1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
62 2. choose insn with least contribution to register pressure,
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
129 #include "coretypes.h"
131 #include "diagnostic-core.h"
134 #include "hard-reg-set.h"
136 #include "function.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
142 #include "sched-int.h"
150 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
169 int sched_verbose
= 0;
171 /* Debugging file. All printouts are sent to dump, which is always set,
172 either to stderr, or to the dump listing file (-dRS). */
173 FILE *sched_dump
= 0;
175 /* This is a placeholder for the scheduler parameters common
176 to all schedulers. */
177 struct common_sched_info_def
*common_sched_info
;
179 #define INSN_TICK(INSN) (HID (INSN)->tick)
180 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
182 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
183 then it should be recalculated from scratch. */
184 #define INVALID_TICK (-(max_insn_queue_index + 1))
185 /* The minimal value of the INSN_TICK of an instruction. */
186 #define MIN_TICK (-max_insn_queue_index)
188 /* List of important notes we must keep around. This is a pointer to the
189 last element in the list. */
192 static struct spec_info_def spec_info_var
;
193 /* Description of the speculative part of the scheduling.
194 If NULL - no speculation. */
195 spec_info_t spec_info
= NULL
;
197 /* True, if recovery block was added during scheduling of current block.
198 Used to determine, if we need to fix INSN_TICKs. */
199 static bool haifa_recovery_bb_recently_added_p
;
201 /* True, if recovery block was added during this scheduling pass.
202 Used to determine if we should have empty memory pools of dependencies
203 after finishing current region. */
204 bool haifa_recovery_bb_ever_added_p
;
206 /* Counters of different types of speculative instructions. */
207 static int nr_begin_data
, nr_be_in_data
, nr_begin_control
, nr_be_in_control
;
209 /* Array used in {unlink, restore}_bb_notes. */
210 static rtx
*bb_header
= 0;
212 /* Basic block after which recovery blocks will be created. */
213 static basic_block before_recovery
;
215 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
217 basic_block after_recovery
;
219 /* FALSE if we add bb to another region, so we don't need to initialize it. */
220 bool adding_bb_to_current_region_p
= true;
224 /* An instruction is ready to be scheduled when all insns preceding it
225 have already been scheduled. It is important to ensure that all
226 insns which use its result will not be executed until its result
227 has been computed. An insn is maintained in one of four structures:
229 (P) the "Pending" set of insns which cannot be scheduled until
230 their dependencies have been satisfied.
231 (Q) the "Queued" set of insns that can be scheduled when sufficient
233 (R) the "Ready" list of unscheduled, uncommitted insns.
234 (S) the "Scheduled" list of insns.
236 Initially, all insns are either "Pending" or "Ready" depending on
237 whether their dependencies are satisfied.
239 Insns move from the "Ready" list to the "Scheduled" list as they
240 are committed to the schedule. As this occurs, the insns in the
241 "Pending" list have their dependencies satisfied and move to either
242 the "Ready" list or the "Queued" set depending on whether
243 sufficient time has passed to make them ready. As time passes,
244 insns move from the "Queued" set to the "Ready" list.
246 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
247 unscheduled insns, i.e., those that are ready, queued, and pending.
248 The "Queued" set (Q) is implemented by the variable `insn_queue'.
249 The "Ready" list (R) is implemented by the variables `ready' and
251 The "Scheduled" list (S) is the new insn chain built by this pass.
253 The transition (R->S) is implemented in the scheduling loop in
254 `schedule_block' when the best insn to schedule is chosen.
255 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
256 insns move from the ready list to the scheduled list.
257 The transition (Q->R) is implemented in 'queue_to_insn' as time
258 passes or stalls are introduced. */
260 /* Implement a circular buffer to delay instructions until sufficient
261 time has passed. For the new pipeline description interface,
262 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
263 than maximal time of instruction execution computed by genattr.c on
264 the base maximal time of functional unit reservations and getting a
265 result. This is the longest time an insn may be queued. */
267 static rtx
*insn_queue
;
268 static int q_ptr
= 0;
269 static int q_size
= 0;
270 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
271 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
273 #define QUEUE_SCHEDULED (-3)
274 #define QUEUE_NOWHERE (-2)
275 #define QUEUE_READY (-1)
276 /* QUEUE_SCHEDULED - INSN is scheduled.
277 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
279 QUEUE_READY - INSN is in ready list.
280 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
282 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
284 /* The following variable value refers for all current and future
285 reservations of the processor units. */
288 /* The following variable value is size of memory representing all
289 current and future reservations of the processor units. */
290 size_t dfa_state_size
;
292 /* The following array is used to find the best insn from ready when
293 the automaton pipeline interface is used. */
294 char *ready_try
= NULL
;
296 /* The ready list. */
297 struct ready_list ready
= {NULL
, 0, 0, 0, 0};
299 /* The pointer to the ready list (to be removed). */
300 static struct ready_list
*readyp
= &ready
;
302 /* Scheduling clock. */
303 static int clock_var
;
305 /* This records the actual schedule. It is built up during the main phase
306 of schedule_block, and afterwards used to reorder the insns in the RTL. */
307 static VEC(rtx
, heap
) *scheduled_insns
;
309 static int may_trap_exp (const_rtx
, int);
311 /* Nonzero iff the address is comprised from at most 1 register. */
312 #define CONST_BASED_ADDRESS_P(x) \
314 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
315 || (GET_CODE (x) == LO_SUM)) \
316 && (CONSTANT_P (XEXP (x, 0)) \
317 || CONSTANT_P (XEXP (x, 1)))))
319 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
320 as found by analyzing insn's expression. */
323 static int haifa_luid_for_non_insn (rtx x
);
325 /* Haifa version of sched_info hooks common to all headers. */
326 const struct common_sched_info_def haifa_common_sched_info
=
328 NULL
, /* fix_recovery_cfg */
329 NULL
, /* add_block */
330 NULL
, /* estimate_number_of_insns */
331 haifa_luid_for_non_insn
, /* luid_for_non_insn */
332 SCHED_PASS_UNKNOWN
/* sched_pass_id */
335 /* Mapping from instruction UID to its Logical UID. */
336 VEC (int, heap
) *sched_luids
= NULL
;
338 /* Next LUID to assign to an instruction. */
339 int sched_max_luid
= 1;
341 /* Haifa Instruction Data. */
342 VEC (haifa_insn_data_def
, heap
) *h_i_d
= NULL
;
344 void (* sched_init_only_bb
) (basic_block
, basic_block
);
346 /* Split block function. Different schedulers might use different functions
347 to handle their internal data consistent. */
348 basic_block (* sched_split_block
) (basic_block
, rtx
);
350 /* Create empty basic block after the specified block. */
351 basic_block (* sched_create_empty_bb
) (basic_block
);
354 may_trap_exp (const_rtx x
, int is_store
)
363 if (code
== MEM
&& may_trap_p (x
))
370 /* The insn uses memory: a volatile load. */
371 if (MEM_VOLATILE_P (x
))
373 /* An exception-free load. */
376 /* A load with 1 base register, to be further checked. */
377 if (CONST_BASED_ADDRESS_P (XEXP (x
, 0)))
378 return PFREE_CANDIDATE
;
379 /* No info on the load, to be further checked. */
380 return PRISKY_CANDIDATE
;
385 int i
, insn_class
= TRAP_FREE
;
387 /* Neither store nor load, check if it may cause a trap. */
390 /* Recursive step: walk the insn... */
391 fmt
= GET_RTX_FORMAT (code
);
392 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
396 int tmp_class
= may_trap_exp (XEXP (x
, i
), is_store
);
397 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
399 else if (fmt
[i
] == 'E')
402 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
404 int tmp_class
= may_trap_exp (XVECEXP (x
, i
, j
), is_store
);
405 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
406 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
410 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
417 /* Classifies rtx X of an insn for the purpose of verifying that X can be
418 executed speculatively (and consequently the insn can be moved
419 speculatively), by examining X, returning:
420 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
421 TRAP_FREE: non-load insn.
422 IFREE: load from a globally safe location.
423 IRISKY: volatile load.
424 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
425 being either PFREE or PRISKY. */
428 haifa_classify_rtx (const_rtx x
)
430 int tmp_class
= TRAP_FREE
;
431 int insn_class
= TRAP_FREE
;
434 if (GET_CODE (x
) == PARALLEL
)
436 int i
, len
= XVECLEN (x
, 0);
438 for (i
= len
- 1; i
>= 0; i
--)
440 tmp_class
= haifa_classify_rtx (XVECEXP (x
, 0, i
));
441 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
442 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
452 /* Test if it is a 'store'. */
453 tmp_class
= may_trap_exp (XEXP (x
, 0), 1);
456 /* Test if it is a store. */
457 tmp_class
= may_trap_exp (SET_DEST (x
), 1);
458 if (tmp_class
== TRAP_RISKY
)
460 /* Test if it is a load. */
462 WORST_CLASS (tmp_class
,
463 may_trap_exp (SET_SRC (x
), 0));
466 tmp_class
= haifa_classify_rtx (COND_EXEC_CODE (x
));
467 if (tmp_class
== TRAP_RISKY
)
469 tmp_class
= WORST_CLASS (tmp_class
,
470 may_trap_exp (COND_EXEC_TEST (x
), 0));
473 tmp_class
= TRAP_RISKY
;
477 insn_class
= tmp_class
;
484 haifa_classify_insn (const_rtx insn
)
486 return haifa_classify_rtx (PATTERN (insn
));
489 /* Forward declarations. */
491 static int priority (rtx
);
492 static int rank_for_schedule (const void *, const void *);
493 static void swap_sort (rtx
*, int);
494 static void queue_insn (rtx
, int, const char *);
495 static int schedule_insn (rtx
);
496 static void adjust_priority (rtx
);
497 static void advance_one_cycle (void);
498 static void extend_h_i_d (void);
501 /* Notes handling mechanism:
502 =========================
503 Generally, NOTES are saved before scheduling and restored after scheduling.
504 The scheduler distinguishes between two types of notes:
506 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
507 Before scheduling a region, a pointer to the note is added to the insn
508 that follows or precedes it. (This happens as part of the data dependence
509 computation). After scheduling an insn, the pointer contained in it is
510 used for regenerating the corresponding note (in reemit_notes).
512 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
513 these notes are put in a list (in rm_other_notes() and
514 unlink_other_notes ()). After scheduling the block, these notes are
515 inserted at the beginning of the block (in schedule_block()). */
517 static void ready_add (struct ready_list
*, rtx
, bool);
518 static rtx
ready_remove_first (struct ready_list
*);
519 static rtx
ready_remove_first_dispatch (struct ready_list
*ready
);
521 static void queue_to_ready (struct ready_list
*);
522 static int early_queue_to_ready (state_t
, struct ready_list
*);
524 static void debug_ready_list (struct ready_list
*);
526 /* The following functions are used to implement multi-pass scheduling
527 on the first cycle. */
528 static rtx
ready_remove (struct ready_list
*, int);
529 static void ready_remove_insn (rtx
);
531 static void fix_inter_tick (rtx
, rtx
);
532 static int fix_tick_ready (rtx
);
533 static void change_queue_index (rtx
, int);
535 /* The following functions are used to implement scheduling of data/control
536 speculative instructions. */
538 static void extend_h_i_d (void);
539 static void init_h_i_d (rtx
);
540 static void generate_recovery_code (rtx
);
541 static void process_insn_forw_deps_be_in_spec (rtx
, rtx
, ds_t
);
542 static void begin_speculative_block (rtx
);
543 static void add_to_speculative_block (rtx
);
544 static void init_before_recovery (basic_block
*);
545 static void create_check_block_twin (rtx
, bool);
546 static void fix_recovery_deps (basic_block
);
547 static void haifa_change_pattern (rtx
, rtx
);
548 static void dump_new_block_header (int, basic_block
, rtx
, rtx
);
549 static void restore_bb_notes (basic_block
);
550 static void fix_jump_move (rtx
);
551 static void move_block_after_check (rtx
);
552 static void move_succs (VEC(edge
,gc
) **, basic_block
);
553 static void sched_remove_insn (rtx
);
554 static void clear_priorities (rtx
, rtx_vec_t
*);
555 static void calc_priorities (rtx_vec_t
);
556 static void add_jump_dependencies (rtx
, rtx
);
557 #ifdef ENABLE_CHECKING
558 static int has_edge_p (VEC(edge
,gc
) *, int);
559 static void check_cfg (rtx
, rtx
);
562 #endif /* INSN_SCHEDULING */
564 /* Point to state used for the current scheduling pass. */
565 struct haifa_sched_info
*current_sched_info
;
567 #ifndef INSN_SCHEDULING
569 schedule_insns (void)
574 /* Do register pressure sensitive insn scheduling if the flag is set
576 bool sched_pressure_p
;
578 /* Map regno -> its pressure class. The map defined only when
579 SCHED_PRESSURE_P is true. */
580 enum reg_class
*sched_regno_pressure_class
;
582 /* The current register pressure. Only elements corresponding pressure
583 classes are defined. */
584 static int curr_reg_pressure
[N_REG_CLASSES
];
586 /* Saved value of the previous array. */
587 static int saved_reg_pressure
[N_REG_CLASSES
];
589 /* Register living at given scheduling point. */
590 static bitmap curr_reg_live
;
592 /* Saved value of the previous array. */
593 static bitmap saved_reg_live
;
595 /* Registers mentioned in the current region. */
596 static bitmap region_ref_regs
;
598 /* Initiate register pressure relative info for scheduling the current
599 region. Currently it is only clearing register mentioned in the
602 sched_init_region_reg_pressure_info (void)
604 bitmap_clear (region_ref_regs
);
607 /* Update current register pressure related info after birth (if
608 BIRTH_P) or death of register REGNO. */
610 mark_regno_birth_or_death (int regno
, bool birth_p
)
612 enum reg_class pressure_class
;
614 pressure_class
= sched_regno_pressure_class
[regno
];
615 if (regno
>= FIRST_PSEUDO_REGISTER
)
617 if (pressure_class
!= NO_REGS
)
621 bitmap_set_bit (curr_reg_live
, regno
);
622 curr_reg_pressure
[pressure_class
]
623 += (ira_reg_class_max_nregs
624 [pressure_class
][PSEUDO_REGNO_MODE (regno
)]);
628 bitmap_clear_bit (curr_reg_live
, regno
);
629 curr_reg_pressure
[pressure_class
]
630 -= (ira_reg_class_max_nregs
631 [pressure_class
][PSEUDO_REGNO_MODE (regno
)]);
635 else if (pressure_class
!= NO_REGS
636 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
640 bitmap_set_bit (curr_reg_live
, regno
);
641 curr_reg_pressure
[pressure_class
]++;
645 bitmap_clear_bit (curr_reg_live
, regno
);
646 curr_reg_pressure
[pressure_class
]--;
651 /* Initiate current register pressure related info from living
652 registers given by LIVE. */
654 initiate_reg_pressure_info (bitmap live
)
660 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
661 curr_reg_pressure
[ira_pressure_classes
[i
]] = 0;
662 bitmap_clear (curr_reg_live
);
663 EXECUTE_IF_SET_IN_BITMAP (live
, 0, j
, bi
)
664 if (current_nr_blocks
== 1 || bitmap_bit_p (region_ref_regs
, j
))
665 mark_regno_birth_or_death (j
, true);
668 /* Mark registers in X as mentioned in the current region. */
670 setup_ref_regs (rtx x
)
673 const RTX_CODE code
= GET_CODE (x
);
679 if (HARD_REGISTER_NUM_P (regno
))
680 bitmap_set_range (region_ref_regs
, regno
,
681 hard_regno_nregs
[regno
][GET_MODE (x
)]);
683 bitmap_set_bit (region_ref_regs
, REGNO (x
));
686 fmt
= GET_RTX_FORMAT (code
);
687 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
689 setup_ref_regs (XEXP (x
, i
));
690 else if (fmt
[i
] == 'E')
692 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
693 setup_ref_regs (XVECEXP (x
, i
, j
));
697 /* Initiate current register pressure related info at the start of
700 initiate_bb_reg_pressure_info (basic_block bb
)
702 unsigned int i ATTRIBUTE_UNUSED
;
705 if (current_nr_blocks
> 1)
706 FOR_BB_INSNS (bb
, insn
)
707 if (NONDEBUG_INSN_P (insn
))
708 setup_ref_regs (PATTERN (insn
));
709 initiate_reg_pressure_info (df_get_live_in (bb
));
710 #ifdef EH_RETURN_DATA_REGNO
711 if (bb_has_eh_pred (bb
))
714 unsigned int regno
= EH_RETURN_DATA_REGNO (i
);
716 if (regno
== INVALID_REGNUM
)
718 if (! bitmap_bit_p (df_get_live_in (bb
), regno
))
719 mark_regno_birth_or_death (regno
, true);
724 /* Save current register pressure related info. */
726 save_reg_pressure (void)
730 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
731 saved_reg_pressure
[ira_pressure_classes
[i
]]
732 = curr_reg_pressure
[ira_pressure_classes
[i
]];
733 bitmap_copy (saved_reg_live
, curr_reg_live
);
736 /* Restore saved register pressure related info. */
738 restore_reg_pressure (void)
742 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
743 curr_reg_pressure
[ira_pressure_classes
[i
]]
744 = saved_reg_pressure
[ira_pressure_classes
[i
]];
745 bitmap_copy (curr_reg_live
, saved_reg_live
);
748 /* Return TRUE if the register is dying after its USE. */
750 dying_use_p (struct reg_use_data
*use
)
752 struct reg_use_data
*next
;
754 for (next
= use
->next_regno_use
; next
!= use
; next
= next
->next_regno_use
)
755 if (NONDEBUG_INSN_P (next
->insn
)
756 && QUEUE_INDEX (next
->insn
) != QUEUE_SCHEDULED
)
761 /* Print info about the current register pressure and its excess for
762 each pressure class. */
764 print_curr_reg_pressure (void)
769 fprintf (sched_dump
, ";;\t");
770 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
772 cl
= ira_pressure_classes
[i
];
773 gcc_assert (curr_reg_pressure
[cl
] >= 0);
774 fprintf (sched_dump
, " %s:%d(%d)", reg_class_names
[cl
],
775 curr_reg_pressure
[cl
],
776 curr_reg_pressure
[cl
] - ira_available_class_regs
[cl
]);
778 fprintf (sched_dump
, "\n");
781 /* Pointer to the last instruction scheduled. */
782 static rtx last_scheduled_insn
;
784 /* Pointer to the last nondebug instruction scheduled within the
785 block, or the prev_head of the scheduling block. Used by
786 rank_for_schedule, so that insns independent of the last scheduled
787 insn will be preferred over dependent instructions. */
788 static rtx last_nondebug_scheduled_insn
;
790 /* Pointer that iterates through the list of unscheduled insns if we
791 have a dbg_cnt enabled. It always points at an insn prior to the
792 first unscheduled one. */
793 static rtx nonscheduled_insns_begin
;
795 /* Cached cost of the instruction. Use below function to get cost of the
796 insn. -1 here means that the field is not initialized. */
797 #define INSN_COST(INSN) (HID (INSN)->cost)
799 /* Compute cost of executing INSN.
800 This is the number of cycles between instruction issue and
801 instruction results. */
809 if (recog_memoized (insn
) < 0)
812 cost
= insn_default_latency (insn
);
819 cost
= INSN_COST (insn
);
823 /* A USE insn, or something else we don't need to
824 understand. We can't pass these directly to
825 result_ready_cost or insn_default_latency because it will
826 trigger a fatal error for unrecognizable insns. */
827 if (recog_memoized (insn
) < 0)
829 INSN_COST (insn
) = 0;
834 cost
= insn_default_latency (insn
);
838 INSN_COST (insn
) = cost
;
845 /* Compute cost of dependence LINK.
846 This is the number of cycles between instruction issue and
848 ??? We also use this function to call recog_memoized on all insns. */
850 dep_cost_1 (dep_t link
, dw_t dw
)
852 rtx insn
= DEP_PRO (link
);
853 rtx used
= DEP_CON (link
);
856 /* A USE insn should never require the value used to be computed.
857 This allows the computation of a function's result and parameter
858 values to overlap the return and call. We don't care about the
859 dependence cost when only decreasing register pressure. */
860 if (recog_memoized (used
) < 0)
863 recog_memoized (insn
);
867 enum reg_note dep_type
= DEP_TYPE (link
);
869 cost
= insn_cost (insn
);
871 if (INSN_CODE (insn
) >= 0)
873 if (dep_type
== REG_DEP_ANTI
)
875 else if (dep_type
== REG_DEP_OUTPUT
)
877 cost
= (insn_default_latency (insn
)
878 - insn_default_latency (used
));
882 else if (bypass_p (insn
))
883 cost
= insn_latency (insn
, used
);
887 if (targetm
.sched
.adjust_cost_2
)
888 cost
= targetm
.sched
.adjust_cost_2 (used
, (int) dep_type
, insn
, cost
,
890 else if (targetm
.sched
.adjust_cost
!= NULL
)
892 /* This variable is used for backward compatibility with the
894 rtx dep_cost_rtx_link
= alloc_INSN_LIST (NULL_RTX
, NULL_RTX
);
896 /* Make it self-cycled, so that if some tries to walk over this
897 incomplete list he/she will be caught in an endless loop. */
898 XEXP (dep_cost_rtx_link
, 1) = dep_cost_rtx_link
;
900 /* Targets use only REG_NOTE_KIND of the link. */
901 PUT_REG_NOTE_KIND (dep_cost_rtx_link
, DEP_TYPE (link
));
903 cost
= targetm
.sched
.adjust_cost (used
, dep_cost_rtx_link
,
906 free_INSN_LIST_node (dep_cost_rtx_link
);
916 /* Compute cost of dependence LINK.
917 This is the number of cycles between instruction issue and
918 instruction results. */
920 dep_cost (dep_t link
)
922 return dep_cost_1 (link
, 0);
925 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
926 INSN_PRIORITY explicitly. */
928 increase_insn_priority (rtx insn
, int amount
)
932 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
933 if (INSN_PRIORITY_KNOWN (insn
))
934 INSN_PRIORITY (insn
) += amount
;
938 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
939 Use EXPR_PRIORITY instead. */
940 sel_add_to_insn_priority (insn
, amount
);
944 /* Return 'true' if DEP should be included in priority calculations. */
946 contributes_to_priority_p (dep_t dep
)
948 if (DEBUG_INSN_P (DEP_CON (dep
))
949 || DEBUG_INSN_P (DEP_PRO (dep
)))
952 /* Critical path is meaningful in block boundaries only. */
953 if (!current_sched_info
->contributes_to_priority (DEP_CON (dep
),
957 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
958 then speculative instructions will less likely be
959 scheduled. That is because the priority of
960 their producers will increase, and, thus, the
961 producers will more likely be scheduled, thus,
962 resolving the dependence. */
963 if (sched_deps_info
->generate_spec_deps
964 && !(spec_info
->flags
& COUNT_SPEC_IN_CRITICAL_PATH
)
965 && (DEP_STATUS (dep
) & SPECULATIVE
))
971 /* Compute the number of nondebug forward deps of an insn. */
974 dep_list_size (rtx insn
)
976 sd_iterator_def sd_it
;
978 int dbgcount
= 0, nodbgcount
= 0;
980 if (!MAY_HAVE_DEBUG_INSNS
)
981 return sd_lists_size (insn
, SD_LIST_FORW
);
983 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
985 if (DEBUG_INSN_P (DEP_CON (dep
)))
987 else if (!DEBUG_INSN_P (DEP_PRO (dep
)))
991 gcc_assert (dbgcount
+ nodbgcount
== sd_lists_size (insn
, SD_LIST_FORW
));
996 /* Compute the priority number for INSN. */
1000 if (! INSN_P (insn
))
1003 /* We should not be interested in priority of an already scheduled insn. */
1004 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
1006 if (!INSN_PRIORITY_KNOWN (insn
))
1008 int this_priority
= -1;
1010 if (dep_list_size (insn
) == 0)
1011 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1012 some forward deps but all of them are ignored by
1013 contributes_to_priority hook. At the moment we set priority of
1015 this_priority
= insn_cost (insn
);
1018 rtx prev_first
, twin
;
1021 /* For recovery check instructions we calculate priority slightly
1022 different than that of normal instructions. Instead of walking
1023 through INSN_FORW_DEPS (check) list, we walk through
1024 INSN_FORW_DEPS list of each instruction in the corresponding
1027 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1028 rec
= sel_sched_p () ? NULL
: RECOVERY_BLOCK (insn
);
1029 if (!rec
|| rec
== EXIT_BLOCK_PTR
)
1031 prev_first
= PREV_INSN (insn
);
1036 prev_first
= NEXT_INSN (BB_HEAD (rec
));
1037 twin
= PREV_INSN (BB_END (rec
));
1042 sd_iterator_def sd_it
;
1045 FOR_EACH_DEP (twin
, SD_LIST_FORW
, sd_it
, dep
)
1050 next
= DEP_CON (dep
);
1052 if (BLOCK_FOR_INSN (next
) != rec
)
1056 if (!contributes_to_priority_p (dep
))
1060 cost
= dep_cost (dep
);
1063 struct _dep _dep1
, *dep1
= &_dep1
;
1065 init_dep (dep1
, insn
, next
, REG_DEP_ANTI
);
1067 cost
= dep_cost (dep1
);
1070 next_priority
= cost
+ priority (next
);
1072 if (next_priority
> this_priority
)
1073 this_priority
= next_priority
;
1077 twin
= PREV_INSN (twin
);
1079 while (twin
!= prev_first
);
1082 if (this_priority
< 0)
1084 gcc_assert (this_priority
== -1);
1086 this_priority
= insn_cost (insn
);
1089 INSN_PRIORITY (insn
) = this_priority
;
1090 INSN_PRIORITY_STATUS (insn
) = 1;
1093 return INSN_PRIORITY (insn
);
1096 /* Macros and functions for keeping the priority queue sorted, and
1097 dealing with queuing and dequeuing of instructions. */
1099 #define SCHED_SORT(READY, N_READY) \
1100 do { if ((N_READY) == 2) \
1101 swap_sort (READY, N_READY); \
1102 else if ((N_READY) > 2) \
1103 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1106 /* Setup info about the current register pressure impact of scheduling
1107 INSN at the current scheduling point. */
1109 setup_insn_reg_pressure_info (rtx insn
)
1111 int i
, change
, before
, after
, hard_regno
;
1112 int excess_cost_change
;
1113 enum machine_mode mode
;
1115 struct reg_pressure_data
*pressure_info
;
1116 int *max_reg_pressure
;
1117 struct reg_use_data
*use
;
1118 static int death
[N_REG_CLASSES
];
1120 gcc_checking_assert (!DEBUG_INSN_P (insn
));
1122 excess_cost_change
= 0;
1123 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1124 death
[ira_pressure_classes
[i
]] = 0;
1125 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
1126 if (dying_use_p (use
))
1128 cl
= sched_regno_pressure_class
[use
->regno
];
1129 if (use
->regno
< FIRST_PSEUDO_REGISTER
)
1133 += ira_reg_class_max_nregs
[cl
][PSEUDO_REGNO_MODE (use
->regno
)];
1135 pressure_info
= INSN_REG_PRESSURE (insn
);
1136 max_reg_pressure
= INSN_MAX_REG_PRESSURE (insn
);
1137 gcc_assert (pressure_info
!= NULL
&& max_reg_pressure
!= NULL
);
1138 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1140 cl
= ira_pressure_classes
[i
];
1141 gcc_assert (curr_reg_pressure
[cl
] >= 0);
1142 change
= (int) pressure_info
[i
].set_increase
- death
[cl
];
1143 before
= MAX (0, max_reg_pressure
[i
] - ira_available_class_regs
[cl
]);
1144 after
= MAX (0, max_reg_pressure
[i
] + change
1145 - ira_available_class_regs
[cl
]);
1146 hard_regno
= ira_class_hard_regs
[cl
][0];
1147 gcc_assert (hard_regno
>= 0);
1148 mode
= reg_raw_mode
[hard_regno
];
1149 excess_cost_change
+= ((after
- before
)
1150 * (ira_memory_move_cost
[mode
][cl
][0]
1151 + ira_memory_move_cost
[mode
][cl
][1]));
1153 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn
) = excess_cost_change
;
1156 /* Returns a positive value if x is preferred; returns a negative value if
1157 y is preferred. Should never return 0, since that will make the sort
1161 rank_for_schedule (const void *x
, const void *y
)
1163 rtx tmp
= *(const rtx
*) y
;
1164 rtx tmp2
= *(const rtx
*) x
;
1165 int tmp_class
, tmp2_class
;
1166 int val
, priority_val
, info_val
;
1168 if (MAY_HAVE_DEBUG_INSNS
)
1170 /* Schedule debug insns as early as possible. */
1171 if (DEBUG_INSN_P (tmp
) && !DEBUG_INSN_P (tmp2
))
1173 else if (DEBUG_INSN_P (tmp2
))
1177 /* The insn in a schedule group should be issued the first. */
1178 if (flag_sched_group_heuristic
&&
1179 SCHED_GROUP_P (tmp
) != SCHED_GROUP_P (tmp2
))
1180 return SCHED_GROUP_P (tmp2
) ? 1 : -1;
1182 /* Make sure that priority of TMP and TMP2 are initialized. */
1183 gcc_assert (INSN_PRIORITY_KNOWN (tmp
) && INSN_PRIORITY_KNOWN (tmp2
));
1185 if (sched_pressure_p
)
1189 /* Prefer insn whose scheduling results in the smallest register
1191 if ((diff
= (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp
)
1192 + (INSN_TICK (tmp
) > clock_var
1193 ? INSN_TICK (tmp
) - clock_var
: 0)
1194 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2
)
1195 - (INSN_TICK (tmp2
) > clock_var
1196 ? INSN_TICK (tmp2
) - clock_var
: 0))) != 0)
1201 if (sched_pressure_p
1202 && (INSN_TICK (tmp2
) > clock_var
|| INSN_TICK (tmp
) > clock_var
))
1204 if (INSN_TICK (tmp
) <= clock_var
)
1206 else if (INSN_TICK (tmp2
) <= clock_var
)
1209 return INSN_TICK (tmp
) - INSN_TICK (tmp2
);
1211 /* Prefer insn with higher priority. */
1212 priority_val
= INSN_PRIORITY (tmp2
) - INSN_PRIORITY (tmp
);
1214 if (flag_sched_critical_path_heuristic
&& priority_val
)
1215 return priority_val
;
1217 /* Prefer speculative insn with greater dependencies weakness. */
1218 if (flag_sched_spec_insn_heuristic
&& spec_info
)
1224 ds1
= TODO_SPEC (tmp
) & SPECULATIVE
;
1226 dw1
= ds_weak (ds1
);
1230 ds2
= TODO_SPEC (tmp2
) & SPECULATIVE
;
1232 dw2
= ds_weak (ds2
);
1237 if (dw
> (NO_DEP_WEAK
/ 8) || dw
< -(NO_DEP_WEAK
/ 8))
1241 info_val
= (*current_sched_info
->rank
) (tmp
, tmp2
);
1242 if(flag_sched_rank_heuristic
&& info_val
)
1245 /* Compare insns based on their relation to the last scheduled
1247 if (flag_sched_last_insn_heuristic
&& last_nondebug_scheduled_insn
)
1251 rtx last
= last_nondebug_scheduled_insn
;
1253 /* Classify the instructions into three classes:
1254 1) Data dependent on last schedule insn.
1255 2) Anti/Output dependent on last scheduled insn.
1256 3) Independent of last scheduled insn, or has latency of one.
1257 Choose the insn from the highest numbered class if different. */
1258 dep1
= sd_find_dep_between (last
, tmp
, true);
1260 if (dep1
== NULL
|| dep_cost (dep1
) == 1)
1262 else if (/* Data dependence. */
1263 DEP_TYPE (dep1
) == REG_DEP_TRUE
)
1268 dep2
= sd_find_dep_between (last
, tmp2
, true);
1270 if (dep2
== NULL
|| dep_cost (dep2
) == 1)
1272 else if (/* Data dependence. */
1273 DEP_TYPE (dep2
) == REG_DEP_TRUE
)
1278 if ((val
= tmp2_class
- tmp_class
))
1282 /* Prefer the insn which has more later insns that depend on it.
1283 This gives the scheduler more freedom when scheduling later
1284 instructions at the expense of added register pressure. */
1286 val
= (dep_list_size (tmp2
) - dep_list_size (tmp
));
1288 if (flag_sched_dep_count_heuristic
&& val
!= 0)
1291 /* If insns are equally good, sort by INSN_LUID (original insn order),
1292 so that we make the sort stable. This minimizes instruction movement,
1293 thus minimizing sched's effect on debugging and cross-jumping. */
1294 return INSN_LUID (tmp
) - INSN_LUID (tmp2
);
1297 /* Resort the array A in which only element at index N may be out of order. */
1299 HAIFA_INLINE
static void
1300 swap_sort (rtx
*a
, int n
)
1302 rtx insn
= a
[n
- 1];
1305 while (i
>= 0 && rank_for_schedule (a
+ i
, &insn
) >= 0)
1313 /* Add INSN to the insn queue so that it can be executed at least
1314 N_CYCLES after the currently executing insn. Preserve insns
1315 chain for debugging purposes. REASON will be printed in debugging
1318 HAIFA_INLINE
static void
1319 queue_insn (rtx insn
, int n_cycles
, const char *reason
)
1321 int next_q
= NEXT_Q_AFTER (q_ptr
, n_cycles
);
1322 rtx link
= alloc_INSN_LIST (insn
, insn_queue
[next_q
]);
1324 gcc_assert (n_cycles
<= max_insn_queue_index
);
1325 gcc_assert (!DEBUG_INSN_P (insn
));
1327 insn_queue
[next_q
] = link
;
1330 if (sched_verbose
>= 2)
1332 fprintf (sched_dump
, ";;\t\tReady-->Q: insn %s: ",
1333 (*current_sched_info
->print_insn
) (insn
, 0));
1335 fprintf (sched_dump
, "queued for %d cycles (%s).\n", n_cycles
, reason
);
1338 QUEUE_INDEX (insn
) = next_q
;
1341 /* Remove INSN from queue. */
1343 queue_remove (rtx insn
)
1345 gcc_assert (QUEUE_INDEX (insn
) >= 0);
1346 remove_free_INSN_LIST_elem (insn
, &insn_queue
[QUEUE_INDEX (insn
)]);
1348 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
1351 /* Return a pointer to the bottom of the ready list, i.e. the insn
1352 with the lowest priority. */
1355 ready_lastpos (struct ready_list
*ready
)
1357 gcc_assert (ready
->n_ready
>= 1);
1358 return ready
->vec
+ ready
->first
- ready
->n_ready
+ 1;
1361 /* Add an element INSN to the ready list so that it ends up with the
1362 lowest/highest priority depending on FIRST_P. */
1364 HAIFA_INLINE
static void
1365 ready_add (struct ready_list
*ready
, rtx insn
, bool first_p
)
1369 if (ready
->first
== ready
->n_ready
)
1371 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
,
1372 ready_lastpos (ready
),
1373 ready
->n_ready
* sizeof (rtx
));
1374 ready
->first
= ready
->veclen
- 1;
1376 ready
->vec
[ready
->first
- ready
->n_ready
] = insn
;
1380 if (ready
->first
== ready
->veclen
- 1)
1383 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1384 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
- 1,
1385 ready_lastpos (ready
),
1386 ready
->n_ready
* sizeof (rtx
));
1387 ready
->first
= ready
->veclen
- 2;
1389 ready
->vec
[++(ready
->first
)] = insn
;
1393 if (DEBUG_INSN_P (insn
))
1396 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_READY
);
1397 QUEUE_INDEX (insn
) = QUEUE_READY
;
1400 /* Remove the element with the highest priority from the ready list and
1403 HAIFA_INLINE
static rtx
1404 ready_remove_first (struct ready_list
*ready
)
1408 gcc_assert (ready
->n_ready
);
1409 t
= ready
->vec
[ready
->first
--];
1411 if (DEBUG_INSN_P (t
))
1413 /* If the queue becomes empty, reset it. */
1414 if (ready
->n_ready
== 0)
1415 ready
->first
= ready
->veclen
- 1;
1417 gcc_assert (QUEUE_INDEX (t
) == QUEUE_READY
);
1418 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
1423 /* The following code implements multi-pass scheduling for the first
1424 cycle. In other words, we will try to choose ready insn which
1425 permits to start maximum number of insns on the same cycle. */
1427 /* Return a pointer to the element INDEX from the ready. INDEX for
1428 insn with the highest priority is 0, and the lowest priority has
1432 ready_element (struct ready_list
*ready
, int index
)
1434 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
1436 return ready
->vec
[ready
->first
- index
];
1439 /* Remove the element INDEX from the ready list and return it. INDEX
1440 for insn with the highest priority is 0, and the lowest priority
1443 HAIFA_INLINE
static rtx
1444 ready_remove (struct ready_list
*ready
, int index
)
1450 return ready_remove_first (ready
);
1451 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
1452 t
= ready
->vec
[ready
->first
- index
];
1454 if (DEBUG_INSN_P (t
))
1456 for (i
= index
; i
< ready
->n_ready
; i
++)
1457 ready
->vec
[ready
->first
- i
] = ready
->vec
[ready
->first
- i
- 1];
1458 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
1462 /* Remove INSN from the ready list. */
1464 ready_remove_insn (rtx insn
)
1468 for (i
= 0; i
< readyp
->n_ready
; i
++)
1469 if (ready_element (readyp
, i
) == insn
)
1471 ready_remove (readyp
, i
);
1477 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1481 ready_sort (struct ready_list
*ready
)
1484 rtx
*first
= ready_lastpos (ready
);
1486 if (sched_pressure_p
)
1488 for (i
= 0; i
< ready
->n_ready
; i
++)
1489 if (!DEBUG_INSN_P (first
[i
]))
1490 setup_insn_reg_pressure_info (first
[i
]);
1492 SCHED_SORT (first
, ready
->n_ready
);
1495 /* PREV is an insn that is ready to execute. Adjust its priority if that
1496 will help shorten or lengthen register lifetimes as appropriate. Also
1497 provide a hook for the target to tweak itself. */
1499 HAIFA_INLINE
static void
1500 adjust_priority (rtx prev
)
1502 /* ??? There used to be code here to try and estimate how an insn
1503 affected register lifetimes, but it did it by looking at REG_DEAD
1504 notes, which we removed in schedule_region. Nor did it try to
1505 take into account register pressure or anything useful like that.
1507 Revisit when we have a machine model to work with and not before. */
1509 if (targetm
.sched
.adjust_priority
)
1510 INSN_PRIORITY (prev
) =
1511 targetm
.sched
.adjust_priority (prev
, INSN_PRIORITY (prev
));
1514 /* Advance DFA state STATE on one cycle. */
1516 advance_state (state_t state
)
1518 if (targetm
.sched
.dfa_pre_advance_cycle
)
1519 targetm
.sched
.dfa_pre_advance_cycle ();
1521 if (targetm
.sched
.dfa_pre_cycle_insn
)
1522 state_transition (state
,
1523 targetm
.sched
.dfa_pre_cycle_insn ());
1525 state_transition (state
, NULL
);
1527 if (targetm
.sched
.dfa_post_cycle_insn
)
1528 state_transition (state
,
1529 targetm
.sched
.dfa_post_cycle_insn ());
1531 if (targetm
.sched
.dfa_post_advance_cycle
)
1532 targetm
.sched
.dfa_post_advance_cycle ();
1535 /* Advance time on one cycle. */
1536 HAIFA_INLINE
static void
1537 advance_one_cycle (void)
1539 advance_state (curr_state
);
1540 if (sched_verbose
>= 6)
1541 fprintf (sched_dump
, ";;\tAdvanced a state.\n");
1544 /* Clock at which the previous instruction was issued. */
1545 static int last_clock_var
;
1547 /* Update register pressure after scheduling INSN. */
1549 update_register_pressure (rtx insn
)
1551 struct reg_use_data
*use
;
1552 struct reg_set_data
*set
;
1554 gcc_checking_assert (!DEBUG_INSN_P (insn
));
1556 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
1557 if (dying_use_p (use
) && bitmap_bit_p (curr_reg_live
, use
->regno
))
1558 mark_regno_birth_or_death (use
->regno
, false);
1559 for (set
= INSN_REG_SET_LIST (insn
); set
!= NULL
; set
= set
->next_insn_set
)
1560 mark_regno_birth_or_death (set
->regno
, true);
1563 /* Set up or update (if UPDATE_P) max register pressure (see its
1564 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1565 after insn AFTER. */
1567 setup_insn_max_reg_pressure (rtx after
, bool update_p
)
1572 static int max_reg_pressure
[N_REG_CLASSES
];
1574 save_reg_pressure ();
1575 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1576 max_reg_pressure
[ira_pressure_classes
[i
]]
1577 = curr_reg_pressure
[ira_pressure_classes
[i
]];
1578 for (insn
= NEXT_INSN (after
);
1579 insn
!= NULL_RTX
&& ! BARRIER_P (insn
)
1580 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (after
);
1581 insn
= NEXT_INSN (insn
))
1582 if (NONDEBUG_INSN_P (insn
))
1585 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1587 p
= max_reg_pressure
[ira_pressure_classes
[i
]];
1588 if (INSN_MAX_REG_PRESSURE (insn
)[i
] != p
)
1591 INSN_MAX_REG_PRESSURE (insn
)[i
]
1592 = max_reg_pressure
[ira_pressure_classes
[i
]];
1595 if (update_p
&& eq_p
)
1597 update_register_pressure (insn
);
1598 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1599 if (max_reg_pressure
[ira_pressure_classes
[i
]]
1600 < curr_reg_pressure
[ira_pressure_classes
[i
]])
1601 max_reg_pressure
[ira_pressure_classes
[i
]]
1602 = curr_reg_pressure
[ira_pressure_classes
[i
]];
1604 restore_reg_pressure ();
1607 /* Update the current register pressure after scheduling INSN. Update
1608 also max register pressure for unscheduled insns of the current
1611 update_reg_and_insn_max_reg_pressure (rtx insn
)
1614 int before
[N_REG_CLASSES
];
1616 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1617 before
[i
] = curr_reg_pressure
[ira_pressure_classes
[i
]];
1618 update_register_pressure (insn
);
1619 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1620 if (curr_reg_pressure
[ira_pressure_classes
[i
]] != before
[i
])
1622 if (i
< ira_pressure_classes_num
)
1623 setup_insn_max_reg_pressure (insn
, true);
1626 /* Set up register pressure at the beginning of basic block BB whose
1627 insns starting after insn AFTER. Set up also max register pressure
1628 for all insns of the basic block. */
1630 sched_setup_bb_reg_pressure_info (basic_block bb
, rtx after
)
1632 gcc_assert (sched_pressure_p
);
1633 initiate_bb_reg_pressure_info (bb
);
1634 setup_insn_max_reg_pressure (after
, false);
1637 /* INSN is the "currently executing insn". Launch each insn which was
1638 waiting on INSN. READY is the ready list which contains the insns
1639 that are ready to fire. CLOCK is the current cycle. The function
1640 returns necessary cycle advance after issuing the insn (it is not
1641 zero for insns in a schedule group). */
1644 schedule_insn (rtx insn
)
1646 sd_iterator_def sd_it
;
1651 if (sched_verbose
>= 1)
1653 struct reg_pressure_data
*pressure_info
;
1656 print_insn (buf
, insn
, 0);
1658 fprintf (sched_dump
, ";;\t%3i--> %-40s:", clock_var
, buf
);
1660 if (recog_memoized (insn
) < 0)
1661 fprintf (sched_dump
, "nothing");
1663 print_reservation (sched_dump
, insn
);
1664 pressure_info
= INSN_REG_PRESSURE (insn
);
1665 if (pressure_info
!= NULL
)
1667 fputc (':', sched_dump
);
1668 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1669 fprintf (sched_dump
, "%s%+d(%d)",
1670 reg_class_names
[ira_pressure_classes
[i
]],
1671 pressure_info
[i
].set_increase
, pressure_info
[i
].change
);
1673 fputc ('\n', sched_dump
);
1676 if (sched_pressure_p
&& !DEBUG_INSN_P (insn
))
1677 update_reg_and_insn_max_reg_pressure (insn
);
1679 /* Scheduling instruction should have all its dependencies resolved and
1680 should have been removed from the ready list. */
1681 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_BACK
));
1683 /* Reset debug insns invalidated by moving this insn. */
1684 if (MAY_HAVE_DEBUG_INSNS
&& !DEBUG_INSN_P (insn
))
1685 for (sd_it
= sd_iterator_start (insn
, SD_LIST_BACK
);
1686 sd_iterator_cond (&sd_it
, &dep
);)
1688 rtx dbg
= DEP_PRO (dep
);
1689 struct reg_use_data
*use
, *next
;
1691 gcc_assert (DEBUG_INSN_P (dbg
));
1693 if (sched_verbose
>= 6)
1694 fprintf (sched_dump
, ";;\t\tresetting: debug insn %d\n",
1697 /* ??? Rather than resetting the debug insn, we might be able
1698 to emit a debug temp before the just-scheduled insn, but
1699 this would involve checking that the expression at the
1700 point of the debug insn is equivalent to the expression
1701 before the just-scheduled insn. They might not be: the
1702 expression in the debug insn may depend on other insns not
1703 yet scheduled that set MEMs, REGs or even other debug
1704 insns. It's not clear that attempting to preserve debug
1705 information in these cases is worth the effort, given how
1706 uncommon these resets are and the likelihood that the debug
1707 temps introduced won't survive the schedule change. */
1708 INSN_VAR_LOCATION_LOC (dbg
) = gen_rtx_UNKNOWN_VAR_LOC ();
1709 df_insn_rescan (dbg
);
1711 /* Unknown location doesn't use any registers. */
1712 for (use
= INSN_REG_USE_LIST (dbg
); use
!= NULL
; use
= next
)
1714 struct reg_use_data
*prev
= use
;
1716 /* Remove use from the cyclic next_regno_use chain first. */
1717 while (prev
->next_regno_use
!= use
)
1718 prev
= prev
->next_regno_use
;
1719 prev
->next_regno_use
= use
->next_regno_use
;
1720 next
= use
->next_insn_use
;
1723 INSN_REG_USE_LIST (dbg
) = NULL
;
1725 /* We delete rather than resolve these deps, otherwise we
1726 crash in sched_free_deps(), because forward deps are
1727 expected to be released before backward deps. */
1728 sd_delete_dep (sd_it
);
1731 gcc_assert (QUEUE_INDEX (insn
) == QUEUE_NOWHERE
);
1732 QUEUE_INDEX (insn
) = QUEUE_SCHEDULED
;
1734 gcc_assert (INSN_TICK (insn
) >= MIN_TICK
);
1735 if (INSN_TICK (insn
) > clock_var
)
1736 /* INSN has been prematurely moved from the queue to the ready list.
1737 This is possible only if following flag is set. */
1738 gcc_assert (flag_sched_stalled_insns
);
1740 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1741 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1742 INSN_TICK (insn
) = clock_var
;
1744 /* Update dependent instructions. */
1745 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
1746 sd_iterator_cond (&sd_it
, &dep
);)
1748 rtx next
= DEP_CON (dep
);
1750 /* Resolve the dependence between INSN and NEXT.
1751 sd_resolve_dep () moves current dep to another list thus
1752 advancing the iterator. */
1753 sd_resolve_dep (sd_it
);
1755 /* Don't bother trying to mark next as ready if insn is a debug
1756 insn. If insn is the last hard dependency, it will have
1757 already been discounted. */
1758 if (DEBUG_INSN_P (insn
) && !DEBUG_INSN_P (next
))
1761 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn
))
1765 effective_cost
= try_ready (next
);
1767 if (effective_cost
>= 0
1768 && SCHED_GROUP_P (next
)
1769 && advance
< effective_cost
)
1770 advance
= effective_cost
;
1773 /* Check always has only one forward dependence (to the first insn in
1774 the recovery block), therefore, this will be executed only once. */
1776 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_FORW
));
1777 fix_recovery_deps (RECOVERY_BLOCK (insn
));
1781 /* This is the place where scheduler doesn't *basically* need backward and
1782 forward dependencies for INSN anymore. Nevertheless they are used in
1783 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1784 some targets (e.g. rs6000). Thus the earliest place where we *can*
1785 remove dependencies is after targetm.sched.finish () call in
1786 schedule_block (). But, on the other side, the safest place to remove
1787 dependencies is when we are finishing scheduling entire region. As we
1788 don't generate [many] dependencies during scheduling itself, we won't
1789 need memory until beginning of next region.
1790 Bottom line: Dependencies are removed for all insns in the end of
1791 scheduling the region. */
1793 /* Annotate the instruction with issue information -- TImode
1794 indicates that the instruction is expected not to be able
1795 to issue on the same cycle as the previous insn. A machine
1796 may use this information to decide how the instruction should
1799 && GET_CODE (PATTERN (insn
)) != USE
1800 && GET_CODE (PATTERN (insn
)) != CLOBBER
1801 && !DEBUG_INSN_P (insn
))
1803 if (reload_completed
)
1804 PUT_MODE (insn
, clock_var
> last_clock_var
? TImode
: VOIDmode
);
1805 last_clock_var
= clock_var
;
1811 /* Functions for handling of notes. */
1813 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1815 concat_note_lists (rtx from_end
, rtx
*to_endp
)
1819 /* It's easy when have nothing to concat. */
1820 if (from_end
== NULL
)
1823 /* It's also easy when destination is empty. */
1824 if (*to_endp
== NULL
)
1826 *to_endp
= from_end
;
1830 from_start
= from_end
;
1831 while (PREV_INSN (from_start
) != NULL
)
1832 from_start
= PREV_INSN (from_start
);
1834 PREV_INSN (from_start
) = *to_endp
;
1835 NEXT_INSN (*to_endp
) = from_start
;
1836 *to_endp
= from_end
;
1839 /* Delete notes between HEAD and TAIL and put them in the chain
1840 of notes ended by NOTE_LIST. */
1842 remove_notes (rtx head
, rtx tail
)
1844 rtx next_tail
, insn
, next
;
1847 if (head
== tail
&& !INSN_P (head
))
1850 next_tail
= NEXT_INSN (tail
);
1851 for (insn
= head
; insn
!= next_tail
; insn
= next
)
1853 next
= NEXT_INSN (insn
);
1857 switch (NOTE_KIND (insn
))
1859 case NOTE_INSN_BASIC_BLOCK
:
1862 case NOTE_INSN_EPILOGUE_BEG
:
1866 add_reg_note (next
, REG_SAVE_NOTE
,
1867 GEN_INT (NOTE_INSN_EPILOGUE_BEG
));
1875 /* Add the note to list that ends at NOTE_LIST. */
1876 PREV_INSN (insn
) = note_list
;
1877 NEXT_INSN (insn
) = NULL_RTX
;
1879 NEXT_INSN (note_list
) = insn
;
1884 gcc_assert ((sel_sched_p () || insn
!= tail
) && insn
!= head
);
1889 /* Return the head and tail pointers of ebb starting at BEG and ending
1892 get_ebb_head_tail (basic_block beg
, basic_block end
, rtx
*headp
, rtx
*tailp
)
1894 rtx beg_head
= BB_HEAD (beg
);
1895 rtx beg_tail
= BB_END (beg
);
1896 rtx end_head
= BB_HEAD (end
);
1897 rtx end_tail
= BB_END (end
);
1899 /* Don't include any notes or labels at the beginning of the BEG
1900 basic block, or notes at the end of the END basic blocks. */
1902 if (LABEL_P (beg_head
))
1903 beg_head
= NEXT_INSN (beg_head
);
1905 while (beg_head
!= beg_tail
)
1906 if (NOTE_P (beg_head
))
1907 beg_head
= NEXT_INSN (beg_head
);
1908 else if (DEBUG_INSN_P (beg_head
))
1912 for (note
= NEXT_INSN (beg_head
);
1916 next
= NEXT_INSN (note
);
1919 if (sched_verbose
>= 9)
1920 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
1922 reorder_insns_nobb (note
, note
, PREV_INSN (beg_head
));
1924 if (BLOCK_FOR_INSN (note
) != beg
)
1925 df_insn_change_bb (note
, beg
);
1927 else if (!DEBUG_INSN_P (note
))
1939 end_head
= beg_head
;
1940 else if (LABEL_P (end_head
))
1941 end_head
= NEXT_INSN (end_head
);
1943 while (end_head
!= end_tail
)
1944 if (NOTE_P (end_tail
))
1945 end_tail
= PREV_INSN (end_tail
);
1946 else if (DEBUG_INSN_P (end_tail
))
1950 for (note
= PREV_INSN (end_tail
);
1954 prev
= PREV_INSN (note
);
1957 if (sched_verbose
>= 9)
1958 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
1960 reorder_insns_nobb (note
, note
, end_tail
);
1962 if (end_tail
== BB_END (end
))
1963 BB_END (end
) = note
;
1965 if (BLOCK_FOR_INSN (note
) != end
)
1966 df_insn_change_bb (note
, end
);
1968 else if (!DEBUG_INSN_P (note
))
1980 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1983 no_real_insns_p (const_rtx head
, const_rtx tail
)
1985 while (head
!= NEXT_INSN (tail
))
1987 if (!NOTE_P (head
) && !LABEL_P (head
))
1989 head
= NEXT_INSN (head
);
1994 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1995 previously found among the insns. Insert them just before HEAD. */
1997 restore_other_notes (rtx head
, basic_block head_bb
)
2001 rtx note_head
= note_list
;
2004 head_bb
= BLOCK_FOR_INSN (head
);
2006 head
= NEXT_INSN (bb_note (head_bb
));
2008 while (PREV_INSN (note_head
))
2010 set_block_for_insn (note_head
, head_bb
);
2011 note_head
= PREV_INSN (note_head
);
2013 /* In the above cycle we've missed this note. */
2014 set_block_for_insn (note_head
, head_bb
);
2016 PREV_INSN (note_head
) = PREV_INSN (head
);
2017 NEXT_INSN (PREV_INSN (head
)) = note_head
;
2018 PREV_INSN (head
) = note_list
;
2019 NEXT_INSN (note_list
) = head
;
2021 if (BLOCK_FOR_INSN (head
) != head_bb
)
2022 BB_END (head_bb
) = note_list
;
2030 /* Move insns that became ready to fire from queue to ready list. */
2033 queue_to_ready (struct ready_list
*ready
)
2039 q_ptr
= NEXT_Q (q_ptr
);
2041 if (dbg_cnt (sched_insn
) == false)
2043 /* If debug counter is activated do not requeue the first
2044 nonscheduled insn. */
2045 skip_insn
= nonscheduled_insns_begin
;
2048 skip_insn
= next_nonnote_nondebug_insn (skip_insn
);
2050 while (QUEUE_INDEX (skip_insn
) == QUEUE_SCHEDULED
);
2053 skip_insn
= NULL_RTX
;
2055 /* Add all pending insns that can be scheduled without stalls to the
2057 for (link
= insn_queue
[q_ptr
]; link
; link
= XEXP (link
, 1))
2059 insn
= XEXP (link
, 0);
2062 if (sched_verbose
>= 2)
2063 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
2064 (*current_sched_info
->print_insn
) (insn
, 0));
2066 /* If the ready list is full, delay the insn for 1 cycle.
2067 See the comment in schedule_block for the rationale. */
2068 if (!reload_completed
2069 && ready
->n_ready
- ready
->n_debug
> MAX_SCHED_READY_INSNS
2070 && !SCHED_GROUP_P (insn
)
2071 && insn
!= skip_insn
)
2072 queue_insn (insn
, 1, "ready full");
2075 ready_add (ready
, insn
, false);
2076 if (sched_verbose
>= 2)
2077 fprintf (sched_dump
, "moving to ready without stalls\n");
2080 free_INSN_LIST_list (&insn_queue
[q_ptr
]);
2082 /* If there are no ready insns, stall until one is ready and add all
2083 of the pending insns at that point to the ready list. */
2084 if (ready
->n_ready
== 0)
2088 for (stalls
= 1; stalls
<= max_insn_queue_index
; stalls
++)
2090 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
2092 for (; link
; link
= XEXP (link
, 1))
2094 insn
= XEXP (link
, 0);
2097 if (sched_verbose
>= 2)
2098 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
2099 (*current_sched_info
->print_insn
) (insn
, 0));
2101 ready_add (ready
, insn
, false);
2102 if (sched_verbose
>= 2)
2103 fprintf (sched_dump
, "moving to ready with %d stalls\n", stalls
);
2105 free_INSN_LIST_list (&insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]);
2107 advance_one_cycle ();
2112 advance_one_cycle ();
2115 q_ptr
= NEXT_Q_AFTER (q_ptr
, stalls
);
2116 clock_var
+= stalls
;
2120 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2121 prematurely move INSN from the queue to the ready list. Currently,
2122 if a target defines the hook 'is_costly_dependence', this function
2123 uses the hook to check whether there exist any dependences which are
2124 considered costly by the target, between INSN and other insns that
2125 have already been scheduled. Dependences are checked up to Y cycles
2126 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2127 controlling this value.
2128 (Other considerations could be taken into account instead (or in
2129 addition) depending on user flags and target hooks. */
2132 ok_for_early_queue_removal (rtx insn
)
2134 if (targetm
.sched
.is_costly_dependence
)
2138 int i
= VEC_length (rtx
, scheduled_insns
);
2139 for (n_cycles
= flag_sched_stalled_insns_dep
; n_cycles
; n_cycles
--)
2145 prev_insn
= VEC_index (rtx
, scheduled_insns
, i
);
2147 if (!NOTE_P (prev_insn
))
2151 dep
= sd_find_dep_between (prev_insn
, insn
, true);
2155 cost
= dep_cost (dep
);
2157 if (targetm
.sched
.is_costly_dependence (dep
, cost
,
2158 flag_sched_stalled_insns_dep
- n_cycles
))
2163 if (GET_MODE (prev_insn
) == TImode
) /* end of dispatch group */
2176 /* Remove insns from the queue, before they become "ready" with respect
2177 to FU latency considerations. */
2180 early_queue_to_ready (state_t state
, struct ready_list
*ready
)
2188 state_t temp_state
= alloca (dfa_state_size
);
2190 int insns_removed
= 0;
2193 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2196 X == 0: There is no limit on how many queued insns can be removed
2197 prematurely. (flag_sched_stalled_insns = -1).
2199 X >= 1: Only X queued insns can be removed prematurely in each
2200 invocation. (flag_sched_stalled_insns = X).
2202 Otherwise: Early queue removal is disabled.
2203 (flag_sched_stalled_insns = 0)
2206 if (! flag_sched_stalled_insns
)
2209 for (stalls
= 0; stalls
<= max_insn_queue_index
; stalls
++)
2211 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
2213 if (sched_verbose
> 6)
2214 fprintf (sched_dump
, ";; look at index %d + %d\n", q_ptr
, stalls
);
2219 next_link
= XEXP (link
, 1);
2220 insn
= XEXP (link
, 0);
2221 if (insn
&& sched_verbose
> 6)
2222 print_rtl_single (sched_dump
, insn
);
2224 memcpy (temp_state
, state
, dfa_state_size
);
2225 if (recog_memoized (insn
) < 0)
2226 /* non-negative to indicate that it's not ready
2227 to avoid infinite Q->R->Q->R... */
2230 cost
= state_transition (temp_state
, insn
);
2232 if (sched_verbose
>= 6)
2233 fprintf (sched_dump
, "transition cost = %d\n", cost
);
2235 move_to_ready
= false;
2238 move_to_ready
= ok_for_early_queue_removal (insn
);
2239 if (move_to_ready
== true)
2241 /* move from Q to R */
2243 ready_add (ready
, insn
, false);
2246 XEXP (prev_link
, 1) = next_link
;
2248 insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)] = next_link
;
2250 free_INSN_LIST_node (link
);
2252 if (sched_verbose
>= 2)
2253 fprintf (sched_dump
, ";;\t\tEarly Q-->Ready: insn %s\n",
2254 (*current_sched_info
->print_insn
) (insn
, 0));
2257 if (insns_removed
== flag_sched_stalled_insns
)
2258 /* Remove no more than flag_sched_stalled_insns insns
2259 from Q at a time. */
2260 return insns_removed
;
2264 if (move_to_ready
== false)
2271 } /* for stalls.. */
2273 return insns_removed
;
2277 /* Print the ready list for debugging purposes. Callable from debugger. */
2280 debug_ready_list (struct ready_list
*ready
)
2285 if (ready
->n_ready
== 0)
2287 fprintf (sched_dump
, "\n");
2291 p
= ready_lastpos (ready
);
2292 for (i
= 0; i
< ready
->n_ready
; i
++)
2294 fprintf (sched_dump
, " %s:%d",
2295 (*current_sched_info
->print_insn
) (p
[i
], 0),
2297 if (sched_pressure_p
)
2298 fprintf (sched_dump
, "(cost=%d",
2299 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p
[i
]));
2300 if (INSN_TICK (p
[i
]) > clock_var
)
2301 fprintf (sched_dump
, ":delay=%d", INSN_TICK (p
[i
]) - clock_var
);
2302 if (sched_pressure_p
)
2303 fprintf (sched_dump
, ")");
2305 fprintf (sched_dump
, "\n");
2308 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
2309 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
2310 replaces the epilogue note in the correct basic block. */
2312 reemit_notes (rtx insn
)
2314 rtx note
, last
= insn
;
2316 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2318 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
)
2320 enum insn_note note_type
= (enum insn_note
) INTVAL (XEXP (note
, 0));
2322 last
= emit_note_before (note_type
, last
);
2323 remove_note (insn
, note
);
2328 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2330 move_insn (rtx insn
, rtx last
, rtx nt
)
2332 if (PREV_INSN (insn
) != last
)
2338 bb
= BLOCK_FOR_INSN (insn
);
2340 /* BB_HEAD is either LABEL or NOTE. */
2341 gcc_assert (BB_HEAD (bb
) != insn
);
2343 if (BB_END (bb
) == insn
)
2344 /* If this is last instruction in BB, move end marker one
2347 /* Jumps are always placed at the end of basic block. */
2348 jump_p
= control_flow_insn_p (insn
);
2351 || ((common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
)
2352 && IS_SPECULATION_BRANCHY_CHECK_P (insn
))
2353 || (common_sched_info
->sched_pass_id
2354 == SCHED_EBB_PASS
));
2356 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn
)) == bb
);
2358 BB_END (bb
) = PREV_INSN (insn
);
2361 gcc_assert (BB_END (bb
) != last
);
2364 /* We move the block note along with jump. */
2368 note
= NEXT_INSN (insn
);
2369 while (NOTE_NOT_BB_P (note
) && note
!= nt
)
2370 note
= NEXT_INSN (note
);
2374 || BARRIER_P (note
)))
2375 note
= NEXT_INSN (note
);
2377 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
2382 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (note
);
2383 PREV_INSN (NEXT_INSN (note
)) = PREV_INSN (insn
);
2385 NEXT_INSN (note
) = NEXT_INSN (last
);
2386 PREV_INSN (NEXT_INSN (last
)) = note
;
2388 NEXT_INSN (last
) = insn
;
2389 PREV_INSN (insn
) = last
;
2391 bb
= BLOCK_FOR_INSN (last
);
2395 fix_jump_move (insn
);
2397 if (BLOCK_FOR_INSN (insn
) != bb
)
2398 move_block_after_check (insn
);
2400 gcc_assert (BB_END (bb
) == last
);
2403 df_insn_change_bb (insn
, bb
);
2405 /* Update BB_END, if needed. */
2406 if (BB_END (bb
) == last
)
2410 SCHED_GROUP_P (insn
) = 0;
2413 /* Return true if scheduling INSN will finish current clock cycle. */
2415 insn_finishes_cycle_p (rtx insn
)
2417 if (SCHED_GROUP_P (insn
))
2418 /* After issuing INSN, rest of the sched_group will be forced to issue
2419 in order. Don't make any plans for the rest of cycle. */
2422 /* Finishing the block will, apparently, finish the cycle. */
2423 if (current_sched_info
->insn_finishes_block_p
2424 && current_sched_info
->insn_finishes_block_p (insn
))
2430 /* Define type for target data used in multipass scheduling. */
2431 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
2432 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
2434 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t
;
2436 /* The following structure describe an entry of the stack of choices. */
2439 /* Ordinal number of the issued insn in the ready queue. */
2441 /* The number of the rest insns whose issues we should try. */
2443 /* The number of issued essential insns. */
2445 /* State after issuing the insn. */
2447 /* Target-specific data. */
2448 first_cycle_multipass_data_t target_data
;
2451 /* The following array is used to implement a stack of choices used in
2452 function max_issue. */
2453 static struct choice_entry
*choice_stack
;
2455 /* The following variable value is number of essential insns issued on
2456 the current cycle. An insn is essential one if it changes the
2457 processors state. */
2458 int cycle_issued_insns
;
2460 /* This holds the value of the target dfa_lookahead hook. */
2463 /* The following variable value is maximal number of tries of issuing
2464 insns for the first cycle multipass insn scheduling. We define
2465 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2466 need this constraint if all real insns (with non-negative codes)
2467 had reservations because in this case the algorithm complexity is
2468 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2469 might be incomplete and such insn might occur. For such
2470 descriptions, the complexity of algorithm (without the constraint)
2471 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2472 static int max_lookahead_tries
;
2474 /* The following value is value of hook
2475 `first_cycle_multipass_dfa_lookahead' at the last call of
2477 static int cached_first_cycle_multipass_dfa_lookahead
= 0;
2479 /* The following value is value of `issue_rate' at the last call of
2481 static int cached_issue_rate
= 0;
2483 /* The following function returns maximal (or close to maximal) number
2484 of insns which can be issued on the same cycle and one of which
2485 insns is insns with the best rank (the first insn in READY). To
2486 make this function tries different samples of ready insns. READY
2487 is current queue `ready'. Global array READY_TRY reflects what
2488 insns are already issued in this try. The function stops immediately,
2489 if it reached the such a solution, that all instruction can be issued.
2490 INDEX will contain index of the best insn in READY. The following
2491 function is used only for first cycle multipass scheduling.
2495 This function expects recognized insns only. All USEs,
2496 CLOBBERs, etc must be filtered elsewhere. */
2498 max_issue (struct ready_list
*ready
, int privileged_n
, state_t state
,
2499 bool first_cycle_insn_p
, int *index
)
2501 int n
, i
, all
, n_ready
, best
, delay
, tries_num
;
2503 struct choice_entry
*top
;
2506 n_ready
= ready
->n_ready
;
2507 gcc_assert (dfa_lookahead
>= 1 && privileged_n
>= 0
2508 && privileged_n
<= n_ready
);
2510 /* Init MAX_LOOKAHEAD_TRIES. */
2511 if (cached_first_cycle_multipass_dfa_lookahead
!= dfa_lookahead
)
2513 cached_first_cycle_multipass_dfa_lookahead
= dfa_lookahead
;
2514 max_lookahead_tries
= 100;
2515 for (i
= 0; i
< issue_rate
; i
++)
2516 max_lookahead_tries
*= dfa_lookahead
;
2519 /* Init max_points. */
2520 more_issue
= issue_rate
- cycle_issued_insns
;
2521 gcc_assert (more_issue
>= 0);
2523 /* The number of the issued insns in the best solution. */
2528 /* Set initial state of the search. */
2529 memcpy (top
->state
, state
, dfa_state_size
);
2530 top
->rest
= dfa_lookahead
;
2532 if (targetm
.sched
.first_cycle_multipass_begin
)
2533 targetm
.sched
.first_cycle_multipass_begin (&top
->target_data
,
2535 first_cycle_insn_p
);
2537 /* Count the number of the insns to search among. */
2538 for (all
= i
= 0; i
< n_ready
; i
++)
2542 /* I is the index of the insn to try next. */
2547 if (/* If we've reached a dead end or searched enough of what we have
2550 /* or have nothing else to try... */
2552 /* or should not issue more. */
2553 || top
->n
>= more_issue
)
2555 /* ??? (... || i == n_ready). */
2556 gcc_assert (i
<= n_ready
);
2558 /* We should not issue more than issue_rate instructions. */
2559 gcc_assert (top
->n
<= more_issue
);
2561 if (top
== choice_stack
)
2564 if (best
< top
- choice_stack
)
2569 /* Try to find issued privileged insn. */
2570 while (n
&& !ready_try
[--n
]);
2573 if (/* If all insns are equally good... */
2575 /* Or a privileged insn will be issued. */
2577 /* Then we have a solution. */
2579 best
= top
- choice_stack
;
2580 /* This is the index of the insn issued first in this
2582 *index
= choice_stack
[1].index
;
2583 if (top
->n
== more_issue
|| best
== all
)
2588 /* Set ready-list index to point to the last insn
2589 ('i++' below will advance it to the next insn). */
2595 if (targetm
.sched
.first_cycle_multipass_backtrack
)
2596 targetm
.sched
.first_cycle_multipass_backtrack (&top
->target_data
,
2597 ready_try
, n_ready
);
2600 memcpy (state
, top
->state
, dfa_state_size
);
2602 else if (!ready_try
[i
])
2605 if (tries_num
> max_lookahead_tries
)
2607 insn
= ready_element (ready
, i
);
2608 delay
= state_transition (state
, insn
);
2611 if (state_dead_lock_p (state
)
2612 || insn_finishes_cycle_p (insn
))
2613 /* We won't issue any more instructions in the next
2620 if (memcmp (top
->state
, state
, dfa_state_size
) != 0)
2623 /* Advance to the next choice_entry. */
2625 /* Initialize it. */
2626 top
->rest
= dfa_lookahead
;
2629 memcpy (top
->state
, state
, dfa_state_size
);
2632 if (targetm
.sched
.first_cycle_multipass_issue
)
2633 targetm
.sched
.first_cycle_multipass_issue (&top
->target_data
,
2643 /* Increase ready-list index. */
2647 if (targetm
.sched
.first_cycle_multipass_end
)
2648 targetm
.sched
.first_cycle_multipass_end (best
!= 0
2649 ? &choice_stack
[1].target_data
2652 /* Restore the original state of the DFA. */
2653 memcpy (state
, choice_stack
->state
, dfa_state_size
);
2658 /* The following function chooses insn from READY and modifies
2659 READY. The following function is used only for first
2660 cycle multipass scheduling.
2662 -1 if cycle should be advanced,
2663 0 if INSN_PTR is set to point to the desirable insn,
2664 1 if choose_ready () should be restarted without advancing the cycle. */
2666 choose_ready (struct ready_list
*ready
, bool first_cycle_insn_p
,
2671 if (dbg_cnt (sched_insn
) == false)
2673 rtx insn
= nonscheduled_insns_begin
;
2676 insn
= next_nonnote_insn (insn
);
2678 while (QUEUE_INDEX (insn
) == QUEUE_SCHEDULED
);
2680 if (QUEUE_INDEX (insn
) == QUEUE_READY
)
2681 /* INSN is in the ready_list. */
2683 nonscheduled_insns_begin
= insn
;
2684 ready_remove_insn (insn
);
2689 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2695 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
2696 lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
2697 if (lookahead
<= 0 || SCHED_GROUP_P (ready_element (ready
, 0))
2698 || DEBUG_INSN_P (ready_element (ready
, 0)))
2700 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
2701 *insn_ptr
= ready_remove_first_dispatch (ready
);
2703 *insn_ptr
= ready_remove_first (ready
);
2709 /* Try to choose the better insn. */
2710 int index
= 0, i
, n
;
2712 int try_data
= 1, try_control
= 1;
2715 insn
= ready_element (ready
, 0);
2716 if (INSN_CODE (insn
) < 0)
2718 *insn_ptr
= ready_remove_first (ready
);
2723 && spec_info
->flags
& (PREFER_NON_DATA_SPEC
2724 | PREFER_NON_CONTROL_SPEC
))
2726 for (i
= 0, n
= ready
->n_ready
; i
< n
; i
++)
2731 x
= ready_element (ready
, i
);
2734 if (spec_info
->flags
& PREFER_NON_DATA_SPEC
2735 && !(s
& DATA_SPEC
))
2738 if (!(spec_info
->flags
& PREFER_NON_CONTROL_SPEC
)
2743 if (spec_info
->flags
& PREFER_NON_CONTROL_SPEC
2744 && !(s
& CONTROL_SPEC
))
2747 if (!(spec_info
->flags
& PREFER_NON_DATA_SPEC
) || !try_data
)
2753 ts
= TODO_SPEC (insn
);
2754 if ((ts
& SPECULATIVE
)
2755 && (((!try_data
&& (ts
& DATA_SPEC
))
2756 || (!try_control
&& (ts
& CONTROL_SPEC
)))
2757 || (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard_spec
2759 .first_cycle_multipass_dfa_lookahead_guard_spec (insn
))))
2760 /* Discard speculative instruction that stands first in the ready
2763 change_queue_index (insn
, 1);
2769 for (i
= 1; i
< ready
->n_ready
; i
++)
2771 insn
= ready_element (ready
, i
);
2774 = ((!try_data
&& (TODO_SPEC (insn
) & DATA_SPEC
))
2775 || (!try_control
&& (TODO_SPEC (insn
) & CONTROL_SPEC
)));
2778 /* Let the target filter the search space. */
2779 for (i
= 1; i
< ready
->n_ready
; i
++)
2782 insn
= ready_element (ready
, i
);
2784 /* If this insn is recognizable we should have already
2785 recognized it earlier.
2786 ??? Not very clear where this is supposed to be done.
2788 gcc_checking_assert (INSN_CODE (insn
) >= 0
2789 || recog_memoized (insn
) < 0);
2792 = (/* INSN_CODE check can be omitted here as it is also done later
2794 INSN_CODE (insn
) < 0
2795 || (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
2796 && !targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
2800 if (max_issue (ready
, 1, curr_state
, first_cycle_insn_p
, &index
) == 0)
2802 *insn_ptr
= ready_remove_first (ready
);
2803 if (sched_verbose
>= 4)
2804 fprintf (sched_dump
, ";;\t\tChosen insn (but can't issue) : %s \n",
2805 (*current_sched_info
->print_insn
) (*insn_ptr
, 0));
2810 if (sched_verbose
>= 4)
2811 fprintf (sched_dump
, ";;\t\tChosen insn : %s\n",
2812 (*current_sched_info
->print_insn
)
2813 (ready_element (ready
, index
), 0));
2815 *insn_ptr
= ready_remove (ready
, index
);
2821 /* This function is called when we have successfully scheduled a
2822 block. It uses the schedule stored in the scheduled_insns vector
2823 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
2824 append the scheduled insns; TAIL is the insn after the scheduled
2825 block. TARGET_BB is the argument passed to schedule_block. */
2828 commit_schedule (rtx prev_head
, rtx tail
, basic_block
*target_bb
)
2833 last_scheduled_insn
= prev_head
;
2835 VEC_iterate (rtx
, scheduled_insns
, i
, insn
);
2838 if (control_flow_insn_p (last_scheduled_insn
)
2839 || current_sched_info
->advance_target_bb (*target_bb
, insn
))
2841 *target_bb
= current_sched_info
->advance_target_bb (*target_bb
, 0);
2847 x
= next_real_insn (last_scheduled_insn
);
2849 dump_new_block_header (1, *target_bb
, x
, tail
);
2852 last_scheduled_insn
= bb_note (*target_bb
);
2855 if (current_sched_info
->begin_move_insn
)
2856 (*current_sched_info
->begin_move_insn
) (insn
, last_scheduled_insn
);
2857 move_insn (insn
, last_scheduled_insn
,
2858 current_sched_info
->next_tail
);
2859 if (!DEBUG_INSN_P (insn
))
2860 reemit_notes (insn
);
2861 last_scheduled_insn
= insn
;
2864 VEC_truncate (rtx
, scheduled_insns
, 0);
2867 /* Examine all insns on the ready list and queue those which can't be
2868 issued in this cycle. TEMP_STATE is temporary scheduler state we
2869 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
2870 have been issued for the current cycle, which means it is valid to
2871 issue an asm statement. */
2874 prune_ready_list (state_t temp_state
, bool first_cycle_insn_p
)
2879 for (i
= 0; i
< ready
.n_ready
; i
++)
2881 rtx insn
= ready_element (&ready
, i
);
2883 const char *reason
= "resource conflict";
2885 if (recog_memoized (insn
) < 0)
2887 if (!first_cycle_insn_p
2888 && (GET_CODE (PATTERN (insn
)) == ASM_INPUT
2889 || asm_noperands (PATTERN (insn
)) >= 0))
2893 else if (sched_pressure_p
)
2897 memcpy (temp_state
, curr_state
, dfa_state_size
);
2898 cost
= state_transition (temp_state
, insn
);
2906 ready_remove (&ready
, i
);
2907 queue_insn (insn
, cost
, reason
);
2913 /* Use forward list scheduling to rearrange insns of block pointed to by
2914 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2918 schedule_block (basic_block
*target_bb
)
2921 bool first_cycle_insn_p
;
2923 state_t temp_state
= NULL
; /* It is used for multipass scheduling. */
2924 int sort_p
, advance
, start_clock_var
;
2926 /* Head/tail info for this block. */
2927 rtx prev_head
= current_sched_info
->prev_head
;
2928 rtx next_tail
= current_sched_info
->next_tail
;
2929 rtx head
= NEXT_INSN (prev_head
);
2930 rtx tail
= PREV_INSN (next_tail
);
2932 /* We used to have code to avoid getting parameters moved from hard
2933 argument registers into pseudos.
2935 However, it was removed when it proved to be of marginal benefit
2936 and caused problems because schedule_block and compute_forward_dependences
2937 had different notions of what the "head" insn was. */
2939 gcc_assert (head
!= tail
|| INSN_P (head
));
2941 haifa_recovery_bb_recently_added_p
= false;
2945 dump_new_block_header (0, *target_bb
, head
, tail
);
2947 state_reset (curr_state
);
2949 /* Clear the ready list. */
2950 ready
.first
= ready
.veclen
- 1;
2954 /* It is used for first cycle multipass scheduling. */
2955 temp_state
= alloca (dfa_state_size
);
2957 if (targetm
.sched
.init
)
2958 targetm
.sched
.init (sched_dump
, sched_verbose
, ready
.veclen
);
2960 /* We start inserting insns after PREV_HEAD. */
2961 last_scheduled_insn
= nonscheduled_insns_begin
= prev_head
;
2962 last_nondebug_scheduled_insn
= NULL_RTX
;
2964 gcc_assert ((NOTE_P (last_scheduled_insn
)
2965 || DEBUG_INSN_P (last_scheduled_insn
))
2966 && BLOCK_FOR_INSN (last_scheduled_insn
) == *target_bb
);
2968 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2973 insn_queue
= XALLOCAVEC (rtx
, max_insn_queue_index
+ 1);
2974 memset (insn_queue
, 0, (max_insn_queue_index
+ 1) * sizeof (rtx
));
2976 /* Start just before the beginning of time. */
2979 /* We need queue and ready lists and clock_var be initialized
2980 in try_ready () (which is called through init_ready_list ()). */
2981 (*current_sched_info
->init_ready_list
) ();
2983 /* The algorithm is O(n^2) in the number of ready insns at any given
2984 time in the worst case. Before reload we are more likely to have
2985 big lists so truncate them to a reasonable size. */
2986 if (!reload_completed
2987 && ready
.n_ready
- ready
.n_debug
> MAX_SCHED_READY_INSNS
)
2989 ready_sort (&ready
);
2991 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2992 If there are debug insns, we know they're first. */
2993 for (i
= MAX_SCHED_READY_INSNS
+ ready
.n_debug
; i
< ready
.n_ready
; i
++)
2994 if (!SCHED_GROUP_P (ready_element (&ready
, i
)))
2997 if (sched_verbose
>= 2)
2999 fprintf (sched_dump
,
3000 ";;\t\tReady list on entry: %d insns\n", ready
.n_ready
);
3001 fprintf (sched_dump
,
3002 ";;\t\t before reload => truncated to %d insns\n", i
);
3005 /* Delay all insns past it for 1 cycle. If debug counter is
3006 activated make an exception for the insn right after
3007 nonscheduled_insns_begin. */
3011 if (dbg_cnt (sched_insn
) == false)
3012 skip_insn
= next_nonnote_insn (nonscheduled_insns_begin
);
3014 skip_insn
= NULL_RTX
;
3016 while (i
< ready
.n_ready
)
3020 insn
= ready_remove (&ready
, i
);
3022 if (insn
!= skip_insn
)
3023 queue_insn (insn
, 1, "list truncated");
3026 ready_add (&ready
, skip_insn
, true);
3030 /* Now we can restore basic block notes and maintain precise cfg. */
3031 restore_bb_notes (*target_bb
);
3033 last_clock_var
= -1;
3037 gcc_assert (VEC_length (rtx
, scheduled_insns
) == 0);
3039 /* Loop until all the insns in BB are scheduled. */
3040 while ((*current_sched_info
->schedule_more_p
) ())
3044 start_clock_var
= clock_var
;
3048 advance_one_cycle ();
3050 /* Add to the ready list all pending insns that can be issued now.
3051 If there are no ready insns, increment clock until one
3052 is ready and add all pending insns at that point to the ready
3054 queue_to_ready (&ready
);
3056 gcc_assert (ready
.n_ready
);
3058 if (sched_verbose
>= 2)
3060 fprintf (sched_dump
, ";;\t\tReady list after queue_to_ready: ");
3061 debug_ready_list (&ready
);
3063 advance
-= clock_var
- start_clock_var
;
3065 while (advance
> 0);
3067 if (ready
.n_ready
> 0)
3068 prune_ready_list (temp_state
, true);
3069 if (ready
.n_ready
== 0)
3072 first_cycle_insn_p
= true;
3073 cycle_issued_insns
= 0;
3074 can_issue_more
= issue_rate
;
3081 if (sort_p
&& ready
.n_ready
> 0)
3083 /* Sort the ready list based on priority. This must be
3084 done every iteration through the loop, as schedule_insn
3085 may have readied additional insns that will not be
3086 sorted correctly. */
3087 ready_sort (&ready
);
3089 if (sched_verbose
>= 2)
3091 fprintf (sched_dump
, ";;\t\tReady list after ready_sort: ");
3092 debug_ready_list (&ready
);
3096 /* We don't want md sched reorder to even see debug isns, so put
3097 them out right away. */
3098 if (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0))
3099 && (*current_sched_info
->schedule_more_p
) ())
3101 while (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0)))
3103 rtx insn
= ready_remove_first (&ready
);
3104 gcc_assert (DEBUG_INSN_P (insn
));
3105 (*current_sched_info
->begin_schedule_ready
) (insn
);
3106 VEC_safe_push (rtx
, heap
, scheduled_insns
, insn
);
3107 last_scheduled_insn
= insn
;
3108 advance
= schedule_insn (insn
);
3109 gcc_assert (advance
== 0);
3110 if (ready
.n_ready
> 0)
3111 ready_sort (&ready
);
3115 if (first_cycle_insn_p
&& !ready
.n_ready
)
3118 /* Allow the target to reorder the list, typically for
3119 better instruction bundling. */
3121 && (ready
.n_ready
== 0
3122 || !SCHED_GROUP_P (ready_element (&ready
, 0))))
3124 if (first_cycle_insn_p
&& targetm
.sched
.reorder
)
3126 = targetm
.sched
.reorder (sched_dump
, sched_verbose
,
3127 ready_lastpos (&ready
),
3128 &ready
.n_ready
, clock_var
);
3129 else if (!first_cycle_insn_p
&& targetm
.sched
.reorder2
)
3131 = targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
3133 ? ready_lastpos (&ready
) : NULL
,
3134 &ready
.n_ready
, clock_var
);
3137 restart_choose_ready
:
3138 if (sched_verbose
>= 2)
3140 fprintf (sched_dump
, ";;\tReady list (t = %3d): ",
3142 debug_ready_list (&ready
);
3143 if (sched_pressure_p
)
3144 print_curr_reg_pressure ();
3147 if (ready
.n_ready
== 0
3149 && reload_completed
)
3151 /* Allow scheduling insns directly from the queue in case
3152 there's nothing better to do (ready list is empty) but
3153 there are still vacant dispatch slots in the current cycle. */
3154 if (sched_verbose
>= 6)
3155 fprintf (sched_dump
,";;\t\tSecond chance\n");
3156 memcpy (temp_state
, curr_state
, dfa_state_size
);
3157 if (early_queue_to_ready (temp_state
, &ready
))
3158 ready_sort (&ready
);
3161 if (ready
.n_ready
== 0
3163 || state_dead_lock_p (curr_state
)
3164 || !(*current_sched_info
->schedule_more_p
) ())
3167 /* Select and remove the insn from the ready list. */
3173 res
= choose_ready (&ready
, first_cycle_insn_p
, &insn
);
3179 goto restart_choose_ready
;
3181 gcc_assert (insn
!= NULL_RTX
);
3184 insn
= ready_remove_first (&ready
);
3186 if (sched_pressure_p
&& INSN_TICK (insn
) > clock_var
)
3188 ready_add (&ready
, insn
, true);
3193 if (targetm
.sched
.dfa_new_cycle
3194 && targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
,
3195 insn
, last_clock_var
,
3196 clock_var
, &sort_p
))
3197 /* SORT_P is used by the target to override sorting
3198 of the ready list. This is needed when the target
3199 has modified its internal structures expecting that
3200 the insn will be issued next. As we need the insn
3201 to have the highest priority (so it will be returned by
3202 the ready_remove_first call above), we invoke
3203 ready_add (&ready, insn, true).
3204 But, still, there is one issue: INSN can be later
3205 discarded by scheduler's front end through
3206 current_sched_info->can_schedule_ready_p, hence, won't
3209 ready_add (&ready
, insn
, true);
3215 if (current_sched_info
->can_schedule_ready_p
3216 && ! (*current_sched_info
->can_schedule_ready_p
) (insn
))
3217 /* We normally get here only if we don't want to move
3218 insn from the split block. */
3220 TODO_SPEC (insn
) = (TODO_SPEC (insn
) & ~SPECULATIVE
) | HARD_DEP
;
3221 goto restart_choose_ready
;
3224 /* DECISION is made. */
3226 if (TODO_SPEC (insn
) & SPECULATIVE
)
3227 generate_recovery_code (insn
);
3229 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
3230 targetm
.sched
.dispatch_do (insn
, ADD_TO_DISPATCH_WINDOW
);
3232 /* Update counters, etc in the scheduler's front end. */
3233 (*current_sched_info
->begin_schedule_ready
) (insn
);
3234 VEC_safe_push (rtx
, heap
, scheduled_insns
, insn
);
3235 gcc_assert (NONDEBUG_INSN_P (insn
));
3236 last_nondebug_scheduled_insn
= last_scheduled_insn
= insn
;
3238 if (recog_memoized (insn
) >= 0)
3240 memcpy (temp_state
, curr_state
, dfa_state_size
);
3241 cost
= state_transition (curr_state
, insn
);
3242 if (!sched_pressure_p
)
3243 gcc_assert (cost
< 0);
3244 if (memcmp (temp_state
, curr_state
, dfa_state_size
) != 0)
3245 cycle_issued_insns
++;
3249 asm_p
= (GET_CODE (PATTERN (insn
)) == ASM_INPUT
3250 || asm_noperands (PATTERN (insn
)) >= 0);
3252 if (targetm
.sched
.variable_issue
)
3254 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
3255 insn
, can_issue_more
);
3256 /* A naked CLOBBER or USE generates no instruction, so do
3257 not count them against the issue rate. */
3258 else if (GET_CODE (PATTERN (insn
)) != USE
3259 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3261 advance
= schedule_insn (insn
);
3263 /* After issuing an asm insn we should start a new cycle. */
3264 if (advance
== 0 && asm_p
)
3269 first_cycle_insn_p
= false;
3270 if (ready
.n_ready
> 0)
3271 prune_ready_list (temp_state
, false);
3278 fprintf (sched_dump
, ";;\tReady list (final): ");
3279 debug_ready_list (&ready
);
3282 if (current_sched_info
->queue_must_finish_empty
)
3283 /* Sanity check -- queue must be empty now. Meaningless if region has
3285 gcc_assert (!q_size
&& !ready
.n_ready
&& !ready
.n_debug
);
3288 /* We must maintain QUEUE_INDEX between blocks in region. */
3289 for (i
= ready
.n_ready
- 1; i
>= 0; i
--)
3293 x
= ready_element (&ready
, i
);
3294 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
3295 TODO_SPEC (x
) = (TODO_SPEC (x
) & ~SPECULATIVE
) | HARD_DEP
;
3299 for (i
= 0; i
<= max_insn_queue_index
; i
++)
3302 for (link
= insn_queue
[i
]; link
; link
= XEXP (link
, 1))
3307 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
3308 TODO_SPEC (x
) = (TODO_SPEC (x
) & ~SPECULATIVE
) | HARD_DEP
;
3310 free_INSN_LIST_list (&insn_queue
[i
]);
3314 commit_schedule (prev_head
, tail
, target_bb
);
3316 fprintf (sched_dump
, ";; total time = %d\n", clock_var
);
3318 if (!current_sched_info
->queue_must_finish_empty
3319 || haifa_recovery_bb_recently_added_p
)
3321 /* INSN_TICK (minimum clock tick at which the insn becomes
3322 ready) may be not correct for the insn in the subsequent
3323 blocks of the region. We should use a correct value of
3324 `clock_var' or modify INSN_TICK. It is better to keep
3325 clock_var value equal to 0 at the start of a basic block.
3326 Therefore we modify INSN_TICK here. */
3327 fix_inter_tick (NEXT_INSN (prev_head
), last_scheduled_insn
);
3330 if (targetm
.sched
.finish
)
3332 targetm
.sched
.finish (sched_dump
, sched_verbose
);
3333 /* Target might have added some instructions to the scheduled block
3334 in its md_finish () hook. These new insns don't have any data
3335 initialized and to identify them we extend h_i_d so that they'll
3337 sched_extend_luids ();
3341 fprintf (sched_dump
, ";; new head = %d\n;; new tail = %d\n\n",
3342 INSN_UID (head
), INSN_UID (tail
));
3344 /* Update head/tail boundaries. */
3345 head
= NEXT_INSN (prev_head
);
3346 tail
= last_scheduled_insn
;
3348 head
= restore_other_notes (head
, NULL
);
3350 current_sched_info
->head
= head
;
3351 current_sched_info
->tail
= tail
;
3354 /* Set_priorities: compute priority of each insn in the block. */
3357 set_priorities (rtx head
, rtx tail
)
3361 int sched_max_insns_priority
=
3362 current_sched_info
->sched_max_insns_priority
;
3365 if (head
== tail
&& ! INSN_P (head
))
3370 prev_head
= PREV_INSN (head
);
3371 for (insn
= tail
; insn
!= prev_head
; insn
= PREV_INSN (insn
))
3377 (void) priority (insn
);
3379 gcc_assert (INSN_PRIORITY_KNOWN (insn
));
3381 sched_max_insns_priority
= MAX (sched_max_insns_priority
,
3382 INSN_PRIORITY (insn
));
3385 current_sched_info
->sched_max_insns_priority
= sched_max_insns_priority
;
3390 /* Set dump and sched_verbose for the desired debugging output. If no
3391 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3392 For -fsched-verbose=N, N>=10, print everything to stderr. */
3394 setup_sched_dump (void)
3396 sched_verbose
= sched_verbose_param
;
3397 if (sched_verbose_param
== 0 && dump_file
)
3399 sched_dump
= ((sched_verbose_param
>= 10 || !dump_file
)
3400 ? stderr
: dump_file
);
3403 /* Initialize some global state for the scheduler. This function works
3404 with the common data shared between all the schedulers. It is called
3405 from the scheduler specific initialization routine. */
3410 /* Disable speculative loads in their presence if cc0 defined. */
3412 flag_schedule_speculative_load
= 0;
3415 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
3416 targetm
.sched
.dispatch_do (NULL_RTX
, DISPATCH_INIT
);
3418 sched_pressure_p
= (flag_sched_pressure
&& ! reload_completed
3419 && common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
);
3421 if (sched_pressure_p
)
3422 ira_setup_eliminable_regset ();
3424 /* Initialize SPEC_INFO. */
3425 if (targetm
.sched
.set_sched_flags
)
3427 spec_info
= &spec_info_var
;
3428 targetm
.sched
.set_sched_flags (spec_info
);
3430 if (spec_info
->mask
!= 0)
3432 spec_info
->data_weakness_cutoff
=
3433 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
) * MAX_DEP_WEAK
) / 100;
3434 spec_info
->control_weakness_cutoff
=
3435 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
)
3436 * REG_BR_PROB_BASE
) / 100;
3439 /* So we won't read anything accidentally. */
3444 /* So we won't read anything accidentally. */
3447 /* Initialize issue_rate. */
3448 if (targetm
.sched
.issue_rate
)
3449 issue_rate
= targetm
.sched
.issue_rate ();
3453 if (cached_issue_rate
!= issue_rate
)
3455 cached_issue_rate
= issue_rate
;
3456 /* To invalidate max_lookahead_tries: */
3457 cached_first_cycle_multipass_dfa_lookahead
= 0;
3460 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
3461 dfa_lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
3465 if (targetm
.sched
.init_dfa_pre_cycle_insn
)
3466 targetm
.sched
.init_dfa_pre_cycle_insn ();
3468 if (targetm
.sched
.init_dfa_post_cycle_insn
)
3469 targetm
.sched
.init_dfa_post_cycle_insn ();
3472 dfa_state_size
= state_size ();
3474 init_alias_analysis ();
3476 df_set_flags (DF_LR_RUN_DCE
);
3477 df_note_add_problem ();
3479 /* More problems needed for interloop dep calculation in SMS. */
3480 if (common_sched_info
->sched_pass_id
== SCHED_SMS_PASS
)
3482 df_rd_add_problem ();
3483 df_chain_add_problem (DF_DU_CHAIN
+ DF_UD_CHAIN
);
3488 /* Do not run DCE after reload, as this can kill nops inserted
3490 if (reload_completed
)
3491 df_clear_flags (DF_LR_RUN_DCE
);
3493 regstat_compute_calls_crossed ();
3495 if (targetm
.sched
.init_global
)
3496 targetm
.sched
.init_global (sched_dump
, sched_verbose
, get_max_uid () + 1);
3498 if (sched_pressure_p
)
3500 int i
, max_regno
= max_reg_num ();
3502 ira_set_pseudo_classes (sched_verbose
? sched_dump
: NULL
);
3503 sched_regno_pressure_class
3504 = (enum reg_class
*) xmalloc (max_regno
* sizeof (enum reg_class
));
3505 for (i
= 0; i
< max_regno
; i
++)
3506 sched_regno_pressure_class
[i
]
3507 = (i
< FIRST_PSEUDO_REGISTER
3508 ? ira_pressure_class_translate
[REGNO_REG_CLASS (i
)]
3509 : ira_pressure_class_translate
[reg_allocno_class (i
)]);
3510 curr_reg_live
= BITMAP_ALLOC (NULL
);
3511 saved_reg_live
= BITMAP_ALLOC (NULL
);
3512 region_ref_regs
= BITMAP_ALLOC (NULL
);
3515 curr_state
= xmalloc (dfa_state_size
);
3518 static void haifa_init_only_bb (basic_block
, basic_block
);
3520 /* Initialize data structures specific to the Haifa scheduler. */
3522 haifa_sched_init (void)
3524 setup_sched_dump ();
3527 scheduled_insns
= VEC_alloc (rtx
, heap
, 0);
3529 if (spec_info
!= NULL
)
3531 sched_deps_info
->use_deps_list
= 1;
3532 sched_deps_info
->generate_spec_deps
= 1;
3535 /* Initialize luids, dependency caches, target and h_i_d for the
3538 bb_vec_t bbs
= VEC_alloc (basic_block
, heap
, n_basic_blocks
);
3544 VEC_quick_push (basic_block
, bbs
, bb
);
3545 sched_init_luids (bbs
);
3546 sched_deps_init (true);
3547 sched_extend_target ();
3548 haifa_init_h_i_d (bbs
);
3550 VEC_free (basic_block
, heap
, bbs
);
3553 sched_init_only_bb
= haifa_init_only_bb
;
3554 sched_split_block
= sched_split_block_1
;
3555 sched_create_empty_bb
= sched_create_empty_bb_1
;
3556 haifa_recovery_bb_ever_added_p
= false;
3558 #ifdef ENABLE_CHECKING
3559 /* This is used preferably for finding bugs in check_cfg () itself.
3560 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3561 assumes that the last insn in the last bb has a non-null successor. */
3565 nr_begin_data
= nr_begin_control
= nr_be_in_data
= nr_be_in_control
= 0;
3566 before_recovery
= 0;
3570 /* Finish work with the data specific to the Haifa scheduler. */
3572 haifa_sched_finish (void)
3574 sched_create_empty_bb
= NULL
;
3575 sched_split_block
= NULL
;
3576 sched_init_only_bb
= NULL
;
3578 if (spec_info
&& spec_info
->dump
)
3580 char c
= reload_completed
? 'a' : 'b';
3582 fprintf (spec_info
->dump
,
3583 ";; %s:\n", current_function_name ());
3585 fprintf (spec_info
->dump
,
3586 ";; Procedure %cr-begin-data-spec motions == %d\n",
3588 fprintf (spec_info
->dump
,
3589 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3591 fprintf (spec_info
->dump
,
3592 ";; Procedure %cr-begin-control-spec motions == %d\n",
3593 c
, nr_begin_control
);
3594 fprintf (spec_info
->dump
,
3595 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3596 c
, nr_be_in_control
);
3599 VEC_free (rtx
, heap
, scheduled_insns
);
3601 /* Finalize h_i_d, dependency caches, and luids for the whole
3602 function. Target will be finalized in md_global_finish (). */
3603 sched_deps_finish ();
3604 sched_finish_luids ();
3605 current_sched_info
= NULL
;
3609 /* Free global data used during insn scheduling. This function works with
3610 the common data shared between the schedulers. */
3615 haifa_finish_h_i_d ();
3616 if (sched_pressure_p
)
3618 free (sched_regno_pressure_class
);
3619 BITMAP_FREE (region_ref_regs
);
3620 BITMAP_FREE (saved_reg_live
);
3621 BITMAP_FREE (curr_reg_live
);
3625 if (targetm
.sched
.finish_global
)
3626 targetm
.sched
.finish_global (sched_dump
, sched_verbose
);
3628 end_alias_analysis ();
3630 regstat_free_calls_crossed ();
3634 #ifdef ENABLE_CHECKING
3635 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3636 if (!reload_completed
)
3641 /* Fix INSN_TICKs of the instructions in the current block as well as
3642 INSN_TICKs of their dependents.
3643 HEAD and TAIL are the begin and the end of the current scheduled block. */
3645 fix_inter_tick (rtx head
, rtx tail
)
3647 /* Set of instructions with corrected INSN_TICK. */
3648 bitmap_head processed
;
3649 /* ??? It is doubtful if we should assume that cycle advance happens on
3650 basic block boundaries. Basically insns that are unconditionally ready
3651 on the start of the block are more preferable then those which have
3652 a one cycle dependency over insn from the previous block. */
3653 int next_clock
= clock_var
+ 1;
3655 bitmap_initialize (&processed
, 0);
3657 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3658 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3659 across different blocks. */
3660 for (tail
= NEXT_INSN (tail
); head
!= tail
; head
= NEXT_INSN (head
))
3665 sd_iterator_def sd_it
;
3668 tick
= INSN_TICK (head
);
3669 gcc_assert (tick
>= MIN_TICK
);
3671 /* Fix INSN_TICK of instruction from just scheduled block. */
3672 if (bitmap_set_bit (&processed
, INSN_LUID (head
)))
3676 if (tick
< MIN_TICK
)
3679 INSN_TICK (head
) = tick
;
3682 FOR_EACH_DEP (head
, SD_LIST_RES_FORW
, sd_it
, dep
)
3686 next
= DEP_CON (dep
);
3687 tick
= INSN_TICK (next
);
3689 if (tick
!= INVALID_TICK
3690 /* If NEXT has its INSN_TICK calculated, fix it.
3691 If not - it will be properly calculated from
3692 scratch later in fix_tick_ready. */
3693 && bitmap_set_bit (&processed
, INSN_LUID (next
)))
3697 if (tick
< MIN_TICK
)
3700 if (tick
> INTER_TICK (next
))
3701 INTER_TICK (next
) = tick
;
3703 tick
= INTER_TICK (next
);
3705 INSN_TICK (next
) = tick
;
3710 bitmap_clear (&processed
);
3713 static int haifa_speculate_insn (rtx
, ds_t
, rtx
*);
3715 /* Check if NEXT is ready to be added to the ready or queue list.
3716 If "yes", add it to the proper list.
3718 -1 - is not ready yet,
3719 0 - added to the ready list,
3720 0 < N - queued for N cycles. */
3722 try_ready (rtx next
)
3726 ts
= &TODO_SPEC (next
);
3729 gcc_assert (!(old_ts
& ~(SPECULATIVE
| HARD_DEP
))
3730 && ((old_ts
& HARD_DEP
)
3731 || (old_ts
& SPECULATIVE
)));
3733 if (sd_lists_empty_p (next
, SD_LIST_BACK
))
3734 /* NEXT has all its dependencies resolved. */
3736 /* Remove HARD_DEP bit from NEXT's status. */
3739 if (current_sched_info
->flags
& DO_SPECULATION
)
3740 /* Remove all speculative bits from NEXT's status. */
3741 *ts
&= ~SPECULATIVE
;
3745 /* One of the NEXT's dependencies has been resolved.
3746 Recalculate NEXT's status. */
3748 *ts
&= ~SPECULATIVE
& ~HARD_DEP
;
3750 if (sd_lists_empty_p (next
, SD_LIST_HARD_BACK
))
3751 /* Now we've got NEXT with speculative deps only.
3752 1. Look at the deps to see what we have to do.
3753 2. Check if we can do 'todo'. */
3755 sd_iterator_def sd_it
;
3757 bool first_p
= true;
3759 FOR_EACH_DEP (next
, SD_LIST_BACK
, sd_it
, dep
)
3761 ds_t ds
= DEP_STATUS (dep
) & SPECULATIVE
;
3763 if (DEBUG_INSN_P (DEP_PRO (dep
))
3764 && !DEBUG_INSN_P (next
))
3774 *ts
= ds_merge (*ts
, ds
);
3777 if (ds_weak (*ts
) < spec_info
->data_weakness_cutoff
)
3778 /* Too few points. */
3779 *ts
= (*ts
& ~SPECULATIVE
) | HARD_DEP
;
3786 gcc_assert (*ts
== old_ts
3787 && QUEUE_INDEX (next
) == QUEUE_NOWHERE
);
3788 else if (current_sched_info
->new_ready
)
3789 *ts
= current_sched_info
->new_ready (next
, *ts
);
3791 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3792 have its original pattern or changed (speculative) one. This is due
3793 to changing ebb in region scheduling.
3794 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3795 has speculative pattern.
3797 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3798 control-speculative NEXT could have been discarded by sched-rgn.c
3799 (the same case as when discarded by can_schedule_ready_p ()). */
3801 if ((*ts
& SPECULATIVE
)
3802 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3803 need to change anything. */
3809 gcc_assert ((*ts
& SPECULATIVE
) && !(*ts
& ~SPECULATIVE
));
3811 res
= haifa_speculate_insn (next
, *ts
, &new_pat
);
3816 /* It would be nice to change DEP_STATUS of all dependences,
3817 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3818 so we won't reanalyze anything. */
3819 *ts
= (*ts
& ~SPECULATIVE
) | HARD_DEP
;
3823 /* We follow the rule, that every speculative insn
3824 has non-null ORIG_PAT. */
3825 if (!ORIG_PAT (next
))
3826 ORIG_PAT (next
) = PATTERN (next
);
3830 if (!ORIG_PAT (next
))
3831 /* If we gonna to overwrite the original pattern of insn,
3833 ORIG_PAT (next
) = PATTERN (next
);
3835 haifa_change_pattern (next
, new_pat
);
3843 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3844 either correct (*ts & SPECULATIVE),
3845 or we simply don't care (*ts & HARD_DEP). */
3847 gcc_assert (!ORIG_PAT (next
)
3848 || !IS_SPECULATION_BRANCHY_CHECK_P (next
));
3852 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3853 control-speculative NEXT could have been discarded by sched-rgn.c
3854 (the same case as when discarded by can_schedule_ready_p ()). */
3855 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3857 change_queue_index (next
, QUEUE_NOWHERE
);
3860 else if (!(*ts
& BEGIN_SPEC
) && ORIG_PAT (next
) && !IS_SPECULATION_CHECK_P (next
))
3861 /* We should change pattern of every previously speculative
3862 instruction - and we determine if NEXT was speculative by using
3863 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3864 pat too, so skip them. */
3866 haifa_change_pattern (next
, ORIG_PAT (next
));
3867 ORIG_PAT (next
) = 0;
3870 if (sched_verbose
>= 2)
3872 int s
= TODO_SPEC (next
);
3874 fprintf (sched_dump
, ";;\t\tdependencies resolved: insn %s",
3875 (*current_sched_info
->print_insn
) (next
, 0));
3877 if (spec_info
&& spec_info
->dump
)
3880 fprintf (spec_info
->dump
, "; data-spec;");
3881 if (s
& BEGIN_CONTROL
)
3882 fprintf (spec_info
->dump
, "; control-spec;");
3883 if (s
& BE_IN_CONTROL
)
3884 fprintf (spec_info
->dump
, "; in-control-spec;");
3887 fprintf (sched_dump
, "\n");
3890 adjust_priority (next
);
3892 return fix_tick_ready (next
);
3895 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3897 fix_tick_ready (rtx next
)
3901 if (!DEBUG_INSN_P (next
) && !sd_lists_empty_p (next
, SD_LIST_RES_BACK
))
3904 sd_iterator_def sd_it
;
3907 tick
= INSN_TICK (next
);
3908 /* if tick is not equal to INVALID_TICK, then update
3909 INSN_TICK of NEXT with the most recent resolved dependence
3910 cost. Otherwise, recalculate from scratch. */
3911 full_p
= (tick
== INVALID_TICK
);
3913 FOR_EACH_DEP (next
, SD_LIST_RES_BACK
, sd_it
, dep
)
3915 rtx pro
= DEP_PRO (dep
);
3918 gcc_assert (INSN_TICK (pro
) >= MIN_TICK
);
3920 tick1
= INSN_TICK (pro
) + dep_cost (dep
);
3931 INSN_TICK (next
) = tick
;
3933 delay
= tick
- clock_var
;
3934 if (delay
<= 0 || sched_pressure_p
)
3935 delay
= QUEUE_READY
;
3937 change_queue_index (next
, delay
);
3942 /* Move NEXT to the proper queue list with (DELAY >= 1),
3943 or add it to the ready list (DELAY == QUEUE_READY),
3944 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3946 change_queue_index (rtx next
, int delay
)
3948 int i
= QUEUE_INDEX (next
);
3950 gcc_assert (QUEUE_NOWHERE
<= delay
&& delay
<= max_insn_queue_index
3952 gcc_assert (i
!= QUEUE_SCHEDULED
);
3954 if ((delay
> 0 && NEXT_Q_AFTER (q_ptr
, delay
) == i
)
3955 || (delay
< 0 && delay
== i
))
3956 /* We have nothing to do. */
3959 /* Remove NEXT from wherever it is now. */
3960 if (i
== QUEUE_READY
)
3961 ready_remove_insn (next
);
3963 queue_remove (next
);
3965 /* Add it to the proper place. */
3966 if (delay
== QUEUE_READY
)
3967 ready_add (readyp
, next
, false);
3968 else if (delay
>= 1)
3969 queue_insn (next
, delay
, "change queue index");
3971 if (sched_verbose
>= 2)
3973 fprintf (sched_dump
, ";;\t\ttick updated: insn %s",
3974 (*current_sched_info
->print_insn
) (next
, 0));
3976 if (delay
== QUEUE_READY
)
3977 fprintf (sched_dump
, " into ready\n");
3978 else if (delay
>= 1)
3979 fprintf (sched_dump
, " into queue with cost=%d\n", delay
);
3981 fprintf (sched_dump
, " removed from ready or queue lists\n");
3985 static int sched_ready_n_insns
= -1;
3987 /* Initialize per region data structures. */
3989 sched_extend_ready_list (int new_sched_ready_n_insns
)
3993 if (sched_ready_n_insns
== -1)
3994 /* At the first call we need to initialize one more choice_stack
3998 sched_ready_n_insns
= 0;
3999 VEC_reserve (rtx
, heap
, scheduled_insns
, new_sched_ready_n_insns
);
4002 i
= sched_ready_n_insns
+ 1;
4004 ready
.veclen
= new_sched_ready_n_insns
+ issue_rate
;
4005 ready
.vec
= XRESIZEVEC (rtx
, ready
.vec
, ready
.veclen
);
4007 gcc_assert (new_sched_ready_n_insns
>= sched_ready_n_insns
);
4009 ready_try
= (char *) xrecalloc (ready_try
, new_sched_ready_n_insns
,
4010 sched_ready_n_insns
, sizeof (*ready_try
));
4012 /* We allocate +1 element to save initial state in the choice_stack[0]
4014 choice_stack
= XRESIZEVEC (struct choice_entry
, choice_stack
,
4015 new_sched_ready_n_insns
+ 1);
4017 for (; i
<= new_sched_ready_n_insns
; i
++)
4019 choice_stack
[i
].state
= xmalloc (dfa_state_size
);
4021 if (targetm
.sched
.first_cycle_multipass_init
)
4022 targetm
.sched
.first_cycle_multipass_init (&(choice_stack
[i
]
4026 sched_ready_n_insns
= new_sched_ready_n_insns
;
4029 /* Free per region data structures. */
4031 sched_finish_ready_list (void)
4042 for (i
= 0; i
<= sched_ready_n_insns
; i
++)
4044 if (targetm
.sched
.first_cycle_multipass_fini
)
4045 targetm
.sched
.first_cycle_multipass_fini (&(choice_stack
[i
]
4048 free (choice_stack
[i
].state
);
4050 free (choice_stack
);
4051 choice_stack
= NULL
;
4053 sched_ready_n_insns
= -1;
4057 haifa_luid_for_non_insn (rtx x
)
4059 gcc_assert (NOTE_P (x
) || LABEL_P (x
));
4064 /* Generates recovery code for INSN. */
4066 generate_recovery_code (rtx insn
)
4068 if (TODO_SPEC (insn
) & BEGIN_SPEC
)
4069 begin_speculative_block (insn
);
4071 /* Here we have insn with no dependencies to
4072 instructions other then CHECK_SPEC ones. */
4074 if (TODO_SPEC (insn
) & BE_IN_SPEC
)
4075 add_to_speculative_block (insn
);
4079 Tries to add speculative dependencies of type FS between instructions
4080 in deps_list L and TWIN. */
4082 process_insn_forw_deps_be_in_spec (rtx insn
, rtx twin
, ds_t fs
)
4084 sd_iterator_def sd_it
;
4087 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
4092 consumer
= DEP_CON (dep
);
4094 ds
= DEP_STATUS (dep
);
4096 if (/* If we want to create speculative dep. */
4098 /* And we can do that because this is a true dep. */
4099 && (ds
& DEP_TYPES
) == DEP_TRUE
)
4101 gcc_assert (!(ds
& BE_IN_SPEC
));
4103 if (/* If this dep can be overcome with 'begin speculation'. */
4105 /* Then we have a choice: keep the dep 'begin speculative'
4106 or transform it into 'be in speculative'. */
4108 if (/* In try_ready we assert that if insn once became ready
4109 it can be removed from the ready (or queue) list only
4110 due to backend decision. Hence we can't let the
4111 probability of the speculative dep to decrease. */
4112 ds_weak (ds
) <= ds_weak (fs
))
4116 new_ds
= (ds
& ~BEGIN_SPEC
) | fs
;
4118 if (/* consumer can 'be in speculative'. */
4119 sched_insn_is_legitimate_for_speculation_p (consumer
,
4121 /* Transform it to be in speculative. */
4126 /* Mark the dep as 'be in speculative'. */
4131 dep_def _new_dep
, *new_dep
= &_new_dep
;
4133 init_dep_1 (new_dep
, twin
, consumer
, DEP_TYPE (dep
), ds
);
4134 sd_add_dep (new_dep
, false);
4139 /* Generates recovery code for BEGIN speculative INSN. */
4141 begin_speculative_block (rtx insn
)
4143 if (TODO_SPEC (insn
) & BEGIN_DATA
)
4145 if (TODO_SPEC (insn
) & BEGIN_CONTROL
)
4148 create_check_block_twin (insn
, false);
4150 TODO_SPEC (insn
) &= ~BEGIN_SPEC
;
4153 static void haifa_init_insn (rtx
);
4155 /* Generates recovery code for BE_IN speculative INSN. */
4157 add_to_speculative_block (rtx insn
)
4160 sd_iterator_def sd_it
;
4163 rtx_vec_t priorities_roots
;
4165 ts
= TODO_SPEC (insn
);
4166 gcc_assert (!(ts
& ~BE_IN_SPEC
));
4168 if (ts
& BE_IN_DATA
)
4170 if (ts
& BE_IN_CONTROL
)
4173 TODO_SPEC (insn
) &= ~BE_IN_SPEC
;
4174 gcc_assert (!TODO_SPEC (insn
));
4176 DONE_SPEC (insn
) |= ts
;
4178 /* First we convert all simple checks to branchy. */
4179 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4180 sd_iterator_cond (&sd_it
, &dep
);)
4182 rtx check
= DEP_PRO (dep
);
4184 if (IS_SPECULATION_SIMPLE_CHECK_P (check
))
4186 create_check_block_twin (check
, true);
4188 /* Restart search. */
4189 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4192 /* Continue search. */
4193 sd_iterator_next (&sd_it
);
4196 priorities_roots
= NULL
;
4197 clear_priorities (insn
, &priorities_roots
);
4204 /* Get the first backward dependency of INSN. */
4205 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4206 if (!sd_iterator_cond (&sd_it
, &dep
))
4207 /* INSN has no backward dependencies left. */
4210 gcc_assert ((DEP_STATUS (dep
) & BEGIN_SPEC
) == 0
4211 && (DEP_STATUS (dep
) & BE_IN_SPEC
) != 0
4212 && (DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
4214 check
= DEP_PRO (dep
);
4216 gcc_assert (!IS_SPECULATION_CHECK_P (check
) && !ORIG_PAT (check
)
4217 && QUEUE_INDEX (check
) == QUEUE_NOWHERE
);
4219 rec
= BLOCK_FOR_INSN (check
);
4221 twin
= emit_insn_before (copy_insn (PATTERN (insn
)), BB_END (rec
));
4222 haifa_init_insn (twin
);
4224 sd_copy_back_deps (twin
, insn
, true);
4226 if (sched_verbose
&& spec_info
->dump
)
4227 /* INSN_BB (insn) isn't determined for twin insns yet.
4228 So we can't use current_sched_info->print_insn. */
4229 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
4230 INSN_UID (twin
), rec
->index
);
4232 twins
= alloc_INSN_LIST (twin
, twins
);
4234 /* Add dependences between TWIN and all appropriate
4235 instructions from REC. */
4236 FOR_EACH_DEP (insn
, SD_LIST_SPEC_BACK
, sd_it
, dep
)
4238 rtx pro
= DEP_PRO (dep
);
4240 gcc_assert (DEP_TYPE (dep
) == REG_DEP_TRUE
);
4242 /* INSN might have dependencies from the instructions from
4243 several recovery blocks. At this iteration we process those
4244 producers that reside in REC. */
4245 if (BLOCK_FOR_INSN (pro
) == rec
)
4247 dep_def _new_dep
, *new_dep
= &_new_dep
;
4249 init_dep (new_dep
, pro
, twin
, REG_DEP_TRUE
);
4250 sd_add_dep (new_dep
, false);
4254 process_insn_forw_deps_be_in_spec (insn
, twin
, ts
);
4256 /* Remove all dependencies between INSN and insns in REC. */
4257 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4258 sd_iterator_cond (&sd_it
, &dep
);)
4260 rtx pro
= DEP_PRO (dep
);
4262 if (BLOCK_FOR_INSN (pro
) == rec
)
4263 sd_delete_dep (sd_it
);
4265 sd_iterator_next (&sd_it
);
4269 /* We couldn't have added the dependencies between INSN and TWINS earlier
4270 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4275 twin
= XEXP (twins
, 0);
4278 dep_def _new_dep
, *new_dep
= &_new_dep
;
4280 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
4281 sd_add_dep (new_dep
, false);
4284 twin
= XEXP (twins
, 1);
4285 free_INSN_LIST_node (twins
);
4289 calc_priorities (priorities_roots
);
4290 VEC_free (rtx
, heap
, priorities_roots
);
4293 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4295 xrecalloc (void *p
, size_t new_nmemb
, size_t old_nmemb
, size_t size
)
4297 gcc_assert (new_nmemb
>= old_nmemb
);
4298 p
= XRESIZEVAR (void, p
, new_nmemb
* size
);
4299 memset (((char *) p
) + old_nmemb
* size
, 0, (new_nmemb
- old_nmemb
) * size
);
4304 Find fallthru edge from PRED. */
4306 find_fallthru_edge_from (basic_block pred
)
4311 succ
= pred
->next_bb
;
4312 gcc_assert (succ
->prev_bb
== pred
);
4314 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
4316 e
= find_fallthru_edge (pred
->succs
);
4320 gcc_assert (e
->dest
== succ
);
4326 e
= find_fallthru_edge (succ
->preds
);
4330 gcc_assert (e
->src
== pred
);
4338 /* Extend per basic block data structures. */
4340 sched_extend_bb (void)
4344 /* The following is done to keep current_sched_info->next_tail non null. */
4345 insn
= BB_END (EXIT_BLOCK_PTR
->prev_bb
);
4346 if (NEXT_INSN (insn
) == 0
4349 /* Don't emit a NOTE if it would end up before a BARRIER. */
4350 && !BARRIER_P (NEXT_INSN (insn
))))
4352 rtx note
= emit_note_after (NOTE_INSN_DELETED
, insn
);
4353 /* Make insn appear outside BB. */
4354 set_block_for_insn (note
, NULL
);
4355 BB_END (EXIT_BLOCK_PTR
->prev_bb
) = insn
;
4359 /* Init per basic block data structures. */
4361 sched_init_bbs (void)
4366 /* Initialize BEFORE_RECOVERY variable. */
4368 init_before_recovery (basic_block
*before_recovery_ptr
)
4373 last
= EXIT_BLOCK_PTR
->prev_bb
;
4374 e
= find_fallthru_edge_from (last
);
4378 /* We create two basic blocks:
4379 1. Single instruction block is inserted right after E->SRC
4381 2. Empty block right before EXIT_BLOCK.
4382 Between these two blocks recovery blocks will be emitted. */
4384 basic_block single
, empty
;
4387 /* If the fallthrough edge to exit we've found is from the block we've
4388 created before, don't do anything more. */
4389 if (last
== after_recovery
)
4392 adding_bb_to_current_region_p
= false;
4394 single
= sched_create_empty_bb (last
);
4395 empty
= sched_create_empty_bb (single
);
4397 /* Add new blocks to the root loop. */
4398 if (current_loops
!= NULL
)
4400 add_bb_to_loop (single
, VEC_index (loop_p
, current_loops
->larray
, 0));
4401 add_bb_to_loop (empty
, VEC_index (loop_p
, current_loops
->larray
, 0));
4404 single
->count
= last
->count
;
4405 empty
->count
= last
->count
;
4406 single
->frequency
= last
->frequency
;
4407 empty
->frequency
= last
->frequency
;
4408 BB_COPY_PARTITION (single
, last
);
4409 BB_COPY_PARTITION (empty
, last
);
4411 redirect_edge_succ (e
, single
);
4412 make_single_succ_edge (single
, empty
, 0);
4413 make_single_succ_edge (empty
, EXIT_BLOCK_PTR
,
4414 EDGE_FALLTHRU
| EDGE_CAN_FALLTHRU
);
4416 label
= block_label (empty
);
4417 x
= emit_jump_insn_after (gen_jump (label
), BB_END (single
));
4418 JUMP_LABEL (x
) = label
;
4419 LABEL_NUSES (label
)++;
4420 haifa_init_insn (x
);
4422 emit_barrier_after (x
);
4424 sched_init_only_bb (empty
, NULL
);
4425 sched_init_only_bb (single
, NULL
);
4428 adding_bb_to_current_region_p
= true;
4429 before_recovery
= single
;
4430 after_recovery
= empty
;
4432 if (before_recovery_ptr
)
4433 *before_recovery_ptr
= before_recovery
;
4435 if (sched_verbose
>= 2 && spec_info
->dump
)
4436 fprintf (spec_info
->dump
,
4437 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4438 last
->index
, single
->index
, empty
->index
);
4441 before_recovery
= last
;
4444 /* Returns new recovery block. */
4446 sched_create_recovery_block (basic_block
*before_recovery_ptr
)
4452 haifa_recovery_bb_recently_added_p
= true;
4453 haifa_recovery_bb_ever_added_p
= true;
4455 init_before_recovery (before_recovery_ptr
);
4457 barrier
= get_last_bb_insn (before_recovery
);
4458 gcc_assert (BARRIER_P (barrier
));
4460 label
= emit_label_after (gen_label_rtx (), barrier
);
4462 rec
= create_basic_block (label
, label
, before_recovery
);
4464 /* A recovery block always ends with an unconditional jump. */
4465 emit_barrier_after (BB_END (rec
));
4467 if (BB_PARTITION (before_recovery
) != BB_UNPARTITIONED
)
4468 BB_SET_PARTITION (rec
, BB_COLD_PARTITION
);
4470 if (sched_verbose
&& spec_info
->dump
)
4471 fprintf (spec_info
->dump
, ";;\t\tGenerated recovery block rec%d\n",
4477 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4478 and emit necessary jumps. */
4480 sched_create_recovery_edges (basic_block first_bb
, basic_block rec
,
4481 basic_block second_bb
)
4487 /* This is fixing of incoming edge. */
4488 /* ??? Which other flags should be specified? */
4489 if (BB_PARTITION (first_bb
) != BB_PARTITION (rec
))
4490 /* Partition type is the same, if it is "unpartitioned". */
4491 edge_flags
= EDGE_CROSSING
;
4495 make_edge (first_bb
, rec
, edge_flags
);
4496 label
= block_label (second_bb
);
4497 jump
= emit_jump_insn_after (gen_jump (label
), BB_END (rec
));
4498 JUMP_LABEL (jump
) = label
;
4499 LABEL_NUSES (label
)++;
4501 if (BB_PARTITION (second_bb
) != BB_PARTITION (rec
))
4502 /* Partition type is the same, if it is "unpartitioned". */
4504 /* Rewritten from cfgrtl.c. */
4505 if (flag_reorder_blocks_and_partition
4506 && targetm
.have_named_sections
)
4508 /* We don't need the same note for the check because
4509 any_condjump_p (check) == true. */
4510 add_reg_note (jump
, REG_CROSSING_JUMP
, NULL_RTX
);
4512 edge_flags
= EDGE_CROSSING
;
4517 make_single_succ_edge (rec
, second_bb
, edge_flags
);
4518 if (dom_info_available_p (CDI_DOMINATORS
))
4519 set_immediate_dominator (CDI_DOMINATORS
, rec
, first_bb
);
4522 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4523 INSN is a simple check, that should be converted to branchy one. */
4525 create_check_block_twin (rtx insn
, bool mutate_p
)
4528 rtx label
, check
, twin
;
4530 sd_iterator_def sd_it
;
4532 dep_def _new_dep
, *new_dep
= &_new_dep
;
4535 gcc_assert (ORIG_PAT (insn
) != NULL_RTX
);
4538 todo_spec
= TODO_SPEC (insn
);
4541 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn
)
4542 && (TODO_SPEC (insn
) & SPECULATIVE
) == 0);
4544 todo_spec
= CHECK_SPEC (insn
);
4547 todo_spec
&= SPECULATIVE
;
4549 /* Create recovery block. */
4550 if (mutate_p
|| targetm
.sched
.needs_block_p (todo_spec
))
4552 rec
= sched_create_recovery_block (NULL
);
4553 label
= BB_HEAD (rec
);
4557 rec
= EXIT_BLOCK_PTR
;
4562 check
= targetm
.sched
.gen_spec_check (insn
, label
, todo_spec
);
4564 if (rec
!= EXIT_BLOCK_PTR
)
4566 /* To have mem_reg alive at the beginning of second_bb,
4567 we emit check BEFORE insn, so insn after splitting
4568 insn will be at the beginning of second_bb, which will
4569 provide us with the correct life information. */
4570 check
= emit_jump_insn_before (check
, insn
);
4571 JUMP_LABEL (check
) = label
;
4572 LABEL_NUSES (label
)++;
4575 check
= emit_insn_before (check
, insn
);
4577 /* Extend data structures. */
4578 haifa_init_insn (check
);
4580 /* CHECK is being added to current region. Extend ready list. */
4581 gcc_assert (sched_ready_n_insns
!= -1);
4582 sched_extend_ready_list (sched_ready_n_insns
+ 1);
4584 if (current_sched_info
->add_remove_insn
)
4585 current_sched_info
->add_remove_insn (insn
, 0);
4587 RECOVERY_BLOCK (check
) = rec
;
4589 if (sched_verbose
&& spec_info
->dump
)
4590 fprintf (spec_info
->dump
, ";;\t\tGenerated check insn : %s\n",
4591 (*current_sched_info
->print_insn
) (check
, 0));
4593 gcc_assert (ORIG_PAT (insn
));
4595 /* Initialize TWIN (twin is a duplicate of original instruction
4596 in the recovery block). */
4597 if (rec
!= EXIT_BLOCK_PTR
)
4599 sd_iterator_def sd_it
;
4602 FOR_EACH_DEP (insn
, SD_LIST_RES_BACK
, sd_it
, dep
)
4603 if ((DEP_STATUS (dep
) & DEP_OUTPUT
) != 0)
4605 struct _dep _dep2
, *dep2
= &_dep2
;
4607 init_dep (dep2
, DEP_PRO (dep
), check
, REG_DEP_TRUE
);
4609 sd_add_dep (dep2
, true);
4612 twin
= emit_insn_after (ORIG_PAT (insn
), BB_END (rec
));
4613 haifa_init_insn (twin
);
4615 if (sched_verbose
&& spec_info
->dump
)
4616 /* INSN_BB (insn) isn't determined for twin insns yet.
4617 So we can't use current_sched_info->print_insn. */
4618 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
4619 INSN_UID (twin
), rec
->index
);
4623 ORIG_PAT (check
) = ORIG_PAT (insn
);
4624 HAS_INTERNAL_DEP (check
) = 1;
4626 /* ??? We probably should change all OUTPUT dependencies to
4630 /* Copy all resolved back dependencies of INSN to TWIN. This will
4631 provide correct value for INSN_TICK (TWIN). */
4632 sd_copy_back_deps (twin
, insn
, true);
4634 if (rec
!= EXIT_BLOCK_PTR
)
4635 /* In case of branchy check, fix CFG. */
4637 basic_block first_bb
, second_bb
;
4640 first_bb
= BLOCK_FOR_INSN (check
);
4641 second_bb
= sched_split_block (first_bb
, check
);
4643 sched_create_recovery_edges (first_bb
, rec
, second_bb
);
4645 sched_init_only_bb (second_bb
, first_bb
);
4646 sched_init_only_bb (rec
, EXIT_BLOCK_PTR
);
4648 jump
= BB_END (rec
);
4649 haifa_init_insn (jump
);
4652 /* Move backward dependences from INSN to CHECK and
4653 move forward dependences from INSN to TWIN. */
4655 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4656 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
4658 rtx pro
= DEP_PRO (dep
);
4661 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4662 check --TRUE--> producer ??? or ANTI ???
4663 twin --TRUE--> producer
4664 twin --ANTI--> check
4666 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4667 check --ANTI--> producer
4668 twin --ANTI--> producer
4669 twin --ANTI--> check
4671 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4672 check ~~TRUE~~> producer
4673 twin ~~TRUE~~> producer
4674 twin --ANTI--> check */
4676 ds
= DEP_STATUS (dep
);
4678 if (ds
& BEGIN_SPEC
)
4680 gcc_assert (!mutate_p
);
4684 init_dep_1 (new_dep
, pro
, check
, DEP_TYPE (dep
), ds
);
4685 sd_add_dep (new_dep
, false);
4687 if (rec
!= EXIT_BLOCK_PTR
)
4689 DEP_CON (new_dep
) = twin
;
4690 sd_add_dep (new_dep
, false);
4694 /* Second, remove backward dependencies of INSN. */
4695 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4696 sd_iterator_cond (&sd_it
, &dep
);)
4698 if ((DEP_STATUS (dep
) & BEGIN_SPEC
)
4700 /* We can delete this dep because we overcome it with
4701 BEGIN_SPECULATION. */
4702 sd_delete_dep (sd_it
);
4704 sd_iterator_next (&sd_it
);
4707 /* Future Speculations. Determine what BE_IN speculations will be like. */
4710 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4713 gcc_assert (!DONE_SPEC (insn
));
4717 ds_t ts
= TODO_SPEC (insn
);
4719 DONE_SPEC (insn
) = ts
& BEGIN_SPEC
;
4720 CHECK_SPEC (check
) = ts
& BEGIN_SPEC
;
4722 /* Luckiness of future speculations solely depends upon initial
4723 BEGIN speculation. */
4724 if (ts
& BEGIN_DATA
)
4725 fs
= set_dep_weak (fs
, BE_IN_DATA
, get_dep_weak (ts
, BEGIN_DATA
));
4726 if (ts
& BEGIN_CONTROL
)
4727 fs
= set_dep_weak (fs
, BE_IN_CONTROL
,
4728 get_dep_weak (ts
, BEGIN_CONTROL
));
4731 CHECK_SPEC (check
) = CHECK_SPEC (insn
);
4733 /* Future speculations: call the helper. */
4734 process_insn_forw_deps_be_in_spec (insn
, twin
, fs
);
4736 if (rec
!= EXIT_BLOCK_PTR
)
4738 /* Which types of dependencies should we use here is,
4739 generally, machine-dependent question... But, for now,
4744 init_dep (new_dep
, insn
, check
, REG_DEP_TRUE
);
4745 sd_add_dep (new_dep
, false);
4747 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
4748 sd_add_dep (new_dep
, false);
4752 if (spec_info
->dump
)
4753 fprintf (spec_info
->dump
, ";;\t\tRemoved simple check : %s\n",
4754 (*current_sched_info
->print_insn
) (insn
, 0));
4756 /* Remove all dependencies of the INSN. */
4758 sd_it
= sd_iterator_start (insn
, (SD_LIST_FORW
4760 | SD_LIST_RES_BACK
));
4761 while (sd_iterator_cond (&sd_it
, &dep
))
4762 sd_delete_dep (sd_it
);
4765 /* If former check (INSN) already was moved to the ready (or queue)
4766 list, add new check (CHECK) there too. */
4767 if (QUEUE_INDEX (insn
) != QUEUE_NOWHERE
)
4770 /* Remove old check from instruction stream and free its
4772 sched_remove_insn (insn
);
4775 init_dep (new_dep
, check
, twin
, REG_DEP_ANTI
);
4776 sd_add_dep (new_dep
, false);
4780 init_dep_1 (new_dep
, insn
, check
, REG_DEP_TRUE
, DEP_TRUE
| DEP_OUTPUT
);
4781 sd_add_dep (new_dep
, false);
4785 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4786 because it'll be done later in add_to_speculative_block. */
4788 rtx_vec_t priorities_roots
= NULL
;
4790 clear_priorities (twin
, &priorities_roots
);
4791 calc_priorities (priorities_roots
);
4792 VEC_free (rtx
, heap
, priorities_roots
);
4796 /* Removes dependency between instructions in the recovery block REC
4797 and usual region instructions. It keeps inner dependences so it
4798 won't be necessary to recompute them. */
4800 fix_recovery_deps (basic_block rec
)
4802 rtx note
, insn
, jump
, ready_list
= 0;
4803 bitmap_head in_ready
;
4806 bitmap_initialize (&in_ready
, 0);
4808 /* NOTE - a basic block note. */
4809 note
= NEXT_INSN (BB_HEAD (rec
));
4810 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
4811 insn
= BB_END (rec
);
4812 gcc_assert (JUMP_P (insn
));
4813 insn
= PREV_INSN (insn
);
4817 sd_iterator_def sd_it
;
4820 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
4821 sd_iterator_cond (&sd_it
, &dep
);)
4823 rtx consumer
= DEP_CON (dep
);
4825 if (BLOCK_FOR_INSN (consumer
) != rec
)
4827 sd_delete_dep (sd_it
);
4829 if (bitmap_set_bit (&in_ready
, INSN_LUID (consumer
)))
4830 ready_list
= alloc_INSN_LIST (consumer
, ready_list
);
4834 gcc_assert ((DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
4836 sd_iterator_next (&sd_it
);
4840 insn
= PREV_INSN (insn
);
4842 while (insn
!= note
);
4844 bitmap_clear (&in_ready
);
4846 /* Try to add instructions to the ready or queue list. */
4847 for (link
= ready_list
; link
; link
= XEXP (link
, 1))
4848 try_ready (XEXP (link
, 0));
4849 free_INSN_LIST_list (&ready_list
);
4851 /* Fixing jump's dependences. */
4852 insn
= BB_HEAD (rec
);
4853 jump
= BB_END (rec
);
4855 gcc_assert (LABEL_P (insn
));
4856 insn
= NEXT_INSN (insn
);
4858 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn
));
4859 add_jump_dependencies (insn
, jump
);
4862 /* Change pattern of INSN to NEW_PAT. */
4864 sched_change_pattern (rtx insn
, rtx new_pat
)
4868 t
= validate_change (insn
, &PATTERN (insn
), new_pat
, 0);
4870 dfa_clear_single_insn_cache (insn
);
4873 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4874 instruction data. */
4876 haifa_change_pattern (rtx insn
, rtx new_pat
)
4878 sched_change_pattern (insn
, new_pat
);
4880 /* Invalidate INSN_COST, so it'll be recalculated. */
4881 INSN_COST (insn
) = -1;
4882 /* Invalidate INSN_TICK, so it'll be recalculated. */
4883 INSN_TICK (insn
) = INVALID_TICK
;
4886 /* -1 - can't speculate,
4887 0 - for speculation with REQUEST mode it is OK to use
4888 current instruction pattern,
4889 1 - need to change pattern for *NEW_PAT to be speculative. */
4891 sched_speculate_insn (rtx insn
, ds_t request
, rtx
*new_pat
)
4893 gcc_assert (current_sched_info
->flags
& DO_SPECULATION
4894 && (request
& SPECULATIVE
)
4895 && sched_insn_is_legitimate_for_speculation_p (insn
, request
));
4897 if ((request
& spec_info
->mask
) != request
)
4900 if (request
& BE_IN_SPEC
4901 && !(request
& BEGIN_SPEC
))
4904 return targetm
.sched
.speculate_insn (insn
, request
, new_pat
);
4908 haifa_speculate_insn (rtx insn
, ds_t request
, rtx
*new_pat
)
4910 gcc_assert (sched_deps_info
->generate_spec_deps
4911 && !IS_SPECULATION_CHECK_P (insn
));
4913 if (HAS_INTERNAL_DEP (insn
)
4914 || SCHED_GROUP_P (insn
))
4917 return sched_speculate_insn (insn
, request
, new_pat
);
4920 /* Print some information about block BB, which starts with HEAD and
4921 ends with TAIL, before scheduling it.
4922 I is zero, if scheduler is about to start with the fresh ebb. */
4924 dump_new_block_header (int i
, basic_block bb
, rtx head
, rtx tail
)
4927 fprintf (sched_dump
,
4928 ";; ======================================================\n");
4930 fprintf (sched_dump
,
4931 ";; =====================ADVANCING TO=====================\n");
4932 fprintf (sched_dump
,
4933 ";; -- basic block %d from %d to %d -- %s reload\n",
4934 bb
->index
, INSN_UID (head
), INSN_UID (tail
),
4935 (reload_completed
? "after" : "before"));
4936 fprintf (sched_dump
,
4937 ";; ======================================================\n");
4938 fprintf (sched_dump
, "\n");
4941 /* Unlink basic block notes and labels and saves them, so they
4942 can be easily restored. We unlink basic block notes in EBB to
4943 provide back-compatibility with the previous code, as target backends
4944 assume, that there'll be only instructions between
4945 current_sched_info->{head and tail}. We restore these notes as soon
4947 FIRST (LAST) is the first (last) basic block in the ebb.
4948 NB: In usual case (FIRST == LAST) nothing is really done. */
4950 unlink_bb_notes (basic_block first
, basic_block last
)
4952 /* We DON'T unlink basic block notes of the first block in the ebb. */
4956 bb_header
= XNEWVEC (rtx
, last_basic_block
);
4958 /* Make a sentinel. */
4959 if (last
->next_bb
!= EXIT_BLOCK_PTR
)
4960 bb_header
[last
->next_bb
->index
] = 0;
4962 first
= first
->next_bb
;
4965 rtx prev
, label
, note
, next
;
4967 label
= BB_HEAD (last
);
4968 if (LABEL_P (label
))
4969 note
= NEXT_INSN (label
);
4972 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
4974 prev
= PREV_INSN (label
);
4975 next
= NEXT_INSN (note
);
4976 gcc_assert (prev
&& next
);
4978 NEXT_INSN (prev
) = next
;
4979 PREV_INSN (next
) = prev
;
4981 bb_header
[last
->index
] = label
;
4986 last
= last
->prev_bb
;
4991 /* Restore basic block notes.
4992 FIRST is the first basic block in the ebb. */
4994 restore_bb_notes (basic_block first
)
4999 /* We DON'T unlink basic block notes of the first block in the ebb. */
5000 first
= first
->next_bb
;
5001 /* Remember: FIRST is actually a second basic block in the ebb. */
5003 while (first
!= EXIT_BLOCK_PTR
5004 && bb_header
[first
->index
])
5006 rtx prev
, label
, note
, next
;
5008 label
= bb_header
[first
->index
];
5009 prev
= PREV_INSN (label
);
5010 next
= NEXT_INSN (prev
);
5012 if (LABEL_P (label
))
5013 note
= NEXT_INSN (label
);
5016 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
5018 bb_header
[first
->index
] = 0;
5020 NEXT_INSN (prev
) = label
;
5021 NEXT_INSN (note
) = next
;
5022 PREV_INSN (next
) = note
;
5024 first
= first
->next_bb
;
5032 Fix CFG after both in- and inter-block movement of
5033 control_flow_insn_p JUMP. */
5035 fix_jump_move (rtx jump
)
5037 basic_block bb
, jump_bb
, jump_bb_next
;
5039 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
5040 jump_bb
= BLOCK_FOR_INSN (jump
);
5041 jump_bb_next
= jump_bb
->next_bb
;
5043 gcc_assert (common_sched_info
->sched_pass_id
== SCHED_EBB_PASS
5044 || IS_SPECULATION_BRANCHY_CHECK_P (jump
));
5046 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next
)))
5047 /* if jump_bb_next is not empty. */
5048 BB_END (jump_bb
) = BB_END (jump_bb_next
);
5050 if (BB_END (bb
) != PREV_INSN (jump
))
5051 /* Then there are instruction after jump that should be placed
5053 BB_END (jump_bb_next
) = BB_END (bb
);
5055 /* Otherwise jump_bb_next is empty. */
5056 BB_END (jump_bb_next
) = NEXT_INSN (BB_HEAD (jump_bb_next
));
5058 /* To make assertion in move_insn happy. */
5059 BB_END (bb
) = PREV_INSN (jump
);
5061 update_bb_for_insn (jump_bb_next
);
5064 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5066 move_block_after_check (rtx jump
)
5068 basic_block bb
, jump_bb
, jump_bb_next
;
5071 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
5072 jump_bb
= BLOCK_FOR_INSN (jump
);
5073 jump_bb_next
= jump_bb
->next_bb
;
5075 update_bb_for_insn (jump_bb
);
5077 gcc_assert (IS_SPECULATION_CHECK_P (jump
)
5078 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next
)));
5080 unlink_block (jump_bb_next
);
5081 link_block (jump_bb_next
, bb
);
5085 move_succs (&(jump_bb
->succs
), bb
);
5086 move_succs (&(jump_bb_next
->succs
), jump_bb
);
5087 move_succs (&t
, jump_bb_next
);
5089 df_mark_solutions_dirty ();
5091 common_sched_info
->fix_recovery_cfg
5092 (bb
->index
, jump_bb
->index
, jump_bb_next
->index
);
5095 /* Helper function for move_block_after_check.
5096 This functions attaches edge vector pointed to by SUCCSP to
5099 move_succs (VEC(edge
,gc
) **succsp
, basic_block to
)
5104 gcc_assert (to
->succs
== 0);
5106 to
->succs
= *succsp
;
5108 FOR_EACH_EDGE (e
, ei
, to
->succs
)
5114 /* Remove INSN from the instruction stream.
5115 INSN should have any dependencies. */
5117 sched_remove_insn (rtx insn
)
5119 sd_finish_insn (insn
);
5121 change_queue_index (insn
, QUEUE_NOWHERE
);
5122 current_sched_info
->add_remove_insn (insn
, 1);
5126 /* Clear priorities of all instructions, that are forward dependent on INSN.
5127 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5128 be invoked to initialize all cleared priorities. */
5130 clear_priorities (rtx insn
, rtx_vec_t
*roots_ptr
)
5132 sd_iterator_def sd_it
;
5134 bool insn_is_root_p
= true;
5136 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
5138 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
5140 rtx pro
= DEP_PRO (dep
);
5142 if (INSN_PRIORITY_STATUS (pro
) >= 0
5143 && QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
)
5145 /* If DEP doesn't contribute to priority then INSN itself should
5146 be added to priority roots. */
5147 if (contributes_to_priority_p (dep
))
5148 insn_is_root_p
= false;
5150 INSN_PRIORITY_STATUS (pro
) = -1;
5151 clear_priorities (pro
, roots_ptr
);
5156 VEC_safe_push (rtx
, heap
, *roots_ptr
, insn
);
5159 /* Recompute priorities of instructions, whose priorities might have been
5160 changed. ROOTS is a vector of instructions whose priority computation will
5161 trigger initialization of all cleared priorities. */
5163 calc_priorities (rtx_vec_t roots
)
5168 FOR_EACH_VEC_ELT (rtx
, roots
, i
, insn
)
5173 /* Add dependences between JUMP and other instructions in the recovery
5174 block. INSN is the first insn the recovery block. */
5176 add_jump_dependencies (rtx insn
, rtx jump
)
5180 insn
= NEXT_INSN (insn
);
5184 if (dep_list_size (insn
) == 0)
5186 dep_def _new_dep
, *new_dep
= &_new_dep
;
5188 init_dep (new_dep
, insn
, jump
, REG_DEP_ANTI
);
5189 sd_add_dep (new_dep
, false);
5194 gcc_assert (!sd_lists_empty_p (jump
, SD_LIST_BACK
));
5197 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5199 bb_note (basic_block bb
)
5203 note
= BB_HEAD (bb
);
5205 note
= NEXT_INSN (note
);
5207 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
5211 #ifdef ENABLE_CHECKING
5212 /* Helper function for check_cfg.
5213 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5216 has_edge_p (VEC(edge
,gc
) *el
, int type
)
5221 FOR_EACH_EDGE (e
, ei
, el
)
5222 if (e
->flags
& type
)
5227 /* Search back, starting at INSN, for an insn that is not a
5228 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5229 no such insn can be found. */
5231 prev_non_location_insn (rtx insn
, rtx head
)
5233 while (insn
!= head
&& NOTE_P (insn
)
5234 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
5235 insn
= PREV_INSN (insn
);
5240 /* Check few properties of CFG between HEAD and TAIL.
5241 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5242 instruction stream. */
5244 check_cfg (rtx head
, rtx tail
)
5248 int not_first
= 0, not_last
;
5251 head
= get_insns ();
5253 tail
= get_last_insn ();
5254 next_tail
= NEXT_INSN (tail
);
5258 not_last
= head
!= tail
;
5261 gcc_assert (NEXT_INSN (PREV_INSN (head
)) == head
);
5263 gcc_assert (PREV_INSN (NEXT_INSN (head
)) == head
);
5266 || (NOTE_INSN_BASIC_BLOCK_P (head
)
5268 || (not_first
&& !LABEL_P (PREV_INSN (head
))))))
5270 gcc_assert (bb
== 0);
5271 bb
= BLOCK_FOR_INSN (head
);
5273 gcc_assert (BB_HEAD (bb
) == head
);
5275 /* This is the case of jump table. See inside_basic_block_p (). */
5276 gcc_assert (LABEL_P (head
) && !inside_basic_block_p (head
));
5281 gcc_assert (!inside_basic_block_p (head
));
5282 head
= NEXT_INSN (head
);
5286 gcc_assert (inside_basic_block_p (head
)
5288 gcc_assert (BLOCK_FOR_INSN (head
) == bb
);
5292 head
= NEXT_INSN (head
);
5293 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head
));
5297 if (control_flow_insn_p (head
))
5299 gcc_assert (prev_non_location_insn (BB_END (bb
), head
)
5302 if (any_uncondjump_p (head
))
5303 gcc_assert (EDGE_COUNT (bb
->succs
) == 1
5304 && BARRIER_P (NEXT_INSN (head
)));
5305 else if (any_condjump_p (head
))
5306 gcc_assert (/* Usual case. */
5307 (EDGE_COUNT (bb
->succs
) > 1
5308 && !BARRIER_P (NEXT_INSN (head
)))
5309 /* Or jump to the next instruction. */
5310 || (EDGE_COUNT (bb
->succs
) == 1
5311 && (BB_HEAD (EDGE_I (bb
->succs
, 0)->dest
)
5312 == JUMP_LABEL (head
))));
5314 if (BB_END (bb
) == head
)
5316 if (EDGE_COUNT (bb
->succs
) > 1)
5317 gcc_assert (control_flow_insn_p (prev_non_location_insn
5318 (head
, BB_HEAD (bb
)))
5319 || has_edge_p (bb
->succs
, EDGE_COMPLEX
));
5323 head
= NEXT_INSN (head
);
5329 while (head
!= next_tail
);
5331 gcc_assert (bb
== 0);
5334 #endif /* ENABLE_CHECKING */
5336 /* Extend data structures for logical insn UID. */
5338 sched_extend_luids (void)
5340 int new_luids_max_uid
= get_max_uid () + 1;
5342 VEC_safe_grow_cleared (int, heap
, sched_luids
, new_luids_max_uid
);
5345 /* Initialize LUID for INSN. */
5347 sched_init_insn_luid (rtx insn
)
5349 int i
= INSN_P (insn
) ? 1 : common_sched_info
->luid_for_non_insn (insn
);
5354 luid
= sched_max_luid
;
5355 sched_max_luid
+= i
;
5360 SET_INSN_LUID (insn
, luid
);
5363 /* Initialize luids for BBS.
5364 The hook common_sched_info->luid_for_non_insn () is used to determine
5365 if notes, labels, etc. need luids. */
5367 sched_init_luids (bb_vec_t bbs
)
5372 sched_extend_luids ();
5373 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
5377 FOR_BB_INSNS (bb
, insn
)
5378 sched_init_insn_luid (insn
);
5384 sched_finish_luids (void)
5386 VEC_free (int, heap
, sched_luids
);
5390 /* Return logical uid of INSN. Helpful while debugging. */
5392 insn_luid (rtx insn
)
5394 return INSN_LUID (insn
);
5397 /* Extend per insn data in the target. */
5399 sched_extend_target (void)
5401 if (targetm
.sched
.h_i_d_extended
)
5402 targetm
.sched
.h_i_d_extended ();
5405 /* Extend global scheduler structures (those, that live across calls to
5406 schedule_block) to include information about just emitted INSN. */
5410 int reserve
= (get_max_uid () + 1
5411 - VEC_length (haifa_insn_data_def
, h_i_d
));
5413 && ! VEC_space (haifa_insn_data_def
, h_i_d
, reserve
))
5415 VEC_safe_grow_cleared (haifa_insn_data_def
, heap
, h_i_d
,
5416 3 * get_max_uid () / 2);
5417 sched_extend_target ();
5421 /* Initialize h_i_d entry of the INSN with default values.
5422 Values, that are not explicitly initialized here, hold zero. */
5424 init_h_i_d (rtx insn
)
5426 if (INSN_LUID (insn
) > 0)
5428 INSN_COST (insn
) = -1;
5429 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
5430 INSN_TICK (insn
) = INVALID_TICK
;
5431 INTER_TICK (insn
) = INVALID_TICK
;
5432 TODO_SPEC (insn
) = HARD_DEP
;
5436 /* Initialize haifa_insn_data for BBS. */
5438 haifa_init_h_i_d (bb_vec_t bbs
)
5444 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
5448 FOR_BB_INSNS (bb
, insn
)
5453 /* Finalize haifa_insn_data. */
5455 haifa_finish_h_i_d (void)
5458 haifa_insn_data_t data
;
5459 struct reg_use_data
*use
, *next
;
5461 FOR_EACH_VEC_ELT (haifa_insn_data_def
, h_i_d
, i
, data
)
5463 free (data
->reg_pressure
);
5464 for (use
= data
->reg_use_list
; use
!= NULL
; use
= next
)
5466 next
= use
->next_insn_use
;
5470 VEC_free (haifa_insn_data_def
, heap
, h_i_d
);
5473 /* Init data for the new insn INSN. */
5475 haifa_init_insn (rtx insn
)
5477 gcc_assert (insn
!= NULL
);
5479 sched_extend_luids ();
5480 sched_init_insn_luid (insn
);
5481 sched_extend_target ();
5482 sched_deps_init (false);
5486 if (adding_bb_to_current_region_p
)
5488 sd_init_insn (insn
);
5490 /* Extend dependency caches by one element. */
5491 extend_dependency_caches (1, false);
5493 if (sched_pressure_p
)
5494 init_insn_reg_pressure_info (insn
);
5497 /* Init data for the new basic block BB which comes after AFTER. */
5499 haifa_init_only_bb (basic_block bb
, basic_block after
)
5501 gcc_assert (bb
!= NULL
);
5505 if (common_sched_info
->add_block
)
5506 /* This changes only data structures of the front-end. */
5507 common_sched_info
->add_block (bb
, after
);
5510 /* A generic version of sched_split_block (). */
5512 sched_split_block_1 (basic_block first_bb
, rtx after
)
5516 e
= split_block (first_bb
, after
);
5517 gcc_assert (e
->src
== first_bb
);
5519 /* sched_split_block emits note if *check == BB_END. Probably it
5520 is better to rip that note off. */
5525 /* A generic version of sched_create_empty_bb (). */
5527 sched_create_empty_bb_1 (basic_block after
)
5529 return create_empty_bb (after
);
5532 /* Insert PAT as an INSN into the schedule and update the necessary data
5533 structures to account for it. */
5535 sched_emit_insn (rtx pat
)
5537 rtx insn
= emit_insn_before (pat
, nonscheduled_insns_begin
);
5538 haifa_init_insn (insn
);
5540 if (current_sched_info
->add_remove_insn
)
5541 current_sched_info
->add_remove_insn (insn
, 0);
5543 (*current_sched_info
->begin_schedule_ready
) (insn
);
5544 VEC_safe_push (rtx
, heap
, scheduled_insns
, insn
);
5546 last_scheduled_insn
= insn
;
5550 /* This function returns a candidate satisfying dispatch constraints from
5554 ready_remove_first_dispatch (struct ready_list
*ready
)
5557 rtx insn
= ready_element (ready
, 0);
5559 if (ready
->n_ready
== 1
5560 || INSN_CODE (insn
) < 0
5562 || !active_insn_p (insn
)
5563 || targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
5564 return ready_remove_first (ready
);
5566 for (i
= 1; i
< ready
->n_ready
; i
++)
5568 insn
= ready_element (ready
, i
);
5570 if (INSN_CODE (insn
) < 0
5572 || !active_insn_p (insn
))
5575 if (targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
5577 /* Return ith element of ready. */
5578 insn
= ready_remove (ready
, i
);
5583 if (targetm
.sched
.dispatch (NULL_RTX
, DISPATCH_VIOLATION
))
5584 return ready_remove_first (ready
);
5586 for (i
= 1; i
< ready
->n_ready
; i
++)
5588 insn
= ready_element (ready
, i
);
5590 if (INSN_CODE (insn
) < 0
5592 || !active_insn_p (insn
))
5595 /* Return i-th element of ready. */
5596 if (targetm
.sched
.dispatch (insn
, IS_CMP
))
5597 return ready_remove (ready
, i
);
5600 return ready_remove_first (ready
);
5603 /* Get number of ready insn in the ready list. */
5606 number_in_ready (void)
5608 return ready
.n_ready
;
5611 /* Get number of ready's in the ready list. */
5614 get_ready_element (int i
)
5616 return ready_element (&ready
, i
);
5619 #endif /* INSN_SCHEDULING */