1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
44 CONSTANT -> V_i has been found to hold a constant
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115 #include "coretypes.h"
120 #include "basic-block.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
133 #include "diagnostic-core.h"
135 #include "gimple-fold.h"
138 /* Possible lattice values. */
147 struct prop_value_d
{
149 ccp_lattice_t lattice_val
;
151 /* Propagated value. */
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
159 typedef struct prop_value_d prop_value_t
;
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
167 static prop_value_t
*const_val
;
169 static void canonicalize_float_value (prop_value_t
*);
170 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
172 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
175 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
177 switch (val
.lattice_val
)
180 fprintf (outf
, "%sUNINITIALIZED", prefix
);
183 fprintf (outf
, "%sUNDEFINED", prefix
);
186 fprintf (outf
, "%sVARYING", prefix
);
189 fprintf (outf
, "%sCONSTANT ", prefix
);
190 if (TREE_CODE (val
.value
) != INTEGER_CST
191 || double_int_zero_p (val
.mask
))
192 print_generic_expr (outf
, val
.value
, dump_flags
);
195 double_int cval
= double_int_and_not (tree_to_double_int (val
.value
),
197 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
198 prefix
, cval
.high
, cval
.low
);
199 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
200 val
.mask
.high
, val
.mask
.low
);
209 /* Print lattice value VAL to stderr. */
211 void debug_lattice_value (prop_value_t val
);
214 debug_lattice_value (prop_value_t val
)
216 dump_lattice_value (stderr
, "", val
);
217 fprintf (stderr
, "\n");
221 /* Compute a default value for variable VAR and store it in the
222 CONST_VAL array. The following rules are used to get default
225 1- Global and static variables that are declared constant are
228 2- Any other value is considered UNDEFINED. This is useful when
229 considering PHI nodes. PHI arguments that are undefined do not
230 change the constant value of the PHI node, which allows for more
231 constants to be propagated.
233 3- Variables defined by statements other than assignments and PHI
234 nodes are considered VARYING.
236 4- Initial values of variables that are not GIMPLE registers are
237 considered VARYING. */
240 get_default_value (tree var
)
242 tree sym
= SSA_NAME_VAR (var
);
243 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
246 stmt
= SSA_NAME_DEF_STMT (var
);
248 if (gimple_nop_p (stmt
))
250 /* Variables defined by an empty statement are those used
251 before being initialized. If VAR is a local variable, we
252 can assume initially that it is UNDEFINED, otherwise we must
253 consider it VARYING. */
254 if (is_gimple_reg (sym
)
255 && TREE_CODE (sym
) == VAR_DECL
)
256 val
.lattice_val
= UNDEFINED
;
259 val
.lattice_val
= VARYING
;
260 val
.mask
= double_int_minus_one
;
263 else if (is_gimple_assign (stmt
)
264 /* Value-returning GIMPLE_CALL statements assign to
265 a variable, and are treated similarly to GIMPLE_ASSIGN. */
266 || (is_gimple_call (stmt
)
267 && gimple_call_lhs (stmt
) != NULL_TREE
)
268 || gimple_code (stmt
) == GIMPLE_PHI
)
271 if (gimple_assign_single_p (stmt
)
272 && DECL_P (gimple_assign_rhs1 (stmt
))
273 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
275 val
.lattice_val
= CONSTANT
;
279 /* Any other variable defined by an assignment or a PHI node
280 is considered UNDEFINED. */
281 val
.lattice_val
= UNDEFINED
;
285 /* Otherwise, VAR will never take on a constant value. */
286 val
.lattice_val
= VARYING
;
287 val
.mask
= double_int_minus_one
;
294 /* Get the constant value associated with variable VAR. */
296 static inline prop_value_t
*
301 if (const_val
== NULL
)
304 val
= &const_val
[SSA_NAME_VERSION (var
)];
305 if (val
->lattice_val
== UNINITIALIZED
)
306 *val
= get_default_value (var
);
308 canonicalize_float_value (val
);
313 /* Return the constant tree value associated with VAR. */
316 get_constant_value (tree var
)
319 if (TREE_CODE (var
) != SSA_NAME
)
321 if (is_gimple_min_invariant (var
))
325 val
= get_value (var
);
327 && val
->lattice_val
== CONSTANT
328 && (TREE_CODE (val
->value
) != INTEGER_CST
329 || double_int_zero_p (val
->mask
)))
334 /* Sets the value associated with VAR to VARYING. */
337 set_value_varying (tree var
)
339 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
341 val
->lattice_val
= VARYING
;
342 val
->value
= NULL_TREE
;
343 val
->mask
= double_int_minus_one
;
346 /* For float types, modify the value of VAL to make ccp work correctly
347 for non-standard values (-0, NaN):
349 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
350 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
351 This is to fix the following problem (see PR 29921): Suppose we have
355 and we set value of y to NaN. This causes value of x to be set to NaN.
356 When we later determine that y is in fact VARYING, fold uses the fact
357 that HONOR_NANS is false, and we try to change the value of x to 0,
358 causing an ICE. With HONOR_NANS being false, the real appearance of
359 NaN would cause undefined behavior, though, so claiming that y (and x)
360 are UNDEFINED initially is correct. */
363 canonicalize_float_value (prop_value_t
*val
)
365 enum machine_mode mode
;
369 if (val
->lattice_val
!= CONSTANT
370 || TREE_CODE (val
->value
) != REAL_CST
)
373 d
= TREE_REAL_CST (val
->value
);
374 type
= TREE_TYPE (val
->value
);
375 mode
= TYPE_MODE (type
);
377 if (!HONOR_SIGNED_ZEROS (mode
)
378 && REAL_VALUE_MINUS_ZERO (d
))
380 val
->value
= build_real (type
, dconst0
);
384 if (!HONOR_NANS (mode
)
385 && REAL_VALUE_ISNAN (d
))
387 val
->lattice_val
= UNDEFINED
;
393 /* Return whether the lattice transition is valid. */
396 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
398 /* Lattice transitions must always be monotonically increasing in
400 if (old_val
.lattice_val
< new_val
.lattice_val
)
403 if (old_val
.lattice_val
!= new_val
.lattice_val
)
406 if (!old_val
.value
&& !new_val
.value
)
409 /* Now both lattice values are CONSTANT. */
411 /* Allow transitioning from &x to &x & ~3. */
412 if (TREE_CODE (old_val
.value
) != INTEGER_CST
413 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
416 /* Bit-lattices have to agree in the still valid bits. */
417 if (TREE_CODE (old_val
.value
) == INTEGER_CST
418 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
419 return double_int_equal_p
420 (double_int_and_not (tree_to_double_int (old_val
.value
),
422 double_int_and_not (tree_to_double_int (new_val
.value
),
425 /* Otherwise constant values have to agree. */
426 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
429 /* Set the value for variable VAR to NEW_VAL. Return true if the new
430 value is different from VAR's previous value. */
433 set_lattice_value (tree var
, prop_value_t new_val
)
435 /* We can deal with old UNINITIALIZED values just fine here. */
436 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
438 canonicalize_float_value (&new_val
);
440 /* We have to be careful to not go up the bitwise lattice
441 represented by the mask.
442 ??? This doesn't seem to be the best place to enforce this. */
443 if (new_val
.lattice_val
== CONSTANT
444 && old_val
->lattice_val
== CONSTANT
445 && TREE_CODE (new_val
.value
) == INTEGER_CST
446 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
449 diff
= double_int_xor (tree_to_double_int (new_val
.value
),
450 tree_to_double_int (old_val
->value
));
451 new_val
.mask
= double_int_ior (new_val
.mask
,
452 double_int_ior (old_val
->mask
, diff
));
455 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
457 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
458 caller that this was a non-transition. */
459 if (old_val
->lattice_val
!= new_val
.lattice_val
460 || (new_val
.lattice_val
== CONSTANT
461 && TREE_CODE (new_val
.value
) == INTEGER_CST
462 && (TREE_CODE (old_val
->value
) != INTEGER_CST
463 || !double_int_equal_p (new_val
.mask
, old_val
->mask
))))
465 /* ??? We would like to delay creation of INTEGER_CSTs from
466 partially constants here. */
468 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
470 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
471 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
476 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
483 static prop_value_t
get_value_for_expr (tree
, bool);
484 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
485 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
486 tree
, double_int
, double_int
,
487 tree
, double_int
, double_int
);
489 /* Return a double_int that can be used for bitwise simplifications
493 value_to_double_int (prop_value_t val
)
496 && TREE_CODE (val
.value
) == INTEGER_CST
)
497 return tree_to_double_int (val
.value
);
499 return double_int_zero
;
502 /* Return the value for the address expression EXPR based on alignment
506 get_value_from_alignment (tree expr
)
509 HOST_WIDE_INT bitsize
, bitpos
;
511 enum machine_mode mode
;
514 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
516 base
= get_inner_reference (TREE_OPERAND (expr
, 0),
517 &bitsize
, &bitpos
, &offset
,
518 &mode
, &align
, &align
, false);
519 if (TREE_CODE (base
) == MEM_REF
)
520 val
= bit_value_binop (PLUS_EXPR
, TREE_TYPE (expr
),
521 TREE_OPERAND (base
, 0), TREE_OPERAND (base
, 1));
523 /* ??? While function decls have DECL_ALIGN their addresses
524 may encode extra information in the lower bits on some
525 targets (PR47239). Simply punt for function decls for now. */
526 && TREE_CODE (base
) != FUNCTION_DECL
527 && ((align
= get_object_alignment (base
, BIGGEST_ALIGNMENT
))
530 val
.lattice_val
= CONSTANT
;
531 /* We assume pointers are zero-extended. */
532 val
.mask
= double_int_and_not
533 (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr
))),
534 uhwi_to_double_int (align
/ BITS_PER_UNIT
- 1));
535 val
.value
= build_int_cst (TREE_TYPE (expr
), 0);
539 val
.lattice_val
= VARYING
;
540 val
.mask
= double_int_minus_one
;
541 val
.value
= NULL_TREE
;
545 double_int value
, mask
;
546 bit_value_binop_1 (PLUS_EXPR
, TREE_TYPE (expr
), &value
, &mask
,
547 TREE_TYPE (expr
), value_to_double_int (val
), val
.mask
,
549 shwi_to_double_int (bitpos
/ BITS_PER_UNIT
),
551 val
.lattice_val
= double_int_minus_one_p (mask
) ? VARYING
: CONSTANT
;
553 if (val
.lattice_val
== CONSTANT
)
554 val
.value
= double_int_to_tree (TREE_TYPE (expr
), value
);
556 val
.value
= NULL_TREE
;
558 /* ??? We should handle i * 4 and more complex expressions from
559 the offset, possibly by just expanding get_value_for_expr. */
560 if (offset
!= NULL_TREE
)
562 double_int value
, mask
;
563 prop_value_t oval
= get_value_for_expr (offset
, true);
564 bit_value_binop_1 (PLUS_EXPR
, TREE_TYPE (expr
), &value
, &mask
,
565 TREE_TYPE (expr
), value_to_double_int (val
), val
.mask
,
566 TREE_TYPE (expr
), value_to_double_int (oval
),
569 if (double_int_minus_one_p (mask
))
571 val
.lattice_val
= VARYING
;
572 val
.value
= NULL_TREE
;
576 val
.lattice_val
= CONSTANT
;
577 val
.value
= double_int_to_tree (TREE_TYPE (expr
), value
);
584 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
585 return constant bits extracted from alignment information for
586 invariant addresses. */
589 get_value_for_expr (tree expr
, bool for_bits_p
)
593 if (TREE_CODE (expr
) == SSA_NAME
)
595 val
= *get_value (expr
);
597 && val
.lattice_val
== CONSTANT
598 && TREE_CODE (val
.value
) == ADDR_EXPR
)
599 val
= get_value_from_alignment (val
.value
);
601 else if (is_gimple_min_invariant (expr
)
602 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
604 val
.lattice_val
= CONSTANT
;
606 val
.mask
= double_int_zero
;
607 canonicalize_float_value (&val
);
609 else if (TREE_CODE (expr
) == ADDR_EXPR
)
610 val
= get_value_from_alignment (expr
);
613 val
.lattice_val
= VARYING
;
614 val
.mask
= double_int_minus_one
;
615 val
.value
= NULL_TREE
;
620 /* Return the likely CCP lattice value for STMT.
622 If STMT has no operands, then return CONSTANT.
624 Else if undefinedness of operands of STMT cause its value to be
625 undefined, then return UNDEFINED.
627 Else if any operands of STMT are constants, then return CONSTANT.
629 Else return VARYING. */
632 likely_value (gimple stmt
)
634 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
639 enum gimple_code code
= gimple_code (stmt
);
641 /* This function appears to be called only for assignments, calls,
642 conditionals, and switches, due to the logic in visit_stmt. */
643 gcc_assert (code
== GIMPLE_ASSIGN
644 || code
== GIMPLE_CALL
645 || code
== GIMPLE_COND
646 || code
== GIMPLE_SWITCH
);
648 /* If the statement has volatile operands, it won't fold to a
650 if (gimple_has_volatile_ops (stmt
))
653 /* Arrive here for more complex cases. */
654 has_constant_operand
= false;
655 has_undefined_operand
= false;
656 all_undefined_operands
= true;
657 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
659 prop_value_t
*val
= get_value (use
);
661 if (val
->lattice_val
== UNDEFINED
)
662 has_undefined_operand
= true;
664 all_undefined_operands
= false;
666 if (val
->lattice_val
== CONSTANT
)
667 has_constant_operand
= true;
670 /* There may be constants in regular rhs operands. For calls we
671 have to ignore lhs, fndecl and static chain, otherwise only
673 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
674 i
< gimple_num_ops (stmt
); ++i
)
676 tree op
= gimple_op (stmt
, i
);
677 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
679 if (is_gimple_min_invariant (op
))
680 has_constant_operand
= true;
683 if (has_constant_operand
)
684 all_undefined_operands
= false;
686 /* If the operation combines operands like COMPLEX_EXPR make sure to
687 not mark the result UNDEFINED if only one part of the result is
689 if (has_undefined_operand
&& all_undefined_operands
)
691 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
693 switch (gimple_assign_rhs_code (stmt
))
695 /* Unary operators are handled with all_undefined_operands. */
698 case POINTER_PLUS_EXPR
:
699 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
700 Not bitwise operators, one VARYING operand may specify the
701 result completely. Not logical operators for the same reason.
702 Not COMPLEX_EXPR as one VARYING operand makes the result partly
703 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
704 the undefined operand may be promoted. */
711 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
712 fall back to VARYING even if there were CONSTANT operands. */
713 if (has_undefined_operand
)
716 /* We do not consider virtual operands here -- load from read-only
717 memory may have only VARYING virtual operands, but still be
719 if (has_constant_operand
720 || gimple_references_memory_p (stmt
))
726 /* Returns true if STMT cannot be constant. */
729 surely_varying_stmt_p (gimple stmt
)
731 /* If the statement has operands that we cannot handle, it cannot be
733 if (gimple_has_volatile_ops (stmt
))
736 /* If it is a call and does not return a value or is not a
737 builtin and not an indirect call, it is varying. */
738 if (is_gimple_call (stmt
))
741 if (!gimple_call_lhs (stmt
)
742 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
743 && !DECL_BUILT_IN (fndecl
)))
747 /* Any other store operation is not interesting. */
748 else if (gimple_vdef (stmt
))
751 /* Anything other than assignments and conditional jumps are not
752 interesting for CCP. */
753 if (gimple_code (stmt
) != GIMPLE_ASSIGN
754 && gimple_code (stmt
) != GIMPLE_COND
755 && gimple_code (stmt
) != GIMPLE_SWITCH
756 && gimple_code (stmt
) != GIMPLE_CALL
)
762 /* Initialize local data structures for CCP. */
765 ccp_initialize (void)
769 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
771 /* Initialize simulation flags for PHI nodes and statements. */
774 gimple_stmt_iterator i
;
776 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
778 gimple stmt
= gsi_stmt (i
);
781 /* If the statement is a control insn, then we do not
782 want to avoid simulating the statement once. Failure
783 to do so means that those edges will never get added. */
784 if (stmt_ends_bb_p (stmt
))
787 is_varying
= surely_varying_stmt_p (stmt
);
794 /* If the statement will not produce a constant, mark
795 all its outputs VARYING. */
796 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
797 set_value_varying (def
);
799 prop_set_simulate_again (stmt
, !is_varying
);
803 /* Now process PHI nodes. We never clear the simulate_again flag on
804 phi nodes, since we do not know which edges are executable yet,
805 except for phi nodes for virtual operands when we do not do store ccp. */
808 gimple_stmt_iterator i
;
810 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
812 gimple phi
= gsi_stmt (i
);
814 if (!is_gimple_reg (gimple_phi_result (phi
)))
815 prop_set_simulate_again (phi
, false);
817 prop_set_simulate_again (phi
, true);
822 /* Debug count support. Reset the values of ssa names
823 VARYING when the total number ssa names analyzed is
824 beyond the debug count specified. */
830 for (i
= 0; i
< num_ssa_names
; i
++)
834 const_val
[i
].lattice_val
= VARYING
;
835 const_val
[i
].mask
= double_int_minus_one
;
836 const_val
[i
].value
= NULL_TREE
;
842 /* Do final substitution of propagated values, cleanup the flowgraph and
843 free allocated storage.
845 Return TRUE when something was optimized. */
850 bool something_changed
;
855 /* Derive alignment and misalignment information from partially
856 constant pointers in the lattice. */
857 for (i
= 1; i
< num_ssa_names
; ++i
)
859 tree name
= ssa_name (i
);
861 struct ptr_info_def
*pi
;
862 unsigned int tem
, align
;
865 || !POINTER_TYPE_P (TREE_TYPE (name
)))
868 val
= get_value (name
);
869 if (val
->lattice_val
!= CONSTANT
870 || TREE_CODE (val
->value
) != INTEGER_CST
)
873 /* Trailing constant bits specify the alignment, trailing value
874 bits the misalignment. */
876 align
= (tem
& -tem
);
880 pi
= get_ptr_info (name
);
882 pi
->misalign
= TREE_INT_CST_LOW (val
->value
) & (align
- 1);
885 /* Perform substitutions based on the known constant values. */
886 something_changed
= substitute_and_fold (get_constant_value
,
887 ccp_fold_stmt
, true);
891 return something_changed
;;
895 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
898 any M UNDEFINED = any
899 any M VARYING = VARYING
900 Ci M Cj = Ci if (i == j)
901 Ci M Cj = VARYING if (i != j)
905 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
907 if (val1
->lattice_val
== UNDEFINED
)
909 /* UNDEFINED M any = any */
912 else if (val2
->lattice_val
== UNDEFINED
)
914 /* any M UNDEFINED = any
915 Nothing to do. VAL1 already contains the value we want. */
918 else if (val1
->lattice_val
== VARYING
919 || val2
->lattice_val
== VARYING
)
921 /* any M VARYING = VARYING. */
922 val1
->lattice_val
= VARYING
;
923 val1
->mask
= double_int_minus_one
;
924 val1
->value
= NULL_TREE
;
926 else if (val1
->lattice_val
== CONSTANT
927 && val2
->lattice_val
== CONSTANT
928 && TREE_CODE (val1
->value
) == INTEGER_CST
929 && TREE_CODE (val2
->value
) == INTEGER_CST
)
931 /* Ci M Cj = Ci if (i == j)
932 Ci M Cj = VARYING if (i != j)
934 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
937 = double_int_ior (double_int_ior (val1
->mask
,
939 double_int_xor (tree_to_double_int (val1
->value
),
940 tree_to_double_int (val2
->value
)));
941 if (double_int_minus_one_p (val1
->mask
))
943 val1
->lattice_val
= VARYING
;
944 val1
->value
= NULL_TREE
;
947 else if (val1
->lattice_val
== CONSTANT
948 && val2
->lattice_val
== CONSTANT
949 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
951 /* Ci M Cj = Ci if (i == j)
952 Ci M Cj = VARYING if (i != j)
954 VAL1 already contains the value we want for equivalent values. */
956 else if (val1
->lattice_val
== CONSTANT
957 && val2
->lattice_val
== CONSTANT
958 && (TREE_CODE (val1
->value
) == ADDR_EXPR
959 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
961 /* When not equal addresses are involved try meeting for
963 prop_value_t tem
= *val2
;
964 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
965 *val1
= get_value_for_expr (val1
->value
, true);
966 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
967 tem
= get_value_for_expr (val2
->value
, true);
968 ccp_lattice_meet (val1
, &tem
);
972 /* Any other combination is VARYING. */
973 val1
->lattice_val
= VARYING
;
974 val1
->mask
= double_int_minus_one
;
975 val1
->value
= NULL_TREE
;
980 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
981 lattice values to determine PHI_NODE's lattice value. The value of a
982 PHI node is determined calling ccp_lattice_meet with all the arguments
983 of the PHI node that are incoming via executable edges. */
985 static enum ssa_prop_result
986 ccp_visit_phi_node (gimple phi
)
989 prop_value_t
*old_val
, new_val
;
991 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
993 fprintf (dump_file
, "\nVisiting PHI node: ");
994 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
997 old_val
= get_value (gimple_phi_result (phi
));
998 switch (old_val
->lattice_val
)
1001 return SSA_PROP_VARYING
;
1008 new_val
.lattice_val
= UNDEFINED
;
1009 new_val
.value
= NULL_TREE
;
1016 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1018 /* Compute the meet operator over all the PHI arguments flowing
1019 through executable edges. */
1020 edge e
= gimple_phi_arg_edge (phi
, i
);
1022 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1025 "\n Argument #%d (%d -> %d %sexecutable)\n",
1026 i
, e
->src
->index
, e
->dest
->index
,
1027 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1030 /* If the incoming edge is executable, Compute the meet operator for
1031 the existing value of the PHI node and the current PHI argument. */
1032 if (e
->flags
& EDGE_EXECUTABLE
)
1034 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1035 prop_value_t arg_val
= get_value_for_expr (arg
, false);
1037 ccp_lattice_meet (&new_val
, &arg_val
);
1039 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1041 fprintf (dump_file
, "\t");
1042 print_generic_expr (dump_file
, arg
, dump_flags
);
1043 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1044 fprintf (dump_file
, "\n");
1047 if (new_val
.lattice_val
== VARYING
)
1052 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1054 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1055 fprintf (dump_file
, "\n\n");
1058 /* Make the transition to the new value. */
1059 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1061 if (new_val
.lattice_val
== VARYING
)
1062 return SSA_PROP_VARYING
;
1064 return SSA_PROP_INTERESTING
;
1067 return SSA_PROP_NOT_INTERESTING
;
1070 /* Return the constant value for OP or OP otherwise. */
1073 valueize_op (tree op
)
1075 if (TREE_CODE (op
) == SSA_NAME
)
1077 tree tem
= get_constant_value (op
);
1084 /* CCP specific front-end to the non-destructive constant folding
1087 Attempt to simplify the RHS of STMT knowing that one or more
1088 operands are constants.
1090 If simplification is possible, return the simplified RHS,
1091 otherwise return the original RHS or NULL_TREE. */
1094 ccp_fold (gimple stmt
)
1096 location_t loc
= gimple_location (stmt
);
1097 switch (gimple_code (stmt
))
1101 /* Handle comparison operators that can appear in GIMPLE form. */
1102 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1103 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1104 enum tree_code code
= gimple_cond_code (stmt
);
1105 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1110 /* Return the constant switch index. */
1111 return valueize_op (gimple_switch_index (stmt
));
1116 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1123 /* Apply the operation CODE in type TYPE to the value, mask pair
1124 RVAL and RMASK representing a value of type RTYPE and set
1125 the value, mask pair *VAL and *MASK to the result. */
1128 bit_value_unop_1 (enum tree_code code
, tree type
,
1129 double_int
*val
, double_int
*mask
,
1130 tree rtype
, double_int rval
, double_int rmask
)
1136 *val
= double_int_not (rval
);
1141 double_int temv
, temm
;
1142 /* Return ~rval + 1. */
1143 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1144 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1146 type
, double_int_one
, double_int_zero
);
1154 /* First extend mask and value according to the original type. */
1155 uns
= (TREE_CODE (rtype
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (rtype
)
1156 ? 0 : TYPE_UNSIGNED (rtype
));
1157 *mask
= double_int_ext (rmask
, TYPE_PRECISION (rtype
), uns
);
1158 *val
= double_int_ext (rval
, TYPE_PRECISION (rtype
), uns
);
1160 /* Then extend mask and value according to the target type. */
1161 uns
= (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_IS_SIZETYPE (type
)
1162 ? 0 : TYPE_UNSIGNED (type
));
1163 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1164 *val
= double_int_ext (*val
, TYPE_PRECISION (type
), uns
);
1169 *mask
= double_int_minus_one
;
1174 /* Apply the operation CODE in type TYPE to the value, mask pairs
1175 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1176 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1179 bit_value_binop_1 (enum tree_code code
, tree type
,
1180 double_int
*val
, double_int
*mask
,
1181 tree r1type
, double_int r1val
, double_int r1mask
,
1182 tree r2type
, double_int r2val
, double_int r2mask
)
1184 bool uns
= (TREE_CODE (type
) == INTEGER_TYPE
1185 && TYPE_IS_SIZETYPE (type
) ? 0 : TYPE_UNSIGNED (type
));
1186 /* Assume we'll get a constant result. Use an initial varying value,
1187 we fall back to varying in the end if necessary. */
1188 *mask
= double_int_minus_one
;
1192 /* The mask is constant where there is a known not
1193 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1194 *mask
= double_int_and (double_int_ior (r1mask
, r2mask
),
1195 double_int_and (double_int_ior (r1val
, r1mask
),
1196 double_int_ior (r2val
, r2mask
)));
1197 *val
= double_int_and (r1val
, r2val
);
1201 /* The mask is constant where there is a known
1202 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1203 *mask
= double_int_and_not
1204 (double_int_ior (r1mask
, r2mask
),
1205 double_int_ior (double_int_and_not (r1val
, r1mask
),
1206 double_int_and_not (r2val
, r2mask
)));
1207 *val
= double_int_ior (r1val
, r2val
);
1212 *mask
= double_int_ior (r1mask
, r2mask
);
1213 *val
= double_int_xor (r1val
, r2val
);
1218 if (double_int_zero_p (r2mask
))
1220 HOST_WIDE_INT shift
= r2val
.low
;
1221 if (code
== RROTATE_EXPR
)
1223 *mask
= double_int_lrotate (r1mask
, shift
, TYPE_PRECISION (type
));
1224 *val
= double_int_lrotate (r1val
, shift
, TYPE_PRECISION (type
));
1230 /* ??? We can handle partially known shift counts if we know
1231 its sign. That way we can tell that (x << (y | 8)) & 255
1233 if (double_int_zero_p (r2mask
))
1235 HOST_WIDE_INT shift
= r2val
.low
;
1236 if (code
== RSHIFT_EXPR
)
1238 /* We need to know if we are doing a left or a right shift
1239 to properly shift in zeros for left shift and unsigned
1240 right shifts and the sign bit for signed right shifts.
1241 For signed right shifts we shift in varying in case
1242 the sign bit was varying. */
1245 *mask
= double_int_lshift (r1mask
, shift
,
1246 TYPE_PRECISION (type
), false);
1247 *val
= double_int_lshift (r1val
, shift
,
1248 TYPE_PRECISION (type
), false);
1252 /* ??? We can have sizetype related inconsistencies in
1254 if ((TREE_CODE (r1type
) == INTEGER_TYPE
1255 && (TYPE_IS_SIZETYPE (r1type
)
1256 ? 0 : TYPE_UNSIGNED (r1type
))) != uns
)
1260 *mask
= double_int_rshift (r1mask
, shift
,
1261 TYPE_PRECISION (type
), !uns
);
1262 *val
= double_int_rshift (r1val
, shift
,
1263 TYPE_PRECISION (type
), !uns
);
1274 case POINTER_PLUS_EXPR
:
1277 /* Do the addition with unknown bits set to zero, to give carry-ins of
1278 zero wherever possible. */
1279 lo
= double_int_add (double_int_and_not (r1val
, r1mask
),
1280 double_int_and_not (r2val
, r2mask
));
1281 lo
= double_int_ext (lo
, TYPE_PRECISION (type
), uns
);
1282 /* Do the addition with unknown bits set to one, to give carry-ins of
1283 one wherever possible. */
1284 hi
= double_int_add (double_int_ior (r1val
, r1mask
),
1285 double_int_ior (r2val
, r2mask
));
1286 hi
= double_int_ext (hi
, TYPE_PRECISION (type
), uns
);
1287 /* Each bit in the result is known if (a) the corresponding bits in
1288 both inputs are known, and (b) the carry-in to that bit position
1289 is known. We can check condition (b) by seeing if we got the same
1290 result with minimised carries as with maximised carries. */
1291 *mask
= double_int_ior (double_int_ior (r1mask
, r2mask
),
1292 double_int_xor (lo
, hi
));
1293 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1294 /* It shouldn't matter whether we choose lo or hi here. */
1301 double_int temv
, temm
;
1302 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1303 r2type
, r2val
, r2mask
);
1304 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1305 r1type
, r1val
, r1mask
,
1306 r2type
, temv
, temm
);
1312 /* Just track trailing zeros in both operands and transfer
1313 them to the other. */
1314 int r1tz
= double_int_ctz (double_int_ior (r1val
, r1mask
));
1315 int r2tz
= double_int_ctz (double_int_ior (r2val
, r2mask
));
1316 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1318 *mask
= double_int_zero
;
1319 *val
= double_int_zero
;
1321 else if (r1tz
+ r2tz
> 0)
1323 *mask
= double_int_not (double_int_mask (r1tz
+ r2tz
));
1324 *mask
= double_int_ext (*mask
, TYPE_PRECISION (type
), uns
);
1325 *val
= double_int_zero
;
1333 double_int m
= double_int_ior (r1mask
, r2mask
);
1334 if (!double_int_equal_p (double_int_and_not (r1val
, m
),
1335 double_int_and_not (r2val
, m
)))
1337 *mask
= double_int_zero
;
1338 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1342 /* We know the result of a comparison is always one or zero. */
1343 *mask
= double_int_one
;
1344 *val
= double_int_zero
;
1352 double_int tem
= r1val
;
1358 code
= swap_tree_comparison (code
);
1365 /* If the most significant bits are not known we know nothing. */
1366 if (double_int_negative_p (r1mask
) || double_int_negative_p (r2mask
))
1369 /* For comparisons the signedness is in the comparison operands. */
1370 uns
= (TREE_CODE (r1type
) == INTEGER_TYPE
1371 && TYPE_IS_SIZETYPE (r1type
) ? 0 : TYPE_UNSIGNED (r1type
));
1372 /* ??? We can have sizetype related inconsistencies in the IL. */
1373 if ((TREE_CODE (r2type
) == INTEGER_TYPE
1374 && TYPE_IS_SIZETYPE (r2type
) ? 0 : TYPE_UNSIGNED (r2type
)) != uns
)
1377 /* If we know the most significant bits we know the values
1378 value ranges by means of treating varying bits as zero
1379 or one. Do a cross comparison of the max/min pairs. */
1380 maxmin
= double_int_cmp (double_int_ior (r1val
, r1mask
),
1381 double_int_and_not (r2val
, r2mask
), uns
);
1382 minmax
= double_int_cmp (double_int_and_not (r1val
, r1mask
),
1383 double_int_ior (r2val
, r2mask
), uns
);
1384 if (maxmin
< 0) /* r1 is less than r2. */
1386 *mask
= double_int_zero
;
1387 *val
= double_int_one
;
1389 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1391 *mask
= double_int_zero
;
1392 *val
= double_int_zero
;
1394 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1396 /* This probably should never happen as we'd have
1397 folded the thing during fully constant value folding. */
1398 *mask
= double_int_zero
;
1399 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1403 /* We know the result of a comparison is always one or zero. */
1404 *mask
= double_int_one
;
1405 *val
= double_int_zero
;
1414 /* Return the propagation value when applying the operation CODE to
1415 the value RHS yielding type TYPE. */
1418 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1420 prop_value_t rval
= get_value_for_expr (rhs
, true);
1421 double_int value
, mask
;
1423 gcc_assert ((rval
.lattice_val
== CONSTANT
1424 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1425 || double_int_minus_one_p (rval
.mask
));
1426 bit_value_unop_1 (code
, type
, &value
, &mask
,
1427 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1428 if (!double_int_minus_one_p (mask
))
1430 val
.lattice_val
= CONSTANT
;
1432 /* ??? Delay building trees here. */
1433 val
.value
= double_int_to_tree (type
, value
);
1437 val
.lattice_val
= VARYING
;
1438 val
.value
= NULL_TREE
;
1439 val
.mask
= double_int_minus_one
;
1444 /* Return the propagation value when applying the operation CODE to
1445 the values RHS1 and RHS2 yielding type TYPE. */
1448 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1450 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1451 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1452 double_int value
, mask
;
1454 gcc_assert ((r1val
.lattice_val
== CONSTANT
1455 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1456 || double_int_minus_one_p (r1val
.mask
));
1457 gcc_assert ((r2val
.lattice_val
== CONSTANT
1458 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1459 || double_int_minus_one_p (r2val
.mask
));
1460 bit_value_binop_1 (code
, type
, &value
, &mask
,
1461 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1462 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1463 if (!double_int_minus_one_p (mask
))
1465 val
.lattice_val
= CONSTANT
;
1467 /* ??? Delay building trees here. */
1468 val
.value
= double_int_to_tree (type
, value
);
1472 val
.lattice_val
= VARYING
;
1473 val
.value
= NULL_TREE
;
1474 val
.mask
= double_int_minus_one
;
1479 /* Evaluate statement STMT.
1480 Valid only for assignments, calls, conditionals, and switches. */
1483 evaluate_stmt (gimple stmt
)
1486 tree simplified
= NULL_TREE
;
1487 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1488 bool is_constant
= false;
1490 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1492 fprintf (dump_file
, "which is likely ");
1493 switch (likelyvalue
)
1496 fprintf (dump_file
, "CONSTANT");
1499 fprintf (dump_file
, "UNDEFINED");
1502 fprintf (dump_file
, "VARYING");
1506 fprintf (dump_file
, "\n");
1509 /* If the statement is likely to have a CONSTANT result, then try
1510 to fold the statement to determine the constant value. */
1511 /* FIXME. This is the only place that we call ccp_fold.
1512 Since likely_value never returns CONSTANT for calls, we will
1513 not attempt to fold them, including builtins that may profit. */
1514 if (likelyvalue
== CONSTANT
)
1516 fold_defer_overflow_warnings ();
1517 simplified
= ccp_fold (stmt
);
1518 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1519 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1522 /* The statement produced a constant value. */
1523 val
.lattice_val
= CONSTANT
;
1524 val
.value
= simplified
;
1525 val
.mask
= double_int_zero
;
1528 /* If the statement is likely to have a VARYING result, then do not
1529 bother folding the statement. */
1530 else if (likelyvalue
== VARYING
)
1532 enum gimple_code code
= gimple_code (stmt
);
1533 if (code
== GIMPLE_ASSIGN
)
1535 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1537 /* Other cases cannot satisfy is_gimple_min_invariant
1539 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1540 simplified
= gimple_assign_rhs1 (stmt
);
1542 else if (code
== GIMPLE_SWITCH
)
1543 simplified
= gimple_switch_index (stmt
);
1545 /* These cannot satisfy is_gimple_min_invariant without folding. */
1546 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1547 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1550 /* The statement produced a constant value. */
1551 val
.lattice_val
= CONSTANT
;
1552 val
.value
= simplified
;
1553 val
.mask
= double_int_zero
;
1557 /* Resort to simplification for bitwise tracking. */
1558 if (flag_tree_bit_ccp
1559 && likelyvalue
== CONSTANT
1562 enum gimple_code code
= gimple_code (stmt
);
1564 val
.lattice_val
= VARYING
;
1565 val
.value
= NULL_TREE
;
1566 val
.mask
= double_int_minus_one
;
1567 if (code
== GIMPLE_ASSIGN
)
1569 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1570 tree rhs1
= gimple_assign_rhs1 (stmt
);
1571 switch (get_gimple_rhs_class (subcode
))
1573 case GIMPLE_SINGLE_RHS
:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1576 val
= get_value_for_expr (rhs1
, true);
1579 case GIMPLE_UNARY_RHS
:
1580 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1581 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1582 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1583 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1584 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1587 case GIMPLE_BINARY_RHS
:
1588 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1589 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1591 tree lhs
= gimple_assign_lhs (stmt
);
1592 tree rhs2
= gimple_assign_rhs2 (stmt
);
1593 val
= bit_value_binop (subcode
,
1594 TREE_TYPE (lhs
), rhs1
, rhs2
);
1601 else if (code
== GIMPLE_COND
)
1603 enum tree_code code
= gimple_cond_code (stmt
);
1604 tree rhs1
= gimple_cond_lhs (stmt
);
1605 tree rhs2
= gimple_cond_rhs (stmt
);
1606 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1607 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1608 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1610 else if (code
== GIMPLE_CALL
1611 && (fndecl
= gimple_call_fndecl (stmt
))
1612 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1614 switch (DECL_FUNCTION_CODE (fndecl
))
1616 case BUILT_IN_MALLOC
:
1617 case BUILT_IN_REALLOC
:
1618 case BUILT_IN_CALLOC
:
1619 val
.lattice_val
= CONSTANT
;
1620 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1621 val
.mask
= shwi_to_double_int
1622 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1623 / BITS_PER_UNIT
- 1));
1626 case BUILT_IN_ALLOCA
:
1627 val
.lattice_val
= CONSTANT
;
1628 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1629 val
.mask
= shwi_to_double_int
1630 (~(((HOST_WIDE_INT
) BIGGEST_ALIGNMENT
)
1631 / BITS_PER_UNIT
- 1));
1637 is_constant
= (val
.lattice_val
== CONSTANT
);
1642 /* The statement produced a nonconstant value. If the statement
1643 had UNDEFINED operands, then the result of the statement
1644 should be UNDEFINED. Otherwise, the statement is VARYING. */
1645 if (likelyvalue
== UNDEFINED
)
1647 val
.lattice_val
= likelyvalue
;
1648 val
.mask
= double_int_zero
;
1652 val
.lattice_val
= VARYING
;
1653 val
.mask
= double_int_minus_one
;
1656 val
.value
= NULL_TREE
;
1662 /* Fold the stmt at *GSI with CCP specific information that propagating
1663 and regular folding does not catch. */
1666 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1668 gimple stmt
= gsi_stmt (*gsi
);
1670 switch (gimple_code (stmt
))
1675 /* Statement evaluation will handle type mismatches in constants
1676 more gracefully than the final propagation. This allows us to
1677 fold more conditionals here. */
1678 val
= evaluate_stmt (stmt
);
1679 if (val
.lattice_val
!= CONSTANT
1680 || !double_int_zero_p (val
.mask
))
1685 fprintf (dump_file
, "Folding predicate ");
1686 print_gimple_expr (dump_file
, stmt
, 0, 0);
1687 fprintf (dump_file
, " to ");
1688 print_generic_expr (dump_file
, val
.value
, 0);
1689 fprintf (dump_file
, "\n");
1692 if (integer_zerop (val
.value
))
1693 gimple_cond_make_false (stmt
);
1695 gimple_cond_make_true (stmt
);
1702 tree lhs
= gimple_call_lhs (stmt
);
1705 bool changed
= false;
1708 /* If the call was folded into a constant make sure it goes
1709 away even if we cannot propagate into all uses because of
1712 && TREE_CODE (lhs
) == SSA_NAME
1713 && (val
= get_constant_value (lhs
)))
1715 tree new_rhs
= unshare_expr (val
);
1717 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1718 TREE_TYPE (new_rhs
)))
1719 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1720 res
= update_call_from_tree (gsi
, new_rhs
);
1725 /* Internal calls provide no argument types, so the extra laxity
1726 for normal calls does not apply. */
1727 if (gimple_call_internal_p (stmt
))
1730 /* Propagate into the call arguments. Compared to replace_uses_in
1731 this can use the argument slot types for type verification
1732 instead of the current argument type. We also can safely
1733 drop qualifiers here as we are dealing with constants anyway. */
1734 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1735 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1736 ++i
, argt
= TREE_CHAIN (argt
))
1738 tree arg
= gimple_call_arg (stmt
, i
);
1739 if (TREE_CODE (arg
) == SSA_NAME
1740 && (val
= get_constant_value (arg
))
1741 && useless_type_conversion_p
1742 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1743 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1745 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1755 tree lhs
= gimple_assign_lhs (stmt
);
1758 /* If we have a load that turned out to be constant replace it
1759 as we cannot propagate into all uses in all cases. */
1760 if (gimple_assign_single_p (stmt
)
1761 && TREE_CODE (lhs
) == SSA_NAME
1762 && (val
= get_constant_value (lhs
)))
1764 tree rhs
= unshare_expr (val
);
1765 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1766 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1767 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1779 /* Visit the assignment statement STMT. Set the value of its LHS to the
1780 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1781 creates virtual definitions, set the value of each new name to that
1782 of the RHS (if we can derive a constant out of the RHS).
1783 Value-returning call statements also perform an assignment, and
1784 are handled here. */
1786 static enum ssa_prop_result
1787 visit_assignment (gimple stmt
, tree
*output_p
)
1790 enum ssa_prop_result retval
;
1792 tree lhs
= gimple_get_lhs (stmt
);
1794 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1795 || gimple_call_lhs (stmt
) != NULL_TREE
);
1797 if (gimple_assign_single_p (stmt
)
1798 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1799 /* For a simple copy operation, we copy the lattice values. */
1800 val
= *get_value (gimple_assign_rhs1 (stmt
));
1802 /* Evaluate the statement, which could be
1803 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1804 val
= evaluate_stmt (stmt
);
1806 retval
= SSA_PROP_NOT_INTERESTING
;
1808 /* Set the lattice value of the statement's output. */
1809 if (TREE_CODE (lhs
) == SSA_NAME
)
1811 /* If STMT is an assignment to an SSA_NAME, we only have one
1813 if (set_lattice_value (lhs
, val
))
1816 if (val
.lattice_val
== VARYING
)
1817 retval
= SSA_PROP_VARYING
;
1819 retval
= SSA_PROP_INTERESTING
;
1827 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
1828 if it can determine which edge will be taken. Otherwise, return
1829 SSA_PROP_VARYING. */
1831 static enum ssa_prop_result
1832 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
1837 block
= gimple_bb (stmt
);
1838 val
= evaluate_stmt (stmt
);
1839 if (val
.lattice_val
!= CONSTANT
1840 || !double_int_zero_p (val
.mask
))
1841 return SSA_PROP_VARYING
;
1843 /* Find which edge out of the conditional block will be taken and add it
1844 to the worklist. If no single edge can be determined statically,
1845 return SSA_PROP_VARYING to feed all the outgoing edges to the
1846 propagation engine. */
1847 *taken_edge_p
= find_taken_edge (block
, val
.value
);
1849 return SSA_PROP_INTERESTING
;
1851 return SSA_PROP_VARYING
;
1855 /* Evaluate statement STMT. If the statement produces an output value and
1856 its evaluation changes the lattice value of its output, return
1857 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
1860 If STMT is a conditional branch and we can determine its truth
1861 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
1862 value, return SSA_PROP_VARYING. */
1864 static enum ssa_prop_result
1865 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
1870 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1872 fprintf (dump_file
, "\nVisiting statement:\n");
1873 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
1876 switch (gimple_code (stmt
))
1879 /* If the statement is an assignment that produces a single
1880 output value, evaluate its RHS to see if the lattice value of
1881 its output has changed. */
1882 return visit_assignment (stmt
, output_p
);
1885 /* A value-returning call also performs an assignment. */
1886 if (gimple_call_lhs (stmt
) != NULL_TREE
)
1887 return visit_assignment (stmt
, output_p
);
1892 /* If STMT is a conditional branch, see if we can determine
1893 which branch will be taken. */
1894 /* FIXME. It appears that we should be able to optimize
1895 computed GOTOs here as well. */
1896 return visit_cond_stmt (stmt
, taken_edge_p
);
1902 /* Any other kind of statement is not interesting for constant
1903 propagation and, therefore, not worth simulating. */
1904 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1905 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
1907 /* Definitions made by statements other than assignments to
1908 SSA_NAMEs represent unknown modifications to their outputs.
1909 Mark them VARYING. */
1910 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
1912 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
1913 set_lattice_value (def
, v
);
1916 return SSA_PROP_VARYING
;
1920 /* Main entry point for SSA Conditional Constant Propagation. */
1926 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
1927 if (ccp_finalize ())
1928 return (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_remove_unused_locals
);
1937 return flag_tree_ccp
!= 0;
1941 struct gimple_opt_pass pass_ccp
=
1946 gate_ccp
, /* gate */
1947 do_ssa_ccp
, /* execute */
1950 0, /* static_pass_number */
1951 TV_TREE_CCP
, /* tv_id */
1952 PROP_cfg
| PROP_ssa
, /* properties_required */
1953 0, /* properties_provided */
1954 0, /* properties_destroyed */
1955 0, /* todo_flags_start */
1956 TODO_dump_func
| TODO_verify_ssa
1957 | TODO_verify_stmts
| TODO_ggc_collect
/* todo_flags_finish */
1963 /* Try to optimize out __builtin_stack_restore. Optimize it out
1964 if there is another __builtin_stack_restore in the same basic
1965 block and no calls or ASM_EXPRs are in between, or if this block's
1966 only outgoing edge is to EXIT_BLOCK and there are no calls or
1967 ASM_EXPRs after this __builtin_stack_restore. */
1970 optimize_stack_restore (gimple_stmt_iterator i
)
1975 basic_block bb
= gsi_bb (i
);
1976 gimple call
= gsi_stmt (i
);
1978 if (gimple_code (call
) != GIMPLE_CALL
1979 || gimple_call_num_args (call
) != 1
1980 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
1981 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
1984 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
1986 stmt
= gsi_stmt (i
);
1987 if (gimple_code (stmt
) == GIMPLE_ASM
)
1989 if (gimple_code (stmt
) != GIMPLE_CALL
)
1992 callee
= gimple_call_fndecl (stmt
);
1994 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
1995 /* All regular builtins are ok, just obviously not alloca. */
1996 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
)
1999 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2000 goto second_stack_restore
;
2006 /* Allow one successor of the exit block, or zero successors. */
2007 switch (EDGE_COUNT (bb
->succs
))
2012 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2018 second_stack_restore
:
2020 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2021 If there are multiple uses, then the last one should remove the call.
2022 In any case, whether the call to __builtin_stack_save can be removed
2023 or not is irrelevant to removing the call to __builtin_stack_restore. */
2024 if (has_single_use (gimple_call_arg (call
, 0)))
2026 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2027 if (is_gimple_call (stack_save
))
2029 callee
= gimple_call_fndecl (stack_save
);
2031 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2032 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2034 gimple_stmt_iterator stack_save_gsi
;
2037 stack_save_gsi
= gsi_for_stmt (stack_save
);
2038 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2039 update_call_from_tree (&stack_save_gsi
, rhs
);
2044 /* No effect, so the statement will be deleted. */
2045 return integer_zero_node
;
2048 /* If va_list type is a simple pointer and nothing special is needed,
2049 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2050 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2051 pointer assignment. */
2054 optimize_stdarg_builtin (gimple call
)
2056 tree callee
, lhs
, rhs
, cfun_va_list
;
2057 bool va_list_simple_ptr
;
2058 location_t loc
= gimple_location (call
);
2060 if (gimple_code (call
) != GIMPLE_CALL
)
2063 callee
= gimple_call_fndecl (call
);
2065 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2066 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2067 && (TREE_TYPE (cfun_va_list
) == void_type_node
2068 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2070 switch (DECL_FUNCTION_CODE (callee
))
2072 case BUILT_IN_VA_START
:
2073 if (!va_list_simple_ptr
2074 || targetm
.expand_builtin_va_start
!= NULL
2075 || built_in_decls
[BUILT_IN_NEXT_ARG
] == NULL
)
2078 if (gimple_call_num_args (call
) != 2)
2081 lhs
= gimple_call_arg (call
, 0);
2082 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2083 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2084 != TYPE_MAIN_VARIANT (cfun_va_list
))
2087 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2088 rhs
= build_call_expr_loc (loc
, built_in_decls
[BUILT_IN_NEXT_ARG
],
2089 1, integer_zero_node
);
2090 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2091 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2093 case BUILT_IN_VA_COPY
:
2094 if (!va_list_simple_ptr
)
2097 if (gimple_call_num_args (call
) != 2)
2100 lhs
= gimple_call_arg (call
, 0);
2101 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2102 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2103 != TYPE_MAIN_VARIANT (cfun_va_list
))
2106 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2107 rhs
= gimple_call_arg (call
, 1);
2108 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2109 != TYPE_MAIN_VARIANT (cfun_va_list
))
2112 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2113 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2115 case BUILT_IN_VA_END
:
2116 /* No effect, so the statement will be deleted. */
2117 return integer_zero_node
;
2124 /* A simple pass that attempts to fold all builtin functions. This pass
2125 is run after we've propagated as many constants as we can. */
2128 execute_fold_all_builtins (void)
2130 bool cfg_changed
= false;
2132 unsigned int todoflags
= 0;
2136 gimple_stmt_iterator i
;
2137 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2139 gimple stmt
, old_stmt
;
2140 tree callee
, result
;
2141 enum built_in_function fcode
;
2143 stmt
= gsi_stmt (i
);
2145 if (gimple_code (stmt
) != GIMPLE_CALL
)
2150 callee
= gimple_call_fndecl (stmt
);
2151 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2156 fcode
= DECL_FUNCTION_CODE (callee
);
2158 result
= gimple_fold_builtin (stmt
);
2161 gimple_remove_stmt_histograms (cfun
, stmt
);
2164 switch (DECL_FUNCTION_CODE (callee
))
2166 case BUILT_IN_CONSTANT_P
:
2167 /* Resolve __builtin_constant_p. If it hasn't been
2168 folded to integer_one_node by now, it's fairly
2169 certain that the value simply isn't constant. */
2170 result
= integer_zero_node
;
2173 case BUILT_IN_STACK_RESTORE
:
2174 result
= optimize_stack_restore (i
);
2180 case BUILT_IN_VA_START
:
2181 case BUILT_IN_VA_END
:
2182 case BUILT_IN_VA_COPY
:
2183 /* These shouldn't be folded before pass_stdarg. */
2184 result
= optimize_stdarg_builtin (stmt
);
2194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2196 fprintf (dump_file
, "Simplified\n ");
2197 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2201 if (!update_call_from_tree (&i
, result
))
2203 gimplify_and_update_call_from_tree (&i
, result
);
2204 todoflags
|= TODO_update_address_taken
;
2207 stmt
= gsi_stmt (i
);
2210 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2211 && gimple_purge_dead_eh_edges (bb
))
2214 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2216 fprintf (dump_file
, "to\n ");
2217 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2218 fprintf (dump_file
, "\n");
2221 /* Retry the same statement if it changed into another
2222 builtin, there might be new opportunities now. */
2223 if (gimple_code (stmt
) != GIMPLE_CALL
)
2228 callee
= gimple_call_fndecl (stmt
);
2230 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2231 || DECL_FUNCTION_CODE (callee
) == fcode
)
2236 /* Delete unreachable blocks. */
2238 todoflags
|= TODO_cleanup_cfg
;
2244 struct gimple_opt_pass pass_fold_builtins
=
2250 execute_fold_all_builtins
, /* execute */
2253 0, /* static_pass_number */
2254 TV_NONE
, /* tv_id */
2255 PROP_cfg
| PROP_ssa
, /* properties_required */
2256 0, /* properties_provided */
2257 0, /* properties_destroyed */
2258 0, /* todo_flags_start */
2261 | TODO_update_ssa
/* todo_flags_finish */