binary
: Boolean) return Node_Kind
;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
339 Scope_Suppress
.Suppress
:= (others => True);
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
.Suppress
:= Sva
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
379 Scope_Suppress
.Suppress
:= (others => True);
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
.Suppress
:= Sva
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use
(N
: Node_Id
) is
405 PN
: constant Node_Id
:= Parent
(N
);
406 Disc
: constant Entity_Id
:= Entity
(N
);
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression
then
416 elsif Nkind
(PN
) = N_Range
then
418 -- Discriminant cannot be used to constrain a scalar type
422 if Nkind
(P
) = N_Range_Constraint
423 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
424 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
426 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
428 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
446 if Ekind
(Current_Scope
) = E_Record_Type
447 and then Scope
(Disc
) = Current_Scope
449 (Nkind
(Parent
(P
)) = N_Subtype_Indication
451 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
452 N_Subtype_Declaration
)
453 and then Paren_Count
(N
) = 0)
456 ("discriminant must appear alone in component constraint", N
);
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large
: declare
477 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
493 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
495 Minimum_Size
(T
, Biased
=> True) >=
496 RM_Size
(Standard_Positive
);
497 end Large_Storage_Type
;
499 -- Start of processing for Check_Large
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type
(Etype
(Disc
)) then
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
512 if Is_Limited_Type
(Scope
(Disc
)) then
516 -- Check that it is the high bound
518 if N
/= High_Bound
(PN
)
519 or else No
(Discriminant_Default_Value
(Disc
))
524 -- Check the array allows a large range at this bound. First
529 if Nkind
(SI
) /= N_Subtype_Indication
then
533 T
:= Entity
(Subtype_Mark
(SI
));
535 if not Is_Array_Type
(T
) then
539 -- Next, find the dimension
541 TB
:= First_Index
(T
);
542 CB
:= First
(Constraints
(P
));
544 and then Present
(TB
)
545 and then Present
(CB
)
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type
(Etype
(TB
)) then
562 -- Warn about the danger
565 ("??creation of & object may raise Storage_Error!",
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
577 N_Discriminant_Association
)
579 if Paren_Count
(N
) > 0 then
581 ("discriminant in constraint must appear alone", N
);
583 elsif Nkind
(N
) = N_Expanded_Name
584 and then Comes_From_Source
(N
)
587 ("discriminant must appear alone as a direct name", N
);
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
598 while not Nkind_In
(P
, N_Component_Declaration
,
599 N_Subtype_Indication
,
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind
(P
) = N_Subtype_Indication
613 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
614 N_Derived_Type_Definition
)
615 and then D
= Constraint
(P
))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind
(P
) = N_Subtype_Indication
622 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
623 or else Nkind
(P
) = N_Entry_Declaration
624 or else Nkind
(D
) = N_Defining_Identifier
627 ("discriminant in constraint must appear alone", N
);
630 end Check_Discriminant_Use
;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
638 if Is_Invisible_Operator
(N
, T
) then
639 Error_Msg_NE
-- CODEFIX
640 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
641 Error_Msg_N
-- CODEFIX
642 ("use clause would make operation legal!", N
);
644 end Check_For_Visible_Operator
;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name
(Pref
)
674 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version
>= Ada_2005
683 and then Is_Entity_Name
(Pref
)
684 and then Is_Access_Type
(Etype
(Pref
))
685 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
687 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
691 Check_Fully_Declared
(Typ
, Parent
(Pref
));
693 end Check_Fully_Declared_Prefix
;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
703 function Same_Argument_List
return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List
return Boolean is
717 if not Is_Entity_Name
(Name
(N
)) then
720 Subp
:= Entity
(Name
(N
));
723 F
:= First_Formal
(Subp
);
724 A
:= First_Actual
(N
);
725 while Present
(F
) and then Present
(A
) loop
726 if not Is_Entity_Name
(A
) or else Entity
(A
) /= F
then
735 end Same_Argument_List
;
737 -- Start of processing for Check_Infinite_Recursion
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member
(N
)
745 and then List_Length
(List_Containing
(N
)) = 1
746 and then Same_Argument_List
749 P
: constant Node_Id
:= Parent
(N
);
751 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
752 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
753 and then Is_Empty_List
(Declarations
(Parent
(P
)))
755 Error_Msg_Warn
:= SPARK_Mode
/= On
;
756 Error_Msg_N
("!infinite recursion<<", N
);
757 Error_Msg_N
("\!Storage_Error [<<", N
);
759 Make_Raise_Storage_Error
(Sloc
(N
),
760 Reason
=> SE_Infinite_Recursion
));
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind
(P
) = N_Subprogram_Body
;
787 -- If appearing in conditional, result is false
789 if Nkind_In
(P
, N_Or_Else
,
798 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
799 and then C
/= First
(Statements
(P
))
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
810 -- raise Program_Error;
814 -- for generating a stub function
816 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
817 and then Same_Argument_List
819 exit when not Is_List_Member
(Parent
(N
));
821 -- OK, return statement is in a statement list, look for raise
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod
:= Prev
(Parent
(N
));
831 and then Nkind
(Nod
) = N_Freeze_Entity
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
842 (Nkind
(Nod
) not in N_Raise_xxx_Error
843 or else Present
(Condition
(Nod
)));
854 Error_Msg_Warn
:= SPARK_Mode
/= On
;
855 Error_Msg_N
("!possible infinite recursion<<", N
);
856 Error_Msg_N
("\!??Storage_Error ]<<", N
);
859 end Check_Infinite_Recursion
;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
866 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
868 function Uses_SS
(T
: Entity_Id
) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
879 function Uses_SS
(T
: Entity_Id
) return Boolean is
882 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present
(Full_Type
) then
892 if Is_Controlled
(Full_Type
) then
895 elsif Is_Array_Type
(Full_Type
) then
896 return Uses_SS
(Component_Type
(Full_Type
));
898 elsif Is_Record_Type
(Full_Type
) then
899 Comp
:= First_Component
(Full_Type
);
900 while Present
(Comp
) loop
901 if Ekind
(Comp
) = E_Component
902 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
914 if (Nkind
(Expr
) = N_Function_Call
915 or else Nkind
(Expr
) in N_Op
916 or else (Nkind
(Expr
) = N_Attribute_Reference
917 and then Present
(Expressions
(Expr
))))
918 and then Requires_Transient_Scope
(Etype
(Expr
))
922 elsif Uses_SS
(Etype
(Comp
)) then
927 Next_Component
(Comp
);
937 -- Start of processing for Check_Initialization_Call
940 -- Establish a transient scope if the type needs it
942 if Uses_SS
(Typ
) then
943 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
945 end Check_Initialization_Call
;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
953 if Scope
(Entity
(N
)) = Standard_Standard
954 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
956 -- Restriction only applies to original source code
958 if Comes_From_Source
(N
) then
959 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
963 -- Do style check (but skip if in instance, error is on template)
966 if not In_Instance
then
967 Check_Boolean_Operator
(N
);
970 end Check_No_Direct_Boolean_Operators
;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call
(N
: Node_Id
) is
979 function Prefix_Is_Access_Subp
return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp
return Boolean is
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind
(Parent
(N
)) = N_Attribute_Reference
997 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1004 if not Is_Overloaded
(N
) then
1006 Ekind
(Etype
(N
)) = E_Subprogram_Type
1007 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1009 Get_First_Interp
(N
, I
, It
);
1010 while Present
(It
.Typ
) loop
1011 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1012 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1017 Get_Next_Interp
(I
, It
);
1022 end Prefix_Is_Access_Subp
;
1024 -- Start of processing for Check_Parameterless_Call
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected
/= 0 then
1030 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1032 elsif Nkind
(N
) in N_Has_Chars
1033 and then Chars
(N
) in Error_Name_Or_No_Name
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name
(N
)
1046 and then Ekind
(Entity
(N
)) = E_Procedure
1047 and then not Is_Overloaded
(N
)
1049 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1051 N_Procedure_Call_Statement
)
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name
(N
)
1066 and then Nkind
(N
) /= N_Operator_Symbol
1067 and then Is_Overloadable
(Entity
(N
))
1068 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1069 or else Is_Overloaded
(N
)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1076 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1083 (Nkind
(N
) = N_Selected_Component
1084 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1086 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1088 and then Is_Overloaded
(Selector_Name
(N
)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1094 if Nkind
(Parent
(N
)) /= N_Function_Call
1095 or else N
/= Name
(Parent
(N
))
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version
>= Ada_2005
1102 and then Nkind
(N
) = N_Selected_Component
1103 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1105 Analyze_Selected_Component
(N
);
1107 if Nkind
(N
) /= N_Selected_Component
then
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam
:= Relocate_Node
(N
);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps
(N
, Nam
);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node
(N
, N_Function_Call
);
1127 Set_Sloc
(N
, Sloc
(Nam
));
1131 elsif Nkind
(N
) = N_Parameter_Association
then
1132 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1134 elsif Nkind
(N
) = N_Operator_Symbol
then
1135 Change_Operator_Symbol_To_String_Literal
(N
);
1136 Set_Is_Overloaded
(N
, False);
1137 Set_Etype
(N
, Any_String
);
1139 end Check_Parameterless_Call
;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1146 Pref
: constant Node_Id
:= Prefix
(N
);
1149 if not Is_Entity_Name
(Pref
) then
1154 Pent
: constant Entity_Id
:= Entity
(Pref
);
1155 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1157 return not Is_Access_Type
(Ptyp
)
1158 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1159 and then Present
(Address_Clause
(Pent
));
1162 end Is_Atomic_Ref_With_Address
;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1169 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1171 return Ekind
(Btyp
) = E_Access_Type
1172 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1173 and then Comes_From_Source
(Btyp
));
1174 end Is_Definite_Access_Type
;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram
(Nam
) then
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1194 return not Is_Generic_Instance
(Nam
)
1195 and then Chars
(Nam
) in Any_Operator_Name
1196 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1197 end Is_Predefined_Op
;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1208 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1209 Act1
: Node_Id
:= First_Actual
(N
);
1210 Act2
: Node_Id
:= Next_Actual
(Act1
);
1211 Error
: Boolean := False;
1212 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1213 Is_Binary
: constant Boolean := Present
(Act2
);
1215 Opnd_Type
: Entity_Id
;
1216 Orig_Type
: Entity_Id
:= Empty
;
1219 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1221 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1227 -- Find a type of the given class in package Pack that contains the
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1235 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1240 if not Is_Overloaded
(Nod
) then
1241 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1244 Get_First_Interp
(Nod
, I
, It
);
1245 while Present
(It
.Typ
) loop
1246 if Scope
(Base_Type
(It
.Typ
)) = S
then
1250 Get_Next_Interp
(I
, It
);
1255 end Operand_Type_In_Scope
;
1261 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1264 function In_Decl
return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1272 function In_Decl
return Boolean is
1273 Decl_Node
: constant Node_Id
:= Parent
(E
);
1279 if Etype
(E
) = Any_Type
then
1282 elsif No
(Decl_Node
) then
1287 and then Nkind
(N2
) /= N_Compilation_Unit
1289 if N2
= Decl_Node
then
1300 -- Start of processing for Type_In_P
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1307 return Base_Type
(Typ
);
1310 E
:= First_Entity
(Pack
);
1311 while Present
(E
) loop
1312 if Test
(E
) and then not In_Decl
then
1323 -- Start of processing for Make_Call_Into_Operator
1326 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1328 -- Ensure that the corresponding operator has the same parent as the
1329 -- original call. This guarantees that parent traversals performed by
1330 -- the ABE mechanism succeed.
1332 Set_Parent
(Op_Node
, Parent
(N
));
1337 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1338 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1339 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1340 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1341 Act1
:= Left_Opnd
(Op_Node
);
1342 Act2
:= Right_Opnd
(Op_Node
);
1347 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1348 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1349 Act1
:= Right_Opnd
(Op_Node
);
1352 -- If the operator is denoted by an expanded name, and the prefix is
1353 -- not Standard, but the operator is a predefined one whose scope is
1354 -- Standard, then this is an implicit_operator, inserted as an
1355 -- interpretation by the procedure of the same name. This procedure
1356 -- overestimates the presence of implicit operators, because it does
1357 -- not examine the type of the operands. Verify now that the operand
1358 -- type appears in the given scope. If right operand is universal,
1359 -- check the other operand. In the case of concatenation, either
1360 -- argument can be the component type, so check the type of the result.
1361 -- If both arguments are literals, look for a type of the right kind
1362 -- defined in the given scope. This elaborate nonsense is brought to
1363 -- you courtesy of b33302a. The type itself must be frozen, so we must
1364 -- find the type of the proper class in the given scope.
1366 -- A final wrinkle is the multiplication operator for fixed point types,
1367 -- which is defined in Standard only, and not in the scope of the
1368 -- fixed point type itself.
1370 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1371 Pack
:= Entity
(Prefix
(Name
(N
)));
1373 -- If this is a package renaming, get renamed entity, which will be
1374 -- the scope of the operands if operaton is type-correct.
1376 if Present
(Renamed_Entity
(Pack
)) then
1377 Pack
:= Renamed_Entity
(Pack
);
1380 -- If the entity being called is defined in the given package, it is
1381 -- a renaming of a predefined operator, and known to be legal.
1383 if Scope
(Entity
(Name
(N
))) = Pack
1384 and then Pack
/= Standard_Standard
1388 -- Visibility does not need to be checked in an instance: if the
1389 -- operator was not visible in the generic it has been diagnosed
1390 -- already, else there is an implicit copy of it in the instance.
1392 elsif In_Instance
then
1395 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1396 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1397 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1399 if Pack
/= Standard_Standard
then
1403 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1406 elsif Ada_Version
>= Ada_2005
1407 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1408 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1413 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1415 if Op_Name
= Name_Op_Concat
then
1416 Opnd_Type
:= Base_Type
(Typ
);
1418 elsif (Scope
(Opnd_Type
) = Standard_Standard
1420 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1422 and then not Comes_From_Source
(Opnd_Type
))
1424 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1427 if Scope
(Opnd_Type
) = Standard_Standard
then
1429 -- Verify that the scope contains a type that corresponds to
1430 -- the given literal. Optimize the case where Pack is Standard.
1432 if Pack
/= Standard_Standard
then
1433 if Opnd_Type
= Universal_Integer
then
1434 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1436 elsif Opnd_Type
= Universal_Real
then
1437 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1439 elsif Opnd_Type
= Any_String
then
1440 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1442 elsif Opnd_Type
= Any_Access
then
1443 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1445 elsif Opnd_Type
= Any_Composite
then
1446 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1448 if Present
(Orig_Type
) then
1449 if Has_Private_Component
(Orig_Type
) then
1452 Set_Etype
(Act1
, Orig_Type
);
1455 Set_Etype
(Act2
, Orig_Type
);
1464 Error
:= No
(Orig_Type
);
1467 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1468 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1472 -- If the type is defined elsewhere, and the operator is not
1473 -- defined in the given scope (by a renaming declaration, e.g.)
1474 -- then this is an error as well. If an extension of System is
1475 -- present, and the type may be defined there, Pack must be
1478 elsif Scope
(Opnd_Type
) /= Pack
1479 and then Scope
(Op_Id
) /= Pack
1480 and then (No
(System_Aux_Id
)
1481 or else Scope
(Opnd_Type
) /= System_Aux_Id
1482 or else Pack
/= Scope
(System_Aux_Id
))
1484 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1487 Error
:= not Operand_Type_In_Scope
(Pack
);
1490 elsif Pack
= Standard_Standard
1491 and then not Operand_Type_In_Scope
(Standard_Standard
)
1498 Error_Msg_Node_2
:= Pack
;
1500 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1501 Set_Etype
(N
, Any_Type
);
1504 -- Detect a mismatch between the context type and the result type
1505 -- in the named package, which is otherwise not detected if the
1506 -- operands are universal. Check is only needed if source entity is
1507 -- an operator, not a function that renames an operator.
1509 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1510 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1511 and then Is_Numeric_Type
(Typ
)
1512 and then not Is_Universal_Numeric_Type
(Typ
)
1513 and then Scope
(Base_Type
(Typ
)) /= Pack
1514 and then not In_Instance
1516 if Is_Fixed_Point_Type
(Typ
)
1517 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1519 -- Already checked above
1523 -- Operator may be defined in an extension of System
1525 elsif Present
(System_Aux_Id
)
1526 and then Scope
(Opnd_Type
) = System_Aux_Id
1531 -- Could we use Wrong_Type here??? (this would require setting
1532 -- Etype (N) to the actual type found where Typ was expected).
1534 Error_Msg_NE
("expect }", N
, Typ
);
1539 Set_Chars
(Op_Node
, Op_Name
);
1541 if not Is_Private_Type
(Etype
(N
)) then
1542 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1544 Set_Etype
(Op_Node
, Etype
(N
));
1547 -- If this is a call to a function that renames a predefined equality,
1548 -- the renaming declaration provides a type that must be used to
1549 -- resolve the operands. This must be done now because resolution of
1550 -- the equality node will not resolve any remaining ambiguity, and it
1551 -- assumes that the first operand is not overloaded.
1553 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1554 and then Ekind
(Func
) = E_Function
1555 and then Is_Overloaded
(Act1
)
1557 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1558 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1561 Set_Entity
(Op_Node
, Op_Id
);
1562 Generate_Reference
(Op_Id
, N
, ' ');
1564 -- Do rewrite setting Comes_From_Source on the result if the original
1565 -- call came from source. Although it is not strictly the case that the
1566 -- operator as such comes from the source, logically it corresponds
1567 -- exactly to the function call in the source, so it should be marked
1568 -- this way (e.g. to make sure that validity checks work fine).
1571 CS
: constant Boolean := Comes_From_Source
(N
);
1573 Rewrite
(N
, Op_Node
);
1574 Set_Comes_From_Source
(N
, CS
);
1577 -- If this is an arithmetic operator and the result type is private,
1578 -- the operands and the result must be wrapped in conversion to
1579 -- expose the underlying numeric type and expand the proper checks,
1580 -- e.g. on division.
1582 if Is_Private_Type
(Typ
) then
1592 Resolve_Intrinsic_Operator
(N
, Typ
);
1598 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1607 -- If in ASIS_Mode, propagate operand types to original actuals of
1608 -- function call, which would otherwise not be fully resolved. If
1609 -- the call has already been constant-folded, nothing to do. We
1610 -- relocate the operand nodes rather than copy them, to preserve
1611 -- original_node pointers, given that the operands themselves may
1612 -- have been rewritten. If the call was itself a rewriting of an
1613 -- operator node, nothing to do.
1616 and then Nkind
(N
) in N_Op
1617 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1621 R
: constant Node_Id
:= Right_Opnd
(N
);
1623 Old_First
: constant Node_Id
:=
1624 First
(Parameter_Associations
(Original_Node
(N
)));
1630 Old_Sec
:= Next
(Old_First
);
1632 -- If the original call has named associations, replace the
1633 -- explicit actual parameter in the association with the proper
1634 -- resolved operand.
1636 if Nkind
(Old_First
) = N_Parameter_Association
then
1637 if Chars
(Selector_Name
(Old_First
)) =
1638 Chars
(First_Entity
(Op_Id
))
1640 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1643 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1648 Rewrite
(Old_First
, Relocate_Node
(L
));
1651 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1652 if Chars
(Selector_Name
(Old_Sec
)) =
1653 Chars
(First_Entity
(Op_Id
))
1655 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1658 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1663 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1667 if Nkind
(Old_First
) = N_Parameter_Association
then
1668 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1671 Rewrite
(Old_First
, Relocate_Node
(R
));
1676 Set_Parent
(Original_Node
(N
), Parent
(N
));
1678 end Make_Call_Into_Operator
;
1684 function Operator_Kind
1686 Is_Binary
: Boolean) return Node_Kind
1691 -- Use CASE statement or array???
1694 if Op_Name
= Name_Op_And
then
1696 elsif Op_Name
= Name_Op_Or
then
1698 elsif Op_Name
= Name_Op_Xor
then
1700 elsif Op_Name
= Name_Op_Eq
then
1702 elsif Op_Name
= Name_Op_Ne
then
1704 elsif Op_Name
= Name_Op_Lt
then
1706 elsif Op_Name
= Name_Op_Le
then
1708 elsif Op_Name
= Name_Op_Gt
then
1710 elsif Op_Name
= Name_Op_Ge
then
1712 elsif Op_Name
= Name_Op_Add
then
1714 elsif Op_Name
= Name_Op_Subtract
then
1715 Kind
:= N_Op_Subtract
;
1716 elsif Op_Name
= Name_Op_Concat
then
1717 Kind
:= N_Op_Concat
;
1718 elsif Op_Name
= Name_Op_Multiply
then
1719 Kind
:= N_Op_Multiply
;
1720 elsif Op_Name
= Name_Op_Divide
then
1721 Kind
:= N_Op_Divide
;
1722 elsif Op_Name
= Name_Op_Mod
then
1724 elsif Op_Name
= Name_Op_Rem
then
1726 elsif Op_Name
= Name_Op_Expon
then
1729 raise Program_Error
;
1735 if Op_Name
= Name_Op_Add
then
1737 elsif Op_Name
= Name_Op_Subtract
then
1739 elsif Op_Name
= Name_Op_Abs
then
1741 elsif Op_Name
= Name_Op_Not
then
1744 raise Program_Error
;
1751 ----------------------------
1752 -- Preanalyze_And_Resolve --
1753 ----------------------------
1755 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1756 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1759 Full_Analysis
:= False;
1760 Expander_Mode_Save_And_Set
(False);
1762 -- Normally, we suppress all checks for this preanalysis. There is no
1763 -- point in processing them now, since they will be applied properly
1764 -- and in the proper location when the default expressions reanalyzed
1765 -- and reexpanded later on. We will also have more information at that
1766 -- point for possible suppression of individual checks.
1768 -- However, in SPARK mode, most expansion is suppressed, and this
1769 -- later reanalysis and reexpansion may not occur. SPARK mode does
1770 -- require the setting of checking flags for proof purposes, so we
1771 -- do the SPARK preanalysis without suppressing checks.
1773 -- This special handling for SPARK mode is required for example in the
1774 -- case of Ada 2012 constructs such as quantified expressions, which are
1775 -- expanded in two separate steps.
1777 if GNATprove_Mode
then
1778 Analyze_And_Resolve
(N
, T
);
1780 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1783 Expander_Mode_Restore
;
1784 Full_Analysis
:= Save_Full_Analysis
;
1785 end Preanalyze_And_Resolve
;
1787 -- Version without context type
1789 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1790 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1793 Full_Analysis
:= False;
1794 Expander_Mode_Save_And_Set
(False);
1797 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1799 Expander_Mode_Restore
;
1800 Full_Analysis
:= Save_Full_Analysis
;
1801 end Preanalyze_And_Resolve
;
1803 ----------------------------------
1804 -- Replace_Actual_Discriminants --
1805 ----------------------------------
1807 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1808 Loc
: constant Source_Ptr
:= Sloc
(N
);
1809 Tsk
: Node_Id
:= Empty
;
1811 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1812 -- Comment needed???
1818 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1822 if Nkind
(Nod
) = N_Identifier
then
1823 Ent
:= Entity
(Nod
);
1826 and then Ekind
(Ent
) = E_Discriminant
1829 Make_Selected_Component
(Loc
,
1830 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1831 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1833 Set_Etype
(Nod
, Etype
(Ent
));
1841 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1843 -- Start of processing for Replace_Actual_Discriminants
1846 if Expander_Active
then
1849 -- Allow the replacement of concurrent discriminants in GNATprove even
1850 -- though this is a light expansion activity. Note that generic units
1851 -- are not modified.
1853 elsif GNATprove_Mode
and not Inside_A_Generic
then
1860 if Nkind
(Name
(N
)) = N_Selected_Component
then
1861 Tsk
:= Prefix
(Name
(N
));
1863 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1864 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1867 if Present
(Tsk
) then
1868 Replace_Discrs
(Default
);
1870 end Replace_Actual_Discriminants
;
1876 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1877 Ambiguous
: Boolean := False;
1878 Ctx_Type
: Entity_Id
:= Typ
;
1879 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1880 Err_Type
: Entity_Id
:= Empty
;
1881 Found
: Boolean := False;
1884 I1
: Interp_Index
:= 0; -- prevent junk warning
1887 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1889 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1890 -- Determine whether a node comes from a predefined library unit or
1893 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1894 -- Try and fix up a literal so that it matches its expected type. New
1895 -- literals are manufactured if necessary to avoid cascaded errors.
1897 procedure Report_Ambiguous_Argument
;
1898 -- Additional diagnostics when an ambiguous call has an ambiguous
1899 -- argument (typically a controlling actual).
1901 procedure Resolution_Failed
;
1902 -- Called when attempt at resolving current expression fails
1904 ------------------------------------
1905 -- Comes_From_Predefined_Lib_Unit --
1906 -------------------------------------
1908 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1911 Sloc
(Nod
) = Standard_Location
or else In_Predefined_Unit
(Nod
);
1912 end Comes_From_Predefined_Lib_Unit
;
1914 --------------------
1915 -- Patch_Up_Value --
1916 --------------------
1918 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1920 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1922 Make_Real_Literal
(Sloc
(N
),
1923 Realval
=> UR_From_Uint
(Intval
(N
))));
1924 Set_Etype
(N
, Universal_Real
);
1925 Set_Is_Static_Expression
(N
);
1927 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1929 Make_Integer_Literal
(Sloc
(N
),
1930 Intval
=> UR_To_Uint
(Realval
(N
))));
1931 Set_Etype
(N
, Universal_Integer
);
1932 Set_Is_Static_Expression
(N
);
1934 elsif Nkind
(N
) = N_String_Literal
1935 and then Is_Character_Type
(Typ
)
1937 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1939 Make_Character_Literal
(Sloc
(N
),
1941 Char_Literal_Value
=>
1942 UI_From_Int
(Character'Pos ('A'))));
1943 Set_Etype
(N
, Any_Character
);
1944 Set_Is_Static_Expression
(N
);
1946 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1948 Make_String_Literal
(Sloc
(N
),
1949 Strval
=> End_String
));
1951 elsif Nkind
(N
) = N_Range
then
1952 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1953 Patch_Up_Value
(High_Bound
(N
), Typ
);
1957 -------------------------------
1958 -- Report_Ambiguous_Argument --
1959 -------------------------------
1961 procedure Report_Ambiguous_Argument
is
1962 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1967 if Nkind
(Arg
) = N_Function_Call
1968 and then Is_Entity_Name
(Name
(Arg
))
1969 and then Is_Overloaded
(Name
(Arg
))
1971 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1973 -- Could use comments on what is going on here???
1975 Get_First_Interp
(Name
(Arg
), I
, It
);
1976 while Present
(It
.Nam
) loop
1977 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1979 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1980 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1982 Error_Msg_N
("interpretation #!", Arg
);
1985 Get_Next_Interp
(I
, It
);
1988 end Report_Ambiguous_Argument
;
1990 -----------------------
1991 -- Resolution_Failed --
1992 -----------------------
1994 procedure Resolution_Failed
is
1996 Patch_Up_Value
(N
, Typ
);
1998 -- Set the type to the desired one to minimize cascaded errors. Note
1999 -- that this is an approximation and does not work in all cases.
2003 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
2004 Set_Is_Overloaded
(N
, False);
2006 -- The caller will return without calling the expander, so we need
2007 -- to set the analyzed flag. Note that it is fine to set Analyzed
2008 -- to True even if we are in the middle of a shallow analysis,
2009 -- (see the spec of sem for more details) since this is an error
2010 -- situation anyway, and there is no point in repeating the
2011 -- analysis later (indeed it won't work to repeat it later, since
2012 -- we haven't got a clear resolution of which entity is being
2015 Set_Analyzed
(N
, True);
2017 end Resolution_Failed
;
2019 -- Start of processing for Resolve
2026 -- Access attribute on remote subprogram cannot be used for a non-remote
2027 -- access-to-subprogram type.
2029 if Nkind
(N
) = N_Attribute_Reference
2030 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2031 Name_Unrestricted_Access
,
2032 Name_Unchecked_Access
)
2033 and then Comes_From_Source
(N
)
2034 and then Is_Entity_Name
(Prefix
(N
))
2035 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2036 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2037 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2040 ("prefix must statically denote a non-remote subprogram", N
);
2043 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2045 -- If the context is a Remote_Access_To_Subprogram, access attributes
2046 -- must be resolved with the corresponding fat pointer. There is no need
2047 -- to check for the attribute name since the return type of an
2048 -- attribute is never a remote type.
2050 if Nkind
(N
) = N_Attribute_Reference
2051 and then Comes_From_Source
(N
)
2052 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2055 Attr
: constant Attribute_Id
:=
2056 Get_Attribute_Id
(Attribute_Name
(N
));
2057 Pref
: constant Node_Id
:= Prefix
(N
);
2060 Is_Remote
: Boolean := True;
2063 -- Check that Typ is a remote access-to-subprogram type
2065 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2067 -- Prefix (N) must statically denote a remote subprogram
2068 -- declared in a package specification.
2070 if Attr
= Attribute_Access
or else
2071 Attr
= Attribute_Unchecked_Access
or else
2072 Attr
= Attribute_Unrestricted_Access
2074 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2076 if Nkind
(Decl
) = N_Subprogram_Body
then
2077 Spec
:= Corresponding_Spec
(Decl
);
2079 if Present
(Spec
) then
2080 Decl
:= Unit_Declaration_Node
(Spec
);
2084 Spec
:= Parent
(Decl
);
2086 if not Is_Entity_Name
(Prefix
(N
))
2087 or else Nkind
(Spec
) /= N_Package_Specification
2089 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2093 ("prefix must statically denote a remote subprogram ",
2097 -- If we are generating code in distributed mode, perform
2098 -- semantic checks against corresponding remote entities.
2101 and then Get_PCS_Name
/= Name_No_DSA
2103 Check_Subtype_Conformant
2104 (New_Id
=> Entity
(Prefix
(N
)),
2105 Old_Id
=> Designated_Type
2106 (Corresponding_Remote_Type
(Typ
)),
2110 Process_Remote_AST_Attribute
(N
, Typ
);
2118 Debug_A_Entry
("resolving ", N
);
2120 if Debug_Flag_V
then
2121 Write_Overloads
(N
);
2124 if Comes_From_Source
(N
) then
2125 if Is_Fixed_Point_Type
(Typ
) then
2126 Check_Restriction
(No_Fixed_Point
, N
);
2128 elsif Is_Floating_Point_Type
(Typ
)
2129 and then Typ
/= Universal_Real
2130 and then Typ
/= Any_Real
2132 Check_Restriction
(No_Floating_Point
, N
);
2136 -- Return if already analyzed
2138 if Analyzed
(N
) then
2139 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2140 Analyze_Dimension
(N
);
2143 -- Any case of Any_Type as the Etype value means that we had a
2146 elsif Etype
(N
) = Any_Type
then
2147 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2151 Check_Parameterless_Call
(N
);
2153 -- The resolution of an Expression_With_Actions is determined by
2156 if Nkind
(N
) = N_Expression_With_Actions
then
2157 Resolve
(Expression
(N
), Typ
);
2160 Expr_Type
:= Etype
(Expression
(N
));
2162 -- If not overloaded, then we know the type, and all that needs doing
2163 -- is to check that this type is compatible with the context.
2165 elsif not Is_Overloaded
(N
) then
2166 Found
:= Covers
(Typ
, Etype
(N
));
2167 Expr_Type
:= Etype
(N
);
2169 -- In the overloaded case, we must select the interpretation that
2170 -- is compatible with the context (i.e. the type passed to Resolve)
2173 -- Loop through possible interpretations
2175 Get_First_Interp
(N
, I
, It
);
2176 Interp_Loop
: while Present
(It
.Typ
) loop
2177 if Debug_Flag_V
then
2178 Write_Str
("Interp: ");
2182 -- We are only interested in interpretations that are compatible
2183 -- with the expected type, any other interpretations are ignored.
2185 if not Covers
(Typ
, It
.Typ
) then
2186 if Debug_Flag_V
then
2187 Write_Str
(" interpretation incompatible with context");
2192 -- Skip the current interpretation if it is disabled by an
2193 -- abstract operator. This action is performed only when the
2194 -- type against which we are resolving is the same as the
2195 -- type of the interpretation.
2197 if Ada_Version
>= Ada_2005
2198 and then It
.Typ
= Typ
2199 and then Typ
/= Universal_Integer
2200 and then Typ
/= Universal_Real
2201 and then Present
(It
.Abstract_Op
)
2203 if Debug_Flag_V
then
2204 Write_Line
("Skip.");
2210 -- First matching interpretation
2216 Expr_Type
:= It
.Typ
;
2218 -- Matching interpretation that is not the first, maybe an
2219 -- error, but there are some cases where preference rules are
2220 -- used to choose between the two possibilities. These and
2221 -- some more obscure cases are handled in Disambiguate.
2224 -- If the current statement is part of a predefined library
2225 -- unit, then all interpretations which come from user level
2226 -- packages should not be considered. Check previous and
2230 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2233 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2235 -- Previous interpretation must be discarded
2239 Expr_Type
:= It
.Typ
;
2240 Set_Entity
(N
, Seen
);
2245 -- Otherwise apply further disambiguation steps
2247 Error_Msg_Sloc
:= Sloc
(Seen
);
2248 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2250 -- Disambiguation has succeeded. Skip the remaining
2253 if It1
/= No_Interp
then
2255 Expr_Type
:= It1
.Typ
;
2257 while Present
(It
.Typ
) loop
2258 Get_Next_Interp
(I
, It
);
2262 -- Before we issue an ambiguity complaint, check for the
2263 -- case of a subprogram call where at least one of the
2264 -- arguments is Any_Type, and if so suppress the message,
2265 -- since it is a cascaded error. This can also happen for
2266 -- a generalized indexing operation.
2268 if Nkind
(N
) in N_Subprogram_Call
2269 or else (Nkind
(N
) = N_Indexed_Component
2270 and then Present
(Generalized_Indexing
(N
)))
2277 if Nkind
(N
) = N_Indexed_Component
then
2278 Rewrite
(N
, Generalized_Indexing
(N
));
2281 A
:= First_Actual
(N
);
2282 while Present
(A
) loop
2285 if Nkind
(E
) = N_Parameter_Association
then
2286 E
:= Explicit_Actual_Parameter
(E
);
2289 if Etype
(E
) = Any_Type
then
2290 if Debug_Flag_V
then
2291 Write_Str
("Any_Type in call");
2302 elsif Nkind
(N
) in N_Binary_Op
2303 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2304 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2308 elsif Nkind
(N
) in N_Unary_Op
2309 and then Etype
(Right_Opnd
(N
)) = Any_Type
2314 -- Not that special case, so issue message using the flag
2315 -- Ambiguous to control printing of the header message
2316 -- only at the start of an ambiguous set.
2318 if not Ambiguous
then
2319 if Nkind
(N
) = N_Function_Call
2320 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2323 ("ambiguous expression (cannot resolve indirect "
2326 Error_Msg_NE
-- CODEFIX
2327 ("ambiguous expression (cannot resolve&)!",
2333 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2335 ("\\possible interpretation (inherited)#!", N
);
2337 Error_Msg_N
-- CODEFIX
2338 ("\\possible interpretation#!", N
);
2341 if Nkind
(N
) in N_Subprogram_Call
2342 and then Present
(Parameter_Associations
(N
))
2344 Report_Ambiguous_Argument
;
2348 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2350 -- By default, the error message refers to the candidate
2351 -- interpretation. But if it is a predefined operator, it
2352 -- is implicitly declared at the declaration of the type
2353 -- of the operand. Recover the sloc of that declaration
2354 -- for the error message.
2356 if Nkind
(N
) in N_Op
2357 and then Scope
(It
.Nam
) = Standard_Standard
2358 and then not Is_Overloaded
(Right_Opnd
(N
))
2359 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2362 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2364 if Comes_From_Source
(Err_Type
)
2365 and then Present
(Parent
(Err_Type
))
2367 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2370 elsif Nkind
(N
) in N_Binary_Op
2371 and then Scope
(It
.Nam
) = Standard_Standard
2372 and then not Is_Overloaded
(Left_Opnd
(N
))
2373 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2376 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2378 if Comes_From_Source
(Err_Type
)
2379 and then Present
(Parent
(Err_Type
))
2381 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2384 -- If this is an indirect call, use the subprogram_type
2385 -- in the message, to have a meaningful location. Also
2386 -- indicate if this is an inherited operation, created
2387 -- by a type declaration.
2389 elsif Nkind
(N
) = N_Function_Call
2390 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2391 and then Is_Type
(It
.Nam
)
2395 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2400 if Nkind
(N
) in N_Op
2401 and then Scope
(It
.Nam
) = Standard_Standard
2402 and then Present
(Err_Type
)
2404 -- Special-case the message for universal_fixed
2405 -- operators, which are not declared with the type
2406 -- of the operand, but appear forever in Standard.
2408 if It
.Typ
= Universal_Fixed
2409 and then Scope
(It
.Nam
) = Standard_Standard
2412 ("\\possible interpretation as universal_fixed "
2413 & "operation (RM 4.5.5 (19))", N
);
2416 ("\\possible interpretation (predefined)#!", N
);
2420 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2423 ("\\possible interpretation (inherited)#!", N
);
2425 Error_Msg_N
-- CODEFIX
2426 ("\\possible interpretation#!", N
);
2432 -- We have a matching interpretation, Expr_Type is the type
2433 -- from this interpretation, and Seen is the entity.
2435 -- For an operator, just set the entity name. The type will be
2436 -- set by the specific operator resolution routine.
2438 if Nkind
(N
) in N_Op
then
2439 Set_Entity
(N
, Seen
);
2440 Generate_Reference
(Seen
, N
);
2442 elsif Nkind
(N
) = N_Case_Expression
then
2443 Set_Etype
(N
, Expr_Type
);
2445 elsif Nkind
(N
) = N_Character_Literal
then
2446 Set_Etype
(N
, Expr_Type
);
2448 elsif Nkind
(N
) = N_If_Expression
then
2449 Set_Etype
(N
, Expr_Type
);
2451 -- AI05-0139-2: Expression is overloaded because type has
2452 -- implicit dereference. If type matches context, no implicit
2453 -- dereference is involved.
2455 elsif Has_Implicit_Dereference
(Expr_Type
) then
2456 Set_Etype
(N
, Expr_Type
);
2457 Set_Is_Overloaded
(N
, False);
2460 elsif Is_Overloaded
(N
)
2461 and then Present
(It
.Nam
)
2462 and then Ekind
(It
.Nam
) = E_Discriminant
2463 and then Has_Implicit_Dereference
(It
.Nam
)
2465 -- If the node is a general indexing, the dereference is
2466 -- is inserted when resolving the rewritten form, else
2469 if Nkind
(N
) /= N_Indexed_Component
2470 or else No
(Generalized_Indexing
(N
))
2472 Build_Explicit_Dereference
(N
, It
.Nam
);
2475 -- For an explicit dereference, attribute reference, range,
2476 -- short-circuit form (which is not an operator node), or call
2477 -- with a name that is an explicit dereference, there is
2478 -- nothing to be done at this point.
2480 elsif Nkind_In
(N
, N_Attribute_Reference
,
2482 N_Explicit_Dereference
,
2484 N_Indexed_Component
,
2487 N_Selected_Component
,
2489 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2493 -- For procedure or function calls, set the type of the name,
2494 -- and also the entity pointer for the prefix.
2496 elsif Nkind
(N
) in N_Subprogram_Call
2497 and then Is_Entity_Name
(Name
(N
))
2499 Set_Etype
(Name
(N
), Expr_Type
);
2500 Set_Entity
(Name
(N
), Seen
);
2501 Generate_Reference
(Seen
, Name
(N
));
2503 elsif Nkind
(N
) = N_Function_Call
2504 and then Nkind
(Name
(N
)) = N_Selected_Component
2506 Set_Etype
(Name
(N
), Expr_Type
);
2507 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2508 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2510 -- For all other cases, just set the type of the Name
2513 Set_Etype
(Name
(N
), Expr_Type
);
2520 -- Move to next interpretation
2522 exit Interp_Loop
when No
(It
.Typ
);
2524 Get_Next_Interp
(I
, It
);
2525 end loop Interp_Loop
;
2528 -- At this stage Found indicates whether or not an acceptable
2529 -- interpretation exists. If not, then we have an error, except that if
2530 -- the context is Any_Type as a result of some other error, then we
2531 -- suppress the error report.
2534 if Typ
/= Any_Type
then
2536 -- If type we are looking for is Void, then this is the procedure
2537 -- call case, and the error is simply that what we gave is not a
2538 -- procedure name (we think of procedure calls as expressions with
2539 -- types internally, but the user doesn't think of them this way).
2541 if Typ
= Standard_Void_Type
then
2543 -- Special case message if function used as a procedure
2545 if Nkind
(N
) = N_Procedure_Call_Statement
2546 and then Is_Entity_Name
(Name
(N
))
2547 and then Ekind
(Entity
(Name
(N
))) = E_Function
2550 ("cannot use call to function & as a statement",
2551 Name
(N
), Entity
(Name
(N
)));
2553 ("\return value of a function call cannot be ignored",
2556 -- Otherwise give general message (not clear what cases this
2557 -- covers, but no harm in providing for them).
2560 Error_Msg_N
("expect procedure name in procedure call", N
);
2565 -- Otherwise we do have a subexpression with the wrong type
2567 -- Check for the case of an allocator which uses an access type
2568 -- instead of the designated type. This is a common error and we
2569 -- specialize the message, posting an error on the operand of the
2570 -- allocator, complaining that we expected the designated type of
2573 elsif Nkind
(N
) = N_Allocator
2574 and then Is_Access_Type
(Typ
)
2575 and then Is_Access_Type
(Etype
(N
))
2576 and then Designated_Type
(Etype
(N
)) = Typ
2578 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2581 -- Check for view mismatch on Null in instances, for which the
2582 -- view-swapping mechanism has no identifier.
2584 elsif (In_Instance
or else In_Inlined_Body
)
2585 and then (Nkind
(N
) = N_Null
)
2586 and then Is_Private_Type
(Typ
)
2587 and then Is_Access_Type
(Full_View
(Typ
))
2589 Resolve
(N
, Full_View
(Typ
));
2593 -- Check for an aggregate. Sometimes we can get bogus aggregates
2594 -- from misuse of parentheses, and we are about to complain about
2595 -- the aggregate without even looking inside it.
2597 -- Instead, if we have an aggregate of type Any_Composite, then
2598 -- analyze and resolve the component fields, and then only issue
2599 -- another message if we get no errors doing this (otherwise
2600 -- assume that the errors in the aggregate caused the problem).
2602 elsif Nkind
(N
) = N_Aggregate
2603 and then Etype
(N
) = Any_Composite
2605 -- Disable expansion in any case. If there is a type mismatch
2606 -- it may be fatal to try to expand the aggregate. The flag
2607 -- would otherwise be set to false when the error is posted.
2609 Expander_Active
:= False;
2612 procedure Check_Aggr
(Aggr
: Node_Id
);
2613 -- Check one aggregate, and set Found to True if we have a
2614 -- definite error in any of its elements
2616 procedure Check_Elmt
(Aelmt
: Node_Id
);
2617 -- Check one element of aggregate and set Found to True if
2618 -- we definitely have an error in the element.
2624 procedure Check_Aggr
(Aggr
: Node_Id
) is
2628 if Present
(Expressions
(Aggr
)) then
2629 Elmt
:= First
(Expressions
(Aggr
));
2630 while Present
(Elmt
) loop
2636 if Present
(Component_Associations
(Aggr
)) then
2637 Elmt
:= First
(Component_Associations
(Aggr
));
2638 while Present
(Elmt
) loop
2640 -- If this is a default-initialized component, then
2641 -- there is nothing to check. The box will be
2642 -- replaced by the appropriate call during late
2645 if Nkind
(Elmt
) /= N_Iterated_Component_Association
2646 and then not Box_Present
(Elmt
)
2648 Check_Elmt
(Expression
(Elmt
));
2660 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2662 -- If we have a nested aggregate, go inside it (to
2663 -- attempt a naked analyze-resolve of the aggregate can
2664 -- cause undesirable cascaded errors). Do not resolve
2665 -- expression if it needs a type from context, as for
2666 -- integer * fixed expression.
2668 if Nkind
(Aelmt
) = N_Aggregate
then
2674 if not Is_Overloaded
(Aelmt
)
2675 and then Etype
(Aelmt
) /= Any_Fixed
2680 if Etype
(Aelmt
) = Any_Type
then
2691 -- Looks like we have a type error, but check for special case
2692 -- of Address wanted, integer found, with the configuration pragma
2693 -- Allow_Integer_Address active. If we have this case, introduce
2694 -- an unchecked conversion to allow the integer expression to be
2695 -- treated as an Address. The reverse case of integer wanted,
2696 -- Address found, is treated in an analogous manner.
2698 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2699 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2700 Analyze_And_Resolve
(N
, Typ
);
2703 -- Under relaxed RM semantics silently replace occurrences of null
2704 -- by System.Address_Null.
2706 elsif Null_To_Null_Address_Convert_OK
(N
, Typ
) then
2707 Replace_Null_By_Null_Address
(N
);
2708 Analyze_And_Resolve
(N
, Typ
);
2712 -- That special Allow_Integer_Address check did not apply, so we
2713 -- have a real type error. If an error message was issued already,
2714 -- Found got reset to True, so if it's still False, issue standard
2715 -- Wrong_Type message.
2718 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2720 Subp_Name
: Node_Id
;
2723 if Is_Entity_Name
(Name
(N
)) then
2724 Subp_Name
:= Name
(N
);
2726 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2728 -- Protected operation: retrieve operation name
2730 Subp_Name
:= Selector_Name
(Name
(N
));
2733 raise Program_Error
;
2736 Error_Msg_Node_2
:= Typ
;
2738 ("no visible interpretation of& matches expected type&",
2742 if All_Errors_Mode
then
2744 Index
: Interp_Index
;
2748 Error_Msg_N
("\\possible interpretations:", N
);
2750 Get_First_Interp
(Name
(N
), Index
, It
);
2751 while Present
(It
.Nam
) loop
2752 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2753 Error_Msg_Node_2
:= It
.Nam
;
2755 ("\\ type& for & declared#", N
, It
.Typ
);
2756 Get_Next_Interp
(Index
, It
);
2761 Error_Msg_N
("\use -gnatf for details", N
);
2765 Wrong_Type
(N
, Typ
);
2773 -- Test if we have more than one interpretation for the context
2775 elsif Ambiguous
then
2779 -- Only one intepretation
2782 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2783 -- the "+" on T is abstract, and the operands are of universal type,
2784 -- the above code will have (incorrectly) resolved the "+" to the
2785 -- universal one in Standard. Therefore check for this case and give
2786 -- an error. We can't do this earlier, because it would cause legal
2787 -- cases to get errors (when some other type has an abstract "+").
2789 if Ada_Version
>= Ada_2005
2790 and then Nkind
(N
) in N_Op
2791 and then Is_Overloaded
(N
)
2792 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2794 Get_First_Interp
(N
, I
, It
);
2795 while Present
(It
.Typ
) loop
2796 if Present
(It
.Abstract_Op
) and then
2797 Etype
(It
.Abstract_Op
) = Typ
2800 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2804 Get_Next_Interp
(I
, It
);
2808 -- Here we have an acceptable interpretation for the context
2810 -- Propagate type information and normalize tree for various
2811 -- predefined operations. If the context only imposes a class of
2812 -- types, rather than a specific type, propagate the actual type
2815 if Typ
= Any_Integer
or else
2816 Typ
= Any_Boolean
or else
2817 Typ
= Any_Modular
or else
2818 Typ
= Any_Real
or else
2821 Ctx_Type
:= Expr_Type
;
2823 -- Any_Fixed is legal in a real context only if a specific fixed-
2824 -- point type is imposed. If Norman Cohen can be confused by this,
2825 -- it deserves a separate message.
2828 and then Expr_Type
= Any_Fixed
2830 Error_Msg_N
("illegal context for mixed mode operation", N
);
2831 Set_Etype
(N
, Universal_Real
);
2832 Ctx_Type
:= Universal_Real
;
2836 -- A user-defined operator is transformed into a function call at
2837 -- this point, so that further processing knows that operators are
2838 -- really operators (i.e. are predefined operators). User-defined
2839 -- operators that are intrinsic are just renamings of the predefined
2840 -- ones, and need not be turned into calls either, but if they rename
2841 -- a different operator, we must transform the node accordingly.
2842 -- Instantiations of Unchecked_Conversion are intrinsic but are
2843 -- treated as functions, even if given an operator designator.
2845 if Nkind
(N
) in N_Op
2846 and then Present
(Entity
(N
))
2847 and then Ekind
(Entity
(N
)) /= E_Operator
2849 if not Is_Predefined_Op
(Entity
(N
)) then
2850 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2852 elsif Present
(Alias
(Entity
(N
)))
2854 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2855 N_Subprogram_Renaming_Declaration
2857 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2859 -- If the node is rewritten, it will be fully resolved in
2860 -- Rewrite_Renamed_Operator.
2862 if Analyzed
(N
) then
2868 case N_Subexpr
'(Nkind (N)) is
2870 Resolve_Aggregate (N, Ctx_Type);
2873 Resolve_Allocator (N, Ctx_Type);
2875 when N_Short_Circuit =>
2876 Resolve_Short_Circuit (N, Ctx_Type);
2878 when N_Attribute_Reference =>
2879 Resolve_Attribute (N, Ctx_Type);
2881 when N_Case_Expression =>
2882 Resolve_Case_Expression (N, Ctx_Type);
2884 when N_Character_Literal =>
2885 Resolve_Character_Literal (N, Ctx_Type);
2887 when N_Delta_Aggregate =>
2888 Resolve_Delta_Aggregate (N, Ctx_Type);
2890 when N_Expanded_Name =>
2891 Resolve_Entity_Name (N, Ctx_Type);
2893 when N_Explicit_Dereference =>
2894 Resolve_Explicit_Dereference (N, Ctx_Type);
2896 when N_Expression_With_Actions =>
2897 Resolve_Expression_With_Actions (N, Ctx_Type);
2899 when N_Extension_Aggregate =>
2900 Resolve_Extension_Aggregate (N, Ctx_Type);
2902 when N_Function_Call =>
2903 Resolve_Call (N, Ctx_Type);
2905 when N_Identifier =>
2906 Resolve_Entity_Name (N, Ctx_Type);
2908 when N_If_Expression =>
2909 Resolve_If_Expression (N, Ctx_Type);
2911 when N_Indexed_Component =>
2912 Resolve_Indexed_Component (N, Ctx_Type);
2914 when N_Integer_Literal =>
2915 Resolve_Integer_Literal (N, Ctx_Type);
2917 when N_Membership_Test =>
2918 Resolve_Membership_Op (N, Ctx_Type);
2921 Resolve_Null (N, Ctx_Type);
2927 Resolve_Logical_Op (N, Ctx_Type);
2932 Resolve_Equality_Op (N, Ctx_Type);
2939 Resolve_Comparison_Op (N, Ctx_Type);
2942 Resolve_Op_Not (N, Ctx_Type);
2951 Resolve_Arithmetic_Op (N, Ctx_Type);
2954 Resolve_Op_Concat (N, Ctx_Type);
2957 Resolve_Op_Expon (N, Ctx_Type);
2963 Resolve_Unary_Op (N, Ctx_Type);
2966 Resolve_Shift (N, Ctx_Type);
2968 when N_Procedure_Call_Statement =>
2969 Resolve_Call (N, Ctx_Type);
2971 when N_Operator_Symbol =>
2972 Resolve_Operator_Symbol (N, Ctx_Type);
2974 when N_Qualified_Expression =>
2975 Resolve_Qualified_Expression (N, Ctx_Type);
2977 -- Why is the following null, needs a comment ???
2979 when N_Quantified_Expression =>
2982 when N_Raise_Expression =>
2983 Resolve_Raise_Expression (N, Ctx_Type);
2985 when N_Raise_xxx_Error =>
2986 Set_Etype (N, Ctx_Type);
2989 Resolve_Range (N, Ctx_Type);
2991 when N_Real_Literal =>
2992 Resolve_Real_Literal (N, Ctx_Type);
2995 Resolve_Reference (N, Ctx_Type);
2997 when N_Selected_Component =>
2998 Resolve_Selected_Component (N, Ctx_Type);
3001 Resolve_Slice (N, Ctx_Type);
3003 when N_String_Literal =>
3004 Resolve_String_Literal (N, Ctx_Type);
3006 when N_Target_Name =>
3007 Resolve_Target_Name (N, Ctx_Type);
3009 when N_Type_Conversion =>
3010 Resolve_Type_Conversion (N, Ctx_Type);
3012 when N_Unchecked_Expression =>
3013 Resolve_Unchecked_Expression (N, Ctx_Type);
3015 when N_Unchecked_Type_Conversion =>
3016 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3019 -- Mark relevant use-type and use-package clauses as effective using
3020 -- the original node because constant folding may have occured and
3021 -- removed references that need to be examined.
3023 if Nkind (Original_Node (N)) in N_Op then
3024 Mark_Use_Clauses (Original_Node (N));
3027 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3028 -- expression of an anonymous access type that occurs in the context
3029 -- of a named general access type, except when the expression is that
3030 -- of a membership test. This ensures proper legality checking in
3031 -- terms of allowed conversions (expressions that would be illegal to
3032 -- convert implicitly are allowed in membership tests).
3034 if Ada_Version >= Ada_2012
3035 and then Ekind (Ctx_Type) = E_General_Access_Type
3036 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3037 and then Nkind (Parent (N)) not in N_Membership_Test
3039 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3040 Analyze_And_Resolve (N, Ctx_Type);
3043 -- If the subexpression was replaced by a non-subexpression, then
3044 -- all we do is to expand it. The only legitimate case we know of
3045 -- is converting procedure call statement to entry call statements,
3046 -- but there may be others, so we are making this test general.
3048 if Nkind (N) not in N_Subexpr then
3049 Debug_A_Exit ("resolving ", N, " (done)");
3054 -- The expression is definitely NOT overloaded at this point, so
3055 -- we reset the Is_Overloaded flag to avoid any confusion when
3056 -- reanalyzing the node.
3058 Set_Is_Overloaded (N, False);
3060 -- Freeze expression type, entity if it is a name, and designated
3061 -- type if it is an allocator (RM 13.14(10,11,13)).
3063 -- Now that the resolution of the type of the node is complete, and
3064 -- we did not detect an error, we can expand this node. We skip the
3065 -- expand call if we are in a default expression, see section
3066 -- "Handling of Default Expressions" in Sem spec.
3068 Debug_A_Exit ("resolving ", N, " (done)");
3070 -- We unconditionally freeze the expression, even if we are in
3071 -- default expression mode (the Freeze_Expression routine tests this
3072 -- flag and only freezes static types if it is set).
3074 -- Ada 2012 (AI05-177): The declaration of an expression function
3075 -- does not cause freezing, but we never reach here in that case.
3076 -- Here we are resolving the corresponding expanded body, so we do
3077 -- need to perform normal freezing.
3079 -- As elsewhere we do not emit freeze node within a generic. We make
3080 -- an exception for entities that are expressions, only to detect
3081 -- misuses of deferred constants and preserve the output of various
3084 if not Inside_A_Generic or else Is_Entity_Name (N) then
3085 Freeze_Expression (N);
3088 -- Now we can do the expansion
3098 -- Version with check(s) suppressed
3100 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3102 if Suppress = All_Checks then
3104 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3106 Scope_Suppress.Suppress := (others => True);
3108 Scope_Suppress.Suppress := Sva;
3113 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3115 Scope_Suppress.Suppress (Suppress) := True;
3117 Scope_Suppress.Suppress (Suppress) := Svg;
3126 -- Version with implicit type
3128 procedure Resolve (N : Node_Id) is
3130 Resolve (N, Etype (N));
3133 ---------------------
3134 -- Resolve_Actuals --
3135 ---------------------
3137 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3138 Loc : constant Source_Ptr := Sloc (N);
3144 Prev : Node_Id := Empty;
3148 Real_Subp : Entity_Id;
3149 -- If the subprogram being called is an inherited operation for
3150 -- a formal derived type in an instance, Real_Subp is the subprogram
3151 -- that will be called. It may have different formal names than the
3152 -- operation of the formal in the generic, so after actual is resolved
3153 -- the name of the actual in a named association must carry the name
3154 -- of the actual of the subprogram being called.
3156 procedure Check_Aliased_Parameter;
3157 -- Check rules on aliased parameters and related accessibility rules
3158 -- in (RM 3.10.2 (10.2-10.4)).
3160 procedure Check_Argument_Order;
3161 -- Performs a check for the case where the actuals are all simple
3162 -- identifiers that correspond to the formal names, but in the wrong
3163 -- order, which is considered suspicious and cause for a warning.
3165 procedure Check_Prefixed_Call;
3166 -- If the original node is an overloaded call in prefix notation,
3167 -- insert an 'Access or a dereference as needed over the first actual
.
3168 -- Try_Object_Operation has already verified that there is a valid
3169 -- interpretation, but the form of the actual can only be determined
3170 -- once the primitive operation is identified.
3172 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
);
3173 -- Emit an error concerning the illegal usage of an effectively volatile
3174 -- object in interfering context (SPARK RM 7.13(12)).
3176 procedure Insert_Default
;
3177 -- If the actual is missing in a call, insert in the actuals list
3178 -- an instance of the default expression. The insertion is always
3179 -- a named association.
3181 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3182 -- Check whether T1 and T2, or their full views, are derived from a
3183 -- common type. Used to enforce the restrictions on array conversions
3186 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3187 -- Predicate to determine whether an actual that is a concatenation
3188 -- will be evaluated statically and does not need a transient scope.
3189 -- This must be determined before the actual is resolved and expanded
3190 -- because if needed the transient scope must be introduced earlier.
3192 -----------------------------
3193 -- Check_Aliased_Parameter --
3194 -----------------------------
3196 procedure Check_Aliased_Parameter
is
3197 Nominal_Subt
: Entity_Id
;
3200 if Is_Aliased
(F
) then
3201 if Is_Tagged_Type
(A_Typ
) then
3204 elsif Is_Aliased_View
(A
) then
3205 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3206 Nominal_Subt
:= Base_Type
(A_Typ
);
3208 Nominal_Subt
:= A_Typ
;
3211 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3214 -- In a generic body assume the worst for generic formals:
3215 -- they can have a constrained partial view (AI05-041).
3217 elsif Has_Discriminants
(F_Typ
)
3218 and then not Is_Constrained
(F_Typ
)
3219 and then not Has_Constrained_Partial_View
(F_Typ
)
3220 and then not Is_Generic_Type
(F_Typ
)
3225 Error_Msg_NE
("untagged actual does not match "
3226 & "aliased formal&", A
, F
);
3230 Error_Msg_NE
("actual for aliased formal& must be "
3231 & "aliased object", A
, F
);
3234 if Ekind
(Nam
) = E_Procedure
then
3237 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3238 if Nkind
(Parent
(N
)) = N_Type_Conversion
3239 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3240 Object_Access_Level
(A
)
3242 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3245 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3246 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3247 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3248 Object_Access_Level
(A
)
3251 ("aliased actual in allocator has wrong accessibility", A
);
3254 end Check_Aliased_Parameter
;
3256 --------------------------
3257 -- Check_Argument_Order --
3258 --------------------------
3260 procedure Check_Argument_Order
is
3262 -- Nothing to do if no parameters, or original node is neither a
3263 -- function call nor a procedure call statement (happens in the
3264 -- operator-transformed-to-function call case), or the call does
3265 -- not come from source, or this warning is off.
3267 if not Warn_On_Parameter_Order
3268 or else No
(Parameter_Associations
(N
))
3269 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3270 or else not Comes_From_Source
(N
)
3276 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3279 -- Nothing to do if only one parameter
3285 -- Here if at least two arguments
3288 Actuals
: array (1 .. Nargs
) of Node_Id
;
3292 Wrong_Order
: Boolean := False;
3293 -- Set True if an out of order case is found
3296 -- Collect identifier names of actuals, fail if any actual is
3297 -- not a simple identifier, and record max length of name.
3299 Actual
:= First
(Parameter_Associations
(N
));
3300 for J
in Actuals
'Range loop
3301 if Nkind
(Actual
) /= N_Identifier
then
3304 Actuals
(J
) := Actual
;
3309 -- If we got this far, all actuals are identifiers and the list
3310 -- of their names is stored in the Actuals array.
3312 Formal
:= First_Formal
(Nam
);
3313 for J
in Actuals
'Range loop
3315 -- If we ran out of formals, that's odd, probably an error
3316 -- which will be detected elsewhere, but abandon the search.
3322 -- If name matches and is in order OK
3324 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3328 -- If no match, see if it is elsewhere in list and if so
3329 -- flag potential wrong order if type is compatible.
3331 for K
in Actuals
'Range loop
3332 if Chars
(Formal
) = Chars
(Actuals
(K
))
3334 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3336 Wrong_Order
:= True;
3346 <<Continue
>> Next_Formal
(Formal
);
3349 -- If Formals left over, also probably an error, skip warning
3351 if Present
(Formal
) then
3355 -- Here we give the warning if something was out of order
3359 ("?P?actuals for this call may be in wrong order", N
);
3363 end Check_Argument_Order
;
3365 -------------------------
3366 -- Check_Prefixed_Call --
3367 -------------------------
3369 procedure Check_Prefixed_Call
is
3370 Act
: constant Node_Id
:= First_Actual
(N
);
3371 A_Type
: constant Entity_Id
:= Etype
(Act
);
3372 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3373 Orig
: constant Node_Id
:= Original_Node
(N
);
3377 -- Check whether the call is a prefixed call, with or without
3378 -- additional actuals.
3380 if Nkind
(Orig
) = N_Selected_Component
3382 (Nkind
(Orig
) = N_Indexed_Component
3383 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3384 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3385 and then Is_Entity_Name
(Act
)
3386 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3388 if Is_Access_Type
(A_Type
)
3389 and then not Is_Access_Type
(F_Type
)
3391 -- Introduce dereference on object in prefix
3394 Make_Explicit_Dereference
(Sloc
(Act
),
3395 Prefix
=> Relocate_Node
(Act
));
3396 Rewrite
(Act
, New_A
);
3399 elsif Is_Access_Type
(F_Type
)
3400 and then not Is_Access_Type
(A_Type
)
3402 -- Introduce an implicit 'Access in prefix
3404 if not Is_Aliased_View
(Act
) then
3406 ("object in prefixed call to& must be aliased "
3407 & "(RM 4.1.3 (13 1/2))",
3412 Make_Attribute_Reference
(Loc
,
3413 Attribute_Name
=> Name_Access
,
3414 Prefix
=> Relocate_Node
(Act
)));
3419 end Check_Prefixed_Call
;
3421 ---------------------------------------
3422 -- Flag_Effectively_Volatile_Objects --
3423 ---------------------------------------
3425 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
) is
3426 function Flag_Object
(N
: Node_Id
) return Traverse_Result
;
3427 -- Determine whether arbitrary node N denotes an effectively volatile
3428 -- object and if it does, emit an error.
3434 function Flag_Object
(N
: Node_Id
) return Traverse_Result
is
3438 -- Do not consider nested function calls because they have already
3439 -- been processed during their own resolution.
3441 if Nkind
(N
) = N_Function_Call
then
3444 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
3448 and then Is_Effectively_Volatile
(Id
)
3449 and then (Async_Writers_Enabled
(Id
)
3450 or else Effective_Reads_Enabled
(Id
))
3453 ("volatile object cannot appear in this context (SPARK "
3454 & "RM 7.1.3(11))", N
);
3462 procedure Flag_Objects
is new Traverse_Proc
(Flag_Object
);
3464 -- Start of processing for Flag_Effectively_Volatile_Objects
3467 Flag_Objects
(Expr
);
3468 end Flag_Effectively_Volatile_Objects
;
3470 --------------------
3471 -- Insert_Default --
3472 --------------------
3474 procedure Insert_Default
is
3479 -- Missing argument in call, nothing to insert
3481 if No
(Default_Value
(F
)) then
3485 -- Note that we do a full New_Copy_Tree, so that any associated
3486 -- Itypes are properly copied. This may not be needed any more,
3487 -- but it does no harm as a safety measure. Defaults of a generic
3488 -- formal may be out of bounds of the corresponding actual (see
3489 -- cc1311b) and an additional check may be required.
3494 New_Scope
=> Current_Scope
,
3497 -- Propagate dimension information, if any.
3499 Copy_Dimensions
(Default_Value
(F
), Actval
);
3501 if Is_Concurrent_Type
(Scope
(Nam
))
3502 and then Has_Discriminants
(Scope
(Nam
))
3504 Replace_Actual_Discriminants
(N
, Actval
);
3507 if Is_Overloadable
(Nam
)
3508 and then Present
(Alias
(Nam
))
3510 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3511 and then not Is_Tagged_Type
(Etype
(F
))
3513 -- If default is a real literal, do not introduce a
3514 -- conversion whose effect may depend on the run-time
3515 -- size of universal real.
3517 if Nkind
(Actval
) = N_Real_Literal
then
3518 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3520 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3524 if Is_Scalar_Type
(Etype
(F
)) then
3525 Enable_Range_Check
(Actval
);
3528 Set_Parent
(Actval
, N
);
3530 -- Resolve aggregates with their base type, to avoid scope
3531 -- anomalies: the subtype was first built in the subprogram
3532 -- declaration, and the current call may be nested.
3534 if Nkind
(Actval
) = N_Aggregate
then
3535 Analyze_And_Resolve
(Actval
, Etype
(F
));
3537 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3541 Set_Parent
(Actval
, N
);
3543 -- See note above concerning aggregates
3545 if Nkind
(Actval
) = N_Aggregate
3546 and then Has_Discriminants
(Etype
(Actval
))
3548 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3550 -- Resolve entities with their own type, which may differ from
3551 -- the type of a reference in a generic context (the view
3552 -- swapping mechanism did not anticipate the re-analysis of
3553 -- default values in calls).
3555 elsif Is_Entity_Name
(Actval
) then
3556 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3559 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3563 -- If default is a tag indeterminate function call, propagate tag
3564 -- to obtain proper dispatching.
3566 if Is_Controlling_Formal
(F
)
3567 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3569 Set_Is_Controlling_Actual
(Actval
);
3573 -- If the default expression raises constraint error, then just
3574 -- silently replace it with an N_Raise_Constraint_Error node, since
3575 -- we already gave the warning on the subprogram spec. If node is
3576 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3577 -- the warnings removal machinery.
3579 if Raises_Constraint_Error
(Actval
)
3580 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3583 Make_Raise_Constraint_Error
(Loc
,
3584 Reason
=> CE_Range_Check_Failed
));
3586 Set_Raises_Constraint_Error
(Actval
);
3587 Set_Etype
(Actval
, Etype
(F
));
3591 Make_Parameter_Association
(Loc
,
3592 Explicit_Actual_Parameter
=> Actval
,
3593 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3595 -- Case of insertion is first named actual
3598 or else Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3600 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3601 Set_First_Named_Actual
(N
, Actval
);
3604 if No
(Parameter_Associations
(N
)) then
3605 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3607 Append
(Assoc
, Parameter_Associations
(N
));
3611 Insert_After
(Prev
, Assoc
);
3614 -- Case of insertion is not first named actual
3617 Set_Next_Named_Actual
3618 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3619 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3620 Append
(Assoc
, Parameter_Associations
(N
));
3623 Mark_Rewrite_Insertion
(Assoc
);
3624 Mark_Rewrite_Insertion
(Actval
);
3633 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3634 FT1
: Entity_Id
:= T1
;
3635 FT2
: Entity_Id
:= T2
;
3638 if Is_Private_Type
(T1
)
3639 and then Present
(Full_View
(T1
))
3641 FT1
:= Full_View
(T1
);
3644 if Is_Private_Type
(T2
)
3645 and then Present
(Full_View
(T2
))
3647 FT2
:= Full_View
(T2
);
3650 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3653 --------------------------
3654 -- Static_Concatenation --
3655 --------------------------
3657 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3660 when N_String_Literal
=>
3665 -- Concatenation is static when both operands are static and
3666 -- the concatenation operator is a predefined one.
3668 return Scope
(Entity
(N
)) = Standard_Standard
3670 Static_Concatenation
(Left_Opnd
(N
))
3672 Static_Concatenation
(Right_Opnd
(N
));
3675 if Is_Entity_Name
(N
) then
3677 Ent
: constant Entity_Id
:= Entity
(N
);
3679 return Ekind
(Ent
) = E_Constant
3680 and then Present
(Constant_Value
(Ent
))
3682 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3689 end Static_Concatenation
;
3691 -- Start of processing for Resolve_Actuals
3694 Check_Argument_Order
;
3696 if Is_Overloadable
(Nam
)
3697 and then Is_Inherited_Operation
(Nam
)
3698 and then In_Instance
3699 and then Present
(Alias
(Nam
))
3700 and then Present
(Overridden_Operation
(Alias
(Nam
)))
3702 Real_Subp
:= Alias
(Nam
);
3707 if Present
(First_Actual
(N
)) then
3708 Check_Prefixed_Call
;
3711 A
:= First_Actual
(N
);
3712 F
:= First_Formal
(Nam
);
3714 if Present
(Real_Subp
) then
3715 Real_F
:= First_Formal
(Real_Subp
);
3718 while Present
(F
) loop
3719 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3722 -- If we have an error in any actual or formal, indicated by a type
3723 -- of Any_Type, then abandon resolution attempt, and set result type
3724 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3725 -- type is imposed from context.
3727 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3728 or else Etype
(F
) = Any_Type
3730 if Nkind
(A
) /= N_Raise_Expression
then
3731 Set_Etype
(N
, Any_Type
);
3736 -- Case where actual is present
3738 -- If the actual is an entity, generate a reference to it now. We
3739 -- do this before the actual is resolved, because a formal of some
3740 -- protected subprogram, or a task discriminant, will be rewritten
3741 -- during expansion, and the source entity reference may be lost.
3744 and then Is_Entity_Name
(A
)
3745 and then Comes_From_Source
(A
)
3747 Orig_A
:= Entity
(A
);
3749 if Present
(Orig_A
) then
3750 if Is_Formal
(Orig_A
)
3751 and then Ekind
(F
) /= E_In_Parameter
3753 Generate_Reference
(Orig_A
, A
, 'm');
3755 elsif not Is_Overloaded
(A
) then
3756 if Ekind
(F
) /= E_Out_Parameter
then
3757 Generate_Reference
(Orig_A
, A
);
3759 -- RM 6.4.1(12): For an out parameter that is passed by
3760 -- copy, the formal parameter object is created, and:
3762 -- * For an access type, the formal parameter is initialized
3763 -- from the value of the actual, without checking that the
3764 -- value satisfies any constraint, any predicate, or any
3765 -- exclusion of the null value.
3767 -- * For a scalar type that has the Default_Value aspect
3768 -- specified, the formal parameter is initialized from the
3769 -- value of the actual, without checking that the value
3770 -- satisfies any constraint or any predicate.
3771 -- I do not understand why this case is included??? this is
3772 -- not a case where an OUT parameter is treated as IN OUT.
3774 -- * For a composite type with discriminants or that has
3775 -- implicit initial values for any subcomponents, the
3776 -- behavior is as for an in out parameter passed by copy.
3778 -- Hence for these cases we generate the read reference now
3779 -- (the write reference will be generated later by
3780 -- Note_Possible_Modification).
3782 elsif Is_By_Copy_Type
(Etype
(F
))
3784 (Is_Access_Type
(Etype
(F
))
3786 (Is_Scalar_Type
(Etype
(F
))
3788 Present
(Default_Aspect_Value
(Etype
(F
))))
3790 (Is_Composite_Type
(Etype
(F
))
3791 and then (Has_Discriminants
(Etype
(F
))
3792 or else Is_Partially_Initialized_Type
3795 Generate_Reference
(Orig_A
, A
);
3802 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3803 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3805 -- If style checking mode on, check match of formal name
3808 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3809 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3813 -- If the formal is Out or In_Out, do not resolve and expand the
3814 -- conversion, because it is subsequently expanded into explicit
3815 -- temporaries and assignments. However, the object of the
3816 -- conversion can be resolved. An exception is the case of tagged
3817 -- type conversion with a class-wide actual. In that case we want
3818 -- the tag check to occur and no temporary will be needed (no
3819 -- representation change can occur) and the parameter is passed by
3820 -- reference, so we go ahead and resolve the type conversion.
3821 -- Another exception is the case of reference to component or
3822 -- subcomponent of a bit-packed array, in which case we want to
3823 -- defer expansion to the point the in and out assignments are
3826 if Ekind
(F
) /= E_In_Parameter
3827 and then Nkind
(A
) = N_Type_Conversion
3828 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3830 if Ekind
(F
) = E_In_Out_Parameter
3831 and then Is_Array_Type
(Etype
(F
))
3833 -- In a view conversion, the conversion must be legal in
3834 -- both directions, and thus both component types must be
3835 -- aliased, or neither (4.6 (8)).
3837 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3838 -- the privacy requirement should not apply to generic
3839 -- types, and should be checked in an instance. ARG query
3842 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3843 Has_Aliased_Components
(Etype
(F
))
3846 ("both component types in a view conversion must be"
3847 & " aliased, or neither", A
);
3849 -- Comment here??? what set of cases???
3852 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3854 -- Check view conv between unrelated by ref array types
3856 if Is_By_Reference_Type
(Etype
(F
))
3857 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3860 ("view conversion between unrelated by reference "
3861 & "array types not allowed (\'A'I-00246)", A
);
3863 -- In Ada 2005 mode, check view conversion component
3864 -- type cannot be private, tagged, or volatile. Note
3865 -- that we only apply this to source conversions. The
3866 -- generated code can contain conversions which are
3867 -- not subject to this test, and we cannot extract the
3868 -- component type in such cases since it is not present.
3870 elsif Comes_From_Source
(A
)
3871 and then Ada_Version
>= Ada_2005
3874 Comp_Type
: constant Entity_Id
:=
3876 (Etype
(Expression
(A
)));
3878 if (Is_Private_Type
(Comp_Type
)
3879 and then not Is_Generic_Type
(Comp_Type
))
3880 or else Is_Tagged_Type
(Comp_Type
)
3881 or else Is_Volatile
(Comp_Type
)
3884 ("component type of a view conversion cannot"
3885 & " be private, tagged, or volatile"
3894 -- Resolve expression if conversion is all OK
3896 if (Conversion_OK
(A
)
3897 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3898 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3900 Resolve
(Expression
(A
));
3903 -- If the actual is a function call that returns a limited
3904 -- unconstrained object that needs finalization, create a
3905 -- transient scope for it, so that it can receive the proper
3906 -- finalization list.
3908 elsif Nkind
(A
) = N_Function_Call
3909 and then Is_Limited_Record
(Etype
(F
))
3910 and then not Is_Constrained
(Etype
(F
))
3911 and then Expander_Active
3912 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3914 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3915 Resolve
(A
, Etype
(F
));
3917 -- A small optimization: if one of the actuals is a concatenation
3918 -- create a block around a procedure call to recover stack space.
3919 -- This alleviates stack usage when several procedure calls in
3920 -- the same statement list use concatenation. We do not perform
3921 -- this wrapping for code statements, where the argument is a
3922 -- static string, and we want to preserve warnings involving
3923 -- sequences of such statements.
3925 elsif Nkind
(A
) = N_Op_Concat
3926 and then Nkind
(N
) = N_Procedure_Call_Statement
3927 and then Expander_Active
3929 not (Is_Intrinsic_Subprogram
(Nam
)
3930 and then Chars
(Nam
) = Name_Asm
)
3931 and then not Static_Concatenation
(A
)
3933 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3934 Resolve
(A
, Etype
(F
));
3937 if Nkind
(A
) = N_Type_Conversion
3938 and then Is_Array_Type
(Etype
(F
))
3939 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3941 (Is_Limited_Type
(Etype
(F
))
3942 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3945 ("conversion between unrelated limited array types "
3946 & "not allowed ('A'I-00246)", A
);
3948 if Is_Limited_Type
(Etype
(F
)) then
3949 Explain_Limited_Type
(Etype
(F
), A
);
3952 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3953 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3957 -- (Ada 2005: AI-251): If the actual is an allocator whose
3958 -- directly designated type is a class-wide interface, we build
3959 -- an anonymous access type to use it as the type of the
3960 -- allocator. Later, when the subprogram call is expanded, if
3961 -- the interface has a secondary dispatch table the expander
3962 -- will add a type conversion to force the correct displacement
3965 if Nkind
(A
) = N_Allocator
then
3967 DDT
: constant Entity_Id
:=
3968 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3970 New_Itype
: Entity_Id
;
3973 if Is_Class_Wide_Type
(DDT
)
3974 and then Is_Interface
(DDT
)
3976 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3977 Set_Etype
(New_Itype
, Etype
(A
));
3978 Set_Directly_Designated_Type
3979 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3980 Set_Etype
(A
, New_Itype
);
3983 -- Ada 2005, AI-162:If the actual is an allocator, the
3984 -- innermost enclosing statement is the master of the
3985 -- created object. This needs to be done with expansion
3986 -- enabled only, otherwise the transient scope will not
3987 -- be removed in the expansion of the wrapped construct.
3989 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3990 and then Expander_Active
3992 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3996 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3997 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
4001 -- (Ada 2005): The call may be to a primitive operation of a
4002 -- tagged synchronized type, declared outside of the type. In
4003 -- this case the controlling actual must be converted to its
4004 -- corresponding record type, which is the formal type. The
4005 -- actual may be a subtype, either because of a constraint or
4006 -- because it is a generic actual, so use base type to locate
4009 F_Typ
:= Base_Type
(Etype
(F
));
4011 if Is_Tagged_Type
(F_Typ
)
4012 and then (Is_Concurrent_Type
(F_Typ
)
4013 or else Is_Concurrent_Record_Type
(F_Typ
))
4015 -- If the actual is overloaded, look for an interpretation
4016 -- that has a synchronized type.
4018 if not Is_Overloaded
(A
) then
4019 A_Typ
:= Base_Type
(Etype
(A
));
4023 Index
: Interp_Index
;
4027 Get_First_Interp
(A
, Index
, It
);
4028 while Present
(It
.Typ
) loop
4029 if Is_Concurrent_Type
(It
.Typ
)
4030 or else Is_Concurrent_Record_Type
(It
.Typ
)
4032 A_Typ
:= Base_Type
(It
.Typ
);
4036 Get_Next_Interp
(Index
, It
);
4042 Full_A_Typ
: Entity_Id
;
4045 if Present
(Full_View
(A_Typ
)) then
4046 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
4048 Full_A_Typ
:= A_Typ
;
4051 -- Tagged synchronized type (case 1): the actual is a
4054 if Is_Concurrent_Type
(A_Typ
)
4055 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
4058 Unchecked_Convert_To
4059 (Corresponding_Record_Type
(A_Typ
), A
));
4060 Resolve
(A
, Etype
(F
));
4062 -- Tagged synchronized type (case 2): the formal is a
4065 elsif Ekind
(Full_A_Typ
) = E_Record_Type
4067 (Corresponding_Concurrent_Type
(Full_A_Typ
))
4068 and then Is_Concurrent_Type
(F_Typ
)
4069 and then Present
(Corresponding_Record_Type
(F_Typ
))
4070 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
4072 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
4077 Resolve
(A
, Etype
(F
));
4081 -- Not a synchronized operation
4084 Resolve
(A
, Etype
(F
));
4091 -- An actual cannot be an untagged formal incomplete type
4093 if Ekind
(A_Typ
) = E_Incomplete_Type
4094 and then not Is_Tagged_Type
(A_Typ
)
4095 and then Is_Generic_Type
(A_Typ
)
4098 ("invalid use of untagged formal incomplete type", A
);
4101 if Comes_From_Source
(Original_Node
(N
))
4102 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
4103 N_Procedure_Call_Statement
)
4105 -- In formal mode, check that actual parameters matching
4106 -- formals of tagged types are objects (or ancestor type
4107 -- conversions of objects), not general expressions.
4109 if Is_Actual_Tagged_Parameter
(A
) then
4110 if Is_SPARK_05_Object_Reference
(A
) then
4113 elsif Nkind
(A
) = N_Type_Conversion
then
4115 Operand
: constant Node_Id
:= Expression
(A
);
4116 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
4117 Target_Typ
: constant Entity_Id
:= A_Typ
;
4120 if not Is_SPARK_05_Object_Reference
(Operand
) then
4121 Check_SPARK_05_Restriction
4122 ("object required", Operand
);
4124 -- In formal mode, the only view conversions are those
4125 -- involving ancestor conversion of an extended type.
4128 (Is_Tagged_Type
(Target_Typ
)
4129 and then not Is_Class_Wide_Type
(Target_Typ
)
4130 and then Is_Tagged_Type
(Operand_Typ
)
4131 and then not Is_Class_Wide_Type
(Operand_Typ
)
4132 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
4135 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
4137 Check_SPARK_05_Restriction
4138 ("ancestor conversion is the only permitted "
4139 & "view conversion", A
);
4141 Check_SPARK_05_Restriction
4142 ("ancestor conversion required", A
);
4151 Check_SPARK_05_Restriction
("object required", A
);
4154 -- In formal mode, the only view conversions are those
4155 -- involving ancestor conversion of an extended type.
4157 elsif Nkind
(A
) = N_Type_Conversion
4158 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4160 Check_SPARK_05_Restriction
4161 ("ancestor conversion is the only permitted view "
4166 -- has warnings suppressed, then we reset Never_Set_In_Source for
4167 -- the calling entity. The reason for this is to catch cases like
4168 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4169 -- uses trickery to modify an IN parameter.
4171 if Ekind
(F
) = E_In_Parameter
4172 and then Is_Entity_Name
(A
)
4173 and then Present
(Entity
(A
))
4174 and then Ekind
(Entity
(A
)) = E_Variable
4175 and then Has_Warnings_Off
(F_Typ
)
4177 Set_Never_Set_In_Source
(Entity
(A
), False);
4180 -- Perform error checks for IN and IN OUT parameters
4182 if Ekind
(F
) /= E_Out_Parameter
then
4184 -- Check unset reference. For scalar parameters, it is clearly
4185 -- wrong to pass an uninitialized value as either an IN or
4186 -- IN-OUT parameter. For composites, it is also clearly an
4187 -- error to pass a completely uninitialized value as an IN
4188 -- parameter, but the case of IN OUT is trickier. We prefer
4189 -- not to give a warning here. For example, suppose there is
4190 -- a routine that sets some component of a record to False.
4191 -- It is perfectly reasonable to make this IN-OUT and allow
4192 -- either initialized or uninitialized records to be passed
4195 -- For partially initialized composite values, we also avoid
4196 -- warnings, since it is quite likely that we are passing a
4197 -- partially initialized value and only the initialized fields
4198 -- will in fact be read in the subprogram.
4200 if Is_Scalar_Type
(A_Typ
)
4201 or else (Ekind
(F
) = E_In_Parameter
4202 and then not Is_Partially_Initialized_Type
(A_Typ
))
4204 Check_Unset_Reference
(A
);
4207 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4208 -- actual to a nested call, since this constitutes a reading of
4209 -- the parameter, which is not allowed.
4211 if Ada_Version
= Ada_83
4212 and then Is_Entity_Name
(A
)
4213 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4215 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
4219 -- In -gnatd.q mode, forget that a given array is constant when
4220 -- it is passed as an IN parameter to a foreign-convention
4221 -- subprogram. This is in case the subprogram evilly modifies the
4222 -- object. Of course, correct code would use IN OUT.
4225 and then Ekind
(F
) = E_In_Parameter
4226 and then Has_Foreign_Convention
(Nam
)
4227 and then Is_Array_Type
(F_Typ
)
4228 and then Nkind
(A
) in N_Has_Entity
4229 and then Present
(Entity
(A
))
4231 Set_Is_True_Constant
(Entity
(A
), False);
4234 -- Case of OUT or IN OUT parameter
4236 if Ekind
(F
) /= E_In_Parameter
then
4238 -- For an Out parameter, check for useless assignment. Note
4239 -- that we can't set Last_Assignment this early, because we may
4240 -- kill current values in Resolve_Call, and that call would
4241 -- clobber the Last_Assignment field.
4243 -- Note: call Warn_On_Useless_Assignment before doing the check
4244 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4245 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4246 -- reflects the last assignment, not this one.
4248 if Ekind
(F
) = E_Out_Parameter
then
4249 if Warn_On_Modified_As_Out_Parameter
(F
)
4250 and then Is_Entity_Name
(A
)
4251 and then Present
(Entity
(A
))
4252 and then Comes_From_Source
(N
)
4254 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4258 -- Validate the form of the actual. Note that the call to
4259 -- Is_OK_Variable_For_Out_Formal generates the required
4260 -- reference in this case.
4262 -- A call to an initialization procedure for an aggregate
4263 -- component may initialize a nested component of a constant
4264 -- designated object. In this context the object is variable.
4266 if not Is_OK_Variable_For_Out_Formal
(A
)
4267 and then not Is_Init_Proc
(Nam
)
4269 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4271 if Is_Subprogram
(Current_Scope
) then
4272 if Is_Invariant_Procedure
(Current_Scope
)
4273 or else Is_Partial_Invariant_Procedure
(Current_Scope
)
4276 ("function used in invariant cannot modify its "
4279 elsif Is_Predicate_Function
(Current_Scope
) then
4281 ("function used in predicate cannot modify its "
4287 -- What's the following about???
4289 if Is_Entity_Name
(A
) then
4290 Kill_Checks
(Entity
(A
));
4296 if Etype
(A
) = Any_Type
then
4297 Set_Etype
(N
, Any_Type
);
4301 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4303 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4305 -- Apply predicate tests except in certain special cases. Note
4306 -- that it might be more consistent to apply these only when
4307 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4308 -- for the outbound predicate tests ??? In any case indicate
4309 -- the function being called, for better warnings if the call
4310 -- leads to an infinite recursion.
4312 if Predicate_Tests_On_Arguments
(Nam
) then
4313 Apply_Predicate_Check
(A
, F_Typ
, Nam
);
4316 -- Apply required constraint checks
4318 -- Gigi looks at the check flag and uses the appropriate types.
4319 -- For now since one flag is used there is an optimization
4320 -- which might not be done in the IN OUT case since Gigi does
4321 -- not do any analysis. More thought required about this ???
4323 -- In fact is this comment obsolete??? doesn't the expander now
4324 -- generate all these tests anyway???
4326 if Is_Scalar_Type
(Etype
(A
)) then
4327 Apply_Scalar_Range_Check
(A
, F_Typ
);
4329 elsif Is_Array_Type
(Etype
(A
)) then
4330 Apply_Length_Check
(A
, F_Typ
);
4332 elsif Is_Record_Type
(F_Typ
)
4333 and then Has_Discriminants
(F_Typ
)
4334 and then Is_Constrained
(F_Typ
)
4335 and then (not Is_Derived_Type
(F_Typ
)
4336 or else Comes_From_Source
(Nam
))
4338 Apply_Discriminant_Check
(A
, F_Typ
);
4340 -- For view conversions of a discriminated object, apply
4341 -- check to object itself, the conversion alreay has the
4344 if Nkind
(A
) = N_Type_Conversion
4345 and then Is_Constrained
(Etype
(Expression
(A
)))
4347 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4350 elsif Is_Access_Type
(F_Typ
)
4351 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4352 and then Is_Constrained
(Designated_Type
(F_Typ
))
4354 Apply_Length_Check
(A
, F_Typ
);
4356 elsif Is_Access_Type
(F_Typ
)
4357 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4358 and then Is_Constrained
(Designated_Type
(F_Typ
))
4360 Apply_Discriminant_Check
(A
, F_Typ
);
4363 Apply_Range_Check
(A
, F_Typ
);
4366 -- Ada 2005 (AI-231): Note that the controlling parameter case
4367 -- already existed in Ada 95, which is partially checked
4368 -- elsewhere (see Checks), and we don't want the warning
4369 -- message to differ.
4371 if Is_Access_Type
(F_Typ
)
4372 and then Can_Never_Be_Null
(F_Typ
)
4373 and then Known_Null
(A
)
4375 if Is_Controlling_Formal
(F
) then
4376 Apply_Compile_Time_Constraint_Error
4378 Msg
=> "null value not allowed here??",
4379 Reason
=> CE_Access_Check_Failed
);
4381 elsif Ada_Version
>= Ada_2005
then
4382 Apply_Compile_Time_Constraint_Error
4384 Msg
=> "(Ada 2005) null not allowed in "
4385 & "null-excluding formal??",
4386 Reason
=> CE_Null_Not_Allowed
);
4391 -- Checks for OUT parameters and IN OUT parameters
4393 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4395 -- If there is a type conversion, make sure the return value
4396 -- meets the constraints of the variable before the conversion.
4398 if Nkind
(A
) = N_Type_Conversion
then
4399 if Is_Scalar_Type
(A_Typ
) then
4400 Apply_Scalar_Range_Check
4401 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4403 -- In addition, the returned value of the parameter must
4404 -- satisfy the bounds of the object type (see comment
4407 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4411 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4414 -- If no conversion, apply scalar range checks and length check
4415 -- based on the subtype of the actual (NOT that of the formal).
4416 -- This indicates that the check takes place on return from the
4417 -- call. During expansion the required constraint checks are
4418 -- inserted. In GNATprove mode, in the absence of expansion,
4419 -- the flag indicates that the returned value is valid.
4422 if Is_Scalar_Type
(F_Typ
) then
4423 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4425 elsif Is_Array_Type
(F_Typ
)
4426 and then Ekind
(F
) = E_Out_Parameter
4428 Apply_Length_Check
(A
, F_Typ
);
4430 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4434 -- Note: we do not apply the predicate checks for the case of
4435 -- OUT and IN OUT parameters. They are instead applied in the
4436 -- Expand_Actuals routine in Exp_Ch6.
4439 -- An actual associated with an access parameter is implicitly
4440 -- converted to the anonymous access type of the formal and must
4441 -- satisfy the legality checks for access conversions.
4443 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4444 if not Valid_Conversion
(A
, F_Typ
, A
) then
4446 ("invalid implicit conversion for access parameter", A
);
4449 -- If the actual is an access selected component of a variable,
4450 -- the call may modify its designated object. It is reasonable
4451 -- to treat this as a potential modification of the enclosing
4452 -- record, to prevent spurious warnings that it should be
4453 -- declared as a constant, because intuitively programmers
4454 -- regard the designated subcomponent as part of the record.
4456 if Nkind
(A
) = N_Selected_Component
4457 and then Is_Entity_Name
(Prefix
(A
))
4458 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4460 Note_Possible_Modification
(A
, Sure
=> False);
4464 -- Check bad case of atomic/volatile argument (RM C.6(12))
4466 if Is_By_Reference_Type
(Etype
(F
))
4467 and then Comes_From_Source
(N
)
4469 if Is_Atomic_Object
(A
)
4470 and then not Is_Atomic
(Etype
(F
))
4473 ("cannot pass atomic argument to non-atomic formal&",
4476 elsif Is_Volatile_Object
(A
)
4477 and then not Is_Volatile
(Etype
(F
))
4480 ("cannot pass volatile argument to non-volatile formal&",
4485 -- Check that subprograms don't have improper controlling
4486 -- arguments (RM 3.9.2 (9)).
4488 -- A primitive operation may have an access parameter of an
4489 -- incomplete tagged type, but a dispatching call is illegal
4490 -- if the type is still incomplete.
4492 if Is_Controlling_Formal
(F
) then
4493 Set_Is_Controlling_Actual
(A
);
4495 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4497 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4499 if Ekind
(Desig
) = E_Incomplete_Type
4500 and then No
(Full_View
(Desig
))
4501 and then No
(Non_Limited_View
(Desig
))
4504 ("premature use of incomplete type& "
4505 & "in dispatching call", A
, Desig
);
4510 elsif Nkind
(A
) = N_Explicit_Dereference
then
4511 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4514 -- Apply legality rule 3.9.2 (9/1)
4516 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4517 and then not Is_Class_Wide_Type
(F_Typ
)
4518 and then not Is_Controlling_Formal
(F
)
4519 and then not In_Instance
4521 Error_Msg_N
("class-wide argument not allowed here!", A
);
4523 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4524 Error_Msg_Node_2
:= F_Typ
;
4526 ("& is not a dispatching operation of &!", A
, Nam
);
4529 -- Apply the checks described in 3.10.2(27): if the context is a
4530 -- specific access-to-object, the actual cannot be class-wide.
4531 -- Use base type to exclude access_to_subprogram cases.
4533 elsif Is_Access_Type
(A_Typ
)
4534 and then Is_Access_Type
(F_Typ
)
4535 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4536 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4537 or else (Nkind
(A
) = N_Attribute_Reference
4539 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4540 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4541 and then not Is_Controlling_Formal
(F
)
4543 -- Disable these checks for call to imported C++ subprograms
4546 (Is_Entity_Name
(Name
(N
))
4547 and then Is_Imported
(Entity
(Name
(N
)))
4548 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4551 ("access to class-wide argument not allowed here!", A
);
4553 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4554 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4556 ("& is not a dispatching operation of &!", A
, Nam
);
4560 Check_Aliased_Parameter
;
4564 -- If it is a named association, treat the selector_name as a
4565 -- proper identifier, and mark the corresponding entity.
4567 if Nkind
(Parent
(A
)) = N_Parameter_Association
4569 -- Ignore reference in SPARK mode, as it refers to an entity not
4570 -- in scope at the point of reference, so the reference should
4571 -- be ignored for computing effects of subprograms.
4573 and then not GNATprove_Mode
4575 -- If subprogram is overridden, use name of formal that
4578 if Present
(Real_Subp
) then
4579 Set_Entity
(Selector_Name
(Parent
(A
)), Real_F
);
4580 Set_Etype
(Selector_Name
(Parent
(A
)), Etype
(Real_F
));
4583 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4584 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4585 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4586 Generate_Reference
(F_Typ
, N
, ' ');
4592 if Ekind
(F
) /= E_Out_Parameter
then
4593 Check_Unset_Reference
(A
);
4596 -- The following checks are only relevant when SPARK_Mode is on as
4597 -- they are not standard Ada legality rule. Internally generated
4598 -- temporaries are ignored.
4600 if SPARK_Mode
= On
and then Comes_From_Source
(A
) then
4602 -- An effectively volatile object may act as an actual when the
4603 -- corresponding formal is of a non-scalar effectively volatile
4604 -- type (SPARK RM 7.1.3(11)).
4606 if not Is_Scalar_Type
(Etype
(F
))
4607 and then Is_Effectively_Volatile
(Etype
(F
))
4611 -- An effectively volatile object may act as an actual in a
4612 -- call to an instance of Unchecked_Conversion.
4613 -- (SPARK RM 7.1.3(11)).
4615 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4618 -- The actual denotes an object
4620 elsif Is_Effectively_Volatile_Object
(A
) then
4622 ("volatile object cannot act as actual in a call (SPARK "
4623 & "RM 7.1.3(11))", A
);
4625 -- Otherwise the actual denotes an expression. Inspect the
4626 -- expression and flag each effectively volatile object with
4627 -- enabled property Async_Writers or Effective_Reads as illegal
4628 -- because it apprears within an interfering context. Note that
4629 -- this is usually done in Resolve_Entity_Name, but when the
4630 -- effectively volatile object appears as an actual in a call,
4631 -- the call must be resolved first.
4634 Flag_Effectively_Volatile_Objects
(A
);
4637 -- An effectively volatile variable cannot act as an actual
4638 -- parameter in a procedure call when the variable has enabled
4639 -- property Effective_Reads and the corresponding formal is of
4640 -- mode IN (SPARK RM 7.1.3(10)).
4642 if Ekind
(Nam
) = E_Procedure
4643 and then Ekind
(F
) = E_In_Parameter
4644 and then Is_Entity_Name
(A
)
4648 if Ekind
(A_Id
) = E_Variable
4649 and then Is_Effectively_Volatile
(Etype
(A_Id
))
4650 and then Effective_Reads_Enabled
(A_Id
)
4653 ("effectively volatile variable & cannot appear as "
4654 & "actual in procedure call", A
, A_Id
);
4656 Error_Msg_Name_1
:= Name_Effective_Reads
;
4657 Error_Msg_N
("\\variable has enabled property %", A
);
4658 Error_Msg_N
("\\corresponding formal has mode IN", A
);
4663 -- A formal parameter of a specific tagged type whose related
4664 -- subprogram is subject to pragma Extensions_Visible with value
4665 -- "False" cannot act as an actual in a subprogram with value
4666 -- "True" (SPARK RM 6.1.7(3)).
4668 if Is_EVF_Expression
(A
)
4669 and then Extensions_Visible_Status
(Nam
) =
4670 Extensions_Visible_True
4673 ("formal parameter cannot act as actual parameter when "
4674 & "Extensions_Visible is False", A
);
4676 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4679 -- The actual parameter of a Ghost subprogram whose formal is of
4680 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4682 if Comes_From_Source
(Nam
)
4683 and then Is_Ghost_Entity
(Nam
)
4684 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4685 and then Is_Entity_Name
(A
)
4686 and then Present
(Entity
(A
))
4687 and then not Is_Ghost_Entity
(Entity
(A
))
4690 ("non-ghost variable & cannot appear as actual in call to "
4691 & "ghost procedure", A
, Entity
(A
));
4693 if Ekind
(F
) = E_In_Out_Parameter
then
4694 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4696 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4702 -- Case where actual is not present
4710 if Present
(Real_Subp
) then
4711 Next_Formal
(Real_F
);
4714 end Resolve_Actuals
;
4716 -----------------------
4717 -- Resolve_Allocator --
4718 -----------------------
4720 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4721 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4722 E
: constant Node_Id
:= Expression
(N
);
4724 Discrim
: Entity_Id
;
4727 Assoc
: Node_Id
:= Empty
;
4730 procedure Check_Allocator_Discrim_Accessibility
4731 (Disc_Exp
: Node_Id
;
4732 Alloc_Typ
: Entity_Id
);
4733 -- Check that accessibility level associated with an access discriminant
4734 -- initialized in an allocator by the expression Disc_Exp is not deeper
4735 -- than the level of the allocator type Alloc_Typ. An error message is
4736 -- issued if this condition is violated. Specialized checks are done for
4737 -- the cases of a constraint expression which is an access attribute or
4738 -- an access discriminant.
4740 function In_Dispatching_Context
return Boolean;
4741 -- If the allocator is an actual in a call, it is allowed to be class-
4742 -- wide when the context is not because it is a controlling actual.
4744 -------------------------------------------
4745 -- Check_Allocator_Discrim_Accessibility --
4746 -------------------------------------------
4748 procedure Check_Allocator_Discrim_Accessibility
4749 (Disc_Exp
: Node_Id
;
4750 Alloc_Typ
: Entity_Id
)
4753 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4754 Deepest_Type_Access_Level
(Alloc_Typ
)
4757 ("operand type has deeper level than allocator type", Disc_Exp
);
4759 -- When the expression is an Access attribute the level of the prefix
4760 -- object must not be deeper than that of the allocator's type.
4762 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4763 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4765 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4766 Deepest_Type_Access_Level
(Alloc_Typ
)
4769 ("prefix of attribute has deeper level than allocator type",
4772 -- When the expression is an access discriminant the check is against
4773 -- the level of the prefix object.
4775 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4776 and then Nkind
(Disc_Exp
) = N_Selected_Component
4777 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4778 Deepest_Type_Access_Level
(Alloc_Typ
)
4781 ("access discriminant has deeper level than allocator type",
4784 -- All other cases are legal
4789 end Check_Allocator_Discrim_Accessibility
;
4791 ----------------------------
4792 -- In_Dispatching_Context --
4793 ----------------------------
4795 function In_Dispatching_Context
return Boolean is
4796 Par
: constant Node_Id
:= Parent
(N
);
4799 return Nkind
(Par
) in N_Subprogram_Call
4800 and then Is_Entity_Name
(Name
(Par
))
4801 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4802 end In_Dispatching_Context
;
4804 -- Start of processing for Resolve_Allocator
4807 -- Replace general access with specific type
4809 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4810 Set_Etype
(N
, Base_Type
(Typ
));
4813 if Is_Abstract_Type
(Typ
) then
4814 Error_Msg_N
("type of allocator cannot be abstract", N
);
4817 -- For qualified expression, resolve the expression using the given
4818 -- subtype (nothing to do for type mark, subtype indication)
4820 if Nkind
(E
) = N_Qualified_Expression
then
4821 if Is_Class_Wide_Type
(Etype
(E
))
4822 and then not Is_Class_Wide_Type
(Desig_T
)
4823 and then not In_Dispatching_Context
4826 ("class-wide allocator not allowed for this access type", N
);
4829 Resolve
(Expression
(E
), Etype
(E
));
4830 Check_Non_Static_Context
(Expression
(E
));
4831 Check_Unset_Reference
(Expression
(E
));
4833 -- Allocators generated by the build-in-place expansion mechanism
4834 -- are explicitly marked as coming from source but do not need to be
4835 -- checked for limited initialization. To exclude this case, ensure
4836 -- that the parent of the allocator is a source node.
4838 if Is_Limited_Type
(Etype
(E
))
4839 and then Comes_From_Source
(N
)
4840 and then Comes_From_Source
(Parent
(N
))
4841 and then not In_Instance_Body
4843 if not OK_For_Limited_Init
(Etype
(E
), Expression
(E
)) then
4844 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4846 ("illegal expression for initialized allocator of a "
4847 & "limited type (RM 7.5 (2.7/2))", N
);
4850 ("initialization not allowed for limited types", N
);
4853 Explain_Limited_Type
(Etype
(E
), N
);
4857 -- A qualified expression requires an exact match of the type. Class-
4858 -- wide matching is not allowed.
4860 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4861 or else Is_Class_Wide_Type
(Etype
(E
)))
4862 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4864 Wrong_Type
(Expression
(E
), Etype
(E
));
4867 -- Calls to build-in-place functions are not currently supported in
4868 -- allocators for access types associated with a simple storage pool.
4869 -- Supporting such allocators may require passing additional implicit
4870 -- parameters to build-in-place functions (or a significant revision
4871 -- of the current b-i-p implementation to unify the handling for
4872 -- multiple kinds of storage pools). ???
4874 if Is_Limited_View
(Desig_T
)
4875 and then Nkind
(Expression
(E
)) = N_Function_Call
4878 Pool
: constant Entity_Id
:=
4879 Associated_Storage_Pool
(Root_Type
(Typ
));
4883 Present
(Get_Rep_Pragma
4884 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4887 ("limited function calls not yet supported in simple "
4888 & "storage pool allocators", Expression
(E
));
4893 -- A special accessibility check is needed for allocators that
4894 -- constrain access discriminants. The level of the type of the
4895 -- expression used to constrain an access discriminant cannot be
4896 -- deeper than the type of the allocator (in contrast to access
4897 -- parameters, where the level of the actual can be arbitrary).
4899 -- We can't use Valid_Conversion to perform this check because in
4900 -- general the type of the allocator is unrelated to the type of
4901 -- the access discriminant.
4903 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4904 or else Is_Local_Anonymous_Access
(Typ
)
4906 Subtyp
:= Entity
(Subtype_Mark
(E
));
4908 Aggr
:= Original_Node
(Expression
(E
));
4910 if Has_Discriminants
(Subtyp
)
4911 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4913 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4915 -- Get the first component expression of the aggregate
4917 if Present
(Expressions
(Aggr
)) then
4918 Disc_Exp
:= First
(Expressions
(Aggr
));
4920 elsif Present
(Component_Associations
(Aggr
)) then
4921 Assoc
:= First
(Component_Associations
(Aggr
));
4923 if Present
(Assoc
) then
4924 Disc_Exp
:= Expression
(Assoc
);
4933 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4934 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4935 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4938 Next_Discriminant
(Discrim
);
4940 if Present
(Discrim
) then
4941 if Present
(Assoc
) then
4943 Disc_Exp
:= Expression
(Assoc
);
4945 elsif Present
(Next
(Disc_Exp
)) then
4949 Assoc
:= First
(Component_Associations
(Aggr
));
4951 if Present
(Assoc
) then
4952 Disc_Exp
:= Expression
(Assoc
);
4962 -- For a subtype mark or subtype indication, freeze the subtype
4965 Freeze_Expression
(E
);
4967 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4969 ("initialization required for access-to-constant allocator", N
);
4972 -- A special accessibility check is needed for allocators that
4973 -- constrain access discriminants. The level of the type of the
4974 -- expression used to constrain an access discriminant cannot be
4975 -- deeper than the type of the allocator (in contrast to access
4976 -- parameters, where the level of the actual can be arbitrary).
4977 -- We can't use Valid_Conversion to perform this check because
4978 -- in general the type of the allocator is unrelated to the type
4979 -- of the access discriminant.
4981 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4982 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4983 or else Is_Local_Anonymous_Access
(Typ
))
4985 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4987 if Has_Discriminants
(Subtyp
) then
4988 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4989 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4990 while Present
(Discrim
) and then Present
(Constr
) loop
4991 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4992 if Nkind
(Constr
) = N_Discriminant_Association
then
4993 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4995 Disc_Exp
:= Original_Node
(Constr
);
4998 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
5001 Next_Discriminant
(Discrim
);
5008 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5009 -- check that the level of the type of the created object is not deeper
5010 -- than the level of the allocator's access type, since extensions can
5011 -- now occur at deeper levels than their ancestor types. This is a
5012 -- static accessibility level check; a run-time check is also needed in
5013 -- the case of an initialized allocator with a class-wide argument (see
5014 -- Expand_Allocator_Expression).
5016 if Ada_Version
>= Ada_2005
5017 and then Is_Class_Wide_Type
(Desig_T
)
5020 Exp_Typ
: Entity_Id
;
5023 if Nkind
(E
) = N_Qualified_Expression
then
5024 Exp_Typ
:= Etype
(E
);
5025 elsif Nkind
(E
) = N_Subtype_Indication
then
5026 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
5028 Exp_Typ
:= Entity
(E
);
5031 if Type_Access_Level
(Exp_Typ
) >
5032 Deepest_Type_Access_Level
(Typ
)
5034 if In_Instance_Body
then
5035 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5037 ("type in allocator has deeper level than "
5038 & "designated class-wide type<<", E
);
5039 Error_Msg_N
("\Program_Error [<<", E
);
5041 Make_Raise_Program_Error
(Sloc
(N
),
5042 Reason
=> PE_Accessibility_Check_Failed
));
5045 -- Do not apply Ada 2005 accessibility checks on a class-wide
5046 -- allocator if the type given in the allocator is a formal
5047 -- type. A run-time check will be performed in the instance.
5049 elsif not Is_Generic_Type
(Exp_Typ
) then
5050 Error_Msg_N
("type in allocator has deeper level than "
5051 & "designated class-wide type", E
);
5057 -- Check for allocation from an empty storage pool
5059 if No_Pool_Assigned
(Typ
) then
5060 Error_Msg_N
("allocation from empty storage pool!", N
);
5062 -- If the context is an unchecked conversion, as may happen within an
5063 -- inlined subprogram, the allocator is being resolved with its own
5064 -- anonymous type. In that case, if the target type has a specific
5065 -- storage pool, it must be inherited explicitly by the allocator type.
5067 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
5068 and then No
(Associated_Storage_Pool
(Typ
))
5070 Set_Associated_Storage_Pool
5071 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
5074 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
5075 Check_Restriction
(No_Anonymous_Allocators
, N
);
5078 -- Check that an allocator with task parts isn't for a nested access
5079 -- type when restriction No_Task_Hierarchy applies.
5081 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
5082 and then Has_Task
(Base_Type
(Desig_T
))
5084 Check_Restriction
(No_Task_Hierarchy
, N
);
5087 -- An illegal allocator may be rewritten as a raise Program_Error
5090 if Nkind
(N
) = N_Allocator
then
5092 -- An anonymous access discriminant is the definition of a
5095 if Ekind
(Typ
) = E_Anonymous_Access_Type
5096 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
5097 N_Discriminant_Specification
5100 Discr
: constant Entity_Id
:=
5101 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
5104 Check_Restriction
(No_Coextensions
, N
);
5106 -- Ada 2012 AI05-0052: If the designated type of the allocator
5107 -- is limited, then the allocator shall not be used to define
5108 -- the value of an access discriminant unless the discriminated
5109 -- type is immutably limited.
5111 if Ada_Version
>= Ada_2012
5112 and then Is_Limited_Type
(Desig_T
)
5113 and then not Is_Limited_View
(Scope
(Discr
))
5116 ("only immutably limited types can have anonymous "
5117 & "access discriminants designating a limited type", N
);
5121 -- Avoid marking an allocator as a dynamic coextension if it is
5122 -- within a static construct.
5124 if not Is_Static_Coextension
(N
) then
5125 Set_Is_Dynamic_Coextension
(N
);
5128 -- Cleanup for potential static coextensions
5131 Set_Is_Dynamic_Coextension
(N
, False);
5132 Set_Is_Static_Coextension
(N
, False);
5136 -- Report a simple error: if the designated object is a local task,
5137 -- its body has not been seen yet, and its activation will fail an
5138 -- elaboration check.
5140 if Is_Task_Type
(Desig_T
)
5141 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
5142 and then Is_Compilation_Unit
(Current_Scope
)
5143 and then Ekind
(Current_Scope
) = E_Package
5144 and then not In_Package_Body
(Current_Scope
)
5146 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5147 Error_Msg_N
("cannot activate task before body seen<<", N
);
5148 Error_Msg_N
("\Program_Error [<<", N
);
5151 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5152 -- type with a task component on a subpool. This action must raise
5153 -- Program_Error at runtime.
5155 if Ada_Version
>= Ada_2012
5156 and then Nkind
(N
) = N_Allocator
5157 and then Present
(Subpool_Handle_Name
(N
))
5158 and then Has_Task
(Desig_T
)
5160 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5161 Error_Msg_N
("cannot allocate task on subpool<<", N
);
5162 Error_Msg_N
("\Program_Error [<<", N
);
5165 Make_Raise_Program_Error
(Sloc
(N
),
5166 Reason
=> PE_Explicit_Raise
));
5169 end Resolve_Allocator
;
5171 ---------------------------
5172 -- Resolve_Arithmetic_Op --
5173 ---------------------------
5175 -- Used for resolving all arithmetic operators except exponentiation
5177 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
5178 L
: constant Node_Id
:= Left_Opnd
(N
);
5179 R
: constant Node_Id
:= Right_Opnd
(N
);
5180 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
5181 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
5185 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5186 -- We do the resolution using the base type, because intermediate values
5187 -- in expressions always are of the base type, not a subtype of it.
5189 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
5190 -- Returns True if N is in a context that expects "any real type"
5192 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
5193 -- Return True iff given type is Integer or universal real/integer
5195 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
5196 -- Choose type of integer literal in fixed-point operation to conform
5197 -- to available fixed-point type. T is the type of the other operand,
5198 -- which is needed to determine the expected type of N.
5200 procedure Set_Operand_Type
(N
: Node_Id
);
5201 -- Set operand type to T if universal
5203 -------------------------------
5204 -- Expected_Type_Is_Any_Real --
5205 -------------------------------
5207 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
5209 -- N is the expression after "delta" in a fixed_point_definition;
5212 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
5213 N_Decimal_Fixed_Point_Definition
,
5215 -- N is one of the bounds in a real_range_specification;
5218 N_Real_Range_Specification
,
5220 -- N is the expression of a delta_constraint;
5223 N_Delta_Constraint
);
5224 end Expected_Type_Is_Any_Real
;
5226 -----------------------------
5227 -- Is_Integer_Or_Universal --
5228 -----------------------------
5230 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5232 Index
: Interp_Index
;
5236 if not Is_Overloaded
(N
) then
5238 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5239 or else T
= Universal_Integer
5240 or else T
= Universal_Real
;
5242 Get_First_Interp
(N
, Index
, It
);
5243 while Present
(It
.Typ
) loop
5244 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5245 or else It
.Typ
= Universal_Integer
5246 or else It
.Typ
= Universal_Real
5251 Get_Next_Interp
(Index
, It
);
5256 end Is_Integer_Or_Universal
;
5258 ----------------------------
5259 -- Set_Mixed_Mode_Operand --
5260 ----------------------------
5262 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5263 Index
: Interp_Index
;
5267 if Universal_Interpretation
(N
) = Universal_Integer
then
5269 -- A universal integer literal is resolved as standard integer
5270 -- except in the case of a fixed-point result, where we leave it
5271 -- as universal (to be handled by Exp_Fixd later on)
5273 if Is_Fixed_Point_Type
(T
) then
5274 Resolve
(N
, Universal_Integer
);
5276 Resolve
(N
, Standard_Integer
);
5279 elsif Universal_Interpretation
(N
) = Universal_Real
5280 and then (T
= Base_Type
(Standard_Integer
)
5281 or else T
= Universal_Integer
5282 or else T
= Universal_Real
)
5284 -- A universal real can appear in a fixed-type context. We resolve
5285 -- the literal with that context, even though this might raise an
5286 -- exception prematurely (the other operand may be zero).
5290 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5291 and then T
= Universal_Real
5292 and then Is_Overloaded
(N
)
5294 -- Integer arg in mixed-mode operation. Resolve with universal
5295 -- type, in case preference rule must be applied.
5297 Resolve
(N
, Universal_Integer
);
5300 and then B_Typ
/= Universal_Fixed
5302 -- Not a mixed-mode operation, resolve with context
5306 elsif Etype
(N
) = Any_Fixed
then
5308 -- N may itself be a mixed-mode operation, so use context type
5312 elsif Is_Fixed_Point_Type
(T
)
5313 and then B_Typ
= Universal_Fixed
5314 and then Is_Overloaded
(N
)
5316 -- Must be (fixed * fixed) operation, operand must have one
5317 -- compatible interpretation.
5319 Resolve
(N
, Any_Fixed
);
5321 elsif Is_Fixed_Point_Type
(B_Typ
)
5322 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5323 and then Is_Overloaded
(N
)
5325 -- C * F(X) in a fixed context, where C is a real literal or a
5326 -- fixed-point expression. F must have either a fixed type
5327 -- interpretation or an integer interpretation, but not both.
5329 Get_First_Interp
(N
, Index
, It
);
5330 while Present
(It
.Typ
) loop
5331 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5332 if Analyzed
(N
) then
5333 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5335 Resolve
(N
, Standard_Integer
);
5338 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5339 if Analyzed
(N
) then
5340 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5342 Resolve
(N
, It
.Typ
);
5346 Get_Next_Interp
(Index
, It
);
5349 -- Reanalyze the literal with the fixed type of the context. If
5350 -- context is Universal_Fixed, we are within a conversion, leave
5351 -- the literal as a universal real because there is no usable
5352 -- fixed type, and the target of the conversion plays no role in
5366 if B_Typ
= Universal_Fixed
5367 and then Nkind
(Op2
) = N_Real_Literal
5369 T2
:= Universal_Real
;
5374 Set_Analyzed
(Op2
, False);
5378 -- A universal real conditional expression can appear in a fixed-type
5379 -- context and must be resolved with that context to facilitate the
5380 -- code generation to the backend.
5382 elsif Nkind_In
(N
, N_Case_Expression
, N_If_Expression
)
5383 and then Etype
(N
) = Universal_Real
5384 and then Is_Fixed_Point_Type
(B_Typ
)
5391 end Set_Mixed_Mode_Operand
;
5393 ----------------------
5394 -- Set_Operand_Type --
5395 ----------------------
5397 procedure Set_Operand_Type
(N
: Node_Id
) is
5399 if Etype
(N
) = Universal_Integer
5400 or else Etype
(N
) = Universal_Real
5404 end Set_Operand_Type
;
5406 -- Start of processing for Resolve_Arithmetic_Op
5409 if Comes_From_Source
(N
)
5410 and then Ekind
(Entity
(N
)) = E_Function
5411 and then Is_Imported
(Entity
(N
))
5412 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5414 Resolve_Intrinsic_Operator
(N
, Typ
);
5417 -- Special-case for mixed-mode universal expressions or fixed point type
5418 -- operation: each argument is resolved separately. The same treatment
5419 -- is required if one of the operands of a fixed point operation is
5420 -- universal real, since in this case we don't do a conversion to a
5421 -- specific fixed-point type (instead the expander handles the case).
5423 -- Set the type of the node to its universal interpretation because
5424 -- legality checks on an exponentiation operand need the context.
5426 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5427 and then Present
(Universal_Interpretation
(L
))
5428 and then Present
(Universal_Interpretation
(R
))
5430 Set_Etype
(N
, B_Typ
);
5431 Resolve
(L
, Universal_Interpretation
(L
));
5432 Resolve
(R
, Universal_Interpretation
(R
));
5434 elsif (B_Typ
= Universal_Real
5435 or else Etype
(N
) = Universal_Fixed
5436 or else (Etype
(N
) = Any_Fixed
5437 and then Is_Fixed_Point_Type
(B_Typ
))
5438 or else (Is_Fixed_Point_Type
(B_Typ
)
5439 and then (Is_Integer_Or_Universal
(L
)
5441 Is_Integer_Or_Universal
(R
))))
5442 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5444 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5445 Check_For_Visible_Operator
(N
, B_Typ
);
5448 -- If context is a fixed type and one operand is integer, the other
5449 -- is resolved with the type of the context.
5451 if Is_Fixed_Point_Type
(B_Typ
)
5452 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5453 or else TL
= Universal_Integer
)
5458 elsif Is_Fixed_Point_Type
(B_Typ
)
5459 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5460 or else TR
= Universal_Integer
)
5465 -- If both operands are universal and the context is a floating
5466 -- point type, the operands are resolved to the type of the context.
5468 elsif Is_Floating_Point_Type
(B_Typ
) then
5473 Set_Mixed_Mode_Operand
(L
, TR
);
5474 Set_Mixed_Mode_Operand
(R
, TL
);
5477 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5478 -- multiplying operators from being used when the expected type is
5479 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5480 -- some cases where the expected type is actually Any_Real;
5481 -- Expected_Type_Is_Any_Real takes care of that case.
5483 if Etype
(N
) = Universal_Fixed
5484 or else Etype
(N
) = Any_Fixed
5486 if B_Typ
= Universal_Fixed
5487 and then not Expected_Type_Is_Any_Real
(N
)
5488 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5489 N_Unchecked_Type_Conversion
)
5491 Error_Msg_N
("type cannot be determined from context!", N
);
5492 Error_Msg_N
("\explicit conversion to result type required", N
);
5494 Set_Etype
(L
, Any_Type
);
5495 Set_Etype
(R
, Any_Type
);
5498 if Ada_Version
= Ada_83
5499 and then Etype
(N
) = Universal_Fixed
5501 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5502 N_Unchecked_Type_Conversion
)
5505 ("(Ada 83) fixed-point operation needs explicit "
5509 -- The expected type is "any real type" in contexts like
5511 -- type T is delta <universal_fixed-expression> ...
5513 -- in which case we need to set the type to Universal_Real
5514 -- so that static expression evaluation will work properly.
5516 if Expected_Type_Is_Any_Real
(N
) then
5517 Set_Etype
(N
, Universal_Real
);
5519 Set_Etype
(N
, B_Typ
);
5523 elsif Is_Fixed_Point_Type
(B_Typ
)
5524 and then (Is_Integer_Or_Universal
(L
)
5525 or else Nkind
(L
) = N_Real_Literal
5526 or else Nkind
(R
) = N_Real_Literal
5527 or else Is_Integer_Or_Universal
(R
))
5529 Set_Etype
(N
, B_Typ
);
5531 elsif Etype
(N
) = Any_Fixed
then
5533 -- If no previous errors, this is only possible if one operand is
5534 -- overloaded and the context is universal. Resolve as such.
5536 Set_Etype
(N
, B_Typ
);
5540 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5542 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5544 Check_For_Visible_Operator
(N
, B_Typ
);
5547 -- If the context is Universal_Fixed and the operands are also
5548 -- universal fixed, this is an error, unless there is only one
5549 -- applicable fixed_point type (usually Duration).
5551 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5552 T
:= Unique_Fixed_Point_Type
(N
);
5554 if T
= Any_Type
then
5567 -- If one of the arguments was resolved to a non-universal type.
5568 -- label the result of the operation itself with the same type.
5569 -- Do the same for the universal argument, if any.
5571 T
:= Intersect_Types
(L
, R
);
5572 Set_Etype
(N
, Base_Type
(T
));
5573 Set_Operand_Type
(L
);
5574 Set_Operand_Type
(R
);
5577 Generate_Operator_Reference
(N
, Typ
);
5578 Analyze_Dimension
(N
);
5579 Eval_Arithmetic_Op
(N
);
5581 -- In SPARK, a multiplication or division with operands of fixed point
5582 -- types must be qualified or explicitly converted to identify the
5585 if (Is_Fixed_Point_Type
(Etype
(L
))
5586 or else Is_Fixed_Point_Type
(Etype
(R
)))
5587 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5589 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5591 Check_SPARK_05_Restriction
5592 ("operation should be qualified or explicitly converted", N
);
5595 -- Set overflow and division checking bit
5597 if Nkind
(N
) in N_Op
then
5598 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5599 Enable_Overflow_Check
(N
);
5602 -- Give warning if explicit division by zero
5604 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5605 and then not Division_Checks_Suppressed
(Etype
(N
))
5607 Rop
:= Right_Opnd
(N
);
5609 if Compile_Time_Known_Value
(Rop
)
5610 and then ((Is_Integer_Type
(Etype
(Rop
))
5611 and then Expr_Value
(Rop
) = Uint_0
)
5613 (Is_Real_Type
(Etype
(Rop
))
5614 and then Expr_Value_R
(Rop
) = Ureal_0
))
5616 -- Specialize the warning message according to the operation.
5617 -- When SPARK_Mode is On, force a warning instead of an error
5618 -- in that case, as this likely corresponds to deactivated
5619 -- code. The following warnings are for the case
5624 -- For division, we have two cases, for float division
5625 -- of an unconstrained float type, on a machine where
5626 -- Machine_Overflows is false, we don't get an exception
5627 -- at run-time, but rather an infinity or Nan. The Nan
5628 -- case is pretty obscure, so just warn about infinities.
5630 if Is_Floating_Point_Type
(Typ
)
5631 and then not Is_Constrained
(Typ
)
5632 and then not Machine_Overflows_On_Target
5635 ("float division by zero, may generate "
5636 & "'+'/'- infinity??", Right_Opnd
(N
));
5638 -- For all other cases, we get a Constraint_Error
5641 Apply_Compile_Time_Constraint_Error
5642 (N
, "division by zero??", CE_Divide_By_Zero
,
5643 Loc
=> Sloc
(Right_Opnd
(N
)),
5644 Warn
=> SPARK_Mode
= On
);
5648 Apply_Compile_Time_Constraint_Error
5649 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5650 Loc
=> Sloc
(Right_Opnd
(N
)),
5651 Warn
=> SPARK_Mode
= On
);
5654 Apply_Compile_Time_Constraint_Error
5655 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5656 Loc
=> Sloc
(Right_Opnd
(N
)),
5657 Warn
=> SPARK_Mode
= On
);
5659 -- Division by zero can only happen with division, rem,
5660 -- and mod operations.
5663 raise Program_Error
;
5666 -- In GNATprove mode, we enable the division check so that
5667 -- GNATprove will issue a message if it cannot be proved.
5669 if GNATprove_Mode
then
5670 Activate_Division_Check
(N
);
5673 -- Otherwise just set the flag to check at run time
5676 Activate_Division_Check
(N
);
5680 -- If Restriction No_Implicit_Conditionals is active, then it is
5681 -- violated if either operand can be negative for mod, or for rem
5682 -- if both operands can be negative.
5684 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5685 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5694 -- Set if corresponding operand might be negative
5698 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5699 LNeg
:= (not OK
) or else Lo
< 0;
5702 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5703 RNeg
:= (not OK
) or else Lo
< 0;
5705 -- Check if we will be generating conditionals. There are two
5706 -- cases where that can happen, first for REM, the only case
5707 -- is largest negative integer mod -1, where the division can
5708 -- overflow, but we still have to give the right result. The
5709 -- front end generates a test for this annoying case. Here we
5710 -- just test if both operands can be negative (that's what the
5711 -- expander does, so we match its logic here).
5713 -- The second case is mod where either operand can be negative.
5714 -- In this case, the back end has to generate additional tests.
5716 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5718 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5720 Check_Restriction
(No_Implicit_Conditionals
, N
);
5726 Check_Unset_Reference
(L
);
5727 Check_Unset_Reference
(R
);
5728 end Resolve_Arithmetic_Op
;
5734 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5735 function Same_Or_Aliased_Subprograms
5737 E
: Entity_Id
) return Boolean;
5738 -- Returns True if the subprogram entity S is the same as E or else
5739 -- S is an alias of E.
5741 ---------------------------------
5742 -- Same_Or_Aliased_Subprograms --
5743 ---------------------------------
5745 function Same_Or_Aliased_Subprograms
5747 E
: Entity_Id
) return Boolean
5749 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5751 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5752 end Same_Or_Aliased_Subprograms
;
5756 Loc
: constant Source_Ptr
:= Sloc
(N
);
5757 Subp
: constant Node_Id
:= Name
(N
);
5758 Body_Id
: Entity_Id
;
5768 -- Start of processing for Resolve_Call
5771 -- Preserve relevant elaboration-related attributes of the context which
5772 -- are no longer available or very expensive to recompute once analysis,
5773 -- resolution, and expansion are over.
5775 Mark_Elaboration_Attributes
5780 -- The context imposes a unique interpretation with type Typ on a
5781 -- procedure or function call. Find the entity of the subprogram that
5782 -- yields the expected type, and propagate the corresponding formal
5783 -- constraints on the actuals. The caller has established that an
5784 -- interpretation exists, and emitted an error if not unique.
5786 -- First deal with the case of a call to an access-to-subprogram,
5787 -- dereference made explicit in Analyze_Call.
5789 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5790 if not Is_Overloaded
(Subp
) then
5791 Nam
:= Etype
(Subp
);
5794 -- Find the interpretation whose type (a subprogram type) has a
5795 -- return type that is compatible with the context. Analysis of
5796 -- the node has established that one exists.
5800 Get_First_Interp
(Subp
, I
, It
);
5801 while Present
(It
.Typ
) loop
5802 if Covers
(Typ
, Etype
(It
.Typ
)) then
5807 Get_Next_Interp
(I
, It
);
5811 raise Program_Error
;
5815 -- If the prefix is not an entity, then resolve it
5817 if not Is_Entity_Name
(Subp
) then
5818 Resolve
(Subp
, Nam
);
5821 -- For an indirect call, we always invalidate checks, since we do not
5822 -- know whether the subprogram is local or global. Yes we could do
5823 -- better here, e.g. by knowing that there are no local subprograms,
5824 -- but it does not seem worth the effort. Similarly, we kill all
5825 -- knowledge of current constant values.
5827 Kill_Current_Values
;
5829 -- If this is a procedure call which is really an entry call, do
5830 -- the conversion of the procedure call to an entry call. Protected
5831 -- operations use the same circuitry because the name in the call
5832 -- can be an arbitrary expression with special resolution rules.
5834 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5835 or else (Is_Entity_Name
(Subp
)
5836 and then Ekind_In
(Entity
(Subp
), E_Entry
, E_Entry_Family
))
5838 Resolve_Entry_Call
(N
, Typ
);
5840 -- Annotate the tree by creating a call marker in case the original
5841 -- call is transformed by expansion. The call marker is automatically
5842 -- saved for later examination by the ABE Processing phase.
5844 Build_Call_Marker
(N
);
5846 -- Kill checks and constant values, as above for indirect case
5847 -- Who knows what happens when another task is activated?
5849 Kill_Current_Values
;
5852 -- Normal subprogram call with name established in Resolve
5854 elsif not (Is_Type
(Entity
(Subp
))) then
5855 Nam
:= Entity
(Subp
);
5856 Set_Entity_With_Checks
(Subp
, Nam
);
5858 -- Otherwise we must have the case of an overloaded call
5861 pragma Assert
(Is_Overloaded
(Subp
));
5863 -- Initialize Nam to prevent warning (we know it will be assigned
5864 -- in the loop below, but the compiler does not know that).
5868 Get_First_Interp
(Subp
, I
, It
);
5869 while Present
(It
.Typ
) loop
5870 if Covers
(Typ
, It
.Typ
) then
5872 Set_Entity_With_Checks
(Subp
, Nam
);
5876 Get_Next_Interp
(I
, It
);
5880 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5881 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5882 and then Nkind
(Subp
) /= N_Explicit_Dereference
5883 and then Present
(Parameter_Associations
(N
))
5885 -- The prefix is a parameterless function call that returns an access
5886 -- to subprogram. If parameters are present in the current call, add
5887 -- add an explicit dereference. We use the base type here because
5888 -- within an instance these may be subtypes.
5890 -- The dereference is added either in Analyze_Call or here. Should
5891 -- be consolidated ???
5893 Set_Is_Overloaded
(Subp
, False);
5894 Set_Etype
(Subp
, Etype
(Nam
));
5895 Insert_Explicit_Dereference
(Subp
);
5896 Nam
:= Designated_Type
(Etype
(Nam
));
5897 Resolve
(Subp
, Nam
);
5900 -- Check that a call to Current_Task does not occur in an entry body
5902 if Is_RTE
(Nam
, RE_Current_Task
) then
5911 -- Exclude calls that occur within the default of a formal
5912 -- parameter of the entry, since those are evaluated outside
5915 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5917 if Nkind
(P
) = N_Entry_Body
5918 or else (Nkind
(P
) = N_Subprogram_Body
5919 and then Is_Entry_Barrier_Function
(P
))
5922 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5924 ("& should not be used in entry body (RM C.7(17))<<",
5926 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5928 Make_Raise_Program_Error
(Loc
,
5929 Reason
=> PE_Current_Task_In_Entry_Body
));
5930 Set_Etype
(N
, Rtype
);
5937 -- Check that a procedure call does not occur in the context of the
5938 -- entry call statement of a conditional or timed entry call. Note that
5939 -- the case of a call to a subprogram renaming of an entry will also be
5940 -- rejected. The test for N not being an N_Entry_Call_Statement is
5941 -- defensive, covering the possibility that the processing of entry
5942 -- calls might reach this point due to later modifications of the code
5945 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5946 and then Nkind
(N
) /= N_Entry_Call_Statement
5947 and then Entry_Call_Statement
(Parent
(N
)) = N
5949 if Ada_Version
< Ada_2005
then
5950 Error_Msg_N
("entry call required in select statement", N
);
5952 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5953 -- for a procedure_or_entry_call, the procedure_name or
5954 -- procedure_prefix of the procedure_call_statement shall denote
5955 -- an entry renamed by a procedure, or (a view of) a primitive
5956 -- subprogram of a limited interface whose first parameter is
5957 -- a controlling parameter.
5959 elsif Nkind
(N
) = N_Procedure_Call_Statement
5960 and then not Is_Renamed_Entry
(Nam
)
5961 and then not Is_Controlling_Limited_Procedure
(Nam
)
5964 ("entry call or dispatching primitive of interface required", N
);
5968 -- If the SPARK_05 restriction is active, we are not allowed
5969 -- to have a call to a subprogram before we see its completion.
5971 if not Has_Completion
(Nam
)
5972 and then Restriction_Check_Required
(SPARK_05
)
5974 -- Don't flag strange internal calls
5976 and then Comes_From_Source
(N
)
5977 and then Comes_From_Source
(Nam
)
5979 -- Only flag calls in extended main source
5981 and then In_Extended_Main_Source_Unit
(Nam
)
5982 and then In_Extended_Main_Source_Unit
(N
)
5984 -- Exclude enumeration literals from this processing
5986 and then Ekind
(Nam
) /= E_Enumeration_Literal
5988 Check_SPARK_05_Restriction
5989 ("call to subprogram cannot appear before its body", N
);
5992 -- Check that this is not a call to a protected procedure or entry from
5993 -- within a protected function.
5995 Check_Internal_Protected_Use
(N
, Nam
);
5997 -- Freeze the subprogram name if not in a spec-expression. Note that
5998 -- we freeze procedure calls as well as function calls. Procedure calls
5999 -- are not frozen according to the rules (RM 13.14(14)) because it is
6000 -- impossible to have a procedure call to a non-frozen procedure in
6001 -- pure Ada, but in the code that we generate in the expander, this
6002 -- rule needs extending because we can generate procedure calls that
6005 -- In Ada 2012, expression functions may be called within pre/post
6006 -- conditions of subsequent functions or expression functions. Such
6007 -- calls do not freeze when they appear within generated bodies,
6008 -- (including the body of another expression function) which would
6009 -- place the freeze node in the wrong scope. An expression function
6010 -- is frozen in the usual fashion, by the appearance of a real body,
6011 -- or at the end of a declarative part.
6013 if Is_Entity_Name
(Subp
)
6014 and then not In_Spec_Expression
6015 and then not Is_Expression_Function_Or_Completion
(Current_Scope
)
6017 (not Is_Expression_Function_Or_Completion
(Entity
(Subp
))
6018 or else Scope
(Entity
(Subp
)) = Current_Scope
)
6020 Freeze_Expression
(Subp
);
6023 -- For a predefined operator, the type of the result is the type imposed
6024 -- by context, except for a predefined operation on universal fixed.
6025 -- Otherwise The type of the call is the type returned by the subprogram
6028 if Is_Predefined_Op
(Nam
) then
6029 if Etype
(N
) /= Universal_Fixed
then
6033 -- If the subprogram returns an array type, and the context requires the
6034 -- component type of that array type, the node is really an indexing of
6035 -- the parameterless call. Resolve as such. A pathological case occurs
6036 -- when the type of the component is an access to the array type. In
6037 -- this case the call is truly ambiguous. If the call is to an intrinsic
6038 -- subprogram, it can't be an indexed component. This check is necessary
6039 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6040 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6041 -- pointers to the same array), the compiler gets confused and does an
6042 -- infinite recursion.
6044 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
6046 ((Is_Array_Type
(Etype
(Nam
))
6047 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6049 (Is_Access_Type
(Etype
(Nam
))
6050 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6052 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))
6053 and then not Is_Intrinsic_Subprogram
(Entity
(Subp
))))
6056 Index_Node
: Node_Id
;
6058 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
6061 if Is_Access_Type
(Ret_Type
)
6062 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
6065 ("cannot disambiguate function call and indexing", N
);
6067 New_Subp
:= Relocate_Node
(Subp
);
6069 -- The called entity may be an explicit dereference, in which
6070 -- case there is no entity to set.
6072 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
6073 Set_Entity
(Subp
, Nam
);
6076 if (Is_Array_Type
(Ret_Type
)
6077 and then Component_Type
(Ret_Type
) /= Any_Type
)
6079 (Is_Access_Type
(Ret_Type
)
6081 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
6083 if Needs_No_Actuals
(Nam
) then
6085 -- Indexed call to a parameterless function
6088 Make_Indexed_Component
(Loc
,
6090 Make_Function_Call
(Loc
, Name
=> New_Subp
),
6091 Expressions
=> Parameter_Associations
(N
));
6093 -- An Ada 2005 prefixed call to a primitive operation
6094 -- whose first parameter is the prefix. This prefix was
6095 -- prepended to the parameter list, which is actually a
6096 -- list of indexes. Remove the prefix in order to build
6097 -- the proper indexed component.
6100 Make_Indexed_Component
(Loc
,
6102 Make_Function_Call
(Loc
,
6104 Parameter_Associations
=>
6106 (Remove_Head
(Parameter_Associations
(N
)))),
6107 Expressions
=> Parameter_Associations
(N
));
6110 -- Preserve the parenthesis count of the node
6112 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
6114 -- Since we are correcting a node classification error made
6115 -- by the parser, we call Replace rather than Rewrite.
6117 Replace
(N
, Index_Node
);
6119 Set_Etype
(Prefix
(N
), Ret_Type
);
6121 Resolve_Indexed_Component
(N
, Typ
);
6123 -- Annotate the tree by creating a call marker in case
6124 -- the original call is transformed by expansion. The call
6125 -- marker is automatically saved for later examination by
6126 -- the ABE Processing phase.
6128 Build_Call_Marker
(Prefix
(N
));
6136 -- If the called function is not declared in the main unit and it
6137 -- returns the limited view of type then use the available view (as
6138 -- is done in Try_Object_Operation) to prevent back-end confusion;
6139 -- for the function entity itself. The call must appear in a context
6140 -- where the nonlimited view is available. If the function entity is
6141 -- in the extended main unit then no action is needed, because the
6142 -- back end handles this case. In either case the type of the call
6143 -- is the nonlimited view.
6145 if From_Limited_With
(Etype
(Nam
))
6146 and then Present
(Available_View
(Etype
(Nam
)))
6148 Set_Etype
(N
, Available_View
(Etype
(Nam
)));
6150 if not In_Extended_Main_Code_Unit
(Nam
) then
6151 Set_Etype
(Nam
, Available_View
(Etype
(Nam
)));
6155 Set_Etype
(N
, Etype
(Nam
));
6159 -- In the case where the call is to an overloaded subprogram, Analyze
6160 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6161 -- such a case Normalize_Actuals needs to be called once more to order
6162 -- the actuals correctly. Otherwise the call will have the ordering
6163 -- given by the last overloaded subprogram whether this is the correct
6164 -- one being called or not.
6166 if Is_Overloaded
(Subp
) then
6167 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6168 pragma Assert
(Norm_OK
);
6171 -- In any case, call is fully resolved now. Reset Overload flag, to
6172 -- prevent subsequent overload resolution if node is analyzed again
6174 Set_Is_Overloaded
(Subp
, False);
6175 Set_Is_Overloaded
(N
, False);
6177 -- A Ghost entity must appear in a specific context
6179 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
6180 Check_Ghost_Context
(Nam
, N
);
6183 -- If we are calling the current subprogram from immediately within its
6184 -- body, then that is the case where we can sometimes detect cases of
6185 -- infinite recursion statically. Do not try this in case restriction
6186 -- No_Recursion is in effect anyway, and do it only for source calls.
6188 if Comes_From_Source
(N
) then
6189 Scop
:= Current_Scope
;
6191 -- Check violation of SPARK_05 restriction which does not permit
6192 -- a subprogram body to contain a call to the subprogram directly.
6194 if Restriction_Check_Required
(SPARK_05
)
6195 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6197 Check_SPARK_05_Restriction
6198 ("subprogram may not contain direct call to itself", N
);
6201 -- Issue warning for possible infinite recursion in the absence
6202 -- of the No_Recursion restriction.
6204 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6205 and then not Restriction_Active
(No_Recursion
)
6206 and then Check_Infinite_Recursion
(N
)
6208 -- Here we detected and flagged an infinite recursion, so we do
6209 -- not need to test the case below for further warnings. Also we
6210 -- are all done if we now have a raise SE node.
6212 if Nkind
(N
) = N_Raise_Storage_Error
then
6216 -- If call is to immediately containing subprogram, then check for
6217 -- the case of a possible run-time detectable infinite recursion.
6220 Scope_Loop
: while Scop
/= Standard_Standard
loop
6221 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
6223 -- Although in general case, recursion is not statically
6224 -- checkable, the case of calling an immediately containing
6225 -- subprogram is easy to catch.
6227 Check_Restriction
(No_Recursion
, N
);
6229 -- If the recursive call is to a parameterless subprogram,
6230 -- then even if we can't statically detect infinite
6231 -- recursion, this is pretty suspicious, and we output a
6232 -- warning. Furthermore, we will try later to detect some
6233 -- cases here at run time by expanding checking code (see
6234 -- Detect_Infinite_Recursion in package Exp_Ch6).
6236 -- If the recursive call is within a handler, do not emit a
6237 -- warning, because this is a common idiom: loop until input
6238 -- is correct, catch illegal input in handler and restart.
6240 if No
(First_Formal
(Nam
))
6241 and then Etype
(Nam
) = Standard_Void_Type
6242 and then not Error_Posted
(N
)
6243 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
6245 -- For the case of a procedure call. We give the message
6246 -- only if the call is the first statement in a sequence
6247 -- of statements, or if all previous statements are
6248 -- simple assignments. This is simply a heuristic to
6249 -- decrease false positives, without losing too many good
6250 -- warnings. The idea is that these previous statements
6251 -- may affect global variables the procedure depends on.
6252 -- We also exclude raise statements, that may arise from
6253 -- constraint checks and are probably unrelated to the
6254 -- intended control flow.
6256 if Nkind
(N
) = N_Procedure_Call_Statement
6257 and then Is_List_Member
(N
)
6263 while Present
(P
) loop
6264 if not Nkind_In
(P
, N_Assignment_Statement
,
6265 N_Raise_Constraint_Error
)
6275 -- Do not give warning if we are in a conditional context
6278 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6280 if (K
= N_Loop_Statement
6281 and then Present
(Iteration_Scheme
(Parent
(N
))))
6282 or else K
= N_If_Statement
6283 or else K
= N_Elsif_Part
6284 or else K
= N_Case_Statement_Alternative
6290 -- Here warning is to be issued
6292 Set_Has_Recursive_Call
(Nam
);
6293 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6294 Error_Msg_N
("possible infinite recursion<<!", N
);
6295 Error_Msg_N
("\Storage_Error ]<<!", N
);
6301 Scop
:= Scope
(Scop
);
6302 end loop Scope_Loop
;
6306 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6308 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6310 -- If subprogram name is a predefined operator, it was given in
6311 -- functional notation. Replace call node with operator node, so
6312 -- that actuals can be resolved appropriately.
6314 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6315 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6318 elsif Present
(Alias
(Nam
))
6319 and then Is_Predefined_Op
(Alias
(Nam
))
6321 Resolve_Actuals
(N
, Nam
);
6322 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6326 -- Create a transient scope if the resulting type requires it
6328 -- There are several notable exceptions:
6330 -- a) In init procs, the transient scope overhead is not needed, and is
6331 -- even incorrect when the call is a nested initialization call for a
6332 -- component whose expansion may generate adjust calls. However, if the
6333 -- call is some other procedure call within an initialization procedure
6334 -- (for example a call to Create_Task in the init_proc of the task
6335 -- run-time record) a transient scope must be created around this call.
6337 -- b) Enumeration literal pseudo-calls need no transient scope
6339 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6340 -- functions) do not use the secondary stack even though the return
6341 -- type may be unconstrained.
6343 -- d) Calls to a build-in-place function, since such functions may
6344 -- allocate their result directly in a target object, and cases where
6345 -- the result does get allocated in the secondary stack are checked for
6346 -- within the specialized Exp_Ch6 procedures for expanding those
6347 -- build-in-place calls.
6349 -- e) Calls to inlinable expression functions do not use the secondary
6350 -- stack (since the call will be replaced by its returned object).
6352 -- f) If the subprogram is marked Inline_Always, then even if it returns
6353 -- an unconstrained type the call does not require use of the secondary
6354 -- stack. However, inlining will only take place if the body to inline
6355 -- is already present. It may not be available if e.g. the subprogram is
6356 -- declared in a child instance.
6358 -- If this is an initialization call for a type whose construction
6359 -- uses the secondary stack, and it is not a nested call to initialize
6360 -- a component, we do need to create a transient scope for it. We
6361 -- check for this by traversing the type in Check_Initialization_Call.
6364 and then Has_Pragma_Inline
(Nam
)
6365 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6366 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6370 elsif Ekind
(Nam
) = E_Enumeration_Literal
6371 or else Is_Build_In_Place_Function
(Nam
)
6372 or else Is_Intrinsic_Subprogram
(Nam
)
6373 or else Is_Inlinable_Expression_Function
(Nam
)
6377 elsif Expander_Active
6378 and then Is_Type
(Etype
(Nam
))
6379 and then Requires_Transient_Scope
(Etype
(Nam
))
6381 (not Within_Init_Proc
6383 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6385 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6387 -- If the call appears within the bounds of a loop, it will
6388 -- be rewritten and reanalyzed, nothing left to do here.
6390 if Nkind
(N
) /= N_Function_Call
then
6394 elsif Is_Init_Proc
(Nam
)
6395 and then not Within_Init_Proc
6397 Check_Initialization_Call
(N
, Nam
);
6400 -- A protected function cannot be called within the definition of the
6401 -- enclosing protected type, unless it is part of a pre/postcondition
6402 -- on another protected operation. This may appear in the entry wrapper
6403 -- created for an entry with preconditions.
6405 if Is_Protected_Type
(Scope
(Nam
))
6406 and then In_Open_Scopes
(Scope
(Nam
))
6407 and then not Has_Completion
(Scope
(Nam
))
6408 and then not In_Spec_Expression
6409 and then not Is_Entry_Wrapper
(Current_Scope
)
6412 ("& cannot be called before end of protected definition", N
, Nam
);
6415 -- Propagate interpretation to actuals, and add default expressions
6418 if Present
(First_Formal
(Nam
)) then
6419 Resolve_Actuals
(N
, Nam
);
6421 -- Overloaded literals are rewritten as function calls, for purpose of
6422 -- resolution. After resolution, we can replace the call with the
6425 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6426 Copy_Node
(Subp
, N
);
6427 Resolve_Entity_Name
(N
, Typ
);
6429 -- Avoid validation, since it is a static function call
6431 Generate_Reference
(Nam
, Subp
);
6435 -- If the subprogram is not global, then kill all saved values and
6436 -- checks. This is a bit conservative, since in many cases we could do
6437 -- better, but it is not worth the effort. Similarly, we kill constant
6438 -- values. However we do not need to do this for internal entities
6439 -- (unless they are inherited user-defined subprograms), since they
6440 -- are not in the business of molesting local values.
6442 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6443 -- kill all checks and values for calls to global subprograms. This
6444 -- takes care of the case where an access to a local subprogram is
6445 -- taken, and could be passed directly or indirectly and then called
6446 -- from almost any context.
6448 -- Note: we do not do this step till after resolving the actuals. That
6449 -- way we still take advantage of the current value information while
6450 -- scanning the actuals.
6452 -- We suppress killing values if we are processing the nodes associated
6453 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6454 -- type kills all the values as part of analyzing the code that
6455 -- initializes the dispatch tables.
6457 if Inside_Freezing_Actions
= 0
6458 and then (not Is_Library_Level_Entity
(Nam
)
6459 or else Suppress_Value_Tracking_On_Call
6460 (Nearest_Dynamic_Scope
(Current_Scope
)))
6461 and then (Comes_From_Source
(Nam
)
6462 or else (Present
(Alias
(Nam
))
6463 and then Comes_From_Source
(Alias
(Nam
))))
6465 Kill_Current_Values
;
6468 -- If we are warning about unread OUT parameters, this is the place to
6469 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6470 -- after the above call to Kill_Current_Values (since that call clears
6471 -- the Last_Assignment field of all local variables).
6473 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6474 and then Comes_From_Source
(N
)
6475 and then In_Extended_Main_Source_Unit
(N
)
6482 F
:= First_Formal
(Nam
);
6483 A
:= First_Actual
(N
);
6484 while Present
(F
) and then Present
(A
) loop
6485 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6486 and then Warn_On_Modified_As_Out_Parameter
(F
)
6487 and then Is_Entity_Name
(A
)
6488 and then Present
(Entity
(A
))
6489 and then Comes_From_Source
(N
)
6490 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6492 Set_Last_Assignment
(Entity
(A
), A
);
6501 -- If the subprogram is a primitive operation, check whether or not
6502 -- it is a correct dispatching call.
6504 if Is_Overloadable
(Nam
)
6505 and then Is_Dispatching_Operation
(Nam
)
6507 Check_Dispatching_Call
(N
);
6509 elsif Ekind
(Nam
) /= E_Subprogram_Type
6510 and then Is_Abstract_Subprogram
(Nam
)
6511 and then not In_Instance
6513 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6516 -- If this is a dispatching call, generate the appropriate reference,
6517 -- for better source navigation in GPS.
6519 if Is_Overloadable
(Nam
)
6520 and then Present
(Controlling_Argument
(N
))
6522 Generate_Reference
(Nam
, Subp
, 'R');
6524 -- Normal case, not a dispatching call: generate a call reference
6527 Generate_Reference
(Nam
, Subp
, 's');
6530 if Is_Intrinsic_Subprogram
(Nam
) then
6531 Check_Intrinsic_Call
(N
);
6534 -- Check for violation of restriction No_Specific_Termination_Handlers
6535 -- and warn on a potentially blocking call to Abort_Task.
6537 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6538 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6540 Is_RTE
(Nam
, RE_Specific_Handler
))
6542 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6544 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6545 Check_Potentially_Blocking_Operation
(N
);
6548 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6549 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6550 -- need to check the second argument to determine whether it is an
6551 -- absolute or relative timing event.
6553 if Restriction_Check_Required
(No_Relative_Delay
)
6554 and then Is_RTE
(Nam
, RE_Set_Handler
)
6555 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6557 Check_Restriction
(No_Relative_Delay
, N
);
6560 -- Issue an error for a call to an eliminated subprogram. This routine
6561 -- will not perform the check if the call appears within a default
6564 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6566 -- In formal mode, the primitive operations of a tagged type or type
6567 -- extension do not include functions that return the tagged type.
6569 if Nkind
(N
) = N_Function_Call
6570 and then Is_Tagged_Type
(Etype
(N
))
6571 and then Is_Entity_Name
(Name
(N
))
6572 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6574 Check_SPARK_05_Restriction
("function not inherited", N
);
6577 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6578 -- class-wide and the call dispatches on result in a context that does
6579 -- not provide a tag, the call raises Program_Error.
6581 if Nkind
(N
) = N_Function_Call
6582 and then In_Instance
6583 and then Is_Generic_Actual_Type
(Typ
)
6584 and then Is_Class_Wide_Type
(Typ
)
6585 and then Has_Controlling_Result
(Nam
)
6586 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6588 -- Verify that none of the formals are controlling
6591 Call_OK
: Boolean := False;
6595 F
:= First_Formal
(Nam
);
6596 while Present
(F
) loop
6597 if Is_Controlling_Formal
(F
) then
6606 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6607 Error_Msg_N
("!cannot determine tag of result<<", N
);
6608 Error_Msg_N
("\Program_Error [<<!", N
);
6610 Make_Raise_Program_Error
(Sloc
(N
),
6611 Reason
=> PE_Explicit_Raise
));
6616 -- Check for calling a function with OUT or IN OUT parameter when the
6617 -- calling context (us right now) is not Ada 2012, so does not allow
6618 -- OUT or IN OUT parameters in function calls. Functions declared in
6619 -- a predefined unit are OK, as they may be called indirectly from a
6620 -- user-declared instantiation.
6622 if Ada_Version
< Ada_2012
6623 and then Ekind
(Nam
) = E_Function
6624 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6625 and then not In_Predefined_Unit
(Nam
)
6627 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6628 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6631 -- Check the dimensions of the actuals in the call. For function calls,
6632 -- propagate the dimensions from the returned type to N.
6634 Analyze_Dimension_Call
(N
, Nam
);
6636 -- All done, evaluate call and deal with elaboration issues
6640 -- Annotate the tree by creating a call marker in case the original call
6641 -- is transformed by expansion. The call marker is automatically saved
6642 -- for later examination by the ABE Processing phase.
6644 Build_Call_Marker
(N
);
6646 -- In GNATprove mode, expansion is disabled, but we want to inline some
6647 -- subprograms to facilitate formal verification. Indirect calls through
6648 -- a subprogram type or within a generic cannot be inlined. Inlining is
6649 -- performed only for calls subject to SPARK_Mode on.
6652 and then SPARK_Mode
= On
6653 and then Is_Overloadable
(Nam
)
6654 and then not Inside_A_Generic
6656 Nam_UA
:= Ultimate_Alias
(Nam
);
6657 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6659 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6660 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6662 -- Nothing to do if the subprogram is not eligible for inlining in
6663 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6665 if not Is_Inlined_Always
(Nam_UA
)
6666 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6667 or else Debug_Flag_M
6671 -- Calls cannot be inlined inside assertions, as GNATprove treats
6672 -- assertions as logic expressions. Only issue a message when the
6673 -- body has been seen, otherwise this leads to spurious messages
6674 -- on expression functions.
6676 elsif In_Assertion_Expr
/= 0 then
6677 if Present
(Body_Id
) then
6679 ("cannot inline & (in assertion expression)?", N
, Nam_UA
);
6682 -- Calls cannot be inlined inside default expressions
6684 elsif In_Default_Expr
then
6686 ("cannot inline & (in default expression)?", N
, Nam_UA
);
6688 -- Inlining should not be performed during pre-analysis
6690 elsif Full_Analysis
then
6692 -- Do not inline calls inside expression functions, as this
6693 -- would prevent interpreting them as logical formulas in
6694 -- GNATprove. Only issue a message when the body has been seen,
6695 -- otherwise this leads to spurious messages on callees that
6696 -- are themselves expression functions.
6698 if Present
(Current_Subprogram
)
6699 and then Is_Expression_Function_Or_Completion
6700 (Current_Subprogram
)
6702 if Present
(Body_Id
)
6703 and then Present
(Body_To_Inline
(Nam_Decl
))
6706 ("cannot inline & (inside expression function)?",
6710 -- With the one-pass inlining technique, a call cannot be
6711 -- inlined if the corresponding body has not been seen yet.
6713 elsif No
(Body_Id
) then
6715 ("cannot inline & (body not seen yet)?", N
, Nam_UA
);
6717 -- Nothing to do if there is no body to inline, indicating that
6718 -- the subprogram is not suitable for inlining in GNATprove
6721 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6724 -- Calls cannot be inlined inside potentially unevaluated
6725 -- expressions, as this would create complex actions inside
6726 -- expressions, that are not handled by GNATprove.
6728 elsif Is_Potentially_Unevaluated
(N
) then
6730 ("cannot inline & (in potentially unevaluated context)?",
6733 -- Do not inline calls which would possibly lead to missing a
6734 -- type conversion check on an input parameter.
6736 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode
(N
, Nam
) then
6738 ("cannot inline & (possible check on input parameters)?",
6741 -- Otherwise, inline the call
6744 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6750 Mark_Use_Clauses
(Subp
);
6752 Warn_On_Overlapping_Actuals
(Nam
, N
);
6755 -----------------------------
6756 -- Resolve_Case_Expression --
6757 -----------------------------
6759 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6762 Alt_Typ
: Entity_Id
;
6766 Alt
:= First
(Alternatives
(N
));
6767 while Present
(Alt
) loop
6768 Alt_Expr
:= Expression
(Alt
);
6770 if Error_Posted
(Alt_Expr
) then
6774 Resolve
(Alt_Expr
, Typ
);
6775 Alt_Typ
:= Etype
(Alt_Expr
);
6777 -- When the expression is of a scalar subtype different from the
6778 -- result subtype, then insert a conversion to ensure the generation
6779 -- of a constraint check.
6781 if Is_Scalar_Type
(Alt_Typ
) and then Alt_Typ
/= Typ
then
6782 Rewrite
(Alt_Expr
, Convert_To
(Typ
, Alt_Expr
));
6783 Analyze_And_Resolve
(Alt_Expr
, Typ
);
6789 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6790 -- dynamically tagged must be known statically.
6792 if Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
6793 Alt
:= First
(Alternatives
(N
));
6794 Is_Dyn
:= Is_Dynamically_Tagged
(Expression
(Alt
));
6796 while Present
(Alt
) loop
6797 if Is_Dynamically_Tagged
(Expression
(Alt
)) /= Is_Dyn
then
6799 ("all or none of the dependent expressions can be "
6800 & "dynamically tagged", N
);
6808 Eval_Case_Expression
(N
);
6809 Analyze_Dimension
(N
);
6810 end Resolve_Case_Expression
;
6812 -------------------------------
6813 -- Resolve_Character_Literal --
6814 -------------------------------
6816 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6817 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6821 -- Verify that the character does belong to the type of the context
6823 Set_Etype
(N
, B_Typ
);
6824 Eval_Character_Literal
(N
);
6826 -- Wide_Wide_Character literals must always be defined, since the set
6827 -- of wide wide character literals is complete, i.e. if a character
6828 -- literal is accepted by the parser, then it is OK for wide wide
6829 -- character (out of range character literals are rejected).
6831 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6834 -- Always accept character literal for type Any_Character, which
6835 -- occurs in error situations and in comparisons of literals, both
6836 -- of which should accept all literals.
6838 elsif B_Typ
= Any_Character
then
6841 -- For Standard.Character or a type derived from it, check that the
6842 -- literal is in range.
6844 elsif Root_Type
(B_Typ
) = Standard_Character
then
6845 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6849 -- For Standard.Wide_Character or a type derived from it, check that the
6850 -- literal is in range.
6852 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6853 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6857 -- If the entity is already set, this has already been resolved in a
6858 -- generic context, or comes from expansion. Nothing else to do.
6860 elsif Present
(Entity
(N
)) then
6863 -- Otherwise we have a user defined character type, and we can use the
6864 -- standard visibility mechanisms to locate the referenced entity.
6867 C
:= Current_Entity
(N
);
6868 while Present
(C
) loop
6869 if Etype
(C
) = B_Typ
then
6870 Set_Entity_With_Checks
(N
, C
);
6871 Generate_Reference
(C
, N
);
6879 -- If we fall through, then the literal does not match any of the
6880 -- entries of the enumeration type. This isn't just a constraint error
6881 -- situation, it is an illegality (see RM 4.2).
6884 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6885 end Resolve_Character_Literal
;
6887 ---------------------------
6888 -- Resolve_Comparison_Op --
6889 ---------------------------
6891 -- Context requires a boolean type, and plays no role in resolution.
6892 -- Processing identical to that for equality operators. The result type is
6893 -- the base type, which matters when pathological subtypes of booleans with
6894 -- limited ranges are used.
6896 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6897 L
: constant Node_Id
:= Left_Opnd
(N
);
6898 R
: constant Node_Id
:= Right_Opnd
(N
);
6902 -- If this is an intrinsic operation which is not predefined, use the
6903 -- types of its declared arguments to resolve the possibly overloaded
6904 -- operands. Otherwise the operands are unambiguous and specify the
6907 if Scope
(Entity
(N
)) /= Standard_Standard
then
6908 T
:= Etype
(First_Entity
(Entity
(N
)));
6911 T
:= Find_Unique_Type
(L
, R
);
6913 if T
= Any_Fixed
then
6914 T
:= Unique_Fixed_Point_Type
(L
);
6918 Set_Etype
(N
, Base_Type
(Typ
));
6919 Generate_Reference
(T
, N
, ' ');
6921 -- Skip remaining processing if already set to Any_Type
6923 if T
= Any_Type
then
6927 -- Deal with other error cases
6929 if T
= Any_String
or else
6930 T
= Any_Composite
or else
6933 if T
= Any_Character
then
6934 Ambiguous_Character
(L
);
6936 Error_Msg_N
("ambiguous operands for comparison", N
);
6939 Set_Etype
(N
, Any_Type
);
6943 -- Resolve the operands if types OK
6947 Check_Unset_Reference
(L
);
6948 Check_Unset_Reference
(R
);
6949 Generate_Operator_Reference
(N
, T
);
6950 Check_Low_Bound_Tested
(N
);
6952 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6953 -- types or array types except String.
6955 if Is_Boolean_Type
(T
) then
6956 Check_SPARK_05_Restriction
6957 ("comparison is not defined on Boolean type", N
);
6959 elsif Is_Array_Type
(T
)
6960 and then Base_Type
(T
) /= Standard_String
6962 Check_SPARK_05_Restriction
6963 ("comparison is not defined on array types other than String", N
);
6966 -- Check comparison on unordered enumeration
6968 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6969 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6971 ("comparison on unordered enumeration type& declared#?U?",
6975 Analyze_Dimension
(N
);
6977 -- Evaluate the relation (note we do this after the above check since
6978 -- this Eval call may change N to True/False. Skip this evaluation
6979 -- inside assertions, in order to keep assertions as written by users
6980 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6981 -- Except evaluation is still performed even inside assertions for
6982 -- comparisons between values of universal type, which are useless
6983 -- for static analysis tools, and not supported even by GNATprove.
6985 if In_Assertion_Expr
= 0
6986 or else (Is_Universal_Numeric_Type
(Etype
(L
))
6988 Is_Universal_Numeric_Type
(Etype
(R
)))
6990 Eval_Relational_Op
(N
);
6992 end Resolve_Comparison_Op
;
6994 -----------------------------------------
6995 -- Resolve_Discrete_Subtype_Indication --
6996 -----------------------------------------
6998 procedure Resolve_Discrete_Subtype_Indication
7006 Analyze
(Subtype_Mark
(N
));
7007 S
:= Entity
(Subtype_Mark
(N
));
7009 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
7010 Error_Msg_N
("expect range constraint for discrete type", N
);
7011 Set_Etype
(N
, Any_Type
);
7014 R
:= Range_Expression
(Constraint
(N
));
7022 if Base_Type
(S
) /= Base_Type
(Typ
) then
7024 ("expect subtype of }", N
, First_Subtype
(Typ
));
7026 -- Rewrite the constraint as a range of Typ
7027 -- to allow compilation to proceed further.
7030 Rewrite
(Low_Bound
(R
),
7031 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
7032 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
7033 Attribute_Name
=> Name_First
));
7034 Rewrite
(High_Bound
(R
),
7035 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
7036 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
7037 Attribute_Name
=> Name_First
));
7041 Set_Etype
(N
, Etype
(R
));
7043 -- Additionally, we must check that the bounds are compatible
7044 -- with the given subtype, which might be different from the
7045 -- type of the context.
7047 Apply_Range_Check
(R
, S
);
7049 -- ??? If the above check statically detects a Constraint_Error
7050 -- it replaces the offending bound(s) of the range R with a
7051 -- Constraint_Error node. When the itype which uses these bounds
7052 -- is frozen the resulting call to Duplicate_Subexpr generates
7053 -- a new temporary for the bounds.
7055 -- Unfortunately there are other itypes that are also made depend
7056 -- on these bounds, so when Duplicate_Subexpr is called they get
7057 -- a forward reference to the newly created temporaries and Gigi
7058 -- aborts on such forward references. This is probably sign of a
7059 -- more fundamental problem somewhere else in either the order of
7060 -- itype freezing or the way certain itypes are constructed.
7062 -- To get around this problem we call Remove_Side_Effects right
7063 -- away if either bounds of R are a Constraint_Error.
7066 L
: constant Node_Id
:= Low_Bound
(R
);
7067 H
: constant Node_Id
:= High_Bound
(R
);
7070 if Nkind
(L
) = N_Raise_Constraint_Error
then
7071 Remove_Side_Effects
(L
);
7074 if Nkind
(H
) = N_Raise_Constraint_Error
then
7075 Remove_Side_Effects
(H
);
7079 Check_Unset_Reference
(Low_Bound
(R
));
7080 Check_Unset_Reference
(High_Bound
(R
));
7083 end Resolve_Discrete_Subtype_Indication
;
7085 -------------------------
7086 -- Resolve_Entity_Name --
7087 -------------------------
7089 -- Used to resolve identifiers and expanded names
7091 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
7092 function Is_Assignment_Or_Object_Expression
7094 Expr
: Node_Id
) return Boolean;
7095 -- Determine whether node Context denotes an assignment statement or an
7096 -- object declaration whose expression is node Expr.
7098 ----------------------------------------
7099 -- Is_Assignment_Or_Object_Expression --
7100 ----------------------------------------
7102 function Is_Assignment_Or_Object_Expression
7104 Expr
: Node_Id
) return Boolean
7107 if Nkind_In
(Context
, N_Assignment_Statement
,
7108 N_Object_Declaration
)
7109 and then Expression
(Context
) = Expr
7113 -- Check whether a construct that yields a name is the expression of
7114 -- an assignment statement or an object declaration.
7116 elsif (Nkind_In
(Context
, N_Attribute_Reference
,
7117 N_Explicit_Dereference
,
7118 N_Indexed_Component
,
7119 N_Selected_Component
,
7121 and then Prefix
(Context
) = Expr
)
7123 (Nkind_In
(Context
, N_Type_Conversion
,
7124 N_Unchecked_Type_Conversion
)
7125 and then Expression
(Context
) = Expr
)
7128 Is_Assignment_Or_Object_Expression
7129 (Context
=> Parent
(Context
),
7132 -- Otherwise the context is not an assignment statement or an object
7138 end Is_Assignment_Or_Object_Expression
;
7142 E
: constant Entity_Id
:= Entity
(N
);
7145 -- Start of processing for Resolve_Entity_Name
7148 -- If garbage from errors, set to Any_Type and return
7150 if No
(E
) and then Total_Errors_Detected
/= 0 then
7151 Set_Etype
(N
, Any_Type
);
7155 -- Replace named numbers by corresponding literals. Note that this is
7156 -- the one case where Resolve_Entity_Name must reset the Etype, since
7157 -- it is currently marked as universal.
7159 if Ekind
(E
) = E_Named_Integer
then
7161 Eval_Named_Integer
(N
);
7163 elsif Ekind
(E
) = E_Named_Real
then
7165 Eval_Named_Real
(N
);
7167 -- For enumeration literals, we need to make sure that a proper style
7168 -- check is done, since such literals are overloaded, and thus we did
7169 -- not do a style check during the first phase of analysis.
7171 elsif Ekind
(E
) = E_Enumeration_Literal
then
7172 Set_Entity_With_Checks
(N
, E
);
7173 Eval_Entity_Name
(N
);
7175 -- Case of (sub)type name appearing in a context where an expression
7176 -- is expected. This is legal if occurrence is a current instance.
7177 -- See RM 8.6 (17/3).
7179 elsif Is_Type
(E
) then
7180 if Is_Current_Instance
(N
) then
7183 -- Any other use is an error
7187 ("invalid use of subtype mark in expression or call", N
);
7190 -- Check discriminant use if entity is discriminant in current scope,
7191 -- i.e. discriminant of record or concurrent type currently being
7192 -- analyzed. Uses in corresponding body are unrestricted.
7194 elsif Ekind
(E
) = E_Discriminant
7195 and then Scope
(E
) = Current_Scope
7196 and then not Has_Completion
(Current_Scope
)
7198 Check_Discriminant_Use
(N
);
7200 -- A parameterless generic function cannot appear in a context that
7201 -- requires resolution.
7203 elsif Ekind
(E
) = E_Generic_Function
then
7204 Error_Msg_N
("illegal use of generic function", N
);
7206 -- In Ada 83 an OUT parameter cannot be read
7208 elsif Ekind
(E
) = E_Out_Parameter
7209 and then (Nkind
(Parent
(N
)) in N_Op
7210 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
7211 or else Is_Assignment_Or_Object_Expression
7212 (Context
=> Parent
(N
),
7215 if Ada_Version
= Ada_83
then
7216 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7219 -- In all other cases, just do the possible static evaluation
7222 -- A deferred constant that appears in an expression must have a
7223 -- completion, unless it has been removed by in-place expansion of
7224 -- an aggregate. A constant that is a renaming does not need
7227 if Ekind
(E
) = E_Constant
7228 and then Comes_From_Source
(E
)
7229 and then No
(Constant_Value
(E
))
7230 and then Is_Frozen
(Etype
(E
))
7231 and then not In_Spec_Expression
7232 and then not Is_Imported
(E
)
7233 and then Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7235 if No_Initialization
(Parent
(E
))
7236 or else (Present
(Full_View
(E
))
7237 and then No_Initialization
(Parent
(Full_View
(E
))))
7242 ("deferred constant is frozen before completion", N
);
7246 Eval_Entity_Name
(N
);
7251 -- When the entity appears in a parameter association, retrieve the
7252 -- related subprogram call.
7254 if Nkind
(Par
) = N_Parameter_Association
then
7255 Par
:= Parent
(Par
);
7258 if Comes_From_Source
(N
) then
7260 -- The following checks are only relevant when SPARK_Mode is on as
7261 -- they are not standard Ada legality rules.
7263 if SPARK_Mode
= On
then
7265 -- An effectively volatile object subject to enabled properties
7266 -- Async_Writers or Effective_Reads must appear in non-interfering
7267 -- context (SPARK RM 7.1.3(12)).
7270 and then Is_Effectively_Volatile
(E
)
7271 and then (Async_Writers_Enabled
(E
)
7272 or else Effective_Reads_Enabled
(E
))
7273 and then not Is_OK_Volatile_Context
(Par
, N
)
7276 ("volatile object cannot appear in this context "
7277 & "(SPARK RM 7.1.3(12))", N
);
7280 -- The variable may eventually become a constituent of a single
7281 -- protected/task type. Record the reference now and verify its
7282 -- legality when analyzing the contract of the variable
7285 if Ekind
(E
) = E_Variable
then
7286 Record_Possible_Part_Of_Reference
(E
, N
);
7290 -- A Ghost entity must appear in a specific context
7292 if Is_Ghost_Entity
(E
) then
7293 Check_Ghost_Context
(E
, N
);
7297 Mark_Use_Clauses
(E
);
7298 end Resolve_Entity_Name
;
7304 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7305 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7313 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7314 -- If the bounds of the entry family being called depend on task
7315 -- discriminants, build a new index subtype where a discriminant is
7316 -- replaced with the value of the discriminant of the target task.
7317 -- The target task is the prefix of the entry name in the call.
7319 -----------------------
7320 -- Actual_Index_Type --
7321 -----------------------
7323 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7324 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7325 Tsk
: constant Entity_Id
:= Scope
(E
);
7326 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7327 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7330 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7331 -- If the bound is given by a discriminant, replace with a reference
7332 -- to the discriminant of the same name in the target task. If the
7333 -- entry name is the target of a requeue statement and the entry is
7334 -- in the current protected object, the bound to be used is the
7335 -- discriminal of the object (see Apply_Range_Checks for details of
7336 -- the transformation).
7338 -----------------------------
7339 -- Actual_Discriminant_Ref --
7340 -----------------------------
7342 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7343 Typ
: constant Entity_Id
:= Etype
(Bound
);
7347 Remove_Side_Effects
(Bound
);
7349 if not Is_Entity_Name
(Bound
)
7350 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7354 elsif Is_Protected_Type
(Tsk
)
7355 and then In_Open_Scopes
(Tsk
)
7356 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7358 -- Note: here Bound denotes a discriminant of the corresponding
7359 -- record type tskV, whose discriminal is a formal of the
7360 -- init-proc tskVIP. What we want is the body discriminal,
7361 -- which is associated to the discriminant of the original
7362 -- concurrent type tsk.
7364 return New_Occurrence_Of
7365 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7369 Make_Selected_Component
(Loc
,
7370 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7371 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7376 end Actual_Discriminant_Ref
;
7378 -- Start of processing for Actual_Index_Type
7381 if not Has_Discriminants
(Tsk
)
7382 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7384 return Entry_Index_Type
(E
);
7387 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7388 Set_Etype
(New_T
, Base_Type
(Typ
));
7389 Set_Size_Info
(New_T
, Typ
);
7390 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7391 Set_Scalar_Range
(New_T
,
7392 Make_Range
(Sloc
(Entry_Name
),
7393 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7394 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7398 end Actual_Index_Type
;
7400 -- Start of processing for Resolve_Entry
7403 -- Find name of entry being called, and resolve prefix of name with its
7404 -- own type. The prefix can be overloaded, and the name and signature of
7405 -- the entry must be taken into account.
7407 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7409 -- Case of dealing with entry family within the current tasks
7411 E_Name
:= Prefix
(Entry_Name
);
7414 E_Name
:= Entry_Name
;
7417 if Is_Entity_Name
(E_Name
) then
7419 -- Entry call to an entry (or entry family) in the current task. This
7420 -- is legal even though the task will deadlock. Rewrite as call to
7423 -- This can also be a call to an entry in an enclosing task. If this
7424 -- is a single task, we have to retrieve its name, because the scope
7425 -- of the entry is the task type, not the object. If the enclosing
7426 -- task is a task type, the identity of the task is given by its own
7429 -- Finally this can be a requeue on an entry of the same task or
7430 -- protected object.
7432 S
:= Scope
(Entity
(E_Name
));
7434 for J
in reverse 0 .. Scope_Stack
.Last
loop
7435 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7436 and then not Comes_From_Source
(S
)
7438 -- S is an enclosing task or protected object. The concurrent
7439 -- declaration has been converted into a type declaration, and
7440 -- the object itself has an object declaration that follows
7441 -- the type in the same declarative part.
7443 Tsk
:= Next_Entity
(S
);
7444 while Etype
(Tsk
) /= S
loop
7451 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7453 -- Call to current task. Will be transformed into call to Self
7461 Make_Selected_Component
(Loc
,
7462 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7464 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7465 Rewrite
(E_Name
, New_N
);
7468 elsif Nkind
(Entry_Name
) = N_Selected_Component
7469 and then Is_Overloaded
(Prefix
(Entry_Name
))
7471 -- Use the entry name (which must be unique at this point) to find
7472 -- the prefix that returns the corresponding task/protected type.
7475 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7476 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7481 Get_First_Interp
(Pref
, I
, It
);
7482 while Present
(It
.Typ
) loop
7483 if Scope
(Ent
) = It
.Typ
then
7484 Set_Etype
(Pref
, It
.Typ
);
7488 Get_Next_Interp
(I
, It
);
7493 if Nkind
(Entry_Name
) = N_Selected_Component
then
7494 Resolve
(Prefix
(Entry_Name
));
7496 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7497 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7498 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7499 Index
:= First
(Expressions
(Entry_Name
));
7500 Resolve
(Index
, Entry_Index_Type
(Nam
));
7502 -- Generate a reference for the index when it denotes an entity
7504 if Is_Entity_Name
(Index
) then
7505 Generate_Reference
(Entity
(Index
), Nam
);
7508 -- Up to this point the expression could have been the actual in a
7509 -- simple entry call, and be given by a named association.
7511 if Nkind
(Index
) = N_Parameter_Association
then
7512 Error_Msg_N
("expect expression for entry index", Index
);
7514 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7519 ------------------------
7520 -- Resolve_Entry_Call --
7521 ------------------------
7523 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7524 Entry_Name
: constant Node_Id
:= Name
(N
);
7525 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7533 -- We kill all checks here, because it does not seem worth the effort to
7534 -- do anything better, an entry call is a big operation.
7538 -- Processing of the name is similar for entry calls and protected
7539 -- operation calls. Once the entity is determined, we can complete
7540 -- the resolution of the actuals.
7542 -- The selector may be overloaded, in the case of a protected object
7543 -- with overloaded functions. The type of the context is used for
7546 if Nkind
(Entry_Name
) = N_Selected_Component
7547 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7548 and then Typ
/= Standard_Void_Type
7555 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7556 while Present
(It
.Typ
) loop
7557 if Covers
(Typ
, It
.Typ
) then
7558 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7559 Set_Etype
(Entry_Name
, It
.Typ
);
7561 Generate_Reference
(It
.Typ
, N
, ' ');
7564 Get_Next_Interp
(I
, It
);
7569 Resolve_Entry
(Entry_Name
);
7571 if Nkind
(Entry_Name
) = N_Selected_Component
then
7573 -- Simple entry or protected operation call
7575 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7576 Obj
:= Prefix
(Entry_Name
);
7578 if Is_Subprogram
(Nam
) then
7579 Check_For_Eliminated_Subprogram
(Entry_Name
, Nam
);
7582 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7584 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7586 -- Call to member of entry family
7588 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7589 Obj
:= Prefix
(Prefix
(Entry_Name
));
7590 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7593 -- We cannot in general check the maximum depth of protected entry calls
7594 -- at compile time. But we can tell that any protected entry call at all
7595 -- violates a specified nesting depth of zero.
7597 if Is_Protected_Type
(Scope
(Nam
)) then
7598 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7601 -- Use context type to disambiguate a protected function that can be
7602 -- called without actuals and that returns an array type, and where the
7603 -- argument list may be an indexing of the returned value.
7605 if Ekind
(Nam
) = E_Function
7606 and then Needs_No_Actuals
(Nam
)
7607 and then Present
(Parameter_Associations
(N
))
7609 ((Is_Array_Type
(Etype
(Nam
))
7610 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7612 or else (Is_Access_Type
(Etype
(Nam
))
7613 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7617 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7620 Index_Node
: Node_Id
;
7624 Make_Indexed_Component
(Loc
,
7626 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7627 Expressions
=> Parameter_Associations
(N
));
7629 -- Since we are correcting a node classification error made by the
7630 -- parser, we call Replace rather than Rewrite.
7632 Replace
(N
, Index_Node
);
7633 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7635 Resolve_Indexed_Component
(N
, Typ
);
7640 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7641 and then Present
(Contract_Wrapper
(Nam
))
7642 and then Current_Scope
/= Contract_Wrapper
(Nam
)
7644 -- Note the entity being called before rewriting the call, so that
7645 -- it appears used at this point.
7647 Generate_Reference
(Nam
, Entry_Name
, 'r');
7649 -- Rewrite as call to the precondition wrapper, adding the task
7650 -- object to the list of actuals. If the call is to a member of an
7651 -- entry family, include the index as well.
7655 New_Actuals
: List_Id
;
7658 New_Actuals
:= New_List
(Obj
);
7660 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7661 Append_To
(New_Actuals
,
7662 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7665 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7667 Make_Procedure_Call_Statement
(Loc
,
7669 New_Occurrence_Of
(Contract_Wrapper
(Nam
), Loc
),
7670 Parameter_Associations
=> New_Actuals
);
7671 Rewrite
(N
, New_Call
);
7673 -- Preanalyze and resolve new call. Current procedure is called
7674 -- from Resolve_Call, after which expansion will take place.
7676 Preanalyze_And_Resolve
(N
);
7681 -- The operation name may have been overloaded. Order the actuals
7682 -- according to the formals of the resolved entity, and set the return
7683 -- type to that of the operation.
7686 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7687 pragma Assert
(Norm_OK
);
7688 Set_Etype
(N
, Etype
(Nam
));
7690 -- Reset the Is_Overloaded flag, since resolution is now completed
7692 -- Simple entry call
7694 if Nkind
(Entry_Name
) = N_Selected_Component
then
7695 Set_Is_Overloaded
(Selector_Name
(Entry_Name
), False);
7697 -- Call to a member of an entry family
7699 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7700 Set_Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)), False);
7704 Resolve_Actuals
(N
, Nam
);
7705 Check_Internal_Protected_Use
(N
, Nam
);
7707 -- Create a call reference to the entry
7709 Generate_Reference
(Nam
, Entry_Name
, 's');
7711 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7712 Check_Potentially_Blocking_Operation
(N
);
7715 -- Verify that a procedure call cannot masquerade as an entry
7716 -- call where an entry call is expected.
7718 if Ekind
(Nam
) = E_Procedure
then
7719 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7720 and then N
= Entry_Call_Statement
(Parent
(N
))
7722 Error_Msg_N
("entry call required in select statement", N
);
7724 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7725 and then N
= Triggering_Statement
(Parent
(N
))
7727 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7729 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7730 and then not In_Open_Scopes
(Scope
(Nam
))
7732 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7736 -- After resolution, entry calls and protected procedure calls are
7737 -- changed into entry calls, for expansion. The structure of the node
7738 -- does not change, so it can safely be done in place. Protected
7739 -- function calls must keep their structure because they are
7742 if Ekind
(Nam
) /= E_Function
then
7744 -- A protected operation that is not a function may modify the
7745 -- corresponding object, and cannot apply to a constant. If this
7746 -- is an internal call, the prefix is the type itself.
7748 if Is_Protected_Type
(Scope
(Nam
))
7749 and then not Is_Variable
(Obj
)
7750 and then (not Is_Entity_Name
(Obj
)
7751 or else not Is_Type
(Entity
(Obj
)))
7754 ("prefix of protected procedure or entry call must be variable",
7759 Entry_Call
: Node_Id
;
7763 Make_Entry_Call_Statement
(Loc
,
7765 Parameter_Associations
=> Parameter_Associations
(N
));
7767 -- Inherit relevant attributes from the original call
7769 Set_First_Named_Actual
7770 (Entry_Call
, First_Named_Actual
(N
));
7772 Set_Is_Elaboration_Checks_OK_Node
7773 (Entry_Call
, Is_Elaboration_Checks_OK_Node
(N
));
7775 Set_Is_SPARK_Mode_On_Node
7776 (Entry_Call
, Is_SPARK_Mode_On_Node
(N
));
7778 Rewrite
(N
, Entry_Call
);
7779 Set_Analyzed
(N
, True);
7782 -- Protected functions can return on the secondary stack, in which
7783 -- case we must trigger the transient scope mechanism.
7785 elsif Expander_Active
7786 and then Requires_Transient_Scope
(Etype
(Nam
))
7788 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7790 end Resolve_Entry_Call
;
7792 -------------------------
7793 -- Resolve_Equality_Op --
7794 -------------------------
7796 -- Both arguments must have the same type, and the boolean context does
7797 -- not participate in the resolution. The first pass verifies that the
7798 -- interpretation is not ambiguous, and the type of the left argument is
7799 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7800 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7801 -- though they carry a single (universal) type. Diagnose this case here.
7803 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7804 L
: constant Node_Id
:= Left_Opnd
(N
);
7805 R
: constant Node_Id
:= Right_Opnd
(N
);
7806 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7808 procedure Check_If_Expression
(Cond
: Node_Id
);
7809 -- The resolution rule for if expressions requires that each such must
7810 -- have a unique type. This means that if several dependent expressions
7811 -- are of a non-null anonymous access type, and the context does not
7812 -- impose an expected type (as can be the case in an equality operation)
7813 -- the expression must be rejected.
7815 procedure Explain_Redundancy
(N
: Node_Id
);
7816 -- Attempt to explain the nature of a redundant comparison with True. If
7817 -- the expression N is too complex, this routine issues a general error
7820 function Find_Unique_Access_Type
return Entity_Id
;
7821 -- In the case of allocators and access attributes, the context must
7822 -- provide an indication of the specific access type to be used. If
7823 -- one operand is of such a "generic" access type, check whether there
7824 -- is a specific visible access type that has the same designated type.
7825 -- This is semantically dubious, and of no interest to any real code,
7826 -- but c48008a makes it all worthwhile.
7828 -------------------------
7829 -- Check_If_Expression --
7830 -------------------------
7832 procedure Check_If_Expression
(Cond
: Node_Id
) is
7833 Then_Expr
: Node_Id
;
7834 Else_Expr
: Node_Id
;
7837 if Nkind
(Cond
) = N_If_Expression
then
7838 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7839 Else_Expr
:= Next
(Then_Expr
);
7841 if Nkind
(Then_Expr
) /= N_Null
7842 and then Nkind
(Else_Expr
) /= N_Null
7844 Error_Msg_N
("cannot determine type of if expression", Cond
);
7847 end Check_If_Expression
;
7849 ------------------------
7850 -- Explain_Redundancy --
7851 ------------------------
7853 procedure Explain_Redundancy
(N
: Node_Id
) is
7861 -- Strip the operand down to an entity
7864 if Nkind
(Val
) = N_Selected_Component
then
7865 Val
:= Selector_Name
(Val
);
7871 -- The construct denotes an entity
7873 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7874 Val_Id
:= Entity
(Val
);
7876 -- Do not generate an error message when the comparison is done
7877 -- against the enumeration literal Standard.True.
7879 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7881 -- Build a customized error message
7884 Add_Str_To_Name_Buffer
("?r?");
7886 if Ekind
(Val_Id
) = E_Component
then
7887 Add_Str_To_Name_Buffer
("component ");
7889 elsif Ekind
(Val_Id
) = E_Constant
then
7890 Add_Str_To_Name_Buffer
("constant ");
7892 elsif Ekind
(Val_Id
) = E_Discriminant
then
7893 Add_Str_To_Name_Buffer
("discriminant ");
7895 elsif Is_Formal
(Val_Id
) then
7896 Add_Str_To_Name_Buffer
("parameter ");
7898 elsif Ekind
(Val_Id
) = E_Variable
then
7899 Add_Str_To_Name_Buffer
("variable ");
7902 Add_Str_To_Name_Buffer
("& is always True!");
7905 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7908 -- The construct is too complex to disect, issue a general message
7911 Error_Msg_N
("?r?expression is always True!", Val
);
7913 end Explain_Redundancy
;
7915 -----------------------------
7916 -- Find_Unique_Access_Type --
7917 -----------------------------
7919 function Find_Unique_Access_Type
return Entity_Id
is
7925 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7926 E_Access_Attribute_Type
)
7928 Acc
:= Designated_Type
(Etype
(R
));
7930 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7931 E_Access_Attribute_Type
)
7933 Acc
:= Designated_Type
(Etype
(L
));
7939 while S
/= Standard_Standard
loop
7940 E
:= First_Entity
(S
);
7941 while Present
(E
) loop
7943 and then Is_Access_Type
(E
)
7944 and then Ekind
(E
) /= E_Allocator_Type
7945 and then Designated_Type
(E
) = Base_Type
(Acc
)
7957 end Find_Unique_Access_Type
;
7959 -- Start of processing for Resolve_Equality_Op
7962 Set_Etype
(N
, Base_Type
(Typ
));
7963 Generate_Reference
(T
, N
, ' ');
7965 if T
= Any_Fixed
then
7966 T
:= Unique_Fixed_Point_Type
(L
);
7969 if T
/= Any_Type
then
7970 if T
= Any_String
or else
7971 T
= Any_Composite
or else
7974 if T
= Any_Character
then
7975 Ambiguous_Character
(L
);
7977 Error_Msg_N
("ambiguous operands for equality", N
);
7980 Set_Etype
(N
, Any_Type
);
7983 elsif T
= Any_Access
7984 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7986 T
:= Find_Unique_Access_Type
;
7989 Error_Msg_N
("ambiguous operands for equality", N
);
7990 Set_Etype
(N
, Any_Type
);
7994 -- If expressions must have a single type, and if the context does
7995 -- not impose one the dependent expressions cannot be anonymous
7998 -- Why no similar processing for case expressions???
8000 elsif Ada_Version
>= Ada_2012
8001 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
8002 E_Anonymous_Access_Subprogram_Type
)
8003 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
8004 E_Anonymous_Access_Subprogram_Type
)
8006 Check_If_Expression
(L
);
8007 Check_If_Expression
(R
);
8013 -- In SPARK, equality operators = and /= for array types other than
8014 -- String are only defined when, for each index position, the
8015 -- operands have equal static bounds.
8017 if Is_Array_Type
(T
) then
8019 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8020 -- operation if not needed.
8022 if Restriction_Check_Required
(SPARK_05
)
8023 and then Base_Type
(T
) /= Standard_String
8024 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
8025 and then Etype
(L
) /= Any_Composite
-- or else L in error
8026 and then Etype
(R
) /= Any_Composite
-- or else R in error
8027 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
8029 Check_SPARK_05_Restriction
8030 ("array types should have matching static bounds", N
);
8034 -- If the unique type is a class-wide type then it will be expanded
8035 -- into a dispatching call to the predefined primitive. Therefore we
8036 -- check here for potential violation of such restriction.
8038 if Is_Class_Wide_Type
(T
) then
8039 Check_Restriction
(No_Dispatching_Calls
, N
);
8042 -- Only warn for redundant equality comparison to True for objects
8043 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8044 -- other expressions, it may be a matter of preference to write
8045 -- "Expr = True" or "Expr".
8047 if Warn_On_Redundant_Constructs
8048 and then Comes_From_Source
(N
)
8049 and then Comes_From_Source
(R
)
8050 and then Is_Entity_Name
(R
)
8051 and then Entity
(R
) = Standard_True
8053 ((Is_Entity_Name
(L
) and then Is_Object
(Entity
(L
)))
8057 Error_Msg_N
-- CODEFIX
8058 ("?r?comparison with True is redundant!", N
);
8059 Explain_Redundancy
(Original_Node
(R
));
8062 Check_Unset_Reference
(L
);
8063 Check_Unset_Reference
(R
);
8064 Generate_Operator_Reference
(N
, T
);
8065 Check_Low_Bound_Tested
(N
);
8067 -- If this is an inequality, it may be the implicit inequality
8068 -- created for a user-defined operation, in which case the corres-
8069 -- ponding equality operation is not intrinsic, and the operation
8070 -- cannot be constant-folded. Else fold.
8072 if Nkind
(N
) = N_Op_Eq
8073 or else Comes_From_Source
(Entity
(N
))
8074 or else Ekind
(Entity
(N
)) = E_Operator
8075 or else Is_Intrinsic_Subprogram
8076 (Corresponding_Equality
(Entity
(N
)))
8078 Analyze_Dimension
(N
);
8079 Eval_Relational_Op
(N
);
8081 elsif Nkind
(N
) = N_Op_Ne
8082 and then Is_Abstract_Subprogram
(Entity
(N
))
8084 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
8087 -- Ada 2005: If one operand is an anonymous access type, convert the
8088 -- other operand to it, to ensure that the underlying types match in
8089 -- the back-end. Same for access_to_subprogram, and the conversion
8090 -- verifies that the types are subtype conformant.
8092 -- We apply the same conversion in the case one of the operands is a
8093 -- private subtype of the type of the other.
8095 -- Why the Expander_Active test here ???
8099 (Ekind_In
(T
, E_Anonymous_Access_Type
,
8100 E_Anonymous_Access_Subprogram_Type
)
8101 or else Is_Private_Type
(T
))
8103 if Etype
(L
) /= T
then
8105 Make_Unchecked_Type_Conversion
(Sloc
(L
),
8106 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
8107 Expression
=> Relocate_Node
(L
)));
8108 Analyze_And_Resolve
(L
, T
);
8111 if (Etype
(R
)) /= T
then
8113 Make_Unchecked_Type_Conversion
(Sloc
(R
),
8114 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
8115 Expression
=> Relocate_Node
(R
)));
8116 Analyze_And_Resolve
(R
, T
);
8120 end Resolve_Equality_Op
;
8122 ----------------------------------
8123 -- Resolve_Explicit_Dereference --
8124 ----------------------------------
8126 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
8127 Loc
: constant Source_Ptr
:= Sloc
(N
);
8129 P
: constant Node_Id
:= Prefix
(N
);
8132 -- The candidate prefix type, if overloaded
8138 Check_Fully_Declared_Prefix
(Typ
, P
);
8141 -- A useful optimization: check whether the dereference denotes an
8142 -- element of a container, and if so rewrite it as a call to the
8143 -- corresponding Element function.
8145 -- Disabled for now, on advice of ARG. A more restricted form of the
8146 -- predicate might be acceptable ???
8148 -- if Is_Container_Element (N) then
8152 if Is_Overloaded
(P
) then
8154 -- Use the context type to select the prefix that has the correct
8155 -- designated type. Keep the first match, which will be the inner-
8158 Get_First_Interp
(P
, I
, It
);
8160 while Present
(It
.Typ
) loop
8161 if Is_Access_Type
(It
.Typ
)
8162 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
8168 -- Remove access types that do not match, but preserve access
8169 -- to subprogram interpretations, in case a further dereference
8170 -- is needed (see below).
8172 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8176 Get_Next_Interp
(I
, It
);
8179 if Present
(P_Typ
) then
8181 Set_Etype
(N
, Designated_Type
(P_Typ
));
8184 -- If no interpretation covers the designated type of the prefix,
8185 -- this is the pathological case where not all implementations of
8186 -- the prefix allow the interpretation of the node as a call. Now
8187 -- that the expected type is known, Remove other interpretations
8188 -- from prefix, rewrite it as a call, and resolve again, so that
8189 -- the proper call node is generated.
8191 Get_First_Interp
(P
, I
, It
);
8192 while Present
(It
.Typ
) loop
8193 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8197 Get_Next_Interp
(I
, It
);
8201 Make_Function_Call
(Loc
,
8203 Make_Explicit_Dereference
(Loc
,
8205 Parameter_Associations
=> New_List
);
8207 Save_Interps
(N
, New_N
);
8209 Analyze_And_Resolve
(N
, Typ
);
8213 -- If not overloaded, resolve P with its own type
8219 -- If the prefix might be null, add an access check
8221 if Is_Access_Type
(Etype
(P
))
8222 and then not Can_Never_Be_Null
(Etype
(P
))
8224 Apply_Access_Check
(N
);
8227 -- If the designated type is a packed unconstrained array type, and the
8228 -- explicit dereference is not in the context of an attribute reference,
8229 -- then we must compute and set the actual subtype, since it is needed
8230 -- by Gigi. The reason we exclude the attribute case is that this is
8231 -- handled fine by Gigi, and in fact we use such attributes to build the
8232 -- actual subtype. We also exclude generated code (which builds actual
8233 -- subtypes directly if they are needed).
8235 if Is_Array_Type
(Etype
(N
))
8236 and then Is_Packed
(Etype
(N
))
8237 and then not Is_Constrained
(Etype
(N
))
8238 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
8239 and then Comes_From_Source
(N
)
8241 Set_Etype
(N
, Get_Actual_Subtype
(N
));
8244 Analyze_Dimension
(N
);
8246 -- Note: No Eval processing is required for an explicit dereference,
8247 -- because such a name can never be static.
8249 end Resolve_Explicit_Dereference
;
8251 -------------------------------------
8252 -- Resolve_Expression_With_Actions --
8253 -------------------------------------
8255 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
8259 -- If N has no actions, and its expression has been constant folded,
8260 -- then rewrite N as just its expression. Note, we can't do this in
8261 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8262 -- Expression (N) to be expanded again.
8264 if Is_Empty_List
(Actions
(N
))
8265 and then Compile_Time_Known_Value
(Expression
(N
))
8267 Rewrite
(N
, Expression
(N
));
8269 end Resolve_Expression_With_Actions
;
8271 ----------------------------------
8272 -- Resolve_Generalized_Indexing --
8273 ----------------------------------
8275 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8276 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8282 -- In ASIS mode, propagate the information about the indexes back to
8283 -- to the original indexing node. The generalized indexing is either
8284 -- a function call, or a dereference of one. The actuals include the
8285 -- prefix of the original node, which is the container expression.
8288 Resolve
(Indexing
, Typ
);
8289 Set_Etype
(N
, Etype
(Indexing
));
8290 Set_Is_Overloaded
(N
, False);
8293 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8295 Call
:= Prefix
(Call
);
8298 if Nkind
(Call
) = N_Function_Call
then
8299 Indexes
:= New_Copy_List
(Parameter_Associations
(Call
));
8300 Pref
:= Remove_Head
(Indexes
);
8301 Set_Expressions
(N
, Indexes
);
8303 -- If expression is to be reanalyzed, reset Generalized_Indexing
8304 -- to recreate call node, as is the case when the expression is
8305 -- part of an expression function.
8307 if In_Spec_Expression
then
8308 Set_Generalized_Indexing
(N
, Empty
);
8311 Set_Prefix
(N
, Pref
);
8315 Rewrite
(N
, Indexing
);
8318 end Resolve_Generalized_Indexing
;
8320 ---------------------------
8321 -- Resolve_If_Expression --
8322 ---------------------------
8324 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8325 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8326 Then_Expr
: Node_Id
;
8327 Else_Expr
: Node_Id
;
8328 Else_Typ
: Entity_Id
;
8329 Then_Typ
: Entity_Id
;
8332 -- Defend against malformed expressions
8334 if No
(Condition
) then
8338 Then_Expr
:= Next
(Condition
);
8340 if No
(Then_Expr
) then
8344 Else_Expr
:= Next
(Then_Expr
);
8346 Resolve
(Condition
, Any_Boolean
);
8347 Resolve
(Then_Expr
, Typ
);
8348 Then_Typ
:= Etype
(Then_Expr
);
8350 -- When the "then" expression is of a scalar subtype different from the
8351 -- result subtype, then insert a conversion to ensure the generation of
8352 -- a constraint check. The same is done for the else part below, again
8353 -- comparing subtypes rather than base types.
8355 if Is_Scalar_Type
(Then_Typ
) and then Then_Typ
/= Typ
then
8356 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8357 Analyze_And_Resolve
(Then_Expr
, Typ
);
8360 -- If ELSE expression present, just resolve using the determined type
8361 -- If type is universal, resolve to any member of the class.
8363 if Present
(Else_Expr
) then
8364 if Typ
= Universal_Integer
then
8365 Resolve
(Else_Expr
, Any_Integer
);
8367 elsif Typ
= Universal_Real
then
8368 Resolve
(Else_Expr
, Any_Real
);
8371 Resolve
(Else_Expr
, Typ
);
8374 Else_Typ
:= Etype
(Else_Expr
);
8376 if Is_Scalar_Type
(Else_Typ
) and then Else_Typ
/= Typ
then
8377 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8378 Analyze_And_Resolve
(Else_Expr
, Typ
);
8380 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8381 -- dynamically tagged must be known statically.
8383 elsif Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
8384 if Is_Dynamically_Tagged
(Then_Expr
) /=
8385 Is_Dynamically_Tagged
(Else_Expr
)
8387 Error_Msg_N
("all or none of the dependent expressions "
8388 & "can be dynamically tagged", N
);
8392 -- If no ELSE expression is present, root type must be Standard.Boolean
8393 -- and we provide a Standard.True result converted to the appropriate
8394 -- Boolean type (in case it is a derived boolean type).
8396 elsif Root_Type
(Typ
) = Standard_Boolean
then
8398 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8399 Analyze_And_Resolve
(Else_Expr
, Typ
);
8400 Append_To
(Expressions
(N
), Else_Expr
);
8403 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8404 Append_To
(Expressions
(N
), Error
);
8409 if not Error_Posted
(N
) then
8410 Eval_If_Expression
(N
);
8413 Analyze_Dimension
(N
);
8414 end Resolve_If_Expression
;
8416 -------------------------------
8417 -- Resolve_Indexed_Component --
8418 -------------------------------
8420 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8421 Name
: constant Node_Id
:= Prefix
(N
);
8423 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8427 if Present
(Generalized_Indexing
(N
)) then
8428 Resolve_Generalized_Indexing
(N
, Typ
);
8432 if Is_Overloaded
(Name
) then
8434 -- Use the context type to select the prefix that yields the correct
8440 I1
: Interp_Index
:= 0;
8441 P
: constant Node_Id
:= Prefix
(N
);
8442 Found
: Boolean := False;
8445 Get_First_Interp
(P
, I
, It
);
8446 while Present
(It
.Typ
) loop
8447 if (Is_Array_Type
(It
.Typ
)
8448 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8449 or else (Is_Access_Type
(It
.Typ
)
8450 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8454 Component_Type
(Designated_Type
(It
.Typ
))))
8457 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8459 if It
= No_Interp
then
8460 Error_Msg_N
("ambiguous prefix for indexing", N
);
8466 Array_Type
:= It
.Typ
;
8472 Array_Type
:= It
.Typ
;
8477 Get_Next_Interp
(I
, It
);
8482 Array_Type
:= Etype
(Name
);
8485 Resolve
(Name
, Array_Type
);
8486 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8488 -- If prefix is access type, dereference to get real array type.
8489 -- Note: we do not apply an access check because the expander always
8490 -- introduces an explicit dereference, and the check will happen there.
8492 if Is_Access_Type
(Array_Type
) then
8493 Array_Type
:= Designated_Type
(Array_Type
);
8496 -- If name was overloaded, set component type correctly now
8497 -- If a misplaced call to an entry family (which has no index types)
8498 -- return. Error will be diagnosed from calling context.
8500 if Is_Array_Type
(Array_Type
) then
8501 Set_Etype
(N
, Component_Type
(Array_Type
));
8506 Index
:= First_Index
(Array_Type
);
8507 Expr
:= First
(Expressions
(N
));
8509 -- The prefix may have resolved to a string literal, in which case its
8510 -- etype has a special representation. This is only possible currently
8511 -- if the prefix is a static concatenation, written in functional
8514 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8515 Resolve
(Expr
, Standard_Positive
);
8518 while Present
(Index
) and Present
(Expr
) loop
8519 Resolve
(Expr
, Etype
(Index
));
8520 Check_Unset_Reference
(Expr
);
8522 if Is_Scalar_Type
(Etype
(Expr
)) then
8523 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8525 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8533 Analyze_Dimension
(N
);
8535 -- Do not generate the warning on suspicious index if we are analyzing
8536 -- package Ada.Tags; otherwise we will report the warning with the
8537 -- Prims_Ptr field of the dispatch table.
8539 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8541 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8544 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8545 Eval_Indexed_Component
(N
);
8548 -- If the array type is atomic, and the component is not atomic, then
8549 -- this is worth a warning, since we have a situation where the access
8550 -- to the component may cause extra read/writes of the atomic array
8551 -- object, or partial word accesses, which could be unexpected.
8553 if Nkind
(N
) = N_Indexed_Component
8554 and then Is_Atomic_Ref_With_Address
(N
)
8555 and then not (Has_Atomic_Components
(Array_Type
)
8556 or else (Is_Entity_Name
(Prefix
(N
))
8557 and then Has_Atomic_Components
8558 (Entity
(Prefix
(N
)))))
8559 and then not Is_Atomic
(Component_Type
(Array_Type
))
8562 ("??access to non-atomic component of atomic array", Prefix
(N
));
8564 ("??\may cause unexpected accesses to atomic object", Prefix
(N
));
8566 end Resolve_Indexed_Component
;
8568 -----------------------------
8569 -- Resolve_Integer_Literal --
8570 -----------------------------
8572 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8575 Eval_Integer_Literal
(N
);
8576 end Resolve_Integer_Literal
;
8578 --------------------------------
8579 -- Resolve_Intrinsic_Operator --
8580 --------------------------------
8582 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8583 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8588 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8589 -- If the operand is a literal, it cannot be the expression in a
8590 -- conversion. Use a qualified expression instead.
8592 ---------------------
8593 -- Convert_Operand --
8594 ---------------------
8596 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8597 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8601 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8603 Make_Qualified_Expression
(Loc
,
8604 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8605 Expression
=> Relocate_Node
(Opnd
));
8609 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8613 end Convert_Operand
;
8615 -- Start of processing for Resolve_Intrinsic_Operator
8618 -- We must preserve the original entity in a generic setting, so that
8619 -- the legality of the operation can be verified in an instance.
8621 if not Expander_Active
then
8626 while Scope
(Op
) /= Standard_Standard
loop
8628 pragma Assert
(Present
(Op
));
8632 Set_Is_Overloaded
(N
, False);
8634 -- If the result or operand types are private, rewrite with unchecked
8635 -- conversions on the operands and the result, to expose the proper
8636 -- underlying numeric type.
8638 if Is_Private_Type
(Typ
)
8639 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8640 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8642 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8644 if Nkind
(N
) = N_Op_Expon
then
8645 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8647 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8650 if Nkind
(Arg1
) = N_Type_Conversion
then
8651 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8654 if Nkind
(Arg2
) = N_Type_Conversion
then
8655 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8658 Set_Left_Opnd
(N
, Arg1
);
8659 Set_Right_Opnd
(N
, Arg2
);
8661 Set_Etype
(N
, Btyp
);
8662 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8665 elsif Typ
/= Etype
(Left_Opnd
(N
))
8666 or else Typ
/= Etype
(Right_Opnd
(N
))
8668 -- Add explicit conversion where needed, and save interpretations in
8669 -- case operands are overloaded.
8671 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8672 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8674 if Nkind
(Arg1
) = N_Type_Conversion
then
8675 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8677 Save_Interps
(Left_Opnd
(N
), Arg1
);
8680 if Nkind
(Arg2
) = N_Type_Conversion
then
8681 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8683 Save_Interps
(Right_Opnd
(N
), Arg2
);
8686 Rewrite
(Left_Opnd
(N
), Arg1
);
8687 Rewrite
(Right_Opnd
(N
), Arg2
);
8690 Resolve_Arithmetic_Op
(N
, Typ
);
8693 Resolve_Arithmetic_Op
(N
, Typ
);
8695 end Resolve_Intrinsic_Operator
;
8697 --------------------------------------
8698 -- Resolve_Intrinsic_Unary_Operator --
8699 --------------------------------------
8701 procedure Resolve_Intrinsic_Unary_Operator
8705 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8711 while Scope
(Op
) /= Standard_Standard
loop
8713 pragma Assert
(Present
(Op
));
8718 if Is_Private_Type
(Typ
) then
8719 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8720 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8722 Set_Right_Opnd
(N
, Arg2
);
8724 Set_Etype
(N
, Btyp
);
8725 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8729 Resolve_Unary_Op
(N
, Typ
);
8731 end Resolve_Intrinsic_Unary_Operator
;
8733 ------------------------
8734 -- Resolve_Logical_Op --
8735 ------------------------
8737 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8741 Check_No_Direct_Boolean_Operators
(N
);
8743 -- Predefined operations on scalar types yield the base type. On the
8744 -- other hand, logical operations on arrays yield the type of the
8745 -- arguments (and the context).
8747 if Is_Array_Type
(Typ
) then
8750 B_Typ
:= Base_Type
(Typ
);
8753 -- The following test is required because the operands of the operation
8754 -- may be literals, in which case the resulting type appears to be
8755 -- compatible with a signed integer type, when in fact it is compatible
8756 -- only with modular types. If the context itself is universal, the
8757 -- operation is illegal.
8759 if not Valid_Boolean_Arg
(Typ
) then
8760 Error_Msg_N
("invalid context for logical operation", N
);
8761 Set_Etype
(N
, Any_Type
);
8764 elsif Typ
= Any_Modular
then
8766 ("no modular type available in this context", N
);
8767 Set_Etype
(N
, Any_Type
);
8770 elsif Is_Modular_Integer_Type
(Typ
)
8771 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8772 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8774 Check_For_Visible_Operator
(N
, B_Typ
);
8777 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8778 -- is active and the result type is standard Boolean (do not mess with
8779 -- ops that return a nonstandard Boolean type, because something strange
8782 -- Note: you might expect this replacement to be done during expansion,
8783 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8784 -- is used, no part of the right operand of an "and" or "or" operator
8785 -- should be executed if the left operand would short-circuit the
8786 -- evaluation of the corresponding "and then" or "or else". If we left
8787 -- the replacement to expansion time, then run-time checks associated
8788 -- with such operands would be evaluated unconditionally, due to being
8789 -- before the condition prior to the rewriting as short-circuit forms
8790 -- during expansion.
8792 if Short_Circuit_And_Or
8793 and then B_Typ
= Standard_Boolean
8794 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8796 -- Mark the corresponding putative SCO operator as truly a logical
8797 -- (and short-circuit) operator.
8799 if Generate_SCO
and then Comes_From_Source
(N
) then
8800 Set_SCO_Logical_Operator
(N
);
8803 if Nkind
(N
) = N_Op_And
then
8805 Make_And_Then
(Sloc
(N
),
8806 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8807 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8808 Analyze_And_Resolve
(N
, B_Typ
);
8810 -- Case of OR changed to OR ELSE
8814 Make_Or_Else
(Sloc
(N
),
8815 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8816 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8817 Analyze_And_Resolve
(N
, B_Typ
);
8820 -- Return now, since analysis of the rewritten ops will take care of
8821 -- other reference bookkeeping and expression folding.
8826 Resolve
(Left_Opnd
(N
), B_Typ
);
8827 Resolve
(Right_Opnd
(N
), B_Typ
);
8829 Check_Unset_Reference
(Left_Opnd
(N
));
8830 Check_Unset_Reference
(Right_Opnd
(N
));
8832 Set_Etype
(N
, B_Typ
);
8833 Generate_Operator_Reference
(N
, B_Typ
);
8834 Eval_Logical_Op
(N
);
8836 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8837 -- only when both operands have same static lower and higher bounds. Of
8838 -- course the types have to match, so only check if operands are
8839 -- compatible and the node itself has no errors.
8841 if Is_Array_Type
(B_Typ
)
8842 and then Nkind
(N
) in N_Binary_Op
8845 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8846 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8849 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8850 -- operation if not needed.
8852 if Restriction_Check_Required
(SPARK_05
)
8853 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8854 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8855 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8856 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8858 Check_SPARK_05_Restriction
8859 ("array types should have matching static bounds", N
);
8863 end Resolve_Logical_Op
;
8865 ---------------------------
8866 -- Resolve_Membership_Op --
8867 ---------------------------
8869 -- The context can only be a boolean type, and does not determine the
8870 -- arguments. Arguments should be unambiguous, but the preference rule for
8871 -- universal types applies.
8873 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8874 pragma Warnings
(Off
, Typ
);
8876 L
: constant Node_Id
:= Left_Opnd
(N
);
8877 R
: constant Node_Id
:= Right_Opnd
(N
);
8880 procedure Resolve_Set_Membership
;
8881 -- Analysis has determined a unique type for the left operand. Use it to
8882 -- resolve the disjuncts.
8884 ----------------------------
8885 -- Resolve_Set_Membership --
8886 ----------------------------
8888 procedure Resolve_Set_Membership
is
8893 -- If the left operand is overloaded, find type compatible with not
8894 -- overloaded alternative of the right operand.
8896 if Is_Overloaded
(L
) then
8898 Alt
:= First
(Alternatives
(N
));
8899 while Present
(Alt
) loop
8900 if not Is_Overloaded
(Alt
) then
8901 Ltyp
:= Intersect_Types
(L
, Alt
);
8908 -- Unclear how to resolve expression if all alternatives are also
8912 Error_Msg_N
("ambiguous expression", N
);
8921 Alt
:= First
(Alternatives
(N
));
8922 while Present
(Alt
) loop
8924 -- Alternative is an expression, a range
8925 -- or a subtype mark.
8927 if not Is_Entity_Name
(Alt
)
8928 or else not Is_Type
(Entity
(Alt
))
8930 Resolve
(Alt
, Ltyp
);
8936 -- Check for duplicates for discrete case
8938 if Is_Discrete_Type
(Ltyp
) then
8945 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8949 -- Loop checking duplicates. This is quadratic, but giant sets
8950 -- are unlikely in this context so it's a reasonable choice.
8953 Alt
:= First
(Alternatives
(N
));
8954 while Present
(Alt
) loop
8955 if Is_OK_Static_Expression
(Alt
)
8956 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8957 N_Character_Literal
)
8958 or else Nkind
(Alt
) in N_Has_Entity
)
8961 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8963 for J
in 1 .. Nalts
- 1 loop
8964 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8965 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8966 Error_Msg_N
("duplicate of value given#??", Alt
);
8975 end Resolve_Set_Membership
;
8977 -- Start of processing for Resolve_Membership_Op
8980 if L
= Error
or else R
= Error
then
8984 if Present
(Alternatives
(N
)) then
8985 Resolve_Set_Membership
;
8988 elsif not Is_Overloaded
(R
)
8990 (Etype
(R
) = Universal_Integer
8992 Etype
(R
) = Universal_Real
)
8993 and then Is_Overloaded
(L
)
8997 -- Ada 2005 (AI-251): Support the following case:
8999 -- type I is interface;
9000 -- type T is tagged ...
9002 -- function Test (O : I'Class) is
9004 -- return O in T'Class.
9007 -- In this case we have nothing else to do. The membership test will be
9008 -- done at run time.
9010 elsif Ada_Version
>= Ada_2005
9011 and then Is_Class_Wide_Type
(Etype
(L
))
9012 and then Is_Interface
(Etype
(L
))
9013 and then Is_Class_Wide_Type
(Etype
(R
))
9014 and then not Is_Interface
(Etype
(R
))
9018 T
:= Intersect_Types
(L
, R
);
9021 -- If mixed-mode operations are present and operands are all literal,
9022 -- the only interpretation involves Duration, which is probably not
9023 -- the intention of the programmer.
9025 if T
= Any_Fixed
then
9026 T
:= Unique_Fixed_Point_Type
(N
);
9028 if T
= Any_Type
then
9034 Check_Unset_Reference
(L
);
9036 if Nkind
(R
) = N_Range
9037 and then not Is_Scalar_Type
(T
)
9039 Error_Msg_N
("scalar type required for range", R
);
9042 if Is_Entity_Name
(R
) then
9043 Freeze_Expression
(R
);
9046 Check_Unset_Reference
(R
);
9049 -- Here after resolving membership operation
9053 Eval_Membership_Op
(N
);
9054 end Resolve_Membership_Op
;
9060 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
9061 Loc
: constant Source_Ptr
:= Sloc
(N
);
9064 -- Handle restriction against anonymous null access values This
9065 -- restriction can be turned off using -gnatdj.
9067 -- Ada 2005 (AI-231): Remove restriction
9069 if Ada_Version
< Ada_2005
9070 and then not Debug_Flag_J
9071 and then Ekind
(Typ
) = E_Anonymous_Access_Type
9072 and then Comes_From_Source
(N
)
9074 -- In the common case of a call which uses an explicitly null value
9075 -- for an access parameter, give specialized error message.
9077 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
9079 ("null is not allowed as argument for an access parameter", N
);
9081 -- Standard message for all other cases (are there any?)
9085 ("null cannot be of an anonymous access type", N
);
9089 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9090 -- assignment to a null-excluding object
9092 if Ada_Version
>= Ada_2005
9093 and then Can_Never_Be_Null
(Typ
)
9094 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
9096 if not Inside_Init_Proc
then
9098 (Compile_Time_Constraint_Error
(N
,
9099 "(Ada 2005) null not allowed in null-excluding objects??"),
9100 Make_Raise_Constraint_Error
(Loc
,
9101 Reason
=> CE_Access_Check_Failed
));
9104 Make_Raise_Constraint_Error
(Loc
,
9105 Reason
=> CE_Access_Check_Failed
));
9109 -- In a distributed context, null for a remote access to subprogram may
9110 -- need to be replaced with a special record aggregate. In this case,
9111 -- return after having done the transformation.
9113 if (Ekind
(Typ
) = E_Record_Type
9114 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
9115 and then Remote_AST_Null_Value
(N
, Typ
)
9120 -- The null literal takes its type from the context
9125 -----------------------
9126 -- Resolve_Op_Concat --
9127 -----------------------
9129 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
9131 -- We wish to avoid deep recursion, because concatenations are often
9132 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9133 -- operands nonrecursively until we find something that is not a simple
9134 -- concatenation (A in this case). We resolve that, and then walk back
9135 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9136 -- to do the rest of the work at each level. The Parent pointers allow
9137 -- us to avoid recursion, and thus avoid running out of memory. See also
9138 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9144 -- The following code is equivalent to:
9146 -- Resolve_Op_Concat_First (NN, Typ);
9147 -- Resolve_Op_Concat_Arg (N, ...);
9148 -- Resolve_Op_Concat_Rest (N, Typ);
9150 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9151 -- operand is a concatenation.
9153 -- Walk down left operands
9156 Resolve_Op_Concat_First
(NN
, Typ
);
9157 Op1
:= Left_Opnd
(NN
);
9158 exit when not (Nkind
(Op1
) = N_Op_Concat
9159 and then not Is_Array_Type
(Component_Type
(Typ
))
9160 and then Entity
(Op1
) = Entity
(NN
));
9164 -- Now (given the above example) NN is A&B and Op1 is A
9166 -- First resolve Op1 ...
9168 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
9170 -- ... then walk NN back up until we reach N (where we started), calling
9171 -- Resolve_Op_Concat_Rest along the way.
9174 Resolve_Op_Concat_Rest
(NN
, Typ
);
9179 if Base_Type
(Etype
(N
)) /= Standard_String
then
9180 Check_SPARK_05_Restriction
9181 ("result of concatenation should have type String", N
);
9183 end Resolve_Op_Concat
;
9185 ---------------------------
9186 -- Resolve_Op_Concat_Arg --
9187 ---------------------------
9189 procedure Resolve_Op_Concat_Arg
9195 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9196 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
9201 or else (not Is_Overloaded
(Arg
)
9202 and then Etype
(Arg
) /= Any_Composite
9203 and then Covers
(Ctyp
, Etype
(Arg
)))
9205 Resolve
(Arg
, Ctyp
);
9207 Resolve
(Arg
, Btyp
);
9210 -- If both Array & Array and Array & Component are visible, there is a
9211 -- potential ambiguity that must be reported.
9213 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
9214 if Nkind
(Arg
) = N_Aggregate
9215 and then Is_Composite_Type
(Ctyp
)
9217 if Is_Private_Type
(Ctyp
) then
9218 Resolve
(Arg
, Btyp
);
9220 -- If the operation is user-defined and not overloaded use its
9221 -- profile. The operation may be a renaming, in which case it has
9222 -- been rewritten, and we want the original profile.
9224 elsif not Is_Overloaded
(N
)
9225 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
9226 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
9230 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
9233 -- Otherwise an aggregate may match both the array type and the
9237 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
9238 Set_Etype
(Arg
, Any_Type
);
9242 if Is_Overloaded
(Arg
)
9243 and then Has_Compatible_Type
(Arg
, Typ
)
9244 and then Etype
(Arg
) /= Any_Type
9252 Get_First_Interp
(Arg
, I
, It
);
9254 Get_Next_Interp
(I
, It
);
9256 -- Special-case the error message when the overloading is
9257 -- caused by a function that yields an array and can be
9258 -- called without parameters.
9260 if It
.Nam
= Func
then
9261 Error_Msg_Sloc
:= Sloc
(Func
);
9262 Error_Msg_N
("ambiguous call to function#", Arg
);
9264 ("\\interpretation as call yields&", Arg
, Typ
);
9266 ("\\interpretation as indexing of call yields&",
9267 Arg
, Component_Type
(Typ
));
9270 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
9272 Get_First_Interp
(Arg
, I
, It
);
9273 while Present
(It
.Nam
) loop
9274 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
9276 if Base_Type
(It
.Typ
) = Btyp
9278 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
9280 Error_Msg_N
-- CODEFIX
9281 ("\\possible interpretation#", Arg
);
9284 Get_Next_Interp
(I
, It
);
9290 Resolve
(Arg
, Component_Type
(Typ
));
9292 if Nkind
(Arg
) = N_String_Literal
then
9293 Set_Etype
(Arg
, Component_Type
(Typ
));
9296 if Arg
= Left_Opnd
(N
) then
9297 Set_Is_Component_Left_Opnd
(N
);
9299 Set_Is_Component_Right_Opnd
(N
);
9304 Resolve
(Arg
, Btyp
);
9307 -- Concatenation is restricted in SPARK: each operand must be either a
9308 -- string literal, the name of a string constant, a static character or
9309 -- string expression, or another concatenation. Arg cannot be a
9310 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9311 -- separately on each final operand, past concatenation operations.
9313 if Is_Character_Type
(Etype
(Arg
)) then
9314 if not Is_OK_Static_Expression
(Arg
) then
9315 Check_SPARK_05_Restriction
9316 ("character operand for concatenation should be static", Arg
);
9319 elsif Is_String_Type
(Etype
(Arg
)) then
9320 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9321 and then Is_Constant_Object
(Entity
(Arg
)))
9322 and then not Is_OK_Static_Expression
(Arg
)
9324 Check_SPARK_05_Restriction
9325 ("string operand for concatenation should be static", Arg
);
9328 -- Do not issue error on an operand that is neither a character nor a
9329 -- string, as the error is issued in Resolve_Op_Concat.
9335 Check_Unset_Reference
(Arg
);
9336 end Resolve_Op_Concat_Arg
;
9338 -----------------------------
9339 -- Resolve_Op_Concat_First --
9340 -----------------------------
9342 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9343 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9344 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9345 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9348 -- The parser folds an enormous sequence of concatenations of string
9349 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9350 -- in the right operand. If the expression resolves to a predefined "&"
9351 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9352 -- we give an error. See P_Simple_Expression in Par.Ch4.
9354 if Nkind
(Op2
) = N_String_Literal
9355 and then Is_Folded_In_Parser
(Op2
)
9356 and then Ekind
(Entity
(N
)) = E_Function
9358 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9359 and then String_Length
(Strval
(Op1
)) = 0);
9360 Error_Msg_N
("too many user-defined concatenations", N
);
9364 Set_Etype
(N
, Btyp
);
9366 if Is_Limited_Composite
(Btyp
) then
9367 Error_Msg_N
("concatenation not available for limited array", N
);
9368 Explain_Limited_Type
(Btyp
, N
);
9370 end Resolve_Op_Concat_First
;
9372 ----------------------------
9373 -- Resolve_Op_Concat_Rest --
9374 ----------------------------
9376 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9377 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9378 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9381 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9383 Generate_Operator_Reference
(N
, Typ
);
9385 if Is_String_Type
(Typ
) then
9386 Eval_Concatenation
(N
);
9389 -- If this is not a static concatenation, but the result is a string
9390 -- type (and not an array of strings) ensure that static string operands
9391 -- have their subtypes properly constructed.
9393 if Nkind
(N
) /= N_String_Literal
9394 and then Is_Character_Type
(Component_Type
(Typ
))
9396 Set_String_Literal_Subtype
(Op1
, Typ
);
9397 Set_String_Literal_Subtype
(Op2
, Typ
);
9399 end Resolve_Op_Concat_Rest
;
9401 ----------------------
9402 -- Resolve_Op_Expon --
9403 ----------------------
9405 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9406 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9409 -- Catch attempts to do fixed-point exponentiation with universal
9410 -- operands, which is a case where the illegality is not caught during
9411 -- normal operator analysis. This is not done in preanalysis mode
9412 -- since the tree is not fully decorated during preanalysis.
9414 if Full_Analysis
then
9415 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9416 Error_Msg_N
("exponentiation not available for fixed point", N
);
9419 elsif Nkind
(Parent
(N
)) in N_Op
9420 and then Present
(Etype
(Parent
(N
)))
9421 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9422 and then Etype
(N
) = Universal_Real
9423 and then Comes_From_Source
(N
)
9425 Error_Msg_N
("exponentiation not available for fixed point", N
);
9430 if Comes_From_Source
(N
)
9431 and then Ekind
(Entity
(N
)) = E_Function
9432 and then Is_Imported
(Entity
(N
))
9433 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9435 Resolve_Intrinsic_Operator
(N
, Typ
);
9439 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9440 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9442 Check_For_Visible_Operator
(N
, B_Typ
);
9445 -- We do the resolution using the base type, because intermediate values
9446 -- in expressions are always of the base type, not a subtype of it.
9448 Resolve
(Left_Opnd
(N
), B_Typ
);
9449 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9451 -- For integer types, right argument must be in Natural range
9453 if Is_Integer_Type
(Typ
) then
9454 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9457 Check_Unset_Reference
(Left_Opnd
(N
));
9458 Check_Unset_Reference
(Right_Opnd
(N
));
9460 Set_Etype
(N
, B_Typ
);
9461 Generate_Operator_Reference
(N
, B_Typ
);
9463 Analyze_Dimension
(N
);
9465 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9466 -- Evaluate the exponentiation operator for dimensioned type
9468 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9473 -- Set overflow checking bit. Much cleverer code needed here eventually
9474 -- and perhaps the Resolve routines should be separated for the various
9475 -- arithmetic operations, since they will need different processing. ???
9477 if Nkind
(N
) in N_Op
then
9478 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9479 Enable_Overflow_Check
(N
);
9482 end Resolve_Op_Expon
;
9484 --------------------
9485 -- Resolve_Op_Not --
9486 --------------------
9488 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9491 function Parent_Is_Boolean
return Boolean;
9492 -- This function determines if the parent node is a boolean operator or
9493 -- operation (comparison op, membership test, or short circuit form) and
9494 -- the not in question is the left operand of this operation. Note that
9495 -- if the not is in parens, then false is returned.
9497 -----------------------
9498 -- Parent_Is_Boolean --
9499 -----------------------
9501 function Parent_Is_Boolean
return Boolean is
9503 if Paren_Count
(N
) /= 0 then
9507 case Nkind
(Parent
(N
)) is
9522 return Left_Opnd
(Parent
(N
)) = N
;
9528 end Parent_Is_Boolean
;
9530 -- Start of processing for Resolve_Op_Not
9533 -- Predefined operations on scalar types yield the base type. On the
9534 -- other hand, logical operations on arrays yield the type of the
9535 -- arguments (and the context).
9537 if Is_Array_Type
(Typ
) then
9540 B_Typ
:= Base_Type
(Typ
);
9543 -- Straightforward case of incorrect arguments
9545 if not Valid_Boolean_Arg
(Typ
) then
9546 Error_Msg_N
("invalid operand type for operator&", N
);
9547 Set_Etype
(N
, Any_Type
);
9550 -- Special case of probable missing parens
9552 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9553 if Parent_Is_Boolean
then
9555 ("operand of not must be enclosed in parentheses",
9559 ("no modular type available in this context", N
);
9562 Set_Etype
(N
, Any_Type
);
9565 -- OK resolution of NOT
9568 -- Warn if non-boolean types involved. This is a case like not a < b
9569 -- where a and b are modular, where we will get (not a) < b and most
9570 -- likely not (a < b) was intended.
9572 if Warn_On_Questionable_Missing_Parens
9573 and then not Is_Boolean_Type
(Typ
)
9574 and then Parent_Is_Boolean
9576 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9579 -- Warn on double negation if checking redundant constructs
9581 if Warn_On_Redundant_Constructs
9582 and then Comes_From_Source
(N
)
9583 and then Comes_From_Source
(Right_Opnd
(N
))
9584 and then Root_Type
(Typ
) = Standard_Boolean
9585 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9587 Error_Msg_N
("redundant double negation?r?", N
);
9590 -- Complete resolution and evaluation of NOT
9592 Resolve
(Right_Opnd
(N
), B_Typ
);
9593 Check_Unset_Reference
(Right_Opnd
(N
));
9594 Set_Etype
(N
, B_Typ
);
9595 Generate_Operator_Reference
(N
, B_Typ
);
9600 -----------------------------
9601 -- Resolve_Operator_Symbol --
9602 -----------------------------
9604 -- Nothing to be done, all resolved already
9606 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9607 pragma Warnings
(Off
, N
);
9608 pragma Warnings
(Off
, Typ
);
9612 end Resolve_Operator_Symbol
;
9614 ----------------------------------
9615 -- Resolve_Qualified_Expression --
9616 ----------------------------------
9618 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9619 pragma Warnings
(Off
, Typ
);
9621 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9622 Expr
: constant Node_Id
:= Expression
(N
);
9625 Resolve
(Expr
, Target_Typ
);
9627 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9628 -- operation if not needed.
9630 if Restriction_Check_Required
(SPARK_05
)
9631 and then Is_Array_Type
(Target_Typ
)
9632 and then Is_Array_Type
(Etype
(Expr
))
9633 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9634 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9636 Check_SPARK_05_Restriction
9637 ("array types should have matching static bounds", N
);
9640 -- A qualified expression requires an exact match of the type, class-
9641 -- wide matching is not allowed. However, if the qualifying type is
9642 -- specific and the expression has a class-wide type, it may still be
9643 -- okay, since it can be the result of the expansion of a call to a
9644 -- dispatching function, so we also have to check class-wideness of the
9645 -- type of the expression's original node.
9647 if (Is_Class_Wide_Type
(Target_Typ
)
9649 (Is_Class_Wide_Type
(Etype
(Expr
))
9650 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9651 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9653 Wrong_Type
(Expr
, Target_Typ
);
9656 -- If the target type is unconstrained, then we reset the type of the
9657 -- result from the type of the expression. For other cases, the actual
9658 -- subtype of the expression is the target type.
9660 if Is_Composite_Type
(Target_Typ
)
9661 and then not Is_Constrained
(Target_Typ
)
9663 Set_Etype
(N
, Etype
(Expr
));
9666 Analyze_Dimension
(N
);
9667 Eval_Qualified_Expression
(N
);
9669 -- If we still have a qualified expression after the static evaluation,
9670 -- then apply a scalar range check if needed. The reason that we do this
9671 -- after the Eval call is that otherwise, the application of the range
9672 -- check may convert an illegal static expression and result in warning
9673 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9675 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9676 Apply_Scalar_Range_Check
(Expr
, Typ
);
9679 -- Finally, check whether a predicate applies to the target type. This
9680 -- comes from AI12-0100. As for type conversions, check the enclosing
9681 -- context to prevent an infinite expansion.
9683 if Has_Predicates
(Target_Typ
) then
9684 if Nkind
(Parent
(N
)) = N_Function_Call
9685 and then Present
(Name
(Parent
(N
)))
9686 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
9688 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
9692 -- In the case of a qualified expression in an allocator, the check
9693 -- is applied when expanding the allocator, so avoid redundant check.
9695 elsif Nkind
(N
) = N_Qualified_Expression
9696 and then Nkind
(Parent
(N
)) /= N_Allocator
9698 Apply_Predicate_Check
(N
, Target_Typ
);
9701 end Resolve_Qualified_Expression
;
9703 ------------------------------
9704 -- Resolve_Raise_Expression --
9705 ------------------------------
9707 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9709 if Typ
= Raise_Type
then
9710 Error_Msg_N
("cannot find unique type for raise expression", N
);
9711 Set_Etype
(N
, Any_Type
);
9715 end Resolve_Raise_Expression
;
9721 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9722 L
: constant Node_Id
:= Low_Bound
(N
);
9723 H
: constant Node_Id
:= High_Bound
(N
);
9725 function First_Last_Ref
return Boolean;
9726 -- Returns True if N is of the form X'First .. X'Last where X is the
9727 -- same entity for both attributes.
9729 --------------------
9730 -- First_Last_Ref --
9731 --------------------
9733 function First_Last_Ref
return Boolean is
9734 Lorig
: constant Node_Id
:= Original_Node
(L
);
9735 Horig
: constant Node_Id
:= Original_Node
(H
);
9738 if Nkind
(Lorig
) = N_Attribute_Reference
9739 and then Nkind
(Horig
) = N_Attribute_Reference
9740 and then Attribute_Name
(Lorig
) = Name_First
9741 and then Attribute_Name
(Horig
) = Name_Last
9744 PL
: constant Node_Id
:= Prefix
(Lorig
);
9745 PH
: constant Node_Id
:= Prefix
(Horig
);
9747 if Is_Entity_Name
(PL
)
9748 and then Is_Entity_Name
(PH
)
9749 and then Entity
(PL
) = Entity
(PH
)
9759 -- Start of processing for Resolve_Range
9764 -- The lower bound should be in Typ. The higher bound can be in Typ's
9765 -- base type if the range is null. It may still be invalid if it is
9766 -- higher than the lower bound. This is checked later in the context in
9767 -- which the range appears.
9770 Resolve
(H
, Base_Type
(Typ
));
9772 -- Check for inappropriate range on unordered enumeration type
9774 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9776 -- Exclude X'First .. X'Last if X is the same entity for both
9778 and then not First_Last_Ref
9780 Error_Msg_Sloc
:= Sloc
(Typ
);
9782 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9785 Check_Unset_Reference
(L
);
9786 Check_Unset_Reference
(H
);
9788 -- We have to check the bounds for being within the base range as
9789 -- required for a non-static context. Normally this is automatic and
9790 -- done as part of evaluating expressions, but the N_Range node is an
9791 -- exception, since in GNAT we consider this node to be a subexpression,
9792 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9793 -- this, but that would put the test on the main evaluation path for
9796 Check_Non_Static_Context
(L
);
9797 Check_Non_Static_Context
(H
);
9799 -- Check for an ambiguous range over character literals. This will
9800 -- happen with a membership test involving only literals.
9802 if Typ
= Any_Character
then
9803 Ambiguous_Character
(L
);
9804 Set_Etype
(N
, Any_Type
);
9808 -- If bounds are static, constant-fold them, so size computations are
9809 -- identical between front-end and back-end. Do not perform this
9810 -- transformation while analyzing generic units, as type information
9811 -- would be lost when reanalyzing the constant node in the instance.
9813 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9814 if Is_OK_Static_Expression
(L
) then
9815 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9818 if Is_OK_Static_Expression
(H
) then
9819 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9824 --------------------------
9825 -- Resolve_Real_Literal --
9826 --------------------------
9828 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9829 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9832 -- Special processing for fixed-point literals to make sure that the
9833 -- value is an exact multiple of small where this is required. We skip
9834 -- this for the universal real case, and also for generic types.
9836 if Is_Fixed_Point_Type
(Typ
)
9837 and then Typ
/= Universal_Fixed
9838 and then Typ
/= Any_Fixed
9839 and then not Is_Generic_Type
(Typ
)
9842 Val
: constant Ureal
:= Realval
(N
);
9843 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9844 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9845 Den
: constant Uint
:= Norm_Den
(Cintr
);
9849 -- Case of literal is not an exact multiple of the Small
9853 -- For a source program literal for a decimal fixed-point type,
9854 -- this is statically illegal (RM 4.9(36)).
9856 if Is_Decimal_Fixed_Point_Type
(Typ
)
9857 and then Actual_Typ
= Universal_Real
9858 and then Comes_From_Source
(N
)
9860 Error_Msg_N
("value has extraneous low order digits", N
);
9863 -- Generate a warning if literal from source
9865 if Is_OK_Static_Expression
(N
)
9866 and then Warn_On_Bad_Fixed_Value
9869 ("?b?static fixed-point value is not a multiple of Small!",
9873 -- Replace literal by a value that is the exact representation
9874 -- of a value of the type, i.e. a multiple of the small value,
9875 -- by truncation, since Machine_Rounds is false for all GNAT
9876 -- fixed-point types (RM 4.9(38)).
9878 Stat
:= Is_OK_Static_Expression
(N
);
9880 Make_Real_Literal
(Sloc
(N
),
9881 Realval
=> Small_Value
(Typ
) * Cint
));
9883 Set_Is_Static_Expression
(N
, Stat
);
9886 -- In all cases, set the corresponding integer field
9888 Set_Corresponding_Integer_Value
(N
, Cint
);
9892 -- Now replace the actual type by the expected type as usual
9895 Eval_Real_Literal
(N
);
9896 end Resolve_Real_Literal
;
9898 -----------------------
9899 -- Resolve_Reference --
9900 -----------------------
9902 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9903 P
: constant Node_Id
:= Prefix
(N
);
9906 -- Replace general access with specific type
9908 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9909 Set_Etype
(N
, Base_Type
(Typ
));
9912 Resolve
(P
, Designated_Type
(Etype
(N
)));
9914 -- If we are taking the reference of a volatile entity, then treat it as
9915 -- a potential modification of this entity. This is too conservative,
9916 -- but necessary because remove side effects can cause transformations
9917 -- of normal assignments into reference sequences that otherwise fail to
9918 -- notice the modification.
9920 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9921 Note_Possible_Modification
(P
, Sure
=> False);
9923 end Resolve_Reference
;
9925 --------------------------------
9926 -- Resolve_Selected_Component --
9927 --------------------------------
9929 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9931 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9932 P
: constant Node_Id
:= Prefix
(N
);
9933 S
: constant Node_Id
:= Selector_Name
(N
);
9934 T
: Entity_Id
:= Etype
(P
);
9936 I1
: Interp_Index
:= 0; -- prevent junk warning
9941 function Init_Component
return Boolean;
9942 -- Check whether this is the initialization of a component within an
9943 -- init proc (by assignment or call to another init proc). If true,
9944 -- there is no need for a discriminant check.
9946 --------------------
9947 -- Init_Component --
9948 --------------------
9950 function Init_Component
return Boolean is
9952 return Inside_Init_Proc
9953 and then Nkind
(Prefix
(N
)) = N_Identifier
9954 and then Chars
(Prefix
(N
)) = Name_uInit
9955 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9958 -- Start of processing for Resolve_Selected_Component
9961 if Is_Overloaded
(P
) then
9963 -- Use the context type to select the prefix that has a selector
9964 -- of the correct name and type.
9967 Get_First_Interp
(P
, I
, It
);
9969 Search
: while Present
(It
.Typ
) loop
9970 if Is_Access_Type
(It
.Typ
) then
9971 T
:= Designated_Type
(It
.Typ
);
9976 -- Locate selected component. For a private prefix the selector
9977 -- can denote a discriminant.
9979 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9981 -- The visible components of a class-wide type are those of
9984 if Is_Class_Wide_Type
(T
) then
9988 Comp
:= First_Entity
(T
);
9989 while Present
(Comp
) loop
9990 if Chars
(Comp
) = Chars
(S
)
9991 and then Covers
(Typ
, Etype
(Comp
))
10000 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10002 if It
= No_Interp
then
10004 ("ambiguous prefix for selected component", N
);
10005 Set_Etype
(N
, Typ
);
10011 -- There may be an implicit dereference. Retrieve
10012 -- designated record type.
10014 if Is_Access_Type
(It1
.Typ
) then
10015 T
:= Designated_Type
(It1
.Typ
);
10020 if Scope
(Comp1
) /= T
then
10022 -- Resolution chooses the new interpretation.
10023 -- Find the component with the right name.
10025 Comp1
:= First_Entity
(T
);
10026 while Present
(Comp1
)
10027 and then Chars
(Comp1
) /= Chars
(S
)
10029 Comp1
:= Next_Entity
(Comp1
);
10038 Comp
:= Next_Entity
(Comp
);
10042 Get_Next_Interp
(I
, It
);
10045 -- There must be a legal interpretation at this point
10047 pragma Assert
(Found
);
10048 Resolve
(P
, It1
.Typ
);
10049 Set_Etype
(N
, Typ
);
10050 Set_Entity_With_Checks
(S
, Comp1
);
10053 -- Resolve prefix with its type
10058 -- Generate cross-reference. We needed to wait until full overloading
10059 -- resolution was complete to do this, since otherwise we can't tell if
10060 -- we are an lvalue or not.
10062 if May_Be_Lvalue
(N
) then
10063 Generate_Reference
(Entity
(S
), S
, 'm');
10065 Generate_Reference
(Entity
(S
), S
, 'r');
10068 -- If prefix is an access type, the node will be transformed into an
10069 -- explicit dereference during expansion. The type of the node is the
10070 -- designated type of that of the prefix.
10072 if Is_Access_Type
(Etype
(P
)) then
10073 T
:= Designated_Type
(Etype
(P
));
10074 Check_Fully_Declared_Prefix
(T
, P
);
10079 -- Set flag for expander if discriminant check required on a component
10080 -- appearing within a variant.
10082 if Has_Discriminants
(T
)
10083 and then Ekind
(Entity
(S
)) = E_Component
10084 and then Present
(Original_Record_Component
(Entity
(S
)))
10085 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
10087 Is_Declared_Within_Variant
(Original_Record_Component
(Entity
(S
)))
10088 and then not Discriminant_Checks_Suppressed
(T
)
10089 and then not Init_Component
10091 Set_Do_Discriminant_Check
(N
);
10094 if Ekind
(Entity
(S
)) = E_Void
then
10095 Error_Msg_N
("premature use of component", S
);
10098 -- If the prefix is a record conversion, this may be a renamed
10099 -- discriminant whose bounds differ from those of the original
10100 -- one, so we must ensure that a range check is performed.
10102 if Nkind
(P
) = N_Type_Conversion
10103 and then Ekind
(Entity
(S
)) = E_Discriminant
10104 and then Is_Discrete_Type
(Typ
)
10106 Set_Etype
(N
, Base_Type
(Typ
));
10109 -- Note: No Eval processing is required, because the prefix is of a
10110 -- record type, or protected type, and neither can possibly be static.
10112 -- If the record type is atomic, and the component is non-atomic, then
10113 -- this is worth a warning, since we have a situation where the access
10114 -- to the component may cause extra read/writes of the atomic array
10115 -- object, or partial word accesses, both of which may be unexpected.
10117 if Nkind
(N
) = N_Selected_Component
10118 and then Is_Atomic_Ref_With_Address
(N
)
10119 and then not Is_Atomic
(Entity
(S
))
10120 and then not Is_Atomic
(Etype
(Entity
(S
)))
10123 ("??access to non-atomic component of atomic record",
10126 ("\??may cause unexpected accesses to atomic object",
10130 Analyze_Dimension
(N
);
10131 end Resolve_Selected_Component
;
10133 -------------------
10134 -- Resolve_Shift --
10135 -------------------
10137 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
10138 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10139 L
: constant Node_Id
:= Left_Opnd
(N
);
10140 R
: constant Node_Id
:= Right_Opnd
(N
);
10143 -- We do the resolution using the base type, because intermediate values
10144 -- in expressions always are of the base type, not a subtype of it.
10146 Resolve
(L
, B_Typ
);
10147 Resolve
(R
, Standard_Natural
);
10149 Check_Unset_Reference
(L
);
10150 Check_Unset_Reference
(R
);
10152 Set_Etype
(N
, B_Typ
);
10153 Generate_Operator_Reference
(N
, B_Typ
);
10157 ---------------------------
10158 -- Resolve_Short_Circuit --
10159 ---------------------------
10161 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
10162 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10163 L
: constant Node_Id
:= Left_Opnd
(N
);
10164 R
: constant Node_Id
:= Right_Opnd
(N
);
10167 -- Ensure all actions associated with the left operand (e.g.
10168 -- finalization of transient objects) are fully evaluated locally within
10169 -- an expression with actions. This is particularly helpful for coverage
10170 -- analysis. However this should not happen in generics or if option
10171 -- Minimize_Expression_With_Actions is set.
10173 if Expander_Active
and not Minimize_Expression_With_Actions
then
10175 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
10177 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
10180 Make_Expression_With_Actions
(Sloc
(L
),
10181 Actions
=> New_List
,
10182 Expression
=> Reloc_L
));
10184 -- Set Comes_From_Source on L to preserve warnings for unset
10187 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
10191 Resolve
(L
, B_Typ
);
10192 Resolve
(R
, B_Typ
);
10194 -- Check for issuing warning for always False assert/check, this happens
10195 -- when assertions are turned off, in which case the pragma Assert/Check
10196 -- was transformed into:
10198 -- if False and then <condition> then ...
10200 -- and we detect this pattern
10202 if Warn_On_Assertion_Failure
10203 and then Is_Entity_Name
(R
)
10204 and then Entity
(R
) = Standard_False
10205 and then Nkind
(Parent
(N
)) = N_If_Statement
10206 and then Nkind
(N
) = N_And_Then
10207 and then Is_Entity_Name
(L
)
10208 and then Entity
(L
) = Standard_False
10211 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
10214 -- Special handling of Asssert pragma
10216 if Nkind
(Orig
) = N_Pragma
10217 and then Pragma_Name
(Orig
) = Name_Assert
10220 Expr
: constant Node_Id
:=
10223 (First
(Pragma_Argument_Associations
(Orig
))));
10226 -- Don't warn if original condition is explicit False,
10227 -- since obviously the failure is expected in this case.
10229 if Is_Entity_Name
(Expr
)
10230 and then Entity
(Expr
) = Standard_False
10234 -- Issue warning. We do not want the deletion of the
10235 -- IF/AND-THEN to take this message with it. We achieve this
10236 -- by making sure that the expanded code points to the Sloc
10237 -- of the expression, not the original pragma.
10240 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10241 -- The source location of the expression is not usually
10242 -- the best choice here. For example, it gets located on
10243 -- the last AND keyword in a chain of boolean expressiond
10244 -- AND'ed together. It is best to put the message on the
10245 -- first character of the assertion, which is the effect
10246 -- of the First_Node call here.
10249 ("?A?assertion would fail at run time!",
10251 (First
(Pragma_Argument_Associations
(Orig
))));
10255 -- Similar processing for Check pragma
10257 elsif Nkind
(Orig
) = N_Pragma
10258 and then Pragma_Name
(Orig
) = Name_Check
10260 -- Don't want to warn if original condition is explicit False
10263 Expr
: constant Node_Id
:=
10266 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
10268 if Is_Entity_Name
(Expr
)
10269 and then Entity
(Expr
) = Standard_False
10276 -- Again use Error_Msg_F rather than Error_Msg_N, see
10277 -- comment above for an explanation of why we do this.
10280 ("?A?check would fail at run time!",
10282 (Last
(Pragma_Argument_Associations
(Orig
))));
10289 -- Continue with processing of short circuit
10291 Check_Unset_Reference
(L
);
10292 Check_Unset_Reference
(R
);
10294 Set_Etype
(N
, B_Typ
);
10295 Eval_Short_Circuit
(N
);
10296 end Resolve_Short_Circuit
;
10298 -------------------
10299 -- Resolve_Slice --
10300 -------------------
10302 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
10303 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10304 Name
: constant Node_Id
:= Prefix
(N
);
10305 Array_Type
: Entity_Id
:= Empty
;
10306 Dexpr
: Node_Id
:= Empty
;
10307 Index_Type
: Entity_Id
;
10310 if Is_Overloaded
(Name
) then
10312 -- Use the context type to select the prefix that yields the correct
10317 I1
: Interp_Index
:= 0;
10319 P
: constant Node_Id
:= Prefix
(N
);
10320 Found
: Boolean := False;
10323 Get_First_Interp
(P
, I
, It
);
10324 while Present
(It
.Typ
) loop
10325 if (Is_Array_Type
(It
.Typ
)
10326 and then Covers
(Typ
, It
.Typ
))
10327 or else (Is_Access_Type
(It
.Typ
)
10328 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10329 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10332 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10334 if It
= No_Interp
then
10335 Error_Msg_N
("ambiguous prefix for slicing", N
);
10336 Set_Etype
(N
, Typ
);
10340 Array_Type
:= It
.Typ
;
10345 Array_Type
:= It
.Typ
;
10350 Get_Next_Interp
(I
, It
);
10355 Array_Type
:= Etype
(Name
);
10358 Resolve
(Name
, Array_Type
);
10360 if Is_Access_Type
(Array_Type
) then
10361 Apply_Access_Check
(N
);
10362 Array_Type
:= Designated_Type
(Array_Type
);
10364 -- If the prefix is an access to an unconstrained array, we must use
10365 -- the actual subtype of the object to perform the index checks. The
10366 -- object denoted by the prefix is implicit in the node, so we build
10367 -- an explicit representation for it in order to compute the actual
10370 if not Is_Constrained
(Array_Type
) then
10371 Remove_Side_Effects
(Prefix
(N
));
10374 Obj
: constant Node_Id
:=
10375 Make_Explicit_Dereference
(Sloc
(N
),
10376 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10378 Set_Etype
(Obj
, Array_Type
);
10379 Set_Parent
(Obj
, Parent
(N
));
10380 Array_Type
:= Get_Actual_Subtype
(Obj
);
10384 elsif Is_Entity_Name
(Name
)
10385 or else Nkind
(Name
) = N_Explicit_Dereference
10386 or else (Nkind
(Name
) = N_Function_Call
10387 and then not Is_Constrained
(Etype
(Name
)))
10389 Array_Type
:= Get_Actual_Subtype
(Name
);
10391 -- If the name is a selected component that depends on discriminants,
10392 -- build an actual subtype for it. This can happen only when the name
10393 -- itself is overloaded; otherwise the actual subtype is created when
10394 -- the selected component is analyzed.
10396 elsif Nkind
(Name
) = N_Selected_Component
10397 and then Full_Analysis
10398 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10401 Act_Decl
: constant Node_Id
:=
10402 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10404 Insert_Action
(N
, Act_Decl
);
10405 Array_Type
:= Defining_Identifier
(Act_Decl
);
10408 -- Maybe this should just be "else", instead of checking for the
10409 -- specific case of slice??? This is needed for the case where the
10410 -- prefix is an Image attribute, which gets expanded to a slice, and so
10411 -- has a constrained subtype which we want to use for the slice range
10412 -- check applied below (the range check won't get done if the
10413 -- unconstrained subtype of the 'Image is used).
10415 elsif Nkind
(Name
) = N_Slice
then
10416 Array_Type
:= Etype
(Name
);
10419 -- Obtain the type of the array index
10421 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10422 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10424 Index_Type
:= Etype
(First_Index
(Array_Type
));
10427 -- If name was overloaded, set slice type correctly now
10429 Set_Etype
(N
, Array_Type
);
10431 -- Handle the generation of a range check that compares the array index
10432 -- against the discrete_range. The check is not applied to internally
10433 -- built nodes associated with the expansion of dispatch tables. Check
10434 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10437 if Tagged_Type_Expansion
10438 and then RTU_Loaded
(Ada_Tags
)
10439 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10440 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10441 and then Entity
(Selector_Name
(Prefix
(N
))) =
10442 RTE_Record_Component
(RE_Prims_Ptr
)
10446 -- The discrete_range is specified by a subtype indication. Create a
10447 -- shallow copy and inherit the type, parent and source location from
10448 -- the discrete_range. This ensures that the range check is inserted
10449 -- relative to the slice and that the runtime exception points to the
10450 -- proper construct.
10452 elsif Is_Entity_Name
(Drange
) then
10453 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10455 Set_Etype
(Dexpr
, Etype
(Drange
));
10456 Set_Parent
(Dexpr
, Parent
(Drange
));
10457 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10459 -- The discrete_range is a regular range. Resolve the bounds and remove
10460 -- their side effects.
10463 Resolve
(Drange
, Base_Type
(Index_Type
));
10465 if Nkind
(Drange
) = N_Range
then
10466 Force_Evaluation
(Low_Bound
(Drange
));
10467 Force_Evaluation
(High_Bound
(Drange
));
10473 if Present
(Dexpr
) then
10474 Apply_Range_Check
(Dexpr
, Index_Type
);
10477 Set_Slice_Subtype
(N
);
10479 -- Check bad use of type with predicates
10485 if Nkind
(Drange
) = N_Subtype_Indication
10486 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10488 Subt
:= Entity
(Subtype_Mark
(Drange
));
10490 Subt
:= Etype
(Drange
);
10493 if Has_Predicates
(Subt
) then
10494 Bad_Predicated_Subtype_Use
10495 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10499 -- Otherwise here is where we check suspicious indexes
10501 if Nkind
(Drange
) = N_Range
then
10502 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10503 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10506 Analyze_Dimension
(N
);
10510 ----------------------------
10511 -- Resolve_String_Literal --
10512 ----------------------------
10514 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10515 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10516 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10517 Loc
: constant Source_Ptr
:= Sloc
(N
);
10518 Str
: constant String_Id
:= Strval
(N
);
10519 Strlen
: constant Nat
:= String_Length
(Str
);
10520 Subtype_Id
: Entity_Id
;
10521 Need_Check
: Boolean;
10524 -- For a string appearing in a concatenation, defer creation of the
10525 -- string_literal_subtype until the end of the resolution of the
10526 -- concatenation, because the literal may be constant-folded away. This
10527 -- is a useful optimization for long concatenation expressions.
10529 -- If the string is an aggregate built for a single character (which
10530 -- happens in a non-static context) or a is null string to which special
10531 -- checks may apply, we build the subtype. Wide strings must also get a
10532 -- string subtype if they come from a one character aggregate. Strings
10533 -- generated by attributes might be static, but it is often hard to
10534 -- determine whether the enclosing context is static, so we generate
10535 -- subtypes for them as well, thus losing some rarer optimizations ???
10536 -- Same for strings that come from a static conversion.
10539 (Strlen
= 0 and then Typ
/= Standard_String
)
10540 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10541 or else (N
/= Left_Opnd
(Parent
(N
))
10542 and then N
/= Right_Opnd
(Parent
(N
)))
10543 or else ((Typ
= Standard_Wide_String
10544 or else Typ
= Standard_Wide_Wide_String
)
10545 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10547 -- If the resolving type is itself a string literal subtype, we can just
10548 -- reuse it, since there is no point in creating another.
10550 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10553 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10554 and then not Need_Check
10555 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10556 N_Attribute_Reference
,
10557 N_Qualified_Expression
,
10562 -- Do not generate a string literal subtype for the default expression
10563 -- of a formal parameter in GNATprove mode. This is because the string
10564 -- subtype is associated with the freezing actions of the subprogram,
10565 -- however freezing is disabled in GNATprove mode and as a result the
10566 -- subtype is unavailable.
10568 elsif GNATprove_Mode
10569 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10573 -- Otherwise we must create a string literal subtype. Note that the
10574 -- whole idea of string literal subtypes is simply to avoid the need
10575 -- for building a full fledged array subtype for each literal.
10578 Set_String_Literal_Subtype
(N
, Typ
);
10579 Subtype_Id
:= Etype
(N
);
10582 if Nkind
(Parent
(N
)) /= N_Op_Concat
10585 Set_Etype
(N
, Subtype_Id
);
10586 Eval_String_Literal
(N
);
10589 if Is_Limited_Composite
(Typ
)
10590 or else Is_Private_Composite
(Typ
)
10592 Error_Msg_N
("string literal not available for private array", N
);
10593 Set_Etype
(N
, Any_Type
);
10597 -- The validity of a null string has been checked in the call to
10598 -- Eval_String_Literal.
10603 -- Always accept string literal with component type Any_Character, which
10604 -- occurs in error situations and in comparisons of literals, both of
10605 -- which should accept all literals.
10607 elsif R_Typ
= Any_Character
then
10610 -- If the type is bit-packed, then we always transform the string
10611 -- literal into a full fledged aggregate.
10613 elsif Is_Bit_Packed_Array
(Typ
) then
10616 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10619 -- For Standard.Wide_Wide_String, or any other type whose component
10620 -- type is Standard.Wide_Wide_Character, we know that all the
10621 -- characters in the string must be acceptable, since the parser
10622 -- accepted the characters as valid character literals.
10624 if R_Typ
= Standard_Wide_Wide_Character
then
10627 -- For the case of Standard.String, or any other type whose component
10628 -- type is Standard.Character, we must make sure that there are no
10629 -- wide characters in the string, i.e. that it is entirely composed
10630 -- of characters in range of type Character.
10632 -- If the string literal is the result of a static concatenation, the
10633 -- test has already been performed on the components, and need not be
10636 elsif R_Typ
= Standard_Character
10637 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10639 for J
in 1 .. Strlen
loop
10640 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10642 -- If we are out of range, post error. This is one of the
10643 -- very few places that we place the flag in the middle of
10644 -- a token, right under the offending wide character. Not
10645 -- quite clear if this is right wrt wide character encoding
10646 -- sequences, but it's only an error message.
10649 ("literal out of range of type Standard.Character",
10650 Source_Ptr
(Int
(Loc
) + J
));
10655 -- For the case of Standard.Wide_String, or any other type whose
10656 -- component type is Standard.Wide_Character, we must make sure that
10657 -- there are no wide characters in the string, i.e. that it is
10658 -- entirely composed of characters in range of type Wide_Character.
10660 -- If the string literal is the result of a static concatenation,
10661 -- the test has already been performed on the components, and need
10662 -- not be repeated.
10664 elsif R_Typ
= Standard_Wide_Character
10665 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10667 for J
in 1 .. Strlen
loop
10668 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10670 -- If we are out of range, post error. This is one of the
10671 -- very few places that we place the flag in the middle of
10672 -- a token, right under the offending wide character.
10674 -- This is not quite right, because characters in general
10675 -- will take more than one character position ???
10678 ("literal out of range of type Standard.Wide_Character",
10679 Source_Ptr
(Int
(Loc
) + J
));
10684 -- If the root type is not a standard character, then we will convert
10685 -- the string into an aggregate and will let the aggregate code do
10686 -- the checking. Standard Wide_Wide_Character is also OK here.
10692 -- See if the component type of the array corresponding to the string
10693 -- has compile time known bounds. If yes we can directly check
10694 -- whether the evaluation of the string will raise constraint error.
10695 -- Otherwise we need to transform the string literal into the
10696 -- corresponding character aggregate and let the aggregate code do
10699 if Is_Standard_Character_Type
(R_Typ
) then
10701 -- Check for the case of full range, where we are definitely OK
10703 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10707 -- Here the range is not the complete base type range, so check
10710 Comp_Typ_Lo
: constant Node_Id
:=
10711 Type_Low_Bound
(Component_Type
(Typ
));
10712 Comp_Typ_Hi
: constant Node_Id
:=
10713 Type_High_Bound
(Component_Type
(Typ
));
10718 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10719 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10721 for J
in 1 .. Strlen
loop
10722 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10724 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10725 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10727 Apply_Compile_Time_Constraint_Error
10728 (N
, "character out of range??",
10729 CE_Range_Check_Failed
,
10730 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10740 -- If we got here we meed to transform the string literal into the
10741 -- equivalent qualified positional array aggregate. This is rather
10742 -- heavy artillery for this situation, but it is hard work to avoid.
10745 Lits
: constant List_Id
:= New_List
;
10746 P
: Source_Ptr
:= Loc
+ 1;
10750 -- Build the character literals, we give them source locations that
10751 -- correspond to the string positions, which is a bit tricky given
10752 -- the possible presence of wide character escape sequences.
10754 for J
in 1 .. Strlen
loop
10755 C
:= Get_String_Char
(Str
, J
);
10756 Set_Character_Literal_Name
(C
);
10759 Make_Character_Literal
(P
,
10760 Chars
=> Name_Find
,
10761 Char_Literal_Value
=> UI_From_CC
(C
)));
10763 if In_Character_Range
(C
) then
10766 -- Should we have a call to Skip_Wide here ???
10775 Make_Qualified_Expression
(Loc
,
10776 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10778 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10780 Analyze_And_Resolve
(N
, Typ
);
10782 end Resolve_String_Literal
;
10784 -------------------------
10785 -- Resolve_Target_Name --
10786 -------------------------
10788 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
10790 Set_Etype
(N
, Typ
);
10791 end Resolve_Target_Name
;
10793 -----------------------------
10794 -- Resolve_Type_Conversion --
10795 -----------------------------
10797 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10798 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10799 Operand
: constant Node_Id
:= Expression
(N
);
10800 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10801 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10806 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10807 -- Set to False to suppress cases where we want to suppress the test
10808 -- for redundancy to avoid possible false positives on this warning.
10812 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10817 -- If the Operand Etype is Universal_Fixed, then the conversion is
10818 -- never redundant. We need this check because by the time we have
10819 -- finished the rather complex transformation, the conversion looks
10820 -- redundant when it is not.
10822 if Operand_Typ
= Universal_Fixed
then
10823 Test_Redundant
:= False;
10825 -- If the operand is marked as Any_Fixed, then special processing is
10826 -- required. This is also a case where we suppress the test for a
10827 -- redundant conversion, since most certainly it is not redundant.
10829 elsif Operand_Typ
= Any_Fixed
then
10830 Test_Redundant
:= False;
10832 -- Mixed-mode operation involving a literal. Context must be a fixed
10833 -- type which is applied to the literal subsequently.
10835 -- Multiplication and division involving two fixed type operands must
10836 -- yield a universal real because the result is computed in arbitrary
10839 if Is_Fixed_Point_Type
(Typ
)
10840 and then Nkind_In
(Operand
, N_Op_Divide
, N_Op_Multiply
)
10841 and then Etype
(Left_Opnd
(Operand
)) = Any_Fixed
10842 and then Etype
(Right_Opnd
(Operand
)) = Any_Fixed
10844 Set_Etype
(Operand
, Universal_Real
);
10846 elsif Is_Numeric_Type
(Typ
)
10847 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10848 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10850 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10852 -- Return if expression is ambiguous
10854 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10857 -- If nothing else, the available fixed type is Duration
10860 Set_Etype
(Operand
, Standard_Duration
);
10863 -- Resolve the real operand with largest available precision
10865 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10866 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10868 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10871 Resolve
(Rop
, Universal_Real
);
10873 -- If the operand is a literal (it could be a non-static and
10874 -- illegal exponentiation) check whether the use of Duration
10875 -- is potentially inaccurate.
10877 if Nkind
(Rop
) = N_Real_Literal
10878 and then Realval
(Rop
) /= Ureal_0
10879 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10882 ("??universal real operand can only "
10883 & "be interpreted as Duration!", Rop
);
10885 ("\??precision will be lost in the conversion!", Rop
);
10888 elsif Is_Numeric_Type
(Typ
)
10889 and then Nkind
(Operand
) in N_Op
10890 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10892 Set_Etype
(Operand
, Standard_Duration
);
10895 Error_Msg_N
("invalid context for mixed mode operation", N
);
10896 Set_Etype
(Operand
, Any_Type
);
10903 -- In SPARK, a type conversion between array types should be restricted
10904 -- to types which have matching static bounds.
10906 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10907 -- operation if not needed.
10909 if Restriction_Check_Required
(SPARK_05
)
10910 and then Is_Array_Type
(Target_Typ
)
10911 and then Is_Array_Type
(Operand_Typ
)
10912 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10913 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10915 Check_SPARK_05_Restriction
10916 ("array types should have matching static bounds", N
);
10919 -- In formal mode, the operand of an ancestor type conversion must be an
10920 -- object (not an expression).
10922 if Is_Tagged_Type
(Target_Typ
)
10923 and then not Is_Class_Wide_Type
(Target_Typ
)
10924 and then Is_Tagged_Type
(Operand_Typ
)
10925 and then not Is_Class_Wide_Type
(Operand_Typ
)
10926 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10927 and then not Is_SPARK_05_Object_Reference
(Operand
)
10929 Check_SPARK_05_Restriction
("object required", Operand
);
10932 Analyze_Dimension
(N
);
10934 -- Note: we do the Eval_Type_Conversion call before applying the
10935 -- required checks for a subtype conversion. This is important, since
10936 -- both are prepared under certain circumstances to change the type
10937 -- conversion to a constraint error node, but in the case of
10938 -- Eval_Type_Conversion this may reflect an illegality in the static
10939 -- case, and we would miss the illegality (getting only a warning
10940 -- message), if we applied the type conversion checks first.
10942 Eval_Type_Conversion
(N
);
10944 -- Even when evaluation is not possible, we may be able to simplify the
10945 -- conversion or its expression. This needs to be done before applying
10946 -- checks, since otherwise the checks may use the original expression
10947 -- and defeat the simplifications. This is specifically the case for
10948 -- elimination of the floating-point Truncation attribute in
10949 -- float-to-int conversions.
10951 Simplify_Type_Conversion
(N
);
10953 -- If after evaluation we still have a type conversion, then we may need
10954 -- to apply checks required for a subtype conversion.
10956 -- Skip these type conversion checks if universal fixed operands
10957 -- operands involved, since range checks are handled separately for
10958 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10960 if Nkind
(N
) = N_Type_Conversion
10961 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10962 and then Target_Typ
/= Universal_Fixed
10963 and then Operand_Typ
/= Universal_Fixed
10965 Apply_Type_Conversion_Checks
(N
);
10968 -- Issue warning for conversion of simple object to its own type. We
10969 -- have to test the original nodes, since they may have been rewritten
10970 -- by various optimizations.
10972 Orig_N
:= Original_Node
(N
);
10974 -- Here we test for a redundant conversion if the warning mode is
10975 -- active (and was not locally reset), and we have a type conversion
10976 -- from source not appearing in a generic instance.
10979 and then Nkind
(Orig_N
) = N_Type_Conversion
10980 and then Comes_From_Source
(Orig_N
)
10981 and then not In_Instance
10983 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10984 Orig_T
:= Target_Typ
;
10986 -- If the node is part of a larger expression, the Target_Type
10987 -- may not be the original type of the node if the context is a
10988 -- condition. Recover original type to see if conversion is needed.
10990 if Is_Boolean_Type
(Orig_T
)
10991 and then Nkind
(Parent
(N
)) in N_Op
10993 Orig_T
:= Etype
(Parent
(N
));
10996 -- If we have an entity name, then give the warning if the entity
10997 -- is the right type, or if it is a loop parameter covered by the
10998 -- original type (that's needed because loop parameters have an
10999 -- odd subtype coming from the bounds).
11001 if (Is_Entity_Name
(Orig_N
)
11003 (Etype
(Entity
(Orig_N
)) = Orig_T
11005 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
11006 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
11008 -- If not an entity, then type of expression must match
11010 or else Etype
(Orig_N
) = Orig_T
11012 -- One more check, do not give warning if the analyzed conversion
11013 -- has an expression with non-static bounds, and the bounds of the
11014 -- target are static. This avoids junk warnings in cases where the
11015 -- conversion is necessary to establish staticness, for example in
11016 -- a case statement.
11018 if not Is_OK_Static_Subtype
(Operand_Typ
)
11019 and then Is_OK_Static_Subtype
(Target_Typ
)
11023 -- Finally, if this type conversion occurs in a context requiring
11024 -- a prefix, and the expression is a qualified expression then the
11025 -- type conversion is not redundant, since a qualified expression
11026 -- is not a prefix, whereas a type conversion is. For example, "X
11027 -- := T'(Funx(...)).Y;" is illegal because a selected component
11028 -- requires a prefix, but a type conversion makes it legal: "X :=
11029 -- T(T'(Funx(...))).Y;"
11031 -- In Ada 2012, a qualified expression is a name, so this idiom is
11032 -- no longer needed, but we still suppress the warning because it
11033 -- seems unfriendly for warnings to pop up when you switch to the
11034 -- newer language version.
11036 elsif Nkind
(Orig_N
) = N_Qualified_Expression
11037 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
11038 N_Indexed_Component
,
11039 N_Selected_Component
,
11041 N_Explicit_Dereference
)
11045 -- Never warn on conversion to Long_Long_Integer'Base since
11046 -- that is most likely an artifact of the extended overflow
11047 -- checking and comes from complex expanded code.
11049 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
11052 -- Here we give the redundant conversion warning. If it is an
11053 -- entity, give the name of the entity in the message. If not,
11054 -- just mention the expression.
11056 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11059 if Is_Entity_Name
(Orig_N
) then
11060 Error_Msg_Node_2
:= Orig_T
;
11061 Error_Msg_NE
-- CODEFIX
11062 ("??redundant conversion, & is of type &!",
11063 N
, Entity
(Orig_N
));
11066 ("??redundant conversion, expression is of type&!",
11073 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11074 -- No need to perform any interface conversion if the type of the
11075 -- expression coincides with the target type.
11077 if Ada_Version
>= Ada_2005
11078 and then Expander_Active
11079 and then Operand_Typ
/= Target_Typ
11082 Opnd
: Entity_Id
:= Operand_Typ
;
11083 Target
: Entity_Id
:= Target_Typ
;
11086 -- If the type of the operand is a limited view, use nonlimited
11087 -- view when available. If it is a class-wide type, recover the
11088 -- class-wide type of the nonlimited view.
11090 if From_Limited_With
(Opnd
)
11091 and then Has_Non_Limited_View
(Opnd
)
11093 Opnd
:= Non_Limited_View
(Opnd
);
11094 Set_Etype
(Expression
(N
), Opnd
);
11097 if Is_Access_Type
(Opnd
) then
11098 Opnd
:= Designated_Type
(Opnd
);
11101 if Is_Access_Type
(Target_Typ
) then
11102 Target
:= Designated_Type
(Target
);
11105 if Opnd
= Target
then
11108 -- Conversion from interface type
11110 elsif Is_Interface
(Opnd
) then
11112 -- Ada 2005 (AI-217): Handle entities from limited views
11114 if From_Limited_With
(Opnd
) then
11115 Error_Msg_Qual_Level
:= 99;
11116 Error_Msg_NE
-- CODEFIX
11117 ("missing WITH clause on package &", N
,
11118 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
11120 ("type conversions require visibility of the full view",
11123 elsif From_Limited_With
(Target
)
11125 (Is_Access_Type
(Target_Typ
)
11126 and then Present
(Non_Limited_View
(Etype
(Target
))))
11128 Error_Msg_Qual_Level
:= 99;
11129 Error_Msg_NE
-- CODEFIX
11130 ("missing WITH clause on package &", N
,
11131 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
11133 ("type conversions require visibility of the full view",
11137 Expand_Interface_Conversion
(N
);
11140 -- Conversion to interface type
11142 elsif Is_Interface
(Target
) then
11146 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
11147 Opnd
:= Etype
(Opnd
);
11150 if Is_Class_Wide_Type
(Opnd
)
11151 or else Interface_Present_In_Ancestor
11155 Expand_Interface_Conversion
(N
);
11157 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
11158 Error_Msg_Name_2
:= Chars
(Opnd
);
11160 ("wrong interface conversion (% is not a progenitor "
11167 -- Ada 2012: once the type conversion is resolved, check whether the
11168 -- operand statisfies the static predicate of the target type.
11170 if Has_Predicates
(Target_Typ
) then
11171 Check_Expression_Against_Static_Predicate
(N
, Target_Typ
);
11174 -- If at this stage we have a real to integer conversion, make sure that
11175 -- the Do_Range_Check flag is set, because such conversions in general
11176 -- need a range check. We only need this if expansion is off.
11177 -- In GNATprove mode, we only do that when converting from fixed-point
11178 -- (as floating-point to integer conversions are now handled in
11179 -- GNATprove mode).
11181 if Nkind
(N
) = N_Type_Conversion
11182 and then not Expander_Active
11183 and then Is_Integer_Type
(Target_Typ
)
11184 and then (Is_Fixed_Point_Type
(Operand_Typ
)
11185 or else (not GNATprove_Mode
11186 and then Is_Floating_Point_Type
(Operand_Typ
)))
11188 Set_Do_Range_Check
(Operand
);
11191 -- Generating C code a type conversion of an access to constrained
11192 -- array type to access to unconstrained array type involves building
11193 -- a fat pointer which in general cannot be generated on the fly. We
11194 -- remove side effects in order to store the result of the conversion
11195 -- into a temporary.
11197 if Modify_Tree_For_C
11198 and then Nkind
(N
) = N_Type_Conversion
11199 and then Nkind
(Parent
(N
)) /= N_Object_Declaration
11200 and then Is_Access_Type
(Etype
(N
))
11201 and then Is_Array_Type
(Designated_Type
(Etype
(N
)))
11202 and then not Is_Constrained
(Designated_Type
(Etype
(N
)))
11203 and then Is_Constrained
(Designated_Type
(Etype
(Expression
(N
))))
11205 Remove_Side_Effects
(N
);
11207 end Resolve_Type_Conversion
;
11209 ----------------------
11210 -- Resolve_Unary_Op --
11211 ----------------------
11213 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
11214 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11215 R
: constant Node_Id
:= Right_Opnd
(N
);
11221 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
11222 Error_Msg_Name_1
:= Chars
(Typ
);
11223 Check_SPARK_05_Restriction
11224 ("unary operator not defined for modular type%", N
);
11227 -- Deal with intrinsic unary operators
11229 if Comes_From_Source
(N
)
11230 and then Ekind
(Entity
(N
)) = E_Function
11231 and then Is_Imported
(Entity
(N
))
11232 and then Is_Intrinsic_Subprogram
(Entity
(N
))
11234 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11238 -- Deal with universal cases
11240 if Etype
(R
) = Universal_Integer
11242 Etype
(R
) = Universal_Real
11244 Check_For_Visible_Operator
(N
, B_Typ
);
11247 Set_Etype
(N
, B_Typ
);
11248 Resolve
(R
, B_Typ
);
11250 -- Generate warning for expressions like abs (x mod 2)
11252 if Warn_On_Redundant_Constructs
11253 and then Nkind
(N
) = N_Op_Abs
11255 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
11257 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
11258 Error_Msg_N
-- CODEFIX
11259 ("?r?abs applied to known non-negative value has no effect", N
);
11263 -- Deal with reference generation
11265 Check_Unset_Reference
(R
);
11266 Generate_Operator_Reference
(N
, B_Typ
);
11267 Analyze_Dimension
(N
);
11270 -- Set overflow checking bit. Much cleverer code needed here eventually
11271 -- and perhaps the Resolve routines should be separated for the various
11272 -- arithmetic operations, since they will need different processing ???
11274 if Nkind
(N
) in N_Op
then
11275 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
11276 Enable_Overflow_Check
(N
);
11280 -- Generate warning for expressions like -5 mod 3 for integers. No need
11281 -- to worry in the floating-point case, since parens do not affect the
11282 -- result so there is no point in giving in a warning.
11285 Norig
: constant Node_Id
:= Original_Node
(N
);
11294 if Warn_On_Questionable_Missing_Parens
11295 and then Comes_From_Source
(Norig
)
11296 and then Is_Integer_Type
(Typ
)
11297 and then Nkind
(Norig
) = N_Op_Minus
11299 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
11301 -- We are looking for cases where the right operand is not
11302 -- parenthesized, and is a binary operator, multiply, divide, or
11303 -- mod. These are the cases where the grouping can affect results.
11305 if Paren_Count
(Rorig
) = 0
11306 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
11308 -- For mod, we always give the warning, since the value is
11309 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11310 -- -(5 mod 315)). But for the other cases, the only concern is
11311 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11312 -- overflows, but (-2) * 64 does not). So we try to give the
11313 -- message only when overflow is possible.
11315 if Nkind
(Rorig
) /= N_Op_Mod
11316 and then Compile_Time_Known_Value
(R
)
11318 Val
:= Expr_Value
(R
);
11320 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
11321 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
11323 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
11326 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
11327 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
11329 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
11332 -- Note that the test below is deliberately excluding the
11333 -- largest negative number, since that is a potentially
11334 -- troublesome case (e.g. -2 * x, where the result is the
11335 -- largest negative integer has an overflow with 2 * x).
11337 if Val
> LB
and then Val
<= HB
then
11342 -- For the multiplication case, the only case we have to worry
11343 -- about is when (-a)*b is exactly the largest negative number
11344 -- so that -(a*b) can cause overflow. This can only happen if
11345 -- a is a power of 2, and more generally if any operand is a
11346 -- constant that is not a power of 2, then the parentheses
11347 -- cannot affect whether overflow occurs. We only bother to
11348 -- test the left most operand
11350 -- Loop looking at left operands for one that has known value
11353 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11354 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11355 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11357 -- Operand value of 0 or 1 skips warning
11362 -- Otherwise check power of 2, if power of 2, warn, if
11363 -- anything else, skip warning.
11366 while Lval
/= 2 loop
11367 if Lval
mod 2 = 1 then
11378 -- Keep looking at left operands
11380 Opnd
:= Left_Opnd
(Opnd
);
11381 end loop Opnd_Loop
;
11383 -- For rem or "/" we can only have a problematic situation
11384 -- if the divisor has a value of minus one or one. Otherwise
11385 -- overflow is impossible (divisor > 1) or we have a case of
11386 -- division by zero in any case.
11388 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11389 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11390 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11395 -- If we fall through warning should be issued
11397 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11400 ("??unary minus expression should be parenthesized here!", N
);
11404 end Resolve_Unary_Op
;
11406 ----------------------------------
11407 -- Resolve_Unchecked_Expression --
11408 ----------------------------------
11410 procedure Resolve_Unchecked_Expression
11415 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11416 Set_Etype
(N
, Typ
);
11417 end Resolve_Unchecked_Expression
;
11419 ---------------------------------------
11420 -- Resolve_Unchecked_Type_Conversion --
11421 ---------------------------------------
11423 procedure Resolve_Unchecked_Type_Conversion
11427 pragma Warnings
(Off
, Typ
);
11429 Operand
: constant Node_Id
:= Expression
(N
);
11430 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11433 -- Resolve operand using its own type
11435 Resolve
(Operand
, Opnd_Type
);
11437 -- In an inlined context, the unchecked conversion may be applied
11438 -- to a literal, in which case its type is the type of the context.
11439 -- (In other contexts conversions cannot apply to literals).
11442 and then (Opnd_Type
= Any_Character
or else
11443 Opnd_Type
= Any_Integer
or else
11444 Opnd_Type
= Any_Real
)
11446 Set_Etype
(Operand
, Typ
);
11449 Analyze_Dimension
(N
);
11450 Eval_Unchecked_Conversion
(N
);
11451 end Resolve_Unchecked_Type_Conversion
;
11453 ------------------------------
11454 -- Rewrite_Operator_As_Call --
11455 ------------------------------
11457 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11458 Loc
: constant Source_Ptr
:= Sloc
(N
);
11459 Actuals
: constant List_Id
:= New_List
;
11463 if Nkind
(N
) in N_Binary_Op
then
11464 Append
(Left_Opnd
(N
), Actuals
);
11467 Append
(Right_Opnd
(N
), Actuals
);
11470 Make_Function_Call
(Sloc
=> Loc
,
11471 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11472 Parameter_Associations
=> Actuals
);
11474 Preserve_Comes_From_Source
(New_N
, N
);
11475 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11476 Rewrite
(N
, New_N
);
11477 Set_Etype
(N
, Etype
(Nam
));
11478 end Rewrite_Operator_As_Call
;
11480 ------------------------------
11481 -- Rewrite_Renamed_Operator --
11482 ------------------------------
11484 procedure Rewrite_Renamed_Operator
11489 Nam
: constant Name_Id
:= Chars
(Op
);
11490 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11494 -- Do not perform this transformation within a pre/postcondition,
11495 -- because the expression will be reanalyzed, and the transformation
11496 -- might affect the visibility of the operator, e.g. in an instance.
11497 -- Note that fully analyzed and expanded pre/postconditions appear as
11498 -- pragma Check equivalents.
11500 if In_Pre_Post_Condition
(N
) then
11504 -- Likewise when an expression function is being preanalyzed, since the
11505 -- expression will be reanalyzed as part of the generated body.
11507 if In_Spec_Expression
then
11509 S
: constant Entity_Id
:= Current_Scope_No_Loops
;
11511 if Ekind
(S
) = E_Function
11512 and then Nkind
(Original_Node
(Unit_Declaration_Node
(S
))) =
11513 N_Expression_Function
11520 -- Rewrite the operator node using the real operator, not its renaming.
11521 -- Exclude user-defined intrinsic operations of the same name, which are
11522 -- treated separately and rewritten as calls.
11524 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11525 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11526 Set_Chars
(Op_Node
, Nam
);
11527 Set_Etype
(Op_Node
, Etype
(N
));
11528 Set_Entity
(Op_Node
, Op
);
11529 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11531 -- Indicate that both the original entity and its renaming are
11532 -- referenced at this point.
11534 Generate_Reference
(Entity
(N
), N
);
11535 Generate_Reference
(Op
, N
);
11538 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11541 Rewrite
(N
, Op_Node
);
11543 -- If the context type is private, add the appropriate conversions so
11544 -- that the operator is applied to the full view. This is done in the
11545 -- routines that resolve intrinsic operators.
11547 if Is_Intrinsic_Subprogram
(Op
) and then Is_Private_Type
(Typ
) then
11557 Resolve_Intrinsic_Operator
(N
, Typ
);
11563 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11570 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11572 -- Operator renames a user-defined operator of the same name. Use the
11573 -- original operator in the node, which is the one Gigi knows about.
11575 Set_Entity
(N
, Op
);
11576 Set_Is_Overloaded
(N
, False);
11578 end Rewrite_Renamed_Operator
;
11580 -----------------------
11581 -- Set_Slice_Subtype --
11582 -----------------------
11584 -- Build an implicit subtype declaration to represent the type delivered by
11585 -- the slice. This is an abbreviated version of an array subtype. We define
11586 -- an index subtype for the slice, using either the subtype name or the
11587 -- discrete range of the slice. To be consistent with index usage elsewhere
11588 -- we create a list header to hold the single index. This list is not
11589 -- otherwise attached to the syntax tree.
11591 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11592 Loc
: constant Source_Ptr
:= Sloc
(N
);
11593 Index_List
: constant List_Id
:= New_List
;
11595 Index_Subtype
: Entity_Id
;
11596 Index_Type
: Entity_Id
;
11597 Slice_Subtype
: Entity_Id
;
11598 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11601 Index_Type
:= Base_Type
(Etype
(Drange
));
11603 if Is_Entity_Name
(Drange
) then
11604 Index_Subtype
:= Entity
(Drange
);
11607 -- We force the evaluation of a range. This is definitely needed in
11608 -- the renamed case, and seems safer to do unconditionally. Note in
11609 -- any case that since we will create and insert an Itype referring
11610 -- to this range, we must make sure any side effect removal actions
11611 -- are inserted before the Itype definition.
11613 if Nkind
(Drange
) = N_Range
then
11614 Force_Evaluation
(Low_Bound
(Drange
));
11615 Force_Evaluation
(High_Bound
(Drange
));
11617 -- If the discrete range is given by a subtype indication, the
11618 -- type of the slice is the base of the subtype mark.
11620 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11622 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11624 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11625 Force_Evaluation
(Low_Bound
(R
));
11626 Force_Evaluation
(High_Bound
(R
));
11630 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11632 -- Take a new copy of Drange (where bounds have been rewritten to
11633 -- reference side-effect-free names). Using a separate tree ensures
11634 -- that further expansion (e.g. while rewriting a slice assignment
11635 -- into a FOR loop) does not attempt to remove side effects on the
11636 -- bounds again (which would cause the bounds in the index subtype
11637 -- definition to refer to temporaries before they are defined) (the
11638 -- reason is that some names are considered side effect free here
11639 -- for the subtype, but not in the context of a loop iteration
11642 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11643 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11644 Set_Etype
(Index_Subtype
, Index_Type
);
11645 Set_Size_Info
(Index_Subtype
, Index_Type
);
11646 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11649 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11651 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11652 Set_Etype
(Index
, Index_Subtype
);
11653 Append
(Index
, Index_List
);
11655 Set_First_Index
(Slice_Subtype
, Index
);
11656 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11657 Set_Is_Constrained
(Slice_Subtype
, True);
11659 Check_Compile_Time_Size
(Slice_Subtype
);
11661 -- The Etype of the existing Slice node is reset to this slice subtype.
11662 -- Its bounds are obtained from its first index.
11664 Set_Etype
(N
, Slice_Subtype
);
11666 -- For bit-packed slice subtypes, freeze immediately (except in the case
11667 -- of being in a "spec expression" where we never freeze when we first
11668 -- see the expression).
11670 if Is_Bit_Packed_Array
(Slice_Subtype
) and not In_Spec_Expression
then
11671 Freeze_Itype
(Slice_Subtype
, N
);
11673 -- For all other cases insert an itype reference in the slice's actions
11674 -- so that the itype is frozen at the proper place in the tree (i.e. at
11675 -- the point where actions for the slice are analyzed). Note that this
11676 -- is different from freezing the itype immediately, which might be
11677 -- premature (e.g. if the slice is within a transient scope). This needs
11678 -- to be done only if expansion is enabled.
11680 elsif Expander_Active
then
11681 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11683 end Set_Slice_Subtype
;
11685 --------------------------------
11686 -- Set_String_Literal_Subtype --
11687 --------------------------------
11689 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11690 Loc
: constant Source_Ptr
:= Sloc
(N
);
11691 Low_Bound
: constant Node_Id
:=
11692 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11693 Subtype_Id
: Entity_Id
;
11696 if Nkind
(N
) /= N_String_Literal
then
11700 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11701 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11702 (String_Length
(Strval
(N
))));
11703 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11704 Set_Is_Constrained
(Subtype_Id
);
11705 Set_Etype
(N
, Subtype_Id
);
11707 -- The low bound is set from the low bound of the corresponding index
11708 -- type. Note that we do not store the high bound in the string literal
11709 -- subtype, but it can be deduced if necessary from the length and the
11712 if Is_OK_Static_Expression
(Low_Bound
) then
11713 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11715 -- If the lower bound is not static we create a range for the string
11716 -- literal, using the index type and the known length of the literal.
11717 -- The index type is not necessarily Positive, so the upper bound is
11718 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11722 Index_List
: constant List_Id
:= New_List
;
11723 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11724 High_Bound
: constant Node_Id
:=
11725 Make_Attribute_Reference
(Loc
,
11726 Attribute_Name
=> Name_Val
,
11728 New_Occurrence_Of
(Index_Type
, Loc
),
11729 Expressions
=> New_List
(
11732 Make_Attribute_Reference
(Loc
,
11733 Attribute_Name
=> Name_Pos
,
11735 New_Occurrence_Of
(Index_Type
, Loc
),
11737 New_List
(New_Copy_Tree
(Low_Bound
))),
11739 Make_Integer_Literal
(Loc
,
11740 String_Length
(Strval
(N
)) - 1))));
11742 Array_Subtype
: Entity_Id
;
11745 Index_Subtype
: Entity_Id
;
11748 if Is_Integer_Type
(Index_Type
) then
11749 Set_String_Literal_Low_Bound
11750 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11753 -- If the index type is an enumeration type, build bounds
11754 -- expression with attributes.
11756 Set_String_Literal_Low_Bound
11758 Make_Attribute_Reference
(Loc
,
11759 Attribute_Name
=> Name_First
,
11761 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11762 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11765 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11767 -- Build bona fide subtype for the string, and wrap it in an
11768 -- unchecked conversion, because the backend expects the
11769 -- String_Literal_Subtype to have a static lower bound.
11772 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11773 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11774 Set_Scalar_Range
(Index_Subtype
, Drange
);
11775 Set_Parent
(Drange
, N
);
11776 Analyze_And_Resolve
(Drange
, Index_Type
);
11778 -- In the context, the Index_Type may already have a constraint,
11779 -- so use common base type on string subtype. The base type may
11780 -- be used when generating attributes of the string, for example
11781 -- in the context of a slice assignment.
11783 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11784 Set_Size_Info
(Index_Subtype
, Index_Type
);
11785 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11787 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11789 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11790 Set_Etype
(Index
, Index_Subtype
);
11791 Append
(Index
, Index_List
);
11793 Set_First_Index
(Array_Subtype
, Index
);
11794 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11795 Set_Is_Constrained
(Array_Subtype
, True);
11798 Make_Unchecked_Type_Conversion
(Loc
,
11799 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11800 Expression
=> Relocate_Node
(N
)));
11801 Set_Etype
(N
, Array_Subtype
);
11804 end Set_String_Literal_Subtype
;
11806 ------------------------------
11807 -- Simplify_Type_Conversion --
11808 ------------------------------
11810 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11812 if Nkind
(N
) = N_Type_Conversion
then
11814 Operand
: constant Node_Id
:= Expression
(N
);
11815 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11816 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11819 -- Special processing if the conversion is the expression of a
11820 -- Rounding or Truncation attribute reference. In this case we
11823 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11829 -- with the Float_Truncate flag set to False or True respectively,
11830 -- which is more efficient.
11832 if Is_Floating_Point_Type
(Opnd_Typ
)
11834 (Is_Integer_Type
(Target_Typ
)
11835 or else (Is_Fixed_Point_Type
(Target_Typ
)
11836 and then Conversion_OK
(N
)))
11837 and then Nkind
(Operand
) = N_Attribute_Reference
11838 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11842 Truncate
: constant Boolean :=
11843 Attribute_Name
(Operand
) = Name_Truncation
;
11846 Relocate_Node
(First
(Expressions
(Operand
))));
11847 Set_Float_Truncate
(N
, Truncate
);
11852 end Simplify_Type_Conversion
;
11854 -----------------------------
11855 -- Unique_Fixed_Point_Type --
11856 -----------------------------
11858 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11859 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
);
11860 -- Give error messages for true ambiguity. Messages are posted on node
11861 -- N, and entities T1, T2 are the possible interpretations.
11863 -----------------------
11864 -- Fixed_Point_Error --
11865 -----------------------
11867 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
) is
11869 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11870 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11871 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11872 end Fixed_Point_Error
;
11882 -- Start of processing for Unique_Fixed_Point_Type
11885 -- The operations on Duration are visible, so Duration is always a
11886 -- possible interpretation.
11888 T1
:= Standard_Duration
;
11890 -- Look for fixed-point types in enclosing scopes
11892 Scop
:= Current_Scope
;
11893 while Scop
/= Standard_Standard
loop
11894 T2
:= First_Entity
(Scop
);
11895 while Present
(T2
) loop
11896 if Is_Fixed_Point_Type
(T2
)
11897 and then Current_Entity
(T2
) = T2
11898 and then Scope
(Base_Type
(T2
)) = Scop
11900 if Present
(T1
) then
11901 Fixed_Point_Error
(T1
, T2
);
11911 Scop
:= Scope
(Scop
);
11914 -- Look for visible fixed type declarations in the context
11916 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11917 while Present
(Item
) loop
11918 if Nkind
(Item
) = N_With_Clause
then
11919 Scop
:= Entity
(Name
(Item
));
11920 T2
:= First_Entity
(Scop
);
11921 while Present
(T2
) loop
11922 if Is_Fixed_Point_Type
(T2
)
11923 and then Scope
(Base_Type
(T2
)) = Scop
11924 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11926 if Present
(T1
) then
11927 Fixed_Point_Error
(T1
, T2
);
11941 if Nkind
(N
) = N_Real_Literal
then
11942 Error_Msg_NE
("??real literal interpreted as }!", N
, T1
);
11945 -- When the context is a type conversion, issue the warning on the
11946 -- expression of the conversion because it is the actual operation.
11948 if Nkind_In
(N
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
11949 ErrN
:= Expression
(N
);
11955 ("??universal_fixed expression interpreted as }!", ErrN
, T1
);
11959 end Unique_Fixed_Point_Type
;
11961 ----------------------
11962 -- Valid_Conversion --
11963 ----------------------
11965 function Valid_Conversion
11967 Target
: Entity_Id
;
11969 Report_Errs
: Boolean := True) return Boolean
11971 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11972 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11973 Inc_Ancestor
: Entity_Id
;
11975 function Conversion_Check
11977 Msg
: String) return Boolean;
11978 -- Little routine to post Msg if Valid is False, returns Valid value
11980 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11981 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11983 procedure Conversion_Error_NE
11985 N
: Node_Or_Entity_Id
;
11986 E
: Node_Or_Entity_Id
);
11987 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11989 function In_Instance_Code
return Boolean;
11990 -- Return True if expression is within an instance but is not in one of
11991 -- the actuals of the instantiation. Type conversions within an instance
11992 -- are not rechecked because type visbility may lead to spurious errors,
11993 -- but conversions in an actual for a formal object must be checked.
11995 function Valid_Tagged_Conversion
11996 (Target_Type
: Entity_Id
;
11997 Opnd_Type
: Entity_Id
) return Boolean;
11998 -- Specifically test for validity of tagged conversions
12000 function Valid_Array_Conversion
return Boolean;
12001 -- Check index and component conformance, and accessibility levels if
12002 -- the component types are anonymous access types (Ada 2005).
12004 ----------------------
12005 -- Conversion_Check --
12006 ----------------------
12008 function Conversion_Check
12010 Msg
: String) return Boolean
12015 -- A generic unit has already been analyzed and we have verified
12016 -- that a particular conversion is OK in that context. Since the
12017 -- instance is reanalyzed without relying on the relationships
12018 -- established during the analysis of the generic, it is possible
12019 -- to end up with inconsistent views of private types. Do not emit
12020 -- the error message in such cases. The rest of the machinery in
12021 -- Valid_Conversion still ensures the proper compatibility of
12022 -- target and operand types.
12024 and then not In_Instance_Code
12026 Conversion_Error_N
(Msg
, Operand
);
12030 end Conversion_Check
;
12032 ------------------------
12033 -- Conversion_Error_N --
12034 ------------------------
12036 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
12038 if Report_Errs
then
12039 Error_Msg_N
(Msg
, N
);
12041 end Conversion_Error_N
;
12043 -------------------------
12044 -- Conversion_Error_NE --
12045 -------------------------
12047 procedure Conversion_Error_NE
12049 N
: Node_Or_Entity_Id
;
12050 E
: Node_Or_Entity_Id
)
12053 if Report_Errs
then
12054 Error_Msg_NE
(Msg
, N
, E
);
12056 end Conversion_Error_NE
;
12058 ----------------------
12059 -- In_Instance_Code --
12060 ----------------------
12062 function In_Instance_Code
return Boolean is
12066 if not In_Instance
then
12071 while Present
(Par
) loop
12073 -- The expression is part of an actual object if it appears in
12074 -- the generated object declaration in the instance.
12076 if Nkind
(Par
) = N_Object_Declaration
12077 and then Present
(Corresponding_Generic_Association
(Par
))
12083 Nkind
(Par
) in N_Statement_Other_Than_Procedure_Call
12084 or else Nkind
(Par
) in N_Subprogram_Call
12085 or else Nkind
(Par
) in N_Declaration
;
12088 Par
:= Parent
(Par
);
12091 -- Otherwise the expression appears within the instantiated unit
12095 end In_Instance_Code
;
12097 ----------------------------
12098 -- Valid_Array_Conversion --
12099 ----------------------------
12101 function Valid_Array_Conversion
return Boolean is
12102 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
12103 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
12105 Opnd_Index
: Node_Id
;
12106 Opnd_Index_Type
: Entity_Id
;
12108 Target_Comp_Type
: constant Entity_Id
:=
12109 Component_Type
(Target_Type
);
12110 Target_Comp_Base
: constant Entity_Id
:=
12111 Base_Type
(Target_Comp_Type
);
12113 Target_Index
: Node_Id
;
12114 Target_Index_Type
: Entity_Id
;
12117 -- Error if wrong number of dimensions
12120 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
12123 ("incompatible number of dimensions for conversion", Operand
);
12126 -- Number of dimensions matches
12129 -- Loop through indexes of the two arrays
12131 Target_Index
:= First_Index
(Target_Type
);
12132 Opnd_Index
:= First_Index
(Opnd_Type
);
12133 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
12134 Target_Index_Type
:= Etype
(Target_Index
);
12135 Opnd_Index_Type
:= Etype
(Opnd_Index
);
12137 -- Error if index types are incompatible
12139 if not (Is_Integer_Type
(Target_Index_Type
)
12140 and then Is_Integer_Type
(Opnd_Index_Type
))
12141 and then (Root_Type
(Target_Index_Type
)
12142 /= Root_Type
(Opnd_Index_Type
))
12145 ("incompatible index types for array conversion",
12150 Next_Index
(Target_Index
);
12151 Next_Index
(Opnd_Index
);
12154 -- If component types have same base type, all set
12156 if Target_Comp_Base
= Opnd_Comp_Base
then
12159 -- Here if base types of components are not the same. The only
12160 -- time this is allowed is if we have anonymous access types.
12162 -- The conversion of arrays of anonymous access types can lead
12163 -- to dangling pointers. AI-392 formalizes the accessibility
12164 -- checks that must be applied to such conversions to prevent
12165 -- out-of-scope references.
12168 (Target_Comp_Base
, E_Anonymous_Access_Type
,
12169 E_Anonymous_Access_Subprogram_Type
)
12170 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
12172 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
12174 if Type_Access_Level
(Target_Type
) <
12175 Deepest_Type_Access_Level
(Opnd_Type
)
12177 if In_Instance_Body
then
12178 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12180 ("source array type has deeper accessibility "
12181 & "level than target<<", Operand
);
12182 Conversion_Error_N
("\Program_Error [<<", Operand
);
12184 Make_Raise_Program_Error
(Sloc
(N
),
12185 Reason
=> PE_Accessibility_Check_Failed
));
12186 Set_Etype
(N
, Target_Type
);
12189 -- Conversion not allowed because of accessibility levels
12193 ("source array type has deeper accessibility "
12194 & "level than target", Operand
);
12202 -- All other cases where component base types do not match
12206 ("incompatible component types for array conversion",
12211 -- Check that component subtypes statically match. For numeric
12212 -- types this means that both must be either constrained or
12213 -- unconstrained. For enumeration types the bounds must match.
12214 -- All of this is checked in Subtypes_Statically_Match.
12216 if not Subtypes_Statically_Match
12217 (Target_Comp_Type
, Opnd_Comp_Type
)
12220 ("component subtypes must statically match", Operand
);
12226 end Valid_Array_Conversion
;
12228 -----------------------------
12229 -- Valid_Tagged_Conversion --
12230 -----------------------------
12232 function Valid_Tagged_Conversion
12233 (Target_Type
: Entity_Id
;
12234 Opnd_Type
: Entity_Id
) return Boolean
12237 -- Upward conversions are allowed (RM 4.6(22))
12239 if Covers
(Target_Type
, Opnd_Type
)
12240 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
12244 -- Downward conversion are allowed if the operand is class-wide
12247 elsif Is_Class_Wide_Type
(Opnd_Type
)
12248 and then Covers
(Opnd_Type
, Target_Type
)
12252 elsif Covers
(Opnd_Type
, Target_Type
)
12253 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
12256 Conversion_Check
(False,
12257 "downward conversion of tagged objects not allowed");
12259 -- Ada 2005 (AI-251): The conversion to/from interface types is
12260 -- always valid. The types involved may be class-wide (sub)types.
12262 elsif Is_Interface
(Etype
(Base_Type
(Target_Type
)))
12263 or else Is_Interface
(Etype
(Base_Type
(Opnd_Type
)))
12267 -- If the operand is a class-wide type obtained through a limited_
12268 -- with clause, and the context includes the nonlimited view, use
12269 -- it to determine whether the conversion is legal.
12271 elsif Is_Class_Wide_Type
(Opnd_Type
)
12272 and then From_Limited_With
(Opnd_Type
)
12273 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
12274 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
12278 elsif Is_Access_Type
(Opnd_Type
)
12279 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
12284 Conversion_Error_NE
12285 ("invalid tagged conversion, not compatible with}",
12286 N
, First_Subtype
(Opnd_Type
));
12289 end Valid_Tagged_Conversion
;
12291 -- Start of processing for Valid_Conversion
12294 Check_Parameterless_Call
(Operand
);
12296 if Is_Overloaded
(Operand
) then
12306 -- Remove procedure calls, which syntactically cannot appear in
12307 -- this context, but which cannot be removed by type checking,
12308 -- because the context does not impose a type.
12310 -- The node may be labelled overloaded, but still contain only one
12311 -- interpretation because others were discarded earlier. If this
12312 -- is the case, retain the single interpretation if legal.
12314 Get_First_Interp
(Operand
, I
, It
);
12315 Opnd_Type
:= It
.Typ
;
12316 Get_Next_Interp
(I
, It
);
12318 if Present
(It
.Typ
)
12319 and then Opnd_Type
/= Standard_Void_Type
12321 -- More than one candidate interpretation is available
12323 Get_First_Interp
(Operand
, I
, It
);
12324 while Present
(It
.Typ
) loop
12325 if It
.Typ
= Standard_Void_Type
then
12329 -- When compiling for a system where Address is of a visible
12330 -- integer type, spurious ambiguities can be produced when
12331 -- arithmetic operations have a literal operand and return
12332 -- System.Address or a descendant of it. These ambiguities
12333 -- are usually resolved by the context, but for conversions
12334 -- there is no context type and the removal of the spurious
12335 -- operations must be done explicitly here.
12337 if not Address_Is_Private
12338 and then Is_Descendant_Of_Address
(It
.Typ
)
12343 Get_Next_Interp
(I
, It
);
12347 Get_First_Interp
(Operand
, I
, It
);
12351 if No
(It
.Typ
) then
12352 Conversion_Error_N
("illegal operand in conversion", Operand
);
12356 Get_Next_Interp
(I
, It
);
12358 if Present
(It
.Typ
) then
12361 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
12363 if It1
= No_Interp
then
12365 ("ambiguous operand in conversion", Operand
);
12367 -- If the interpretation involves a standard operator, use
12368 -- the location of the type, which may be user-defined.
12370 if Sloc
(It
.Nam
) = Standard_Location
then
12371 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
12373 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
12376 Conversion_Error_N
-- CODEFIX
12377 ("\\possible interpretation#!", Operand
);
12379 if Sloc
(N1
) = Standard_Location
then
12380 Error_Msg_Sloc
:= Sloc
(T1
);
12382 Error_Msg_Sloc
:= Sloc
(N1
);
12385 Conversion_Error_N
-- CODEFIX
12386 ("\\possible interpretation#!", Operand
);
12392 Set_Etype
(Operand
, It1
.Typ
);
12393 Opnd_Type
:= It1
.Typ
;
12397 -- Deal with conversion of integer type to address if the pragma
12398 -- Allow_Integer_Address is in effect. We convert the conversion to
12399 -- an unchecked conversion in this case and we are all done.
12401 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
12402 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
12403 Analyze_And_Resolve
(N
, Target_Type
);
12407 -- If we are within a child unit, check whether the type of the
12408 -- expression has an ancestor in a parent unit, in which case it
12409 -- belongs to its derivation class even if the ancestor is private.
12410 -- See RM 7.3.1 (5.2/3).
12412 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
12416 if Is_Numeric_Type
(Target_Type
) then
12418 -- A universal fixed expression can be converted to any numeric type
12420 if Opnd_Type
= Universal_Fixed
then
12423 -- Also no need to check when in an instance or inlined body, because
12424 -- the legality has been established when the template was analyzed.
12425 -- Furthermore, numeric conversions may occur where only a private
12426 -- view of the operand type is visible at the instantiation point.
12427 -- This results in a spurious error if we check that the operand type
12428 -- is a numeric type.
12430 -- Note: in a previous version of this unit, the following tests were
12431 -- applied only for generated code (Comes_From_Source set to False),
12432 -- but in fact the test is required for source code as well, since
12433 -- this situation can arise in source code.
12435 elsif In_Instance_Code
or else In_Inlined_Body
then
12438 -- Otherwise we need the conversion check
12441 return Conversion_Check
12442 (Is_Numeric_Type
(Opnd_Type
)
12444 (Present
(Inc_Ancestor
)
12445 and then Is_Numeric_Type
(Inc_Ancestor
)),
12446 "illegal operand for numeric conversion");
12451 elsif Is_Array_Type
(Target_Type
) then
12452 if not Is_Array_Type
(Opnd_Type
)
12453 or else Opnd_Type
= Any_Composite
12454 or else Opnd_Type
= Any_String
12457 ("illegal operand for array conversion", Operand
);
12461 return Valid_Array_Conversion
;
12464 -- Ada 2005 (AI-251): Internally generated conversions of access to
12465 -- interface types added to force the displacement of the pointer to
12466 -- reference the corresponding dispatch table.
12468 elsif not Comes_From_Source
(N
)
12469 and then Is_Access_Type
(Target_Type
)
12470 and then Is_Interface
(Designated_Type
(Target_Type
))
12474 -- Ada 2005 (AI-251): Anonymous access types where target references an
12477 elsif Is_Access_Type
(Opnd_Type
)
12478 and then Ekind_In
(Target_Type
, E_General_Access_Type
,
12479 E_Anonymous_Access_Type
)
12480 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12482 -- Check the static accessibility rule of 4.6(17). Note that the
12483 -- check is not enforced when within an instance body, since the
12484 -- RM requires such cases to be caught at run time.
12486 -- If the operand is a rewriting of an allocator no check is needed
12487 -- because there are no accessibility issues.
12489 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12492 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12493 if Type_Access_Level
(Opnd_Type
) >
12494 Deepest_Type_Access_Level
(Target_Type
)
12496 -- In an instance, this is a run-time check, but one we know
12497 -- will fail, so generate an appropriate warning. The raise
12498 -- will be generated by Expand_N_Type_Conversion.
12500 if In_Instance_Body
then
12501 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12503 ("cannot convert local pointer to non-local access type<<",
12505 Conversion_Error_N
("\Program_Error [<<", Operand
);
12509 ("cannot convert local pointer to non-local access type",
12514 -- Special accessibility checks are needed in the case of access
12515 -- discriminants declared for a limited type.
12517 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12518 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12520 -- When the operand is a selected access discriminant the check
12521 -- needs to be made against the level of the object denoted by
12522 -- the prefix of the selected name (Object_Access_Level handles
12523 -- checking the prefix of the operand for this case).
12525 if Nkind
(Operand
) = N_Selected_Component
12526 and then Object_Access_Level
(Operand
) >
12527 Deepest_Type_Access_Level
(Target_Type
)
12529 -- In an instance, this is a run-time check, but one we know
12530 -- will fail, so generate an appropriate warning. The raise
12531 -- will be generated by Expand_N_Type_Conversion.
12533 if In_Instance_Body
then
12534 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12536 ("cannot convert access discriminant to non-local "
12537 & "access type<<", Operand
);
12538 Conversion_Error_N
("\Program_Error [<<", Operand
);
12540 -- Real error if not in instance body
12544 ("cannot convert access discriminant to non-local "
12545 & "access type", Operand
);
12550 -- The case of a reference to an access discriminant from
12551 -- within a limited type declaration (which will appear as
12552 -- a discriminal) is always illegal because the level of the
12553 -- discriminant is considered to be deeper than any (nameable)
12556 if Is_Entity_Name
(Operand
)
12557 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12559 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12560 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12563 ("discriminant has deeper accessibility level than target",
12572 -- General and anonymous access types
12574 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12575 E_Anonymous_Access_Type
)
12578 (Is_Access_Type
(Opnd_Type
)
12580 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12581 E_Access_Protected_Subprogram_Type
),
12582 "must be an access-to-object type")
12584 if Is_Access_Constant
(Opnd_Type
)
12585 and then not Is_Access_Constant
(Target_Type
)
12588 ("access-to-constant operand type not allowed", Operand
);
12592 -- Check the static accessibility rule of 4.6(17). Note that the
12593 -- check is not enforced when within an instance body, since the RM
12594 -- requires such cases to be caught at run time.
12596 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12597 or else Is_Local_Anonymous_Access
(Target_Type
)
12598 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12599 N_Object_Declaration
12601 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12602 -- conversions from an anonymous access type to a named general
12603 -- access type. Such conversions are not allowed in the case of
12604 -- access parameters and stand-alone objects of an anonymous
12605 -- access type. The implicit conversion case is recognized by
12606 -- testing that Comes_From_Source is False and that it's been
12607 -- rewritten. The Comes_From_Source test isn't sufficient because
12608 -- nodes in inlined calls to predefined library routines can have
12609 -- Comes_From_Source set to False. (Is there a better way to test
12610 -- for implicit conversions???)
12612 if Ada_Version
>= Ada_2012
12613 and then not Comes_From_Source
(N
)
12614 and then N
/= Original_Node
(N
)
12615 and then Ekind
(Target_Type
) = E_General_Access_Type
12616 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12618 if Is_Itype
(Opnd_Type
) then
12620 -- Implicit conversions aren't allowed for objects of an
12621 -- anonymous access type, since such objects have nonstatic
12622 -- levels in Ada 2012.
12624 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12625 N_Object_Declaration
12628 ("implicit conversion of stand-alone anonymous "
12629 & "access object not allowed", Operand
);
12632 -- Implicit conversions aren't allowed for anonymous access
12633 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12634 -- is done to exclude anonymous access results.
12636 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12637 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12638 N_Function_Specification
,
12639 N_Procedure_Specification
)
12642 ("implicit conversion of anonymous access formal "
12643 & "not allowed", Operand
);
12646 -- This is a case where there's an enclosing object whose
12647 -- to which the "statically deeper than" relationship does
12648 -- not apply (such as an access discriminant selected from
12649 -- a dereference of an access parameter).
12651 elsif Object_Access_Level
(Operand
)
12652 = Scope_Depth
(Standard_Standard
)
12655 ("implicit conversion of anonymous access value "
12656 & "not allowed", Operand
);
12659 -- In other cases, the level of the operand's type must be
12660 -- statically less deep than that of the target type, else
12661 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12663 elsif Type_Access_Level
(Opnd_Type
) >
12664 Deepest_Type_Access_Level
(Target_Type
)
12667 ("implicit conversion of anonymous access value "
12668 & "violates accessibility", Operand
);
12673 elsif Type_Access_Level
(Opnd_Type
) >
12674 Deepest_Type_Access_Level
(Target_Type
)
12676 -- In an instance, this is a run-time check, but one we know
12677 -- will fail, so generate an appropriate warning. The raise
12678 -- will be generated by Expand_N_Type_Conversion.
12680 if In_Instance_Body
then
12681 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12683 ("cannot convert local pointer to non-local access type<<",
12685 Conversion_Error_N
("\Program_Error [<<", Operand
);
12687 -- If not in an instance body, this is a real error
12690 -- Avoid generation of spurious error message
12692 if not Error_Posted
(N
) then
12694 ("cannot convert local pointer to non-local access type",
12701 -- Special accessibility checks are needed in the case of access
12702 -- discriminants declared for a limited type.
12704 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12705 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12707 -- When the operand is a selected access discriminant the check
12708 -- needs to be made against the level of the object denoted by
12709 -- the prefix of the selected name (Object_Access_Level handles
12710 -- checking the prefix of the operand for this case).
12712 if Nkind
(Operand
) = N_Selected_Component
12713 and then Object_Access_Level
(Operand
) >
12714 Deepest_Type_Access_Level
(Target_Type
)
12716 -- In an instance, this is a run-time check, but one we know
12717 -- will fail, so generate an appropriate warning. The raise
12718 -- will be generated by Expand_N_Type_Conversion.
12720 if In_Instance_Body
then
12721 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12723 ("cannot convert access discriminant to non-local "
12724 & "access type<<", Operand
);
12725 Conversion_Error_N
("\Program_Error [<<", Operand
);
12727 -- If not in an instance body, this is a real error
12731 ("cannot convert access discriminant to non-local "
12732 & "access type", Operand
);
12737 -- The case of a reference to an access discriminant from
12738 -- within a limited type declaration (which will appear as
12739 -- a discriminal) is always illegal because the level of the
12740 -- discriminant is considered to be deeper than any (nameable)
12743 if Is_Entity_Name
(Operand
)
12745 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12746 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12749 ("discriminant has deeper accessibility level than target",
12756 -- In the presence of limited_with clauses we have to use nonlimited
12757 -- views, if available.
12759 Check_Limited
: declare
12760 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12761 -- Helper function to handle limited views
12763 --------------------------
12764 -- Full_Designated_Type --
12765 --------------------------
12767 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12768 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12771 -- Handle the limited view of a type
12773 if From_Limited_With
(Desig
)
12774 and then Has_Non_Limited_View
(Desig
)
12776 return Available_View
(Desig
);
12780 end Full_Designated_Type
;
12782 -- Local Declarations
12784 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12785 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12787 Same_Base
: constant Boolean :=
12788 Base_Type
(Target
) = Base_Type
(Opnd
);
12790 -- Start of processing for Check_Limited
12793 if Is_Tagged_Type
(Target
) then
12794 return Valid_Tagged_Conversion
(Target
, Opnd
);
12797 if not Same_Base
then
12798 Conversion_Error_NE
12799 ("target designated type not compatible with }",
12800 N
, Base_Type
(Opnd
));
12803 -- Ada 2005 AI-384: legality rule is symmetric in both
12804 -- designated types. The conversion is legal (with possible
12805 -- constraint check) if either designated type is
12808 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12810 (Has_Discriminants
(Target
)
12812 (not Is_Constrained
(Opnd
)
12813 or else not Is_Constrained
(Target
)))
12815 -- Special case, if Value_Size has been used to make the
12816 -- sizes different, the conversion is not allowed even
12817 -- though the subtypes statically match.
12819 if Known_Static_RM_Size
(Target
)
12820 and then Known_Static_RM_Size
(Opnd
)
12821 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12823 Conversion_Error_NE
12824 ("target designated subtype not compatible with }",
12826 Conversion_Error_NE
12827 ("\because sizes of the two designated subtypes differ",
12831 -- Normal case where conversion is allowed
12839 ("target designated subtype not compatible with }",
12846 -- Access to subprogram types. If the operand is an access parameter,
12847 -- the type has a deeper accessibility that any master, and cannot be
12848 -- assigned. We must make an exception if the conversion is part of an
12849 -- assignment and the target is the return object of an extended return
12850 -- statement, because in that case the accessibility check takes place
12851 -- after the return.
12853 elsif Is_Access_Subprogram_Type
(Target_Type
)
12855 -- Note: this test of Opnd_Type is there to prevent entering this
12856 -- branch in the case of a remote access to subprogram type, which
12857 -- is internally represented as an E_Record_Type.
12859 and then Is_Access_Type
(Opnd_Type
)
12861 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12862 and then Is_Entity_Name
(Operand
)
12863 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12865 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12866 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12867 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12870 ("illegal attempt to store anonymous access to subprogram",
12873 ("\value has deeper accessibility than any master "
12874 & "(RM 3.10.2 (13))",
12878 ("\use named access type for& instead of access parameter",
12879 Operand
, Entity
(Operand
));
12882 -- Check that the designated types are subtype conformant
12884 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12885 Old_Id
=> Designated_Type
(Opnd_Type
),
12888 -- Check the static accessibility rule of 4.6(20)
12890 if Type_Access_Level
(Opnd_Type
) >
12891 Deepest_Type_Access_Level
(Target_Type
)
12894 ("operand type has deeper accessibility level than target",
12897 -- Check that if the operand type is declared in a generic body,
12898 -- then the target type must be declared within that same body
12899 -- (enforces last sentence of 4.6(20)).
12901 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12903 O_Gen
: constant Node_Id
:=
12904 Enclosing_Generic_Body
(Opnd_Type
);
12909 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12910 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12911 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12914 if T_Gen
/= O_Gen
then
12916 ("target type must be declared in same generic body "
12917 & "as operand type", N
);
12924 -- Remote access to subprogram types
12926 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12927 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12929 -- It is valid to convert from one RAS type to another provided
12930 -- that their specification statically match.
12932 -- Note: at this point, remote access to subprogram types have been
12933 -- expanded to their E_Record_Type representation, and we need to
12934 -- go back to the original access type definition using the
12935 -- Corresponding_Remote_Type attribute in order to check that the
12936 -- designated profiles match.
12938 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12939 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12941 Check_Subtype_Conformant
12943 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12945 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12950 -- If it was legal in the generic, it's legal in the instance
12952 elsif In_Instance_Body
then
12955 -- If both are tagged types, check legality of view conversions
12957 elsif Is_Tagged_Type
(Target_Type
)
12959 Is_Tagged_Type
(Opnd_Type
)
12961 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12963 -- Types derived from the same root type are convertible
12965 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12968 -- In an instance or an inlined body, there may be inconsistent views of
12969 -- the same type, or of types derived from a common root.
12971 elsif (In_Instance
or In_Inlined_Body
)
12973 Root_Type
(Underlying_Type
(Target_Type
)) =
12974 Root_Type
(Underlying_Type
(Opnd_Type
))
12978 -- Special check for common access type error case
12980 elsif Ekind
(Target_Type
) = E_Access_Type
12981 and then Is_Access_Type
(Opnd_Type
)
12983 Conversion_Error_N
("target type must be general access type!", N
);
12984 Conversion_Error_NE
-- CODEFIX
12985 ("add ALL to }!", N
, Target_Type
);
12988 -- Here we have a real conversion error
12991 Conversion_Error_NE
12992 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12995 end Valid_Conversion
;