[multiple changes]
[official-gcc.git] / gcc / ada / sem_res.adb
blob3ef0b7b066d23821d11b2c7ad9b6f0665f8d52e5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Ensure that the corresponding operator has the same parent as the
1329 -- original call. This guarantees that parent traversals performed by
1330 -- the ABE mechanism succeed.
1332 Set_Parent (Op_Node, Parent (N));
1334 -- Binary operator
1336 if Is_Binary then
1337 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1338 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1339 Save_Interps (Act1, Left_Opnd (Op_Node));
1340 Save_Interps (Act2, Right_Opnd (Op_Node));
1341 Act1 := Left_Opnd (Op_Node);
1342 Act2 := Right_Opnd (Op_Node);
1344 -- Unary operator
1346 else
1347 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1348 Save_Interps (Act1, Right_Opnd (Op_Node));
1349 Act1 := Right_Opnd (Op_Node);
1350 end if;
1352 -- If the operator is denoted by an expanded name, and the prefix is
1353 -- not Standard, but the operator is a predefined one whose scope is
1354 -- Standard, then this is an implicit_operator, inserted as an
1355 -- interpretation by the procedure of the same name. This procedure
1356 -- overestimates the presence of implicit operators, because it does
1357 -- not examine the type of the operands. Verify now that the operand
1358 -- type appears in the given scope. If right operand is universal,
1359 -- check the other operand. In the case of concatenation, either
1360 -- argument can be the component type, so check the type of the result.
1361 -- If both arguments are literals, look for a type of the right kind
1362 -- defined in the given scope. This elaborate nonsense is brought to
1363 -- you courtesy of b33302a. The type itself must be frozen, so we must
1364 -- find the type of the proper class in the given scope.
1366 -- A final wrinkle is the multiplication operator for fixed point types,
1367 -- which is defined in Standard only, and not in the scope of the
1368 -- fixed point type itself.
1370 if Nkind (Name (N)) = N_Expanded_Name then
1371 Pack := Entity (Prefix (Name (N)));
1373 -- If this is a package renaming, get renamed entity, which will be
1374 -- the scope of the operands if operaton is type-correct.
1376 if Present (Renamed_Entity (Pack)) then
1377 Pack := Renamed_Entity (Pack);
1378 end if;
1380 -- If the entity being called is defined in the given package, it is
1381 -- a renaming of a predefined operator, and known to be legal.
1383 if Scope (Entity (Name (N))) = Pack
1384 and then Pack /= Standard_Standard
1385 then
1386 null;
1388 -- Visibility does not need to be checked in an instance: if the
1389 -- operator was not visible in the generic it has been diagnosed
1390 -- already, else there is an implicit copy of it in the instance.
1392 elsif In_Instance then
1393 null;
1395 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1396 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1397 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1398 then
1399 if Pack /= Standard_Standard then
1400 Error := True;
1401 end if;
1403 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1404 -- available.
1406 elsif Ada_Version >= Ada_2005
1407 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1408 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1409 then
1410 null;
1412 else
1413 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1415 if Op_Name = Name_Op_Concat then
1416 Opnd_Type := Base_Type (Typ);
1418 elsif (Scope (Opnd_Type) = Standard_Standard
1419 and then Is_Binary)
1420 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1421 and then Is_Binary
1422 and then not Comes_From_Source (Opnd_Type))
1423 then
1424 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1425 end if;
1427 if Scope (Opnd_Type) = Standard_Standard then
1429 -- Verify that the scope contains a type that corresponds to
1430 -- the given literal. Optimize the case where Pack is Standard.
1432 if Pack /= Standard_Standard then
1433 if Opnd_Type = Universal_Integer then
1434 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1436 elsif Opnd_Type = Universal_Real then
1437 Orig_Type := Type_In_P (Is_Real_Type'Access);
1439 elsif Opnd_Type = Any_String then
1440 Orig_Type := Type_In_P (Is_String_Type'Access);
1442 elsif Opnd_Type = Any_Access then
1443 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1445 elsif Opnd_Type = Any_Composite then
1446 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1448 if Present (Orig_Type) then
1449 if Has_Private_Component (Orig_Type) then
1450 Orig_Type := Empty;
1451 else
1452 Set_Etype (Act1, Orig_Type);
1454 if Is_Binary then
1455 Set_Etype (Act2, Orig_Type);
1456 end if;
1457 end if;
1458 end if;
1460 else
1461 Orig_Type := Empty;
1462 end if;
1464 Error := No (Orig_Type);
1465 end if;
1467 elsif Ekind (Opnd_Type) = E_Allocator_Type
1468 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1469 then
1470 Error := True;
1472 -- If the type is defined elsewhere, and the operator is not
1473 -- defined in the given scope (by a renaming declaration, e.g.)
1474 -- then this is an error as well. If an extension of System is
1475 -- present, and the type may be defined there, Pack must be
1476 -- System itself.
1478 elsif Scope (Opnd_Type) /= Pack
1479 and then Scope (Op_Id) /= Pack
1480 and then (No (System_Aux_Id)
1481 or else Scope (Opnd_Type) /= System_Aux_Id
1482 or else Pack /= Scope (System_Aux_Id))
1483 then
1484 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1485 Error := True;
1486 else
1487 Error := not Operand_Type_In_Scope (Pack);
1488 end if;
1490 elsif Pack = Standard_Standard
1491 and then not Operand_Type_In_Scope (Standard_Standard)
1492 then
1493 Error := True;
1494 end if;
1495 end if;
1497 if Error then
1498 Error_Msg_Node_2 := Pack;
1499 Error_Msg_NE
1500 ("& not declared in&", N, Selector_Name (Name (N)));
1501 Set_Etype (N, Any_Type);
1502 return;
1504 -- Detect a mismatch between the context type and the result type
1505 -- in the named package, which is otherwise not detected if the
1506 -- operands are universal. Check is only needed if source entity is
1507 -- an operator, not a function that renames an operator.
1509 elsif Nkind (Parent (N)) /= N_Type_Conversion
1510 and then Ekind (Entity (Name (N))) = E_Operator
1511 and then Is_Numeric_Type (Typ)
1512 and then not Is_Universal_Numeric_Type (Typ)
1513 and then Scope (Base_Type (Typ)) /= Pack
1514 and then not In_Instance
1515 then
1516 if Is_Fixed_Point_Type (Typ)
1517 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1518 then
1519 -- Already checked above
1521 null;
1523 -- Operator may be defined in an extension of System
1525 elsif Present (System_Aux_Id)
1526 and then Scope (Opnd_Type) = System_Aux_Id
1527 then
1528 null;
1530 else
1531 -- Could we use Wrong_Type here??? (this would require setting
1532 -- Etype (N) to the actual type found where Typ was expected).
1534 Error_Msg_NE ("expect }", N, Typ);
1535 end if;
1536 end if;
1537 end if;
1539 Set_Chars (Op_Node, Op_Name);
1541 if not Is_Private_Type (Etype (N)) then
1542 Set_Etype (Op_Node, Base_Type (Etype (N)));
1543 else
1544 Set_Etype (Op_Node, Etype (N));
1545 end if;
1547 -- If this is a call to a function that renames a predefined equality,
1548 -- the renaming declaration provides a type that must be used to
1549 -- resolve the operands. This must be done now because resolution of
1550 -- the equality node will not resolve any remaining ambiguity, and it
1551 -- assumes that the first operand is not overloaded.
1553 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1554 and then Ekind (Func) = E_Function
1555 and then Is_Overloaded (Act1)
1556 then
1557 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1558 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1559 end if;
1561 Set_Entity (Op_Node, Op_Id);
1562 Generate_Reference (Op_Id, N, ' ');
1564 -- Do rewrite setting Comes_From_Source on the result if the original
1565 -- call came from source. Although it is not strictly the case that the
1566 -- operator as such comes from the source, logically it corresponds
1567 -- exactly to the function call in the source, so it should be marked
1568 -- this way (e.g. to make sure that validity checks work fine).
1570 declare
1571 CS : constant Boolean := Comes_From_Source (N);
1572 begin
1573 Rewrite (N, Op_Node);
1574 Set_Comes_From_Source (N, CS);
1575 end;
1577 -- If this is an arithmetic operator and the result type is private,
1578 -- the operands and the result must be wrapped in conversion to
1579 -- expose the underlying numeric type and expand the proper checks,
1580 -- e.g. on division.
1582 if Is_Private_Type (Typ) then
1583 case Nkind (N) is
1584 when N_Op_Add
1585 | N_Op_Divide
1586 | N_Op_Expon
1587 | N_Op_Mod
1588 | N_Op_Multiply
1589 | N_Op_Rem
1590 | N_Op_Subtract
1592 Resolve_Intrinsic_Operator (N, Typ);
1594 when N_Op_Abs
1595 | N_Op_Minus
1596 | N_Op_Plus
1598 Resolve_Intrinsic_Unary_Operator (N, Typ);
1600 when others =>
1601 Resolve (N, Typ);
1602 end case;
1603 else
1604 Resolve (N, Typ);
1605 end if;
1607 -- If in ASIS_Mode, propagate operand types to original actuals of
1608 -- function call, which would otherwise not be fully resolved. If
1609 -- the call has already been constant-folded, nothing to do. We
1610 -- relocate the operand nodes rather than copy them, to preserve
1611 -- original_node pointers, given that the operands themselves may
1612 -- have been rewritten. If the call was itself a rewriting of an
1613 -- operator node, nothing to do.
1615 if ASIS_Mode
1616 and then Nkind (N) in N_Op
1617 and then Nkind (Original_Node (N)) = N_Function_Call
1618 then
1619 declare
1620 L : Node_Id;
1621 R : constant Node_Id := Right_Opnd (N);
1623 Old_First : constant Node_Id :=
1624 First (Parameter_Associations (Original_Node (N)));
1625 Old_Sec : Node_Id;
1627 begin
1628 if Is_Binary then
1629 L := Left_Opnd (N);
1630 Old_Sec := Next (Old_First);
1632 -- If the original call has named associations, replace the
1633 -- explicit actual parameter in the association with the proper
1634 -- resolved operand.
1636 if Nkind (Old_First) = N_Parameter_Association then
1637 if Chars (Selector_Name (Old_First)) =
1638 Chars (First_Entity (Op_Id))
1639 then
1640 Rewrite (Explicit_Actual_Parameter (Old_First),
1641 Relocate_Node (L));
1642 else
1643 Rewrite (Explicit_Actual_Parameter (Old_First),
1644 Relocate_Node (R));
1645 end if;
1647 else
1648 Rewrite (Old_First, Relocate_Node (L));
1649 end if;
1651 if Nkind (Old_Sec) = N_Parameter_Association then
1652 if Chars (Selector_Name (Old_Sec)) =
1653 Chars (First_Entity (Op_Id))
1654 then
1655 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1656 Relocate_Node (L));
1657 else
1658 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1659 Relocate_Node (R));
1660 end if;
1662 else
1663 Rewrite (Old_Sec, Relocate_Node (R));
1664 end if;
1666 else
1667 if Nkind (Old_First) = N_Parameter_Association then
1668 Rewrite (Explicit_Actual_Parameter (Old_First),
1669 Relocate_Node (R));
1670 else
1671 Rewrite (Old_First, Relocate_Node (R));
1672 end if;
1673 end if;
1674 end;
1676 Set_Parent (Original_Node (N), Parent (N));
1677 end if;
1678 end Make_Call_Into_Operator;
1680 -------------------
1681 -- Operator_Kind --
1682 -------------------
1684 function Operator_Kind
1685 (Op_Name : Name_Id;
1686 Is_Binary : Boolean) return Node_Kind
1688 Kind : Node_Kind;
1690 begin
1691 -- Use CASE statement or array???
1693 if Is_Binary then
1694 if Op_Name = Name_Op_And then
1695 Kind := N_Op_And;
1696 elsif Op_Name = Name_Op_Or then
1697 Kind := N_Op_Or;
1698 elsif Op_Name = Name_Op_Xor then
1699 Kind := N_Op_Xor;
1700 elsif Op_Name = Name_Op_Eq then
1701 Kind := N_Op_Eq;
1702 elsif Op_Name = Name_Op_Ne then
1703 Kind := N_Op_Ne;
1704 elsif Op_Name = Name_Op_Lt then
1705 Kind := N_Op_Lt;
1706 elsif Op_Name = Name_Op_Le then
1707 Kind := N_Op_Le;
1708 elsif Op_Name = Name_Op_Gt then
1709 Kind := N_Op_Gt;
1710 elsif Op_Name = Name_Op_Ge then
1711 Kind := N_Op_Ge;
1712 elsif Op_Name = Name_Op_Add then
1713 Kind := N_Op_Add;
1714 elsif Op_Name = Name_Op_Subtract then
1715 Kind := N_Op_Subtract;
1716 elsif Op_Name = Name_Op_Concat then
1717 Kind := N_Op_Concat;
1718 elsif Op_Name = Name_Op_Multiply then
1719 Kind := N_Op_Multiply;
1720 elsif Op_Name = Name_Op_Divide then
1721 Kind := N_Op_Divide;
1722 elsif Op_Name = Name_Op_Mod then
1723 Kind := N_Op_Mod;
1724 elsif Op_Name = Name_Op_Rem then
1725 Kind := N_Op_Rem;
1726 elsif Op_Name = Name_Op_Expon then
1727 Kind := N_Op_Expon;
1728 else
1729 raise Program_Error;
1730 end if;
1732 -- Unary operators
1734 else
1735 if Op_Name = Name_Op_Add then
1736 Kind := N_Op_Plus;
1737 elsif Op_Name = Name_Op_Subtract then
1738 Kind := N_Op_Minus;
1739 elsif Op_Name = Name_Op_Abs then
1740 Kind := N_Op_Abs;
1741 elsif Op_Name = Name_Op_Not then
1742 Kind := N_Op_Not;
1743 else
1744 raise Program_Error;
1745 end if;
1746 end if;
1748 return Kind;
1749 end Operator_Kind;
1751 ----------------------------
1752 -- Preanalyze_And_Resolve --
1753 ----------------------------
1755 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1756 Save_Full_Analysis : constant Boolean := Full_Analysis;
1758 begin
1759 Full_Analysis := False;
1760 Expander_Mode_Save_And_Set (False);
1762 -- Normally, we suppress all checks for this preanalysis. There is no
1763 -- point in processing them now, since they will be applied properly
1764 -- and in the proper location when the default expressions reanalyzed
1765 -- and reexpanded later on. We will also have more information at that
1766 -- point for possible suppression of individual checks.
1768 -- However, in SPARK mode, most expansion is suppressed, and this
1769 -- later reanalysis and reexpansion may not occur. SPARK mode does
1770 -- require the setting of checking flags for proof purposes, so we
1771 -- do the SPARK preanalysis without suppressing checks.
1773 -- This special handling for SPARK mode is required for example in the
1774 -- case of Ada 2012 constructs such as quantified expressions, which are
1775 -- expanded in two separate steps.
1777 if GNATprove_Mode then
1778 Analyze_And_Resolve (N, T);
1779 else
1780 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1781 end if;
1783 Expander_Mode_Restore;
1784 Full_Analysis := Save_Full_Analysis;
1785 end Preanalyze_And_Resolve;
1787 -- Version without context type
1789 procedure Preanalyze_And_Resolve (N : Node_Id) is
1790 Save_Full_Analysis : constant Boolean := Full_Analysis;
1792 begin
1793 Full_Analysis := False;
1794 Expander_Mode_Save_And_Set (False);
1796 Analyze (N);
1797 Resolve (N, Etype (N), Suppress => All_Checks);
1799 Expander_Mode_Restore;
1800 Full_Analysis := Save_Full_Analysis;
1801 end Preanalyze_And_Resolve;
1803 ----------------------------------
1804 -- Replace_Actual_Discriminants --
1805 ----------------------------------
1807 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1808 Loc : constant Source_Ptr := Sloc (N);
1809 Tsk : Node_Id := Empty;
1811 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1812 -- Comment needed???
1814 -------------------
1815 -- Process_Discr --
1816 -------------------
1818 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1819 Ent : Entity_Id;
1821 begin
1822 if Nkind (Nod) = N_Identifier then
1823 Ent := Entity (Nod);
1825 if Present (Ent)
1826 and then Ekind (Ent) = E_Discriminant
1827 then
1828 Rewrite (Nod,
1829 Make_Selected_Component (Loc,
1830 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1831 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1833 Set_Etype (Nod, Etype (Ent));
1834 end if;
1836 end if;
1838 return OK;
1839 end Process_Discr;
1841 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1843 -- Start of processing for Replace_Actual_Discriminants
1845 begin
1846 if Expander_Active then
1847 null;
1849 -- Allow the replacement of concurrent discriminants in GNATprove even
1850 -- though this is a light expansion activity. Note that generic units
1851 -- are not modified.
1853 elsif GNATprove_Mode and not Inside_A_Generic then
1854 null;
1856 else
1857 return;
1858 end if;
1860 if Nkind (Name (N)) = N_Selected_Component then
1861 Tsk := Prefix (Name (N));
1863 elsif Nkind (Name (N)) = N_Indexed_Component then
1864 Tsk := Prefix (Prefix (Name (N)));
1865 end if;
1867 if Present (Tsk) then
1868 Replace_Discrs (Default);
1869 end if;
1870 end Replace_Actual_Discriminants;
1872 -------------
1873 -- Resolve --
1874 -------------
1876 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1877 Ambiguous : Boolean := False;
1878 Ctx_Type : Entity_Id := Typ;
1879 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1880 Err_Type : Entity_Id := Empty;
1881 Found : Boolean := False;
1882 From_Lib : Boolean;
1883 I : Interp_Index;
1884 I1 : Interp_Index := 0; -- prevent junk warning
1885 It : Interp;
1886 It1 : Interp;
1887 Seen : Entity_Id := Empty; -- prevent junk warning
1889 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1890 -- Determine whether a node comes from a predefined library unit or
1891 -- Standard.
1893 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1894 -- Try and fix up a literal so that it matches its expected type. New
1895 -- literals are manufactured if necessary to avoid cascaded errors.
1897 procedure Report_Ambiguous_Argument;
1898 -- Additional diagnostics when an ambiguous call has an ambiguous
1899 -- argument (typically a controlling actual).
1901 procedure Resolution_Failed;
1902 -- Called when attempt at resolving current expression fails
1904 ------------------------------------
1905 -- Comes_From_Predefined_Lib_Unit --
1906 -------------------------------------
1908 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1909 begin
1910 return
1911 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1912 end Comes_From_Predefined_Lib_Unit;
1914 --------------------
1915 -- Patch_Up_Value --
1916 --------------------
1918 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1919 begin
1920 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1921 Rewrite (N,
1922 Make_Real_Literal (Sloc (N),
1923 Realval => UR_From_Uint (Intval (N))));
1924 Set_Etype (N, Universal_Real);
1925 Set_Is_Static_Expression (N);
1927 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1928 Rewrite (N,
1929 Make_Integer_Literal (Sloc (N),
1930 Intval => UR_To_Uint (Realval (N))));
1931 Set_Etype (N, Universal_Integer);
1932 Set_Is_Static_Expression (N);
1934 elsif Nkind (N) = N_String_Literal
1935 and then Is_Character_Type (Typ)
1936 then
1937 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1938 Rewrite (N,
1939 Make_Character_Literal (Sloc (N),
1940 Chars => Name_Find,
1941 Char_Literal_Value =>
1942 UI_From_Int (Character'Pos ('A'))));
1943 Set_Etype (N, Any_Character);
1944 Set_Is_Static_Expression (N);
1946 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1947 Rewrite (N,
1948 Make_String_Literal (Sloc (N),
1949 Strval => End_String));
1951 elsif Nkind (N) = N_Range then
1952 Patch_Up_Value (Low_Bound (N), Typ);
1953 Patch_Up_Value (High_Bound (N), Typ);
1954 end if;
1955 end Patch_Up_Value;
1957 -------------------------------
1958 -- Report_Ambiguous_Argument --
1959 -------------------------------
1961 procedure Report_Ambiguous_Argument is
1962 Arg : constant Node_Id := First (Parameter_Associations (N));
1963 I : Interp_Index;
1964 It : Interp;
1966 begin
1967 if Nkind (Arg) = N_Function_Call
1968 and then Is_Entity_Name (Name (Arg))
1969 and then Is_Overloaded (Name (Arg))
1970 then
1971 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1973 -- Could use comments on what is going on here???
1975 Get_First_Interp (Name (Arg), I, It);
1976 while Present (It.Nam) loop
1977 Error_Msg_Sloc := Sloc (It.Nam);
1979 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1980 Error_Msg_N ("interpretation (inherited) #!", Arg);
1981 else
1982 Error_Msg_N ("interpretation #!", Arg);
1983 end if;
1985 Get_Next_Interp (I, It);
1986 end loop;
1987 end if;
1988 end Report_Ambiguous_Argument;
1990 -----------------------
1991 -- Resolution_Failed --
1992 -----------------------
1994 procedure Resolution_Failed is
1995 begin
1996 Patch_Up_Value (N, Typ);
1998 -- Set the type to the desired one to minimize cascaded errors. Note
1999 -- that this is an approximation and does not work in all cases.
2001 Set_Etype (N, Typ);
2003 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2004 Set_Is_Overloaded (N, False);
2006 -- The caller will return without calling the expander, so we need
2007 -- to set the analyzed flag. Note that it is fine to set Analyzed
2008 -- to True even if we are in the middle of a shallow analysis,
2009 -- (see the spec of sem for more details) since this is an error
2010 -- situation anyway, and there is no point in repeating the
2011 -- analysis later (indeed it won't work to repeat it later, since
2012 -- we haven't got a clear resolution of which entity is being
2013 -- referenced.)
2015 Set_Analyzed (N, True);
2016 return;
2017 end Resolution_Failed;
2019 -- Start of processing for Resolve
2021 begin
2022 if N = Error then
2023 return;
2024 end if;
2026 -- Access attribute on remote subprogram cannot be used for a non-remote
2027 -- access-to-subprogram type.
2029 if Nkind (N) = N_Attribute_Reference
2030 and then Nam_In (Attribute_Name (N), Name_Access,
2031 Name_Unrestricted_Access,
2032 Name_Unchecked_Access)
2033 and then Comes_From_Source (N)
2034 and then Is_Entity_Name (Prefix (N))
2035 and then Is_Subprogram (Entity (Prefix (N)))
2036 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2037 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2038 then
2039 Error_Msg_N
2040 ("prefix must statically denote a non-remote subprogram", N);
2041 end if;
2043 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2045 -- If the context is a Remote_Access_To_Subprogram, access attributes
2046 -- must be resolved with the corresponding fat pointer. There is no need
2047 -- to check for the attribute name since the return type of an
2048 -- attribute is never a remote type.
2050 if Nkind (N) = N_Attribute_Reference
2051 and then Comes_From_Source (N)
2052 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2053 then
2054 declare
2055 Attr : constant Attribute_Id :=
2056 Get_Attribute_Id (Attribute_Name (N));
2057 Pref : constant Node_Id := Prefix (N);
2058 Decl : Node_Id;
2059 Spec : Node_Id;
2060 Is_Remote : Boolean := True;
2062 begin
2063 -- Check that Typ is a remote access-to-subprogram type
2065 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2067 -- Prefix (N) must statically denote a remote subprogram
2068 -- declared in a package specification.
2070 if Attr = Attribute_Access or else
2071 Attr = Attribute_Unchecked_Access or else
2072 Attr = Attribute_Unrestricted_Access
2073 then
2074 Decl := Unit_Declaration_Node (Entity (Pref));
2076 if Nkind (Decl) = N_Subprogram_Body then
2077 Spec := Corresponding_Spec (Decl);
2079 if Present (Spec) then
2080 Decl := Unit_Declaration_Node (Spec);
2081 end if;
2082 end if;
2084 Spec := Parent (Decl);
2086 if not Is_Entity_Name (Prefix (N))
2087 or else Nkind (Spec) /= N_Package_Specification
2088 or else
2089 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2090 then
2091 Is_Remote := False;
2092 Error_Msg_N
2093 ("prefix must statically denote a remote subprogram ",
2095 end if;
2097 -- If we are generating code in distributed mode, perform
2098 -- semantic checks against corresponding remote entities.
2100 if Expander_Active
2101 and then Get_PCS_Name /= Name_No_DSA
2102 then
2103 Check_Subtype_Conformant
2104 (New_Id => Entity (Prefix (N)),
2105 Old_Id => Designated_Type
2106 (Corresponding_Remote_Type (Typ)),
2107 Err_Loc => N);
2109 if Is_Remote then
2110 Process_Remote_AST_Attribute (N, Typ);
2111 end if;
2112 end if;
2113 end if;
2114 end if;
2115 end;
2116 end if;
2118 Debug_A_Entry ("resolving ", N);
2120 if Debug_Flag_V then
2121 Write_Overloads (N);
2122 end if;
2124 if Comes_From_Source (N) then
2125 if Is_Fixed_Point_Type (Typ) then
2126 Check_Restriction (No_Fixed_Point, N);
2128 elsif Is_Floating_Point_Type (Typ)
2129 and then Typ /= Universal_Real
2130 and then Typ /= Any_Real
2131 then
2132 Check_Restriction (No_Floating_Point, N);
2133 end if;
2134 end if;
2136 -- Return if already analyzed
2138 if Analyzed (N) then
2139 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2140 Analyze_Dimension (N);
2141 return;
2143 -- Any case of Any_Type as the Etype value means that we had a
2144 -- previous error.
2146 elsif Etype (N) = Any_Type then
2147 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2148 return;
2149 end if;
2151 Check_Parameterless_Call (N);
2153 -- The resolution of an Expression_With_Actions is determined by
2154 -- its Expression.
2156 if Nkind (N) = N_Expression_With_Actions then
2157 Resolve (Expression (N), Typ);
2159 Found := True;
2160 Expr_Type := Etype (Expression (N));
2162 -- If not overloaded, then we know the type, and all that needs doing
2163 -- is to check that this type is compatible with the context.
2165 elsif not Is_Overloaded (N) then
2166 Found := Covers (Typ, Etype (N));
2167 Expr_Type := Etype (N);
2169 -- In the overloaded case, we must select the interpretation that
2170 -- is compatible with the context (i.e. the type passed to Resolve)
2172 else
2173 -- Loop through possible interpretations
2175 Get_First_Interp (N, I, It);
2176 Interp_Loop : while Present (It.Typ) loop
2177 if Debug_Flag_V then
2178 Write_Str ("Interp: ");
2179 Write_Interp (It);
2180 end if;
2182 -- We are only interested in interpretations that are compatible
2183 -- with the expected type, any other interpretations are ignored.
2185 if not Covers (Typ, It.Typ) then
2186 if Debug_Flag_V then
2187 Write_Str (" interpretation incompatible with context");
2188 Write_Eol;
2189 end if;
2191 else
2192 -- Skip the current interpretation if it is disabled by an
2193 -- abstract operator. This action is performed only when the
2194 -- type against which we are resolving is the same as the
2195 -- type of the interpretation.
2197 if Ada_Version >= Ada_2005
2198 and then It.Typ = Typ
2199 and then Typ /= Universal_Integer
2200 and then Typ /= Universal_Real
2201 and then Present (It.Abstract_Op)
2202 then
2203 if Debug_Flag_V then
2204 Write_Line ("Skip.");
2205 end if;
2207 goto Continue;
2208 end if;
2210 -- First matching interpretation
2212 if not Found then
2213 Found := True;
2214 I1 := I;
2215 Seen := It.Nam;
2216 Expr_Type := It.Typ;
2218 -- Matching interpretation that is not the first, maybe an
2219 -- error, but there are some cases where preference rules are
2220 -- used to choose between the two possibilities. These and
2221 -- some more obscure cases are handled in Disambiguate.
2223 else
2224 -- If the current statement is part of a predefined library
2225 -- unit, then all interpretations which come from user level
2226 -- packages should not be considered. Check previous and
2227 -- current one.
2229 if From_Lib then
2230 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2231 goto Continue;
2233 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2235 -- Previous interpretation must be discarded
2237 I1 := I;
2238 Seen := It.Nam;
2239 Expr_Type := It.Typ;
2240 Set_Entity (N, Seen);
2241 goto Continue;
2242 end if;
2243 end if;
2245 -- Otherwise apply further disambiguation steps
2247 Error_Msg_Sloc := Sloc (Seen);
2248 It1 := Disambiguate (N, I1, I, Typ);
2250 -- Disambiguation has succeeded. Skip the remaining
2251 -- interpretations.
2253 if It1 /= No_Interp then
2254 Seen := It1.Nam;
2255 Expr_Type := It1.Typ;
2257 while Present (It.Typ) loop
2258 Get_Next_Interp (I, It);
2259 end loop;
2261 else
2262 -- Before we issue an ambiguity complaint, check for the
2263 -- case of a subprogram call where at least one of the
2264 -- arguments is Any_Type, and if so suppress the message,
2265 -- since it is a cascaded error. This can also happen for
2266 -- a generalized indexing operation.
2268 if Nkind (N) in N_Subprogram_Call
2269 or else (Nkind (N) = N_Indexed_Component
2270 and then Present (Generalized_Indexing (N)))
2271 then
2272 declare
2273 A : Node_Id;
2274 E : Node_Id;
2276 begin
2277 if Nkind (N) = N_Indexed_Component then
2278 Rewrite (N, Generalized_Indexing (N));
2279 end if;
2281 A := First_Actual (N);
2282 while Present (A) loop
2283 E := A;
2285 if Nkind (E) = N_Parameter_Association then
2286 E := Explicit_Actual_Parameter (E);
2287 end if;
2289 if Etype (E) = Any_Type then
2290 if Debug_Flag_V then
2291 Write_Str ("Any_Type in call");
2292 Write_Eol;
2293 end if;
2295 exit Interp_Loop;
2296 end if;
2298 Next_Actual (A);
2299 end loop;
2300 end;
2302 elsif Nkind (N) in N_Binary_Op
2303 and then (Etype (Left_Opnd (N)) = Any_Type
2304 or else Etype (Right_Opnd (N)) = Any_Type)
2305 then
2306 exit Interp_Loop;
2308 elsif Nkind (N) in N_Unary_Op
2309 and then Etype (Right_Opnd (N)) = Any_Type
2310 then
2311 exit Interp_Loop;
2312 end if;
2314 -- Not that special case, so issue message using the flag
2315 -- Ambiguous to control printing of the header message
2316 -- only at the start of an ambiguous set.
2318 if not Ambiguous then
2319 if Nkind (N) = N_Function_Call
2320 and then Nkind (Name (N)) = N_Explicit_Dereference
2321 then
2322 Error_Msg_N
2323 ("ambiguous expression (cannot resolve indirect "
2324 & "call)!", N);
2325 else
2326 Error_Msg_NE -- CODEFIX
2327 ("ambiguous expression (cannot resolve&)!",
2328 N, It.Nam);
2329 end if;
2331 Ambiguous := True;
2333 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2334 Error_Msg_N
2335 ("\\possible interpretation (inherited)#!", N);
2336 else
2337 Error_Msg_N -- CODEFIX
2338 ("\\possible interpretation#!", N);
2339 end if;
2341 if Nkind (N) in N_Subprogram_Call
2342 and then Present (Parameter_Associations (N))
2343 then
2344 Report_Ambiguous_Argument;
2345 end if;
2346 end if;
2348 Error_Msg_Sloc := Sloc (It.Nam);
2350 -- By default, the error message refers to the candidate
2351 -- interpretation. But if it is a predefined operator, it
2352 -- is implicitly declared at the declaration of the type
2353 -- of the operand. Recover the sloc of that declaration
2354 -- for the error message.
2356 if Nkind (N) in N_Op
2357 and then Scope (It.Nam) = Standard_Standard
2358 and then not Is_Overloaded (Right_Opnd (N))
2359 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2360 Standard_Standard
2361 then
2362 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2364 if Comes_From_Source (Err_Type)
2365 and then Present (Parent (Err_Type))
2366 then
2367 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2368 end if;
2370 elsif Nkind (N) in N_Binary_Op
2371 and then Scope (It.Nam) = Standard_Standard
2372 and then not Is_Overloaded (Left_Opnd (N))
2373 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2374 Standard_Standard
2375 then
2376 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2378 if Comes_From_Source (Err_Type)
2379 and then Present (Parent (Err_Type))
2380 then
2381 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2382 end if;
2384 -- If this is an indirect call, use the subprogram_type
2385 -- in the message, to have a meaningful location. Also
2386 -- indicate if this is an inherited operation, created
2387 -- by a type declaration.
2389 elsif Nkind (N) = N_Function_Call
2390 and then Nkind (Name (N)) = N_Explicit_Dereference
2391 and then Is_Type (It.Nam)
2392 then
2393 Err_Type := It.Nam;
2394 Error_Msg_Sloc :=
2395 Sloc (Associated_Node_For_Itype (Err_Type));
2396 else
2397 Err_Type := Empty;
2398 end if;
2400 if Nkind (N) in N_Op
2401 and then Scope (It.Nam) = Standard_Standard
2402 and then Present (Err_Type)
2403 then
2404 -- Special-case the message for universal_fixed
2405 -- operators, which are not declared with the type
2406 -- of the operand, but appear forever in Standard.
2408 if It.Typ = Universal_Fixed
2409 and then Scope (It.Nam) = Standard_Standard
2410 then
2411 Error_Msg_N
2412 ("\\possible interpretation as universal_fixed "
2413 & "operation (RM 4.5.5 (19))", N);
2414 else
2415 Error_Msg_N
2416 ("\\possible interpretation (predefined)#!", N);
2417 end if;
2419 elsif
2420 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2421 then
2422 Error_Msg_N
2423 ("\\possible interpretation (inherited)#!", N);
2424 else
2425 Error_Msg_N -- CODEFIX
2426 ("\\possible interpretation#!", N);
2427 end if;
2429 end if;
2430 end if;
2432 -- We have a matching interpretation, Expr_Type is the type
2433 -- from this interpretation, and Seen is the entity.
2435 -- For an operator, just set the entity name. The type will be
2436 -- set by the specific operator resolution routine.
2438 if Nkind (N) in N_Op then
2439 Set_Entity (N, Seen);
2440 Generate_Reference (Seen, N);
2442 elsif Nkind (N) = N_Case_Expression then
2443 Set_Etype (N, Expr_Type);
2445 elsif Nkind (N) = N_Character_Literal then
2446 Set_Etype (N, Expr_Type);
2448 elsif Nkind (N) = N_If_Expression then
2449 Set_Etype (N, Expr_Type);
2451 -- AI05-0139-2: Expression is overloaded because type has
2452 -- implicit dereference. If type matches context, no implicit
2453 -- dereference is involved.
2455 elsif Has_Implicit_Dereference (Expr_Type) then
2456 Set_Etype (N, Expr_Type);
2457 Set_Is_Overloaded (N, False);
2458 exit Interp_Loop;
2460 elsif Is_Overloaded (N)
2461 and then Present (It.Nam)
2462 and then Ekind (It.Nam) = E_Discriminant
2463 and then Has_Implicit_Dereference (It.Nam)
2464 then
2465 -- If the node is a general indexing, the dereference is
2466 -- is inserted when resolving the rewritten form, else
2467 -- insert it now.
2469 if Nkind (N) /= N_Indexed_Component
2470 or else No (Generalized_Indexing (N))
2471 then
2472 Build_Explicit_Dereference (N, It.Nam);
2473 end if;
2475 -- For an explicit dereference, attribute reference, range,
2476 -- short-circuit form (which is not an operator node), or call
2477 -- with a name that is an explicit dereference, there is
2478 -- nothing to be done at this point.
2480 elsif Nkind_In (N, N_Attribute_Reference,
2481 N_And_Then,
2482 N_Explicit_Dereference,
2483 N_Identifier,
2484 N_Indexed_Component,
2485 N_Or_Else,
2486 N_Range,
2487 N_Selected_Component,
2488 N_Slice)
2489 or else Nkind (Name (N)) = N_Explicit_Dereference
2490 then
2491 null;
2493 -- For procedure or function calls, set the type of the name,
2494 -- and also the entity pointer for the prefix.
2496 elsif Nkind (N) in N_Subprogram_Call
2497 and then Is_Entity_Name (Name (N))
2498 then
2499 Set_Etype (Name (N), Expr_Type);
2500 Set_Entity (Name (N), Seen);
2501 Generate_Reference (Seen, Name (N));
2503 elsif Nkind (N) = N_Function_Call
2504 and then Nkind (Name (N)) = N_Selected_Component
2505 then
2506 Set_Etype (Name (N), Expr_Type);
2507 Set_Entity (Selector_Name (Name (N)), Seen);
2508 Generate_Reference (Seen, Selector_Name (Name (N)));
2510 -- For all other cases, just set the type of the Name
2512 else
2513 Set_Etype (Name (N), Expr_Type);
2514 end if;
2516 end if;
2518 <<Continue>>
2520 -- Move to next interpretation
2522 exit Interp_Loop when No (It.Typ);
2524 Get_Next_Interp (I, It);
2525 end loop Interp_Loop;
2526 end if;
2528 -- At this stage Found indicates whether or not an acceptable
2529 -- interpretation exists. If not, then we have an error, except that if
2530 -- the context is Any_Type as a result of some other error, then we
2531 -- suppress the error report.
2533 if not Found then
2534 if Typ /= Any_Type then
2536 -- If type we are looking for is Void, then this is the procedure
2537 -- call case, and the error is simply that what we gave is not a
2538 -- procedure name (we think of procedure calls as expressions with
2539 -- types internally, but the user doesn't think of them this way).
2541 if Typ = Standard_Void_Type then
2543 -- Special case message if function used as a procedure
2545 if Nkind (N) = N_Procedure_Call_Statement
2546 and then Is_Entity_Name (Name (N))
2547 and then Ekind (Entity (Name (N))) = E_Function
2548 then
2549 Error_Msg_NE
2550 ("cannot use call to function & as a statement",
2551 Name (N), Entity (Name (N)));
2552 Error_Msg_N
2553 ("\return value of a function call cannot be ignored",
2554 Name (N));
2556 -- Otherwise give general message (not clear what cases this
2557 -- covers, but no harm in providing for them).
2559 else
2560 Error_Msg_N ("expect procedure name in procedure call", N);
2561 end if;
2563 Found := True;
2565 -- Otherwise we do have a subexpression with the wrong type
2567 -- Check for the case of an allocator which uses an access type
2568 -- instead of the designated type. This is a common error and we
2569 -- specialize the message, posting an error on the operand of the
2570 -- allocator, complaining that we expected the designated type of
2571 -- the allocator.
2573 elsif Nkind (N) = N_Allocator
2574 and then Is_Access_Type (Typ)
2575 and then Is_Access_Type (Etype (N))
2576 and then Designated_Type (Etype (N)) = Typ
2577 then
2578 Wrong_Type (Expression (N), Designated_Type (Typ));
2579 Found := True;
2581 -- Check for view mismatch on Null in instances, for which the
2582 -- view-swapping mechanism has no identifier.
2584 elsif (In_Instance or else In_Inlined_Body)
2585 and then (Nkind (N) = N_Null)
2586 and then Is_Private_Type (Typ)
2587 and then Is_Access_Type (Full_View (Typ))
2588 then
2589 Resolve (N, Full_View (Typ));
2590 Set_Etype (N, Typ);
2591 return;
2593 -- Check for an aggregate. Sometimes we can get bogus aggregates
2594 -- from misuse of parentheses, and we are about to complain about
2595 -- the aggregate without even looking inside it.
2597 -- Instead, if we have an aggregate of type Any_Composite, then
2598 -- analyze and resolve the component fields, and then only issue
2599 -- another message if we get no errors doing this (otherwise
2600 -- assume that the errors in the aggregate caused the problem).
2602 elsif Nkind (N) = N_Aggregate
2603 and then Etype (N) = Any_Composite
2604 then
2605 -- Disable expansion in any case. If there is a type mismatch
2606 -- it may be fatal to try to expand the aggregate. The flag
2607 -- would otherwise be set to false when the error is posted.
2609 Expander_Active := False;
2611 declare
2612 procedure Check_Aggr (Aggr : Node_Id);
2613 -- Check one aggregate, and set Found to True if we have a
2614 -- definite error in any of its elements
2616 procedure Check_Elmt (Aelmt : Node_Id);
2617 -- Check one element of aggregate and set Found to True if
2618 -- we definitely have an error in the element.
2620 ----------------
2621 -- Check_Aggr --
2622 ----------------
2624 procedure Check_Aggr (Aggr : Node_Id) is
2625 Elmt : Node_Id;
2627 begin
2628 if Present (Expressions (Aggr)) then
2629 Elmt := First (Expressions (Aggr));
2630 while Present (Elmt) loop
2631 Check_Elmt (Elmt);
2632 Next (Elmt);
2633 end loop;
2634 end if;
2636 if Present (Component_Associations (Aggr)) then
2637 Elmt := First (Component_Associations (Aggr));
2638 while Present (Elmt) loop
2640 -- If this is a default-initialized component, then
2641 -- there is nothing to check. The box will be
2642 -- replaced by the appropriate call during late
2643 -- expansion.
2645 if Nkind (Elmt) /= N_Iterated_Component_Association
2646 and then not Box_Present (Elmt)
2647 then
2648 Check_Elmt (Expression (Elmt));
2649 end if;
2651 Next (Elmt);
2652 end loop;
2653 end if;
2654 end Check_Aggr;
2656 ----------------
2657 -- Check_Elmt --
2658 ----------------
2660 procedure Check_Elmt (Aelmt : Node_Id) is
2661 begin
2662 -- If we have a nested aggregate, go inside it (to
2663 -- attempt a naked analyze-resolve of the aggregate can
2664 -- cause undesirable cascaded errors). Do not resolve
2665 -- expression if it needs a type from context, as for
2666 -- integer * fixed expression.
2668 if Nkind (Aelmt) = N_Aggregate then
2669 Check_Aggr (Aelmt);
2671 else
2672 Analyze (Aelmt);
2674 if not Is_Overloaded (Aelmt)
2675 and then Etype (Aelmt) /= Any_Fixed
2676 then
2677 Resolve (Aelmt);
2678 end if;
2680 if Etype (Aelmt) = Any_Type then
2681 Found := True;
2682 end if;
2683 end if;
2684 end Check_Elmt;
2686 begin
2687 Check_Aggr (N);
2688 end;
2689 end if;
2691 -- Looks like we have a type error, but check for special case
2692 -- of Address wanted, integer found, with the configuration pragma
2693 -- Allow_Integer_Address active. If we have this case, introduce
2694 -- an unchecked conversion to allow the integer expression to be
2695 -- treated as an Address. The reverse case of integer wanted,
2696 -- Address found, is treated in an analogous manner.
2698 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2699 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2700 Analyze_And_Resolve (N, Typ);
2701 return;
2703 -- Under relaxed RM semantics silently replace occurrences of null
2704 -- by System.Address_Null.
2706 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2707 Replace_Null_By_Null_Address (N);
2708 Analyze_And_Resolve (N, Typ);
2709 return;
2710 end if;
2712 -- That special Allow_Integer_Address check did not apply, so we
2713 -- have a real type error. If an error message was issued already,
2714 -- Found got reset to True, so if it's still False, issue standard
2715 -- Wrong_Type message.
2717 if not Found then
2718 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2719 declare
2720 Subp_Name : Node_Id;
2722 begin
2723 if Is_Entity_Name (Name (N)) then
2724 Subp_Name := Name (N);
2726 elsif Nkind (Name (N)) = N_Selected_Component then
2728 -- Protected operation: retrieve operation name
2730 Subp_Name := Selector_Name (Name (N));
2732 else
2733 raise Program_Error;
2734 end if;
2736 Error_Msg_Node_2 := Typ;
2737 Error_Msg_NE
2738 ("no visible interpretation of& matches expected type&",
2739 N, Subp_Name);
2740 end;
2742 if All_Errors_Mode then
2743 declare
2744 Index : Interp_Index;
2745 It : Interp;
2747 begin
2748 Error_Msg_N ("\\possible interpretations:", N);
2750 Get_First_Interp (Name (N), Index, It);
2751 while Present (It.Nam) loop
2752 Error_Msg_Sloc := Sloc (It.Nam);
2753 Error_Msg_Node_2 := It.Nam;
2754 Error_Msg_NE
2755 ("\\ type& for & declared#", N, It.Typ);
2756 Get_Next_Interp (Index, It);
2757 end loop;
2758 end;
2760 else
2761 Error_Msg_N ("\use -gnatf for details", N);
2762 end if;
2764 else
2765 Wrong_Type (N, Typ);
2766 end if;
2767 end if;
2768 end if;
2770 Resolution_Failed;
2771 return;
2773 -- Test if we have more than one interpretation for the context
2775 elsif Ambiguous then
2776 Resolution_Failed;
2777 return;
2779 -- Only one intepretation
2781 else
2782 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2783 -- the "+" on T is abstract, and the operands are of universal type,
2784 -- the above code will have (incorrectly) resolved the "+" to the
2785 -- universal one in Standard. Therefore check for this case and give
2786 -- an error. We can't do this earlier, because it would cause legal
2787 -- cases to get errors (when some other type has an abstract "+").
2789 if Ada_Version >= Ada_2005
2790 and then Nkind (N) in N_Op
2791 and then Is_Overloaded (N)
2792 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2793 then
2794 Get_First_Interp (N, I, It);
2795 while Present (It.Typ) loop
2796 if Present (It.Abstract_Op) and then
2797 Etype (It.Abstract_Op) = Typ
2798 then
2799 Error_Msg_NE
2800 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2801 return;
2802 end if;
2804 Get_Next_Interp (I, It);
2805 end loop;
2806 end if;
2808 -- Here we have an acceptable interpretation for the context
2810 -- Propagate type information and normalize tree for various
2811 -- predefined operations. If the context only imposes a class of
2812 -- types, rather than a specific type, propagate the actual type
2813 -- downward.
2815 if Typ = Any_Integer or else
2816 Typ = Any_Boolean or else
2817 Typ = Any_Modular or else
2818 Typ = Any_Real or else
2819 Typ = Any_Discrete
2820 then
2821 Ctx_Type := Expr_Type;
2823 -- Any_Fixed is legal in a real context only if a specific fixed-
2824 -- point type is imposed. If Norman Cohen can be confused by this,
2825 -- it deserves a separate message.
2827 if Typ = Any_Real
2828 and then Expr_Type = Any_Fixed
2829 then
2830 Error_Msg_N ("illegal context for mixed mode operation", N);
2831 Set_Etype (N, Universal_Real);
2832 Ctx_Type := Universal_Real;
2833 end if;
2834 end if;
2836 -- A user-defined operator is transformed into a function call at
2837 -- this point, so that further processing knows that operators are
2838 -- really operators (i.e. are predefined operators). User-defined
2839 -- operators that are intrinsic are just renamings of the predefined
2840 -- ones, and need not be turned into calls either, but if they rename
2841 -- a different operator, we must transform the node accordingly.
2842 -- Instantiations of Unchecked_Conversion are intrinsic but are
2843 -- treated as functions, even if given an operator designator.
2845 if Nkind (N) in N_Op
2846 and then Present (Entity (N))
2847 and then Ekind (Entity (N)) /= E_Operator
2848 then
2849 if not Is_Predefined_Op (Entity (N)) then
2850 Rewrite_Operator_As_Call (N, Entity (N));
2852 elsif Present (Alias (Entity (N)))
2853 and then
2854 Nkind (Parent (Parent (Entity (N)))) =
2855 N_Subprogram_Renaming_Declaration
2856 then
2857 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2859 -- If the node is rewritten, it will be fully resolved in
2860 -- Rewrite_Renamed_Operator.
2862 if Analyzed (N) then
2863 return;
2864 end if;
2865 end if;
2866 end if;
2868 case N_Subexpr'(Nkind (N)) is
2869 when N_Aggregate =>
2870 Resolve_Aggregate (N, Ctx_Type);
2872 when N_Allocator =>
2873 Resolve_Allocator (N, Ctx_Type);
2875 when N_Short_Circuit =>
2876 Resolve_Short_Circuit (N, Ctx_Type);
2878 when N_Attribute_Reference =>
2879 Resolve_Attribute (N, Ctx_Type);
2881 when N_Case_Expression =>
2882 Resolve_Case_Expression (N, Ctx_Type);
2884 when N_Character_Literal =>
2885 Resolve_Character_Literal (N, Ctx_Type);
2887 when N_Delta_Aggregate =>
2888 Resolve_Delta_Aggregate (N, Ctx_Type);
2890 when N_Expanded_Name =>
2891 Resolve_Entity_Name (N, Ctx_Type);
2893 when N_Explicit_Dereference =>
2894 Resolve_Explicit_Dereference (N, Ctx_Type);
2896 when N_Expression_With_Actions =>
2897 Resolve_Expression_With_Actions (N, Ctx_Type);
2899 when N_Extension_Aggregate =>
2900 Resolve_Extension_Aggregate (N, Ctx_Type);
2902 when N_Function_Call =>
2903 Resolve_Call (N, Ctx_Type);
2905 when N_Identifier =>
2906 Resolve_Entity_Name (N, Ctx_Type);
2908 when N_If_Expression =>
2909 Resolve_If_Expression (N, Ctx_Type);
2911 when N_Indexed_Component =>
2912 Resolve_Indexed_Component (N, Ctx_Type);
2914 when N_Integer_Literal =>
2915 Resolve_Integer_Literal (N, Ctx_Type);
2917 when N_Membership_Test =>
2918 Resolve_Membership_Op (N, Ctx_Type);
2920 when N_Null =>
2921 Resolve_Null (N, Ctx_Type);
2923 when N_Op_And
2924 | N_Op_Or
2925 | N_Op_Xor
2927 Resolve_Logical_Op (N, Ctx_Type);
2929 when N_Op_Eq
2930 | N_Op_Ne
2932 Resolve_Equality_Op (N, Ctx_Type);
2934 when N_Op_Ge
2935 | N_Op_Gt
2936 | N_Op_Le
2937 | N_Op_Lt
2939 Resolve_Comparison_Op (N, Ctx_Type);
2941 when N_Op_Not =>
2942 Resolve_Op_Not (N, Ctx_Type);
2944 when N_Op_Add
2945 | N_Op_Divide
2946 | N_Op_Mod
2947 | N_Op_Multiply
2948 | N_Op_Rem
2949 | N_Op_Subtract
2951 Resolve_Arithmetic_Op (N, Ctx_Type);
2953 when N_Op_Concat =>
2954 Resolve_Op_Concat (N, Ctx_Type);
2956 when N_Op_Expon =>
2957 Resolve_Op_Expon (N, Ctx_Type);
2959 when N_Op_Abs
2960 | N_Op_Minus
2961 | N_Op_Plus
2963 Resolve_Unary_Op (N, Ctx_Type);
2965 when N_Op_Shift =>
2966 Resolve_Shift (N, Ctx_Type);
2968 when N_Procedure_Call_Statement =>
2969 Resolve_Call (N, Ctx_Type);
2971 when N_Operator_Symbol =>
2972 Resolve_Operator_Symbol (N, Ctx_Type);
2974 when N_Qualified_Expression =>
2975 Resolve_Qualified_Expression (N, Ctx_Type);
2977 -- Why is the following null, needs a comment ???
2979 when N_Quantified_Expression =>
2980 null;
2982 when N_Raise_Expression =>
2983 Resolve_Raise_Expression (N, Ctx_Type);
2985 when N_Raise_xxx_Error =>
2986 Set_Etype (N, Ctx_Type);
2988 when N_Range =>
2989 Resolve_Range (N, Ctx_Type);
2991 when N_Real_Literal =>
2992 Resolve_Real_Literal (N, Ctx_Type);
2994 when N_Reference =>
2995 Resolve_Reference (N, Ctx_Type);
2997 when N_Selected_Component =>
2998 Resolve_Selected_Component (N, Ctx_Type);
3000 when N_Slice =>
3001 Resolve_Slice (N, Ctx_Type);
3003 when N_String_Literal =>
3004 Resolve_String_Literal (N, Ctx_Type);
3006 when N_Target_Name =>
3007 Resolve_Target_Name (N, Ctx_Type);
3009 when N_Type_Conversion =>
3010 Resolve_Type_Conversion (N, Ctx_Type);
3012 when N_Unchecked_Expression =>
3013 Resolve_Unchecked_Expression (N, Ctx_Type);
3015 when N_Unchecked_Type_Conversion =>
3016 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3017 end case;
3019 -- Mark relevant use-type and use-package clauses as effective using
3020 -- the original node because constant folding may have occured and
3021 -- removed references that need to be examined.
3023 if Nkind (Original_Node (N)) in N_Op then
3024 Mark_Use_Clauses (Original_Node (N));
3025 end if;
3027 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3028 -- expression of an anonymous access type that occurs in the context
3029 -- of a named general access type, except when the expression is that
3030 -- of a membership test. This ensures proper legality checking in
3031 -- terms of allowed conversions (expressions that would be illegal to
3032 -- convert implicitly are allowed in membership tests).
3034 if Ada_Version >= Ada_2012
3035 and then Ekind (Ctx_Type) = E_General_Access_Type
3036 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3037 and then Nkind (Parent (N)) not in N_Membership_Test
3038 then
3039 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3040 Analyze_And_Resolve (N, Ctx_Type);
3041 end if;
3043 -- If the subexpression was replaced by a non-subexpression, then
3044 -- all we do is to expand it. The only legitimate case we know of
3045 -- is converting procedure call statement to entry call statements,
3046 -- but there may be others, so we are making this test general.
3048 if Nkind (N) not in N_Subexpr then
3049 Debug_A_Exit ("resolving ", N, " (done)");
3050 Expand (N);
3051 return;
3052 end if;
3054 -- The expression is definitely NOT overloaded at this point, so
3055 -- we reset the Is_Overloaded flag to avoid any confusion when
3056 -- reanalyzing the node.
3058 Set_Is_Overloaded (N, False);
3060 -- Freeze expression type, entity if it is a name, and designated
3061 -- type if it is an allocator (RM 13.14(10,11,13)).
3063 -- Now that the resolution of the type of the node is complete, and
3064 -- we did not detect an error, we can expand this node. We skip the
3065 -- expand call if we are in a default expression, see section
3066 -- "Handling of Default Expressions" in Sem spec.
3068 Debug_A_Exit ("resolving ", N, " (done)");
3070 -- We unconditionally freeze the expression, even if we are in
3071 -- default expression mode (the Freeze_Expression routine tests this
3072 -- flag and only freezes static types if it is set).
3074 -- Ada 2012 (AI05-177): The declaration of an expression function
3075 -- does not cause freezing, but we never reach here in that case.
3076 -- Here we are resolving the corresponding expanded body, so we do
3077 -- need to perform normal freezing.
3079 -- As elsewhere we do not emit freeze node within a generic. We make
3080 -- an exception for entities that are expressions, only to detect
3081 -- misuses of deferred constants and preserve the output of various
3082 -- tests.
3084 if not Inside_A_Generic or else Is_Entity_Name (N) then
3085 Freeze_Expression (N);
3086 end if;
3088 -- Now we can do the expansion
3090 Expand (N);
3091 end if;
3092 end Resolve;
3094 -------------
3095 -- Resolve --
3096 -------------
3098 -- Version with check(s) suppressed
3100 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3101 begin
3102 if Suppress = All_Checks then
3103 declare
3104 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3105 begin
3106 Scope_Suppress.Suppress := (others => True);
3107 Resolve (N, Typ);
3108 Scope_Suppress.Suppress := Sva;
3109 end;
3111 else
3112 declare
3113 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3114 begin
3115 Scope_Suppress.Suppress (Suppress) := True;
3116 Resolve (N, Typ);
3117 Scope_Suppress.Suppress (Suppress) := Svg;
3118 end;
3119 end if;
3120 end Resolve;
3122 -------------
3123 -- Resolve --
3124 -------------
3126 -- Version with implicit type
3128 procedure Resolve (N : Node_Id) is
3129 begin
3130 Resolve (N, Etype (N));
3131 end Resolve;
3133 ---------------------
3134 -- Resolve_Actuals --
3135 ---------------------
3137 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3138 Loc : constant Source_Ptr := Sloc (N);
3139 A : Node_Id;
3140 A_Id : Entity_Id;
3141 A_Typ : Entity_Id;
3142 F : Entity_Id;
3143 F_Typ : Entity_Id;
3144 Prev : Node_Id := Empty;
3145 Orig_A : Node_Id;
3146 Real_F : Entity_Id;
3148 Real_Subp : Entity_Id;
3149 -- If the subprogram being called is an inherited operation for
3150 -- a formal derived type in an instance, Real_Subp is the subprogram
3151 -- that will be called. It may have different formal names than the
3152 -- operation of the formal in the generic, so after actual is resolved
3153 -- the name of the actual in a named association must carry the name
3154 -- of the actual of the subprogram being called.
3156 procedure Check_Aliased_Parameter;
3157 -- Check rules on aliased parameters and related accessibility rules
3158 -- in (RM 3.10.2 (10.2-10.4)).
3160 procedure Check_Argument_Order;
3161 -- Performs a check for the case where the actuals are all simple
3162 -- identifiers that correspond to the formal names, but in the wrong
3163 -- order, which is considered suspicious and cause for a warning.
3165 procedure Check_Prefixed_Call;
3166 -- If the original node is an overloaded call in prefix notation,
3167 -- insert an 'Access or a dereference as needed over the first actual.
3168 -- Try_Object_Operation has already verified that there is a valid
3169 -- interpretation, but the form of the actual can only be determined
3170 -- once the primitive operation is identified.
3172 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3173 -- Emit an error concerning the illegal usage of an effectively volatile
3174 -- object in interfering context (SPARK RM 7.13(12)).
3176 procedure Insert_Default;
3177 -- If the actual is missing in a call, insert in the actuals list
3178 -- an instance of the default expression. The insertion is always
3179 -- a named association.
3181 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3182 -- Check whether T1 and T2, or their full views, are derived from a
3183 -- common type. Used to enforce the restrictions on array conversions
3184 -- of AI95-00246.
3186 function Static_Concatenation (N : Node_Id) return Boolean;
3187 -- Predicate to determine whether an actual that is a concatenation
3188 -- will be evaluated statically and does not need a transient scope.
3189 -- This must be determined before the actual is resolved and expanded
3190 -- because if needed the transient scope must be introduced earlier.
3192 -----------------------------
3193 -- Check_Aliased_Parameter --
3194 -----------------------------
3196 procedure Check_Aliased_Parameter is
3197 Nominal_Subt : Entity_Id;
3199 begin
3200 if Is_Aliased (F) then
3201 if Is_Tagged_Type (A_Typ) then
3202 null;
3204 elsif Is_Aliased_View (A) then
3205 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3206 Nominal_Subt := Base_Type (A_Typ);
3207 else
3208 Nominal_Subt := A_Typ;
3209 end if;
3211 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3212 null;
3214 -- In a generic body assume the worst for generic formals:
3215 -- they can have a constrained partial view (AI05-041).
3217 elsif Has_Discriminants (F_Typ)
3218 and then not Is_Constrained (F_Typ)
3219 and then not Has_Constrained_Partial_View (F_Typ)
3220 and then not Is_Generic_Type (F_Typ)
3221 then
3222 null;
3224 else
3225 Error_Msg_NE ("untagged actual does not match "
3226 & "aliased formal&", A, F);
3227 end if;
3229 else
3230 Error_Msg_NE ("actual for aliased formal& must be "
3231 & "aliased object", A, F);
3232 end if;
3234 if Ekind (Nam) = E_Procedure then
3235 null;
3237 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3238 if Nkind (Parent (N)) = N_Type_Conversion
3239 and then Type_Access_Level (Etype (Parent (N))) <
3240 Object_Access_Level (A)
3241 then
3242 Error_Msg_N ("aliased actual has wrong accessibility", A);
3243 end if;
3245 elsif Nkind (Parent (N)) = N_Qualified_Expression
3246 and then Nkind (Parent (Parent (N))) = N_Allocator
3247 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3248 Object_Access_Level (A)
3249 then
3250 Error_Msg_N
3251 ("aliased actual in allocator has wrong accessibility", A);
3252 end if;
3253 end if;
3254 end Check_Aliased_Parameter;
3256 --------------------------
3257 -- Check_Argument_Order --
3258 --------------------------
3260 procedure Check_Argument_Order is
3261 begin
3262 -- Nothing to do if no parameters, or original node is neither a
3263 -- function call nor a procedure call statement (happens in the
3264 -- operator-transformed-to-function call case), or the call does
3265 -- not come from source, or this warning is off.
3267 if not Warn_On_Parameter_Order
3268 or else No (Parameter_Associations (N))
3269 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3270 or else not Comes_From_Source (N)
3271 then
3272 return;
3273 end if;
3275 declare
3276 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3278 begin
3279 -- Nothing to do if only one parameter
3281 if Nargs < 2 then
3282 return;
3283 end if;
3285 -- Here if at least two arguments
3287 declare
3288 Actuals : array (1 .. Nargs) of Node_Id;
3289 Actual : Node_Id;
3290 Formal : Node_Id;
3292 Wrong_Order : Boolean := False;
3293 -- Set True if an out of order case is found
3295 begin
3296 -- Collect identifier names of actuals, fail if any actual is
3297 -- not a simple identifier, and record max length of name.
3299 Actual := First (Parameter_Associations (N));
3300 for J in Actuals'Range loop
3301 if Nkind (Actual) /= N_Identifier then
3302 return;
3303 else
3304 Actuals (J) := Actual;
3305 Next (Actual);
3306 end if;
3307 end loop;
3309 -- If we got this far, all actuals are identifiers and the list
3310 -- of their names is stored in the Actuals array.
3312 Formal := First_Formal (Nam);
3313 for J in Actuals'Range loop
3315 -- If we ran out of formals, that's odd, probably an error
3316 -- which will be detected elsewhere, but abandon the search.
3318 if No (Formal) then
3319 return;
3320 end if;
3322 -- If name matches and is in order OK
3324 if Chars (Formal) = Chars (Actuals (J)) then
3325 null;
3327 else
3328 -- If no match, see if it is elsewhere in list and if so
3329 -- flag potential wrong order if type is compatible.
3331 for K in Actuals'Range loop
3332 if Chars (Formal) = Chars (Actuals (K))
3333 and then
3334 Has_Compatible_Type (Actuals (K), Etype (Formal))
3335 then
3336 Wrong_Order := True;
3337 goto Continue;
3338 end if;
3339 end loop;
3341 -- No match
3343 return;
3344 end if;
3346 <<Continue>> Next_Formal (Formal);
3347 end loop;
3349 -- If Formals left over, also probably an error, skip warning
3351 if Present (Formal) then
3352 return;
3353 end if;
3355 -- Here we give the warning if something was out of order
3357 if Wrong_Order then
3358 Error_Msg_N
3359 ("?P?actuals for this call may be in wrong order", N);
3360 end if;
3361 end;
3362 end;
3363 end Check_Argument_Order;
3365 -------------------------
3366 -- Check_Prefixed_Call --
3367 -------------------------
3369 procedure Check_Prefixed_Call is
3370 Act : constant Node_Id := First_Actual (N);
3371 A_Type : constant Entity_Id := Etype (Act);
3372 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3373 Orig : constant Node_Id := Original_Node (N);
3374 New_A : Node_Id;
3376 begin
3377 -- Check whether the call is a prefixed call, with or without
3378 -- additional actuals.
3380 if Nkind (Orig) = N_Selected_Component
3381 or else
3382 (Nkind (Orig) = N_Indexed_Component
3383 and then Nkind (Prefix (Orig)) = N_Selected_Component
3384 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3385 and then Is_Entity_Name (Act)
3386 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3387 then
3388 if Is_Access_Type (A_Type)
3389 and then not Is_Access_Type (F_Type)
3390 then
3391 -- Introduce dereference on object in prefix
3393 New_A :=
3394 Make_Explicit_Dereference (Sloc (Act),
3395 Prefix => Relocate_Node (Act));
3396 Rewrite (Act, New_A);
3397 Analyze (Act);
3399 elsif Is_Access_Type (F_Type)
3400 and then not Is_Access_Type (A_Type)
3401 then
3402 -- Introduce an implicit 'Access in prefix
3404 if not Is_Aliased_View (Act) then
3405 Error_Msg_NE
3406 ("object in prefixed call to& must be aliased "
3407 & "(RM 4.1.3 (13 1/2))",
3408 Prefix (Act), Nam);
3409 end if;
3411 Rewrite (Act,
3412 Make_Attribute_Reference (Loc,
3413 Attribute_Name => Name_Access,
3414 Prefix => Relocate_Node (Act)));
3415 end if;
3417 Analyze (Act);
3418 end if;
3419 end Check_Prefixed_Call;
3421 ---------------------------------------
3422 -- Flag_Effectively_Volatile_Objects --
3423 ---------------------------------------
3425 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3426 function Flag_Object (N : Node_Id) return Traverse_Result;
3427 -- Determine whether arbitrary node N denotes an effectively volatile
3428 -- object and if it does, emit an error.
3430 -----------------
3431 -- Flag_Object --
3432 -----------------
3434 function Flag_Object (N : Node_Id) return Traverse_Result is
3435 Id : Entity_Id;
3437 begin
3438 -- Do not consider nested function calls because they have already
3439 -- been processed during their own resolution.
3441 if Nkind (N) = N_Function_Call then
3442 return Skip;
3444 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3445 Id := Entity (N);
3447 if Is_Object (Id)
3448 and then Is_Effectively_Volatile (Id)
3449 and then (Async_Writers_Enabled (Id)
3450 or else Effective_Reads_Enabled (Id))
3451 then
3452 Error_Msg_N
3453 ("volatile object cannot appear in this context (SPARK "
3454 & "RM 7.1.3(11))", N);
3455 return Skip;
3456 end if;
3457 end if;
3459 return OK;
3460 end Flag_Object;
3462 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3464 -- Start of processing for Flag_Effectively_Volatile_Objects
3466 begin
3467 Flag_Objects (Expr);
3468 end Flag_Effectively_Volatile_Objects;
3470 --------------------
3471 -- Insert_Default --
3472 --------------------
3474 procedure Insert_Default is
3475 Actval : Node_Id;
3476 Assoc : Node_Id;
3478 begin
3479 -- Missing argument in call, nothing to insert
3481 if No (Default_Value (F)) then
3482 return;
3484 else
3485 -- Note that we do a full New_Copy_Tree, so that any associated
3486 -- Itypes are properly copied. This may not be needed any more,
3487 -- but it does no harm as a safety measure. Defaults of a generic
3488 -- formal may be out of bounds of the corresponding actual (see
3489 -- cc1311b) and an additional check may be required.
3491 Actval :=
3492 New_Copy_Tree
3493 (Default_Value (F),
3494 New_Scope => Current_Scope,
3495 New_Sloc => Loc);
3497 -- Propagate dimension information, if any.
3499 Copy_Dimensions (Default_Value (F), Actval);
3501 if Is_Concurrent_Type (Scope (Nam))
3502 and then Has_Discriminants (Scope (Nam))
3503 then
3504 Replace_Actual_Discriminants (N, Actval);
3505 end if;
3507 if Is_Overloadable (Nam)
3508 and then Present (Alias (Nam))
3509 then
3510 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3511 and then not Is_Tagged_Type (Etype (F))
3512 then
3513 -- If default is a real literal, do not introduce a
3514 -- conversion whose effect may depend on the run-time
3515 -- size of universal real.
3517 if Nkind (Actval) = N_Real_Literal then
3518 Set_Etype (Actval, Base_Type (Etype (F)));
3519 else
3520 Actval := Unchecked_Convert_To (Etype (F), Actval);
3521 end if;
3522 end if;
3524 if Is_Scalar_Type (Etype (F)) then
3525 Enable_Range_Check (Actval);
3526 end if;
3528 Set_Parent (Actval, N);
3530 -- Resolve aggregates with their base type, to avoid scope
3531 -- anomalies: the subtype was first built in the subprogram
3532 -- declaration, and the current call may be nested.
3534 if Nkind (Actval) = N_Aggregate then
3535 Analyze_And_Resolve (Actval, Etype (F));
3536 else
3537 Analyze_And_Resolve (Actval, Etype (Actval));
3538 end if;
3540 else
3541 Set_Parent (Actval, N);
3543 -- See note above concerning aggregates
3545 if Nkind (Actval) = N_Aggregate
3546 and then Has_Discriminants (Etype (Actval))
3547 then
3548 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3550 -- Resolve entities with their own type, which may differ from
3551 -- the type of a reference in a generic context (the view
3552 -- swapping mechanism did not anticipate the re-analysis of
3553 -- default values in calls).
3555 elsif Is_Entity_Name (Actval) then
3556 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3558 else
3559 Analyze_And_Resolve (Actval, Etype (Actval));
3560 end if;
3561 end if;
3563 -- If default is a tag indeterminate function call, propagate tag
3564 -- to obtain proper dispatching.
3566 if Is_Controlling_Formal (F)
3567 and then Nkind (Default_Value (F)) = N_Function_Call
3568 then
3569 Set_Is_Controlling_Actual (Actval);
3570 end if;
3571 end if;
3573 -- If the default expression raises constraint error, then just
3574 -- silently replace it with an N_Raise_Constraint_Error node, since
3575 -- we already gave the warning on the subprogram spec. If node is
3576 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3577 -- the warnings removal machinery.
3579 if Raises_Constraint_Error (Actval)
3580 and then Nkind (Actval) /= N_Raise_Constraint_Error
3581 then
3582 Rewrite (Actval,
3583 Make_Raise_Constraint_Error (Loc,
3584 Reason => CE_Range_Check_Failed));
3586 Set_Raises_Constraint_Error (Actval);
3587 Set_Etype (Actval, Etype (F));
3588 end if;
3590 Assoc :=
3591 Make_Parameter_Association (Loc,
3592 Explicit_Actual_Parameter => Actval,
3593 Selector_Name => Make_Identifier (Loc, Chars (F)));
3595 -- Case of insertion is first named actual
3597 if No (Prev)
3598 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3599 then
3600 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3601 Set_First_Named_Actual (N, Actval);
3603 if No (Prev) then
3604 if No (Parameter_Associations (N)) then
3605 Set_Parameter_Associations (N, New_List (Assoc));
3606 else
3607 Append (Assoc, Parameter_Associations (N));
3608 end if;
3610 else
3611 Insert_After (Prev, Assoc);
3612 end if;
3614 -- Case of insertion is not first named actual
3616 else
3617 Set_Next_Named_Actual
3618 (Assoc, Next_Named_Actual (Parent (Prev)));
3619 Set_Next_Named_Actual (Parent (Prev), Actval);
3620 Append (Assoc, Parameter_Associations (N));
3621 end if;
3623 Mark_Rewrite_Insertion (Assoc);
3624 Mark_Rewrite_Insertion (Actval);
3626 Prev := Actval;
3627 end Insert_Default;
3629 -------------------
3630 -- Same_Ancestor --
3631 -------------------
3633 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3634 FT1 : Entity_Id := T1;
3635 FT2 : Entity_Id := T2;
3637 begin
3638 if Is_Private_Type (T1)
3639 and then Present (Full_View (T1))
3640 then
3641 FT1 := Full_View (T1);
3642 end if;
3644 if Is_Private_Type (T2)
3645 and then Present (Full_View (T2))
3646 then
3647 FT2 := Full_View (T2);
3648 end if;
3650 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3651 end Same_Ancestor;
3653 --------------------------
3654 -- Static_Concatenation --
3655 --------------------------
3657 function Static_Concatenation (N : Node_Id) return Boolean is
3658 begin
3659 case Nkind (N) is
3660 when N_String_Literal =>
3661 return True;
3663 when N_Op_Concat =>
3665 -- Concatenation is static when both operands are static and
3666 -- the concatenation operator is a predefined one.
3668 return Scope (Entity (N)) = Standard_Standard
3669 and then
3670 Static_Concatenation (Left_Opnd (N))
3671 and then
3672 Static_Concatenation (Right_Opnd (N));
3674 when others =>
3675 if Is_Entity_Name (N) then
3676 declare
3677 Ent : constant Entity_Id := Entity (N);
3678 begin
3679 return Ekind (Ent) = E_Constant
3680 and then Present (Constant_Value (Ent))
3681 and then
3682 Is_OK_Static_Expression (Constant_Value (Ent));
3683 end;
3685 else
3686 return False;
3687 end if;
3688 end case;
3689 end Static_Concatenation;
3691 -- Start of processing for Resolve_Actuals
3693 begin
3694 Check_Argument_Order;
3696 if Is_Overloadable (Nam)
3697 and then Is_Inherited_Operation (Nam)
3698 and then In_Instance
3699 and then Present (Alias (Nam))
3700 and then Present (Overridden_Operation (Alias (Nam)))
3701 then
3702 Real_Subp := Alias (Nam);
3703 else
3704 Real_Subp := Empty;
3705 end if;
3707 if Present (First_Actual (N)) then
3708 Check_Prefixed_Call;
3709 end if;
3711 A := First_Actual (N);
3712 F := First_Formal (Nam);
3714 if Present (Real_Subp) then
3715 Real_F := First_Formal (Real_Subp);
3716 end if;
3718 while Present (F) loop
3719 if No (A) and then Needs_No_Actuals (Nam) then
3720 null;
3722 -- If we have an error in any actual or formal, indicated by a type
3723 -- of Any_Type, then abandon resolution attempt, and set result type
3724 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3725 -- type is imposed from context.
3727 elsif (Present (A) and then Etype (A) = Any_Type)
3728 or else Etype (F) = Any_Type
3729 then
3730 if Nkind (A) /= N_Raise_Expression then
3731 Set_Etype (N, Any_Type);
3732 return;
3733 end if;
3734 end if;
3736 -- Case where actual is present
3738 -- If the actual is an entity, generate a reference to it now. We
3739 -- do this before the actual is resolved, because a formal of some
3740 -- protected subprogram, or a task discriminant, will be rewritten
3741 -- during expansion, and the source entity reference may be lost.
3743 if Present (A)
3744 and then Is_Entity_Name (A)
3745 and then Comes_From_Source (A)
3746 then
3747 Orig_A := Entity (A);
3749 if Present (Orig_A) then
3750 if Is_Formal (Orig_A)
3751 and then Ekind (F) /= E_In_Parameter
3752 then
3753 Generate_Reference (Orig_A, A, 'm');
3755 elsif not Is_Overloaded (A) then
3756 if Ekind (F) /= E_Out_Parameter then
3757 Generate_Reference (Orig_A, A);
3759 -- RM 6.4.1(12): For an out parameter that is passed by
3760 -- copy, the formal parameter object is created, and:
3762 -- * For an access type, the formal parameter is initialized
3763 -- from the value of the actual, without checking that the
3764 -- value satisfies any constraint, any predicate, or any
3765 -- exclusion of the null value.
3767 -- * For a scalar type that has the Default_Value aspect
3768 -- specified, the formal parameter is initialized from the
3769 -- value of the actual, without checking that the value
3770 -- satisfies any constraint or any predicate.
3771 -- I do not understand why this case is included??? this is
3772 -- not a case where an OUT parameter is treated as IN OUT.
3774 -- * For a composite type with discriminants or that has
3775 -- implicit initial values for any subcomponents, the
3776 -- behavior is as for an in out parameter passed by copy.
3778 -- Hence for these cases we generate the read reference now
3779 -- (the write reference will be generated later by
3780 -- Note_Possible_Modification).
3782 elsif Is_By_Copy_Type (Etype (F))
3783 and then
3784 (Is_Access_Type (Etype (F))
3785 or else
3786 (Is_Scalar_Type (Etype (F))
3787 and then
3788 Present (Default_Aspect_Value (Etype (F))))
3789 or else
3790 (Is_Composite_Type (Etype (F))
3791 and then (Has_Discriminants (Etype (F))
3792 or else Is_Partially_Initialized_Type
3793 (Etype (F)))))
3794 then
3795 Generate_Reference (Orig_A, A);
3796 end if;
3797 end if;
3798 end if;
3799 end if;
3801 if Present (A)
3802 and then (Nkind (Parent (A)) /= N_Parameter_Association
3803 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3804 then
3805 -- If style checking mode on, check match of formal name
3807 if Style_Check then
3808 if Nkind (Parent (A)) = N_Parameter_Association then
3809 Check_Identifier (Selector_Name (Parent (A)), F);
3810 end if;
3811 end if;
3813 -- If the formal is Out or In_Out, do not resolve and expand the
3814 -- conversion, because it is subsequently expanded into explicit
3815 -- temporaries and assignments. However, the object of the
3816 -- conversion can be resolved. An exception is the case of tagged
3817 -- type conversion with a class-wide actual. In that case we want
3818 -- the tag check to occur and no temporary will be needed (no
3819 -- representation change can occur) and the parameter is passed by
3820 -- reference, so we go ahead and resolve the type conversion.
3821 -- Another exception is the case of reference to component or
3822 -- subcomponent of a bit-packed array, in which case we want to
3823 -- defer expansion to the point the in and out assignments are
3824 -- performed.
3826 if Ekind (F) /= E_In_Parameter
3827 and then Nkind (A) = N_Type_Conversion
3828 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3829 then
3830 if Ekind (F) = E_In_Out_Parameter
3831 and then Is_Array_Type (Etype (F))
3832 then
3833 -- In a view conversion, the conversion must be legal in
3834 -- both directions, and thus both component types must be
3835 -- aliased, or neither (4.6 (8)).
3837 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3838 -- the privacy requirement should not apply to generic
3839 -- types, and should be checked in an instance. ARG query
3840 -- is in order ???
3842 if Has_Aliased_Components (Etype (Expression (A))) /=
3843 Has_Aliased_Components (Etype (F))
3844 then
3845 Error_Msg_N
3846 ("both component types in a view conversion must be"
3847 & " aliased, or neither", A);
3849 -- Comment here??? what set of cases???
3851 elsif
3852 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3853 then
3854 -- Check view conv between unrelated by ref array types
3856 if Is_By_Reference_Type (Etype (F))
3857 or else Is_By_Reference_Type (Etype (Expression (A)))
3858 then
3859 Error_Msg_N
3860 ("view conversion between unrelated by reference "
3861 & "array types not allowed (\'A'I-00246)", A);
3863 -- In Ada 2005 mode, check view conversion component
3864 -- type cannot be private, tagged, or volatile. Note
3865 -- that we only apply this to source conversions. The
3866 -- generated code can contain conversions which are
3867 -- not subject to this test, and we cannot extract the
3868 -- component type in such cases since it is not present.
3870 elsif Comes_From_Source (A)
3871 and then Ada_Version >= Ada_2005
3872 then
3873 declare
3874 Comp_Type : constant Entity_Id :=
3875 Component_Type
3876 (Etype (Expression (A)));
3877 begin
3878 if (Is_Private_Type (Comp_Type)
3879 and then not Is_Generic_Type (Comp_Type))
3880 or else Is_Tagged_Type (Comp_Type)
3881 or else Is_Volatile (Comp_Type)
3882 then
3883 Error_Msg_N
3884 ("component type of a view conversion cannot"
3885 & " be private, tagged, or volatile"
3886 & " (RM 4.6 (24))",
3887 Expression (A));
3888 end if;
3889 end;
3890 end if;
3891 end if;
3892 end if;
3894 -- Resolve expression if conversion is all OK
3896 if (Conversion_OK (A)
3897 or else Valid_Conversion (A, Etype (A), Expression (A)))
3898 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3899 then
3900 Resolve (Expression (A));
3901 end if;
3903 -- If the actual is a function call that returns a limited
3904 -- unconstrained object that needs finalization, create a
3905 -- transient scope for it, so that it can receive the proper
3906 -- finalization list.
3908 elsif Nkind (A) = N_Function_Call
3909 and then Is_Limited_Record (Etype (F))
3910 and then not Is_Constrained (Etype (F))
3911 and then Expander_Active
3912 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3913 then
3914 Establish_Transient_Scope (A, Sec_Stack => False);
3915 Resolve (A, Etype (F));
3917 -- A small optimization: if one of the actuals is a concatenation
3918 -- create a block around a procedure call to recover stack space.
3919 -- This alleviates stack usage when several procedure calls in
3920 -- the same statement list use concatenation. We do not perform
3921 -- this wrapping for code statements, where the argument is a
3922 -- static string, and we want to preserve warnings involving
3923 -- sequences of such statements.
3925 elsif Nkind (A) = N_Op_Concat
3926 and then Nkind (N) = N_Procedure_Call_Statement
3927 and then Expander_Active
3928 and then
3929 not (Is_Intrinsic_Subprogram (Nam)
3930 and then Chars (Nam) = Name_Asm)
3931 and then not Static_Concatenation (A)
3932 then
3933 Establish_Transient_Scope (A, Sec_Stack => False);
3934 Resolve (A, Etype (F));
3936 else
3937 if Nkind (A) = N_Type_Conversion
3938 and then Is_Array_Type (Etype (F))
3939 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3940 and then
3941 (Is_Limited_Type (Etype (F))
3942 or else Is_Limited_Type (Etype (Expression (A))))
3943 then
3944 Error_Msg_N
3945 ("conversion between unrelated limited array types "
3946 & "not allowed ('A'I-00246)", A);
3948 if Is_Limited_Type (Etype (F)) then
3949 Explain_Limited_Type (Etype (F), A);
3950 end if;
3952 if Is_Limited_Type (Etype (Expression (A))) then
3953 Explain_Limited_Type (Etype (Expression (A)), A);
3954 end if;
3955 end if;
3957 -- (Ada 2005: AI-251): If the actual is an allocator whose
3958 -- directly designated type is a class-wide interface, we build
3959 -- an anonymous access type to use it as the type of the
3960 -- allocator. Later, when the subprogram call is expanded, if
3961 -- the interface has a secondary dispatch table the expander
3962 -- will add a type conversion to force the correct displacement
3963 -- of the pointer.
3965 if Nkind (A) = N_Allocator then
3966 declare
3967 DDT : constant Entity_Id :=
3968 Directly_Designated_Type (Base_Type (Etype (F)));
3970 New_Itype : Entity_Id;
3972 begin
3973 if Is_Class_Wide_Type (DDT)
3974 and then Is_Interface (DDT)
3975 then
3976 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3977 Set_Etype (New_Itype, Etype (A));
3978 Set_Directly_Designated_Type
3979 (New_Itype, Directly_Designated_Type (Etype (A)));
3980 Set_Etype (A, New_Itype);
3981 end if;
3983 -- Ada 2005, AI-162:If the actual is an allocator, the
3984 -- innermost enclosing statement is the master of the
3985 -- created object. This needs to be done with expansion
3986 -- enabled only, otherwise the transient scope will not
3987 -- be removed in the expansion of the wrapped construct.
3989 if (Is_Controlled (DDT) or else Has_Task (DDT))
3990 and then Expander_Active
3991 then
3992 Establish_Transient_Scope (A, Sec_Stack => False);
3993 end if;
3994 end;
3996 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3997 Check_Restriction (No_Access_Parameter_Allocators, A);
3998 end if;
3999 end if;
4001 -- (Ada 2005): The call may be to a primitive operation of a
4002 -- tagged synchronized type, declared outside of the type. In
4003 -- this case the controlling actual must be converted to its
4004 -- corresponding record type, which is the formal type. The
4005 -- actual may be a subtype, either because of a constraint or
4006 -- because it is a generic actual, so use base type to locate
4007 -- concurrent type.
4009 F_Typ := Base_Type (Etype (F));
4011 if Is_Tagged_Type (F_Typ)
4012 and then (Is_Concurrent_Type (F_Typ)
4013 or else Is_Concurrent_Record_Type (F_Typ))
4014 then
4015 -- If the actual is overloaded, look for an interpretation
4016 -- that has a synchronized type.
4018 if not Is_Overloaded (A) then
4019 A_Typ := Base_Type (Etype (A));
4021 else
4022 declare
4023 Index : Interp_Index;
4024 It : Interp;
4026 begin
4027 Get_First_Interp (A, Index, It);
4028 while Present (It.Typ) loop
4029 if Is_Concurrent_Type (It.Typ)
4030 or else Is_Concurrent_Record_Type (It.Typ)
4031 then
4032 A_Typ := Base_Type (It.Typ);
4033 exit;
4034 end if;
4036 Get_Next_Interp (Index, It);
4037 end loop;
4038 end;
4039 end if;
4041 declare
4042 Full_A_Typ : Entity_Id;
4044 begin
4045 if Present (Full_View (A_Typ)) then
4046 Full_A_Typ := Base_Type (Full_View (A_Typ));
4047 else
4048 Full_A_Typ := A_Typ;
4049 end if;
4051 -- Tagged synchronized type (case 1): the actual is a
4052 -- concurrent type.
4054 if Is_Concurrent_Type (A_Typ)
4055 and then Corresponding_Record_Type (A_Typ) = F_Typ
4056 then
4057 Rewrite (A,
4058 Unchecked_Convert_To
4059 (Corresponding_Record_Type (A_Typ), A));
4060 Resolve (A, Etype (F));
4062 -- Tagged synchronized type (case 2): the formal is a
4063 -- concurrent type.
4065 elsif Ekind (Full_A_Typ) = E_Record_Type
4066 and then Present
4067 (Corresponding_Concurrent_Type (Full_A_Typ))
4068 and then Is_Concurrent_Type (F_Typ)
4069 and then Present (Corresponding_Record_Type (F_Typ))
4070 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4071 then
4072 Resolve (A, Corresponding_Record_Type (F_Typ));
4074 -- Common case
4076 else
4077 Resolve (A, Etype (F));
4078 end if;
4079 end;
4081 -- Not a synchronized operation
4083 else
4084 Resolve (A, Etype (F));
4085 end if;
4086 end if;
4088 A_Typ := Etype (A);
4089 F_Typ := Etype (F);
4091 -- An actual cannot be an untagged formal incomplete type
4093 if Ekind (A_Typ) = E_Incomplete_Type
4094 and then not Is_Tagged_Type (A_Typ)
4095 and then Is_Generic_Type (A_Typ)
4096 then
4097 Error_Msg_N
4098 ("invalid use of untagged formal incomplete type", A);
4099 end if;
4101 if Comes_From_Source (Original_Node (N))
4102 and then Nkind_In (Original_Node (N), N_Function_Call,
4103 N_Procedure_Call_Statement)
4104 then
4105 -- In formal mode, check that actual parameters matching
4106 -- formals of tagged types are objects (or ancestor type
4107 -- conversions of objects), not general expressions.
4109 if Is_Actual_Tagged_Parameter (A) then
4110 if Is_SPARK_05_Object_Reference (A) then
4111 null;
4113 elsif Nkind (A) = N_Type_Conversion then
4114 declare
4115 Operand : constant Node_Id := Expression (A);
4116 Operand_Typ : constant Entity_Id := Etype (Operand);
4117 Target_Typ : constant Entity_Id := A_Typ;
4119 begin
4120 if not Is_SPARK_05_Object_Reference (Operand) then
4121 Check_SPARK_05_Restriction
4122 ("object required", Operand);
4124 -- In formal mode, the only view conversions are those
4125 -- involving ancestor conversion of an extended type.
4127 elsif not
4128 (Is_Tagged_Type (Target_Typ)
4129 and then not Is_Class_Wide_Type (Target_Typ)
4130 and then Is_Tagged_Type (Operand_Typ)
4131 and then not Is_Class_Wide_Type (Operand_Typ)
4132 and then Is_Ancestor (Target_Typ, Operand_Typ))
4133 then
4134 if Ekind_In
4135 (F, E_Out_Parameter, E_In_Out_Parameter)
4136 then
4137 Check_SPARK_05_Restriction
4138 ("ancestor conversion is the only permitted "
4139 & "view conversion", A);
4140 else
4141 Check_SPARK_05_Restriction
4142 ("ancestor conversion required", A);
4143 end if;
4145 else
4146 null;
4147 end if;
4148 end;
4150 else
4151 Check_SPARK_05_Restriction ("object required", A);
4152 end if;
4154 -- In formal mode, the only view conversions are those
4155 -- involving ancestor conversion of an extended type.
4157 elsif Nkind (A) = N_Type_Conversion
4158 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4159 then
4160 Check_SPARK_05_Restriction
4161 ("ancestor conversion is the only permitted view "
4162 & "conversion", A);
4163 end if;
4164 end if;
4166 -- has warnings suppressed, then we reset Never_Set_In_Source for
4167 -- the calling entity. The reason for this is to catch cases like
4168 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4169 -- uses trickery to modify an IN parameter.
4171 if Ekind (F) = E_In_Parameter
4172 and then Is_Entity_Name (A)
4173 and then Present (Entity (A))
4174 and then Ekind (Entity (A)) = E_Variable
4175 and then Has_Warnings_Off (F_Typ)
4176 then
4177 Set_Never_Set_In_Source (Entity (A), False);
4178 end if;
4180 -- Perform error checks for IN and IN OUT parameters
4182 if Ekind (F) /= E_Out_Parameter then
4184 -- Check unset reference. For scalar parameters, it is clearly
4185 -- wrong to pass an uninitialized value as either an IN or
4186 -- IN-OUT parameter. For composites, it is also clearly an
4187 -- error to pass a completely uninitialized value as an IN
4188 -- parameter, but the case of IN OUT is trickier. We prefer
4189 -- not to give a warning here. For example, suppose there is
4190 -- a routine that sets some component of a record to False.
4191 -- It is perfectly reasonable to make this IN-OUT and allow
4192 -- either initialized or uninitialized records to be passed
4193 -- in this case.
4195 -- For partially initialized composite values, we also avoid
4196 -- warnings, since it is quite likely that we are passing a
4197 -- partially initialized value and only the initialized fields
4198 -- will in fact be read in the subprogram.
4200 if Is_Scalar_Type (A_Typ)
4201 or else (Ekind (F) = E_In_Parameter
4202 and then not Is_Partially_Initialized_Type (A_Typ))
4203 then
4204 Check_Unset_Reference (A);
4205 end if;
4207 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4208 -- actual to a nested call, since this constitutes a reading of
4209 -- the parameter, which is not allowed.
4211 if Ada_Version = Ada_83
4212 and then Is_Entity_Name (A)
4213 and then Ekind (Entity (A)) = E_Out_Parameter
4214 then
4215 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4216 end if;
4217 end if;
4219 -- In -gnatd.q mode, forget that a given array is constant when
4220 -- it is passed as an IN parameter to a foreign-convention
4221 -- subprogram. This is in case the subprogram evilly modifies the
4222 -- object. Of course, correct code would use IN OUT.
4224 if Debug_Flag_Dot_Q
4225 and then Ekind (F) = E_In_Parameter
4226 and then Has_Foreign_Convention (Nam)
4227 and then Is_Array_Type (F_Typ)
4228 and then Nkind (A) in N_Has_Entity
4229 and then Present (Entity (A))
4230 then
4231 Set_Is_True_Constant (Entity (A), False);
4232 end if;
4234 -- Case of OUT or IN OUT parameter
4236 if Ekind (F) /= E_In_Parameter then
4238 -- For an Out parameter, check for useless assignment. Note
4239 -- that we can't set Last_Assignment this early, because we may
4240 -- kill current values in Resolve_Call, and that call would
4241 -- clobber the Last_Assignment field.
4243 -- Note: call Warn_On_Useless_Assignment before doing the check
4244 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4245 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4246 -- reflects the last assignment, not this one.
4248 if Ekind (F) = E_Out_Parameter then
4249 if Warn_On_Modified_As_Out_Parameter (F)
4250 and then Is_Entity_Name (A)
4251 and then Present (Entity (A))
4252 and then Comes_From_Source (N)
4253 then
4254 Warn_On_Useless_Assignment (Entity (A), A);
4255 end if;
4256 end if;
4258 -- Validate the form of the actual. Note that the call to
4259 -- Is_OK_Variable_For_Out_Formal generates the required
4260 -- reference in this case.
4262 -- A call to an initialization procedure for an aggregate
4263 -- component may initialize a nested component of a constant
4264 -- designated object. In this context the object is variable.
4266 if not Is_OK_Variable_For_Out_Formal (A)
4267 and then not Is_Init_Proc (Nam)
4268 then
4269 Error_Msg_NE ("actual for& must be a variable", A, F);
4271 if Is_Subprogram (Current_Scope) then
4272 if Is_Invariant_Procedure (Current_Scope)
4273 or else Is_Partial_Invariant_Procedure (Current_Scope)
4274 then
4275 Error_Msg_N
4276 ("function used in invariant cannot modify its "
4277 & "argument", F);
4279 elsif Is_Predicate_Function (Current_Scope) then
4280 Error_Msg_N
4281 ("function used in predicate cannot modify its "
4282 & "argument", F);
4283 end if;
4284 end if;
4285 end if;
4287 -- What's the following about???
4289 if Is_Entity_Name (A) then
4290 Kill_Checks (Entity (A));
4291 else
4292 Kill_All_Checks;
4293 end if;
4294 end if;
4296 if Etype (A) = Any_Type then
4297 Set_Etype (N, Any_Type);
4298 return;
4299 end if;
4301 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4303 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4305 -- Apply predicate tests except in certain special cases. Note
4306 -- that it might be more consistent to apply these only when
4307 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4308 -- for the outbound predicate tests ??? In any case indicate
4309 -- the function being called, for better warnings if the call
4310 -- leads to an infinite recursion.
4312 if Predicate_Tests_On_Arguments (Nam) then
4313 Apply_Predicate_Check (A, F_Typ, Nam);
4314 end if;
4316 -- Apply required constraint checks
4318 -- Gigi looks at the check flag and uses the appropriate types.
4319 -- For now since one flag is used there is an optimization
4320 -- which might not be done in the IN OUT case since Gigi does
4321 -- not do any analysis. More thought required about this ???
4323 -- In fact is this comment obsolete??? doesn't the expander now
4324 -- generate all these tests anyway???
4326 if Is_Scalar_Type (Etype (A)) then
4327 Apply_Scalar_Range_Check (A, F_Typ);
4329 elsif Is_Array_Type (Etype (A)) then
4330 Apply_Length_Check (A, F_Typ);
4332 elsif Is_Record_Type (F_Typ)
4333 and then Has_Discriminants (F_Typ)
4334 and then Is_Constrained (F_Typ)
4335 and then (not Is_Derived_Type (F_Typ)
4336 or else Comes_From_Source (Nam))
4337 then
4338 Apply_Discriminant_Check (A, F_Typ);
4340 -- For view conversions of a discriminated object, apply
4341 -- check to object itself, the conversion alreay has the
4342 -- proper type.
4344 if Nkind (A) = N_Type_Conversion
4345 and then Is_Constrained (Etype (Expression (A)))
4346 then
4347 Apply_Discriminant_Check (Expression (A), F_Typ);
4348 end if;
4350 elsif Is_Access_Type (F_Typ)
4351 and then Is_Array_Type (Designated_Type (F_Typ))
4352 and then Is_Constrained (Designated_Type (F_Typ))
4353 then
4354 Apply_Length_Check (A, F_Typ);
4356 elsif Is_Access_Type (F_Typ)
4357 and then Has_Discriminants (Designated_Type (F_Typ))
4358 and then Is_Constrained (Designated_Type (F_Typ))
4359 then
4360 Apply_Discriminant_Check (A, F_Typ);
4362 else
4363 Apply_Range_Check (A, F_Typ);
4364 end if;
4366 -- Ada 2005 (AI-231): Note that the controlling parameter case
4367 -- already existed in Ada 95, which is partially checked
4368 -- elsewhere (see Checks), and we don't want the warning
4369 -- message to differ.
4371 if Is_Access_Type (F_Typ)
4372 and then Can_Never_Be_Null (F_Typ)
4373 and then Known_Null (A)
4374 then
4375 if Is_Controlling_Formal (F) then
4376 Apply_Compile_Time_Constraint_Error
4377 (N => A,
4378 Msg => "null value not allowed here??",
4379 Reason => CE_Access_Check_Failed);
4381 elsif Ada_Version >= Ada_2005 then
4382 Apply_Compile_Time_Constraint_Error
4383 (N => A,
4384 Msg => "(Ada 2005) null not allowed in "
4385 & "null-excluding formal??",
4386 Reason => CE_Null_Not_Allowed);
4387 end if;
4388 end if;
4389 end if;
4391 -- Checks for OUT parameters and IN OUT parameters
4393 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4395 -- If there is a type conversion, make sure the return value
4396 -- meets the constraints of the variable before the conversion.
4398 if Nkind (A) = N_Type_Conversion then
4399 if Is_Scalar_Type (A_Typ) then
4400 Apply_Scalar_Range_Check
4401 (Expression (A), Etype (Expression (A)), A_Typ);
4403 -- In addition, the returned value of the parameter must
4404 -- satisfy the bounds of the object type (see comment
4405 -- below).
4407 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4409 else
4410 Apply_Range_Check
4411 (Expression (A), Etype (Expression (A)), A_Typ);
4412 end if;
4414 -- If no conversion, apply scalar range checks and length check
4415 -- based on the subtype of the actual (NOT that of the formal).
4416 -- This indicates that the check takes place on return from the
4417 -- call. During expansion the required constraint checks are
4418 -- inserted. In GNATprove mode, in the absence of expansion,
4419 -- the flag indicates that the returned value is valid.
4421 else
4422 if Is_Scalar_Type (F_Typ) then
4423 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4425 elsif Is_Array_Type (F_Typ)
4426 and then Ekind (F) = E_Out_Parameter
4427 then
4428 Apply_Length_Check (A, F_Typ);
4429 else
4430 Apply_Range_Check (A, A_Typ, F_Typ);
4431 end if;
4432 end if;
4434 -- Note: we do not apply the predicate checks for the case of
4435 -- OUT and IN OUT parameters. They are instead applied in the
4436 -- Expand_Actuals routine in Exp_Ch6.
4437 end if;
4439 -- An actual associated with an access parameter is implicitly
4440 -- converted to the anonymous access type of the formal and must
4441 -- satisfy the legality checks for access conversions.
4443 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4444 if not Valid_Conversion (A, F_Typ, A) then
4445 Error_Msg_N
4446 ("invalid implicit conversion for access parameter", A);
4447 end if;
4449 -- If the actual is an access selected component of a variable,
4450 -- the call may modify its designated object. It is reasonable
4451 -- to treat this as a potential modification of the enclosing
4452 -- record, to prevent spurious warnings that it should be
4453 -- declared as a constant, because intuitively programmers
4454 -- regard the designated subcomponent as part of the record.
4456 if Nkind (A) = N_Selected_Component
4457 and then Is_Entity_Name (Prefix (A))
4458 and then not Is_Constant_Object (Entity (Prefix (A)))
4459 then
4460 Note_Possible_Modification (A, Sure => False);
4461 end if;
4462 end if;
4464 -- Check bad case of atomic/volatile argument (RM C.6(12))
4466 if Is_By_Reference_Type (Etype (F))
4467 and then Comes_From_Source (N)
4468 then
4469 if Is_Atomic_Object (A)
4470 and then not Is_Atomic (Etype (F))
4471 then
4472 Error_Msg_NE
4473 ("cannot pass atomic argument to non-atomic formal&",
4474 A, F);
4476 elsif Is_Volatile_Object (A)
4477 and then not Is_Volatile (Etype (F))
4478 then
4479 Error_Msg_NE
4480 ("cannot pass volatile argument to non-volatile formal&",
4481 A, F);
4482 end if;
4483 end if;
4485 -- Check that subprograms don't have improper controlling
4486 -- arguments (RM 3.9.2 (9)).
4488 -- A primitive operation may have an access parameter of an
4489 -- incomplete tagged type, but a dispatching call is illegal
4490 -- if the type is still incomplete.
4492 if Is_Controlling_Formal (F) then
4493 Set_Is_Controlling_Actual (A);
4495 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4496 declare
4497 Desig : constant Entity_Id := Designated_Type (Etype (F));
4498 begin
4499 if Ekind (Desig) = E_Incomplete_Type
4500 and then No (Full_View (Desig))
4501 and then No (Non_Limited_View (Desig))
4502 then
4503 Error_Msg_NE
4504 ("premature use of incomplete type& "
4505 & "in dispatching call", A, Desig);
4506 end if;
4507 end;
4508 end if;
4510 elsif Nkind (A) = N_Explicit_Dereference then
4511 Validate_Remote_Access_To_Class_Wide_Type (A);
4512 end if;
4514 -- Apply legality rule 3.9.2 (9/1)
4516 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4517 and then not Is_Class_Wide_Type (F_Typ)
4518 and then not Is_Controlling_Formal (F)
4519 and then not In_Instance
4520 then
4521 Error_Msg_N ("class-wide argument not allowed here!", A);
4523 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4524 Error_Msg_Node_2 := F_Typ;
4525 Error_Msg_NE
4526 ("& is not a dispatching operation of &!", A, Nam);
4527 end if;
4529 -- Apply the checks described in 3.10.2(27): if the context is a
4530 -- specific access-to-object, the actual cannot be class-wide.
4531 -- Use base type to exclude access_to_subprogram cases.
4533 elsif Is_Access_Type (A_Typ)
4534 and then Is_Access_Type (F_Typ)
4535 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4536 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4537 or else (Nkind (A) = N_Attribute_Reference
4538 and then
4539 Is_Class_Wide_Type (Etype (Prefix (A)))))
4540 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4541 and then not Is_Controlling_Formal (F)
4543 -- Disable these checks for call to imported C++ subprograms
4545 and then not
4546 (Is_Entity_Name (Name (N))
4547 and then Is_Imported (Entity (Name (N)))
4548 and then Convention (Entity (Name (N))) = Convention_CPP)
4549 then
4550 Error_Msg_N
4551 ("access to class-wide argument not allowed here!", A);
4553 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4554 Error_Msg_Node_2 := Designated_Type (F_Typ);
4555 Error_Msg_NE
4556 ("& is not a dispatching operation of &!", A, Nam);
4557 end if;
4558 end if;
4560 Check_Aliased_Parameter;
4562 Eval_Actual (A);
4564 -- If it is a named association, treat the selector_name as a
4565 -- proper identifier, and mark the corresponding entity.
4567 if Nkind (Parent (A)) = N_Parameter_Association
4569 -- Ignore reference in SPARK mode, as it refers to an entity not
4570 -- in scope at the point of reference, so the reference should
4571 -- be ignored for computing effects of subprograms.
4573 and then not GNATprove_Mode
4574 then
4575 -- If subprogram is overridden, use name of formal that
4576 -- is being called.
4578 if Present (Real_Subp) then
4579 Set_Entity (Selector_Name (Parent (A)), Real_F);
4580 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4582 else
4583 Set_Entity (Selector_Name (Parent (A)), F);
4584 Generate_Reference (F, Selector_Name (Parent (A)));
4585 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4586 Generate_Reference (F_Typ, N, ' ');
4587 end if;
4588 end if;
4590 Prev := A;
4592 if Ekind (F) /= E_Out_Parameter then
4593 Check_Unset_Reference (A);
4594 end if;
4596 -- The following checks are only relevant when SPARK_Mode is on as
4597 -- they are not standard Ada legality rule. Internally generated
4598 -- temporaries are ignored.
4600 if SPARK_Mode = On and then Comes_From_Source (A) then
4602 -- An effectively volatile object may act as an actual when the
4603 -- corresponding formal is of a non-scalar effectively volatile
4604 -- type (SPARK RM 7.1.3(11)).
4606 if not Is_Scalar_Type (Etype (F))
4607 and then Is_Effectively_Volatile (Etype (F))
4608 then
4609 null;
4611 -- An effectively volatile object may act as an actual in a
4612 -- call to an instance of Unchecked_Conversion.
4613 -- (SPARK RM 7.1.3(11)).
4615 elsif Is_Unchecked_Conversion_Instance (Nam) then
4616 null;
4618 -- The actual denotes an object
4620 elsif Is_Effectively_Volatile_Object (A) then
4621 Error_Msg_N
4622 ("volatile object cannot act as actual in a call (SPARK "
4623 & "RM 7.1.3(11))", A);
4625 -- Otherwise the actual denotes an expression. Inspect the
4626 -- expression and flag each effectively volatile object with
4627 -- enabled property Async_Writers or Effective_Reads as illegal
4628 -- because it apprears within an interfering context. Note that
4629 -- this is usually done in Resolve_Entity_Name, but when the
4630 -- effectively volatile object appears as an actual in a call,
4631 -- the call must be resolved first.
4633 else
4634 Flag_Effectively_Volatile_Objects (A);
4635 end if;
4637 -- An effectively volatile variable cannot act as an actual
4638 -- parameter in a procedure call when the variable has enabled
4639 -- property Effective_Reads and the corresponding formal is of
4640 -- mode IN (SPARK RM 7.1.3(10)).
4642 if Ekind (Nam) = E_Procedure
4643 and then Ekind (F) = E_In_Parameter
4644 and then Is_Entity_Name (A)
4645 then
4646 A_Id := Entity (A);
4648 if Ekind (A_Id) = E_Variable
4649 and then Is_Effectively_Volatile (Etype (A_Id))
4650 and then Effective_Reads_Enabled (A_Id)
4651 then
4652 Error_Msg_NE
4653 ("effectively volatile variable & cannot appear as "
4654 & "actual in procedure call", A, A_Id);
4656 Error_Msg_Name_1 := Name_Effective_Reads;
4657 Error_Msg_N ("\\variable has enabled property %", A);
4658 Error_Msg_N ("\\corresponding formal has mode IN", A);
4659 end if;
4660 end if;
4661 end if;
4663 -- A formal parameter of a specific tagged type whose related
4664 -- subprogram is subject to pragma Extensions_Visible with value
4665 -- "False" cannot act as an actual in a subprogram with value
4666 -- "True" (SPARK RM 6.1.7(3)).
4668 if Is_EVF_Expression (A)
4669 and then Extensions_Visible_Status (Nam) =
4670 Extensions_Visible_True
4671 then
4672 Error_Msg_N
4673 ("formal parameter cannot act as actual parameter when "
4674 & "Extensions_Visible is False", A);
4675 Error_Msg_NE
4676 ("\subprogram & has Extensions_Visible True", A, Nam);
4677 end if;
4679 -- The actual parameter of a Ghost subprogram whose formal is of
4680 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4682 if Comes_From_Source (Nam)
4683 and then Is_Ghost_Entity (Nam)
4684 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4685 and then Is_Entity_Name (A)
4686 and then Present (Entity (A))
4687 and then not Is_Ghost_Entity (Entity (A))
4688 then
4689 Error_Msg_NE
4690 ("non-ghost variable & cannot appear as actual in call to "
4691 & "ghost procedure", A, Entity (A));
4693 if Ekind (F) = E_In_Out_Parameter then
4694 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4695 else
4696 Error_Msg_N ("\corresponding formal has mode OUT", A);
4697 end if;
4698 end if;
4700 Next_Actual (A);
4702 -- Case where actual is not present
4704 else
4705 Insert_Default;
4706 end if;
4708 Next_Formal (F);
4710 if Present (Real_Subp) then
4711 Next_Formal (Real_F);
4712 end if;
4713 end loop;
4714 end Resolve_Actuals;
4716 -----------------------
4717 -- Resolve_Allocator --
4718 -----------------------
4720 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4721 Desig_T : constant Entity_Id := Designated_Type (Typ);
4722 E : constant Node_Id := Expression (N);
4723 Subtyp : Entity_Id;
4724 Discrim : Entity_Id;
4725 Constr : Node_Id;
4726 Aggr : Node_Id;
4727 Assoc : Node_Id := Empty;
4728 Disc_Exp : Node_Id;
4730 procedure Check_Allocator_Discrim_Accessibility
4731 (Disc_Exp : Node_Id;
4732 Alloc_Typ : Entity_Id);
4733 -- Check that accessibility level associated with an access discriminant
4734 -- initialized in an allocator by the expression Disc_Exp is not deeper
4735 -- than the level of the allocator type Alloc_Typ. An error message is
4736 -- issued if this condition is violated. Specialized checks are done for
4737 -- the cases of a constraint expression which is an access attribute or
4738 -- an access discriminant.
4740 function In_Dispatching_Context return Boolean;
4741 -- If the allocator is an actual in a call, it is allowed to be class-
4742 -- wide when the context is not because it is a controlling actual.
4744 -------------------------------------------
4745 -- Check_Allocator_Discrim_Accessibility --
4746 -------------------------------------------
4748 procedure Check_Allocator_Discrim_Accessibility
4749 (Disc_Exp : Node_Id;
4750 Alloc_Typ : Entity_Id)
4752 begin
4753 if Type_Access_Level (Etype (Disc_Exp)) >
4754 Deepest_Type_Access_Level (Alloc_Typ)
4755 then
4756 Error_Msg_N
4757 ("operand type has deeper level than allocator type", Disc_Exp);
4759 -- When the expression is an Access attribute the level of the prefix
4760 -- object must not be deeper than that of the allocator's type.
4762 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4763 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4764 Attribute_Access
4765 and then Object_Access_Level (Prefix (Disc_Exp)) >
4766 Deepest_Type_Access_Level (Alloc_Typ)
4767 then
4768 Error_Msg_N
4769 ("prefix of attribute has deeper level than allocator type",
4770 Disc_Exp);
4772 -- When the expression is an access discriminant the check is against
4773 -- the level of the prefix object.
4775 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4776 and then Nkind (Disc_Exp) = N_Selected_Component
4777 and then Object_Access_Level (Prefix (Disc_Exp)) >
4778 Deepest_Type_Access_Level (Alloc_Typ)
4779 then
4780 Error_Msg_N
4781 ("access discriminant has deeper level than allocator type",
4782 Disc_Exp);
4784 -- All other cases are legal
4786 else
4787 null;
4788 end if;
4789 end Check_Allocator_Discrim_Accessibility;
4791 ----------------------------
4792 -- In_Dispatching_Context --
4793 ----------------------------
4795 function In_Dispatching_Context return Boolean is
4796 Par : constant Node_Id := Parent (N);
4798 begin
4799 return Nkind (Par) in N_Subprogram_Call
4800 and then Is_Entity_Name (Name (Par))
4801 and then Is_Dispatching_Operation (Entity (Name (Par)));
4802 end In_Dispatching_Context;
4804 -- Start of processing for Resolve_Allocator
4806 begin
4807 -- Replace general access with specific type
4809 if Ekind (Etype (N)) = E_Allocator_Type then
4810 Set_Etype (N, Base_Type (Typ));
4811 end if;
4813 if Is_Abstract_Type (Typ) then
4814 Error_Msg_N ("type of allocator cannot be abstract", N);
4815 end if;
4817 -- For qualified expression, resolve the expression using the given
4818 -- subtype (nothing to do for type mark, subtype indication)
4820 if Nkind (E) = N_Qualified_Expression then
4821 if Is_Class_Wide_Type (Etype (E))
4822 and then not Is_Class_Wide_Type (Desig_T)
4823 and then not In_Dispatching_Context
4824 then
4825 Error_Msg_N
4826 ("class-wide allocator not allowed for this access type", N);
4827 end if;
4829 Resolve (Expression (E), Etype (E));
4830 Check_Non_Static_Context (Expression (E));
4831 Check_Unset_Reference (Expression (E));
4833 -- Allocators generated by the build-in-place expansion mechanism
4834 -- are explicitly marked as coming from source but do not need to be
4835 -- checked for limited initialization. To exclude this case, ensure
4836 -- that the parent of the allocator is a source node.
4838 if Is_Limited_Type (Etype (E))
4839 and then Comes_From_Source (N)
4840 and then Comes_From_Source (Parent (N))
4841 and then not In_Instance_Body
4842 then
4843 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4844 if Nkind (Parent (N)) = N_Assignment_Statement then
4845 Error_Msg_N
4846 ("illegal expression for initialized allocator of a "
4847 & "limited type (RM 7.5 (2.7/2))", N);
4848 else
4849 Error_Msg_N
4850 ("initialization not allowed for limited types", N);
4851 end if;
4853 Explain_Limited_Type (Etype (E), N);
4854 end if;
4855 end if;
4857 -- A qualified expression requires an exact match of the type. Class-
4858 -- wide matching is not allowed.
4860 if (Is_Class_Wide_Type (Etype (Expression (E)))
4861 or else Is_Class_Wide_Type (Etype (E)))
4862 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4863 then
4864 Wrong_Type (Expression (E), Etype (E));
4865 end if;
4867 -- Calls to build-in-place functions are not currently supported in
4868 -- allocators for access types associated with a simple storage pool.
4869 -- Supporting such allocators may require passing additional implicit
4870 -- parameters to build-in-place functions (or a significant revision
4871 -- of the current b-i-p implementation to unify the handling for
4872 -- multiple kinds of storage pools). ???
4874 if Is_Limited_View (Desig_T)
4875 and then Nkind (Expression (E)) = N_Function_Call
4876 then
4877 declare
4878 Pool : constant Entity_Id :=
4879 Associated_Storage_Pool (Root_Type (Typ));
4880 begin
4881 if Present (Pool)
4882 and then
4883 Present (Get_Rep_Pragma
4884 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4885 then
4886 Error_Msg_N
4887 ("limited function calls not yet supported in simple "
4888 & "storage pool allocators", Expression (E));
4889 end if;
4890 end;
4891 end if;
4893 -- A special accessibility check is needed for allocators that
4894 -- constrain access discriminants. The level of the type of the
4895 -- expression used to constrain an access discriminant cannot be
4896 -- deeper than the type of the allocator (in contrast to access
4897 -- parameters, where the level of the actual can be arbitrary).
4899 -- We can't use Valid_Conversion to perform this check because in
4900 -- general the type of the allocator is unrelated to the type of
4901 -- the access discriminant.
4903 if Ekind (Typ) /= E_Anonymous_Access_Type
4904 or else Is_Local_Anonymous_Access (Typ)
4905 then
4906 Subtyp := Entity (Subtype_Mark (E));
4908 Aggr := Original_Node (Expression (E));
4910 if Has_Discriminants (Subtyp)
4911 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4912 then
4913 Discrim := First_Discriminant (Base_Type (Subtyp));
4915 -- Get the first component expression of the aggregate
4917 if Present (Expressions (Aggr)) then
4918 Disc_Exp := First (Expressions (Aggr));
4920 elsif Present (Component_Associations (Aggr)) then
4921 Assoc := First (Component_Associations (Aggr));
4923 if Present (Assoc) then
4924 Disc_Exp := Expression (Assoc);
4925 else
4926 Disc_Exp := Empty;
4927 end if;
4929 else
4930 Disc_Exp := Empty;
4931 end if;
4933 while Present (Discrim) and then Present (Disc_Exp) loop
4934 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4935 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4936 end if;
4938 Next_Discriminant (Discrim);
4940 if Present (Discrim) then
4941 if Present (Assoc) then
4942 Next (Assoc);
4943 Disc_Exp := Expression (Assoc);
4945 elsif Present (Next (Disc_Exp)) then
4946 Next (Disc_Exp);
4948 else
4949 Assoc := First (Component_Associations (Aggr));
4951 if Present (Assoc) then
4952 Disc_Exp := Expression (Assoc);
4953 else
4954 Disc_Exp := Empty;
4955 end if;
4956 end if;
4957 end if;
4958 end loop;
4959 end if;
4960 end if;
4962 -- For a subtype mark or subtype indication, freeze the subtype
4964 else
4965 Freeze_Expression (E);
4967 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4968 Error_Msg_N
4969 ("initialization required for access-to-constant allocator", N);
4970 end if;
4972 -- A special accessibility check is needed for allocators that
4973 -- constrain access discriminants. The level of the type of the
4974 -- expression used to constrain an access discriminant cannot be
4975 -- deeper than the type of the allocator (in contrast to access
4976 -- parameters, where the level of the actual can be arbitrary).
4977 -- We can't use Valid_Conversion to perform this check because
4978 -- in general the type of the allocator is unrelated to the type
4979 -- of the access discriminant.
4981 if Nkind (Original_Node (E)) = N_Subtype_Indication
4982 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4983 or else Is_Local_Anonymous_Access (Typ))
4984 then
4985 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4987 if Has_Discriminants (Subtyp) then
4988 Discrim := First_Discriminant (Base_Type (Subtyp));
4989 Constr := First (Constraints (Constraint (Original_Node (E))));
4990 while Present (Discrim) and then Present (Constr) loop
4991 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4992 if Nkind (Constr) = N_Discriminant_Association then
4993 Disc_Exp := Original_Node (Expression (Constr));
4994 else
4995 Disc_Exp := Original_Node (Constr);
4996 end if;
4998 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4999 end if;
5001 Next_Discriminant (Discrim);
5002 Next (Constr);
5003 end loop;
5004 end if;
5005 end if;
5006 end if;
5008 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5009 -- check that the level of the type of the created object is not deeper
5010 -- than the level of the allocator's access type, since extensions can
5011 -- now occur at deeper levels than their ancestor types. This is a
5012 -- static accessibility level check; a run-time check is also needed in
5013 -- the case of an initialized allocator with a class-wide argument (see
5014 -- Expand_Allocator_Expression).
5016 if Ada_Version >= Ada_2005
5017 and then Is_Class_Wide_Type (Desig_T)
5018 then
5019 declare
5020 Exp_Typ : Entity_Id;
5022 begin
5023 if Nkind (E) = N_Qualified_Expression then
5024 Exp_Typ := Etype (E);
5025 elsif Nkind (E) = N_Subtype_Indication then
5026 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5027 else
5028 Exp_Typ := Entity (E);
5029 end if;
5031 if Type_Access_Level (Exp_Typ) >
5032 Deepest_Type_Access_Level (Typ)
5033 then
5034 if In_Instance_Body then
5035 Error_Msg_Warn := SPARK_Mode /= On;
5036 Error_Msg_N
5037 ("type in allocator has deeper level than "
5038 & "designated class-wide type<<", E);
5039 Error_Msg_N ("\Program_Error [<<", E);
5040 Rewrite (N,
5041 Make_Raise_Program_Error (Sloc (N),
5042 Reason => PE_Accessibility_Check_Failed));
5043 Set_Etype (N, Typ);
5045 -- Do not apply Ada 2005 accessibility checks on a class-wide
5046 -- allocator if the type given in the allocator is a formal
5047 -- type. A run-time check will be performed in the instance.
5049 elsif not Is_Generic_Type (Exp_Typ) then
5050 Error_Msg_N ("type in allocator has deeper level than "
5051 & "designated class-wide type", E);
5052 end if;
5053 end if;
5054 end;
5055 end if;
5057 -- Check for allocation from an empty storage pool
5059 if No_Pool_Assigned (Typ) then
5060 Error_Msg_N ("allocation from empty storage pool!", N);
5062 -- If the context is an unchecked conversion, as may happen within an
5063 -- inlined subprogram, the allocator is being resolved with its own
5064 -- anonymous type. In that case, if the target type has a specific
5065 -- storage pool, it must be inherited explicitly by the allocator type.
5067 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5068 and then No (Associated_Storage_Pool (Typ))
5069 then
5070 Set_Associated_Storage_Pool
5071 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5072 end if;
5074 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5075 Check_Restriction (No_Anonymous_Allocators, N);
5076 end if;
5078 -- Check that an allocator with task parts isn't for a nested access
5079 -- type when restriction No_Task_Hierarchy applies.
5081 if not Is_Library_Level_Entity (Base_Type (Typ))
5082 and then Has_Task (Base_Type (Desig_T))
5083 then
5084 Check_Restriction (No_Task_Hierarchy, N);
5085 end if;
5087 -- An illegal allocator may be rewritten as a raise Program_Error
5088 -- statement.
5090 if Nkind (N) = N_Allocator then
5092 -- An anonymous access discriminant is the definition of a
5093 -- coextension.
5095 if Ekind (Typ) = E_Anonymous_Access_Type
5096 and then Nkind (Associated_Node_For_Itype (Typ)) =
5097 N_Discriminant_Specification
5098 then
5099 declare
5100 Discr : constant Entity_Id :=
5101 Defining_Identifier (Associated_Node_For_Itype (Typ));
5103 begin
5104 Check_Restriction (No_Coextensions, N);
5106 -- Ada 2012 AI05-0052: If the designated type of the allocator
5107 -- is limited, then the allocator shall not be used to define
5108 -- the value of an access discriminant unless the discriminated
5109 -- type is immutably limited.
5111 if Ada_Version >= Ada_2012
5112 and then Is_Limited_Type (Desig_T)
5113 and then not Is_Limited_View (Scope (Discr))
5114 then
5115 Error_Msg_N
5116 ("only immutably limited types can have anonymous "
5117 & "access discriminants designating a limited type", N);
5118 end if;
5119 end;
5121 -- Avoid marking an allocator as a dynamic coextension if it is
5122 -- within a static construct.
5124 if not Is_Static_Coextension (N) then
5125 Set_Is_Dynamic_Coextension (N);
5126 end if;
5128 -- Cleanup for potential static coextensions
5130 else
5131 Set_Is_Dynamic_Coextension (N, False);
5132 Set_Is_Static_Coextension (N, False);
5133 end if;
5134 end if;
5136 -- Report a simple error: if the designated object is a local task,
5137 -- its body has not been seen yet, and its activation will fail an
5138 -- elaboration check.
5140 if Is_Task_Type (Desig_T)
5141 and then Scope (Base_Type (Desig_T)) = Current_Scope
5142 and then Is_Compilation_Unit (Current_Scope)
5143 and then Ekind (Current_Scope) = E_Package
5144 and then not In_Package_Body (Current_Scope)
5145 then
5146 Error_Msg_Warn := SPARK_Mode /= On;
5147 Error_Msg_N ("cannot activate task before body seen<<", N);
5148 Error_Msg_N ("\Program_Error [<<", N);
5149 end if;
5151 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5152 -- type with a task component on a subpool. This action must raise
5153 -- Program_Error at runtime.
5155 if Ada_Version >= Ada_2012
5156 and then Nkind (N) = N_Allocator
5157 and then Present (Subpool_Handle_Name (N))
5158 and then Has_Task (Desig_T)
5159 then
5160 Error_Msg_Warn := SPARK_Mode /= On;
5161 Error_Msg_N ("cannot allocate task on subpool<<", N);
5162 Error_Msg_N ("\Program_Error [<<", N);
5164 Rewrite (N,
5165 Make_Raise_Program_Error (Sloc (N),
5166 Reason => PE_Explicit_Raise));
5167 Set_Etype (N, Typ);
5168 end if;
5169 end Resolve_Allocator;
5171 ---------------------------
5172 -- Resolve_Arithmetic_Op --
5173 ---------------------------
5175 -- Used for resolving all arithmetic operators except exponentiation
5177 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5178 L : constant Node_Id := Left_Opnd (N);
5179 R : constant Node_Id := Right_Opnd (N);
5180 TL : constant Entity_Id := Base_Type (Etype (L));
5181 TR : constant Entity_Id := Base_Type (Etype (R));
5182 T : Entity_Id;
5183 Rop : Node_Id;
5185 B_Typ : constant Entity_Id := Base_Type (Typ);
5186 -- We do the resolution using the base type, because intermediate values
5187 -- in expressions always are of the base type, not a subtype of it.
5189 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5190 -- Returns True if N is in a context that expects "any real type"
5192 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5193 -- Return True iff given type is Integer or universal real/integer
5195 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5196 -- Choose type of integer literal in fixed-point operation to conform
5197 -- to available fixed-point type. T is the type of the other operand,
5198 -- which is needed to determine the expected type of N.
5200 procedure Set_Operand_Type (N : Node_Id);
5201 -- Set operand type to T if universal
5203 -------------------------------
5204 -- Expected_Type_Is_Any_Real --
5205 -------------------------------
5207 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5208 begin
5209 -- N is the expression after "delta" in a fixed_point_definition;
5210 -- see RM-3.5.9(6):
5212 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5213 N_Decimal_Fixed_Point_Definition,
5215 -- N is one of the bounds in a real_range_specification;
5216 -- see RM-3.5.7(5):
5218 N_Real_Range_Specification,
5220 -- N is the expression of a delta_constraint;
5221 -- see RM-J.3(3):
5223 N_Delta_Constraint);
5224 end Expected_Type_Is_Any_Real;
5226 -----------------------------
5227 -- Is_Integer_Or_Universal --
5228 -----------------------------
5230 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5231 T : Entity_Id;
5232 Index : Interp_Index;
5233 It : Interp;
5235 begin
5236 if not Is_Overloaded (N) then
5237 T := Etype (N);
5238 return Base_Type (T) = Base_Type (Standard_Integer)
5239 or else T = Universal_Integer
5240 or else T = Universal_Real;
5241 else
5242 Get_First_Interp (N, Index, It);
5243 while Present (It.Typ) loop
5244 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5245 or else It.Typ = Universal_Integer
5246 or else It.Typ = Universal_Real
5247 then
5248 return True;
5249 end if;
5251 Get_Next_Interp (Index, It);
5252 end loop;
5253 end if;
5255 return False;
5256 end Is_Integer_Or_Universal;
5258 ----------------------------
5259 -- Set_Mixed_Mode_Operand --
5260 ----------------------------
5262 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5263 Index : Interp_Index;
5264 It : Interp;
5266 begin
5267 if Universal_Interpretation (N) = Universal_Integer then
5269 -- A universal integer literal is resolved as standard integer
5270 -- except in the case of a fixed-point result, where we leave it
5271 -- as universal (to be handled by Exp_Fixd later on)
5273 if Is_Fixed_Point_Type (T) then
5274 Resolve (N, Universal_Integer);
5275 else
5276 Resolve (N, Standard_Integer);
5277 end if;
5279 elsif Universal_Interpretation (N) = Universal_Real
5280 and then (T = Base_Type (Standard_Integer)
5281 or else T = Universal_Integer
5282 or else T = Universal_Real)
5283 then
5284 -- A universal real can appear in a fixed-type context. We resolve
5285 -- the literal with that context, even though this might raise an
5286 -- exception prematurely (the other operand may be zero).
5288 Resolve (N, B_Typ);
5290 elsif Etype (N) = Base_Type (Standard_Integer)
5291 and then T = Universal_Real
5292 and then Is_Overloaded (N)
5293 then
5294 -- Integer arg in mixed-mode operation. Resolve with universal
5295 -- type, in case preference rule must be applied.
5297 Resolve (N, Universal_Integer);
5299 elsif Etype (N) = T
5300 and then B_Typ /= Universal_Fixed
5301 then
5302 -- Not a mixed-mode operation, resolve with context
5304 Resolve (N, B_Typ);
5306 elsif Etype (N) = Any_Fixed then
5308 -- N may itself be a mixed-mode operation, so use context type
5310 Resolve (N, B_Typ);
5312 elsif Is_Fixed_Point_Type (T)
5313 and then B_Typ = Universal_Fixed
5314 and then Is_Overloaded (N)
5315 then
5316 -- Must be (fixed * fixed) operation, operand must have one
5317 -- compatible interpretation.
5319 Resolve (N, Any_Fixed);
5321 elsif Is_Fixed_Point_Type (B_Typ)
5322 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5323 and then Is_Overloaded (N)
5324 then
5325 -- C * F(X) in a fixed context, where C is a real literal or a
5326 -- fixed-point expression. F must have either a fixed type
5327 -- interpretation or an integer interpretation, but not both.
5329 Get_First_Interp (N, Index, It);
5330 while Present (It.Typ) loop
5331 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5332 if Analyzed (N) then
5333 Error_Msg_N ("ambiguous operand in fixed operation", N);
5334 else
5335 Resolve (N, Standard_Integer);
5336 end if;
5338 elsif Is_Fixed_Point_Type (It.Typ) then
5339 if Analyzed (N) then
5340 Error_Msg_N ("ambiguous operand in fixed operation", N);
5341 else
5342 Resolve (N, It.Typ);
5343 end if;
5344 end if;
5346 Get_Next_Interp (Index, It);
5347 end loop;
5349 -- Reanalyze the literal with the fixed type of the context. If
5350 -- context is Universal_Fixed, we are within a conversion, leave
5351 -- the literal as a universal real because there is no usable
5352 -- fixed type, and the target of the conversion plays no role in
5353 -- the resolution.
5355 declare
5356 Op2 : Node_Id;
5357 T2 : Entity_Id;
5359 begin
5360 if N = L then
5361 Op2 := R;
5362 else
5363 Op2 := L;
5364 end if;
5366 if B_Typ = Universal_Fixed
5367 and then Nkind (Op2) = N_Real_Literal
5368 then
5369 T2 := Universal_Real;
5370 else
5371 T2 := B_Typ;
5372 end if;
5374 Set_Analyzed (Op2, False);
5375 Resolve (Op2, T2);
5376 end;
5378 -- A universal real conditional expression can appear in a fixed-type
5379 -- context and must be resolved with that context to facilitate the
5380 -- code generation to the backend.
5382 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5383 and then Etype (N) = Universal_Real
5384 and then Is_Fixed_Point_Type (B_Typ)
5385 then
5386 Resolve (N, B_Typ);
5388 else
5389 Resolve (N);
5390 end if;
5391 end Set_Mixed_Mode_Operand;
5393 ----------------------
5394 -- Set_Operand_Type --
5395 ----------------------
5397 procedure Set_Operand_Type (N : Node_Id) is
5398 begin
5399 if Etype (N) = Universal_Integer
5400 or else Etype (N) = Universal_Real
5401 then
5402 Set_Etype (N, T);
5403 end if;
5404 end Set_Operand_Type;
5406 -- Start of processing for Resolve_Arithmetic_Op
5408 begin
5409 if Comes_From_Source (N)
5410 and then Ekind (Entity (N)) = E_Function
5411 and then Is_Imported (Entity (N))
5412 and then Is_Intrinsic_Subprogram (Entity (N))
5413 then
5414 Resolve_Intrinsic_Operator (N, Typ);
5415 return;
5417 -- Special-case for mixed-mode universal expressions or fixed point type
5418 -- operation: each argument is resolved separately. The same treatment
5419 -- is required if one of the operands of a fixed point operation is
5420 -- universal real, since in this case we don't do a conversion to a
5421 -- specific fixed-point type (instead the expander handles the case).
5423 -- Set the type of the node to its universal interpretation because
5424 -- legality checks on an exponentiation operand need the context.
5426 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5427 and then Present (Universal_Interpretation (L))
5428 and then Present (Universal_Interpretation (R))
5429 then
5430 Set_Etype (N, B_Typ);
5431 Resolve (L, Universal_Interpretation (L));
5432 Resolve (R, Universal_Interpretation (R));
5434 elsif (B_Typ = Universal_Real
5435 or else Etype (N) = Universal_Fixed
5436 or else (Etype (N) = Any_Fixed
5437 and then Is_Fixed_Point_Type (B_Typ))
5438 or else (Is_Fixed_Point_Type (B_Typ)
5439 and then (Is_Integer_Or_Universal (L)
5440 or else
5441 Is_Integer_Or_Universal (R))))
5442 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5443 then
5444 if TL = Universal_Integer or else TR = Universal_Integer then
5445 Check_For_Visible_Operator (N, B_Typ);
5446 end if;
5448 -- If context is a fixed type and one operand is integer, the other
5449 -- is resolved with the type of the context.
5451 if Is_Fixed_Point_Type (B_Typ)
5452 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5453 or else TL = Universal_Integer)
5454 then
5455 Resolve (R, B_Typ);
5456 Resolve (L, TL);
5458 elsif Is_Fixed_Point_Type (B_Typ)
5459 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5460 or else TR = Universal_Integer)
5461 then
5462 Resolve (L, B_Typ);
5463 Resolve (R, TR);
5465 -- If both operands are universal and the context is a floating
5466 -- point type, the operands are resolved to the type of the context.
5468 elsif Is_Floating_Point_Type (B_Typ) then
5469 Resolve (L, B_Typ);
5470 Resolve (R, B_Typ);
5472 else
5473 Set_Mixed_Mode_Operand (L, TR);
5474 Set_Mixed_Mode_Operand (R, TL);
5475 end if;
5477 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5478 -- multiplying operators from being used when the expected type is
5479 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5480 -- some cases where the expected type is actually Any_Real;
5481 -- Expected_Type_Is_Any_Real takes care of that case.
5483 if Etype (N) = Universal_Fixed
5484 or else Etype (N) = Any_Fixed
5485 then
5486 if B_Typ = Universal_Fixed
5487 and then not Expected_Type_Is_Any_Real (N)
5488 and then not Nkind_In (Parent (N), N_Type_Conversion,
5489 N_Unchecked_Type_Conversion)
5490 then
5491 Error_Msg_N ("type cannot be determined from context!", N);
5492 Error_Msg_N ("\explicit conversion to result type required", N);
5494 Set_Etype (L, Any_Type);
5495 Set_Etype (R, Any_Type);
5497 else
5498 if Ada_Version = Ada_83
5499 and then Etype (N) = Universal_Fixed
5500 and then not
5501 Nkind_In (Parent (N), N_Type_Conversion,
5502 N_Unchecked_Type_Conversion)
5503 then
5504 Error_Msg_N
5505 ("(Ada 83) fixed-point operation needs explicit "
5506 & "conversion", N);
5507 end if;
5509 -- The expected type is "any real type" in contexts like
5511 -- type T is delta <universal_fixed-expression> ...
5513 -- in which case we need to set the type to Universal_Real
5514 -- so that static expression evaluation will work properly.
5516 if Expected_Type_Is_Any_Real (N) then
5517 Set_Etype (N, Universal_Real);
5518 else
5519 Set_Etype (N, B_Typ);
5520 end if;
5521 end if;
5523 elsif Is_Fixed_Point_Type (B_Typ)
5524 and then (Is_Integer_Or_Universal (L)
5525 or else Nkind (L) = N_Real_Literal
5526 or else Nkind (R) = N_Real_Literal
5527 or else Is_Integer_Or_Universal (R))
5528 then
5529 Set_Etype (N, B_Typ);
5531 elsif Etype (N) = Any_Fixed then
5533 -- If no previous errors, this is only possible if one operand is
5534 -- overloaded and the context is universal. Resolve as such.
5536 Set_Etype (N, B_Typ);
5537 end if;
5539 else
5540 if (TL = Universal_Integer or else TL = Universal_Real)
5541 and then
5542 (TR = Universal_Integer or else TR = Universal_Real)
5543 then
5544 Check_For_Visible_Operator (N, B_Typ);
5545 end if;
5547 -- If the context is Universal_Fixed and the operands are also
5548 -- universal fixed, this is an error, unless there is only one
5549 -- applicable fixed_point type (usually Duration).
5551 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5552 T := Unique_Fixed_Point_Type (N);
5554 if T = Any_Type then
5555 Set_Etype (N, T);
5556 return;
5557 else
5558 Resolve (L, T);
5559 Resolve (R, T);
5560 end if;
5562 else
5563 Resolve (L, B_Typ);
5564 Resolve (R, B_Typ);
5565 end if;
5567 -- If one of the arguments was resolved to a non-universal type.
5568 -- label the result of the operation itself with the same type.
5569 -- Do the same for the universal argument, if any.
5571 T := Intersect_Types (L, R);
5572 Set_Etype (N, Base_Type (T));
5573 Set_Operand_Type (L);
5574 Set_Operand_Type (R);
5575 end if;
5577 Generate_Operator_Reference (N, Typ);
5578 Analyze_Dimension (N);
5579 Eval_Arithmetic_Op (N);
5581 -- In SPARK, a multiplication or division with operands of fixed point
5582 -- types must be qualified or explicitly converted to identify the
5583 -- result type.
5585 if (Is_Fixed_Point_Type (Etype (L))
5586 or else Is_Fixed_Point_Type (Etype (R)))
5587 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5588 and then
5589 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5590 then
5591 Check_SPARK_05_Restriction
5592 ("operation should be qualified or explicitly converted", N);
5593 end if;
5595 -- Set overflow and division checking bit
5597 if Nkind (N) in N_Op then
5598 if not Overflow_Checks_Suppressed (Etype (N)) then
5599 Enable_Overflow_Check (N);
5600 end if;
5602 -- Give warning if explicit division by zero
5604 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5605 and then not Division_Checks_Suppressed (Etype (N))
5606 then
5607 Rop := Right_Opnd (N);
5609 if Compile_Time_Known_Value (Rop)
5610 and then ((Is_Integer_Type (Etype (Rop))
5611 and then Expr_Value (Rop) = Uint_0)
5612 or else
5613 (Is_Real_Type (Etype (Rop))
5614 and then Expr_Value_R (Rop) = Ureal_0))
5615 then
5616 -- Specialize the warning message according to the operation.
5617 -- When SPARK_Mode is On, force a warning instead of an error
5618 -- in that case, as this likely corresponds to deactivated
5619 -- code. The following warnings are for the case
5621 case Nkind (N) is
5622 when N_Op_Divide =>
5624 -- For division, we have two cases, for float division
5625 -- of an unconstrained float type, on a machine where
5626 -- Machine_Overflows is false, we don't get an exception
5627 -- at run-time, but rather an infinity or Nan. The Nan
5628 -- case is pretty obscure, so just warn about infinities.
5630 if Is_Floating_Point_Type (Typ)
5631 and then not Is_Constrained (Typ)
5632 and then not Machine_Overflows_On_Target
5633 then
5634 Error_Msg_N
5635 ("float division by zero, may generate "
5636 & "'+'/'- infinity??", Right_Opnd (N));
5638 -- For all other cases, we get a Constraint_Error
5640 else
5641 Apply_Compile_Time_Constraint_Error
5642 (N, "division by zero??", CE_Divide_By_Zero,
5643 Loc => Sloc (Right_Opnd (N)),
5644 Warn => SPARK_Mode = On);
5645 end if;
5647 when N_Op_Rem =>
5648 Apply_Compile_Time_Constraint_Error
5649 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5650 Loc => Sloc (Right_Opnd (N)),
5651 Warn => SPARK_Mode = On);
5653 when N_Op_Mod =>
5654 Apply_Compile_Time_Constraint_Error
5655 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5656 Loc => Sloc (Right_Opnd (N)),
5657 Warn => SPARK_Mode = On);
5659 -- Division by zero can only happen with division, rem,
5660 -- and mod operations.
5662 when others =>
5663 raise Program_Error;
5664 end case;
5666 -- In GNATprove mode, we enable the division check so that
5667 -- GNATprove will issue a message if it cannot be proved.
5669 if GNATprove_Mode then
5670 Activate_Division_Check (N);
5671 end if;
5673 -- Otherwise just set the flag to check at run time
5675 else
5676 Activate_Division_Check (N);
5677 end if;
5678 end if;
5680 -- If Restriction No_Implicit_Conditionals is active, then it is
5681 -- violated if either operand can be negative for mod, or for rem
5682 -- if both operands can be negative.
5684 if Restriction_Check_Required (No_Implicit_Conditionals)
5685 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5686 then
5687 declare
5688 Lo : Uint;
5689 Hi : Uint;
5690 OK : Boolean;
5692 LNeg : Boolean;
5693 RNeg : Boolean;
5694 -- Set if corresponding operand might be negative
5696 begin
5697 Determine_Range
5698 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5699 LNeg := (not OK) or else Lo < 0;
5701 Determine_Range
5702 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5703 RNeg := (not OK) or else Lo < 0;
5705 -- Check if we will be generating conditionals. There are two
5706 -- cases where that can happen, first for REM, the only case
5707 -- is largest negative integer mod -1, where the division can
5708 -- overflow, but we still have to give the right result. The
5709 -- front end generates a test for this annoying case. Here we
5710 -- just test if both operands can be negative (that's what the
5711 -- expander does, so we match its logic here).
5713 -- The second case is mod where either operand can be negative.
5714 -- In this case, the back end has to generate additional tests.
5716 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5717 or else
5718 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5719 then
5720 Check_Restriction (No_Implicit_Conditionals, N);
5721 end if;
5722 end;
5723 end if;
5724 end if;
5726 Check_Unset_Reference (L);
5727 Check_Unset_Reference (R);
5728 end Resolve_Arithmetic_Op;
5730 ------------------
5731 -- Resolve_Call --
5732 ------------------
5734 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5735 function Same_Or_Aliased_Subprograms
5736 (S : Entity_Id;
5737 E : Entity_Id) return Boolean;
5738 -- Returns True if the subprogram entity S is the same as E or else
5739 -- S is an alias of E.
5741 ---------------------------------
5742 -- Same_Or_Aliased_Subprograms --
5743 ---------------------------------
5745 function Same_Or_Aliased_Subprograms
5746 (S : Entity_Id;
5747 E : Entity_Id) return Boolean
5749 Subp_Alias : constant Entity_Id := Alias (S);
5750 begin
5751 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5752 end Same_Or_Aliased_Subprograms;
5754 -- Local variables
5756 Loc : constant Source_Ptr := Sloc (N);
5757 Subp : constant Node_Id := Name (N);
5758 Body_Id : Entity_Id;
5759 I : Interp_Index;
5760 It : Interp;
5761 Nam : Entity_Id;
5762 Nam_Decl : Node_Id;
5763 Nam_UA : Entity_Id;
5764 Norm_OK : Boolean;
5765 Rtype : Entity_Id;
5766 Scop : Entity_Id;
5768 -- Start of processing for Resolve_Call
5770 begin
5771 -- Preserve relevant elaboration-related attributes of the context which
5772 -- are no longer available or very expensive to recompute once analysis,
5773 -- resolution, and expansion are over.
5775 Mark_Elaboration_Attributes
5776 (N_Id => N,
5777 Checks => True,
5778 Modes => True);
5780 -- The context imposes a unique interpretation with type Typ on a
5781 -- procedure or function call. Find the entity of the subprogram that
5782 -- yields the expected type, and propagate the corresponding formal
5783 -- constraints on the actuals. The caller has established that an
5784 -- interpretation exists, and emitted an error if not unique.
5786 -- First deal with the case of a call to an access-to-subprogram,
5787 -- dereference made explicit in Analyze_Call.
5789 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5790 if not Is_Overloaded (Subp) then
5791 Nam := Etype (Subp);
5793 else
5794 -- Find the interpretation whose type (a subprogram type) has a
5795 -- return type that is compatible with the context. Analysis of
5796 -- the node has established that one exists.
5798 Nam := Empty;
5800 Get_First_Interp (Subp, I, It);
5801 while Present (It.Typ) loop
5802 if Covers (Typ, Etype (It.Typ)) then
5803 Nam := It.Typ;
5804 exit;
5805 end if;
5807 Get_Next_Interp (I, It);
5808 end loop;
5810 if No (Nam) then
5811 raise Program_Error;
5812 end if;
5813 end if;
5815 -- If the prefix is not an entity, then resolve it
5817 if not Is_Entity_Name (Subp) then
5818 Resolve (Subp, Nam);
5819 end if;
5821 -- For an indirect call, we always invalidate checks, since we do not
5822 -- know whether the subprogram is local or global. Yes we could do
5823 -- better here, e.g. by knowing that there are no local subprograms,
5824 -- but it does not seem worth the effort. Similarly, we kill all
5825 -- knowledge of current constant values.
5827 Kill_Current_Values;
5829 -- If this is a procedure call which is really an entry call, do
5830 -- the conversion of the procedure call to an entry call. Protected
5831 -- operations use the same circuitry because the name in the call
5832 -- can be an arbitrary expression with special resolution rules.
5834 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5835 or else (Is_Entity_Name (Subp)
5836 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5837 then
5838 Resolve_Entry_Call (N, Typ);
5840 -- Annotate the tree by creating a call marker in case the original
5841 -- call is transformed by expansion. The call marker is automatically
5842 -- saved for later examination by the ABE Processing phase.
5844 Build_Call_Marker (N);
5846 -- Kill checks and constant values, as above for indirect case
5847 -- Who knows what happens when another task is activated?
5849 Kill_Current_Values;
5850 return;
5852 -- Normal subprogram call with name established in Resolve
5854 elsif not (Is_Type (Entity (Subp))) then
5855 Nam := Entity (Subp);
5856 Set_Entity_With_Checks (Subp, Nam);
5858 -- Otherwise we must have the case of an overloaded call
5860 else
5861 pragma Assert (Is_Overloaded (Subp));
5863 -- Initialize Nam to prevent warning (we know it will be assigned
5864 -- in the loop below, but the compiler does not know that).
5866 Nam := Empty;
5868 Get_First_Interp (Subp, I, It);
5869 while Present (It.Typ) loop
5870 if Covers (Typ, It.Typ) then
5871 Nam := It.Nam;
5872 Set_Entity_With_Checks (Subp, Nam);
5873 exit;
5874 end if;
5876 Get_Next_Interp (I, It);
5877 end loop;
5878 end if;
5880 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5881 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5882 and then Nkind (Subp) /= N_Explicit_Dereference
5883 and then Present (Parameter_Associations (N))
5884 then
5885 -- The prefix is a parameterless function call that returns an access
5886 -- to subprogram. If parameters are present in the current call, add
5887 -- add an explicit dereference. We use the base type here because
5888 -- within an instance these may be subtypes.
5890 -- The dereference is added either in Analyze_Call or here. Should
5891 -- be consolidated ???
5893 Set_Is_Overloaded (Subp, False);
5894 Set_Etype (Subp, Etype (Nam));
5895 Insert_Explicit_Dereference (Subp);
5896 Nam := Designated_Type (Etype (Nam));
5897 Resolve (Subp, Nam);
5898 end if;
5900 -- Check that a call to Current_Task does not occur in an entry body
5902 if Is_RTE (Nam, RE_Current_Task) then
5903 declare
5904 P : Node_Id;
5906 begin
5907 P := N;
5908 loop
5909 P := Parent (P);
5911 -- Exclude calls that occur within the default of a formal
5912 -- parameter of the entry, since those are evaluated outside
5913 -- of the body.
5915 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5917 if Nkind (P) = N_Entry_Body
5918 or else (Nkind (P) = N_Subprogram_Body
5919 and then Is_Entry_Barrier_Function (P))
5920 then
5921 Rtype := Etype (N);
5922 Error_Msg_Warn := SPARK_Mode /= On;
5923 Error_Msg_NE
5924 ("& should not be used in entry body (RM C.7(17))<<",
5925 N, Nam);
5926 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5927 Rewrite (N,
5928 Make_Raise_Program_Error (Loc,
5929 Reason => PE_Current_Task_In_Entry_Body));
5930 Set_Etype (N, Rtype);
5931 return;
5932 end if;
5933 end loop;
5934 end;
5935 end if;
5937 -- Check that a procedure call does not occur in the context of the
5938 -- entry call statement of a conditional or timed entry call. Note that
5939 -- the case of a call to a subprogram renaming of an entry will also be
5940 -- rejected. The test for N not being an N_Entry_Call_Statement is
5941 -- defensive, covering the possibility that the processing of entry
5942 -- calls might reach this point due to later modifications of the code
5943 -- above.
5945 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5946 and then Nkind (N) /= N_Entry_Call_Statement
5947 and then Entry_Call_Statement (Parent (N)) = N
5948 then
5949 if Ada_Version < Ada_2005 then
5950 Error_Msg_N ("entry call required in select statement", N);
5952 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5953 -- for a procedure_or_entry_call, the procedure_name or
5954 -- procedure_prefix of the procedure_call_statement shall denote
5955 -- an entry renamed by a procedure, or (a view of) a primitive
5956 -- subprogram of a limited interface whose first parameter is
5957 -- a controlling parameter.
5959 elsif Nkind (N) = N_Procedure_Call_Statement
5960 and then not Is_Renamed_Entry (Nam)
5961 and then not Is_Controlling_Limited_Procedure (Nam)
5962 then
5963 Error_Msg_N
5964 ("entry call or dispatching primitive of interface required", N);
5965 end if;
5966 end if;
5968 -- If the SPARK_05 restriction is active, we are not allowed
5969 -- to have a call to a subprogram before we see its completion.
5971 if not Has_Completion (Nam)
5972 and then Restriction_Check_Required (SPARK_05)
5974 -- Don't flag strange internal calls
5976 and then Comes_From_Source (N)
5977 and then Comes_From_Source (Nam)
5979 -- Only flag calls in extended main source
5981 and then In_Extended_Main_Source_Unit (Nam)
5982 and then In_Extended_Main_Source_Unit (N)
5984 -- Exclude enumeration literals from this processing
5986 and then Ekind (Nam) /= E_Enumeration_Literal
5987 then
5988 Check_SPARK_05_Restriction
5989 ("call to subprogram cannot appear before its body", N);
5990 end if;
5992 -- Check that this is not a call to a protected procedure or entry from
5993 -- within a protected function.
5995 Check_Internal_Protected_Use (N, Nam);
5997 -- Freeze the subprogram name if not in a spec-expression. Note that
5998 -- we freeze procedure calls as well as function calls. Procedure calls
5999 -- are not frozen according to the rules (RM 13.14(14)) because it is
6000 -- impossible to have a procedure call to a non-frozen procedure in
6001 -- pure Ada, but in the code that we generate in the expander, this
6002 -- rule needs extending because we can generate procedure calls that
6003 -- need freezing.
6005 -- In Ada 2012, expression functions may be called within pre/post
6006 -- conditions of subsequent functions or expression functions. Such
6007 -- calls do not freeze when they appear within generated bodies,
6008 -- (including the body of another expression function) which would
6009 -- place the freeze node in the wrong scope. An expression function
6010 -- is frozen in the usual fashion, by the appearance of a real body,
6011 -- or at the end of a declarative part.
6013 if Is_Entity_Name (Subp)
6014 and then not In_Spec_Expression
6015 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6016 and then
6017 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6018 or else Scope (Entity (Subp)) = Current_Scope)
6019 then
6020 Freeze_Expression (Subp);
6021 end if;
6023 -- For a predefined operator, the type of the result is the type imposed
6024 -- by context, except for a predefined operation on universal fixed.
6025 -- Otherwise The type of the call is the type returned by the subprogram
6026 -- being called.
6028 if Is_Predefined_Op (Nam) then
6029 if Etype (N) /= Universal_Fixed then
6030 Set_Etype (N, Typ);
6031 end if;
6033 -- If the subprogram returns an array type, and the context requires the
6034 -- component type of that array type, the node is really an indexing of
6035 -- the parameterless call. Resolve as such. A pathological case occurs
6036 -- when the type of the component is an access to the array type. In
6037 -- this case the call is truly ambiguous. If the call is to an intrinsic
6038 -- subprogram, it can't be an indexed component. This check is necessary
6039 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6040 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6041 -- pointers to the same array), the compiler gets confused and does an
6042 -- infinite recursion.
6044 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6045 and then
6046 ((Is_Array_Type (Etype (Nam))
6047 and then Covers (Typ, Component_Type (Etype (Nam))))
6048 or else
6049 (Is_Access_Type (Etype (Nam))
6050 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6051 and then
6052 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6053 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6054 then
6055 declare
6056 Index_Node : Node_Id;
6057 New_Subp : Node_Id;
6058 Ret_Type : constant Entity_Id := Etype (Nam);
6060 begin
6061 if Is_Access_Type (Ret_Type)
6062 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6063 then
6064 Error_Msg_N
6065 ("cannot disambiguate function call and indexing", N);
6066 else
6067 New_Subp := Relocate_Node (Subp);
6069 -- The called entity may be an explicit dereference, in which
6070 -- case there is no entity to set.
6072 if Nkind (New_Subp) /= N_Explicit_Dereference then
6073 Set_Entity (Subp, Nam);
6074 end if;
6076 if (Is_Array_Type (Ret_Type)
6077 and then Component_Type (Ret_Type) /= Any_Type)
6078 or else
6079 (Is_Access_Type (Ret_Type)
6080 and then
6081 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6082 then
6083 if Needs_No_Actuals (Nam) then
6085 -- Indexed call to a parameterless function
6087 Index_Node :=
6088 Make_Indexed_Component (Loc,
6089 Prefix =>
6090 Make_Function_Call (Loc, Name => New_Subp),
6091 Expressions => Parameter_Associations (N));
6092 else
6093 -- An Ada 2005 prefixed call to a primitive operation
6094 -- whose first parameter is the prefix. This prefix was
6095 -- prepended to the parameter list, which is actually a
6096 -- list of indexes. Remove the prefix in order to build
6097 -- the proper indexed component.
6099 Index_Node :=
6100 Make_Indexed_Component (Loc,
6101 Prefix =>
6102 Make_Function_Call (Loc,
6103 Name => New_Subp,
6104 Parameter_Associations =>
6105 New_List
6106 (Remove_Head (Parameter_Associations (N)))),
6107 Expressions => Parameter_Associations (N));
6108 end if;
6110 -- Preserve the parenthesis count of the node
6112 Set_Paren_Count (Index_Node, Paren_Count (N));
6114 -- Since we are correcting a node classification error made
6115 -- by the parser, we call Replace rather than Rewrite.
6117 Replace (N, Index_Node);
6119 Set_Etype (Prefix (N), Ret_Type);
6120 Set_Etype (N, Typ);
6121 Resolve_Indexed_Component (N, Typ);
6123 -- Annotate the tree by creating a call marker in case
6124 -- the original call is transformed by expansion. The call
6125 -- marker is automatically saved for later examination by
6126 -- the ABE Processing phase.
6128 Build_Call_Marker (Prefix (N));
6129 end if;
6130 end if;
6132 return;
6133 end;
6135 else
6136 -- If the called function is not declared in the main unit and it
6137 -- returns the limited view of type then use the available view (as
6138 -- is done in Try_Object_Operation) to prevent back-end confusion;
6139 -- for the function entity itself. The call must appear in a context
6140 -- where the nonlimited view is available. If the function entity is
6141 -- in the extended main unit then no action is needed, because the
6142 -- back end handles this case. In either case the type of the call
6143 -- is the nonlimited view.
6145 if From_Limited_With (Etype (Nam))
6146 and then Present (Available_View (Etype (Nam)))
6147 then
6148 Set_Etype (N, Available_View (Etype (Nam)));
6150 if not In_Extended_Main_Code_Unit (Nam) then
6151 Set_Etype (Nam, Available_View (Etype (Nam)));
6152 end if;
6154 else
6155 Set_Etype (N, Etype (Nam));
6156 end if;
6157 end if;
6159 -- In the case where the call is to an overloaded subprogram, Analyze
6160 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6161 -- such a case Normalize_Actuals needs to be called once more to order
6162 -- the actuals correctly. Otherwise the call will have the ordering
6163 -- given by the last overloaded subprogram whether this is the correct
6164 -- one being called or not.
6166 if Is_Overloaded (Subp) then
6167 Normalize_Actuals (N, Nam, False, Norm_OK);
6168 pragma Assert (Norm_OK);
6169 end if;
6171 -- In any case, call is fully resolved now. Reset Overload flag, to
6172 -- prevent subsequent overload resolution if node is analyzed again
6174 Set_Is_Overloaded (Subp, False);
6175 Set_Is_Overloaded (N, False);
6177 -- A Ghost entity must appear in a specific context
6179 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6180 Check_Ghost_Context (Nam, N);
6181 end if;
6183 -- If we are calling the current subprogram from immediately within its
6184 -- body, then that is the case where we can sometimes detect cases of
6185 -- infinite recursion statically. Do not try this in case restriction
6186 -- No_Recursion is in effect anyway, and do it only for source calls.
6188 if Comes_From_Source (N) then
6189 Scop := Current_Scope;
6191 -- Check violation of SPARK_05 restriction which does not permit
6192 -- a subprogram body to contain a call to the subprogram directly.
6194 if Restriction_Check_Required (SPARK_05)
6195 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6196 then
6197 Check_SPARK_05_Restriction
6198 ("subprogram may not contain direct call to itself", N);
6199 end if;
6201 -- Issue warning for possible infinite recursion in the absence
6202 -- of the No_Recursion restriction.
6204 if Same_Or_Aliased_Subprograms (Nam, Scop)
6205 and then not Restriction_Active (No_Recursion)
6206 and then Check_Infinite_Recursion (N)
6207 then
6208 -- Here we detected and flagged an infinite recursion, so we do
6209 -- not need to test the case below for further warnings. Also we
6210 -- are all done if we now have a raise SE node.
6212 if Nkind (N) = N_Raise_Storage_Error then
6213 return;
6214 end if;
6216 -- If call is to immediately containing subprogram, then check for
6217 -- the case of a possible run-time detectable infinite recursion.
6219 else
6220 Scope_Loop : while Scop /= Standard_Standard loop
6221 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6223 -- Although in general case, recursion is not statically
6224 -- checkable, the case of calling an immediately containing
6225 -- subprogram is easy to catch.
6227 Check_Restriction (No_Recursion, N);
6229 -- If the recursive call is to a parameterless subprogram,
6230 -- then even if we can't statically detect infinite
6231 -- recursion, this is pretty suspicious, and we output a
6232 -- warning. Furthermore, we will try later to detect some
6233 -- cases here at run time by expanding checking code (see
6234 -- Detect_Infinite_Recursion in package Exp_Ch6).
6236 -- If the recursive call is within a handler, do not emit a
6237 -- warning, because this is a common idiom: loop until input
6238 -- is correct, catch illegal input in handler and restart.
6240 if No (First_Formal (Nam))
6241 and then Etype (Nam) = Standard_Void_Type
6242 and then not Error_Posted (N)
6243 and then Nkind (Parent (N)) /= N_Exception_Handler
6244 then
6245 -- For the case of a procedure call. We give the message
6246 -- only if the call is the first statement in a sequence
6247 -- of statements, or if all previous statements are
6248 -- simple assignments. This is simply a heuristic to
6249 -- decrease false positives, without losing too many good
6250 -- warnings. The idea is that these previous statements
6251 -- may affect global variables the procedure depends on.
6252 -- We also exclude raise statements, that may arise from
6253 -- constraint checks and are probably unrelated to the
6254 -- intended control flow.
6256 if Nkind (N) = N_Procedure_Call_Statement
6257 and then Is_List_Member (N)
6258 then
6259 declare
6260 P : Node_Id;
6261 begin
6262 P := Prev (N);
6263 while Present (P) loop
6264 if not Nkind_In (P, N_Assignment_Statement,
6265 N_Raise_Constraint_Error)
6266 then
6267 exit Scope_Loop;
6268 end if;
6270 Prev (P);
6271 end loop;
6272 end;
6273 end if;
6275 -- Do not give warning if we are in a conditional context
6277 declare
6278 K : constant Node_Kind := Nkind (Parent (N));
6279 begin
6280 if (K = N_Loop_Statement
6281 and then Present (Iteration_Scheme (Parent (N))))
6282 or else K = N_If_Statement
6283 or else K = N_Elsif_Part
6284 or else K = N_Case_Statement_Alternative
6285 then
6286 exit Scope_Loop;
6287 end if;
6288 end;
6290 -- Here warning is to be issued
6292 Set_Has_Recursive_Call (Nam);
6293 Error_Msg_Warn := SPARK_Mode /= On;
6294 Error_Msg_N ("possible infinite recursion<<!", N);
6295 Error_Msg_N ("\Storage_Error ]<<!", N);
6296 end if;
6298 exit Scope_Loop;
6299 end if;
6301 Scop := Scope (Scop);
6302 end loop Scope_Loop;
6303 end if;
6304 end if;
6306 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6308 Check_Obsolescent_2005_Entity (Nam, Subp);
6310 -- If subprogram name is a predefined operator, it was given in
6311 -- functional notation. Replace call node with operator node, so
6312 -- that actuals can be resolved appropriately.
6314 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6315 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6316 return;
6318 elsif Present (Alias (Nam))
6319 and then Is_Predefined_Op (Alias (Nam))
6320 then
6321 Resolve_Actuals (N, Nam);
6322 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6323 return;
6324 end if;
6326 -- Create a transient scope if the resulting type requires it
6328 -- There are several notable exceptions:
6330 -- a) In init procs, the transient scope overhead is not needed, and is
6331 -- even incorrect when the call is a nested initialization call for a
6332 -- component whose expansion may generate adjust calls. However, if the
6333 -- call is some other procedure call within an initialization procedure
6334 -- (for example a call to Create_Task in the init_proc of the task
6335 -- run-time record) a transient scope must be created around this call.
6337 -- b) Enumeration literal pseudo-calls need no transient scope
6339 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6340 -- functions) do not use the secondary stack even though the return
6341 -- type may be unconstrained.
6343 -- d) Calls to a build-in-place function, since such functions may
6344 -- allocate their result directly in a target object, and cases where
6345 -- the result does get allocated in the secondary stack are checked for
6346 -- within the specialized Exp_Ch6 procedures for expanding those
6347 -- build-in-place calls.
6349 -- e) Calls to inlinable expression functions do not use the secondary
6350 -- stack (since the call will be replaced by its returned object).
6352 -- f) If the subprogram is marked Inline_Always, then even if it returns
6353 -- an unconstrained type the call does not require use of the secondary
6354 -- stack. However, inlining will only take place if the body to inline
6355 -- is already present. It may not be available if e.g. the subprogram is
6356 -- declared in a child instance.
6358 -- If this is an initialization call for a type whose construction
6359 -- uses the secondary stack, and it is not a nested call to initialize
6360 -- a component, we do need to create a transient scope for it. We
6361 -- check for this by traversing the type in Check_Initialization_Call.
6363 if Is_Inlined (Nam)
6364 and then Has_Pragma_Inline (Nam)
6365 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6366 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6367 then
6368 null;
6370 elsif Ekind (Nam) = E_Enumeration_Literal
6371 or else Is_Build_In_Place_Function (Nam)
6372 or else Is_Intrinsic_Subprogram (Nam)
6373 or else Is_Inlinable_Expression_Function (Nam)
6374 then
6375 null;
6377 elsif Expander_Active
6378 and then Is_Type (Etype (Nam))
6379 and then Requires_Transient_Scope (Etype (Nam))
6380 and then
6381 (not Within_Init_Proc
6382 or else
6383 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6384 then
6385 Establish_Transient_Scope (N, Sec_Stack => True);
6387 -- If the call appears within the bounds of a loop, it will
6388 -- be rewritten and reanalyzed, nothing left to do here.
6390 if Nkind (N) /= N_Function_Call then
6391 return;
6392 end if;
6394 elsif Is_Init_Proc (Nam)
6395 and then not Within_Init_Proc
6396 then
6397 Check_Initialization_Call (N, Nam);
6398 end if;
6400 -- A protected function cannot be called within the definition of the
6401 -- enclosing protected type, unless it is part of a pre/postcondition
6402 -- on another protected operation. This may appear in the entry wrapper
6403 -- created for an entry with preconditions.
6405 if Is_Protected_Type (Scope (Nam))
6406 and then In_Open_Scopes (Scope (Nam))
6407 and then not Has_Completion (Scope (Nam))
6408 and then not In_Spec_Expression
6409 and then not Is_Entry_Wrapper (Current_Scope)
6410 then
6411 Error_Msg_NE
6412 ("& cannot be called before end of protected definition", N, Nam);
6413 end if;
6415 -- Propagate interpretation to actuals, and add default expressions
6416 -- where needed.
6418 if Present (First_Formal (Nam)) then
6419 Resolve_Actuals (N, Nam);
6421 -- Overloaded literals are rewritten as function calls, for purpose of
6422 -- resolution. After resolution, we can replace the call with the
6423 -- literal itself.
6425 elsif Ekind (Nam) = E_Enumeration_Literal then
6426 Copy_Node (Subp, N);
6427 Resolve_Entity_Name (N, Typ);
6429 -- Avoid validation, since it is a static function call
6431 Generate_Reference (Nam, Subp);
6432 return;
6433 end if;
6435 -- If the subprogram is not global, then kill all saved values and
6436 -- checks. This is a bit conservative, since in many cases we could do
6437 -- better, but it is not worth the effort. Similarly, we kill constant
6438 -- values. However we do not need to do this for internal entities
6439 -- (unless they are inherited user-defined subprograms), since they
6440 -- are not in the business of molesting local values.
6442 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6443 -- kill all checks and values for calls to global subprograms. This
6444 -- takes care of the case where an access to a local subprogram is
6445 -- taken, and could be passed directly or indirectly and then called
6446 -- from almost any context.
6448 -- Note: we do not do this step till after resolving the actuals. That
6449 -- way we still take advantage of the current value information while
6450 -- scanning the actuals.
6452 -- We suppress killing values if we are processing the nodes associated
6453 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6454 -- type kills all the values as part of analyzing the code that
6455 -- initializes the dispatch tables.
6457 if Inside_Freezing_Actions = 0
6458 and then (not Is_Library_Level_Entity (Nam)
6459 or else Suppress_Value_Tracking_On_Call
6460 (Nearest_Dynamic_Scope (Current_Scope)))
6461 and then (Comes_From_Source (Nam)
6462 or else (Present (Alias (Nam))
6463 and then Comes_From_Source (Alias (Nam))))
6464 then
6465 Kill_Current_Values;
6466 end if;
6468 -- If we are warning about unread OUT parameters, this is the place to
6469 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6470 -- after the above call to Kill_Current_Values (since that call clears
6471 -- the Last_Assignment field of all local variables).
6473 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6474 and then Comes_From_Source (N)
6475 and then In_Extended_Main_Source_Unit (N)
6476 then
6477 declare
6478 F : Entity_Id;
6479 A : Node_Id;
6481 begin
6482 F := First_Formal (Nam);
6483 A := First_Actual (N);
6484 while Present (F) and then Present (A) loop
6485 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6486 and then Warn_On_Modified_As_Out_Parameter (F)
6487 and then Is_Entity_Name (A)
6488 and then Present (Entity (A))
6489 and then Comes_From_Source (N)
6490 and then Safe_To_Capture_Value (N, Entity (A))
6491 then
6492 Set_Last_Assignment (Entity (A), A);
6493 end if;
6495 Next_Formal (F);
6496 Next_Actual (A);
6497 end loop;
6498 end;
6499 end if;
6501 -- If the subprogram is a primitive operation, check whether or not
6502 -- it is a correct dispatching call.
6504 if Is_Overloadable (Nam)
6505 and then Is_Dispatching_Operation (Nam)
6506 then
6507 Check_Dispatching_Call (N);
6509 elsif Ekind (Nam) /= E_Subprogram_Type
6510 and then Is_Abstract_Subprogram (Nam)
6511 and then not In_Instance
6512 then
6513 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6514 end if;
6516 -- If this is a dispatching call, generate the appropriate reference,
6517 -- for better source navigation in GPS.
6519 if Is_Overloadable (Nam)
6520 and then Present (Controlling_Argument (N))
6521 then
6522 Generate_Reference (Nam, Subp, 'R');
6524 -- Normal case, not a dispatching call: generate a call reference
6526 else
6527 Generate_Reference (Nam, Subp, 's');
6528 end if;
6530 if Is_Intrinsic_Subprogram (Nam) then
6531 Check_Intrinsic_Call (N);
6532 end if;
6534 -- Check for violation of restriction No_Specific_Termination_Handlers
6535 -- and warn on a potentially blocking call to Abort_Task.
6537 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6538 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6539 or else
6540 Is_RTE (Nam, RE_Specific_Handler))
6541 then
6542 Check_Restriction (No_Specific_Termination_Handlers, N);
6544 elsif Is_RTE (Nam, RE_Abort_Task) then
6545 Check_Potentially_Blocking_Operation (N);
6546 end if;
6548 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6549 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6550 -- need to check the second argument to determine whether it is an
6551 -- absolute or relative timing event.
6553 if Restriction_Check_Required (No_Relative_Delay)
6554 and then Is_RTE (Nam, RE_Set_Handler)
6555 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6556 then
6557 Check_Restriction (No_Relative_Delay, N);
6558 end if;
6560 -- Issue an error for a call to an eliminated subprogram. This routine
6561 -- will not perform the check if the call appears within a default
6562 -- expression.
6564 Check_For_Eliminated_Subprogram (Subp, Nam);
6566 -- In formal mode, the primitive operations of a tagged type or type
6567 -- extension do not include functions that return the tagged type.
6569 if Nkind (N) = N_Function_Call
6570 and then Is_Tagged_Type (Etype (N))
6571 and then Is_Entity_Name (Name (N))
6572 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6573 then
6574 Check_SPARK_05_Restriction ("function not inherited", N);
6575 end if;
6577 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6578 -- class-wide and the call dispatches on result in a context that does
6579 -- not provide a tag, the call raises Program_Error.
6581 if Nkind (N) = N_Function_Call
6582 and then In_Instance
6583 and then Is_Generic_Actual_Type (Typ)
6584 and then Is_Class_Wide_Type (Typ)
6585 and then Has_Controlling_Result (Nam)
6586 and then Nkind (Parent (N)) = N_Object_Declaration
6587 then
6588 -- Verify that none of the formals are controlling
6590 declare
6591 Call_OK : Boolean := False;
6592 F : Entity_Id;
6594 begin
6595 F := First_Formal (Nam);
6596 while Present (F) loop
6597 if Is_Controlling_Formal (F) then
6598 Call_OK := True;
6599 exit;
6600 end if;
6602 Next_Formal (F);
6603 end loop;
6605 if not Call_OK then
6606 Error_Msg_Warn := SPARK_Mode /= On;
6607 Error_Msg_N ("!cannot determine tag of result<<", N);
6608 Error_Msg_N ("\Program_Error [<<!", N);
6609 Insert_Action (N,
6610 Make_Raise_Program_Error (Sloc (N),
6611 Reason => PE_Explicit_Raise));
6612 end if;
6613 end;
6614 end if;
6616 -- Check for calling a function with OUT or IN OUT parameter when the
6617 -- calling context (us right now) is not Ada 2012, so does not allow
6618 -- OUT or IN OUT parameters in function calls. Functions declared in
6619 -- a predefined unit are OK, as they may be called indirectly from a
6620 -- user-declared instantiation.
6622 if Ada_Version < Ada_2012
6623 and then Ekind (Nam) = E_Function
6624 and then Has_Out_Or_In_Out_Parameter (Nam)
6625 and then not In_Predefined_Unit (Nam)
6626 then
6627 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6628 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6629 end if;
6631 -- Check the dimensions of the actuals in the call. For function calls,
6632 -- propagate the dimensions from the returned type to N.
6634 Analyze_Dimension_Call (N, Nam);
6636 -- All done, evaluate call and deal with elaboration issues
6638 Eval_Call (N);
6640 -- Annotate the tree by creating a call marker in case the original call
6641 -- is transformed by expansion. The call marker is automatically saved
6642 -- for later examination by the ABE Processing phase.
6644 Build_Call_Marker (N);
6646 -- In GNATprove mode, expansion is disabled, but we want to inline some
6647 -- subprograms to facilitate formal verification. Indirect calls through
6648 -- a subprogram type or within a generic cannot be inlined. Inlining is
6649 -- performed only for calls subject to SPARK_Mode on.
6651 if GNATprove_Mode
6652 and then SPARK_Mode = On
6653 and then Is_Overloadable (Nam)
6654 and then not Inside_A_Generic
6655 then
6656 Nam_UA := Ultimate_Alias (Nam);
6657 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6659 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6660 Body_Id := Corresponding_Body (Nam_Decl);
6662 -- Nothing to do if the subprogram is not eligible for inlining in
6663 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6665 if not Is_Inlined_Always (Nam_UA)
6666 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6667 or else Debug_Flag_M
6668 then
6669 null;
6671 -- Calls cannot be inlined inside assertions, as GNATprove treats
6672 -- assertions as logic expressions. Only issue a message when the
6673 -- body has been seen, otherwise this leads to spurious messages
6674 -- on expression functions.
6676 elsif In_Assertion_Expr /= 0 then
6677 if Present (Body_Id) then
6678 Cannot_Inline
6679 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6680 end if;
6682 -- Calls cannot be inlined inside default expressions
6684 elsif In_Default_Expr then
6685 Cannot_Inline
6686 ("cannot inline & (in default expression)?", N, Nam_UA);
6688 -- Inlining should not be performed during pre-analysis
6690 elsif Full_Analysis then
6692 -- Do not inline calls inside expression functions, as this
6693 -- would prevent interpreting them as logical formulas in
6694 -- GNATprove. Only issue a message when the body has been seen,
6695 -- otherwise this leads to spurious messages on callees that
6696 -- are themselves expression functions.
6698 if Present (Current_Subprogram)
6699 and then Is_Expression_Function_Or_Completion
6700 (Current_Subprogram)
6701 then
6702 if Present (Body_Id)
6703 and then Present (Body_To_Inline (Nam_Decl))
6704 then
6705 Cannot_Inline
6706 ("cannot inline & (inside expression function)?",
6707 N, Nam_UA);
6708 end if;
6710 -- With the one-pass inlining technique, a call cannot be
6711 -- inlined if the corresponding body has not been seen yet.
6713 elsif No (Body_Id) then
6714 Cannot_Inline
6715 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6717 -- Nothing to do if there is no body to inline, indicating that
6718 -- the subprogram is not suitable for inlining in GNATprove
6719 -- mode.
6721 elsif No (Body_To_Inline (Nam_Decl)) then
6722 null;
6724 -- Calls cannot be inlined inside potentially unevaluated
6725 -- expressions, as this would create complex actions inside
6726 -- expressions, that are not handled by GNATprove.
6728 elsif Is_Potentially_Unevaluated (N) then
6729 Cannot_Inline
6730 ("cannot inline & (in potentially unevaluated context)?",
6731 N, Nam_UA);
6733 -- Do not inline calls which would possibly lead to missing a
6734 -- type conversion check on an input parameter.
6736 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6737 Cannot_Inline
6738 ("cannot inline & (possible check on input parameters)?",
6739 N, Nam_UA);
6741 -- Otherwise, inline the call
6743 else
6744 Expand_Inlined_Call (N, Nam_UA, Nam);
6745 end if;
6746 end if;
6747 end if;
6748 end if;
6750 Mark_Use_Clauses (Subp);
6752 Warn_On_Overlapping_Actuals (Nam, N);
6753 end Resolve_Call;
6755 -----------------------------
6756 -- Resolve_Case_Expression --
6757 -----------------------------
6759 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6760 Alt : Node_Id;
6761 Alt_Expr : Node_Id;
6762 Alt_Typ : Entity_Id;
6763 Is_Dyn : Boolean;
6765 begin
6766 Alt := First (Alternatives (N));
6767 while Present (Alt) loop
6768 Alt_Expr := Expression (Alt);
6770 if Error_Posted (Alt_Expr) then
6771 return;
6772 end if;
6774 Resolve (Alt_Expr, Typ);
6775 Alt_Typ := Etype (Alt_Expr);
6777 -- When the expression is of a scalar subtype different from the
6778 -- result subtype, then insert a conversion to ensure the generation
6779 -- of a constraint check.
6781 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6782 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6783 Analyze_And_Resolve (Alt_Expr, Typ);
6784 end if;
6786 Next (Alt);
6787 end loop;
6789 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6790 -- dynamically tagged must be known statically.
6792 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6793 Alt := First (Alternatives (N));
6794 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6796 while Present (Alt) loop
6797 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6798 Error_Msg_N
6799 ("all or none of the dependent expressions can be "
6800 & "dynamically tagged", N);
6801 end if;
6803 Next (Alt);
6804 end loop;
6805 end if;
6807 Set_Etype (N, Typ);
6808 Eval_Case_Expression (N);
6809 Analyze_Dimension (N);
6810 end Resolve_Case_Expression;
6812 -------------------------------
6813 -- Resolve_Character_Literal --
6814 -------------------------------
6816 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6817 B_Typ : constant Entity_Id := Base_Type (Typ);
6818 C : Entity_Id;
6820 begin
6821 -- Verify that the character does belong to the type of the context
6823 Set_Etype (N, B_Typ);
6824 Eval_Character_Literal (N);
6826 -- Wide_Wide_Character literals must always be defined, since the set
6827 -- of wide wide character literals is complete, i.e. if a character
6828 -- literal is accepted by the parser, then it is OK for wide wide
6829 -- character (out of range character literals are rejected).
6831 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6832 return;
6834 -- Always accept character literal for type Any_Character, which
6835 -- occurs in error situations and in comparisons of literals, both
6836 -- of which should accept all literals.
6838 elsif B_Typ = Any_Character then
6839 return;
6841 -- For Standard.Character or a type derived from it, check that the
6842 -- literal is in range.
6844 elsif Root_Type (B_Typ) = Standard_Character then
6845 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6846 return;
6847 end if;
6849 -- For Standard.Wide_Character or a type derived from it, check that the
6850 -- literal is in range.
6852 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6853 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6854 return;
6855 end if;
6857 -- If the entity is already set, this has already been resolved in a
6858 -- generic context, or comes from expansion. Nothing else to do.
6860 elsif Present (Entity (N)) then
6861 return;
6863 -- Otherwise we have a user defined character type, and we can use the
6864 -- standard visibility mechanisms to locate the referenced entity.
6866 else
6867 C := Current_Entity (N);
6868 while Present (C) loop
6869 if Etype (C) = B_Typ then
6870 Set_Entity_With_Checks (N, C);
6871 Generate_Reference (C, N);
6872 return;
6873 end if;
6875 C := Homonym (C);
6876 end loop;
6877 end if;
6879 -- If we fall through, then the literal does not match any of the
6880 -- entries of the enumeration type. This isn't just a constraint error
6881 -- situation, it is an illegality (see RM 4.2).
6883 Error_Msg_NE
6884 ("character not defined for }", N, First_Subtype (B_Typ));
6885 end Resolve_Character_Literal;
6887 ---------------------------
6888 -- Resolve_Comparison_Op --
6889 ---------------------------
6891 -- Context requires a boolean type, and plays no role in resolution.
6892 -- Processing identical to that for equality operators. The result type is
6893 -- the base type, which matters when pathological subtypes of booleans with
6894 -- limited ranges are used.
6896 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6897 L : constant Node_Id := Left_Opnd (N);
6898 R : constant Node_Id := Right_Opnd (N);
6899 T : Entity_Id;
6901 begin
6902 -- If this is an intrinsic operation which is not predefined, use the
6903 -- types of its declared arguments to resolve the possibly overloaded
6904 -- operands. Otherwise the operands are unambiguous and specify the
6905 -- expected type.
6907 if Scope (Entity (N)) /= Standard_Standard then
6908 T := Etype (First_Entity (Entity (N)));
6910 else
6911 T := Find_Unique_Type (L, R);
6913 if T = Any_Fixed then
6914 T := Unique_Fixed_Point_Type (L);
6915 end if;
6916 end if;
6918 Set_Etype (N, Base_Type (Typ));
6919 Generate_Reference (T, N, ' ');
6921 -- Skip remaining processing if already set to Any_Type
6923 if T = Any_Type then
6924 return;
6925 end if;
6927 -- Deal with other error cases
6929 if T = Any_String or else
6930 T = Any_Composite or else
6931 T = Any_Character
6932 then
6933 if T = Any_Character then
6934 Ambiguous_Character (L);
6935 else
6936 Error_Msg_N ("ambiguous operands for comparison", N);
6937 end if;
6939 Set_Etype (N, Any_Type);
6940 return;
6941 end if;
6943 -- Resolve the operands if types OK
6945 Resolve (L, T);
6946 Resolve (R, T);
6947 Check_Unset_Reference (L);
6948 Check_Unset_Reference (R);
6949 Generate_Operator_Reference (N, T);
6950 Check_Low_Bound_Tested (N);
6952 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6953 -- types or array types except String.
6955 if Is_Boolean_Type (T) then
6956 Check_SPARK_05_Restriction
6957 ("comparison is not defined on Boolean type", N);
6959 elsif Is_Array_Type (T)
6960 and then Base_Type (T) /= Standard_String
6961 then
6962 Check_SPARK_05_Restriction
6963 ("comparison is not defined on array types other than String", N);
6964 end if;
6966 -- Check comparison on unordered enumeration
6968 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6969 Error_Msg_Sloc := Sloc (Etype (L));
6970 Error_Msg_NE
6971 ("comparison on unordered enumeration type& declared#?U?",
6972 N, Etype (L));
6973 end if;
6975 Analyze_Dimension (N);
6977 -- Evaluate the relation (note we do this after the above check since
6978 -- this Eval call may change N to True/False. Skip this evaluation
6979 -- inside assertions, in order to keep assertions as written by users
6980 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6981 -- Except evaluation is still performed even inside assertions for
6982 -- comparisons between values of universal type, which are useless
6983 -- for static analysis tools, and not supported even by GNATprove.
6985 if In_Assertion_Expr = 0
6986 or else (Is_Universal_Numeric_Type (Etype (L))
6987 and then
6988 Is_Universal_Numeric_Type (Etype (R)))
6989 then
6990 Eval_Relational_Op (N);
6991 end if;
6992 end Resolve_Comparison_Op;
6994 -----------------------------------------
6995 -- Resolve_Discrete_Subtype_Indication --
6996 -----------------------------------------
6998 procedure Resolve_Discrete_Subtype_Indication
6999 (N : Node_Id;
7000 Typ : Entity_Id)
7002 R : Node_Id;
7003 S : Entity_Id;
7005 begin
7006 Analyze (Subtype_Mark (N));
7007 S := Entity (Subtype_Mark (N));
7009 if Nkind (Constraint (N)) /= N_Range_Constraint then
7010 Error_Msg_N ("expect range constraint for discrete type", N);
7011 Set_Etype (N, Any_Type);
7013 else
7014 R := Range_Expression (Constraint (N));
7016 if R = Error then
7017 return;
7018 end if;
7020 Analyze (R);
7022 if Base_Type (S) /= Base_Type (Typ) then
7023 Error_Msg_NE
7024 ("expect subtype of }", N, First_Subtype (Typ));
7026 -- Rewrite the constraint as a range of Typ
7027 -- to allow compilation to proceed further.
7029 Set_Etype (N, Typ);
7030 Rewrite (Low_Bound (R),
7031 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7032 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7033 Attribute_Name => Name_First));
7034 Rewrite (High_Bound (R),
7035 Make_Attribute_Reference (Sloc (High_Bound (R)),
7036 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7037 Attribute_Name => Name_First));
7039 else
7040 Resolve (R, Typ);
7041 Set_Etype (N, Etype (R));
7043 -- Additionally, we must check that the bounds are compatible
7044 -- with the given subtype, which might be different from the
7045 -- type of the context.
7047 Apply_Range_Check (R, S);
7049 -- ??? If the above check statically detects a Constraint_Error
7050 -- it replaces the offending bound(s) of the range R with a
7051 -- Constraint_Error node. When the itype which uses these bounds
7052 -- is frozen the resulting call to Duplicate_Subexpr generates
7053 -- a new temporary for the bounds.
7055 -- Unfortunately there are other itypes that are also made depend
7056 -- on these bounds, so when Duplicate_Subexpr is called they get
7057 -- a forward reference to the newly created temporaries and Gigi
7058 -- aborts on such forward references. This is probably sign of a
7059 -- more fundamental problem somewhere else in either the order of
7060 -- itype freezing or the way certain itypes are constructed.
7062 -- To get around this problem we call Remove_Side_Effects right
7063 -- away if either bounds of R are a Constraint_Error.
7065 declare
7066 L : constant Node_Id := Low_Bound (R);
7067 H : constant Node_Id := High_Bound (R);
7069 begin
7070 if Nkind (L) = N_Raise_Constraint_Error then
7071 Remove_Side_Effects (L);
7072 end if;
7074 if Nkind (H) = N_Raise_Constraint_Error then
7075 Remove_Side_Effects (H);
7076 end if;
7077 end;
7079 Check_Unset_Reference (Low_Bound (R));
7080 Check_Unset_Reference (High_Bound (R));
7081 end if;
7082 end if;
7083 end Resolve_Discrete_Subtype_Indication;
7085 -------------------------
7086 -- Resolve_Entity_Name --
7087 -------------------------
7089 -- Used to resolve identifiers and expanded names
7091 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7092 function Is_Assignment_Or_Object_Expression
7093 (Context : Node_Id;
7094 Expr : Node_Id) return Boolean;
7095 -- Determine whether node Context denotes an assignment statement or an
7096 -- object declaration whose expression is node Expr.
7098 ----------------------------------------
7099 -- Is_Assignment_Or_Object_Expression --
7100 ----------------------------------------
7102 function Is_Assignment_Or_Object_Expression
7103 (Context : Node_Id;
7104 Expr : Node_Id) return Boolean
7106 begin
7107 if Nkind_In (Context, N_Assignment_Statement,
7108 N_Object_Declaration)
7109 and then Expression (Context) = Expr
7110 then
7111 return True;
7113 -- Check whether a construct that yields a name is the expression of
7114 -- an assignment statement or an object declaration.
7116 elsif (Nkind_In (Context, N_Attribute_Reference,
7117 N_Explicit_Dereference,
7118 N_Indexed_Component,
7119 N_Selected_Component,
7120 N_Slice)
7121 and then Prefix (Context) = Expr)
7122 or else
7123 (Nkind_In (Context, N_Type_Conversion,
7124 N_Unchecked_Type_Conversion)
7125 and then Expression (Context) = Expr)
7126 then
7127 return
7128 Is_Assignment_Or_Object_Expression
7129 (Context => Parent (Context),
7130 Expr => Context);
7132 -- Otherwise the context is not an assignment statement or an object
7133 -- declaration.
7135 else
7136 return False;
7137 end if;
7138 end Is_Assignment_Or_Object_Expression;
7140 -- Local variables
7142 E : constant Entity_Id := Entity (N);
7143 Par : Node_Id;
7145 -- Start of processing for Resolve_Entity_Name
7147 begin
7148 -- If garbage from errors, set to Any_Type and return
7150 if No (E) and then Total_Errors_Detected /= 0 then
7151 Set_Etype (N, Any_Type);
7152 return;
7153 end if;
7155 -- Replace named numbers by corresponding literals. Note that this is
7156 -- the one case where Resolve_Entity_Name must reset the Etype, since
7157 -- it is currently marked as universal.
7159 if Ekind (E) = E_Named_Integer then
7160 Set_Etype (N, Typ);
7161 Eval_Named_Integer (N);
7163 elsif Ekind (E) = E_Named_Real then
7164 Set_Etype (N, Typ);
7165 Eval_Named_Real (N);
7167 -- For enumeration literals, we need to make sure that a proper style
7168 -- check is done, since such literals are overloaded, and thus we did
7169 -- not do a style check during the first phase of analysis.
7171 elsif Ekind (E) = E_Enumeration_Literal then
7172 Set_Entity_With_Checks (N, E);
7173 Eval_Entity_Name (N);
7175 -- Case of (sub)type name appearing in a context where an expression
7176 -- is expected. This is legal if occurrence is a current instance.
7177 -- See RM 8.6 (17/3).
7179 elsif Is_Type (E) then
7180 if Is_Current_Instance (N) then
7181 null;
7183 -- Any other use is an error
7185 else
7186 Error_Msg_N
7187 ("invalid use of subtype mark in expression or call", N);
7188 end if;
7190 -- Check discriminant use if entity is discriminant in current scope,
7191 -- i.e. discriminant of record or concurrent type currently being
7192 -- analyzed. Uses in corresponding body are unrestricted.
7194 elsif Ekind (E) = E_Discriminant
7195 and then Scope (E) = Current_Scope
7196 and then not Has_Completion (Current_Scope)
7197 then
7198 Check_Discriminant_Use (N);
7200 -- A parameterless generic function cannot appear in a context that
7201 -- requires resolution.
7203 elsif Ekind (E) = E_Generic_Function then
7204 Error_Msg_N ("illegal use of generic function", N);
7206 -- In Ada 83 an OUT parameter cannot be read
7208 elsif Ekind (E) = E_Out_Parameter
7209 and then (Nkind (Parent (N)) in N_Op
7210 or else Nkind (Parent (N)) = N_Explicit_Dereference
7211 or else Is_Assignment_Or_Object_Expression
7212 (Context => Parent (N),
7213 Expr => N))
7214 then
7215 if Ada_Version = Ada_83 then
7216 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7217 end if;
7219 -- In all other cases, just do the possible static evaluation
7221 else
7222 -- A deferred constant that appears in an expression must have a
7223 -- completion, unless it has been removed by in-place expansion of
7224 -- an aggregate. A constant that is a renaming does not need
7225 -- initialization.
7227 if Ekind (E) = E_Constant
7228 and then Comes_From_Source (E)
7229 and then No (Constant_Value (E))
7230 and then Is_Frozen (Etype (E))
7231 and then not In_Spec_Expression
7232 and then not Is_Imported (E)
7233 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7234 then
7235 if No_Initialization (Parent (E))
7236 or else (Present (Full_View (E))
7237 and then No_Initialization (Parent (Full_View (E))))
7238 then
7239 null;
7240 else
7241 Error_Msg_N
7242 ("deferred constant is frozen before completion", N);
7243 end if;
7244 end if;
7246 Eval_Entity_Name (N);
7247 end if;
7249 Par := Parent (N);
7251 -- When the entity appears in a parameter association, retrieve the
7252 -- related subprogram call.
7254 if Nkind (Par) = N_Parameter_Association then
7255 Par := Parent (Par);
7256 end if;
7258 if Comes_From_Source (N) then
7260 -- The following checks are only relevant when SPARK_Mode is on as
7261 -- they are not standard Ada legality rules.
7263 if SPARK_Mode = On then
7265 -- An effectively volatile object subject to enabled properties
7266 -- Async_Writers or Effective_Reads must appear in non-interfering
7267 -- context (SPARK RM 7.1.3(12)).
7269 if Is_Object (E)
7270 and then Is_Effectively_Volatile (E)
7271 and then (Async_Writers_Enabled (E)
7272 or else Effective_Reads_Enabled (E))
7273 and then not Is_OK_Volatile_Context (Par, N)
7274 then
7275 SPARK_Msg_N
7276 ("volatile object cannot appear in this context "
7277 & "(SPARK RM 7.1.3(12))", N);
7278 end if;
7280 -- The variable may eventually become a constituent of a single
7281 -- protected/task type. Record the reference now and verify its
7282 -- legality when analyzing the contract of the variable
7283 -- (SPARK RM 9.3).
7285 if Ekind (E) = E_Variable then
7286 Record_Possible_Part_Of_Reference (E, N);
7287 end if;
7288 end if;
7290 -- A Ghost entity must appear in a specific context
7292 if Is_Ghost_Entity (E) then
7293 Check_Ghost_Context (E, N);
7294 end if;
7295 end if;
7297 Mark_Use_Clauses (E);
7298 end Resolve_Entity_Name;
7300 -------------------
7301 -- Resolve_Entry --
7302 -------------------
7304 procedure Resolve_Entry (Entry_Name : Node_Id) is
7305 Loc : constant Source_Ptr := Sloc (Entry_Name);
7306 Nam : Entity_Id;
7307 New_N : Node_Id;
7308 S : Entity_Id;
7309 Tsk : Entity_Id;
7310 E_Name : Node_Id;
7311 Index : Node_Id;
7313 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7314 -- If the bounds of the entry family being called depend on task
7315 -- discriminants, build a new index subtype where a discriminant is
7316 -- replaced with the value of the discriminant of the target task.
7317 -- The target task is the prefix of the entry name in the call.
7319 -----------------------
7320 -- Actual_Index_Type --
7321 -----------------------
7323 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7324 Typ : constant Entity_Id := Entry_Index_Type (E);
7325 Tsk : constant Entity_Id := Scope (E);
7326 Lo : constant Node_Id := Type_Low_Bound (Typ);
7327 Hi : constant Node_Id := Type_High_Bound (Typ);
7328 New_T : Entity_Id;
7330 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7331 -- If the bound is given by a discriminant, replace with a reference
7332 -- to the discriminant of the same name in the target task. If the
7333 -- entry name is the target of a requeue statement and the entry is
7334 -- in the current protected object, the bound to be used is the
7335 -- discriminal of the object (see Apply_Range_Checks for details of
7336 -- the transformation).
7338 -----------------------------
7339 -- Actual_Discriminant_Ref --
7340 -----------------------------
7342 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7343 Typ : constant Entity_Id := Etype (Bound);
7344 Ref : Node_Id;
7346 begin
7347 Remove_Side_Effects (Bound);
7349 if not Is_Entity_Name (Bound)
7350 or else Ekind (Entity (Bound)) /= E_Discriminant
7351 then
7352 return Bound;
7354 elsif Is_Protected_Type (Tsk)
7355 and then In_Open_Scopes (Tsk)
7356 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7357 then
7358 -- Note: here Bound denotes a discriminant of the corresponding
7359 -- record type tskV, whose discriminal is a formal of the
7360 -- init-proc tskVIP. What we want is the body discriminal,
7361 -- which is associated to the discriminant of the original
7362 -- concurrent type tsk.
7364 return New_Occurrence_Of
7365 (Find_Body_Discriminal (Entity (Bound)), Loc);
7367 else
7368 Ref :=
7369 Make_Selected_Component (Loc,
7370 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7371 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7372 Analyze (Ref);
7373 Resolve (Ref, Typ);
7374 return Ref;
7375 end if;
7376 end Actual_Discriminant_Ref;
7378 -- Start of processing for Actual_Index_Type
7380 begin
7381 if not Has_Discriminants (Tsk)
7382 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7383 then
7384 return Entry_Index_Type (E);
7386 else
7387 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7388 Set_Etype (New_T, Base_Type (Typ));
7389 Set_Size_Info (New_T, Typ);
7390 Set_RM_Size (New_T, RM_Size (Typ));
7391 Set_Scalar_Range (New_T,
7392 Make_Range (Sloc (Entry_Name),
7393 Low_Bound => Actual_Discriminant_Ref (Lo),
7394 High_Bound => Actual_Discriminant_Ref (Hi)));
7396 return New_T;
7397 end if;
7398 end Actual_Index_Type;
7400 -- Start of processing for Resolve_Entry
7402 begin
7403 -- Find name of entry being called, and resolve prefix of name with its
7404 -- own type. The prefix can be overloaded, and the name and signature of
7405 -- the entry must be taken into account.
7407 if Nkind (Entry_Name) = N_Indexed_Component then
7409 -- Case of dealing with entry family within the current tasks
7411 E_Name := Prefix (Entry_Name);
7413 else
7414 E_Name := Entry_Name;
7415 end if;
7417 if Is_Entity_Name (E_Name) then
7419 -- Entry call to an entry (or entry family) in the current task. This
7420 -- is legal even though the task will deadlock. Rewrite as call to
7421 -- current task.
7423 -- This can also be a call to an entry in an enclosing task. If this
7424 -- is a single task, we have to retrieve its name, because the scope
7425 -- of the entry is the task type, not the object. If the enclosing
7426 -- task is a task type, the identity of the task is given by its own
7427 -- self variable.
7429 -- Finally this can be a requeue on an entry of the same task or
7430 -- protected object.
7432 S := Scope (Entity (E_Name));
7434 for J in reverse 0 .. Scope_Stack.Last loop
7435 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7436 and then not Comes_From_Source (S)
7437 then
7438 -- S is an enclosing task or protected object. The concurrent
7439 -- declaration has been converted into a type declaration, and
7440 -- the object itself has an object declaration that follows
7441 -- the type in the same declarative part.
7443 Tsk := Next_Entity (S);
7444 while Etype (Tsk) /= S loop
7445 Next_Entity (Tsk);
7446 end loop;
7448 S := Tsk;
7449 exit;
7451 elsif S = Scope_Stack.Table (J).Entity then
7453 -- Call to current task. Will be transformed into call to Self
7455 exit;
7457 end if;
7458 end loop;
7460 New_N :=
7461 Make_Selected_Component (Loc,
7462 Prefix => New_Occurrence_Of (S, Loc),
7463 Selector_Name =>
7464 New_Occurrence_Of (Entity (E_Name), Loc));
7465 Rewrite (E_Name, New_N);
7466 Analyze (E_Name);
7468 elsif Nkind (Entry_Name) = N_Selected_Component
7469 and then Is_Overloaded (Prefix (Entry_Name))
7470 then
7471 -- Use the entry name (which must be unique at this point) to find
7472 -- the prefix that returns the corresponding task/protected type.
7474 declare
7475 Pref : constant Node_Id := Prefix (Entry_Name);
7476 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7477 I : Interp_Index;
7478 It : Interp;
7480 begin
7481 Get_First_Interp (Pref, I, It);
7482 while Present (It.Typ) loop
7483 if Scope (Ent) = It.Typ then
7484 Set_Etype (Pref, It.Typ);
7485 exit;
7486 end if;
7488 Get_Next_Interp (I, It);
7489 end loop;
7490 end;
7491 end if;
7493 if Nkind (Entry_Name) = N_Selected_Component then
7494 Resolve (Prefix (Entry_Name));
7496 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7497 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7498 Resolve (Prefix (Prefix (Entry_Name)));
7499 Index := First (Expressions (Entry_Name));
7500 Resolve (Index, Entry_Index_Type (Nam));
7502 -- Generate a reference for the index when it denotes an entity
7504 if Is_Entity_Name (Index) then
7505 Generate_Reference (Entity (Index), Nam);
7506 end if;
7508 -- Up to this point the expression could have been the actual in a
7509 -- simple entry call, and be given by a named association.
7511 if Nkind (Index) = N_Parameter_Association then
7512 Error_Msg_N ("expect expression for entry index", Index);
7513 else
7514 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7515 end if;
7516 end if;
7517 end Resolve_Entry;
7519 ------------------------
7520 -- Resolve_Entry_Call --
7521 ------------------------
7523 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7524 Entry_Name : constant Node_Id := Name (N);
7525 Loc : constant Source_Ptr := Sloc (Entry_Name);
7527 Nam : Entity_Id;
7528 Norm_OK : Boolean;
7529 Obj : Node_Id;
7530 Was_Over : Boolean;
7532 begin
7533 -- We kill all checks here, because it does not seem worth the effort to
7534 -- do anything better, an entry call is a big operation.
7536 Kill_All_Checks;
7538 -- Processing of the name is similar for entry calls and protected
7539 -- operation calls. Once the entity is determined, we can complete
7540 -- the resolution of the actuals.
7542 -- The selector may be overloaded, in the case of a protected object
7543 -- with overloaded functions. The type of the context is used for
7544 -- resolution.
7546 if Nkind (Entry_Name) = N_Selected_Component
7547 and then Is_Overloaded (Selector_Name (Entry_Name))
7548 and then Typ /= Standard_Void_Type
7549 then
7550 declare
7551 I : Interp_Index;
7552 It : Interp;
7554 begin
7555 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7556 while Present (It.Typ) loop
7557 if Covers (Typ, It.Typ) then
7558 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7559 Set_Etype (Entry_Name, It.Typ);
7561 Generate_Reference (It.Typ, N, ' ');
7562 end if;
7564 Get_Next_Interp (I, It);
7565 end loop;
7566 end;
7567 end if;
7569 Resolve_Entry (Entry_Name);
7571 if Nkind (Entry_Name) = N_Selected_Component then
7573 -- Simple entry or protected operation call
7575 Nam := Entity (Selector_Name (Entry_Name));
7576 Obj := Prefix (Entry_Name);
7578 if Is_Subprogram (Nam) then
7579 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7580 end if;
7582 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7584 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7586 -- Call to member of entry family
7588 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7589 Obj := Prefix (Prefix (Entry_Name));
7590 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7591 end if;
7593 -- We cannot in general check the maximum depth of protected entry calls
7594 -- at compile time. But we can tell that any protected entry call at all
7595 -- violates a specified nesting depth of zero.
7597 if Is_Protected_Type (Scope (Nam)) then
7598 Check_Restriction (Max_Entry_Queue_Length, N);
7599 end if;
7601 -- Use context type to disambiguate a protected function that can be
7602 -- called without actuals and that returns an array type, and where the
7603 -- argument list may be an indexing of the returned value.
7605 if Ekind (Nam) = E_Function
7606 and then Needs_No_Actuals (Nam)
7607 and then Present (Parameter_Associations (N))
7608 and then
7609 ((Is_Array_Type (Etype (Nam))
7610 and then Covers (Typ, Component_Type (Etype (Nam))))
7612 or else (Is_Access_Type (Etype (Nam))
7613 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7614 and then
7615 Covers
7616 (Typ,
7617 Component_Type (Designated_Type (Etype (Nam))))))
7618 then
7619 declare
7620 Index_Node : Node_Id;
7622 begin
7623 Index_Node :=
7624 Make_Indexed_Component (Loc,
7625 Prefix =>
7626 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7627 Expressions => Parameter_Associations (N));
7629 -- Since we are correcting a node classification error made by the
7630 -- parser, we call Replace rather than Rewrite.
7632 Replace (N, Index_Node);
7633 Set_Etype (Prefix (N), Etype (Nam));
7634 Set_Etype (N, Typ);
7635 Resolve_Indexed_Component (N, Typ);
7636 return;
7637 end;
7638 end if;
7640 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7641 and then Present (Contract_Wrapper (Nam))
7642 and then Current_Scope /= Contract_Wrapper (Nam)
7643 then
7644 -- Note the entity being called before rewriting the call, so that
7645 -- it appears used at this point.
7647 Generate_Reference (Nam, Entry_Name, 'r');
7649 -- Rewrite as call to the precondition wrapper, adding the task
7650 -- object to the list of actuals. If the call is to a member of an
7651 -- entry family, include the index as well.
7653 declare
7654 New_Call : Node_Id;
7655 New_Actuals : List_Id;
7657 begin
7658 New_Actuals := New_List (Obj);
7660 if Nkind (Entry_Name) = N_Indexed_Component then
7661 Append_To (New_Actuals,
7662 New_Copy_Tree (First (Expressions (Entry_Name))));
7663 end if;
7665 Append_List (Parameter_Associations (N), New_Actuals);
7666 New_Call :=
7667 Make_Procedure_Call_Statement (Loc,
7668 Name =>
7669 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7670 Parameter_Associations => New_Actuals);
7671 Rewrite (N, New_Call);
7673 -- Preanalyze and resolve new call. Current procedure is called
7674 -- from Resolve_Call, after which expansion will take place.
7676 Preanalyze_And_Resolve (N);
7677 return;
7678 end;
7679 end if;
7681 -- The operation name may have been overloaded. Order the actuals
7682 -- according to the formals of the resolved entity, and set the return
7683 -- type to that of the operation.
7685 if Was_Over then
7686 Normalize_Actuals (N, Nam, False, Norm_OK);
7687 pragma Assert (Norm_OK);
7688 Set_Etype (N, Etype (Nam));
7690 -- Reset the Is_Overloaded flag, since resolution is now completed
7692 -- Simple entry call
7694 if Nkind (Entry_Name) = N_Selected_Component then
7695 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7697 -- Call to a member of an entry family
7699 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7700 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7701 end if;
7702 end if;
7704 Resolve_Actuals (N, Nam);
7705 Check_Internal_Protected_Use (N, Nam);
7707 -- Create a call reference to the entry
7709 Generate_Reference (Nam, Entry_Name, 's');
7711 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7712 Check_Potentially_Blocking_Operation (N);
7713 end if;
7715 -- Verify that a procedure call cannot masquerade as an entry
7716 -- call where an entry call is expected.
7718 if Ekind (Nam) = E_Procedure then
7719 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7720 and then N = Entry_Call_Statement (Parent (N))
7721 then
7722 Error_Msg_N ("entry call required in select statement", N);
7724 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7725 and then N = Triggering_Statement (Parent (N))
7726 then
7727 Error_Msg_N ("triggering statement cannot be procedure call", N);
7729 elsif Ekind (Scope (Nam)) = E_Task_Type
7730 and then not In_Open_Scopes (Scope (Nam))
7731 then
7732 Error_Msg_N ("task has no entry with this name", Entry_Name);
7733 end if;
7734 end if;
7736 -- After resolution, entry calls and protected procedure calls are
7737 -- changed into entry calls, for expansion. The structure of the node
7738 -- does not change, so it can safely be done in place. Protected
7739 -- function calls must keep their structure because they are
7740 -- subexpressions.
7742 if Ekind (Nam) /= E_Function then
7744 -- A protected operation that is not a function may modify the
7745 -- corresponding object, and cannot apply to a constant. If this
7746 -- is an internal call, the prefix is the type itself.
7748 if Is_Protected_Type (Scope (Nam))
7749 and then not Is_Variable (Obj)
7750 and then (not Is_Entity_Name (Obj)
7751 or else not Is_Type (Entity (Obj)))
7752 then
7753 Error_Msg_N
7754 ("prefix of protected procedure or entry call must be variable",
7755 Entry_Name);
7756 end if;
7758 declare
7759 Entry_Call : Node_Id;
7761 begin
7762 Entry_Call :=
7763 Make_Entry_Call_Statement (Loc,
7764 Name => Entry_Name,
7765 Parameter_Associations => Parameter_Associations (N));
7767 -- Inherit relevant attributes from the original call
7769 Set_First_Named_Actual
7770 (Entry_Call, First_Named_Actual (N));
7772 Set_Is_Elaboration_Checks_OK_Node
7773 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7775 Set_Is_SPARK_Mode_On_Node
7776 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7778 Rewrite (N, Entry_Call);
7779 Set_Analyzed (N, True);
7780 end;
7782 -- Protected functions can return on the secondary stack, in which
7783 -- case we must trigger the transient scope mechanism.
7785 elsif Expander_Active
7786 and then Requires_Transient_Scope (Etype (Nam))
7787 then
7788 Establish_Transient_Scope (N, Sec_Stack => True);
7789 end if;
7790 end Resolve_Entry_Call;
7792 -------------------------
7793 -- Resolve_Equality_Op --
7794 -------------------------
7796 -- Both arguments must have the same type, and the boolean context does
7797 -- not participate in the resolution. The first pass verifies that the
7798 -- interpretation is not ambiguous, and the type of the left argument is
7799 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7800 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7801 -- though they carry a single (universal) type. Diagnose this case here.
7803 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7804 L : constant Node_Id := Left_Opnd (N);
7805 R : constant Node_Id := Right_Opnd (N);
7806 T : Entity_Id := Find_Unique_Type (L, R);
7808 procedure Check_If_Expression (Cond : Node_Id);
7809 -- The resolution rule for if expressions requires that each such must
7810 -- have a unique type. This means that if several dependent expressions
7811 -- are of a non-null anonymous access type, and the context does not
7812 -- impose an expected type (as can be the case in an equality operation)
7813 -- the expression must be rejected.
7815 procedure Explain_Redundancy (N : Node_Id);
7816 -- Attempt to explain the nature of a redundant comparison with True. If
7817 -- the expression N is too complex, this routine issues a general error
7818 -- message.
7820 function Find_Unique_Access_Type return Entity_Id;
7821 -- In the case of allocators and access attributes, the context must
7822 -- provide an indication of the specific access type to be used. If
7823 -- one operand is of such a "generic" access type, check whether there
7824 -- is a specific visible access type that has the same designated type.
7825 -- This is semantically dubious, and of no interest to any real code,
7826 -- but c48008a makes it all worthwhile.
7828 -------------------------
7829 -- Check_If_Expression --
7830 -------------------------
7832 procedure Check_If_Expression (Cond : Node_Id) is
7833 Then_Expr : Node_Id;
7834 Else_Expr : Node_Id;
7836 begin
7837 if Nkind (Cond) = N_If_Expression then
7838 Then_Expr := Next (First (Expressions (Cond)));
7839 Else_Expr := Next (Then_Expr);
7841 if Nkind (Then_Expr) /= N_Null
7842 and then Nkind (Else_Expr) /= N_Null
7843 then
7844 Error_Msg_N ("cannot determine type of if expression", Cond);
7845 end if;
7846 end if;
7847 end Check_If_Expression;
7849 ------------------------
7850 -- Explain_Redundancy --
7851 ------------------------
7853 procedure Explain_Redundancy (N : Node_Id) is
7854 Error : Name_Id;
7855 Val : Node_Id;
7856 Val_Id : Entity_Id;
7858 begin
7859 Val := N;
7861 -- Strip the operand down to an entity
7863 loop
7864 if Nkind (Val) = N_Selected_Component then
7865 Val := Selector_Name (Val);
7866 else
7867 exit;
7868 end if;
7869 end loop;
7871 -- The construct denotes an entity
7873 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7874 Val_Id := Entity (Val);
7876 -- Do not generate an error message when the comparison is done
7877 -- against the enumeration literal Standard.True.
7879 if Ekind (Val_Id) /= E_Enumeration_Literal then
7881 -- Build a customized error message
7883 Name_Len := 0;
7884 Add_Str_To_Name_Buffer ("?r?");
7886 if Ekind (Val_Id) = E_Component then
7887 Add_Str_To_Name_Buffer ("component ");
7889 elsif Ekind (Val_Id) = E_Constant then
7890 Add_Str_To_Name_Buffer ("constant ");
7892 elsif Ekind (Val_Id) = E_Discriminant then
7893 Add_Str_To_Name_Buffer ("discriminant ");
7895 elsif Is_Formal (Val_Id) then
7896 Add_Str_To_Name_Buffer ("parameter ");
7898 elsif Ekind (Val_Id) = E_Variable then
7899 Add_Str_To_Name_Buffer ("variable ");
7900 end if;
7902 Add_Str_To_Name_Buffer ("& is always True!");
7903 Error := Name_Find;
7905 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7906 end if;
7908 -- The construct is too complex to disect, issue a general message
7910 else
7911 Error_Msg_N ("?r?expression is always True!", Val);
7912 end if;
7913 end Explain_Redundancy;
7915 -----------------------------
7916 -- Find_Unique_Access_Type --
7917 -----------------------------
7919 function Find_Unique_Access_Type return Entity_Id is
7920 Acc : Entity_Id;
7921 E : Entity_Id;
7922 S : Entity_Id;
7924 begin
7925 if Ekind_In (Etype (R), E_Allocator_Type,
7926 E_Access_Attribute_Type)
7927 then
7928 Acc := Designated_Type (Etype (R));
7930 elsif Ekind_In (Etype (L), E_Allocator_Type,
7931 E_Access_Attribute_Type)
7932 then
7933 Acc := Designated_Type (Etype (L));
7934 else
7935 return Empty;
7936 end if;
7938 S := Current_Scope;
7939 while S /= Standard_Standard loop
7940 E := First_Entity (S);
7941 while Present (E) loop
7942 if Is_Type (E)
7943 and then Is_Access_Type (E)
7944 and then Ekind (E) /= E_Allocator_Type
7945 and then Designated_Type (E) = Base_Type (Acc)
7946 then
7947 return E;
7948 end if;
7950 Next_Entity (E);
7951 end loop;
7953 S := Scope (S);
7954 end loop;
7956 return Empty;
7957 end Find_Unique_Access_Type;
7959 -- Start of processing for Resolve_Equality_Op
7961 begin
7962 Set_Etype (N, Base_Type (Typ));
7963 Generate_Reference (T, N, ' ');
7965 if T = Any_Fixed then
7966 T := Unique_Fixed_Point_Type (L);
7967 end if;
7969 if T /= Any_Type then
7970 if T = Any_String or else
7971 T = Any_Composite or else
7972 T = Any_Character
7973 then
7974 if T = Any_Character then
7975 Ambiguous_Character (L);
7976 else
7977 Error_Msg_N ("ambiguous operands for equality", N);
7978 end if;
7980 Set_Etype (N, Any_Type);
7981 return;
7983 elsif T = Any_Access
7984 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7985 then
7986 T := Find_Unique_Access_Type;
7988 if No (T) then
7989 Error_Msg_N ("ambiguous operands for equality", N);
7990 Set_Etype (N, Any_Type);
7991 return;
7992 end if;
7994 -- If expressions must have a single type, and if the context does
7995 -- not impose one the dependent expressions cannot be anonymous
7996 -- access types.
7998 -- Why no similar processing for case expressions???
8000 elsif Ada_Version >= Ada_2012
8001 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8002 E_Anonymous_Access_Subprogram_Type)
8003 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8004 E_Anonymous_Access_Subprogram_Type)
8005 then
8006 Check_If_Expression (L);
8007 Check_If_Expression (R);
8008 end if;
8010 Resolve (L, T);
8011 Resolve (R, T);
8013 -- In SPARK, equality operators = and /= for array types other than
8014 -- String are only defined when, for each index position, the
8015 -- operands have equal static bounds.
8017 if Is_Array_Type (T) then
8019 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8020 -- operation if not needed.
8022 if Restriction_Check_Required (SPARK_05)
8023 and then Base_Type (T) /= Standard_String
8024 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8025 and then Etype (L) /= Any_Composite -- or else L in error
8026 and then Etype (R) /= Any_Composite -- or else R in error
8027 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8028 then
8029 Check_SPARK_05_Restriction
8030 ("array types should have matching static bounds", N);
8031 end if;
8032 end if;
8034 -- If the unique type is a class-wide type then it will be expanded
8035 -- into a dispatching call to the predefined primitive. Therefore we
8036 -- check here for potential violation of such restriction.
8038 if Is_Class_Wide_Type (T) then
8039 Check_Restriction (No_Dispatching_Calls, N);
8040 end if;
8042 -- Only warn for redundant equality comparison to True for objects
8043 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8044 -- other expressions, it may be a matter of preference to write
8045 -- "Expr = True" or "Expr".
8047 if Warn_On_Redundant_Constructs
8048 and then Comes_From_Source (N)
8049 and then Comes_From_Source (R)
8050 and then Is_Entity_Name (R)
8051 and then Entity (R) = Standard_True
8052 and then
8053 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8054 or else
8055 Nkind (L) in N_Op)
8056 then
8057 Error_Msg_N -- CODEFIX
8058 ("?r?comparison with True is redundant!", N);
8059 Explain_Redundancy (Original_Node (R));
8060 end if;
8062 Check_Unset_Reference (L);
8063 Check_Unset_Reference (R);
8064 Generate_Operator_Reference (N, T);
8065 Check_Low_Bound_Tested (N);
8067 -- If this is an inequality, it may be the implicit inequality
8068 -- created for a user-defined operation, in which case the corres-
8069 -- ponding equality operation is not intrinsic, and the operation
8070 -- cannot be constant-folded. Else fold.
8072 if Nkind (N) = N_Op_Eq
8073 or else Comes_From_Source (Entity (N))
8074 or else Ekind (Entity (N)) = E_Operator
8075 or else Is_Intrinsic_Subprogram
8076 (Corresponding_Equality (Entity (N)))
8077 then
8078 Analyze_Dimension (N);
8079 Eval_Relational_Op (N);
8081 elsif Nkind (N) = N_Op_Ne
8082 and then Is_Abstract_Subprogram (Entity (N))
8083 then
8084 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8085 end if;
8087 -- Ada 2005: If one operand is an anonymous access type, convert the
8088 -- other operand to it, to ensure that the underlying types match in
8089 -- the back-end. Same for access_to_subprogram, and the conversion
8090 -- verifies that the types are subtype conformant.
8092 -- We apply the same conversion in the case one of the operands is a
8093 -- private subtype of the type of the other.
8095 -- Why the Expander_Active test here ???
8097 if Expander_Active
8098 and then
8099 (Ekind_In (T, E_Anonymous_Access_Type,
8100 E_Anonymous_Access_Subprogram_Type)
8101 or else Is_Private_Type (T))
8102 then
8103 if Etype (L) /= T then
8104 Rewrite (L,
8105 Make_Unchecked_Type_Conversion (Sloc (L),
8106 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8107 Expression => Relocate_Node (L)));
8108 Analyze_And_Resolve (L, T);
8109 end if;
8111 if (Etype (R)) /= T then
8112 Rewrite (R,
8113 Make_Unchecked_Type_Conversion (Sloc (R),
8114 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8115 Expression => Relocate_Node (R)));
8116 Analyze_And_Resolve (R, T);
8117 end if;
8118 end if;
8119 end if;
8120 end Resolve_Equality_Op;
8122 ----------------------------------
8123 -- Resolve_Explicit_Dereference --
8124 ----------------------------------
8126 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8127 Loc : constant Source_Ptr := Sloc (N);
8128 New_N : Node_Id;
8129 P : constant Node_Id := Prefix (N);
8131 P_Typ : Entity_Id;
8132 -- The candidate prefix type, if overloaded
8134 I : Interp_Index;
8135 It : Interp;
8137 begin
8138 Check_Fully_Declared_Prefix (Typ, P);
8139 P_Typ := Empty;
8141 -- A useful optimization: check whether the dereference denotes an
8142 -- element of a container, and if so rewrite it as a call to the
8143 -- corresponding Element function.
8145 -- Disabled for now, on advice of ARG. A more restricted form of the
8146 -- predicate might be acceptable ???
8148 -- if Is_Container_Element (N) then
8149 -- return;
8150 -- end if;
8152 if Is_Overloaded (P) then
8154 -- Use the context type to select the prefix that has the correct
8155 -- designated type. Keep the first match, which will be the inner-
8156 -- most.
8158 Get_First_Interp (P, I, It);
8160 while Present (It.Typ) loop
8161 if Is_Access_Type (It.Typ)
8162 and then Covers (Typ, Designated_Type (It.Typ))
8163 then
8164 if No (P_Typ) then
8165 P_Typ := It.Typ;
8166 end if;
8168 -- Remove access types that do not match, but preserve access
8169 -- to subprogram interpretations, in case a further dereference
8170 -- is needed (see below).
8172 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8173 Remove_Interp (I);
8174 end if;
8176 Get_Next_Interp (I, It);
8177 end loop;
8179 if Present (P_Typ) then
8180 Resolve (P, P_Typ);
8181 Set_Etype (N, Designated_Type (P_Typ));
8183 else
8184 -- If no interpretation covers the designated type of the prefix,
8185 -- this is the pathological case where not all implementations of
8186 -- the prefix allow the interpretation of the node as a call. Now
8187 -- that the expected type is known, Remove other interpretations
8188 -- from prefix, rewrite it as a call, and resolve again, so that
8189 -- the proper call node is generated.
8191 Get_First_Interp (P, I, It);
8192 while Present (It.Typ) loop
8193 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8194 Remove_Interp (I);
8195 end if;
8197 Get_Next_Interp (I, It);
8198 end loop;
8200 New_N :=
8201 Make_Function_Call (Loc,
8202 Name =>
8203 Make_Explicit_Dereference (Loc,
8204 Prefix => P),
8205 Parameter_Associations => New_List);
8207 Save_Interps (N, New_N);
8208 Rewrite (N, New_N);
8209 Analyze_And_Resolve (N, Typ);
8210 return;
8211 end if;
8213 -- If not overloaded, resolve P with its own type
8215 else
8216 Resolve (P);
8217 end if;
8219 -- If the prefix might be null, add an access check
8221 if Is_Access_Type (Etype (P))
8222 and then not Can_Never_Be_Null (Etype (P))
8223 then
8224 Apply_Access_Check (N);
8225 end if;
8227 -- If the designated type is a packed unconstrained array type, and the
8228 -- explicit dereference is not in the context of an attribute reference,
8229 -- then we must compute and set the actual subtype, since it is needed
8230 -- by Gigi. The reason we exclude the attribute case is that this is
8231 -- handled fine by Gigi, and in fact we use such attributes to build the
8232 -- actual subtype. We also exclude generated code (which builds actual
8233 -- subtypes directly if they are needed).
8235 if Is_Array_Type (Etype (N))
8236 and then Is_Packed (Etype (N))
8237 and then not Is_Constrained (Etype (N))
8238 and then Nkind (Parent (N)) /= N_Attribute_Reference
8239 and then Comes_From_Source (N)
8240 then
8241 Set_Etype (N, Get_Actual_Subtype (N));
8242 end if;
8244 Analyze_Dimension (N);
8246 -- Note: No Eval processing is required for an explicit dereference,
8247 -- because such a name can never be static.
8249 end Resolve_Explicit_Dereference;
8251 -------------------------------------
8252 -- Resolve_Expression_With_Actions --
8253 -------------------------------------
8255 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8256 begin
8257 Set_Etype (N, Typ);
8259 -- If N has no actions, and its expression has been constant folded,
8260 -- then rewrite N as just its expression. Note, we can't do this in
8261 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8262 -- Expression (N) to be expanded again.
8264 if Is_Empty_List (Actions (N))
8265 and then Compile_Time_Known_Value (Expression (N))
8266 then
8267 Rewrite (N, Expression (N));
8268 end if;
8269 end Resolve_Expression_With_Actions;
8271 ----------------------------------
8272 -- Resolve_Generalized_Indexing --
8273 ----------------------------------
8275 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8276 Indexing : constant Node_Id := Generalized_Indexing (N);
8277 Call : Node_Id;
8278 Indexes : List_Id;
8279 Pref : Node_Id;
8281 begin
8282 -- In ASIS mode, propagate the information about the indexes back to
8283 -- to the original indexing node. The generalized indexing is either
8284 -- a function call, or a dereference of one. The actuals include the
8285 -- prefix of the original node, which is the container expression.
8287 if ASIS_Mode then
8288 Resolve (Indexing, Typ);
8289 Set_Etype (N, Etype (Indexing));
8290 Set_Is_Overloaded (N, False);
8292 Call := Indexing;
8293 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8294 loop
8295 Call := Prefix (Call);
8296 end loop;
8298 if Nkind (Call) = N_Function_Call then
8299 Indexes := New_Copy_List (Parameter_Associations (Call));
8300 Pref := Remove_Head (Indexes);
8301 Set_Expressions (N, Indexes);
8303 -- If expression is to be reanalyzed, reset Generalized_Indexing
8304 -- to recreate call node, as is the case when the expression is
8305 -- part of an expression function.
8307 if In_Spec_Expression then
8308 Set_Generalized_Indexing (N, Empty);
8309 end if;
8311 Set_Prefix (N, Pref);
8312 end if;
8314 else
8315 Rewrite (N, Indexing);
8316 Resolve (N, Typ);
8317 end if;
8318 end Resolve_Generalized_Indexing;
8320 ---------------------------
8321 -- Resolve_If_Expression --
8322 ---------------------------
8324 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8325 Condition : constant Node_Id := First (Expressions (N));
8326 Then_Expr : Node_Id;
8327 Else_Expr : Node_Id;
8328 Else_Typ : Entity_Id;
8329 Then_Typ : Entity_Id;
8331 begin
8332 -- Defend against malformed expressions
8334 if No (Condition) then
8335 return;
8336 end if;
8338 Then_Expr := Next (Condition);
8340 if No (Then_Expr) then
8341 return;
8342 end if;
8344 Else_Expr := Next (Then_Expr);
8346 Resolve (Condition, Any_Boolean);
8347 Resolve (Then_Expr, Typ);
8348 Then_Typ := Etype (Then_Expr);
8350 -- When the "then" expression is of a scalar subtype different from the
8351 -- result subtype, then insert a conversion to ensure the generation of
8352 -- a constraint check. The same is done for the else part below, again
8353 -- comparing subtypes rather than base types.
8355 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8356 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8357 Analyze_And_Resolve (Then_Expr, Typ);
8358 end if;
8360 -- If ELSE expression present, just resolve using the determined type
8361 -- If type is universal, resolve to any member of the class.
8363 if Present (Else_Expr) then
8364 if Typ = Universal_Integer then
8365 Resolve (Else_Expr, Any_Integer);
8367 elsif Typ = Universal_Real then
8368 Resolve (Else_Expr, Any_Real);
8370 else
8371 Resolve (Else_Expr, Typ);
8372 end if;
8374 Else_Typ := Etype (Else_Expr);
8376 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8377 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8378 Analyze_And_Resolve (Else_Expr, Typ);
8380 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8381 -- dynamically tagged must be known statically.
8383 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8384 if Is_Dynamically_Tagged (Then_Expr) /=
8385 Is_Dynamically_Tagged (Else_Expr)
8386 then
8387 Error_Msg_N ("all or none of the dependent expressions "
8388 & "can be dynamically tagged", N);
8389 end if;
8390 end if;
8392 -- If no ELSE expression is present, root type must be Standard.Boolean
8393 -- and we provide a Standard.True result converted to the appropriate
8394 -- Boolean type (in case it is a derived boolean type).
8396 elsif Root_Type (Typ) = Standard_Boolean then
8397 Else_Expr :=
8398 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8399 Analyze_And_Resolve (Else_Expr, Typ);
8400 Append_To (Expressions (N), Else_Expr);
8402 else
8403 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8404 Append_To (Expressions (N), Error);
8405 end if;
8407 Set_Etype (N, Typ);
8409 if not Error_Posted (N) then
8410 Eval_If_Expression (N);
8411 end if;
8413 Analyze_Dimension (N);
8414 end Resolve_If_Expression;
8416 -------------------------------
8417 -- Resolve_Indexed_Component --
8418 -------------------------------
8420 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8421 Name : constant Node_Id := Prefix (N);
8422 Expr : Node_Id;
8423 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8424 Index : Node_Id;
8426 begin
8427 if Present (Generalized_Indexing (N)) then
8428 Resolve_Generalized_Indexing (N, Typ);
8429 return;
8430 end if;
8432 if Is_Overloaded (Name) then
8434 -- Use the context type to select the prefix that yields the correct
8435 -- component type.
8437 declare
8438 I : Interp_Index;
8439 It : Interp;
8440 I1 : Interp_Index := 0;
8441 P : constant Node_Id := Prefix (N);
8442 Found : Boolean := False;
8444 begin
8445 Get_First_Interp (P, I, It);
8446 while Present (It.Typ) loop
8447 if (Is_Array_Type (It.Typ)
8448 and then Covers (Typ, Component_Type (It.Typ)))
8449 or else (Is_Access_Type (It.Typ)
8450 and then Is_Array_Type (Designated_Type (It.Typ))
8451 and then
8452 Covers
8453 (Typ,
8454 Component_Type (Designated_Type (It.Typ))))
8455 then
8456 if Found then
8457 It := Disambiguate (P, I1, I, Any_Type);
8459 if It = No_Interp then
8460 Error_Msg_N ("ambiguous prefix for indexing", N);
8461 Set_Etype (N, Typ);
8462 return;
8464 else
8465 Found := True;
8466 Array_Type := It.Typ;
8467 I1 := I;
8468 end if;
8470 else
8471 Found := True;
8472 Array_Type := It.Typ;
8473 I1 := I;
8474 end if;
8475 end if;
8477 Get_Next_Interp (I, It);
8478 end loop;
8479 end;
8481 else
8482 Array_Type := Etype (Name);
8483 end if;
8485 Resolve (Name, Array_Type);
8486 Array_Type := Get_Actual_Subtype_If_Available (Name);
8488 -- If prefix is access type, dereference to get real array type.
8489 -- Note: we do not apply an access check because the expander always
8490 -- introduces an explicit dereference, and the check will happen there.
8492 if Is_Access_Type (Array_Type) then
8493 Array_Type := Designated_Type (Array_Type);
8494 end if;
8496 -- If name was overloaded, set component type correctly now
8497 -- If a misplaced call to an entry family (which has no index types)
8498 -- return. Error will be diagnosed from calling context.
8500 if Is_Array_Type (Array_Type) then
8501 Set_Etype (N, Component_Type (Array_Type));
8502 else
8503 return;
8504 end if;
8506 Index := First_Index (Array_Type);
8507 Expr := First (Expressions (N));
8509 -- The prefix may have resolved to a string literal, in which case its
8510 -- etype has a special representation. This is only possible currently
8511 -- if the prefix is a static concatenation, written in functional
8512 -- notation.
8514 if Ekind (Array_Type) = E_String_Literal_Subtype then
8515 Resolve (Expr, Standard_Positive);
8517 else
8518 while Present (Index) and Present (Expr) loop
8519 Resolve (Expr, Etype (Index));
8520 Check_Unset_Reference (Expr);
8522 if Is_Scalar_Type (Etype (Expr)) then
8523 Apply_Scalar_Range_Check (Expr, Etype (Index));
8524 else
8525 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8526 end if;
8528 Next_Index (Index);
8529 Next (Expr);
8530 end loop;
8531 end if;
8533 Analyze_Dimension (N);
8535 -- Do not generate the warning on suspicious index if we are analyzing
8536 -- package Ada.Tags; otherwise we will report the warning with the
8537 -- Prims_Ptr field of the dispatch table.
8539 if Scope (Etype (Prefix (N))) = Standard_Standard
8540 or else not
8541 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8542 Ada_Tags)
8543 then
8544 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8545 Eval_Indexed_Component (N);
8546 end if;
8548 -- If the array type is atomic, and the component is not atomic, then
8549 -- this is worth a warning, since we have a situation where the access
8550 -- to the component may cause extra read/writes of the atomic array
8551 -- object, or partial word accesses, which could be unexpected.
8553 if Nkind (N) = N_Indexed_Component
8554 and then Is_Atomic_Ref_With_Address (N)
8555 and then not (Has_Atomic_Components (Array_Type)
8556 or else (Is_Entity_Name (Prefix (N))
8557 and then Has_Atomic_Components
8558 (Entity (Prefix (N)))))
8559 and then not Is_Atomic (Component_Type (Array_Type))
8560 then
8561 Error_Msg_N
8562 ("??access to non-atomic component of atomic array", Prefix (N));
8563 Error_Msg_N
8564 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8565 end if;
8566 end Resolve_Indexed_Component;
8568 -----------------------------
8569 -- Resolve_Integer_Literal --
8570 -----------------------------
8572 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8573 begin
8574 Set_Etype (N, Typ);
8575 Eval_Integer_Literal (N);
8576 end Resolve_Integer_Literal;
8578 --------------------------------
8579 -- Resolve_Intrinsic_Operator --
8580 --------------------------------
8582 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8583 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8584 Op : Entity_Id;
8585 Arg1 : Node_Id;
8586 Arg2 : Node_Id;
8588 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8589 -- If the operand is a literal, it cannot be the expression in a
8590 -- conversion. Use a qualified expression instead.
8592 ---------------------
8593 -- Convert_Operand --
8594 ---------------------
8596 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8597 Loc : constant Source_Ptr := Sloc (Opnd);
8598 Res : Node_Id;
8600 begin
8601 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8602 Res :=
8603 Make_Qualified_Expression (Loc,
8604 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8605 Expression => Relocate_Node (Opnd));
8606 Analyze (Res);
8608 else
8609 Res := Unchecked_Convert_To (Btyp, Opnd);
8610 end if;
8612 return Res;
8613 end Convert_Operand;
8615 -- Start of processing for Resolve_Intrinsic_Operator
8617 begin
8618 -- We must preserve the original entity in a generic setting, so that
8619 -- the legality of the operation can be verified in an instance.
8621 if not Expander_Active then
8622 return;
8623 end if;
8625 Op := Entity (N);
8626 while Scope (Op) /= Standard_Standard loop
8627 Op := Homonym (Op);
8628 pragma Assert (Present (Op));
8629 end loop;
8631 Set_Entity (N, Op);
8632 Set_Is_Overloaded (N, False);
8634 -- If the result or operand types are private, rewrite with unchecked
8635 -- conversions on the operands and the result, to expose the proper
8636 -- underlying numeric type.
8638 if Is_Private_Type (Typ)
8639 or else Is_Private_Type (Etype (Left_Opnd (N)))
8640 or else Is_Private_Type (Etype (Right_Opnd (N)))
8641 then
8642 Arg1 := Convert_Operand (Left_Opnd (N));
8644 if Nkind (N) = N_Op_Expon then
8645 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8646 else
8647 Arg2 := Convert_Operand (Right_Opnd (N));
8648 end if;
8650 if Nkind (Arg1) = N_Type_Conversion then
8651 Save_Interps (Left_Opnd (N), Expression (Arg1));
8652 end if;
8654 if Nkind (Arg2) = N_Type_Conversion then
8655 Save_Interps (Right_Opnd (N), Expression (Arg2));
8656 end if;
8658 Set_Left_Opnd (N, Arg1);
8659 Set_Right_Opnd (N, Arg2);
8661 Set_Etype (N, Btyp);
8662 Rewrite (N, Unchecked_Convert_To (Typ, N));
8663 Resolve (N, Typ);
8665 elsif Typ /= Etype (Left_Opnd (N))
8666 or else Typ /= Etype (Right_Opnd (N))
8667 then
8668 -- Add explicit conversion where needed, and save interpretations in
8669 -- case operands are overloaded.
8671 Arg1 := Convert_To (Typ, Left_Opnd (N));
8672 Arg2 := Convert_To (Typ, Right_Opnd (N));
8674 if Nkind (Arg1) = N_Type_Conversion then
8675 Save_Interps (Left_Opnd (N), Expression (Arg1));
8676 else
8677 Save_Interps (Left_Opnd (N), Arg1);
8678 end if;
8680 if Nkind (Arg2) = N_Type_Conversion then
8681 Save_Interps (Right_Opnd (N), Expression (Arg2));
8682 else
8683 Save_Interps (Right_Opnd (N), Arg2);
8684 end if;
8686 Rewrite (Left_Opnd (N), Arg1);
8687 Rewrite (Right_Opnd (N), Arg2);
8688 Analyze (Arg1);
8689 Analyze (Arg2);
8690 Resolve_Arithmetic_Op (N, Typ);
8692 else
8693 Resolve_Arithmetic_Op (N, Typ);
8694 end if;
8695 end Resolve_Intrinsic_Operator;
8697 --------------------------------------
8698 -- Resolve_Intrinsic_Unary_Operator --
8699 --------------------------------------
8701 procedure Resolve_Intrinsic_Unary_Operator
8702 (N : Node_Id;
8703 Typ : Entity_Id)
8705 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8706 Op : Entity_Id;
8707 Arg2 : Node_Id;
8709 begin
8710 Op := Entity (N);
8711 while Scope (Op) /= Standard_Standard loop
8712 Op := Homonym (Op);
8713 pragma Assert (Present (Op));
8714 end loop;
8716 Set_Entity (N, Op);
8718 if Is_Private_Type (Typ) then
8719 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8720 Save_Interps (Right_Opnd (N), Expression (Arg2));
8722 Set_Right_Opnd (N, Arg2);
8724 Set_Etype (N, Btyp);
8725 Rewrite (N, Unchecked_Convert_To (Typ, N));
8726 Resolve (N, Typ);
8728 else
8729 Resolve_Unary_Op (N, Typ);
8730 end if;
8731 end Resolve_Intrinsic_Unary_Operator;
8733 ------------------------
8734 -- Resolve_Logical_Op --
8735 ------------------------
8737 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8738 B_Typ : Entity_Id;
8740 begin
8741 Check_No_Direct_Boolean_Operators (N);
8743 -- Predefined operations on scalar types yield the base type. On the
8744 -- other hand, logical operations on arrays yield the type of the
8745 -- arguments (and the context).
8747 if Is_Array_Type (Typ) then
8748 B_Typ := Typ;
8749 else
8750 B_Typ := Base_Type (Typ);
8751 end if;
8753 -- The following test is required because the operands of the operation
8754 -- may be literals, in which case the resulting type appears to be
8755 -- compatible with a signed integer type, when in fact it is compatible
8756 -- only with modular types. If the context itself is universal, the
8757 -- operation is illegal.
8759 if not Valid_Boolean_Arg (Typ) then
8760 Error_Msg_N ("invalid context for logical operation", N);
8761 Set_Etype (N, Any_Type);
8762 return;
8764 elsif Typ = Any_Modular then
8765 Error_Msg_N
8766 ("no modular type available in this context", N);
8767 Set_Etype (N, Any_Type);
8768 return;
8770 elsif Is_Modular_Integer_Type (Typ)
8771 and then Etype (Left_Opnd (N)) = Universal_Integer
8772 and then Etype (Right_Opnd (N)) = Universal_Integer
8773 then
8774 Check_For_Visible_Operator (N, B_Typ);
8775 end if;
8777 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8778 -- is active and the result type is standard Boolean (do not mess with
8779 -- ops that return a nonstandard Boolean type, because something strange
8780 -- is going on).
8782 -- Note: you might expect this replacement to be done during expansion,
8783 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8784 -- is used, no part of the right operand of an "and" or "or" operator
8785 -- should be executed if the left operand would short-circuit the
8786 -- evaluation of the corresponding "and then" or "or else". If we left
8787 -- the replacement to expansion time, then run-time checks associated
8788 -- with such operands would be evaluated unconditionally, due to being
8789 -- before the condition prior to the rewriting as short-circuit forms
8790 -- during expansion.
8792 if Short_Circuit_And_Or
8793 and then B_Typ = Standard_Boolean
8794 and then Nkind_In (N, N_Op_And, N_Op_Or)
8795 then
8796 -- Mark the corresponding putative SCO operator as truly a logical
8797 -- (and short-circuit) operator.
8799 if Generate_SCO and then Comes_From_Source (N) then
8800 Set_SCO_Logical_Operator (N);
8801 end if;
8803 if Nkind (N) = N_Op_And then
8804 Rewrite (N,
8805 Make_And_Then (Sloc (N),
8806 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8807 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8808 Analyze_And_Resolve (N, B_Typ);
8810 -- Case of OR changed to OR ELSE
8812 else
8813 Rewrite (N,
8814 Make_Or_Else (Sloc (N),
8815 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8816 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8817 Analyze_And_Resolve (N, B_Typ);
8818 end if;
8820 -- Return now, since analysis of the rewritten ops will take care of
8821 -- other reference bookkeeping and expression folding.
8823 return;
8824 end if;
8826 Resolve (Left_Opnd (N), B_Typ);
8827 Resolve (Right_Opnd (N), B_Typ);
8829 Check_Unset_Reference (Left_Opnd (N));
8830 Check_Unset_Reference (Right_Opnd (N));
8832 Set_Etype (N, B_Typ);
8833 Generate_Operator_Reference (N, B_Typ);
8834 Eval_Logical_Op (N);
8836 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8837 -- only when both operands have same static lower and higher bounds. Of
8838 -- course the types have to match, so only check if operands are
8839 -- compatible and the node itself has no errors.
8841 if Is_Array_Type (B_Typ)
8842 and then Nkind (N) in N_Binary_Op
8843 then
8844 declare
8845 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8846 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8848 begin
8849 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8850 -- operation if not needed.
8852 if Restriction_Check_Required (SPARK_05)
8853 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8854 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8855 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8856 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8857 then
8858 Check_SPARK_05_Restriction
8859 ("array types should have matching static bounds", N);
8860 end if;
8861 end;
8862 end if;
8863 end Resolve_Logical_Op;
8865 ---------------------------
8866 -- Resolve_Membership_Op --
8867 ---------------------------
8869 -- The context can only be a boolean type, and does not determine the
8870 -- arguments. Arguments should be unambiguous, but the preference rule for
8871 -- universal types applies.
8873 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8874 pragma Warnings (Off, Typ);
8876 L : constant Node_Id := Left_Opnd (N);
8877 R : constant Node_Id := Right_Opnd (N);
8878 T : Entity_Id;
8880 procedure Resolve_Set_Membership;
8881 -- Analysis has determined a unique type for the left operand. Use it to
8882 -- resolve the disjuncts.
8884 ----------------------------
8885 -- Resolve_Set_Membership --
8886 ----------------------------
8888 procedure Resolve_Set_Membership is
8889 Alt : Node_Id;
8890 Ltyp : Entity_Id;
8892 begin
8893 -- If the left operand is overloaded, find type compatible with not
8894 -- overloaded alternative of the right operand.
8896 if Is_Overloaded (L) then
8897 Ltyp := Empty;
8898 Alt := First (Alternatives (N));
8899 while Present (Alt) loop
8900 if not Is_Overloaded (Alt) then
8901 Ltyp := Intersect_Types (L, Alt);
8902 exit;
8903 else
8904 Next (Alt);
8905 end if;
8906 end loop;
8908 -- Unclear how to resolve expression if all alternatives are also
8909 -- overloaded.
8911 if No (Ltyp) then
8912 Error_Msg_N ("ambiguous expression", N);
8913 end if;
8915 else
8916 Ltyp := Etype (L);
8917 end if;
8919 Resolve (L, Ltyp);
8921 Alt := First (Alternatives (N));
8922 while Present (Alt) loop
8924 -- Alternative is an expression, a range
8925 -- or a subtype mark.
8927 if not Is_Entity_Name (Alt)
8928 or else not Is_Type (Entity (Alt))
8929 then
8930 Resolve (Alt, Ltyp);
8931 end if;
8933 Next (Alt);
8934 end loop;
8936 -- Check for duplicates for discrete case
8938 if Is_Discrete_Type (Ltyp) then
8939 declare
8940 type Ent is record
8941 Alt : Node_Id;
8942 Val : Uint;
8943 end record;
8945 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8946 Nalts : Nat;
8948 begin
8949 -- Loop checking duplicates. This is quadratic, but giant sets
8950 -- are unlikely in this context so it's a reasonable choice.
8952 Nalts := 0;
8953 Alt := First (Alternatives (N));
8954 while Present (Alt) loop
8955 if Is_OK_Static_Expression (Alt)
8956 and then (Nkind_In (Alt, N_Integer_Literal,
8957 N_Character_Literal)
8958 or else Nkind (Alt) in N_Has_Entity)
8959 then
8960 Nalts := Nalts + 1;
8961 Alts (Nalts) := (Alt, Expr_Value (Alt));
8963 for J in 1 .. Nalts - 1 loop
8964 if Alts (J).Val = Alts (Nalts).Val then
8965 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8966 Error_Msg_N ("duplicate of value given#??", Alt);
8967 end if;
8968 end loop;
8969 end if;
8971 Alt := Next (Alt);
8972 end loop;
8973 end;
8974 end if;
8975 end Resolve_Set_Membership;
8977 -- Start of processing for Resolve_Membership_Op
8979 begin
8980 if L = Error or else R = Error then
8981 return;
8982 end if;
8984 if Present (Alternatives (N)) then
8985 Resolve_Set_Membership;
8986 goto SM_Exit;
8988 elsif not Is_Overloaded (R)
8989 and then
8990 (Etype (R) = Universal_Integer
8991 or else
8992 Etype (R) = Universal_Real)
8993 and then Is_Overloaded (L)
8994 then
8995 T := Etype (R);
8997 -- Ada 2005 (AI-251): Support the following case:
8999 -- type I is interface;
9000 -- type T is tagged ...
9002 -- function Test (O : I'Class) is
9003 -- begin
9004 -- return O in T'Class.
9005 -- end Test;
9007 -- In this case we have nothing else to do. The membership test will be
9008 -- done at run time.
9010 elsif Ada_Version >= Ada_2005
9011 and then Is_Class_Wide_Type (Etype (L))
9012 and then Is_Interface (Etype (L))
9013 and then Is_Class_Wide_Type (Etype (R))
9014 and then not Is_Interface (Etype (R))
9015 then
9016 return;
9017 else
9018 T := Intersect_Types (L, R);
9019 end if;
9021 -- If mixed-mode operations are present and operands are all literal,
9022 -- the only interpretation involves Duration, which is probably not
9023 -- the intention of the programmer.
9025 if T = Any_Fixed then
9026 T := Unique_Fixed_Point_Type (N);
9028 if T = Any_Type then
9029 return;
9030 end if;
9031 end if;
9033 Resolve (L, T);
9034 Check_Unset_Reference (L);
9036 if Nkind (R) = N_Range
9037 and then not Is_Scalar_Type (T)
9038 then
9039 Error_Msg_N ("scalar type required for range", R);
9040 end if;
9042 if Is_Entity_Name (R) then
9043 Freeze_Expression (R);
9044 else
9045 Resolve (R, T);
9046 Check_Unset_Reference (R);
9047 end if;
9049 -- Here after resolving membership operation
9051 <<SM_Exit>>
9053 Eval_Membership_Op (N);
9054 end Resolve_Membership_Op;
9056 ------------------
9057 -- Resolve_Null --
9058 ------------------
9060 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9061 Loc : constant Source_Ptr := Sloc (N);
9063 begin
9064 -- Handle restriction against anonymous null access values This
9065 -- restriction can be turned off using -gnatdj.
9067 -- Ada 2005 (AI-231): Remove restriction
9069 if Ada_Version < Ada_2005
9070 and then not Debug_Flag_J
9071 and then Ekind (Typ) = E_Anonymous_Access_Type
9072 and then Comes_From_Source (N)
9073 then
9074 -- In the common case of a call which uses an explicitly null value
9075 -- for an access parameter, give specialized error message.
9077 if Nkind (Parent (N)) in N_Subprogram_Call then
9078 Error_Msg_N
9079 ("null is not allowed as argument for an access parameter", N);
9081 -- Standard message for all other cases (are there any?)
9083 else
9084 Error_Msg_N
9085 ("null cannot be of an anonymous access type", N);
9086 end if;
9087 end if;
9089 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9090 -- assignment to a null-excluding object
9092 if Ada_Version >= Ada_2005
9093 and then Can_Never_Be_Null (Typ)
9094 and then Nkind (Parent (N)) = N_Assignment_Statement
9095 then
9096 if not Inside_Init_Proc then
9097 Insert_Action
9098 (Compile_Time_Constraint_Error (N,
9099 "(Ada 2005) null not allowed in null-excluding objects??"),
9100 Make_Raise_Constraint_Error (Loc,
9101 Reason => CE_Access_Check_Failed));
9102 else
9103 Insert_Action (N,
9104 Make_Raise_Constraint_Error (Loc,
9105 Reason => CE_Access_Check_Failed));
9106 end if;
9107 end if;
9109 -- In a distributed context, null for a remote access to subprogram may
9110 -- need to be replaced with a special record aggregate. In this case,
9111 -- return after having done the transformation.
9113 if (Ekind (Typ) = E_Record_Type
9114 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9115 and then Remote_AST_Null_Value (N, Typ)
9116 then
9117 return;
9118 end if;
9120 -- The null literal takes its type from the context
9122 Set_Etype (N, Typ);
9123 end Resolve_Null;
9125 -----------------------
9126 -- Resolve_Op_Concat --
9127 -----------------------
9129 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9131 -- We wish to avoid deep recursion, because concatenations are often
9132 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9133 -- operands nonrecursively until we find something that is not a simple
9134 -- concatenation (A in this case). We resolve that, and then walk back
9135 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9136 -- to do the rest of the work at each level. The Parent pointers allow
9137 -- us to avoid recursion, and thus avoid running out of memory. See also
9138 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9140 NN : Node_Id := N;
9141 Op1 : Node_Id;
9143 begin
9144 -- The following code is equivalent to:
9146 -- Resolve_Op_Concat_First (NN, Typ);
9147 -- Resolve_Op_Concat_Arg (N, ...);
9148 -- Resolve_Op_Concat_Rest (N, Typ);
9150 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9151 -- operand is a concatenation.
9153 -- Walk down left operands
9155 loop
9156 Resolve_Op_Concat_First (NN, Typ);
9157 Op1 := Left_Opnd (NN);
9158 exit when not (Nkind (Op1) = N_Op_Concat
9159 and then not Is_Array_Type (Component_Type (Typ))
9160 and then Entity (Op1) = Entity (NN));
9161 NN := Op1;
9162 end loop;
9164 -- Now (given the above example) NN is A&B and Op1 is A
9166 -- First resolve Op1 ...
9168 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9170 -- ... then walk NN back up until we reach N (where we started), calling
9171 -- Resolve_Op_Concat_Rest along the way.
9173 loop
9174 Resolve_Op_Concat_Rest (NN, Typ);
9175 exit when NN = N;
9176 NN := Parent (NN);
9177 end loop;
9179 if Base_Type (Etype (N)) /= Standard_String then
9180 Check_SPARK_05_Restriction
9181 ("result of concatenation should have type String", N);
9182 end if;
9183 end Resolve_Op_Concat;
9185 ---------------------------
9186 -- Resolve_Op_Concat_Arg --
9187 ---------------------------
9189 procedure Resolve_Op_Concat_Arg
9190 (N : Node_Id;
9191 Arg : Node_Id;
9192 Typ : Entity_Id;
9193 Is_Comp : Boolean)
9195 Btyp : constant Entity_Id := Base_Type (Typ);
9196 Ctyp : constant Entity_Id := Component_Type (Typ);
9198 begin
9199 if In_Instance then
9200 if Is_Comp
9201 or else (not Is_Overloaded (Arg)
9202 and then Etype (Arg) /= Any_Composite
9203 and then Covers (Ctyp, Etype (Arg)))
9204 then
9205 Resolve (Arg, Ctyp);
9206 else
9207 Resolve (Arg, Btyp);
9208 end if;
9210 -- If both Array & Array and Array & Component are visible, there is a
9211 -- potential ambiguity that must be reported.
9213 elsif Has_Compatible_Type (Arg, Ctyp) then
9214 if Nkind (Arg) = N_Aggregate
9215 and then Is_Composite_Type (Ctyp)
9216 then
9217 if Is_Private_Type (Ctyp) then
9218 Resolve (Arg, Btyp);
9220 -- If the operation is user-defined and not overloaded use its
9221 -- profile. The operation may be a renaming, in which case it has
9222 -- been rewritten, and we want the original profile.
9224 elsif not Is_Overloaded (N)
9225 and then Comes_From_Source (Entity (Original_Node (N)))
9226 and then Ekind (Entity (Original_Node (N))) = E_Function
9227 then
9228 Resolve (Arg,
9229 Etype
9230 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9231 return;
9233 -- Otherwise an aggregate may match both the array type and the
9234 -- component type.
9236 else
9237 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9238 Set_Etype (Arg, Any_Type);
9239 end if;
9241 else
9242 if Is_Overloaded (Arg)
9243 and then Has_Compatible_Type (Arg, Typ)
9244 and then Etype (Arg) /= Any_Type
9245 then
9246 declare
9247 I : Interp_Index;
9248 It : Interp;
9249 Func : Entity_Id;
9251 begin
9252 Get_First_Interp (Arg, I, It);
9253 Func := It.Nam;
9254 Get_Next_Interp (I, It);
9256 -- Special-case the error message when the overloading is
9257 -- caused by a function that yields an array and can be
9258 -- called without parameters.
9260 if It.Nam = Func then
9261 Error_Msg_Sloc := Sloc (Func);
9262 Error_Msg_N ("ambiguous call to function#", Arg);
9263 Error_Msg_NE
9264 ("\\interpretation as call yields&", Arg, Typ);
9265 Error_Msg_NE
9266 ("\\interpretation as indexing of call yields&",
9267 Arg, Component_Type (Typ));
9269 else
9270 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9272 Get_First_Interp (Arg, I, It);
9273 while Present (It.Nam) loop
9274 Error_Msg_Sloc := Sloc (It.Nam);
9276 if Base_Type (It.Typ) = Btyp
9277 or else
9278 Base_Type (It.Typ) = Base_Type (Ctyp)
9279 then
9280 Error_Msg_N -- CODEFIX
9281 ("\\possible interpretation#", Arg);
9282 end if;
9284 Get_Next_Interp (I, It);
9285 end loop;
9286 end if;
9287 end;
9288 end if;
9290 Resolve (Arg, Component_Type (Typ));
9292 if Nkind (Arg) = N_String_Literal then
9293 Set_Etype (Arg, Component_Type (Typ));
9294 end if;
9296 if Arg = Left_Opnd (N) then
9297 Set_Is_Component_Left_Opnd (N);
9298 else
9299 Set_Is_Component_Right_Opnd (N);
9300 end if;
9301 end if;
9303 else
9304 Resolve (Arg, Btyp);
9305 end if;
9307 -- Concatenation is restricted in SPARK: each operand must be either a
9308 -- string literal, the name of a string constant, a static character or
9309 -- string expression, or another concatenation. Arg cannot be a
9310 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9311 -- separately on each final operand, past concatenation operations.
9313 if Is_Character_Type (Etype (Arg)) then
9314 if not Is_OK_Static_Expression (Arg) then
9315 Check_SPARK_05_Restriction
9316 ("character operand for concatenation should be static", Arg);
9317 end if;
9319 elsif Is_String_Type (Etype (Arg)) then
9320 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9321 and then Is_Constant_Object (Entity (Arg)))
9322 and then not Is_OK_Static_Expression (Arg)
9323 then
9324 Check_SPARK_05_Restriction
9325 ("string operand for concatenation should be static", Arg);
9326 end if;
9328 -- Do not issue error on an operand that is neither a character nor a
9329 -- string, as the error is issued in Resolve_Op_Concat.
9331 else
9332 null;
9333 end if;
9335 Check_Unset_Reference (Arg);
9336 end Resolve_Op_Concat_Arg;
9338 -----------------------------
9339 -- Resolve_Op_Concat_First --
9340 -----------------------------
9342 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9343 Btyp : constant Entity_Id := Base_Type (Typ);
9344 Op1 : constant Node_Id := Left_Opnd (N);
9345 Op2 : constant Node_Id := Right_Opnd (N);
9347 begin
9348 -- The parser folds an enormous sequence of concatenations of string
9349 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9350 -- in the right operand. If the expression resolves to a predefined "&"
9351 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9352 -- we give an error. See P_Simple_Expression in Par.Ch4.
9354 if Nkind (Op2) = N_String_Literal
9355 and then Is_Folded_In_Parser (Op2)
9356 and then Ekind (Entity (N)) = E_Function
9357 then
9358 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9359 and then String_Length (Strval (Op1)) = 0);
9360 Error_Msg_N ("too many user-defined concatenations", N);
9361 return;
9362 end if;
9364 Set_Etype (N, Btyp);
9366 if Is_Limited_Composite (Btyp) then
9367 Error_Msg_N ("concatenation not available for limited array", N);
9368 Explain_Limited_Type (Btyp, N);
9369 end if;
9370 end Resolve_Op_Concat_First;
9372 ----------------------------
9373 -- Resolve_Op_Concat_Rest --
9374 ----------------------------
9376 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9377 Op1 : constant Node_Id := Left_Opnd (N);
9378 Op2 : constant Node_Id := Right_Opnd (N);
9380 begin
9381 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9383 Generate_Operator_Reference (N, Typ);
9385 if Is_String_Type (Typ) then
9386 Eval_Concatenation (N);
9387 end if;
9389 -- If this is not a static concatenation, but the result is a string
9390 -- type (and not an array of strings) ensure that static string operands
9391 -- have their subtypes properly constructed.
9393 if Nkind (N) /= N_String_Literal
9394 and then Is_Character_Type (Component_Type (Typ))
9395 then
9396 Set_String_Literal_Subtype (Op1, Typ);
9397 Set_String_Literal_Subtype (Op2, Typ);
9398 end if;
9399 end Resolve_Op_Concat_Rest;
9401 ----------------------
9402 -- Resolve_Op_Expon --
9403 ----------------------
9405 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9406 B_Typ : constant Entity_Id := Base_Type (Typ);
9408 begin
9409 -- Catch attempts to do fixed-point exponentiation with universal
9410 -- operands, which is a case where the illegality is not caught during
9411 -- normal operator analysis. This is not done in preanalysis mode
9412 -- since the tree is not fully decorated during preanalysis.
9414 if Full_Analysis then
9415 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9416 Error_Msg_N ("exponentiation not available for fixed point", N);
9417 return;
9419 elsif Nkind (Parent (N)) in N_Op
9420 and then Present (Etype (Parent (N)))
9421 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9422 and then Etype (N) = Universal_Real
9423 and then Comes_From_Source (N)
9424 then
9425 Error_Msg_N ("exponentiation not available for fixed point", N);
9426 return;
9427 end if;
9428 end if;
9430 if Comes_From_Source (N)
9431 and then Ekind (Entity (N)) = E_Function
9432 and then Is_Imported (Entity (N))
9433 and then Is_Intrinsic_Subprogram (Entity (N))
9434 then
9435 Resolve_Intrinsic_Operator (N, Typ);
9436 return;
9437 end if;
9439 if Etype (Left_Opnd (N)) = Universal_Integer
9440 or else Etype (Left_Opnd (N)) = Universal_Real
9441 then
9442 Check_For_Visible_Operator (N, B_Typ);
9443 end if;
9445 -- We do the resolution using the base type, because intermediate values
9446 -- in expressions are always of the base type, not a subtype of it.
9448 Resolve (Left_Opnd (N), B_Typ);
9449 Resolve (Right_Opnd (N), Standard_Integer);
9451 -- For integer types, right argument must be in Natural range
9453 if Is_Integer_Type (Typ) then
9454 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9455 end if;
9457 Check_Unset_Reference (Left_Opnd (N));
9458 Check_Unset_Reference (Right_Opnd (N));
9460 Set_Etype (N, B_Typ);
9461 Generate_Operator_Reference (N, B_Typ);
9463 Analyze_Dimension (N);
9465 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9466 -- Evaluate the exponentiation operator for dimensioned type
9468 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9469 else
9470 Eval_Op_Expon (N);
9471 end if;
9473 -- Set overflow checking bit. Much cleverer code needed here eventually
9474 -- and perhaps the Resolve routines should be separated for the various
9475 -- arithmetic operations, since they will need different processing. ???
9477 if Nkind (N) in N_Op then
9478 if not Overflow_Checks_Suppressed (Etype (N)) then
9479 Enable_Overflow_Check (N);
9480 end if;
9481 end if;
9482 end Resolve_Op_Expon;
9484 --------------------
9485 -- Resolve_Op_Not --
9486 --------------------
9488 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9489 B_Typ : Entity_Id;
9491 function Parent_Is_Boolean return Boolean;
9492 -- This function determines if the parent node is a boolean operator or
9493 -- operation (comparison op, membership test, or short circuit form) and
9494 -- the not in question is the left operand of this operation. Note that
9495 -- if the not is in parens, then false is returned.
9497 -----------------------
9498 -- Parent_Is_Boolean --
9499 -----------------------
9501 function Parent_Is_Boolean return Boolean is
9502 begin
9503 if Paren_Count (N) /= 0 then
9504 return False;
9506 else
9507 case Nkind (Parent (N)) is
9508 when N_And_Then
9509 | N_In
9510 | N_Not_In
9511 | N_Op_And
9512 | N_Op_Eq
9513 | N_Op_Ge
9514 | N_Op_Gt
9515 | N_Op_Le
9516 | N_Op_Lt
9517 | N_Op_Ne
9518 | N_Op_Or
9519 | N_Op_Xor
9520 | N_Or_Else
9522 return Left_Opnd (Parent (N)) = N;
9524 when others =>
9525 return False;
9526 end case;
9527 end if;
9528 end Parent_Is_Boolean;
9530 -- Start of processing for Resolve_Op_Not
9532 begin
9533 -- Predefined operations on scalar types yield the base type. On the
9534 -- other hand, logical operations on arrays yield the type of the
9535 -- arguments (and the context).
9537 if Is_Array_Type (Typ) then
9538 B_Typ := Typ;
9539 else
9540 B_Typ := Base_Type (Typ);
9541 end if;
9543 -- Straightforward case of incorrect arguments
9545 if not Valid_Boolean_Arg (Typ) then
9546 Error_Msg_N ("invalid operand type for operator&", N);
9547 Set_Etype (N, Any_Type);
9548 return;
9550 -- Special case of probable missing parens
9552 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9553 if Parent_Is_Boolean then
9554 Error_Msg_N
9555 ("operand of not must be enclosed in parentheses",
9556 Right_Opnd (N));
9557 else
9558 Error_Msg_N
9559 ("no modular type available in this context", N);
9560 end if;
9562 Set_Etype (N, Any_Type);
9563 return;
9565 -- OK resolution of NOT
9567 else
9568 -- Warn if non-boolean types involved. This is a case like not a < b
9569 -- where a and b are modular, where we will get (not a) < b and most
9570 -- likely not (a < b) was intended.
9572 if Warn_On_Questionable_Missing_Parens
9573 and then not Is_Boolean_Type (Typ)
9574 and then Parent_Is_Boolean
9575 then
9576 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9577 end if;
9579 -- Warn on double negation if checking redundant constructs
9581 if Warn_On_Redundant_Constructs
9582 and then Comes_From_Source (N)
9583 and then Comes_From_Source (Right_Opnd (N))
9584 and then Root_Type (Typ) = Standard_Boolean
9585 and then Nkind (Right_Opnd (N)) = N_Op_Not
9586 then
9587 Error_Msg_N ("redundant double negation?r?", N);
9588 end if;
9590 -- Complete resolution and evaluation of NOT
9592 Resolve (Right_Opnd (N), B_Typ);
9593 Check_Unset_Reference (Right_Opnd (N));
9594 Set_Etype (N, B_Typ);
9595 Generate_Operator_Reference (N, B_Typ);
9596 Eval_Op_Not (N);
9597 end if;
9598 end Resolve_Op_Not;
9600 -----------------------------
9601 -- Resolve_Operator_Symbol --
9602 -----------------------------
9604 -- Nothing to be done, all resolved already
9606 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9607 pragma Warnings (Off, N);
9608 pragma Warnings (Off, Typ);
9610 begin
9611 null;
9612 end Resolve_Operator_Symbol;
9614 ----------------------------------
9615 -- Resolve_Qualified_Expression --
9616 ----------------------------------
9618 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9619 pragma Warnings (Off, Typ);
9621 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9622 Expr : constant Node_Id := Expression (N);
9624 begin
9625 Resolve (Expr, Target_Typ);
9627 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9628 -- operation if not needed.
9630 if Restriction_Check_Required (SPARK_05)
9631 and then Is_Array_Type (Target_Typ)
9632 and then Is_Array_Type (Etype (Expr))
9633 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9634 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9635 then
9636 Check_SPARK_05_Restriction
9637 ("array types should have matching static bounds", N);
9638 end if;
9640 -- A qualified expression requires an exact match of the type, class-
9641 -- wide matching is not allowed. However, if the qualifying type is
9642 -- specific and the expression has a class-wide type, it may still be
9643 -- okay, since it can be the result of the expansion of a call to a
9644 -- dispatching function, so we also have to check class-wideness of the
9645 -- type of the expression's original node.
9647 if (Is_Class_Wide_Type (Target_Typ)
9648 or else
9649 (Is_Class_Wide_Type (Etype (Expr))
9650 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9651 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9652 then
9653 Wrong_Type (Expr, Target_Typ);
9654 end if;
9656 -- If the target type is unconstrained, then we reset the type of the
9657 -- result from the type of the expression. For other cases, the actual
9658 -- subtype of the expression is the target type.
9660 if Is_Composite_Type (Target_Typ)
9661 and then not Is_Constrained (Target_Typ)
9662 then
9663 Set_Etype (N, Etype (Expr));
9664 end if;
9666 Analyze_Dimension (N);
9667 Eval_Qualified_Expression (N);
9669 -- If we still have a qualified expression after the static evaluation,
9670 -- then apply a scalar range check if needed. The reason that we do this
9671 -- after the Eval call is that otherwise, the application of the range
9672 -- check may convert an illegal static expression and result in warning
9673 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9675 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9676 Apply_Scalar_Range_Check (Expr, Typ);
9677 end if;
9679 -- Finally, check whether a predicate applies to the target type. This
9680 -- comes from AI12-0100. As for type conversions, check the enclosing
9681 -- context to prevent an infinite expansion.
9683 if Has_Predicates (Target_Typ) then
9684 if Nkind (Parent (N)) = N_Function_Call
9685 and then Present (Name (Parent (N)))
9686 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9687 or else
9688 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9689 then
9690 null;
9692 -- In the case of a qualified expression in an allocator, the check
9693 -- is applied when expanding the allocator, so avoid redundant check.
9695 elsif Nkind (N) = N_Qualified_Expression
9696 and then Nkind (Parent (N)) /= N_Allocator
9697 then
9698 Apply_Predicate_Check (N, Target_Typ);
9699 end if;
9700 end if;
9701 end Resolve_Qualified_Expression;
9703 ------------------------------
9704 -- Resolve_Raise_Expression --
9705 ------------------------------
9707 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9708 begin
9709 if Typ = Raise_Type then
9710 Error_Msg_N ("cannot find unique type for raise expression", N);
9711 Set_Etype (N, Any_Type);
9712 else
9713 Set_Etype (N, Typ);
9714 end if;
9715 end Resolve_Raise_Expression;
9717 -------------------
9718 -- Resolve_Range --
9719 -------------------
9721 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9722 L : constant Node_Id := Low_Bound (N);
9723 H : constant Node_Id := High_Bound (N);
9725 function First_Last_Ref return Boolean;
9726 -- Returns True if N is of the form X'First .. X'Last where X is the
9727 -- same entity for both attributes.
9729 --------------------
9730 -- First_Last_Ref --
9731 --------------------
9733 function First_Last_Ref return Boolean is
9734 Lorig : constant Node_Id := Original_Node (L);
9735 Horig : constant Node_Id := Original_Node (H);
9737 begin
9738 if Nkind (Lorig) = N_Attribute_Reference
9739 and then Nkind (Horig) = N_Attribute_Reference
9740 and then Attribute_Name (Lorig) = Name_First
9741 and then Attribute_Name (Horig) = Name_Last
9742 then
9743 declare
9744 PL : constant Node_Id := Prefix (Lorig);
9745 PH : constant Node_Id := Prefix (Horig);
9746 begin
9747 if Is_Entity_Name (PL)
9748 and then Is_Entity_Name (PH)
9749 and then Entity (PL) = Entity (PH)
9750 then
9751 return True;
9752 end if;
9753 end;
9754 end if;
9756 return False;
9757 end First_Last_Ref;
9759 -- Start of processing for Resolve_Range
9761 begin
9762 Set_Etype (N, Typ);
9764 -- The lower bound should be in Typ. The higher bound can be in Typ's
9765 -- base type if the range is null. It may still be invalid if it is
9766 -- higher than the lower bound. This is checked later in the context in
9767 -- which the range appears.
9769 Resolve (L, Typ);
9770 Resolve (H, Base_Type (Typ));
9772 -- Check for inappropriate range on unordered enumeration type
9774 if Bad_Unordered_Enumeration_Reference (N, Typ)
9776 -- Exclude X'First .. X'Last if X is the same entity for both
9778 and then not First_Last_Ref
9779 then
9780 Error_Msg_Sloc := Sloc (Typ);
9781 Error_Msg_NE
9782 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9783 end if;
9785 Check_Unset_Reference (L);
9786 Check_Unset_Reference (H);
9788 -- We have to check the bounds for being within the base range as
9789 -- required for a non-static context. Normally this is automatic and
9790 -- done as part of evaluating expressions, but the N_Range node is an
9791 -- exception, since in GNAT we consider this node to be a subexpression,
9792 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9793 -- this, but that would put the test on the main evaluation path for
9794 -- expressions.
9796 Check_Non_Static_Context (L);
9797 Check_Non_Static_Context (H);
9799 -- Check for an ambiguous range over character literals. This will
9800 -- happen with a membership test involving only literals.
9802 if Typ = Any_Character then
9803 Ambiguous_Character (L);
9804 Set_Etype (N, Any_Type);
9805 return;
9806 end if;
9808 -- If bounds are static, constant-fold them, so size computations are
9809 -- identical between front-end and back-end. Do not perform this
9810 -- transformation while analyzing generic units, as type information
9811 -- would be lost when reanalyzing the constant node in the instance.
9813 if Is_Discrete_Type (Typ) and then Expander_Active then
9814 if Is_OK_Static_Expression (L) then
9815 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9816 end if;
9818 if Is_OK_Static_Expression (H) then
9819 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9820 end if;
9821 end if;
9822 end Resolve_Range;
9824 --------------------------
9825 -- Resolve_Real_Literal --
9826 --------------------------
9828 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9829 Actual_Typ : constant Entity_Id := Etype (N);
9831 begin
9832 -- Special processing for fixed-point literals to make sure that the
9833 -- value is an exact multiple of small where this is required. We skip
9834 -- this for the universal real case, and also for generic types.
9836 if Is_Fixed_Point_Type (Typ)
9837 and then Typ /= Universal_Fixed
9838 and then Typ /= Any_Fixed
9839 and then not Is_Generic_Type (Typ)
9840 then
9841 declare
9842 Val : constant Ureal := Realval (N);
9843 Cintr : constant Ureal := Val / Small_Value (Typ);
9844 Cint : constant Uint := UR_Trunc (Cintr);
9845 Den : constant Uint := Norm_Den (Cintr);
9846 Stat : Boolean;
9848 begin
9849 -- Case of literal is not an exact multiple of the Small
9851 if Den /= 1 then
9853 -- For a source program literal for a decimal fixed-point type,
9854 -- this is statically illegal (RM 4.9(36)).
9856 if Is_Decimal_Fixed_Point_Type (Typ)
9857 and then Actual_Typ = Universal_Real
9858 and then Comes_From_Source (N)
9859 then
9860 Error_Msg_N ("value has extraneous low order digits", N);
9861 end if;
9863 -- Generate a warning if literal from source
9865 if Is_OK_Static_Expression (N)
9866 and then Warn_On_Bad_Fixed_Value
9867 then
9868 Error_Msg_N
9869 ("?b?static fixed-point value is not a multiple of Small!",
9871 end if;
9873 -- Replace literal by a value that is the exact representation
9874 -- of a value of the type, i.e. a multiple of the small value,
9875 -- by truncation, since Machine_Rounds is false for all GNAT
9876 -- fixed-point types (RM 4.9(38)).
9878 Stat := Is_OK_Static_Expression (N);
9879 Rewrite (N,
9880 Make_Real_Literal (Sloc (N),
9881 Realval => Small_Value (Typ) * Cint));
9883 Set_Is_Static_Expression (N, Stat);
9884 end if;
9886 -- In all cases, set the corresponding integer field
9888 Set_Corresponding_Integer_Value (N, Cint);
9889 end;
9890 end if;
9892 -- Now replace the actual type by the expected type as usual
9894 Set_Etype (N, Typ);
9895 Eval_Real_Literal (N);
9896 end Resolve_Real_Literal;
9898 -----------------------
9899 -- Resolve_Reference --
9900 -----------------------
9902 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9903 P : constant Node_Id := Prefix (N);
9905 begin
9906 -- Replace general access with specific type
9908 if Ekind (Etype (N)) = E_Allocator_Type then
9909 Set_Etype (N, Base_Type (Typ));
9910 end if;
9912 Resolve (P, Designated_Type (Etype (N)));
9914 -- If we are taking the reference of a volatile entity, then treat it as
9915 -- a potential modification of this entity. This is too conservative,
9916 -- but necessary because remove side effects can cause transformations
9917 -- of normal assignments into reference sequences that otherwise fail to
9918 -- notice the modification.
9920 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9921 Note_Possible_Modification (P, Sure => False);
9922 end if;
9923 end Resolve_Reference;
9925 --------------------------------
9926 -- Resolve_Selected_Component --
9927 --------------------------------
9929 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9930 Comp : Entity_Id;
9931 Comp1 : Entity_Id := Empty; -- prevent junk warning
9932 P : constant Node_Id := Prefix (N);
9933 S : constant Node_Id := Selector_Name (N);
9934 T : Entity_Id := Etype (P);
9935 I : Interp_Index;
9936 I1 : Interp_Index := 0; -- prevent junk warning
9937 It : Interp;
9938 It1 : Interp;
9939 Found : Boolean;
9941 function Init_Component return Boolean;
9942 -- Check whether this is the initialization of a component within an
9943 -- init proc (by assignment or call to another init proc). If true,
9944 -- there is no need for a discriminant check.
9946 --------------------
9947 -- Init_Component --
9948 --------------------
9950 function Init_Component return Boolean is
9951 begin
9952 return Inside_Init_Proc
9953 and then Nkind (Prefix (N)) = N_Identifier
9954 and then Chars (Prefix (N)) = Name_uInit
9955 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9956 end Init_Component;
9958 -- Start of processing for Resolve_Selected_Component
9960 begin
9961 if Is_Overloaded (P) then
9963 -- Use the context type to select the prefix that has a selector
9964 -- of the correct name and type.
9966 Found := False;
9967 Get_First_Interp (P, I, It);
9969 Search : while Present (It.Typ) loop
9970 if Is_Access_Type (It.Typ) then
9971 T := Designated_Type (It.Typ);
9972 else
9973 T := It.Typ;
9974 end if;
9976 -- Locate selected component. For a private prefix the selector
9977 -- can denote a discriminant.
9979 if Is_Record_Type (T) or else Is_Private_Type (T) then
9981 -- The visible components of a class-wide type are those of
9982 -- the root type.
9984 if Is_Class_Wide_Type (T) then
9985 T := Etype (T);
9986 end if;
9988 Comp := First_Entity (T);
9989 while Present (Comp) loop
9990 if Chars (Comp) = Chars (S)
9991 and then Covers (Typ, Etype (Comp))
9992 then
9993 if not Found then
9994 Found := True;
9995 I1 := I;
9996 It1 := It;
9997 Comp1 := Comp;
9999 else
10000 It := Disambiguate (P, I1, I, Any_Type);
10002 if It = No_Interp then
10003 Error_Msg_N
10004 ("ambiguous prefix for selected component", N);
10005 Set_Etype (N, Typ);
10006 return;
10008 else
10009 It1 := It;
10011 -- There may be an implicit dereference. Retrieve
10012 -- designated record type.
10014 if Is_Access_Type (It1.Typ) then
10015 T := Designated_Type (It1.Typ);
10016 else
10017 T := It1.Typ;
10018 end if;
10020 if Scope (Comp1) /= T then
10022 -- Resolution chooses the new interpretation.
10023 -- Find the component with the right name.
10025 Comp1 := First_Entity (T);
10026 while Present (Comp1)
10027 and then Chars (Comp1) /= Chars (S)
10028 loop
10029 Comp1 := Next_Entity (Comp1);
10030 end loop;
10031 end if;
10033 exit Search;
10034 end if;
10035 end if;
10036 end if;
10038 Comp := Next_Entity (Comp);
10039 end loop;
10040 end if;
10042 Get_Next_Interp (I, It);
10043 end loop Search;
10045 -- There must be a legal interpretation at this point
10047 pragma Assert (Found);
10048 Resolve (P, It1.Typ);
10049 Set_Etype (N, Typ);
10050 Set_Entity_With_Checks (S, Comp1);
10052 else
10053 -- Resolve prefix with its type
10055 Resolve (P, T);
10056 end if;
10058 -- Generate cross-reference. We needed to wait until full overloading
10059 -- resolution was complete to do this, since otherwise we can't tell if
10060 -- we are an lvalue or not.
10062 if May_Be_Lvalue (N) then
10063 Generate_Reference (Entity (S), S, 'm');
10064 else
10065 Generate_Reference (Entity (S), S, 'r');
10066 end if;
10068 -- If prefix is an access type, the node will be transformed into an
10069 -- explicit dereference during expansion. The type of the node is the
10070 -- designated type of that of the prefix.
10072 if Is_Access_Type (Etype (P)) then
10073 T := Designated_Type (Etype (P));
10074 Check_Fully_Declared_Prefix (T, P);
10075 else
10076 T := Etype (P);
10077 end if;
10079 -- Set flag for expander if discriminant check required on a component
10080 -- appearing within a variant.
10082 if Has_Discriminants (T)
10083 and then Ekind (Entity (S)) = E_Component
10084 and then Present (Original_Record_Component (Entity (S)))
10085 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10086 and then
10087 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10088 and then not Discriminant_Checks_Suppressed (T)
10089 and then not Init_Component
10090 then
10091 Set_Do_Discriminant_Check (N);
10092 end if;
10094 if Ekind (Entity (S)) = E_Void then
10095 Error_Msg_N ("premature use of component", S);
10096 end if;
10098 -- If the prefix is a record conversion, this may be a renamed
10099 -- discriminant whose bounds differ from those of the original
10100 -- one, so we must ensure that a range check is performed.
10102 if Nkind (P) = N_Type_Conversion
10103 and then Ekind (Entity (S)) = E_Discriminant
10104 and then Is_Discrete_Type (Typ)
10105 then
10106 Set_Etype (N, Base_Type (Typ));
10107 end if;
10109 -- Note: No Eval processing is required, because the prefix is of a
10110 -- record type, or protected type, and neither can possibly be static.
10112 -- If the record type is atomic, and the component is non-atomic, then
10113 -- this is worth a warning, since we have a situation where the access
10114 -- to the component may cause extra read/writes of the atomic array
10115 -- object, or partial word accesses, both of which may be unexpected.
10117 if Nkind (N) = N_Selected_Component
10118 and then Is_Atomic_Ref_With_Address (N)
10119 and then not Is_Atomic (Entity (S))
10120 and then not Is_Atomic (Etype (Entity (S)))
10121 then
10122 Error_Msg_N
10123 ("??access to non-atomic component of atomic record",
10124 Prefix (N));
10125 Error_Msg_N
10126 ("\??may cause unexpected accesses to atomic object",
10127 Prefix (N));
10128 end if;
10130 Analyze_Dimension (N);
10131 end Resolve_Selected_Component;
10133 -------------------
10134 -- Resolve_Shift --
10135 -------------------
10137 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10138 B_Typ : constant Entity_Id := Base_Type (Typ);
10139 L : constant Node_Id := Left_Opnd (N);
10140 R : constant Node_Id := Right_Opnd (N);
10142 begin
10143 -- We do the resolution using the base type, because intermediate values
10144 -- in expressions always are of the base type, not a subtype of it.
10146 Resolve (L, B_Typ);
10147 Resolve (R, Standard_Natural);
10149 Check_Unset_Reference (L);
10150 Check_Unset_Reference (R);
10152 Set_Etype (N, B_Typ);
10153 Generate_Operator_Reference (N, B_Typ);
10154 Eval_Shift (N);
10155 end Resolve_Shift;
10157 ---------------------------
10158 -- Resolve_Short_Circuit --
10159 ---------------------------
10161 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10162 B_Typ : constant Entity_Id := Base_Type (Typ);
10163 L : constant Node_Id := Left_Opnd (N);
10164 R : constant Node_Id := Right_Opnd (N);
10166 begin
10167 -- Ensure all actions associated with the left operand (e.g.
10168 -- finalization of transient objects) are fully evaluated locally within
10169 -- an expression with actions. This is particularly helpful for coverage
10170 -- analysis. However this should not happen in generics or if option
10171 -- Minimize_Expression_With_Actions is set.
10173 if Expander_Active and not Minimize_Expression_With_Actions then
10174 declare
10175 Reloc_L : constant Node_Id := Relocate_Node (L);
10176 begin
10177 Save_Interps (Old_N => L, New_N => Reloc_L);
10179 Rewrite (L,
10180 Make_Expression_With_Actions (Sloc (L),
10181 Actions => New_List,
10182 Expression => Reloc_L));
10184 -- Set Comes_From_Source on L to preserve warnings for unset
10185 -- reference.
10187 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10188 end;
10189 end if;
10191 Resolve (L, B_Typ);
10192 Resolve (R, B_Typ);
10194 -- Check for issuing warning for always False assert/check, this happens
10195 -- when assertions are turned off, in which case the pragma Assert/Check
10196 -- was transformed into:
10198 -- if False and then <condition> then ...
10200 -- and we detect this pattern
10202 if Warn_On_Assertion_Failure
10203 and then Is_Entity_Name (R)
10204 and then Entity (R) = Standard_False
10205 and then Nkind (Parent (N)) = N_If_Statement
10206 and then Nkind (N) = N_And_Then
10207 and then Is_Entity_Name (L)
10208 and then Entity (L) = Standard_False
10209 then
10210 declare
10211 Orig : constant Node_Id := Original_Node (Parent (N));
10213 begin
10214 -- Special handling of Asssert pragma
10216 if Nkind (Orig) = N_Pragma
10217 and then Pragma_Name (Orig) = Name_Assert
10218 then
10219 declare
10220 Expr : constant Node_Id :=
10221 Original_Node
10222 (Expression
10223 (First (Pragma_Argument_Associations (Orig))));
10225 begin
10226 -- Don't warn if original condition is explicit False,
10227 -- since obviously the failure is expected in this case.
10229 if Is_Entity_Name (Expr)
10230 and then Entity (Expr) = Standard_False
10231 then
10232 null;
10234 -- Issue warning. We do not want the deletion of the
10235 -- IF/AND-THEN to take this message with it. We achieve this
10236 -- by making sure that the expanded code points to the Sloc
10237 -- of the expression, not the original pragma.
10239 else
10240 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10241 -- The source location of the expression is not usually
10242 -- the best choice here. For example, it gets located on
10243 -- the last AND keyword in a chain of boolean expressiond
10244 -- AND'ed together. It is best to put the message on the
10245 -- first character of the assertion, which is the effect
10246 -- of the First_Node call here.
10248 Error_Msg_F
10249 ("?A?assertion would fail at run time!",
10250 Expression
10251 (First (Pragma_Argument_Associations (Orig))));
10252 end if;
10253 end;
10255 -- Similar processing for Check pragma
10257 elsif Nkind (Orig) = N_Pragma
10258 and then Pragma_Name (Orig) = Name_Check
10259 then
10260 -- Don't want to warn if original condition is explicit False
10262 declare
10263 Expr : constant Node_Id :=
10264 Original_Node
10265 (Expression
10266 (Next (First (Pragma_Argument_Associations (Orig)))));
10267 begin
10268 if Is_Entity_Name (Expr)
10269 and then Entity (Expr) = Standard_False
10270 then
10271 null;
10273 -- Post warning
10275 else
10276 -- Again use Error_Msg_F rather than Error_Msg_N, see
10277 -- comment above for an explanation of why we do this.
10279 Error_Msg_F
10280 ("?A?check would fail at run time!",
10281 Expression
10282 (Last (Pragma_Argument_Associations (Orig))));
10283 end if;
10284 end;
10285 end if;
10286 end;
10287 end if;
10289 -- Continue with processing of short circuit
10291 Check_Unset_Reference (L);
10292 Check_Unset_Reference (R);
10294 Set_Etype (N, B_Typ);
10295 Eval_Short_Circuit (N);
10296 end Resolve_Short_Circuit;
10298 -------------------
10299 -- Resolve_Slice --
10300 -------------------
10302 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10303 Drange : constant Node_Id := Discrete_Range (N);
10304 Name : constant Node_Id := Prefix (N);
10305 Array_Type : Entity_Id := Empty;
10306 Dexpr : Node_Id := Empty;
10307 Index_Type : Entity_Id;
10309 begin
10310 if Is_Overloaded (Name) then
10312 -- Use the context type to select the prefix that yields the correct
10313 -- array type.
10315 declare
10316 I : Interp_Index;
10317 I1 : Interp_Index := 0;
10318 It : Interp;
10319 P : constant Node_Id := Prefix (N);
10320 Found : Boolean := False;
10322 begin
10323 Get_First_Interp (P, I, It);
10324 while Present (It.Typ) loop
10325 if (Is_Array_Type (It.Typ)
10326 and then Covers (Typ, It.Typ))
10327 or else (Is_Access_Type (It.Typ)
10328 and then Is_Array_Type (Designated_Type (It.Typ))
10329 and then Covers (Typ, Designated_Type (It.Typ)))
10330 then
10331 if Found then
10332 It := Disambiguate (P, I1, I, Any_Type);
10334 if It = No_Interp then
10335 Error_Msg_N ("ambiguous prefix for slicing", N);
10336 Set_Etype (N, Typ);
10337 return;
10338 else
10339 Found := True;
10340 Array_Type := It.Typ;
10341 I1 := I;
10342 end if;
10343 else
10344 Found := True;
10345 Array_Type := It.Typ;
10346 I1 := I;
10347 end if;
10348 end if;
10350 Get_Next_Interp (I, It);
10351 end loop;
10352 end;
10354 else
10355 Array_Type := Etype (Name);
10356 end if;
10358 Resolve (Name, Array_Type);
10360 if Is_Access_Type (Array_Type) then
10361 Apply_Access_Check (N);
10362 Array_Type := Designated_Type (Array_Type);
10364 -- If the prefix is an access to an unconstrained array, we must use
10365 -- the actual subtype of the object to perform the index checks. The
10366 -- object denoted by the prefix is implicit in the node, so we build
10367 -- an explicit representation for it in order to compute the actual
10368 -- subtype.
10370 if not Is_Constrained (Array_Type) then
10371 Remove_Side_Effects (Prefix (N));
10373 declare
10374 Obj : constant Node_Id :=
10375 Make_Explicit_Dereference (Sloc (N),
10376 Prefix => New_Copy_Tree (Prefix (N)));
10377 begin
10378 Set_Etype (Obj, Array_Type);
10379 Set_Parent (Obj, Parent (N));
10380 Array_Type := Get_Actual_Subtype (Obj);
10381 end;
10382 end if;
10384 elsif Is_Entity_Name (Name)
10385 or else Nkind (Name) = N_Explicit_Dereference
10386 or else (Nkind (Name) = N_Function_Call
10387 and then not Is_Constrained (Etype (Name)))
10388 then
10389 Array_Type := Get_Actual_Subtype (Name);
10391 -- If the name is a selected component that depends on discriminants,
10392 -- build an actual subtype for it. This can happen only when the name
10393 -- itself is overloaded; otherwise the actual subtype is created when
10394 -- the selected component is analyzed.
10396 elsif Nkind (Name) = N_Selected_Component
10397 and then Full_Analysis
10398 and then Depends_On_Discriminant (First_Index (Array_Type))
10399 then
10400 declare
10401 Act_Decl : constant Node_Id :=
10402 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10403 begin
10404 Insert_Action (N, Act_Decl);
10405 Array_Type := Defining_Identifier (Act_Decl);
10406 end;
10408 -- Maybe this should just be "else", instead of checking for the
10409 -- specific case of slice??? This is needed for the case where the
10410 -- prefix is an Image attribute, which gets expanded to a slice, and so
10411 -- has a constrained subtype which we want to use for the slice range
10412 -- check applied below (the range check won't get done if the
10413 -- unconstrained subtype of the 'Image is used).
10415 elsif Nkind (Name) = N_Slice then
10416 Array_Type := Etype (Name);
10417 end if;
10419 -- Obtain the type of the array index
10421 if Ekind (Array_Type) = E_String_Literal_Subtype then
10422 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10423 else
10424 Index_Type := Etype (First_Index (Array_Type));
10425 end if;
10427 -- If name was overloaded, set slice type correctly now
10429 Set_Etype (N, Array_Type);
10431 -- Handle the generation of a range check that compares the array index
10432 -- against the discrete_range. The check is not applied to internally
10433 -- built nodes associated with the expansion of dispatch tables. Check
10434 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10435 -- the unit.
10437 if Tagged_Type_Expansion
10438 and then RTU_Loaded (Ada_Tags)
10439 and then Nkind (Prefix (N)) = N_Selected_Component
10440 and then Present (Entity (Selector_Name (Prefix (N))))
10441 and then Entity (Selector_Name (Prefix (N))) =
10442 RTE_Record_Component (RE_Prims_Ptr)
10443 then
10444 null;
10446 -- The discrete_range is specified by a subtype indication. Create a
10447 -- shallow copy and inherit the type, parent and source location from
10448 -- the discrete_range. This ensures that the range check is inserted
10449 -- relative to the slice and that the runtime exception points to the
10450 -- proper construct.
10452 elsif Is_Entity_Name (Drange) then
10453 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10455 Set_Etype (Dexpr, Etype (Drange));
10456 Set_Parent (Dexpr, Parent (Drange));
10457 Set_Sloc (Dexpr, Sloc (Drange));
10459 -- The discrete_range is a regular range. Resolve the bounds and remove
10460 -- their side effects.
10462 else
10463 Resolve (Drange, Base_Type (Index_Type));
10465 if Nkind (Drange) = N_Range then
10466 Force_Evaluation (Low_Bound (Drange));
10467 Force_Evaluation (High_Bound (Drange));
10469 Dexpr := Drange;
10470 end if;
10471 end if;
10473 if Present (Dexpr) then
10474 Apply_Range_Check (Dexpr, Index_Type);
10475 end if;
10477 Set_Slice_Subtype (N);
10479 -- Check bad use of type with predicates
10481 declare
10482 Subt : Entity_Id;
10484 begin
10485 if Nkind (Drange) = N_Subtype_Indication
10486 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10487 then
10488 Subt := Entity (Subtype_Mark (Drange));
10489 else
10490 Subt := Etype (Drange);
10491 end if;
10493 if Has_Predicates (Subt) then
10494 Bad_Predicated_Subtype_Use
10495 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10496 end if;
10497 end;
10499 -- Otherwise here is where we check suspicious indexes
10501 if Nkind (Drange) = N_Range then
10502 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10503 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10504 end if;
10506 Analyze_Dimension (N);
10507 Eval_Slice (N);
10508 end Resolve_Slice;
10510 ----------------------------
10511 -- Resolve_String_Literal --
10512 ----------------------------
10514 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10515 C_Typ : constant Entity_Id := Component_Type (Typ);
10516 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10517 Loc : constant Source_Ptr := Sloc (N);
10518 Str : constant String_Id := Strval (N);
10519 Strlen : constant Nat := String_Length (Str);
10520 Subtype_Id : Entity_Id;
10521 Need_Check : Boolean;
10523 begin
10524 -- For a string appearing in a concatenation, defer creation of the
10525 -- string_literal_subtype until the end of the resolution of the
10526 -- concatenation, because the literal may be constant-folded away. This
10527 -- is a useful optimization for long concatenation expressions.
10529 -- If the string is an aggregate built for a single character (which
10530 -- happens in a non-static context) or a is null string to which special
10531 -- checks may apply, we build the subtype. Wide strings must also get a
10532 -- string subtype if they come from a one character aggregate. Strings
10533 -- generated by attributes might be static, but it is often hard to
10534 -- determine whether the enclosing context is static, so we generate
10535 -- subtypes for them as well, thus losing some rarer optimizations ???
10536 -- Same for strings that come from a static conversion.
10538 Need_Check :=
10539 (Strlen = 0 and then Typ /= Standard_String)
10540 or else Nkind (Parent (N)) /= N_Op_Concat
10541 or else (N /= Left_Opnd (Parent (N))
10542 and then N /= Right_Opnd (Parent (N)))
10543 or else ((Typ = Standard_Wide_String
10544 or else Typ = Standard_Wide_Wide_String)
10545 and then Nkind (Original_Node (N)) /= N_String_Literal);
10547 -- If the resolving type is itself a string literal subtype, we can just
10548 -- reuse it, since there is no point in creating another.
10550 if Ekind (Typ) = E_String_Literal_Subtype then
10551 Subtype_Id := Typ;
10553 elsif Nkind (Parent (N)) = N_Op_Concat
10554 and then not Need_Check
10555 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10556 N_Attribute_Reference,
10557 N_Qualified_Expression,
10558 N_Type_Conversion)
10559 then
10560 Subtype_Id := Typ;
10562 -- Do not generate a string literal subtype for the default expression
10563 -- of a formal parameter in GNATprove mode. This is because the string
10564 -- subtype is associated with the freezing actions of the subprogram,
10565 -- however freezing is disabled in GNATprove mode and as a result the
10566 -- subtype is unavailable.
10568 elsif GNATprove_Mode
10569 and then Nkind (Parent (N)) = N_Parameter_Specification
10570 then
10571 Subtype_Id := Typ;
10573 -- Otherwise we must create a string literal subtype. Note that the
10574 -- whole idea of string literal subtypes is simply to avoid the need
10575 -- for building a full fledged array subtype for each literal.
10577 else
10578 Set_String_Literal_Subtype (N, Typ);
10579 Subtype_Id := Etype (N);
10580 end if;
10582 if Nkind (Parent (N)) /= N_Op_Concat
10583 or else Need_Check
10584 then
10585 Set_Etype (N, Subtype_Id);
10586 Eval_String_Literal (N);
10587 end if;
10589 if Is_Limited_Composite (Typ)
10590 or else Is_Private_Composite (Typ)
10591 then
10592 Error_Msg_N ("string literal not available for private array", N);
10593 Set_Etype (N, Any_Type);
10594 return;
10595 end if;
10597 -- The validity of a null string has been checked in the call to
10598 -- Eval_String_Literal.
10600 if Strlen = 0 then
10601 return;
10603 -- Always accept string literal with component type Any_Character, which
10604 -- occurs in error situations and in comparisons of literals, both of
10605 -- which should accept all literals.
10607 elsif R_Typ = Any_Character then
10608 return;
10610 -- If the type is bit-packed, then we always transform the string
10611 -- literal into a full fledged aggregate.
10613 elsif Is_Bit_Packed_Array (Typ) then
10614 null;
10616 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10618 else
10619 -- For Standard.Wide_Wide_String, or any other type whose component
10620 -- type is Standard.Wide_Wide_Character, we know that all the
10621 -- characters in the string must be acceptable, since the parser
10622 -- accepted the characters as valid character literals.
10624 if R_Typ = Standard_Wide_Wide_Character then
10625 null;
10627 -- For the case of Standard.String, or any other type whose component
10628 -- type is Standard.Character, we must make sure that there are no
10629 -- wide characters in the string, i.e. that it is entirely composed
10630 -- of characters in range of type Character.
10632 -- If the string literal is the result of a static concatenation, the
10633 -- test has already been performed on the components, and need not be
10634 -- repeated.
10636 elsif R_Typ = Standard_Character
10637 and then Nkind (Original_Node (N)) /= N_Op_Concat
10638 then
10639 for J in 1 .. Strlen loop
10640 if not In_Character_Range (Get_String_Char (Str, J)) then
10642 -- If we are out of range, post error. This is one of the
10643 -- very few places that we place the flag in the middle of
10644 -- a token, right under the offending wide character. Not
10645 -- quite clear if this is right wrt wide character encoding
10646 -- sequences, but it's only an error message.
10648 Error_Msg
10649 ("literal out of range of type Standard.Character",
10650 Source_Ptr (Int (Loc) + J));
10651 return;
10652 end if;
10653 end loop;
10655 -- For the case of Standard.Wide_String, or any other type whose
10656 -- component type is Standard.Wide_Character, we must make sure that
10657 -- there are no wide characters in the string, i.e. that it is
10658 -- entirely composed of characters in range of type Wide_Character.
10660 -- If the string literal is the result of a static concatenation,
10661 -- the test has already been performed on the components, and need
10662 -- not be repeated.
10664 elsif R_Typ = Standard_Wide_Character
10665 and then Nkind (Original_Node (N)) /= N_Op_Concat
10666 then
10667 for J in 1 .. Strlen loop
10668 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10670 -- If we are out of range, post error. This is one of the
10671 -- very few places that we place the flag in the middle of
10672 -- a token, right under the offending wide character.
10674 -- This is not quite right, because characters in general
10675 -- will take more than one character position ???
10677 Error_Msg
10678 ("literal out of range of type Standard.Wide_Character",
10679 Source_Ptr (Int (Loc) + J));
10680 return;
10681 end if;
10682 end loop;
10684 -- If the root type is not a standard character, then we will convert
10685 -- the string into an aggregate and will let the aggregate code do
10686 -- the checking. Standard Wide_Wide_Character is also OK here.
10688 else
10689 null;
10690 end if;
10692 -- See if the component type of the array corresponding to the string
10693 -- has compile time known bounds. If yes we can directly check
10694 -- whether the evaluation of the string will raise constraint error.
10695 -- Otherwise we need to transform the string literal into the
10696 -- corresponding character aggregate and let the aggregate code do
10697 -- the checking.
10699 if Is_Standard_Character_Type (R_Typ) then
10701 -- Check for the case of full range, where we are definitely OK
10703 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10704 return;
10705 end if;
10707 -- Here the range is not the complete base type range, so check
10709 declare
10710 Comp_Typ_Lo : constant Node_Id :=
10711 Type_Low_Bound (Component_Type (Typ));
10712 Comp_Typ_Hi : constant Node_Id :=
10713 Type_High_Bound (Component_Type (Typ));
10715 Char_Val : Uint;
10717 begin
10718 if Compile_Time_Known_Value (Comp_Typ_Lo)
10719 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10720 then
10721 for J in 1 .. Strlen loop
10722 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10724 if Char_Val < Expr_Value (Comp_Typ_Lo)
10725 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10726 then
10727 Apply_Compile_Time_Constraint_Error
10728 (N, "character out of range??",
10729 CE_Range_Check_Failed,
10730 Loc => Source_Ptr (Int (Loc) + J));
10731 end if;
10732 end loop;
10734 return;
10735 end if;
10736 end;
10737 end if;
10738 end if;
10740 -- If we got here we meed to transform the string literal into the
10741 -- equivalent qualified positional array aggregate. This is rather
10742 -- heavy artillery for this situation, but it is hard work to avoid.
10744 declare
10745 Lits : constant List_Id := New_List;
10746 P : Source_Ptr := Loc + 1;
10747 C : Char_Code;
10749 begin
10750 -- Build the character literals, we give them source locations that
10751 -- correspond to the string positions, which is a bit tricky given
10752 -- the possible presence of wide character escape sequences.
10754 for J in 1 .. Strlen loop
10755 C := Get_String_Char (Str, J);
10756 Set_Character_Literal_Name (C);
10758 Append_To (Lits,
10759 Make_Character_Literal (P,
10760 Chars => Name_Find,
10761 Char_Literal_Value => UI_From_CC (C)));
10763 if In_Character_Range (C) then
10764 P := P + 1;
10766 -- Should we have a call to Skip_Wide here ???
10768 -- ??? else
10769 -- Skip_Wide (P);
10771 end if;
10772 end loop;
10774 Rewrite (N,
10775 Make_Qualified_Expression (Loc,
10776 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10777 Expression =>
10778 Make_Aggregate (Loc, Expressions => Lits)));
10780 Analyze_And_Resolve (N, Typ);
10781 end;
10782 end Resolve_String_Literal;
10784 -------------------------
10785 -- Resolve_Target_Name --
10786 -------------------------
10788 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10789 begin
10790 Set_Etype (N, Typ);
10791 end Resolve_Target_Name;
10793 -----------------------------
10794 -- Resolve_Type_Conversion --
10795 -----------------------------
10797 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10798 Conv_OK : constant Boolean := Conversion_OK (N);
10799 Operand : constant Node_Id := Expression (N);
10800 Operand_Typ : constant Entity_Id := Etype (Operand);
10801 Target_Typ : constant Entity_Id := Etype (N);
10802 Rop : Node_Id;
10803 Orig_N : Node_Id;
10804 Orig_T : Node_Id;
10806 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10807 -- Set to False to suppress cases where we want to suppress the test
10808 -- for redundancy to avoid possible false positives on this warning.
10810 begin
10811 if not Conv_OK
10812 and then not Valid_Conversion (N, Target_Typ, Operand)
10813 then
10814 return;
10815 end if;
10817 -- If the Operand Etype is Universal_Fixed, then the conversion is
10818 -- never redundant. We need this check because by the time we have
10819 -- finished the rather complex transformation, the conversion looks
10820 -- redundant when it is not.
10822 if Operand_Typ = Universal_Fixed then
10823 Test_Redundant := False;
10825 -- If the operand is marked as Any_Fixed, then special processing is
10826 -- required. This is also a case where we suppress the test for a
10827 -- redundant conversion, since most certainly it is not redundant.
10829 elsif Operand_Typ = Any_Fixed then
10830 Test_Redundant := False;
10832 -- Mixed-mode operation involving a literal. Context must be a fixed
10833 -- type which is applied to the literal subsequently.
10835 -- Multiplication and division involving two fixed type operands must
10836 -- yield a universal real because the result is computed in arbitrary
10837 -- precision.
10839 if Is_Fixed_Point_Type (Typ)
10840 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10841 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10842 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10843 then
10844 Set_Etype (Operand, Universal_Real);
10846 elsif Is_Numeric_Type (Typ)
10847 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10848 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10849 or else
10850 Etype (Left_Opnd (Operand)) = Universal_Real)
10851 then
10852 -- Return if expression is ambiguous
10854 if Unique_Fixed_Point_Type (N) = Any_Type then
10855 return;
10857 -- If nothing else, the available fixed type is Duration
10859 else
10860 Set_Etype (Operand, Standard_Duration);
10861 end if;
10863 -- Resolve the real operand with largest available precision
10865 if Etype (Right_Opnd (Operand)) = Universal_Real then
10866 Rop := New_Copy_Tree (Right_Opnd (Operand));
10867 else
10868 Rop := New_Copy_Tree (Left_Opnd (Operand));
10869 end if;
10871 Resolve (Rop, Universal_Real);
10873 -- If the operand is a literal (it could be a non-static and
10874 -- illegal exponentiation) check whether the use of Duration
10875 -- is potentially inaccurate.
10877 if Nkind (Rop) = N_Real_Literal
10878 and then Realval (Rop) /= Ureal_0
10879 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10880 then
10881 Error_Msg_N
10882 ("??universal real operand can only "
10883 & "be interpreted as Duration!", Rop);
10884 Error_Msg_N
10885 ("\??precision will be lost in the conversion!", Rop);
10886 end if;
10888 elsif Is_Numeric_Type (Typ)
10889 and then Nkind (Operand) in N_Op
10890 and then Unique_Fixed_Point_Type (N) /= Any_Type
10891 then
10892 Set_Etype (Operand, Standard_Duration);
10894 else
10895 Error_Msg_N ("invalid context for mixed mode operation", N);
10896 Set_Etype (Operand, Any_Type);
10897 return;
10898 end if;
10899 end if;
10901 Resolve (Operand);
10903 -- In SPARK, a type conversion between array types should be restricted
10904 -- to types which have matching static bounds.
10906 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10907 -- operation if not needed.
10909 if Restriction_Check_Required (SPARK_05)
10910 and then Is_Array_Type (Target_Typ)
10911 and then Is_Array_Type (Operand_Typ)
10912 and then Operand_Typ /= Any_Composite -- or else Operand in error
10913 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10914 then
10915 Check_SPARK_05_Restriction
10916 ("array types should have matching static bounds", N);
10917 end if;
10919 -- In formal mode, the operand of an ancestor type conversion must be an
10920 -- object (not an expression).
10922 if Is_Tagged_Type (Target_Typ)
10923 and then not Is_Class_Wide_Type (Target_Typ)
10924 and then Is_Tagged_Type (Operand_Typ)
10925 and then not Is_Class_Wide_Type (Operand_Typ)
10926 and then Is_Ancestor (Target_Typ, Operand_Typ)
10927 and then not Is_SPARK_05_Object_Reference (Operand)
10928 then
10929 Check_SPARK_05_Restriction ("object required", Operand);
10930 end if;
10932 Analyze_Dimension (N);
10934 -- Note: we do the Eval_Type_Conversion call before applying the
10935 -- required checks for a subtype conversion. This is important, since
10936 -- both are prepared under certain circumstances to change the type
10937 -- conversion to a constraint error node, but in the case of
10938 -- Eval_Type_Conversion this may reflect an illegality in the static
10939 -- case, and we would miss the illegality (getting only a warning
10940 -- message), if we applied the type conversion checks first.
10942 Eval_Type_Conversion (N);
10944 -- Even when evaluation is not possible, we may be able to simplify the
10945 -- conversion or its expression. This needs to be done before applying
10946 -- checks, since otherwise the checks may use the original expression
10947 -- and defeat the simplifications. This is specifically the case for
10948 -- elimination of the floating-point Truncation attribute in
10949 -- float-to-int conversions.
10951 Simplify_Type_Conversion (N);
10953 -- If after evaluation we still have a type conversion, then we may need
10954 -- to apply checks required for a subtype conversion.
10956 -- Skip these type conversion checks if universal fixed operands
10957 -- operands involved, since range checks are handled separately for
10958 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10960 if Nkind (N) = N_Type_Conversion
10961 and then not Is_Generic_Type (Root_Type (Target_Typ))
10962 and then Target_Typ /= Universal_Fixed
10963 and then Operand_Typ /= Universal_Fixed
10964 then
10965 Apply_Type_Conversion_Checks (N);
10966 end if;
10968 -- Issue warning for conversion of simple object to its own type. We
10969 -- have to test the original nodes, since they may have been rewritten
10970 -- by various optimizations.
10972 Orig_N := Original_Node (N);
10974 -- Here we test for a redundant conversion if the warning mode is
10975 -- active (and was not locally reset), and we have a type conversion
10976 -- from source not appearing in a generic instance.
10978 if Test_Redundant
10979 and then Nkind (Orig_N) = N_Type_Conversion
10980 and then Comes_From_Source (Orig_N)
10981 and then not In_Instance
10982 then
10983 Orig_N := Original_Node (Expression (Orig_N));
10984 Orig_T := Target_Typ;
10986 -- If the node is part of a larger expression, the Target_Type
10987 -- may not be the original type of the node if the context is a
10988 -- condition. Recover original type to see if conversion is needed.
10990 if Is_Boolean_Type (Orig_T)
10991 and then Nkind (Parent (N)) in N_Op
10992 then
10993 Orig_T := Etype (Parent (N));
10994 end if;
10996 -- If we have an entity name, then give the warning if the entity
10997 -- is the right type, or if it is a loop parameter covered by the
10998 -- original type (that's needed because loop parameters have an
10999 -- odd subtype coming from the bounds).
11001 if (Is_Entity_Name (Orig_N)
11002 and then
11003 (Etype (Entity (Orig_N)) = Orig_T
11004 or else
11005 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11006 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11008 -- If not an entity, then type of expression must match
11010 or else Etype (Orig_N) = Orig_T
11011 then
11012 -- One more check, do not give warning if the analyzed conversion
11013 -- has an expression with non-static bounds, and the bounds of the
11014 -- target are static. This avoids junk warnings in cases where the
11015 -- conversion is necessary to establish staticness, for example in
11016 -- a case statement.
11018 if not Is_OK_Static_Subtype (Operand_Typ)
11019 and then Is_OK_Static_Subtype (Target_Typ)
11020 then
11021 null;
11023 -- Finally, if this type conversion occurs in a context requiring
11024 -- a prefix, and the expression is a qualified expression then the
11025 -- type conversion is not redundant, since a qualified expression
11026 -- is not a prefix, whereas a type conversion is. For example, "X
11027 -- := T'(Funx(...)).Y;" is illegal because a selected component
11028 -- requires a prefix, but a type conversion makes it legal: "X :=
11029 -- T(T'(Funx(...))).Y;"
11031 -- In Ada 2012, a qualified expression is a name, so this idiom is
11032 -- no longer needed, but we still suppress the warning because it
11033 -- seems unfriendly for warnings to pop up when you switch to the
11034 -- newer language version.
11036 elsif Nkind (Orig_N) = N_Qualified_Expression
11037 and then Nkind_In (Parent (N), N_Attribute_Reference,
11038 N_Indexed_Component,
11039 N_Selected_Component,
11040 N_Slice,
11041 N_Explicit_Dereference)
11042 then
11043 null;
11045 -- Never warn on conversion to Long_Long_Integer'Base since
11046 -- that is most likely an artifact of the extended overflow
11047 -- checking and comes from complex expanded code.
11049 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11050 null;
11052 -- Here we give the redundant conversion warning. If it is an
11053 -- entity, give the name of the entity in the message. If not,
11054 -- just mention the expression.
11056 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11058 else
11059 if Is_Entity_Name (Orig_N) then
11060 Error_Msg_Node_2 := Orig_T;
11061 Error_Msg_NE -- CODEFIX
11062 ("??redundant conversion, & is of type &!",
11063 N, Entity (Orig_N));
11064 else
11065 Error_Msg_NE
11066 ("??redundant conversion, expression is of type&!",
11067 N, Orig_T);
11068 end if;
11069 end if;
11070 end if;
11071 end if;
11073 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11074 -- No need to perform any interface conversion if the type of the
11075 -- expression coincides with the target type.
11077 if Ada_Version >= Ada_2005
11078 and then Expander_Active
11079 and then Operand_Typ /= Target_Typ
11080 then
11081 declare
11082 Opnd : Entity_Id := Operand_Typ;
11083 Target : Entity_Id := Target_Typ;
11085 begin
11086 -- If the type of the operand is a limited view, use nonlimited
11087 -- view when available. If it is a class-wide type, recover the
11088 -- class-wide type of the nonlimited view.
11090 if From_Limited_With (Opnd)
11091 and then Has_Non_Limited_View (Opnd)
11092 then
11093 Opnd := Non_Limited_View (Opnd);
11094 Set_Etype (Expression (N), Opnd);
11095 end if;
11097 if Is_Access_Type (Opnd) then
11098 Opnd := Designated_Type (Opnd);
11099 end if;
11101 if Is_Access_Type (Target_Typ) then
11102 Target := Designated_Type (Target);
11103 end if;
11105 if Opnd = Target then
11106 null;
11108 -- Conversion from interface type
11110 elsif Is_Interface (Opnd) then
11112 -- Ada 2005 (AI-217): Handle entities from limited views
11114 if From_Limited_With (Opnd) then
11115 Error_Msg_Qual_Level := 99;
11116 Error_Msg_NE -- CODEFIX
11117 ("missing WITH clause on package &", N,
11118 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11119 Error_Msg_N
11120 ("type conversions require visibility of the full view",
11123 elsif From_Limited_With (Target)
11124 and then not
11125 (Is_Access_Type (Target_Typ)
11126 and then Present (Non_Limited_View (Etype (Target))))
11127 then
11128 Error_Msg_Qual_Level := 99;
11129 Error_Msg_NE -- CODEFIX
11130 ("missing WITH clause on package &", N,
11131 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11132 Error_Msg_N
11133 ("type conversions require visibility of the full view",
11136 else
11137 Expand_Interface_Conversion (N);
11138 end if;
11140 -- Conversion to interface type
11142 elsif Is_Interface (Target) then
11144 -- Handle subtypes
11146 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11147 Opnd := Etype (Opnd);
11148 end if;
11150 if Is_Class_Wide_Type (Opnd)
11151 or else Interface_Present_In_Ancestor
11152 (Typ => Opnd,
11153 Iface => Target)
11154 then
11155 Expand_Interface_Conversion (N);
11156 else
11157 Error_Msg_Name_1 := Chars (Etype (Target));
11158 Error_Msg_Name_2 := Chars (Opnd);
11159 Error_Msg_N
11160 ("wrong interface conversion (% is not a progenitor "
11161 & "of %)", N);
11162 end if;
11163 end if;
11164 end;
11165 end if;
11167 -- Ada 2012: once the type conversion is resolved, check whether the
11168 -- operand statisfies the static predicate of the target type.
11170 if Has_Predicates (Target_Typ) then
11171 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11172 end if;
11174 -- If at this stage we have a real to integer conversion, make sure that
11175 -- the Do_Range_Check flag is set, because such conversions in general
11176 -- need a range check. We only need this if expansion is off.
11177 -- In GNATprove mode, we only do that when converting from fixed-point
11178 -- (as floating-point to integer conversions are now handled in
11179 -- GNATprove mode).
11181 if Nkind (N) = N_Type_Conversion
11182 and then not Expander_Active
11183 and then Is_Integer_Type (Target_Typ)
11184 and then (Is_Fixed_Point_Type (Operand_Typ)
11185 or else (not GNATprove_Mode
11186 and then Is_Floating_Point_Type (Operand_Typ)))
11187 then
11188 Set_Do_Range_Check (Operand);
11189 end if;
11191 -- Generating C code a type conversion of an access to constrained
11192 -- array type to access to unconstrained array type involves building
11193 -- a fat pointer which in general cannot be generated on the fly. We
11194 -- remove side effects in order to store the result of the conversion
11195 -- into a temporary.
11197 if Modify_Tree_For_C
11198 and then Nkind (N) = N_Type_Conversion
11199 and then Nkind (Parent (N)) /= N_Object_Declaration
11200 and then Is_Access_Type (Etype (N))
11201 and then Is_Array_Type (Designated_Type (Etype (N)))
11202 and then not Is_Constrained (Designated_Type (Etype (N)))
11203 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11204 then
11205 Remove_Side_Effects (N);
11206 end if;
11207 end Resolve_Type_Conversion;
11209 ----------------------
11210 -- Resolve_Unary_Op --
11211 ----------------------
11213 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11214 B_Typ : constant Entity_Id := Base_Type (Typ);
11215 R : constant Node_Id := Right_Opnd (N);
11216 OK : Boolean;
11217 Lo : Uint;
11218 Hi : Uint;
11220 begin
11221 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11222 Error_Msg_Name_1 := Chars (Typ);
11223 Check_SPARK_05_Restriction
11224 ("unary operator not defined for modular type%", N);
11225 end if;
11227 -- Deal with intrinsic unary operators
11229 if Comes_From_Source (N)
11230 and then Ekind (Entity (N)) = E_Function
11231 and then Is_Imported (Entity (N))
11232 and then Is_Intrinsic_Subprogram (Entity (N))
11233 then
11234 Resolve_Intrinsic_Unary_Operator (N, Typ);
11235 return;
11236 end if;
11238 -- Deal with universal cases
11240 if Etype (R) = Universal_Integer
11241 or else
11242 Etype (R) = Universal_Real
11243 then
11244 Check_For_Visible_Operator (N, B_Typ);
11245 end if;
11247 Set_Etype (N, B_Typ);
11248 Resolve (R, B_Typ);
11250 -- Generate warning for expressions like abs (x mod 2)
11252 if Warn_On_Redundant_Constructs
11253 and then Nkind (N) = N_Op_Abs
11254 then
11255 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11257 if OK and then Hi >= Lo and then Lo >= 0 then
11258 Error_Msg_N -- CODEFIX
11259 ("?r?abs applied to known non-negative value has no effect", N);
11260 end if;
11261 end if;
11263 -- Deal with reference generation
11265 Check_Unset_Reference (R);
11266 Generate_Operator_Reference (N, B_Typ);
11267 Analyze_Dimension (N);
11268 Eval_Unary_Op (N);
11270 -- Set overflow checking bit. Much cleverer code needed here eventually
11271 -- and perhaps the Resolve routines should be separated for the various
11272 -- arithmetic operations, since they will need different processing ???
11274 if Nkind (N) in N_Op then
11275 if not Overflow_Checks_Suppressed (Etype (N)) then
11276 Enable_Overflow_Check (N);
11277 end if;
11278 end if;
11280 -- Generate warning for expressions like -5 mod 3 for integers. No need
11281 -- to worry in the floating-point case, since parens do not affect the
11282 -- result so there is no point in giving in a warning.
11284 declare
11285 Norig : constant Node_Id := Original_Node (N);
11286 Rorig : Node_Id;
11287 Val : Uint;
11288 HB : Uint;
11289 LB : Uint;
11290 Lval : Uint;
11291 Opnd : Node_Id;
11293 begin
11294 if Warn_On_Questionable_Missing_Parens
11295 and then Comes_From_Source (Norig)
11296 and then Is_Integer_Type (Typ)
11297 and then Nkind (Norig) = N_Op_Minus
11298 then
11299 Rorig := Original_Node (Right_Opnd (Norig));
11301 -- We are looking for cases where the right operand is not
11302 -- parenthesized, and is a binary operator, multiply, divide, or
11303 -- mod. These are the cases where the grouping can affect results.
11305 if Paren_Count (Rorig) = 0
11306 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11307 then
11308 -- For mod, we always give the warning, since the value is
11309 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11310 -- -(5 mod 315)). But for the other cases, the only concern is
11311 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11312 -- overflows, but (-2) * 64 does not). So we try to give the
11313 -- message only when overflow is possible.
11315 if Nkind (Rorig) /= N_Op_Mod
11316 and then Compile_Time_Known_Value (R)
11317 then
11318 Val := Expr_Value (R);
11320 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11321 HB := Expr_Value (Type_High_Bound (Typ));
11322 else
11323 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11324 end if;
11326 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11327 LB := Expr_Value (Type_Low_Bound (Typ));
11328 else
11329 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11330 end if;
11332 -- Note that the test below is deliberately excluding the
11333 -- largest negative number, since that is a potentially
11334 -- troublesome case (e.g. -2 * x, where the result is the
11335 -- largest negative integer has an overflow with 2 * x).
11337 if Val > LB and then Val <= HB then
11338 return;
11339 end if;
11340 end if;
11342 -- For the multiplication case, the only case we have to worry
11343 -- about is when (-a)*b is exactly the largest negative number
11344 -- so that -(a*b) can cause overflow. This can only happen if
11345 -- a is a power of 2, and more generally if any operand is a
11346 -- constant that is not a power of 2, then the parentheses
11347 -- cannot affect whether overflow occurs. We only bother to
11348 -- test the left most operand
11350 -- Loop looking at left operands for one that has known value
11352 Opnd := Rorig;
11353 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11354 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11355 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11357 -- Operand value of 0 or 1 skips warning
11359 if Lval <= 1 then
11360 return;
11362 -- Otherwise check power of 2, if power of 2, warn, if
11363 -- anything else, skip warning.
11365 else
11366 while Lval /= 2 loop
11367 if Lval mod 2 = 1 then
11368 return;
11369 else
11370 Lval := Lval / 2;
11371 end if;
11372 end loop;
11374 exit Opnd_Loop;
11375 end if;
11376 end if;
11378 -- Keep looking at left operands
11380 Opnd := Left_Opnd (Opnd);
11381 end loop Opnd_Loop;
11383 -- For rem or "/" we can only have a problematic situation
11384 -- if the divisor has a value of minus one or one. Otherwise
11385 -- overflow is impossible (divisor > 1) or we have a case of
11386 -- division by zero in any case.
11388 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11389 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11390 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11391 then
11392 return;
11393 end if;
11395 -- If we fall through warning should be issued
11397 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11399 Error_Msg_N
11400 ("??unary minus expression should be parenthesized here!", N);
11401 end if;
11402 end if;
11403 end;
11404 end Resolve_Unary_Op;
11406 ----------------------------------
11407 -- Resolve_Unchecked_Expression --
11408 ----------------------------------
11410 procedure Resolve_Unchecked_Expression
11411 (N : Node_Id;
11412 Typ : Entity_Id)
11414 begin
11415 Resolve (Expression (N), Typ, Suppress => All_Checks);
11416 Set_Etype (N, Typ);
11417 end Resolve_Unchecked_Expression;
11419 ---------------------------------------
11420 -- Resolve_Unchecked_Type_Conversion --
11421 ---------------------------------------
11423 procedure Resolve_Unchecked_Type_Conversion
11424 (N : Node_Id;
11425 Typ : Entity_Id)
11427 pragma Warnings (Off, Typ);
11429 Operand : constant Node_Id := Expression (N);
11430 Opnd_Type : constant Entity_Id := Etype (Operand);
11432 begin
11433 -- Resolve operand using its own type
11435 Resolve (Operand, Opnd_Type);
11437 -- In an inlined context, the unchecked conversion may be applied
11438 -- to a literal, in which case its type is the type of the context.
11439 -- (In other contexts conversions cannot apply to literals).
11441 if In_Inlined_Body
11442 and then (Opnd_Type = Any_Character or else
11443 Opnd_Type = Any_Integer or else
11444 Opnd_Type = Any_Real)
11445 then
11446 Set_Etype (Operand, Typ);
11447 end if;
11449 Analyze_Dimension (N);
11450 Eval_Unchecked_Conversion (N);
11451 end Resolve_Unchecked_Type_Conversion;
11453 ------------------------------
11454 -- Rewrite_Operator_As_Call --
11455 ------------------------------
11457 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11458 Loc : constant Source_Ptr := Sloc (N);
11459 Actuals : constant List_Id := New_List;
11460 New_N : Node_Id;
11462 begin
11463 if Nkind (N) in N_Binary_Op then
11464 Append (Left_Opnd (N), Actuals);
11465 end if;
11467 Append (Right_Opnd (N), Actuals);
11469 New_N :=
11470 Make_Function_Call (Sloc => Loc,
11471 Name => New_Occurrence_Of (Nam, Loc),
11472 Parameter_Associations => Actuals);
11474 Preserve_Comes_From_Source (New_N, N);
11475 Preserve_Comes_From_Source (Name (New_N), N);
11476 Rewrite (N, New_N);
11477 Set_Etype (N, Etype (Nam));
11478 end Rewrite_Operator_As_Call;
11480 ------------------------------
11481 -- Rewrite_Renamed_Operator --
11482 ------------------------------
11484 procedure Rewrite_Renamed_Operator
11485 (N : Node_Id;
11486 Op : Entity_Id;
11487 Typ : Entity_Id)
11489 Nam : constant Name_Id := Chars (Op);
11490 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11491 Op_Node : Node_Id;
11493 begin
11494 -- Do not perform this transformation within a pre/postcondition,
11495 -- because the expression will be reanalyzed, and the transformation
11496 -- might affect the visibility of the operator, e.g. in an instance.
11497 -- Note that fully analyzed and expanded pre/postconditions appear as
11498 -- pragma Check equivalents.
11500 if In_Pre_Post_Condition (N) then
11501 return;
11502 end if;
11504 -- Likewise when an expression function is being preanalyzed, since the
11505 -- expression will be reanalyzed as part of the generated body.
11507 if In_Spec_Expression then
11508 declare
11509 S : constant Entity_Id := Current_Scope_No_Loops;
11510 begin
11511 if Ekind (S) = E_Function
11512 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11513 N_Expression_Function
11514 then
11515 return;
11516 end if;
11517 end;
11518 end if;
11520 -- Rewrite the operator node using the real operator, not its renaming.
11521 -- Exclude user-defined intrinsic operations of the same name, which are
11522 -- treated separately and rewritten as calls.
11524 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11525 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11526 Set_Chars (Op_Node, Nam);
11527 Set_Etype (Op_Node, Etype (N));
11528 Set_Entity (Op_Node, Op);
11529 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11531 -- Indicate that both the original entity and its renaming are
11532 -- referenced at this point.
11534 Generate_Reference (Entity (N), N);
11535 Generate_Reference (Op, N);
11537 if Is_Binary then
11538 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11539 end if;
11541 Rewrite (N, Op_Node);
11543 -- If the context type is private, add the appropriate conversions so
11544 -- that the operator is applied to the full view. This is done in the
11545 -- routines that resolve intrinsic operators.
11547 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11548 case Nkind (N) is
11549 when N_Op_Add
11550 | N_Op_Divide
11551 | N_Op_Expon
11552 | N_Op_Mod
11553 | N_Op_Multiply
11554 | N_Op_Rem
11555 | N_Op_Subtract
11557 Resolve_Intrinsic_Operator (N, Typ);
11559 when N_Op_Abs
11560 | N_Op_Minus
11561 | N_Op_Plus
11563 Resolve_Intrinsic_Unary_Operator (N, Typ);
11565 when others =>
11566 Resolve (N, Typ);
11567 end case;
11568 end if;
11570 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11572 -- Operator renames a user-defined operator of the same name. Use the
11573 -- original operator in the node, which is the one Gigi knows about.
11575 Set_Entity (N, Op);
11576 Set_Is_Overloaded (N, False);
11577 end if;
11578 end Rewrite_Renamed_Operator;
11580 -----------------------
11581 -- Set_Slice_Subtype --
11582 -----------------------
11584 -- Build an implicit subtype declaration to represent the type delivered by
11585 -- the slice. This is an abbreviated version of an array subtype. We define
11586 -- an index subtype for the slice, using either the subtype name or the
11587 -- discrete range of the slice. To be consistent with index usage elsewhere
11588 -- we create a list header to hold the single index. This list is not
11589 -- otherwise attached to the syntax tree.
11591 procedure Set_Slice_Subtype (N : Node_Id) is
11592 Loc : constant Source_Ptr := Sloc (N);
11593 Index_List : constant List_Id := New_List;
11594 Index : Node_Id;
11595 Index_Subtype : Entity_Id;
11596 Index_Type : Entity_Id;
11597 Slice_Subtype : Entity_Id;
11598 Drange : constant Node_Id := Discrete_Range (N);
11600 begin
11601 Index_Type := Base_Type (Etype (Drange));
11603 if Is_Entity_Name (Drange) then
11604 Index_Subtype := Entity (Drange);
11606 else
11607 -- We force the evaluation of a range. This is definitely needed in
11608 -- the renamed case, and seems safer to do unconditionally. Note in
11609 -- any case that since we will create and insert an Itype referring
11610 -- to this range, we must make sure any side effect removal actions
11611 -- are inserted before the Itype definition.
11613 if Nkind (Drange) = N_Range then
11614 Force_Evaluation (Low_Bound (Drange));
11615 Force_Evaluation (High_Bound (Drange));
11617 -- If the discrete range is given by a subtype indication, the
11618 -- type of the slice is the base of the subtype mark.
11620 elsif Nkind (Drange) = N_Subtype_Indication then
11621 declare
11622 R : constant Node_Id := Range_Expression (Constraint (Drange));
11623 begin
11624 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11625 Force_Evaluation (Low_Bound (R));
11626 Force_Evaluation (High_Bound (R));
11627 end;
11628 end if;
11630 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11632 -- Take a new copy of Drange (where bounds have been rewritten to
11633 -- reference side-effect-free names). Using a separate tree ensures
11634 -- that further expansion (e.g. while rewriting a slice assignment
11635 -- into a FOR loop) does not attempt to remove side effects on the
11636 -- bounds again (which would cause the bounds in the index subtype
11637 -- definition to refer to temporaries before they are defined) (the
11638 -- reason is that some names are considered side effect free here
11639 -- for the subtype, but not in the context of a loop iteration
11640 -- scheme).
11642 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11643 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11644 Set_Etype (Index_Subtype, Index_Type);
11645 Set_Size_Info (Index_Subtype, Index_Type);
11646 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11647 end if;
11649 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11651 Index := New_Occurrence_Of (Index_Subtype, Loc);
11652 Set_Etype (Index, Index_Subtype);
11653 Append (Index, Index_List);
11655 Set_First_Index (Slice_Subtype, Index);
11656 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11657 Set_Is_Constrained (Slice_Subtype, True);
11659 Check_Compile_Time_Size (Slice_Subtype);
11661 -- The Etype of the existing Slice node is reset to this slice subtype.
11662 -- Its bounds are obtained from its first index.
11664 Set_Etype (N, Slice_Subtype);
11666 -- For bit-packed slice subtypes, freeze immediately (except in the case
11667 -- of being in a "spec expression" where we never freeze when we first
11668 -- see the expression).
11670 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11671 Freeze_Itype (Slice_Subtype, N);
11673 -- For all other cases insert an itype reference in the slice's actions
11674 -- so that the itype is frozen at the proper place in the tree (i.e. at
11675 -- the point where actions for the slice are analyzed). Note that this
11676 -- is different from freezing the itype immediately, which might be
11677 -- premature (e.g. if the slice is within a transient scope). This needs
11678 -- to be done only if expansion is enabled.
11680 elsif Expander_Active then
11681 Ensure_Defined (Typ => Slice_Subtype, N => N);
11682 end if;
11683 end Set_Slice_Subtype;
11685 --------------------------------
11686 -- Set_String_Literal_Subtype --
11687 --------------------------------
11689 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11690 Loc : constant Source_Ptr := Sloc (N);
11691 Low_Bound : constant Node_Id :=
11692 Type_Low_Bound (Etype (First_Index (Typ)));
11693 Subtype_Id : Entity_Id;
11695 begin
11696 if Nkind (N) /= N_String_Literal then
11697 return;
11698 end if;
11700 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11701 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11702 (String_Length (Strval (N))));
11703 Set_Etype (Subtype_Id, Base_Type (Typ));
11704 Set_Is_Constrained (Subtype_Id);
11705 Set_Etype (N, Subtype_Id);
11707 -- The low bound is set from the low bound of the corresponding index
11708 -- type. Note that we do not store the high bound in the string literal
11709 -- subtype, but it can be deduced if necessary from the length and the
11710 -- low bound.
11712 if Is_OK_Static_Expression (Low_Bound) then
11713 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11715 -- If the lower bound is not static we create a range for the string
11716 -- literal, using the index type and the known length of the literal.
11717 -- The index type is not necessarily Positive, so the upper bound is
11718 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11720 else
11721 declare
11722 Index_List : constant List_Id := New_List;
11723 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11724 High_Bound : constant Node_Id :=
11725 Make_Attribute_Reference (Loc,
11726 Attribute_Name => Name_Val,
11727 Prefix =>
11728 New_Occurrence_Of (Index_Type, Loc),
11729 Expressions => New_List (
11730 Make_Op_Add (Loc,
11731 Left_Opnd =>
11732 Make_Attribute_Reference (Loc,
11733 Attribute_Name => Name_Pos,
11734 Prefix =>
11735 New_Occurrence_Of (Index_Type, Loc),
11736 Expressions =>
11737 New_List (New_Copy_Tree (Low_Bound))),
11738 Right_Opnd =>
11739 Make_Integer_Literal (Loc,
11740 String_Length (Strval (N)) - 1))));
11742 Array_Subtype : Entity_Id;
11743 Drange : Node_Id;
11744 Index : Node_Id;
11745 Index_Subtype : Entity_Id;
11747 begin
11748 if Is_Integer_Type (Index_Type) then
11749 Set_String_Literal_Low_Bound
11750 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11752 else
11753 -- If the index type is an enumeration type, build bounds
11754 -- expression with attributes.
11756 Set_String_Literal_Low_Bound
11757 (Subtype_Id,
11758 Make_Attribute_Reference (Loc,
11759 Attribute_Name => Name_First,
11760 Prefix =>
11761 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11762 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11763 end if;
11765 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11767 -- Build bona fide subtype for the string, and wrap it in an
11768 -- unchecked conversion, because the backend expects the
11769 -- String_Literal_Subtype to have a static lower bound.
11771 Index_Subtype :=
11772 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11773 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11774 Set_Scalar_Range (Index_Subtype, Drange);
11775 Set_Parent (Drange, N);
11776 Analyze_And_Resolve (Drange, Index_Type);
11778 -- In the context, the Index_Type may already have a constraint,
11779 -- so use common base type on string subtype. The base type may
11780 -- be used when generating attributes of the string, for example
11781 -- in the context of a slice assignment.
11783 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11784 Set_Size_Info (Index_Subtype, Index_Type);
11785 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11787 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11789 Index := New_Occurrence_Of (Index_Subtype, Loc);
11790 Set_Etype (Index, Index_Subtype);
11791 Append (Index, Index_List);
11793 Set_First_Index (Array_Subtype, Index);
11794 Set_Etype (Array_Subtype, Base_Type (Typ));
11795 Set_Is_Constrained (Array_Subtype, True);
11797 Rewrite (N,
11798 Make_Unchecked_Type_Conversion (Loc,
11799 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11800 Expression => Relocate_Node (N)));
11801 Set_Etype (N, Array_Subtype);
11802 end;
11803 end if;
11804 end Set_String_Literal_Subtype;
11806 ------------------------------
11807 -- Simplify_Type_Conversion --
11808 ------------------------------
11810 procedure Simplify_Type_Conversion (N : Node_Id) is
11811 begin
11812 if Nkind (N) = N_Type_Conversion then
11813 declare
11814 Operand : constant Node_Id := Expression (N);
11815 Target_Typ : constant Entity_Id := Etype (N);
11816 Opnd_Typ : constant Entity_Id := Etype (Operand);
11818 begin
11819 -- Special processing if the conversion is the expression of a
11820 -- Rounding or Truncation attribute reference. In this case we
11821 -- replace:
11823 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11825 -- by
11827 -- ityp (x)
11829 -- with the Float_Truncate flag set to False or True respectively,
11830 -- which is more efficient.
11832 if Is_Floating_Point_Type (Opnd_Typ)
11833 and then
11834 (Is_Integer_Type (Target_Typ)
11835 or else (Is_Fixed_Point_Type (Target_Typ)
11836 and then Conversion_OK (N)))
11837 and then Nkind (Operand) = N_Attribute_Reference
11838 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11839 Name_Truncation)
11840 then
11841 declare
11842 Truncate : constant Boolean :=
11843 Attribute_Name (Operand) = Name_Truncation;
11844 begin
11845 Rewrite (Operand,
11846 Relocate_Node (First (Expressions (Operand))));
11847 Set_Float_Truncate (N, Truncate);
11848 end;
11849 end if;
11850 end;
11851 end if;
11852 end Simplify_Type_Conversion;
11854 -----------------------------
11855 -- Unique_Fixed_Point_Type --
11856 -----------------------------
11858 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11859 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11860 -- Give error messages for true ambiguity. Messages are posted on node
11861 -- N, and entities T1, T2 are the possible interpretations.
11863 -----------------------
11864 -- Fixed_Point_Error --
11865 -----------------------
11867 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11868 begin
11869 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11870 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11871 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11872 end Fixed_Point_Error;
11874 -- Local variables
11876 ErrN : Node_Id;
11877 Item : Node_Id;
11878 Scop : Entity_Id;
11879 T1 : Entity_Id;
11880 T2 : Entity_Id;
11882 -- Start of processing for Unique_Fixed_Point_Type
11884 begin
11885 -- The operations on Duration are visible, so Duration is always a
11886 -- possible interpretation.
11888 T1 := Standard_Duration;
11890 -- Look for fixed-point types in enclosing scopes
11892 Scop := Current_Scope;
11893 while Scop /= Standard_Standard loop
11894 T2 := First_Entity (Scop);
11895 while Present (T2) loop
11896 if Is_Fixed_Point_Type (T2)
11897 and then Current_Entity (T2) = T2
11898 and then Scope (Base_Type (T2)) = Scop
11899 then
11900 if Present (T1) then
11901 Fixed_Point_Error (T1, T2);
11902 return Any_Type;
11903 else
11904 T1 := T2;
11905 end if;
11906 end if;
11908 Next_Entity (T2);
11909 end loop;
11911 Scop := Scope (Scop);
11912 end loop;
11914 -- Look for visible fixed type declarations in the context
11916 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11917 while Present (Item) loop
11918 if Nkind (Item) = N_With_Clause then
11919 Scop := Entity (Name (Item));
11920 T2 := First_Entity (Scop);
11921 while Present (T2) loop
11922 if Is_Fixed_Point_Type (T2)
11923 and then Scope (Base_Type (T2)) = Scop
11924 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11925 then
11926 if Present (T1) then
11927 Fixed_Point_Error (T1, T2);
11928 return Any_Type;
11929 else
11930 T1 := T2;
11931 end if;
11932 end if;
11934 Next_Entity (T2);
11935 end loop;
11936 end if;
11938 Next (Item);
11939 end loop;
11941 if Nkind (N) = N_Real_Literal then
11942 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11944 else
11945 -- When the context is a type conversion, issue the warning on the
11946 -- expression of the conversion because it is the actual operation.
11948 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11949 ErrN := Expression (N);
11950 else
11951 ErrN := N;
11952 end if;
11954 Error_Msg_NE
11955 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11956 end if;
11958 return T1;
11959 end Unique_Fixed_Point_Type;
11961 ----------------------
11962 -- Valid_Conversion --
11963 ----------------------
11965 function Valid_Conversion
11966 (N : Node_Id;
11967 Target : Entity_Id;
11968 Operand : Node_Id;
11969 Report_Errs : Boolean := True) return Boolean
11971 Target_Type : constant Entity_Id := Base_Type (Target);
11972 Opnd_Type : Entity_Id := Etype (Operand);
11973 Inc_Ancestor : Entity_Id;
11975 function Conversion_Check
11976 (Valid : Boolean;
11977 Msg : String) return Boolean;
11978 -- Little routine to post Msg if Valid is False, returns Valid value
11980 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11981 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11983 procedure Conversion_Error_NE
11984 (Msg : String;
11985 N : Node_Or_Entity_Id;
11986 E : Node_Or_Entity_Id);
11987 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11989 function In_Instance_Code return Boolean;
11990 -- Return True if expression is within an instance but is not in one of
11991 -- the actuals of the instantiation. Type conversions within an instance
11992 -- are not rechecked because type visbility may lead to spurious errors,
11993 -- but conversions in an actual for a formal object must be checked.
11995 function Valid_Tagged_Conversion
11996 (Target_Type : Entity_Id;
11997 Opnd_Type : Entity_Id) return Boolean;
11998 -- Specifically test for validity of tagged conversions
12000 function Valid_Array_Conversion return Boolean;
12001 -- Check index and component conformance, and accessibility levels if
12002 -- the component types are anonymous access types (Ada 2005).
12004 ----------------------
12005 -- Conversion_Check --
12006 ----------------------
12008 function Conversion_Check
12009 (Valid : Boolean;
12010 Msg : String) return Boolean
12012 begin
12013 if not Valid
12015 -- A generic unit has already been analyzed and we have verified
12016 -- that a particular conversion is OK in that context. Since the
12017 -- instance is reanalyzed without relying on the relationships
12018 -- established during the analysis of the generic, it is possible
12019 -- to end up with inconsistent views of private types. Do not emit
12020 -- the error message in such cases. The rest of the machinery in
12021 -- Valid_Conversion still ensures the proper compatibility of
12022 -- target and operand types.
12024 and then not In_Instance_Code
12025 then
12026 Conversion_Error_N (Msg, Operand);
12027 end if;
12029 return Valid;
12030 end Conversion_Check;
12032 ------------------------
12033 -- Conversion_Error_N --
12034 ------------------------
12036 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12037 begin
12038 if Report_Errs then
12039 Error_Msg_N (Msg, N);
12040 end if;
12041 end Conversion_Error_N;
12043 -------------------------
12044 -- Conversion_Error_NE --
12045 -------------------------
12047 procedure Conversion_Error_NE
12048 (Msg : String;
12049 N : Node_Or_Entity_Id;
12050 E : Node_Or_Entity_Id)
12052 begin
12053 if Report_Errs then
12054 Error_Msg_NE (Msg, N, E);
12055 end if;
12056 end Conversion_Error_NE;
12058 ----------------------
12059 -- In_Instance_Code --
12060 ----------------------
12062 function In_Instance_Code return Boolean is
12063 Par : Node_Id;
12065 begin
12066 if not In_Instance then
12067 return False;
12069 else
12070 Par := Parent (N);
12071 while Present (Par) loop
12073 -- The expression is part of an actual object if it appears in
12074 -- the generated object declaration in the instance.
12076 if Nkind (Par) = N_Object_Declaration
12077 and then Present (Corresponding_Generic_Association (Par))
12078 then
12079 return False;
12081 else
12082 exit when
12083 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12084 or else Nkind (Par) in N_Subprogram_Call
12085 or else Nkind (Par) in N_Declaration;
12086 end if;
12088 Par := Parent (Par);
12089 end loop;
12091 -- Otherwise the expression appears within the instantiated unit
12093 return True;
12094 end if;
12095 end In_Instance_Code;
12097 ----------------------------
12098 -- Valid_Array_Conversion --
12099 ----------------------------
12101 function Valid_Array_Conversion return Boolean is
12102 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12103 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12105 Opnd_Index : Node_Id;
12106 Opnd_Index_Type : Entity_Id;
12108 Target_Comp_Type : constant Entity_Id :=
12109 Component_Type (Target_Type);
12110 Target_Comp_Base : constant Entity_Id :=
12111 Base_Type (Target_Comp_Type);
12113 Target_Index : Node_Id;
12114 Target_Index_Type : Entity_Id;
12116 begin
12117 -- Error if wrong number of dimensions
12120 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12121 then
12122 Conversion_Error_N
12123 ("incompatible number of dimensions for conversion", Operand);
12124 return False;
12126 -- Number of dimensions matches
12128 else
12129 -- Loop through indexes of the two arrays
12131 Target_Index := First_Index (Target_Type);
12132 Opnd_Index := First_Index (Opnd_Type);
12133 while Present (Target_Index) and then Present (Opnd_Index) loop
12134 Target_Index_Type := Etype (Target_Index);
12135 Opnd_Index_Type := Etype (Opnd_Index);
12137 -- Error if index types are incompatible
12139 if not (Is_Integer_Type (Target_Index_Type)
12140 and then Is_Integer_Type (Opnd_Index_Type))
12141 and then (Root_Type (Target_Index_Type)
12142 /= Root_Type (Opnd_Index_Type))
12143 then
12144 Conversion_Error_N
12145 ("incompatible index types for array conversion",
12146 Operand);
12147 return False;
12148 end if;
12150 Next_Index (Target_Index);
12151 Next_Index (Opnd_Index);
12152 end loop;
12154 -- If component types have same base type, all set
12156 if Target_Comp_Base = Opnd_Comp_Base then
12157 null;
12159 -- Here if base types of components are not the same. The only
12160 -- time this is allowed is if we have anonymous access types.
12162 -- The conversion of arrays of anonymous access types can lead
12163 -- to dangling pointers. AI-392 formalizes the accessibility
12164 -- checks that must be applied to such conversions to prevent
12165 -- out-of-scope references.
12167 elsif Ekind_In
12168 (Target_Comp_Base, E_Anonymous_Access_Type,
12169 E_Anonymous_Access_Subprogram_Type)
12170 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12171 and then
12172 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12173 then
12174 if Type_Access_Level (Target_Type) <
12175 Deepest_Type_Access_Level (Opnd_Type)
12176 then
12177 if In_Instance_Body then
12178 Error_Msg_Warn := SPARK_Mode /= On;
12179 Conversion_Error_N
12180 ("source array type has deeper accessibility "
12181 & "level than target<<", Operand);
12182 Conversion_Error_N ("\Program_Error [<<", Operand);
12183 Rewrite (N,
12184 Make_Raise_Program_Error (Sloc (N),
12185 Reason => PE_Accessibility_Check_Failed));
12186 Set_Etype (N, Target_Type);
12187 return False;
12189 -- Conversion not allowed because of accessibility levels
12191 else
12192 Conversion_Error_N
12193 ("source array type has deeper accessibility "
12194 & "level than target", Operand);
12195 return False;
12196 end if;
12198 else
12199 null;
12200 end if;
12202 -- All other cases where component base types do not match
12204 else
12205 Conversion_Error_N
12206 ("incompatible component types for array conversion",
12207 Operand);
12208 return False;
12209 end if;
12211 -- Check that component subtypes statically match. For numeric
12212 -- types this means that both must be either constrained or
12213 -- unconstrained. For enumeration types the bounds must match.
12214 -- All of this is checked in Subtypes_Statically_Match.
12216 if not Subtypes_Statically_Match
12217 (Target_Comp_Type, Opnd_Comp_Type)
12218 then
12219 Conversion_Error_N
12220 ("component subtypes must statically match", Operand);
12221 return False;
12222 end if;
12223 end if;
12225 return True;
12226 end Valid_Array_Conversion;
12228 -----------------------------
12229 -- Valid_Tagged_Conversion --
12230 -----------------------------
12232 function Valid_Tagged_Conversion
12233 (Target_Type : Entity_Id;
12234 Opnd_Type : Entity_Id) return Boolean
12236 begin
12237 -- Upward conversions are allowed (RM 4.6(22))
12239 if Covers (Target_Type, Opnd_Type)
12240 or else Is_Ancestor (Target_Type, Opnd_Type)
12241 then
12242 return True;
12244 -- Downward conversion are allowed if the operand is class-wide
12245 -- (RM 4.6(23)).
12247 elsif Is_Class_Wide_Type (Opnd_Type)
12248 and then Covers (Opnd_Type, Target_Type)
12249 then
12250 return True;
12252 elsif Covers (Opnd_Type, Target_Type)
12253 or else Is_Ancestor (Opnd_Type, Target_Type)
12254 then
12255 return
12256 Conversion_Check (False,
12257 "downward conversion of tagged objects not allowed");
12259 -- Ada 2005 (AI-251): The conversion to/from interface types is
12260 -- always valid. The types involved may be class-wide (sub)types.
12262 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12263 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12264 then
12265 return True;
12267 -- If the operand is a class-wide type obtained through a limited_
12268 -- with clause, and the context includes the nonlimited view, use
12269 -- it to determine whether the conversion is legal.
12271 elsif Is_Class_Wide_Type (Opnd_Type)
12272 and then From_Limited_With (Opnd_Type)
12273 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12274 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12275 then
12276 return True;
12278 elsif Is_Access_Type (Opnd_Type)
12279 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12280 then
12281 return True;
12283 else
12284 Conversion_Error_NE
12285 ("invalid tagged conversion, not compatible with}",
12286 N, First_Subtype (Opnd_Type));
12287 return False;
12288 end if;
12289 end Valid_Tagged_Conversion;
12291 -- Start of processing for Valid_Conversion
12293 begin
12294 Check_Parameterless_Call (Operand);
12296 if Is_Overloaded (Operand) then
12297 declare
12298 I : Interp_Index;
12299 I1 : Interp_Index;
12300 It : Interp;
12301 It1 : Interp;
12302 N1 : Entity_Id;
12303 T1 : Entity_Id;
12305 begin
12306 -- Remove procedure calls, which syntactically cannot appear in
12307 -- this context, but which cannot be removed by type checking,
12308 -- because the context does not impose a type.
12310 -- The node may be labelled overloaded, but still contain only one
12311 -- interpretation because others were discarded earlier. If this
12312 -- is the case, retain the single interpretation if legal.
12314 Get_First_Interp (Operand, I, It);
12315 Opnd_Type := It.Typ;
12316 Get_Next_Interp (I, It);
12318 if Present (It.Typ)
12319 and then Opnd_Type /= Standard_Void_Type
12320 then
12321 -- More than one candidate interpretation is available
12323 Get_First_Interp (Operand, I, It);
12324 while Present (It.Typ) loop
12325 if It.Typ = Standard_Void_Type then
12326 Remove_Interp (I);
12327 end if;
12329 -- When compiling for a system where Address is of a visible
12330 -- integer type, spurious ambiguities can be produced when
12331 -- arithmetic operations have a literal operand and return
12332 -- System.Address or a descendant of it. These ambiguities
12333 -- are usually resolved by the context, but for conversions
12334 -- there is no context type and the removal of the spurious
12335 -- operations must be done explicitly here.
12337 if not Address_Is_Private
12338 and then Is_Descendant_Of_Address (It.Typ)
12339 then
12340 Remove_Interp (I);
12341 end if;
12343 Get_Next_Interp (I, It);
12344 end loop;
12345 end if;
12347 Get_First_Interp (Operand, I, It);
12348 I1 := I;
12349 It1 := It;
12351 if No (It.Typ) then
12352 Conversion_Error_N ("illegal operand in conversion", Operand);
12353 return False;
12354 end if;
12356 Get_Next_Interp (I, It);
12358 if Present (It.Typ) then
12359 N1 := It1.Nam;
12360 T1 := It1.Typ;
12361 It1 := Disambiguate (Operand, I1, I, Any_Type);
12363 if It1 = No_Interp then
12364 Conversion_Error_N
12365 ("ambiguous operand in conversion", Operand);
12367 -- If the interpretation involves a standard operator, use
12368 -- the location of the type, which may be user-defined.
12370 if Sloc (It.Nam) = Standard_Location then
12371 Error_Msg_Sloc := Sloc (It.Typ);
12372 else
12373 Error_Msg_Sloc := Sloc (It.Nam);
12374 end if;
12376 Conversion_Error_N -- CODEFIX
12377 ("\\possible interpretation#!", Operand);
12379 if Sloc (N1) = Standard_Location then
12380 Error_Msg_Sloc := Sloc (T1);
12381 else
12382 Error_Msg_Sloc := Sloc (N1);
12383 end if;
12385 Conversion_Error_N -- CODEFIX
12386 ("\\possible interpretation#!", Operand);
12388 return False;
12389 end if;
12390 end if;
12392 Set_Etype (Operand, It1.Typ);
12393 Opnd_Type := It1.Typ;
12394 end;
12395 end if;
12397 -- Deal with conversion of integer type to address if the pragma
12398 -- Allow_Integer_Address is in effect. We convert the conversion to
12399 -- an unchecked conversion in this case and we are all done.
12401 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12402 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12403 Analyze_And_Resolve (N, Target_Type);
12404 return True;
12405 end if;
12407 -- If we are within a child unit, check whether the type of the
12408 -- expression has an ancestor in a parent unit, in which case it
12409 -- belongs to its derivation class even if the ancestor is private.
12410 -- See RM 7.3.1 (5.2/3).
12412 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12414 -- Numeric types
12416 if Is_Numeric_Type (Target_Type) then
12418 -- A universal fixed expression can be converted to any numeric type
12420 if Opnd_Type = Universal_Fixed then
12421 return True;
12423 -- Also no need to check when in an instance or inlined body, because
12424 -- the legality has been established when the template was analyzed.
12425 -- Furthermore, numeric conversions may occur where only a private
12426 -- view of the operand type is visible at the instantiation point.
12427 -- This results in a spurious error if we check that the operand type
12428 -- is a numeric type.
12430 -- Note: in a previous version of this unit, the following tests were
12431 -- applied only for generated code (Comes_From_Source set to False),
12432 -- but in fact the test is required for source code as well, since
12433 -- this situation can arise in source code.
12435 elsif In_Instance_Code or else In_Inlined_Body then
12436 return True;
12438 -- Otherwise we need the conversion check
12440 else
12441 return Conversion_Check
12442 (Is_Numeric_Type (Opnd_Type)
12443 or else
12444 (Present (Inc_Ancestor)
12445 and then Is_Numeric_Type (Inc_Ancestor)),
12446 "illegal operand for numeric conversion");
12447 end if;
12449 -- Array types
12451 elsif Is_Array_Type (Target_Type) then
12452 if not Is_Array_Type (Opnd_Type)
12453 or else Opnd_Type = Any_Composite
12454 or else Opnd_Type = Any_String
12455 then
12456 Conversion_Error_N
12457 ("illegal operand for array conversion", Operand);
12458 return False;
12460 else
12461 return Valid_Array_Conversion;
12462 end if;
12464 -- Ada 2005 (AI-251): Internally generated conversions of access to
12465 -- interface types added to force the displacement of the pointer to
12466 -- reference the corresponding dispatch table.
12468 elsif not Comes_From_Source (N)
12469 and then Is_Access_Type (Target_Type)
12470 and then Is_Interface (Designated_Type (Target_Type))
12471 then
12472 return True;
12474 -- Ada 2005 (AI-251): Anonymous access types where target references an
12475 -- interface type.
12477 elsif Is_Access_Type (Opnd_Type)
12478 and then Ekind_In (Target_Type, E_General_Access_Type,
12479 E_Anonymous_Access_Type)
12480 and then Is_Interface (Directly_Designated_Type (Target_Type))
12481 then
12482 -- Check the static accessibility rule of 4.6(17). Note that the
12483 -- check is not enforced when within an instance body, since the
12484 -- RM requires such cases to be caught at run time.
12486 -- If the operand is a rewriting of an allocator no check is needed
12487 -- because there are no accessibility issues.
12489 if Nkind (Original_Node (N)) = N_Allocator then
12490 null;
12492 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12493 if Type_Access_Level (Opnd_Type) >
12494 Deepest_Type_Access_Level (Target_Type)
12495 then
12496 -- In an instance, this is a run-time check, but one we know
12497 -- will fail, so generate an appropriate warning. The raise
12498 -- will be generated by Expand_N_Type_Conversion.
12500 if In_Instance_Body then
12501 Error_Msg_Warn := SPARK_Mode /= On;
12502 Conversion_Error_N
12503 ("cannot convert local pointer to non-local access type<<",
12504 Operand);
12505 Conversion_Error_N ("\Program_Error [<<", Operand);
12507 else
12508 Conversion_Error_N
12509 ("cannot convert local pointer to non-local access type",
12510 Operand);
12511 return False;
12512 end if;
12514 -- Special accessibility checks are needed in the case of access
12515 -- discriminants declared for a limited type.
12517 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12518 and then not Is_Local_Anonymous_Access (Opnd_Type)
12519 then
12520 -- When the operand is a selected access discriminant the check
12521 -- needs to be made against the level of the object denoted by
12522 -- the prefix of the selected name (Object_Access_Level handles
12523 -- checking the prefix of the operand for this case).
12525 if Nkind (Operand) = N_Selected_Component
12526 and then Object_Access_Level (Operand) >
12527 Deepest_Type_Access_Level (Target_Type)
12528 then
12529 -- In an instance, this is a run-time check, but one we know
12530 -- will fail, so generate an appropriate warning. The raise
12531 -- will be generated by Expand_N_Type_Conversion.
12533 if In_Instance_Body then
12534 Error_Msg_Warn := SPARK_Mode /= On;
12535 Conversion_Error_N
12536 ("cannot convert access discriminant to non-local "
12537 & "access type<<", Operand);
12538 Conversion_Error_N ("\Program_Error [<<", Operand);
12540 -- Real error if not in instance body
12542 else
12543 Conversion_Error_N
12544 ("cannot convert access discriminant to non-local "
12545 & "access type", Operand);
12546 return False;
12547 end if;
12548 end if;
12550 -- The case of a reference to an access discriminant from
12551 -- within a limited type declaration (which will appear as
12552 -- a discriminal) is always illegal because the level of the
12553 -- discriminant is considered to be deeper than any (nameable)
12554 -- access type.
12556 if Is_Entity_Name (Operand)
12557 and then not Is_Local_Anonymous_Access (Opnd_Type)
12558 and then
12559 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12560 and then Present (Discriminal_Link (Entity (Operand)))
12561 then
12562 Conversion_Error_N
12563 ("discriminant has deeper accessibility level than target",
12564 Operand);
12565 return False;
12566 end if;
12567 end if;
12568 end if;
12570 return True;
12572 -- General and anonymous access types
12574 elsif Ekind_In (Target_Type, E_General_Access_Type,
12575 E_Anonymous_Access_Type)
12576 and then
12577 Conversion_Check
12578 (Is_Access_Type (Opnd_Type)
12579 and then not
12580 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12581 E_Access_Protected_Subprogram_Type),
12582 "must be an access-to-object type")
12583 then
12584 if Is_Access_Constant (Opnd_Type)
12585 and then not Is_Access_Constant (Target_Type)
12586 then
12587 Conversion_Error_N
12588 ("access-to-constant operand type not allowed", Operand);
12589 return False;
12590 end if;
12592 -- Check the static accessibility rule of 4.6(17). Note that the
12593 -- check is not enforced when within an instance body, since the RM
12594 -- requires such cases to be caught at run time.
12596 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12597 or else Is_Local_Anonymous_Access (Target_Type)
12598 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12599 N_Object_Declaration
12600 then
12601 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12602 -- conversions from an anonymous access type to a named general
12603 -- access type. Such conversions are not allowed in the case of
12604 -- access parameters and stand-alone objects of an anonymous
12605 -- access type. The implicit conversion case is recognized by
12606 -- testing that Comes_From_Source is False and that it's been
12607 -- rewritten. The Comes_From_Source test isn't sufficient because
12608 -- nodes in inlined calls to predefined library routines can have
12609 -- Comes_From_Source set to False. (Is there a better way to test
12610 -- for implicit conversions???)
12612 if Ada_Version >= Ada_2012
12613 and then not Comes_From_Source (N)
12614 and then N /= Original_Node (N)
12615 and then Ekind (Target_Type) = E_General_Access_Type
12616 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12617 then
12618 if Is_Itype (Opnd_Type) then
12620 -- Implicit conversions aren't allowed for objects of an
12621 -- anonymous access type, since such objects have nonstatic
12622 -- levels in Ada 2012.
12624 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12625 N_Object_Declaration
12626 then
12627 Conversion_Error_N
12628 ("implicit conversion of stand-alone anonymous "
12629 & "access object not allowed", Operand);
12630 return False;
12632 -- Implicit conversions aren't allowed for anonymous access
12633 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12634 -- is done to exclude anonymous access results.
12636 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12637 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12638 N_Function_Specification,
12639 N_Procedure_Specification)
12640 then
12641 Conversion_Error_N
12642 ("implicit conversion of anonymous access formal "
12643 & "not allowed", Operand);
12644 return False;
12646 -- This is a case where there's an enclosing object whose
12647 -- to which the "statically deeper than" relationship does
12648 -- not apply (such as an access discriminant selected from
12649 -- a dereference of an access parameter).
12651 elsif Object_Access_Level (Operand)
12652 = Scope_Depth (Standard_Standard)
12653 then
12654 Conversion_Error_N
12655 ("implicit conversion of anonymous access value "
12656 & "not allowed", Operand);
12657 return False;
12659 -- In other cases, the level of the operand's type must be
12660 -- statically less deep than that of the target type, else
12661 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12663 elsif Type_Access_Level (Opnd_Type) >
12664 Deepest_Type_Access_Level (Target_Type)
12665 then
12666 Conversion_Error_N
12667 ("implicit conversion of anonymous access value "
12668 & "violates accessibility", Operand);
12669 return False;
12670 end if;
12671 end if;
12673 elsif Type_Access_Level (Opnd_Type) >
12674 Deepest_Type_Access_Level (Target_Type)
12675 then
12676 -- In an instance, this is a run-time check, but one we know
12677 -- will fail, so generate an appropriate warning. The raise
12678 -- will be generated by Expand_N_Type_Conversion.
12680 if In_Instance_Body then
12681 Error_Msg_Warn := SPARK_Mode /= On;
12682 Conversion_Error_N
12683 ("cannot convert local pointer to non-local access type<<",
12684 Operand);
12685 Conversion_Error_N ("\Program_Error [<<", Operand);
12687 -- If not in an instance body, this is a real error
12689 else
12690 -- Avoid generation of spurious error message
12692 if not Error_Posted (N) then
12693 Conversion_Error_N
12694 ("cannot convert local pointer to non-local access type",
12695 Operand);
12696 end if;
12698 return False;
12699 end if;
12701 -- Special accessibility checks are needed in the case of access
12702 -- discriminants declared for a limited type.
12704 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12705 and then not Is_Local_Anonymous_Access (Opnd_Type)
12706 then
12707 -- When the operand is a selected access discriminant the check
12708 -- needs to be made against the level of the object denoted by
12709 -- the prefix of the selected name (Object_Access_Level handles
12710 -- checking the prefix of the operand for this case).
12712 if Nkind (Operand) = N_Selected_Component
12713 and then Object_Access_Level (Operand) >
12714 Deepest_Type_Access_Level (Target_Type)
12715 then
12716 -- In an instance, this is a run-time check, but one we know
12717 -- will fail, so generate an appropriate warning. The raise
12718 -- will be generated by Expand_N_Type_Conversion.
12720 if In_Instance_Body then
12721 Error_Msg_Warn := SPARK_Mode /= On;
12722 Conversion_Error_N
12723 ("cannot convert access discriminant to non-local "
12724 & "access type<<", Operand);
12725 Conversion_Error_N ("\Program_Error [<<", Operand);
12727 -- If not in an instance body, this is a real error
12729 else
12730 Conversion_Error_N
12731 ("cannot convert access discriminant to non-local "
12732 & "access type", Operand);
12733 return False;
12734 end if;
12735 end if;
12737 -- The case of a reference to an access discriminant from
12738 -- within a limited type declaration (which will appear as
12739 -- a discriminal) is always illegal because the level of the
12740 -- discriminant is considered to be deeper than any (nameable)
12741 -- access type.
12743 if Is_Entity_Name (Operand)
12744 and then
12745 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12746 and then Present (Discriminal_Link (Entity (Operand)))
12747 then
12748 Conversion_Error_N
12749 ("discriminant has deeper accessibility level than target",
12750 Operand);
12751 return False;
12752 end if;
12753 end if;
12754 end if;
12756 -- In the presence of limited_with clauses we have to use nonlimited
12757 -- views, if available.
12759 Check_Limited : declare
12760 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12761 -- Helper function to handle limited views
12763 --------------------------
12764 -- Full_Designated_Type --
12765 --------------------------
12767 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12768 Desig : constant Entity_Id := Designated_Type (T);
12770 begin
12771 -- Handle the limited view of a type
12773 if From_Limited_With (Desig)
12774 and then Has_Non_Limited_View (Desig)
12775 then
12776 return Available_View (Desig);
12777 else
12778 return Desig;
12779 end if;
12780 end Full_Designated_Type;
12782 -- Local Declarations
12784 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12785 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12787 Same_Base : constant Boolean :=
12788 Base_Type (Target) = Base_Type (Opnd);
12790 -- Start of processing for Check_Limited
12792 begin
12793 if Is_Tagged_Type (Target) then
12794 return Valid_Tagged_Conversion (Target, Opnd);
12796 else
12797 if not Same_Base then
12798 Conversion_Error_NE
12799 ("target designated type not compatible with }",
12800 N, Base_Type (Opnd));
12801 return False;
12803 -- Ada 2005 AI-384: legality rule is symmetric in both
12804 -- designated types. The conversion is legal (with possible
12805 -- constraint check) if either designated type is
12806 -- unconstrained.
12808 elsif Subtypes_Statically_Match (Target, Opnd)
12809 or else
12810 (Has_Discriminants (Target)
12811 and then
12812 (not Is_Constrained (Opnd)
12813 or else not Is_Constrained (Target)))
12814 then
12815 -- Special case, if Value_Size has been used to make the
12816 -- sizes different, the conversion is not allowed even
12817 -- though the subtypes statically match.
12819 if Known_Static_RM_Size (Target)
12820 and then Known_Static_RM_Size (Opnd)
12821 and then RM_Size (Target) /= RM_Size (Opnd)
12822 then
12823 Conversion_Error_NE
12824 ("target designated subtype not compatible with }",
12825 N, Opnd);
12826 Conversion_Error_NE
12827 ("\because sizes of the two designated subtypes differ",
12828 N, Opnd);
12829 return False;
12831 -- Normal case where conversion is allowed
12833 else
12834 return True;
12835 end if;
12837 else
12838 Error_Msg_NE
12839 ("target designated subtype not compatible with }",
12840 N, Opnd);
12841 return False;
12842 end if;
12843 end if;
12844 end Check_Limited;
12846 -- Access to subprogram types. If the operand is an access parameter,
12847 -- the type has a deeper accessibility that any master, and cannot be
12848 -- assigned. We must make an exception if the conversion is part of an
12849 -- assignment and the target is the return object of an extended return
12850 -- statement, because in that case the accessibility check takes place
12851 -- after the return.
12853 elsif Is_Access_Subprogram_Type (Target_Type)
12855 -- Note: this test of Opnd_Type is there to prevent entering this
12856 -- branch in the case of a remote access to subprogram type, which
12857 -- is internally represented as an E_Record_Type.
12859 and then Is_Access_Type (Opnd_Type)
12860 then
12861 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12862 and then Is_Entity_Name (Operand)
12863 and then Ekind (Entity (Operand)) = E_In_Parameter
12864 and then
12865 (Nkind (Parent (N)) /= N_Assignment_Statement
12866 or else not Is_Entity_Name (Name (Parent (N)))
12867 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12868 then
12869 Conversion_Error_N
12870 ("illegal attempt to store anonymous access to subprogram",
12871 Operand);
12872 Conversion_Error_N
12873 ("\value has deeper accessibility than any master "
12874 & "(RM 3.10.2 (13))",
12875 Operand);
12877 Error_Msg_NE
12878 ("\use named access type for& instead of access parameter",
12879 Operand, Entity (Operand));
12880 end if;
12882 -- Check that the designated types are subtype conformant
12884 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12885 Old_Id => Designated_Type (Opnd_Type),
12886 Err_Loc => N);
12888 -- Check the static accessibility rule of 4.6(20)
12890 if Type_Access_Level (Opnd_Type) >
12891 Deepest_Type_Access_Level (Target_Type)
12892 then
12893 Conversion_Error_N
12894 ("operand type has deeper accessibility level than target",
12895 Operand);
12897 -- Check that if the operand type is declared in a generic body,
12898 -- then the target type must be declared within that same body
12899 -- (enforces last sentence of 4.6(20)).
12901 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12902 declare
12903 O_Gen : constant Node_Id :=
12904 Enclosing_Generic_Body (Opnd_Type);
12906 T_Gen : Node_Id;
12908 begin
12909 T_Gen := Enclosing_Generic_Body (Target_Type);
12910 while Present (T_Gen) and then T_Gen /= O_Gen loop
12911 T_Gen := Enclosing_Generic_Body (T_Gen);
12912 end loop;
12914 if T_Gen /= O_Gen then
12915 Conversion_Error_N
12916 ("target type must be declared in same generic body "
12917 & "as operand type", N);
12918 end if;
12919 end;
12920 end if;
12922 return True;
12924 -- Remote access to subprogram types
12926 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12927 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12928 then
12929 -- It is valid to convert from one RAS type to another provided
12930 -- that their specification statically match.
12932 -- Note: at this point, remote access to subprogram types have been
12933 -- expanded to their E_Record_Type representation, and we need to
12934 -- go back to the original access type definition using the
12935 -- Corresponding_Remote_Type attribute in order to check that the
12936 -- designated profiles match.
12938 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12939 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12941 Check_Subtype_Conformant
12942 (New_Id =>
12943 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12944 Old_Id =>
12945 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12946 Err_Loc =>
12948 return True;
12950 -- If it was legal in the generic, it's legal in the instance
12952 elsif In_Instance_Body then
12953 return True;
12955 -- If both are tagged types, check legality of view conversions
12957 elsif Is_Tagged_Type (Target_Type)
12958 and then
12959 Is_Tagged_Type (Opnd_Type)
12960 then
12961 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12963 -- Types derived from the same root type are convertible
12965 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12966 return True;
12968 -- In an instance or an inlined body, there may be inconsistent views of
12969 -- the same type, or of types derived from a common root.
12971 elsif (In_Instance or In_Inlined_Body)
12972 and then
12973 Root_Type (Underlying_Type (Target_Type)) =
12974 Root_Type (Underlying_Type (Opnd_Type))
12975 then
12976 return True;
12978 -- Special check for common access type error case
12980 elsif Ekind (Target_Type) = E_Access_Type
12981 and then Is_Access_Type (Opnd_Type)
12982 then
12983 Conversion_Error_N ("target type must be general access type!", N);
12984 Conversion_Error_NE -- CODEFIX
12985 ("add ALL to }!", N, Target_Type);
12986 return False;
12988 -- Here we have a real conversion error
12990 else
12991 Conversion_Error_NE
12992 ("invalid conversion, not compatible with }", N, Opnd_Type);
12993 return False;
12994 end if;
12995 end Valid_Conversion;
12997 end Sem_Res;