In gcc/objc/: 2011-06-01 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / graphite-interchange.c
blob934839aace082ade6803d09e510ac15f28156f8b
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tree-flow.h"
27 #include "tree-dump.h"
28 #include "cfgloop.h"
29 #include "tree-chrec.h"
30 #include "tree-data-ref.h"
31 #include "tree-scalar-evolution.h"
32 #include "sese.h"
34 #ifdef HAVE_cloog
35 #include "ppl_c.h"
36 #include "graphite-ppl.h"
37 #include "graphite-poly.h"
39 /* Builds a linear expression, of dimension DIM, representing PDR's
40 memory access:
42 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
44 For an array A[10][20] with two subscript locations s0 and s1, the
45 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
46 corresponds to a memory stride of 20.
48 OFFSET is a number of dimensions to prepend before the
49 subscript dimensions: s_0, s_1, ..., s_n.
51 Thus, the final linear expression has the following format:
52 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
53 where the expression itself is:
54 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
56 static ppl_Linear_Expression_t
57 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
59 ppl_Linear_Expression_t res;
60 ppl_Linear_Expression_t le;
61 ppl_dimension_type i;
62 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
63 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
64 mpz_t size, sub_size;
65 graphite_dim_t dim = offset + pdr_dim (pdr);
67 ppl_new_Linear_Expression_with_dimension (&res, dim);
69 mpz_init (size);
70 mpz_set_si (size, 1);
71 mpz_init (sub_size);
72 mpz_set_si (sub_size, 1);
74 for (i = last - 1; i >= first; i--)
76 ppl_set_coef_gmp (res, i + offset, size);
78 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
79 ppl_set_coef (le, i, 1);
80 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
81 mpz_mul (size, size, sub_size);
82 ppl_delete_Linear_Expression (le);
85 mpz_clear (sub_size);
86 mpz_clear (size);
87 return res;
90 /* Builds a partial difference equations and inserts them
91 into pointset powerset polyhedron P. Polyhedron is assumed
92 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
94 TIME_DEPTH is the time dimension w.r.t. which we are
95 differentiating.
96 OFFSET represents the number of dimensions between
97 columns t_{time_depth} and t'_{time_depth}.
98 DIM_SCTR is the number of scattering dimensions. It is
99 essentially the dimensionality of the T vector.
101 The following equations are inserted into the polyhedron P:
102 | t_1 = t_1'
103 | ...
104 | t_{time_depth-1} = t'_{time_depth-1}
105 | t_{time_depth} = t'_{time_depth} + 1
106 | t_{time_depth+1} = t'_{time_depth + 1}
107 | ...
108 | t_{dim_sctr} = t'_{dim_sctr}. */
110 static void
111 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
112 ppl_dimension_type time_depth,
113 ppl_dimension_type offset,
114 ppl_dimension_type dim_sctr)
116 ppl_Constraint_t new_cstr;
117 ppl_Linear_Expression_t le;
118 ppl_dimension_type i;
119 ppl_dimension_type dim;
120 ppl_Pointset_Powerset_C_Polyhedron_t temp;
122 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
123 This is the core part of this alogrithm, since this
124 constraint asks for the memory access stride (difference)
125 between two consecutive points in time dimensions. */
127 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
128 ppl_new_Linear_Expression_with_dimension (&le, dim);
129 ppl_set_coef (le, time_depth, 1);
130 ppl_set_coef (le, time_depth + offset, -1);
131 ppl_set_inhomogeneous (le, 1);
132 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
133 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
134 ppl_delete_Linear_Expression (le);
135 ppl_delete_Constraint (new_cstr);
137 /* Add equalities:
138 | t1 = t1'
139 | ...
140 | t_{time_depth-1} = t'_{time_depth-1}
141 | t_{time_depth+1} = t'_{time_depth+1}
142 | ...
143 | t_{dim_sctr} = t'_{dim_sctr}
145 This means that all the time dimensions are equal except for
146 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
147 step. More to this: we should be carefull not to add equalities
148 to the 'coupled' dimensions, which happens when the one dimension
149 is stripmined dimension, and the other dimension corresponds
150 to the point loop inside stripmined dimension. */
152 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
154 for (i = 0; i < dim_sctr; i++)
155 if (i != time_depth)
157 ppl_new_Linear_Expression_with_dimension (&le, dim);
158 ppl_set_coef (le, i, 1);
159 ppl_set_coef (le, i + offset, -1);
160 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
161 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
163 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
165 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
166 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
168 else
169 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
170 ppl_delete_Linear_Expression (le);
171 ppl_delete_Constraint (new_cstr);
174 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
178 /* Set STRIDE to the stride of PDR in memory by advancing by one in
179 the loop at DEPTH. */
181 static void
182 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
184 ppl_dimension_type time_depth;
185 ppl_Linear_Expression_t le, lma;
186 ppl_Constraint_t new_cstr;
187 ppl_dimension_type i, *map;
188 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
189 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
190 poly_bb_p pbb = PDR_PBB (pdr);
191 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
192 + pbb_nb_local_vars (pbb)
193 + pbb_dim_iter_domain (pbb);
194 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
195 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
196 + pbb_nb_local_vars (pbb);
197 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
198 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
199 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
201 /* The resulting polyhedron should have the following format:
202 T|I|T'|I'|G|S|S'|l1|l2
203 where:
204 | T = t_1..t_{dim_sctr}
205 | I = i_1..i_{dim_iter_domain}
206 | T'= t'_1..t'_{dim_sctr}
207 | I'= i'_1..i'_{dim_iter_domain}
208 | G = g_1..g_{nb_params}
209 | S = s_1..s_{nb_subscripts}
210 | S'= s'_1..s'_{nb_subscripts}
211 | l1 and l2 are scalars.
213 Some invariants:
214 offset = dim_sctr + dim_iter_domain + nb_local_vars
215 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
217 /* Construct the T|I|0|0|G|0|0|0|0 part. */
219 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
220 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
221 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
222 (sctr, 2 * nb_subscripts + 2);
223 ppl_insert_dimensions_pointset (sctr, offset, offset);
226 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
228 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
229 (&p1, PDR_ACCESSES (pdr));
230 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
231 (p1, nb_subscripts + 2);
232 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
233 ppl_insert_dimensions_pointset (p1, offset, offset);
236 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
238 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
239 ppl_set_coef (lma, dim_L1, -1);
240 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
241 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
242 ppl_delete_Linear_Expression (lma);
243 ppl_delete_Constraint (new_cstr);
246 /* Now intersect all the parts to get the polyhedron P1:
247 T|I|0|0|G|0|0|0 |0
248 0|I|0|0|G|S|0|0 |0
249 0|0|0|0|0|S|0|l1|0
250 ------------------
251 T|I|0|0|G|S|0|l1|0. */
253 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
254 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
256 /* Build P2, which would have the following form:
257 0|0|T'|I'|G|0|S'|0|l2
259 P2 is built, by remapping the P1 polyhedron:
260 T|I|0|0|G|S|0|l1|0
262 using the following mapping:
263 T->T'
264 I->I'
265 S->S'
266 l1->l2. */
268 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
269 (&p2, p1);
271 map = ppl_new_id_map (new_dim);
273 /* TI -> T'I'. */
274 for (i = 0; i < offset; i++)
275 ppl_interchange (map, i, i + offset);
277 /* l1 -> l2. */
278 ppl_interchange (map, dim_L1, dim_L2);
280 /* S -> S'. */
281 for (i = 0; i < nb_subscripts; i++)
282 ppl_interchange (map, offset + offsetg + i,
283 offset + offsetg + nb_subscripts + i);
285 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
286 free (map);
289 time_depth = psct_dynamic_dim (pbb, depth);
291 /* P1 = P1 inter P2. */
292 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
293 build_partial_difference (&p1, time_depth, offset, dim_sctr);
295 /* Maximise the expression L2 - L1. */
297 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
298 ppl_set_coef (le, dim_L2, 1);
299 ppl_set_coef (le, dim_L1, -1);
300 ppl_max_for_le_pointset (p1, le, stride);
303 if (dump_file && (dump_flags & TDF_DETAILS))
305 char *str;
306 void (*gmp_free) (void *, size_t);
308 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
309 pbb_index (pbb), PDR_ID (pdr), (int) depth);
310 str = mpz_get_str (0, 10, stride);
311 fprintf (dump_file, " %s ", str);
312 mp_get_memory_functions (NULL, NULL, &gmp_free);
313 (*gmp_free) (str, strlen (str) + 1);
316 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
317 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
318 ppl_delete_Linear_Expression (le);
322 /* Sets STRIDES to the sum of all the strides of the data references
323 accessed in LOOP at DEPTH. */
325 static void
326 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
328 int i, j;
329 lst_p l;
330 poly_dr_p pdr;
331 mpz_t s, n;
333 mpz_init (s);
334 mpz_init (n);
336 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
337 if (LST_LOOP_P (l))
338 memory_strides_in_loop_1 (l, depth, strides);
339 else
340 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
342 pdr_stride_in_loop (s, depth, pdr);
343 mpz_set_si (n, PDR_NB_REFS (pdr));
344 mpz_mul (s, s, n);
345 mpz_add (strides, strides, s);
348 mpz_clear (s);
349 mpz_clear (n);
352 /* Sets STRIDES to the sum of all the strides of the data references
353 accessed in LOOP at DEPTH. */
355 static void
356 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
358 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
360 mpz_set_si (strides, 0);
361 memory_strides_in_loop_1 (loop, depth, strides);
363 else
364 mpz_set (strides, loop->memory_strides);
367 /* Return true when the interchange of loops LOOP1 and LOOP2 is
368 profitable.
370 Example:
372 | int a[100][100];
374 | int
375 | foo (int N)
377 | int j;
378 | int i;
380 | for (i = 0; i < N; i++)
381 | for (j = 0; j < N; j++)
382 | a[j][2 * i] += 1;
384 | return a[N][12];
387 The data access A[j][i] is described like this:
389 | i j N a s0 s1 1
390 | 0 0 0 1 0 0 -5 = 0
391 | 0 -1 0 0 1 0 0 = 0
392 |-2 0 0 0 0 1 0 = 0
393 | 0 0 0 0 1 0 0 >= 0
394 | 0 0 0 0 0 1 0 >= 0
395 | 0 0 0 0 -1 0 100 >= 0
396 | 0 0 0 0 0 -1 100 >= 0
398 The linearized memory access L to A[100][100] is:
400 | i j N a s0 s1 1
401 | 0 0 0 0 100 1 0
403 TODO: the shown format is not valid as it does not show the fact
404 that the iteration domain "i j" is transformed using the scattering.
406 Next, to measure the impact of iterating once in loop "i", we build
407 a maximization problem: first, we add to DR accesses the dimensions
408 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
409 L1 and L2 are the linearized memory access functions.
411 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
412 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
413 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
414 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
415 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
416 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
417 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
418 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
419 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
421 Then, we generate the polyhedron P2 by interchanging the dimensions
422 (s0, s2), (s1, s3), (L1, L2), (k, i)
424 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
425 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
426 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
427 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
428 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
429 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
430 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
431 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
432 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
434 then we add to P2 the equality k = i + 1:
436 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
438 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
440 Similarly, to determine the impact of one iteration on loop "j", we
441 interchange (k, j), we add "k = j + 1", and we compute D2 the
442 maximal value of the difference.
444 Finally, the profitability test is D1 < D2: if in the outer loop
445 the strides are smaller than in the inner loop, then it is
446 profitable to interchange the loops at DEPTH1 and DEPTH2. */
448 static bool
449 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
451 mpz_t d1, d2;
452 bool res;
454 gcc_assert (depth1 < depth2);
456 mpz_init (d1);
457 mpz_init (d2);
459 memory_strides_in_loop (nest, depth1, d1);
460 memory_strides_in_loop (nest, depth2, d2);
462 res = mpz_cmp (d1, d2) < 0;
464 mpz_clear (d1);
465 mpz_clear (d2);
467 return res;
470 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
471 scattering and assigns the resulting polyhedron to the transformed
472 scattering. */
474 static void
475 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
476 poly_bb_p pbb)
478 ppl_dimension_type i, dim;
479 ppl_dimension_type *map;
480 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
481 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
482 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
484 ppl_Polyhedron_space_dimension (poly, &dim);
485 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
487 for (i = 0; i < dim; i++)
488 map[i] = i;
490 map[dim1] = dim2;
491 map[dim2] = dim1;
493 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
494 free (map);
497 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
498 the statements below LST. */
500 static void
501 lst_apply_interchange (lst_p lst, int depth1, int depth2)
503 if (!lst)
504 return;
506 if (LST_LOOP_P (lst))
508 int i;
509 lst_p l;
511 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
512 lst_apply_interchange (l, depth1, depth2);
514 else
515 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
518 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
519 perfect: i.e. there are no sequence of statements. */
521 static bool
522 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
524 if (loop1 == loop2)
525 return true;
527 if (!LST_LOOP_P (loop1))
528 return false;
530 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
531 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
534 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
535 nest. To continue the naming tradition, this function is called
536 after perfect_nestify. NEST is set to the perfectly nested loop
537 that is created. BEFORE/AFTER are set to the loops distributed
538 before/after the loop NEST. */
540 static void
541 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
542 lst_p *nest, lst_p *after)
544 poly_bb_p first, last;
546 gcc_assert (loop1 && loop2
547 && loop1 != loop2
548 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
550 first = LST_PBB (lst_find_first_pbb (loop2));
551 last = LST_PBB (lst_find_last_pbb (loop2));
553 *before = copy_lst (loop1);
554 *nest = copy_lst (loop1);
555 *after = copy_lst (loop1);
557 lst_remove_all_before_including_pbb (*before, first, false);
558 lst_remove_all_before_including_pbb (*after, last, true);
560 lst_remove_all_before_excluding_pbb (*nest, first, true);
561 lst_remove_all_before_excluding_pbb (*nest, last, false);
563 if (lst_empty_p (*before))
565 free_lst (*before);
566 *before = NULL;
568 if (lst_empty_p (*after))
570 free_lst (*after);
571 *after = NULL;
573 if (lst_empty_p (*nest))
575 free_lst (*nest);
576 *nest = NULL;
580 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
581 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
582 interchange. */
584 static bool
585 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
587 int depth1 = lst_depth (loop1);
588 int depth2 = lst_depth (loop2);
589 lst_p transformed;
591 lst_p before = NULL, nest = NULL, after = NULL;
593 if (!lst_perfectly_nested_p (loop1, loop2))
594 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
596 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
597 return false;
599 lst_apply_interchange (loop2, depth1, depth2);
601 /* Sync the transformed LST information and the PBB scatterings
602 before using the scatterings in the data dependence analysis. */
603 if (before || nest || after)
605 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
606 before, nest, after);
607 lst_update_scattering (transformed);
608 free_lst (transformed);
611 if (graphite_legal_transform (scop))
613 if (dump_file && (dump_flags & TDF_DETAILS))
614 fprintf (dump_file,
615 "Loops at depths %d and %d will be interchanged.\n",
616 depth1, depth2);
618 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
619 lst_insert_in_sequence (before, loop1, true);
620 lst_insert_in_sequence (after, loop1, false);
622 if (nest)
624 lst_replace (loop1, nest);
625 free_lst (loop1);
628 return true;
631 /* Undo the transform. */
632 free_lst (before);
633 free_lst (nest);
634 free_lst (after);
635 lst_apply_interchange (loop2, depth2, depth1);
636 return false;
639 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
640 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
642 static bool
643 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
644 lst_p inner_father)
646 int inner;
647 lst_p loop1, loop2;
649 gcc_assert (outer_father
650 && LST_LOOP_P (outer_father)
651 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
652 && inner_father
653 && LST_LOOP_P (inner_father));
655 loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
657 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
658 if (LST_LOOP_P (loop2)
659 && (lst_try_interchange_loops (scop, loop1, loop2)
660 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
661 return true;
663 return false;
666 /* Interchanges all the loops of LOOP and the loops of its body that
667 are considered profitable to interchange. Return true if it did
668 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
669 points to the next outer loop to be considered for interchange. */
671 static bool
672 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
674 lst_p l;
675 bool res = false;
676 int i = 0;
677 lst_p father;
679 if (!loop || !LST_LOOP_P (loop))
680 return false;
682 father = LST_LOOP_FATHER (loop);
683 if (father)
685 while (lst_interchange_select_inner (scop, father, outer, loop))
687 res = true;
688 loop = VEC_index (lst_p, LST_SEQ (father), outer);
692 if (LST_LOOP_P (loop))
693 FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
694 if (LST_LOOP_P (l))
695 res |= lst_interchange_select_outer (scop, l, i);
697 return res;
700 /* Interchanges all the loop depths that are considered profitable for SCOP. */
702 bool
703 scop_do_interchange (scop_p scop)
705 bool res = lst_interchange_select_outer
706 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
708 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
710 return res;
714 #endif