* Makefile.in ($(out_object_file)): Depend upon $(DF_H).
[official-gcc.git] / gcc / jump.c
blob533f11cab5ab992b9129dbd181dbd089fbbf109a
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
79 void
80 rebuild_jump_labels (rtx f)
82 rtx insn;
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (LABEL_P (XEXP (insn, 0)))
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
106 unsigned int
107 cleanup_barriers (void)
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
112 next = NEXT_INSN (insn);
113 if (BARRIER_P (insn))
115 prev = prev_nonnote_insn (insn);
116 if (!prev)
117 continue;
118 if (BARRIER_P (prev))
119 delete_insn (insn);
120 else if (prev != PREV_INSN (insn))
121 reorder_insns (insn, insn, prev);
124 return 0;
127 struct rtl_opt_pass pass_cleanup_barriers =
130 RTL_PASS,
131 "barriers", /* name */
132 NULL, /* gate */
133 cleanup_barriers, /* execute */
134 NULL, /* sub */
135 NULL, /* next */
136 0, /* static_pass_number */
137 TV_NONE, /* tv_id */
138 0, /* properties_required */
139 0, /* properties_provided */
140 0, /* properties_destroyed */
141 0, /* todo_flags_start */
142 TODO_dump_func /* todo_flags_finish */
147 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
148 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
149 notes whose labels don't occur in the insn any more. */
151 static void
152 init_label_info (rtx f)
154 rtx insn;
156 for (insn = f; insn; insn = NEXT_INSN (insn))
158 if (LABEL_P (insn))
159 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
161 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
162 sticky and not reset here; that way we won't lose association
163 with a label when e.g. the source for a target register
164 disappears out of reach for targets that may use jump-target
165 registers. Jump transformations are supposed to transform
166 any REG_LABEL_TARGET notes. The target label reference in a
167 branch may disappear from the branch (and from the
168 instruction before it) for other reasons, like register
169 allocation. */
171 if (INSN_P (insn))
173 rtx note, next;
175 for (note = REG_NOTES (insn); note; note = next)
177 next = XEXP (note, 1);
178 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
179 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
180 remove_note (insn, note);
186 /* Mark the label each jump jumps to.
187 Combine consecutive labels, and count uses of labels. */
189 static void
190 mark_all_labels (rtx f)
192 rtx insn;
193 rtx prev_nonjump_insn = NULL;
195 for (insn = f; insn; insn = NEXT_INSN (insn))
196 if (INSN_P (insn))
198 mark_jump_label (PATTERN (insn), insn, 0);
200 /* If the previous non-jump insn sets something to a label,
201 something that this jump insn uses, make that label the primary
202 target of this insn if we don't yet have any. That previous
203 insn must be a single_set and not refer to more than one label.
204 The jump insn must not refer to other labels as jump targets
205 and must be a plain (set (pc) ...), maybe in a parallel, and
206 may refer to the item being set only directly or as one of the
207 arms in an IF_THEN_ELSE. */
208 if (! INSN_DELETED_P (insn)
209 && JUMP_P (insn)
210 && JUMP_LABEL (insn) == NULL)
212 rtx label_note = NULL;
213 rtx pc = pc_set (insn);
214 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
216 if (prev_nonjump_insn != NULL)
217 label_note
218 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
220 if (label_note != NULL && pc_src != NULL)
222 rtx label_set = single_set (prev_nonjump_insn);
223 rtx label_dest
224 = label_set != NULL ? SET_DEST (label_set) : NULL;
226 if (label_set != NULL
227 /* The source must be the direct LABEL_REF, not a
228 PLUS, UNSPEC, IF_THEN_ELSE etc. */
229 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
230 && (rtx_equal_p (label_dest, pc_src)
231 || (GET_CODE (pc_src) == IF_THEN_ELSE
232 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
233 || rtx_equal_p (label_dest,
234 XEXP (pc_src, 2))))))
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note, 0)
242 == XEXP (SET_SRC (label_set), 0));
244 mark_jump_label_1 (label_set, insn, false, true);
245 gcc_assert (JUMP_LABEL (insn)
246 == XEXP (SET_SRC (label_set), 0));
250 else if (! INSN_DELETED_P (insn))
251 prev_nonjump_insn = insn;
253 else if (LABEL_P (insn))
254 prev_nonjump_insn = NULL;
256 /* If we are in cfglayout mode, there may be non-insns between the
257 basic blocks. If those non-insns represent tablejump data, they
258 contain label references that we must record. */
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
261 basic_block bb;
262 rtx insn;
263 FOR_EACH_BB (bb)
265 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
266 if (INSN_P (insn))
268 gcc_assert (JUMP_TABLE_DATA_P (insn));
269 mark_jump_label (PATTERN (insn), insn, 0);
272 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
273 if (INSN_P (insn))
275 gcc_assert (JUMP_TABLE_DATA_P (insn));
276 mark_jump_label (PATTERN (insn), insn, 0);
282 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
283 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
284 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
285 know whether it's source is floating point or integer comparison. Machine
286 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
287 to help this function avoid overhead in these cases. */
288 enum rtx_code
289 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
290 const_rtx arg1, const_rtx insn)
292 enum machine_mode mode;
294 /* If this is not actually a comparison, we can't reverse it. */
295 if (GET_RTX_CLASS (code) != RTX_COMPARE
296 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
297 return UNKNOWN;
299 mode = GET_MODE (arg0);
300 if (mode == VOIDmode)
301 mode = GET_MODE (arg1);
303 /* First see if machine description supplies us way to reverse the
304 comparison. Give it priority over everything else to allow
305 machine description to do tricks. */
306 if (GET_MODE_CLASS (mode) == MODE_CC
307 && REVERSIBLE_CC_MODE (mode))
309 #ifdef REVERSE_CONDITION
310 return REVERSE_CONDITION (code, mode);
311 #endif
312 return reverse_condition (code);
315 /* Try a few special cases based on the comparison code. */
316 switch (code)
318 case GEU:
319 case GTU:
320 case LEU:
321 case LTU:
322 case NE:
323 case EQ:
324 /* It is always safe to reverse EQ and NE, even for the floating
325 point. Similarly the unsigned comparisons are never used for
326 floating point so we can reverse them in the default way. */
327 return reverse_condition (code);
328 case ORDERED:
329 case UNORDERED:
330 case LTGT:
331 case UNEQ:
332 /* In case we already see unordered comparison, we can be sure to
333 be dealing with floating point so we don't need any more tests. */
334 return reverse_condition_maybe_unordered (code);
335 case UNLT:
336 case UNLE:
337 case UNGT:
338 case UNGE:
339 /* We don't have safe way to reverse these yet. */
340 return UNKNOWN;
341 default:
342 break;
345 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
347 const_rtx prev;
348 /* Try to search for the comparison to determine the real mode.
349 This code is expensive, but with sane machine description it
350 will be never used, since REVERSIBLE_CC_MODE will return true
351 in all cases. */
352 if (! insn)
353 return UNKNOWN;
355 /* These CONST_CAST's are okay because prev_nonnote_insn just
356 returns its argument and we assign it to a const_rtx
357 variable. */
358 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
359 prev != 0 && !LABEL_P (prev);
360 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
362 const_rtx set = set_of (arg0, prev);
363 if (set && GET_CODE (set) == SET
364 && rtx_equal_p (SET_DEST (set), arg0))
366 rtx src = SET_SRC (set);
368 if (GET_CODE (src) == COMPARE)
370 rtx comparison = src;
371 arg0 = XEXP (src, 0);
372 mode = GET_MODE (arg0);
373 if (mode == VOIDmode)
374 mode = GET_MODE (XEXP (comparison, 1));
375 break;
377 /* We can get past reg-reg moves. This may be useful for model
378 of i387 comparisons that first move flag registers around. */
379 if (REG_P (src))
381 arg0 = src;
382 continue;
385 /* If register is clobbered in some ununderstandable way,
386 give up. */
387 if (set)
388 return UNKNOWN;
392 /* Test for an integer condition, or a floating-point comparison
393 in which NaNs can be ignored. */
394 if (CONST_INT_P (arg0)
395 || (GET_MODE (arg0) != VOIDmode
396 && GET_MODE_CLASS (mode) != MODE_CC
397 && !HONOR_NANS (mode)))
398 return reverse_condition (code);
400 return UNKNOWN;
403 /* A wrapper around the previous function to take COMPARISON as rtx
404 expression. This simplifies many callers. */
405 enum rtx_code
406 reversed_comparison_code (const_rtx comparison, const_rtx insn)
408 if (!COMPARISON_P (comparison))
409 return UNKNOWN;
410 return reversed_comparison_code_parts (GET_CODE (comparison),
411 XEXP (comparison, 0),
412 XEXP (comparison, 1), insn);
415 /* Return comparison with reversed code of EXP.
416 Return NULL_RTX in case we fail to do the reversal. */
418 reversed_comparison (const_rtx exp, enum machine_mode mode)
420 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
421 if (reversed_code == UNKNOWN)
422 return NULL_RTX;
423 else
424 return simplify_gen_relational (reversed_code, mode, VOIDmode,
425 XEXP (exp, 0), XEXP (exp, 1));
429 /* Given an rtx-code for a comparison, return the code for the negated
430 comparison. If no such code exists, return UNKNOWN.
432 WATCH OUT! reverse_condition is not safe to use on a jump that might
433 be acting on the results of an IEEE floating point comparison, because
434 of the special treatment of non-signaling nans in comparisons.
435 Use reversed_comparison_code instead. */
437 enum rtx_code
438 reverse_condition (enum rtx_code code)
440 switch (code)
442 case EQ:
443 return NE;
444 case NE:
445 return EQ;
446 case GT:
447 return LE;
448 case GE:
449 return LT;
450 case LT:
451 return GE;
452 case LE:
453 return GT;
454 case GTU:
455 return LEU;
456 case GEU:
457 return LTU;
458 case LTU:
459 return GEU;
460 case LEU:
461 return GTU;
462 case UNORDERED:
463 return ORDERED;
464 case ORDERED:
465 return UNORDERED;
467 case UNLT:
468 case UNLE:
469 case UNGT:
470 case UNGE:
471 case UNEQ:
472 case LTGT:
473 return UNKNOWN;
475 default:
476 gcc_unreachable ();
480 /* Similar, but we're allowed to generate unordered comparisons, which
481 makes it safe for IEEE floating-point. Of course, we have to recognize
482 that the target will support them too... */
484 enum rtx_code
485 reverse_condition_maybe_unordered (enum rtx_code code)
487 switch (code)
489 case EQ:
490 return NE;
491 case NE:
492 return EQ;
493 case GT:
494 return UNLE;
495 case GE:
496 return UNLT;
497 case LT:
498 return UNGE;
499 case LE:
500 return UNGT;
501 case LTGT:
502 return UNEQ;
503 case UNORDERED:
504 return ORDERED;
505 case ORDERED:
506 return UNORDERED;
507 case UNLT:
508 return GE;
509 case UNLE:
510 return GT;
511 case UNGT:
512 return LE;
513 case UNGE:
514 return LT;
515 case UNEQ:
516 return LTGT;
518 default:
519 gcc_unreachable ();
523 /* Similar, but return the code when two operands of a comparison are swapped.
524 This IS safe for IEEE floating-point. */
526 enum rtx_code
527 swap_condition (enum rtx_code code)
529 switch (code)
531 case EQ:
532 case NE:
533 case UNORDERED:
534 case ORDERED:
535 case UNEQ:
536 case LTGT:
537 return code;
539 case GT:
540 return LT;
541 case GE:
542 return LE;
543 case LT:
544 return GT;
545 case LE:
546 return GE;
547 case GTU:
548 return LTU;
549 case GEU:
550 return LEU;
551 case LTU:
552 return GTU;
553 case LEU:
554 return GEU;
555 case UNLT:
556 return UNGT;
557 case UNLE:
558 return UNGE;
559 case UNGT:
560 return UNLT;
561 case UNGE:
562 return UNLE;
564 default:
565 gcc_unreachable ();
569 /* Given a comparison CODE, return the corresponding unsigned comparison.
570 If CODE is an equality comparison or already an unsigned comparison,
571 CODE is returned. */
573 enum rtx_code
574 unsigned_condition (enum rtx_code code)
576 switch (code)
578 case EQ:
579 case NE:
580 case GTU:
581 case GEU:
582 case LTU:
583 case LEU:
584 return code;
586 case GT:
587 return GTU;
588 case GE:
589 return GEU;
590 case LT:
591 return LTU;
592 case LE:
593 return LEU;
595 default:
596 gcc_unreachable ();
600 /* Similarly, return the signed version of a comparison. */
602 enum rtx_code
603 signed_condition (enum rtx_code code)
605 switch (code)
607 case EQ:
608 case NE:
609 case GT:
610 case GE:
611 case LT:
612 case LE:
613 return code;
615 case GTU:
616 return GT;
617 case GEU:
618 return GE;
619 case LTU:
620 return LT;
621 case LEU:
622 return LE;
624 default:
625 gcc_unreachable ();
629 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
630 truth of CODE1 implies the truth of CODE2. */
633 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
635 /* UNKNOWN comparison codes can happen as a result of trying to revert
636 comparison codes.
637 They can't match anything, so we have to reject them here. */
638 if (code1 == UNKNOWN || code2 == UNKNOWN)
639 return 0;
641 if (code1 == code2)
642 return 1;
644 switch (code1)
646 case UNEQ:
647 if (code2 == UNLE || code2 == UNGE)
648 return 1;
649 break;
651 case EQ:
652 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
653 || code2 == ORDERED)
654 return 1;
655 break;
657 case UNLT:
658 if (code2 == UNLE || code2 == NE)
659 return 1;
660 break;
662 case LT:
663 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
664 return 1;
665 break;
667 case UNGT:
668 if (code2 == UNGE || code2 == NE)
669 return 1;
670 break;
672 case GT:
673 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
674 return 1;
675 break;
677 case GE:
678 case LE:
679 if (code2 == ORDERED)
680 return 1;
681 break;
683 case LTGT:
684 if (code2 == NE || code2 == ORDERED)
685 return 1;
686 break;
688 case LTU:
689 if (code2 == LEU || code2 == NE)
690 return 1;
691 break;
693 case GTU:
694 if (code2 == GEU || code2 == NE)
695 return 1;
696 break;
698 case UNORDERED:
699 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
700 || code2 == UNGE || code2 == UNGT)
701 return 1;
702 break;
704 default:
705 break;
708 return 0;
711 /* Return 1 if INSN is an unconditional jump and nothing else. */
714 simplejump_p (const_rtx insn)
716 return (JUMP_P (insn)
717 && GET_CODE (PATTERN (insn)) == SET
718 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
719 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
722 /* Return nonzero if INSN is a (possibly) conditional jump
723 and nothing more.
725 Use of this function is deprecated, since we need to support combined
726 branch and compare insns. Use any_condjump_p instead whenever possible. */
729 condjump_p (const_rtx insn)
731 const_rtx x = PATTERN (insn);
733 if (GET_CODE (x) != SET
734 || GET_CODE (SET_DEST (x)) != PC)
735 return 0;
737 x = SET_SRC (x);
738 if (GET_CODE (x) == LABEL_REF)
739 return 1;
740 else
741 return (GET_CODE (x) == IF_THEN_ELSE
742 && ((GET_CODE (XEXP (x, 2)) == PC
743 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
744 || GET_CODE (XEXP (x, 1)) == RETURN))
745 || (GET_CODE (XEXP (x, 1)) == PC
746 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
747 || GET_CODE (XEXP (x, 2)) == RETURN))));
750 /* Return nonzero if INSN is a (possibly) conditional jump inside a
751 PARALLEL.
753 Use this function is deprecated, since we need to support combined
754 branch and compare insns. Use any_condjump_p instead whenever possible. */
757 condjump_in_parallel_p (const_rtx insn)
759 const_rtx x = PATTERN (insn);
761 if (GET_CODE (x) != PARALLEL)
762 return 0;
763 else
764 x = XVECEXP (x, 0, 0);
766 if (GET_CODE (x) != SET)
767 return 0;
768 if (GET_CODE (SET_DEST (x)) != PC)
769 return 0;
770 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
771 return 1;
772 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
773 return 0;
774 if (XEXP (SET_SRC (x), 2) == pc_rtx
775 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
776 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
777 return 1;
778 if (XEXP (SET_SRC (x), 1) == pc_rtx
779 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
780 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
781 return 1;
782 return 0;
785 /* Return set of PC, otherwise NULL. */
788 pc_set (const_rtx insn)
790 rtx pat;
791 if (!JUMP_P (insn))
792 return NULL_RTX;
793 pat = PATTERN (insn);
795 /* The set is allowed to appear either as the insn pattern or
796 the first set in a PARALLEL. */
797 if (GET_CODE (pat) == PARALLEL)
798 pat = XVECEXP (pat, 0, 0);
799 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
800 return pat;
802 return NULL_RTX;
805 /* Return true when insn is an unconditional direct jump,
806 possibly bundled inside a PARALLEL. */
809 any_uncondjump_p (const_rtx insn)
811 const_rtx x = pc_set (insn);
812 if (!x)
813 return 0;
814 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
815 return 0;
816 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
817 return 0;
818 return 1;
821 /* Return true when insn is a conditional jump. This function works for
822 instructions containing PC sets in PARALLELs. The instruction may have
823 various other effects so before removing the jump you must verify
824 onlyjump_p.
826 Note that unlike condjump_p it returns false for unconditional jumps. */
829 any_condjump_p (const_rtx insn)
831 const_rtx x = pc_set (insn);
832 enum rtx_code a, b;
834 if (!x)
835 return 0;
836 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
837 return 0;
839 a = GET_CODE (XEXP (SET_SRC (x), 1));
840 b = GET_CODE (XEXP (SET_SRC (x), 2));
842 return ((b == PC && (a == LABEL_REF || a == RETURN))
843 || (a == PC && (b == LABEL_REF || b == RETURN)));
846 /* Return the label of a conditional jump. */
849 condjump_label (const_rtx insn)
851 rtx x = pc_set (insn);
853 if (!x)
854 return NULL_RTX;
855 x = SET_SRC (x);
856 if (GET_CODE (x) == LABEL_REF)
857 return x;
858 if (GET_CODE (x) != IF_THEN_ELSE)
859 return NULL_RTX;
860 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
861 return XEXP (x, 1);
862 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
863 return XEXP (x, 2);
864 return NULL_RTX;
867 /* Return true if INSN is a (possibly conditional) return insn. */
869 static int
870 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
872 rtx x = *loc;
874 if (x == NULL)
875 return false;
877 switch (GET_CODE (x))
879 case RETURN:
880 case EH_RETURN:
881 return true;
883 case SET:
884 return SET_IS_RETURN_P (x);
886 default:
887 return false;
891 /* Return TRUE if INSN is a return jump. */
894 returnjump_p (rtx insn)
896 /* Handle delayed branches. */
897 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
898 insn = XVECEXP (PATTERN (insn), 0, 0);
900 if (!JUMP_P (insn))
901 return 0;
903 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
906 /* Return true if INSN is a (possibly conditional) return insn. */
908 static int
909 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
911 return *loc && GET_CODE (*loc) == EH_RETURN;
915 eh_returnjump_p (rtx insn)
917 if (!JUMP_P (insn))
918 return 0;
919 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
922 /* Return true if INSN is a jump that only transfers control and
923 nothing more. */
926 onlyjump_p (const_rtx insn)
928 rtx set;
930 if (!JUMP_P (insn))
931 return 0;
933 set = single_set (insn);
934 if (set == NULL)
935 return 0;
936 if (GET_CODE (SET_DEST (set)) != PC)
937 return 0;
938 if (side_effects_p (SET_SRC (set)))
939 return 0;
941 return 1;
944 #ifdef HAVE_cc0
946 /* Return nonzero if X is an RTX that only sets the condition codes
947 and has no side effects. */
950 only_sets_cc0_p (const_rtx x)
952 if (! x)
953 return 0;
955 if (INSN_P (x))
956 x = PATTERN (x);
958 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
961 /* Return 1 if X is an RTX that does nothing but set the condition codes
962 and CLOBBER or USE registers.
963 Return -1 if X does explicitly set the condition codes,
964 but also does other things. */
967 sets_cc0_p (const_rtx x)
969 if (! x)
970 return 0;
972 if (INSN_P (x))
973 x = PATTERN (x);
975 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
976 return 1;
977 if (GET_CODE (x) == PARALLEL)
979 int i;
980 int sets_cc0 = 0;
981 int other_things = 0;
982 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
984 if (GET_CODE (XVECEXP (x, 0, i)) == SET
985 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
986 sets_cc0 = 1;
987 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
988 other_things = 1;
990 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
992 return 0;
994 #endif
996 /* Find all CODE_LABELs referred to in X, and increment their use
997 counts. If INSN is a JUMP_INSN and there is at least one
998 CODE_LABEL referenced in INSN as a jump target, then store the last
999 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1000 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1001 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1002 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1003 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1005 Note that two labels separated by a loop-beginning note
1006 must be kept distinct if we have not yet done loop-optimization,
1007 because the gap between them is where loop-optimize
1008 will want to move invariant code to. CROSS_JUMP tells us
1009 that loop-optimization is done with. */
1011 void
1012 mark_jump_label (rtx x, rtx insn, int in_mem)
1014 mark_jump_label_1 (x, insn, in_mem != 0,
1015 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1018 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1019 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1020 jump-target; when the JUMP_LABEL field of INSN should be set or a
1021 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1022 note. */
1024 static void
1025 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1027 RTX_CODE code = GET_CODE (x);
1028 int i;
1029 const char *fmt;
1031 switch (code)
1033 case PC:
1034 case CC0:
1035 case REG:
1036 case CONST_INT:
1037 case CONST_DOUBLE:
1038 case CLOBBER:
1039 case CALL:
1040 return;
1042 case MEM:
1043 in_mem = true;
1044 break;
1046 case SEQUENCE:
1047 for (i = 0; i < XVECLEN (x, 0); i++)
1048 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1049 XVECEXP (x, 0, i), 0);
1050 return;
1052 case SYMBOL_REF:
1053 if (!in_mem)
1054 return;
1056 /* If this is a constant-pool reference, see if it is a label. */
1057 if (CONSTANT_POOL_ADDRESS_P (x))
1058 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1059 break;
1061 /* Handle operands in the condition of an if-then-else as for a
1062 non-jump insn. */
1063 case IF_THEN_ELSE:
1064 if (!is_target)
1065 break;
1066 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1067 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1068 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1069 return;
1071 case LABEL_REF:
1073 rtx label = XEXP (x, 0);
1075 /* Ignore remaining references to unreachable labels that
1076 have been deleted. */
1077 if (NOTE_P (label)
1078 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1079 break;
1081 gcc_assert (LABEL_P (label));
1083 /* Ignore references to labels of containing functions. */
1084 if (LABEL_REF_NONLOCAL_P (x))
1085 break;
1087 XEXP (x, 0) = label;
1088 if (! insn || ! INSN_DELETED_P (insn))
1089 ++LABEL_NUSES (label);
1091 if (insn)
1093 if (is_target
1094 /* Do not change a previous setting of JUMP_LABEL. If the
1095 JUMP_LABEL slot is occupied by a different label,
1096 create a note for this label. */
1097 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1098 JUMP_LABEL (insn) = label;
1099 else
1101 enum reg_note kind
1102 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1104 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1105 for LABEL unless there already is one. All uses of
1106 a label, except for the primary target of a jump,
1107 must have such a note. */
1108 if (! find_reg_note (insn, kind, label))
1109 add_reg_note (insn, kind, label);
1112 return;
1115 /* Do walk the labels in a vector, but not the first operand of an
1116 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1117 case ADDR_VEC:
1118 case ADDR_DIFF_VEC:
1119 if (! INSN_DELETED_P (insn))
1121 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1123 for (i = 0; i < XVECLEN (x, eltnum); i++)
1124 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1125 is_target);
1127 return;
1129 default:
1130 break;
1133 fmt = GET_RTX_FORMAT (code);
1135 /* The primary target of a tablejump is the label of the ADDR_VEC,
1136 which is canonically mentioned *last* in the insn. To get it
1137 marked as JUMP_LABEL, we iterate over items in reverse order. */
1138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1140 if (fmt[i] == 'e')
1141 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1142 else if (fmt[i] == 'E')
1144 int j;
1146 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1147 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1148 is_target);
1154 /* Delete insn INSN from the chain of insns and update label ref counts
1155 and delete insns now unreachable.
1157 Returns the first insn after INSN that was not deleted.
1159 Usage of this instruction is deprecated. Use delete_insn instead and
1160 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1163 delete_related_insns (rtx insn)
1165 int was_code_label = (LABEL_P (insn));
1166 rtx note;
1167 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1169 while (next && INSN_DELETED_P (next))
1170 next = NEXT_INSN (next);
1172 /* This insn is already deleted => return first following nondeleted. */
1173 if (INSN_DELETED_P (insn))
1174 return next;
1176 delete_insn (insn);
1178 /* If instruction is followed by a barrier,
1179 delete the barrier too. */
1181 if (next != 0 && BARRIER_P (next))
1182 delete_insn (next);
1184 /* If deleting a jump, decrement the count of the label,
1185 and delete the label if it is now unused. */
1187 if (JUMP_P (insn) && JUMP_LABEL (insn))
1189 rtx lab = JUMP_LABEL (insn), lab_next;
1191 if (LABEL_NUSES (lab) == 0)
1192 /* This can delete NEXT or PREV,
1193 either directly if NEXT is JUMP_LABEL (INSN),
1194 or indirectly through more levels of jumps. */
1195 delete_related_insns (lab);
1196 else if (tablejump_p (insn, NULL, &lab_next))
1198 /* If we're deleting the tablejump, delete the dispatch table.
1199 We may not be able to kill the label immediately preceding
1200 just yet, as it might be referenced in code leading up to
1201 the tablejump. */
1202 delete_related_insns (lab_next);
1206 /* Likewise if we're deleting a dispatch table. */
1208 if (JUMP_TABLE_DATA_P (insn))
1210 rtx pat = PATTERN (insn);
1211 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1212 int len = XVECLEN (pat, diff_vec_p);
1214 for (i = 0; i < len; i++)
1215 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1216 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1217 while (next && INSN_DELETED_P (next))
1218 next = NEXT_INSN (next);
1219 return next;
1222 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1223 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1224 if (INSN_P (insn))
1225 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1226 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1227 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1228 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1229 && LABEL_P (XEXP (note, 0)))
1230 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1231 delete_related_insns (XEXP (note, 0));
1233 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1234 prev = PREV_INSN (prev);
1236 /* If INSN was a label and a dispatch table follows it,
1237 delete the dispatch table. The tablejump must have gone already.
1238 It isn't useful to fall through into a table. */
1240 if (was_code_label
1241 && NEXT_INSN (insn) != 0
1242 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1243 next = delete_related_insns (NEXT_INSN (insn));
1245 /* If INSN was a label, delete insns following it if now unreachable. */
1247 if (was_code_label && prev && BARRIER_P (prev))
1249 enum rtx_code code;
1250 while (next)
1252 code = GET_CODE (next);
1253 if (code == NOTE)
1254 next = NEXT_INSN (next);
1255 /* Keep going past other deleted labels to delete what follows. */
1256 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1257 next = NEXT_INSN (next);
1258 else if (code == BARRIER || INSN_P (next))
1259 /* Note: if this deletes a jump, it can cause more
1260 deletion of unreachable code, after a different label.
1261 As long as the value from this recursive call is correct,
1262 this invocation functions correctly. */
1263 next = delete_related_insns (next);
1264 else
1265 break;
1269 /* I feel a little doubtful about this loop,
1270 but I see no clean and sure alternative way
1271 to find the first insn after INSN that is not now deleted.
1272 I hope this works. */
1273 while (next && INSN_DELETED_P (next))
1274 next = NEXT_INSN (next);
1275 return next;
1278 /* Delete a range of insns from FROM to TO, inclusive.
1279 This is for the sake of peephole optimization, so assume
1280 that whatever these insns do will still be done by a new
1281 peephole insn that will replace them. */
1283 void
1284 delete_for_peephole (rtx from, rtx to)
1286 rtx insn = from;
1288 while (1)
1290 rtx next = NEXT_INSN (insn);
1291 rtx prev = PREV_INSN (insn);
1293 if (!NOTE_P (insn))
1295 INSN_DELETED_P (insn) = 1;
1297 /* Patch this insn out of the chain. */
1298 /* We don't do this all at once, because we
1299 must preserve all NOTEs. */
1300 if (prev)
1301 NEXT_INSN (prev) = next;
1303 if (next)
1304 PREV_INSN (next) = prev;
1307 if (insn == to)
1308 break;
1309 insn = next;
1312 /* Note that if TO is an unconditional jump
1313 we *do not* delete the BARRIER that follows,
1314 since the peephole that replaces this sequence
1315 is also an unconditional jump in that case. */
1318 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1319 NLABEL as a return. Accrue modifications into the change group. */
1321 static void
1322 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1324 rtx x = *loc;
1325 RTX_CODE code = GET_CODE (x);
1326 int i;
1327 const char *fmt;
1329 if (code == LABEL_REF)
1331 if (XEXP (x, 0) == olabel)
1333 rtx n;
1334 if (nlabel)
1335 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1336 else
1337 n = gen_rtx_RETURN (VOIDmode);
1339 validate_change (insn, loc, n, 1);
1340 return;
1343 else if (code == RETURN && olabel == 0)
1345 if (nlabel)
1346 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1347 else
1348 x = gen_rtx_RETURN (VOIDmode);
1349 if (loc == &PATTERN (insn))
1350 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1351 validate_change (insn, loc, x, 1);
1352 return;
1355 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1356 && GET_CODE (SET_SRC (x)) == LABEL_REF
1357 && XEXP (SET_SRC (x), 0) == olabel)
1359 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1360 return;
1363 if (code == IF_THEN_ELSE)
1365 /* Skip the condition of an IF_THEN_ELSE. We only want to
1366 change jump destinations, not eventual label comparisons. */
1367 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1368 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1369 return;
1372 fmt = GET_RTX_FORMAT (code);
1373 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1375 if (fmt[i] == 'e')
1376 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1377 else if (fmt[i] == 'E')
1379 int j;
1380 for (j = 0; j < XVECLEN (x, i); j++)
1381 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1386 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1387 the modifications into the change group. Return false if we did
1388 not see how to do that. */
1391 redirect_jump_1 (rtx jump, rtx nlabel)
1393 int ochanges = num_validated_changes ();
1394 rtx *loc;
1396 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1397 loc = &XVECEXP (PATTERN (jump), 0, 0);
1398 else
1399 loc = &PATTERN (jump);
1401 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1402 return num_validated_changes () > ochanges;
1405 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1406 jump target label is unused as a result, it and the code following
1407 it may be deleted.
1409 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1410 RETURN insn.
1412 The return value will be 1 if the change was made, 0 if it wasn't
1413 (this can only occur for NLABEL == 0). */
1416 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1418 rtx olabel = JUMP_LABEL (jump);
1420 if (nlabel == olabel)
1421 return 1;
1423 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1424 return 0;
1426 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1427 return 1;
1430 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1431 NLABEL in JUMP.
1432 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1433 count has dropped to zero. */
1434 void
1435 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1436 int invert)
1438 rtx note;
1440 gcc_assert (JUMP_LABEL (jump) == olabel);
1442 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1443 moving FUNCTION_END note. Just sanity check that no user still worry
1444 about this. */
1445 gcc_assert (delete_unused >= 0);
1446 JUMP_LABEL (jump) = nlabel;
1447 if (nlabel)
1448 ++LABEL_NUSES (nlabel);
1450 /* Update labels in any REG_EQUAL note. */
1451 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1453 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1454 remove_note (jump, note);
1455 else
1457 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1458 confirm_change_group ();
1462 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1463 /* Undefined labels will remain outside the insn stream. */
1464 && INSN_UID (olabel))
1465 delete_related_insns (olabel);
1466 if (invert)
1467 invert_br_probabilities (jump);
1470 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1471 modifications into the change group. Return nonzero for success. */
1472 static int
1473 invert_exp_1 (rtx x, rtx insn)
1475 RTX_CODE code = GET_CODE (x);
1477 if (code == IF_THEN_ELSE)
1479 rtx comp = XEXP (x, 0);
1480 rtx tem;
1481 enum rtx_code reversed_code;
1483 /* We can do this in two ways: The preferable way, which can only
1484 be done if this is not an integer comparison, is to reverse
1485 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1486 of the IF_THEN_ELSE. If we can't do either, fail. */
1488 reversed_code = reversed_comparison_code (comp, insn);
1490 if (reversed_code != UNKNOWN)
1492 validate_change (insn, &XEXP (x, 0),
1493 gen_rtx_fmt_ee (reversed_code,
1494 GET_MODE (comp), XEXP (comp, 0),
1495 XEXP (comp, 1)),
1497 return 1;
1500 tem = XEXP (x, 1);
1501 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1502 validate_change (insn, &XEXP (x, 2), tem, 1);
1503 return 1;
1505 else
1506 return 0;
1509 /* Invert the condition of the jump JUMP, and make it jump to label
1510 NLABEL instead of where it jumps now. Accrue changes into the
1511 change group. Return false if we didn't see how to perform the
1512 inversion and redirection. */
1515 invert_jump_1 (rtx jump, rtx nlabel)
1517 rtx x = pc_set (jump);
1518 int ochanges;
1519 int ok;
1521 ochanges = num_validated_changes ();
1522 gcc_assert (x);
1523 ok = invert_exp_1 (SET_SRC (x), jump);
1524 gcc_assert (ok);
1526 if (num_validated_changes () == ochanges)
1527 return 0;
1529 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1530 in Pmode, so checking this is not merely an optimization. */
1531 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1534 /* Invert the condition of the jump JUMP, and make it jump to label
1535 NLABEL instead of where it jumps now. Return true if successful. */
1538 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1540 rtx olabel = JUMP_LABEL (jump);
1542 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1544 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1545 return 1;
1547 cancel_changes (0);
1548 return 0;
1552 /* Like rtx_equal_p except that it considers two REGs as equal
1553 if they renumber to the same value and considers two commutative
1554 operations to be the same if the order of the operands has been
1555 reversed. */
1558 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1560 int i;
1561 const enum rtx_code code = GET_CODE (x);
1562 const char *fmt;
1564 if (x == y)
1565 return 1;
1567 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1568 && (REG_P (y) || (GET_CODE (y) == SUBREG
1569 && REG_P (SUBREG_REG (y)))))
1571 int reg_x = -1, reg_y = -1;
1572 int byte_x = 0, byte_y = 0;
1573 struct subreg_info info;
1575 if (GET_MODE (x) != GET_MODE (y))
1576 return 0;
1578 /* If we haven't done any renumbering, don't
1579 make any assumptions. */
1580 if (reg_renumber == 0)
1581 return rtx_equal_p (x, y);
1583 if (code == SUBREG)
1585 reg_x = REGNO (SUBREG_REG (x));
1586 byte_x = SUBREG_BYTE (x);
1588 if (reg_renumber[reg_x] >= 0)
1590 subreg_get_info (reg_renumber[reg_x],
1591 GET_MODE (SUBREG_REG (x)), byte_x,
1592 GET_MODE (x), &info);
1593 if (!info.representable_p)
1594 return 0;
1595 reg_x = info.offset;
1596 byte_x = 0;
1599 else
1601 reg_x = REGNO (x);
1602 if (reg_renumber[reg_x] >= 0)
1603 reg_x = reg_renumber[reg_x];
1606 if (GET_CODE (y) == SUBREG)
1608 reg_y = REGNO (SUBREG_REG (y));
1609 byte_y = SUBREG_BYTE (y);
1611 if (reg_renumber[reg_y] >= 0)
1613 subreg_get_info (reg_renumber[reg_y],
1614 GET_MODE (SUBREG_REG (y)), byte_y,
1615 GET_MODE (y), &info);
1616 if (!info.representable_p)
1617 return 0;
1618 reg_y = info.offset;
1619 byte_y = 0;
1622 else
1624 reg_y = REGNO (y);
1625 if (reg_renumber[reg_y] >= 0)
1626 reg_y = reg_renumber[reg_y];
1629 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1632 /* Now we have disposed of all the cases
1633 in which different rtx codes can match. */
1634 if (code != GET_CODE (y))
1635 return 0;
1637 switch (code)
1639 case PC:
1640 case CC0:
1641 case ADDR_VEC:
1642 case ADDR_DIFF_VEC:
1643 case CONST_INT:
1644 case CONST_DOUBLE:
1645 return 0;
1647 case LABEL_REF:
1648 /* We can't assume nonlocal labels have their following insns yet. */
1649 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1650 return XEXP (x, 0) == XEXP (y, 0);
1652 /* Two label-refs are equivalent if they point at labels
1653 in the same position in the instruction stream. */
1654 return (next_real_insn (XEXP (x, 0))
1655 == next_real_insn (XEXP (y, 0)));
1657 case SYMBOL_REF:
1658 return XSTR (x, 0) == XSTR (y, 0);
1660 case CODE_LABEL:
1661 /* If we didn't match EQ equality above, they aren't the same. */
1662 return 0;
1664 default:
1665 break;
1668 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1670 if (GET_MODE (x) != GET_MODE (y))
1671 return 0;
1673 /* For commutative operations, the RTX match if the operand match in any
1674 order. Also handle the simple binary and unary cases without a loop. */
1675 if (targetm.commutative_p (x, UNKNOWN))
1676 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1677 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1678 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1679 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1680 else if (NON_COMMUTATIVE_P (x))
1681 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1682 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1683 else if (UNARY_P (x))
1684 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1686 /* Compare the elements. If any pair of corresponding elements
1687 fail to match, return 0 for the whole things. */
1689 fmt = GET_RTX_FORMAT (code);
1690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1692 int j;
1693 switch (fmt[i])
1695 case 'w':
1696 if (XWINT (x, i) != XWINT (y, i))
1697 return 0;
1698 break;
1700 case 'i':
1701 if (XINT (x, i) != XINT (y, i))
1702 return 0;
1703 break;
1705 case 't':
1706 if (XTREE (x, i) != XTREE (y, i))
1707 return 0;
1708 break;
1710 case 's':
1711 if (strcmp (XSTR (x, i), XSTR (y, i)))
1712 return 0;
1713 break;
1715 case 'e':
1716 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1717 return 0;
1718 break;
1720 case 'u':
1721 if (XEXP (x, i) != XEXP (y, i))
1722 return 0;
1723 /* Fall through. */
1724 case '0':
1725 break;
1727 case 'E':
1728 if (XVECLEN (x, i) != XVECLEN (y, i))
1729 return 0;
1730 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1731 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1732 return 0;
1733 break;
1735 default:
1736 gcc_unreachable ();
1739 return 1;
1742 /* If X is a hard register or equivalent to one or a subregister of one,
1743 return the hard register number. If X is a pseudo register that was not
1744 assigned a hard register, return the pseudo register number. Otherwise,
1745 return -1. Any rtx is valid for X. */
1748 true_regnum (const_rtx x)
1750 if (REG_P (x))
1752 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1753 return reg_renumber[REGNO (x)];
1754 return REGNO (x);
1756 if (GET_CODE (x) == SUBREG)
1758 int base = true_regnum (SUBREG_REG (x));
1759 if (base >= 0
1760 && base < FIRST_PSEUDO_REGISTER)
1762 struct subreg_info info;
1764 subreg_get_info (REGNO (SUBREG_REG (x)),
1765 GET_MODE (SUBREG_REG (x)),
1766 SUBREG_BYTE (x), GET_MODE (x), &info);
1768 if (info.representable_p)
1769 return base + info.offset;
1772 return -1;
1775 /* Return regno of the register REG and handle subregs too. */
1776 unsigned int
1777 reg_or_subregno (const_rtx reg)
1779 if (GET_CODE (reg) == SUBREG)
1780 reg = SUBREG_REG (reg);
1781 gcc_assert (REG_P (reg));
1782 return REGNO (reg);