Improve max_insns_skipped logic
[official-gcc.git] / gcc / tree-vect-loop.c
blob5a1d9ff7a5a4fae50b0c4509cc741087960ac826
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP if it was not detected as reduction
894 chain. */
895 if (! GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
896 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
900 else
901 if (dump_enabled_p ())
902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
903 "Unknown def-use cycle pattern.\n");
908 /* Function vect_analyze_scalar_cycles.
910 Examine the cross iteration def-use cycles of scalar variables, by
911 analyzing the loop-header PHIs of scalar variables. Classify each
912 cycle as one of the following: invariant, induction, reduction, unknown.
913 We do that for the loop represented by LOOP_VINFO, and also to its
914 inner-loop, if exists.
915 Examples for scalar cycles:
917 Example1: reduction:
919 loop1:
920 for (i=0; i<N; i++)
921 sum += a[i];
923 Example2: induction:
925 loop2:
926 for (i=0; i<N; i++)
927 a[i] = i; */
929 static void
930 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
934 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
936 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
937 Reductions in such inner-loop therefore have different properties than
938 the reductions in the nest that gets vectorized:
939 1. When vectorized, they are executed in the same order as in the original
940 scalar loop, so we can't change the order of computation when
941 vectorizing them.
942 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
943 current checks are too strict. */
945 if (loop->inner)
946 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
949 /* Transfer group and reduction information from STMT to its pattern stmt. */
951 static void
952 vect_fixup_reduc_chain (gimple *stmt)
954 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
955 gimple *stmtp;
956 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
957 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
958 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
961 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
963 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
964 if (stmt)
965 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
966 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
968 while (stmt);
969 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
972 /* Fixup scalar cycles that now have their stmts detected as patterns. */
974 static void
975 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
977 gimple *first;
978 unsigned i;
980 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
981 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
983 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
984 while (next)
986 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
987 break;
988 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
990 /* If not all stmt in the chain are patterns try to handle
991 the chain without patterns. */
992 if (! next)
994 vect_fixup_reduc_chain (first);
995 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
996 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1001 /* Function vect_get_loop_niters.
1003 Determine how many iterations the loop is executed and place it
1004 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1005 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1006 niter information holds in ASSUMPTIONS.
1008 Return the loop exit condition. */
1011 static gcond *
1012 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1013 tree *number_of_iterations, tree *number_of_iterationsm1)
1015 edge exit = single_exit (loop);
1016 struct tree_niter_desc niter_desc;
1017 tree niter_assumptions, niter, may_be_zero;
1018 gcond *cond = get_loop_exit_condition (loop);
1020 *assumptions = boolean_true_node;
1021 *number_of_iterationsm1 = chrec_dont_know;
1022 *number_of_iterations = chrec_dont_know;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 if (!exit)
1028 return cond;
1030 niter = chrec_dont_know;
1031 may_be_zero = NULL_TREE;
1032 niter_assumptions = boolean_true_node;
1033 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1034 || chrec_contains_undetermined (niter_desc.niter))
1035 return cond;
1037 niter_assumptions = niter_desc.assumptions;
1038 may_be_zero = niter_desc.may_be_zero;
1039 niter = niter_desc.niter;
1041 if (may_be_zero && integer_zerop (may_be_zero))
1042 may_be_zero = NULL_TREE;
1044 if (may_be_zero)
1046 if (COMPARISON_CLASS_P (may_be_zero))
1048 /* Try to combine may_be_zero with assumptions, this can simplify
1049 computation of niter expression. */
1050 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1051 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1052 niter_assumptions,
1053 fold_build1 (TRUTH_NOT_EXPR,
1054 boolean_type_node,
1055 may_be_zero));
1056 else
1057 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1058 build_int_cst (TREE_TYPE (niter), 0), niter);
1060 may_be_zero = NULL_TREE;
1062 else if (integer_nonzerop (may_be_zero))
1064 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1065 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1066 return cond;
1068 else
1069 return cond;
1072 *assumptions = niter_assumptions;
1073 *number_of_iterationsm1 = niter;
1075 /* We want the number of loop header executions which is the number
1076 of latch executions plus one.
1077 ??? For UINT_MAX latch executions this number overflows to zero
1078 for loops like do { n++; } while (n != 0); */
1079 if (niter && !chrec_contains_undetermined (niter))
1080 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1081 build_int_cst (TREE_TYPE (niter), 1));
1082 *number_of_iterations = niter;
1084 return cond;
1087 /* Function bb_in_loop_p
1089 Used as predicate for dfs order traversal of the loop bbs. */
1091 static bool
1092 bb_in_loop_p (const_basic_block bb, const void *data)
1094 const struct loop *const loop = (const struct loop *)data;
1095 if (flow_bb_inside_loop_p (loop, bb))
1096 return true;
1097 return false;
1101 /* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
1102 stmt_vec_info structs for all the stmts in LOOP_IN. */
1104 _loop_vec_info::_loop_vec_info (struct loop *loop_in)
1105 : vec_info (vec_info::loop, init_cost (loop_in)),
1106 loop (loop_in),
1107 bbs (XCNEWVEC (basic_block, loop->num_nodes)),
1108 num_itersm1 (NULL_TREE),
1109 num_iters (NULL_TREE),
1110 num_iters_unchanged (NULL_TREE),
1111 num_iters_assumptions (NULL_TREE),
1112 th (0),
1113 vectorization_factor (0),
1114 unaligned_dr (NULL),
1115 peeling_for_alignment (0),
1116 ptr_mask (0),
1117 slp_unrolling_factor (1),
1118 single_scalar_iteration_cost (0),
1119 vectorizable (false),
1120 peeling_for_gaps (false),
1121 peeling_for_niter (false),
1122 operands_swapped (false),
1123 no_data_dependencies (false),
1124 has_mask_store (false),
1125 scalar_loop (NULL),
1126 orig_loop_info (NULL)
1128 /* Create/Update stmt_info for all stmts in the loop. */
1129 basic_block *body = get_loop_body (loop);
1130 for (unsigned int i = 0; i < loop->num_nodes; i++)
1132 basic_block bb = body[i];
1133 gimple_stmt_iterator si;
1135 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1137 gimple *phi = gsi_stmt (si);
1138 gimple_set_uid (phi, 0);
1139 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, this));
1142 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1144 gimple *stmt = gsi_stmt (si);
1145 gimple_set_uid (stmt, 0);
1146 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, this));
1149 free (body);
1151 /* CHECKME: We want to visit all BBs before their successors (except for
1152 latch blocks, for which this assertion wouldn't hold). In the simple
1153 case of the loop forms we allow, a dfs order of the BBs would the same
1154 as reversed postorder traversal, so we are safe. */
1156 unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1157 bbs, loop->num_nodes, loop);
1158 gcc_assert (nbbs == loop->num_nodes);
1162 /* Free all memory used by the _loop_vec_info, as well as all the
1163 stmt_vec_info structs of all the stmts in the loop. */
1165 _loop_vec_info::~_loop_vec_info ()
1167 int nbbs;
1168 gimple_stmt_iterator si;
1169 int j;
1171 nbbs = loop->num_nodes;
1172 for (j = 0; j < nbbs; j++)
1174 basic_block bb = bbs[j];
1175 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1176 free_stmt_vec_info (gsi_stmt (si));
1178 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1180 gimple *stmt = gsi_stmt (si);
1182 /* We may have broken canonical form by moving a constant
1183 into RHS1 of a commutative op. Fix such occurrences. */
1184 if (operands_swapped && is_gimple_assign (stmt))
1186 enum tree_code code = gimple_assign_rhs_code (stmt);
1188 if ((code == PLUS_EXPR
1189 || code == POINTER_PLUS_EXPR
1190 || code == MULT_EXPR)
1191 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1192 swap_ssa_operands (stmt,
1193 gimple_assign_rhs1_ptr (stmt),
1194 gimple_assign_rhs2_ptr (stmt));
1195 else if (code == COND_EXPR
1196 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1198 tree cond_expr = gimple_assign_rhs1 (stmt);
1199 enum tree_code cond_code = TREE_CODE (cond_expr);
1201 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1203 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1204 0));
1205 cond_code = invert_tree_comparison (cond_code,
1206 honor_nans);
1207 if (cond_code != ERROR_MARK)
1209 TREE_SET_CODE (cond_expr, cond_code);
1210 swap_ssa_operands (stmt,
1211 gimple_assign_rhs2_ptr (stmt),
1212 gimple_assign_rhs3_ptr (stmt));
1218 /* Free stmt_vec_info. */
1219 free_stmt_vec_info (stmt);
1220 gsi_next (&si);
1224 free (bbs);
1226 loop->aux = NULL;
1230 /* Calculate the cost of one scalar iteration of the loop. */
1231 static void
1232 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1234 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1235 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1236 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1237 int innerloop_iters, i;
1239 /* Count statements in scalar loop. Using this as scalar cost for a single
1240 iteration for now.
1242 TODO: Add outer loop support.
1244 TODO: Consider assigning different costs to different scalar
1245 statements. */
1247 /* FORNOW. */
1248 innerloop_iters = 1;
1249 if (loop->inner)
1250 innerloop_iters = 50; /* FIXME */
1252 for (i = 0; i < nbbs; i++)
1254 gimple_stmt_iterator si;
1255 basic_block bb = bbs[i];
1257 if (bb->loop_father == loop->inner)
1258 factor = innerloop_iters;
1259 else
1260 factor = 1;
1262 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1264 gimple *stmt = gsi_stmt (si);
1265 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1267 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1268 continue;
1270 /* Skip stmts that are not vectorized inside the loop. */
1271 if (stmt_info
1272 && !STMT_VINFO_RELEVANT_P (stmt_info)
1273 && (!STMT_VINFO_LIVE_P (stmt_info)
1274 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1275 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1276 continue;
1278 vect_cost_for_stmt kind;
1279 if (STMT_VINFO_DATA_REF (stmt_info))
1281 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1282 kind = scalar_load;
1283 else
1284 kind = scalar_store;
1286 else
1287 kind = scalar_stmt;
1289 scalar_single_iter_cost
1290 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1291 factor, kind, stmt_info, 0, vect_prologue);
1294 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1295 = scalar_single_iter_cost;
1299 /* Function vect_analyze_loop_form_1.
1301 Verify that certain CFG restrictions hold, including:
1302 - the loop has a pre-header
1303 - the loop has a single entry and exit
1304 - the loop exit condition is simple enough
1305 - the number of iterations can be analyzed, i.e, a countable loop. The
1306 niter could be analyzed under some assumptions. */
1308 bool
1309 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1310 tree *assumptions, tree *number_of_iterationsm1,
1311 tree *number_of_iterations, gcond **inner_loop_cond)
1313 if (dump_enabled_p ())
1314 dump_printf_loc (MSG_NOTE, vect_location,
1315 "=== vect_analyze_loop_form ===\n");
1317 /* Different restrictions apply when we are considering an inner-most loop,
1318 vs. an outer (nested) loop.
1319 (FORNOW. May want to relax some of these restrictions in the future). */
1321 if (!loop->inner)
1323 /* Inner-most loop. We currently require that the number of BBs is
1324 exactly 2 (the header and latch). Vectorizable inner-most loops
1325 look like this:
1327 (pre-header)
1329 header <--------+
1330 | | |
1331 | +--> latch --+
1333 (exit-bb) */
1335 if (loop->num_nodes != 2)
1337 if (dump_enabled_p ())
1338 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1339 "not vectorized: control flow in loop.\n");
1340 return false;
1343 if (empty_block_p (loop->header))
1345 if (dump_enabled_p ())
1346 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1347 "not vectorized: empty loop.\n");
1348 return false;
1351 else
1353 struct loop *innerloop = loop->inner;
1354 edge entryedge;
1356 /* Nested loop. We currently require that the loop is doubly-nested,
1357 contains a single inner loop, and the number of BBs is exactly 5.
1358 Vectorizable outer-loops look like this:
1360 (pre-header)
1362 header <---+
1364 inner-loop |
1366 tail ------+
1368 (exit-bb)
1370 The inner-loop has the properties expected of inner-most loops
1371 as described above. */
1373 if ((loop->inner)->inner || (loop->inner)->next)
1375 if (dump_enabled_p ())
1376 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1377 "not vectorized: multiple nested loops.\n");
1378 return false;
1381 if (loop->num_nodes != 5)
1383 if (dump_enabled_p ())
1384 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1385 "not vectorized: control flow in loop.\n");
1386 return false;
1389 entryedge = loop_preheader_edge (innerloop);
1390 if (entryedge->src != loop->header
1391 || !single_exit (innerloop)
1392 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1394 if (dump_enabled_p ())
1395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1396 "not vectorized: unsupported outerloop form.\n");
1397 return false;
1400 /* Analyze the inner-loop. */
1401 tree inner_niterm1, inner_niter, inner_assumptions;
1402 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1403 &inner_assumptions, &inner_niterm1,
1404 &inner_niter, NULL)
1405 /* Don't support analyzing niter under assumptions for inner
1406 loop. */
1407 || !integer_onep (inner_assumptions))
1409 if (dump_enabled_p ())
1410 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1411 "not vectorized: Bad inner loop.\n");
1412 return false;
1415 if (!expr_invariant_in_loop_p (loop, inner_niter))
1417 if (dump_enabled_p ())
1418 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1419 "not vectorized: inner-loop count not"
1420 " invariant.\n");
1421 return false;
1424 if (dump_enabled_p ())
1425 dump_printf_loc (MSG_NOTE, vect_location,
1426 "Considering outer-loop vectorization.\n");
1429 if (!single_exit (loop)
1430 || EDGE_COUNT (loop->header->preds) != 2)
1432 if (dump_enabled_p ())
1434 if (!single_exit (loop))
1435 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1436 "not vectorized: multiple exits.\n");
1437 else if (EDGE_COUNT (loop->header->preds) != 2)
1438 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1439 "not vectorized: too many incoming edges.\n");
1441 return false;
1444 /* We assume that the loop exit condition is at the end of the loop. i.e,
1445 that the loop is represented as a do-while (with a proper if-guard
1446 before the loop if needed), where the loop header contains all the
1447 executable statements, and the latch is empty. */
1448 if (!empty_block_p (loop->latch)
1449 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1451 if (dump_enabled_p ())
1452 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1453 "not vectorized: latch block not empty.\n");
1454 return false;
1457 /* Make sure the exit is not abnormal. */
1458 edge e = single_exit (loop);
1459 if (e->flags & EDGE_ABNORMAL)
1461 if (dump_enabled_p ())
1462 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1463 "not vectorized: abnormal loop exit edge.\n");
1464 return false;
1467 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1468 number_of_iterationsm1);
1469 if (!*loop_cond)
1471 if (dump_enabled_p ())
1472 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1473 "not vectorized: complicated exit condition.\n");
1474 return false;
1477 if (integer_zerop (*assumptions)
1478 || !*number_of_iterations
1479 || chrec_contains_undetermined (*number_of_iterations))
1481 if (dump_enabled_p ())
1482 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1483 "not vectorized: number of iterations cannot be "
1484 "computed.\n");
1485 return false;
1488 if (integer_zerop (*number_of_iterations))
1490 if (dump_enabled_p ())
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: number of iterations = 0.\n");
1493 return false;
1496 return true;
1499 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1501 loop_vec_info
1502 vect_analyze_loop_form (struct loop *loop)
1504 tree assumptions, number_of_iterations, number_of_iterationsm1;
1505 gcond *loop_cond, *inner_loop_cond = NULL;
1507 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1508 &assumptions, &number_of_iterationsm1,
1509 &number_of_iterations, &inner_loop_cond))
1510 return NULL;
1512 loop_vec_info loop_vinfo = new _loop_vec_info (loop);
1513 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1514 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1515 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1516 if (!integer_onep (assumptions))
1518 /* We consider to vectorize this loop by versioning it under
1519 some assumptions. In order to do this, we need to clear
1520 existing information computed by scev and niter analyzer. */
1521 scev_reset_htab ();
1522 free_numbers_of_iterations_estimates (loop);
1523 /* Also set flag for this loop so that following scev and niter
1524 analysis are done under the assumptions. */
1525 loop_constraint_set (loop, LOOP_C_FINITE);
1526 /* Also record the assumptions for versioning. */
1527 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1530 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1532 if (dump_enabled_p ())
1534 dump_printf_loc (MSG_NOTE, vect_location,
1535 "Symbolic number of iterations is ");
1536 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1537 dump_printf (MSG_NOTE, "\n");
1541 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1542 if (inner_loop_cond)
1543 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1544 = loop_exit_ctrl_vec_info_type;
1546 gcc_assert (!loop->aux);
1547 loop->aux = loop_vinfo;
1548 return loop_vinfo;
1553 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1554 statements update the vectorization factor. */
1556 static void
1557 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1559 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1560 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1561 int nbbs = loop->num_nodes;
1562 unsigned int vectorization_factor;
1563 int i;
1565 if (dump_enabled_p ())
1566 dump_printf_loc (MSG_NOTE, vect_location,
1567 "=== vect_update_vf_for_slp ===\n");
1569 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1570 gcc_assert (vectorization_factor != 0);
1572 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1573 vectorization factor of the loop is the unrolling factor required by
1574 the SLP instances. If that unrolling factor is 1, we say, that we
1575 perform pure SLP on loop - cross iteration parallelism is not
1576 exploited. */
1577 bool only_slp_in_loop = true;
1578 for (i = 0; i < nbbs; i++)
1580 basic_block bb = bbs[i];
1581 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1582 gsi_next (&si))
1584 gimple *stmt = gsi_stmt (si);
1585 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1586 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1587 && STMT_VINFO_RELATED_STMT (stmt_info))
1589 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1590 stmt_info = vinfo_for_stmt (stmt);
1592 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1593 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1594 && !PURE_SLP_STMT (stmt_info))
1595 /* STMT needs both SLP and loop-based vectorization. */
1596 only_slp_in_loop = false;
1600 if (only_slp_in_loop)
1602 dump_printf_loc (MSG_NOTE, vect_location,
1603 "Loop contains only SLP stmts\n");
1604 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1606 else
1608 dump_printf_loc (MSG_NOTE, vect_location,
1609 "Loop contains SLP and non-SLP stmts\n");
1610 vectorization_factor
1611 = least_common_multiple (vectorization_factor,
1612 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1615 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1616 if (dump_enabled_p ())
1617 dump_printf_loc (MSG_NOTE, vect_location,
1618 "Updating vectorization factor to %d\n",
1619 vectorization_factor);
1622 /* Function vect_analyze_loop_operations.
1624 Scan the loop stmts and make sure they are all vectorizable. */
1626 static bool
1627 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1629 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1630 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1631 int nbbs = loop->num_nodes;
1632 int i;
1633 stmt_vec_info stmt_info;
1634 bool need_to_vectorize = false;
1635 bool ok;
1637 if (dump_enabled_p ())
1638 dump_printf_loc (MSG_NOTE, vect_location,
1639 "=== vect_analyze_loop_operations ===\n");
1641 for (i = 0; i < nbbs; i++)
1643 basic_block bb = bbs[i];
1645 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1646 gsi_next (&si))
1648 gphi *phi = si.phi ();
1649 ok = true;
1651 stmt_info = vinfo_for_stmt (phi);
1652 if (dump_enabled_p ())
1654 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1655 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1657 if (virtual_operand_p (gimple_phi_result (phi)))
1658 continue;
1660 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1661 (i.e., a phi in the tail of the outer-loop). */
1662 if (! is_loop_header_bb_p (bb))
1664 /* FORNOW: we currently don't support the case that these phis
1665 are not used in the outerloop (unless it is double reduction,
1666 i.e., this phi is vect_reduction_def), cause this case
1667 requires to actually do something here. */
1668 if (STMT_VINFO_LIVE_P (stmt_info)
1669 && STMT_VINFO_DEF_TYPE (stmt_info)
1670 != vect_double_reduction_def)
1672 if (dump_enabled_p ())
1673 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1674 "Unsupported loop-closed phi in "
1675 "outer-loop.\n");
1676 return false;
1679 /* If PHI is used in the outer loop, we check that its operand
1680 is defined in the inner loop. */
1681 if (STMT_VINFO_RELEVANT_P (stmt_info))
1683 tree phi_op;
1684 gimple *op_def_stmt;
1686 if (gimple_phi_num_args (phi) != 1)
1687 return false;
1689 phi_op = PHI_ARG_DEF (phi, 0);
1690 if (TREE_CODE (phi_op) != SSA_NAME)
1691 return false;
1693 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1694 if (gimple_nop_p (op_def_stmt)
1695 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1696 || !vinfo_for_stmt (op_def_stmt))
1697 return false;
1699 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1700 != vect_used_in_outer
1701 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1702 != vect_used_in_outer_by_reduction)
1703 return false;
1706 continue;
1709 gcc_assert (stmt_info);
1711 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1712 || STMT_VINFO_LIVE_P (stmt_info))
1713 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1715 /* A scalar-dependence cycle that we don't support. */
1716 if (dump_enabled_p ())
1717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1718 "not vectorized: scalar dependence cycle.\n");
1719 return false;
1722 if (STMT_VINFO_RELEVANT_P (stmt_info))
1724 need_to_vectorize = true;
1725 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1726 && ! PURE_SLP_STMT (stmt_info))
1727 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1728 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1729 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1730 && ! PURE_SLP_STMT (stmt_info))
1731 ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL);
1734 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1735 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1737 if (!ok)
1739 if (dump_enabled_p ())
1741 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1742 "not vectorized: relevant phi not "
1743 "supported: ");
1744 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1746 return false;
1750 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1751 gsi_next (&si))
1753 gimple *stmt = gsi_stmt (si);
1754 if (!gimple_clobber_p (stmt)
1755 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL))
1756 return false;
1758 } /* bbs */
1760 /* All operations in the loop are either irrelevant (deal with loop
1761 control, or dead), or only used outside the loop and can be moved
1762 out of the loop (e.g. invariants, inductions). The loop can be
1763 optimized away by scalar optimizations. We're better off not
1764 touching this loop. */
1765 if (!need_to_vectorize)
1767 if (dump_enabled_p ())
1768 dump_printf_loc (MSG_NOTE, vect_location,
1769 "All the computation can be taken out of the loop.\n");
1770 if (dump_enabled_p ())
1771 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1772 "not vectorized: redundant loop. no profit to "
1773 "vectorize.\n");
1774 return false;
1777 return true;
1781 /* Function vect_analyze_loop_2.
1783 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1784 for it. The different analyses will record information in the
1785 loop_vec_info struct. */
1786 static bool
1787 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1789 bool ok;
1790 int max_vf = MAX_VECTORIZATION_FACTOR;
1791 int min_vf = 2;
1792 unsigned int n_stmts = 0;
1794 /* The first group of checks is independent of the vector size. */
1795 fatal = true;
1797 /* Find all data references in the loop (which correspond to vdefs/vuses)
1798 and analyze their evolution in the loop. */
1800 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1802 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1803 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1805 if (dump_enabled_p ())
1806 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1807 "not vectorized: loop nest containing two "
1808 "or more consecutive inner loops cannot be "
1809 "vectorized\n");
1810 return false;
1813 for (unsigned i = 0; i < loop->num_nodes; i++)
1814 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1815 !gsi_end_p (gsi); gsi_next (&gsi))
1817 gimple *stmt = gsi_stmt (gsi);
1818 if (is_gimple_debug (stmt))
1819 continue;
1820 ++n_stmts;
1821 if (!find_data_references_in_stmt (loop, stmt,
1822 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1824 if (is_gimple_call (stmt) && loop->safelen)
1826 tree fndecl = gimple_call_fndecl (stmt), op;
1827 if (fndecl != NULL_TREE)
1829 cgraph_node *node = cgraph_node::get (fndecl);
1830 if (node != NULL && node->simd_clones != NULL)
1832 unsigned int j, n = gimple_call_num_args (stmt);
1833 for (j = 0; j < n; j++)
1835 op = gimple_call_arg (stmt, j);
1836 if (DECL_P (op)
1837 || (REFERENCE_CLASS_P (op)
1838 && get_base_address (op)))
1839 break;
1841 op = gimple_call_lhs (stmt);
1842 /* Ignore #pragma omp declare simd functions
1843 if they don't have data references in the
1844 call stmt itself. */
1845 if (j == n
1846 && !(op
1847 && (DECL_P (op)
1848 || (REFERENCE_CLASS_P (op)
1849 && get_base_address (op)))))
1850 continue;
1854 if (dump_enabled_p ())
1855 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1856 "not vectorized: loop contains function "
1857 "calls or data references that cannot "
1858 "be analyzed\n");
1859 return false;
1863 /* Analyze the data references and also adjust the minimal
1864 vectorization factor according to the loads and stores. */
1866 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1867 if (!ok)
1869 if (dump_enabled_p ())
1870 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1871 "bad data references.\n");
1872 return false;
1875 /* Classify all cross-iteration scalar data-flow cycles.
1876 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1877 vect_analyze_scalar_cycles (loop_vinfo);
1879 vect_pattern_recog (loop_vinfo);
1881 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1883 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1884 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1886 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1887 if (!ok)
1889 if (dump_enabled_p ())
1890 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1891 "bad data access.\n");
1892 return false;
1895 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1897 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1898 if (!ok)
1900 if (dump_enabled_p ())
1901 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1902 "unexpected pattern.\n");
1903 return false;
1906 /* While the rest of the analysis below depends on it in some way. */
1907 fatal = false;
1909 /* Analyze data dependences between the data-refs in the loop
1910 and adjust the maximum vectorization factor according to
1911 the dependences.
1912 FORNOW: fail at the first data dependence that we encounter. */
1914 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1915 if (!ok
1916 || max_vf < min_vf)
1918 if (dump_enabled_p ())
1919 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1920 "bad data dependence.\n");
1921 return false;
1924 ok = vect_determine_vectorization_factor (loop_vinfo);
1925 if (!ok)
1927 if (dump_enabled_p ())
1928 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1929 "can't determine vectorization factor.\n");
1930 return false;
1932 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1934 if (dump_enabled_p ())
1935 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1936 "bad data dependence.\n");
1937 return false;
1940 /* Compute the scalar iteration cost. */
1941 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1943 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1944 HOST_WIDE_INT estimated_niter;
1945 unsigned th;
1946 int min_scalar_loop_bound;
1948 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1949 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1950 if (!ok)
1951 return false;
1953 /* If there are any SLP instances mark them as pure_slp. */
1954 bool slp = vect_make_slp_decision (loop_vinfo);
1955 if (slp)
1957 /* Find stmts that need to be both vectorized and SLPed. */
1958 vect_detect_hybrid_slp (loop_vinfo);
1960 /* Update the vectorization factor based on the SLP decision. */
1961 vect_update_vf_for_slp (loop_vinfo);
1964 /* This is the point where we can re-start analysis with SLP forced off. */
1965 start_over:
1967 /* Now the vectorization factor is final. */
1968 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1969 gcc_assert (vectorization_factor != 0);
1971 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1972 dump_printf_loc (MSG_NOTE, vect_location,
1973 "vectorization_factor = %d, niters = "
1974 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1975 LOOP_VINFO_INT_NITERS (loop_vinfo));
1977 HOST_WIDE_INT max_niter
1978 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
1979 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1980 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1981 || (max_niter != -1
1982 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1984 if (dump_enabled_p ())
1985 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1986 "not vectorized: iteration count smaller than "
1987 "vectorization factor.\n");
1988 return false;
1991 /* Analyze the alignment of the data-refs in the loop.
1992 Fail if a data reference is found that cannot be vectorized. */
1994 ok = vect_analyze_data_refs_alignment (loop_vinfo);
1995 if (!ok)
1997 if (dump_enabled_p ())
1998 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1999 "bad data alignment.\n");
2000 return false;
2003 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2004 It is important to call pruning after vect_analyze_data_ref_accesses,
2005 since we use grouping information gathered by interleaving analysis. */
2006 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2007 if (!ok)
2008 return false;
2010 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2011 vectorization. */
2012 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2014 /* This pass will decide on using loop versioning and/or loop peeling in
2015 order to enhance the alignment of data references in the loop. */
2016 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2017 if (!ok)
2019 if (dump_enabled_p ())
2020 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2021 "bad data alignment.\n");
2022 return false;
2026 if (slp)
2028 /* Analyze operations in the SLP instances. Note this may
2029 remove unsupported SLP instances which makes the above
2030 SLP kind detection invalid. */
2031 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2032 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2033 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2034 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2035 goto again;
2038 /* Scan all the remaining operations in the loop that are not subject
2039 to SLP and make sure they are vectorizable. */
2040 ok = vect_analyze_loop_operations (loop_vinfo);
2041 if (!ok)
2043 if (dump_enabled_p ())
2044 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2045 "bad operation or unsupported loop bound.\n");
2046 return false;
2049 /* If epilog loop is required because of data accesses with gaps,
2050 one additional iteration needs to be peeled. Check if there is
2051 enough iterations for vectorization. */
2052 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2053 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2055 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2056 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2058 if (wi::to_widest (scalar_niters) < vf)
2060 if (dump_enabled_p ())
2061 dump_printf_loc (MSG_NOTE, vect_location,
2062 "loop has no enough iterations to support"
2063 " peeling for gaps.\n");
2064 return false;
2068 /* Analyze cost. Decide if worth while to vectorize. */
2069 int min_profitable_estimate, min_profitable_iters;
2070 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2071 &min_profitable_estimate);
2073 if (min_profitable_iters < 0)
2075 if (dump_enabled_p ())
2076 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2077 "not vectorized: vectorization not profitable.\n");
2078 if (dump_enabled_p ())
2079 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2080 "not vectorized: vector version will never be "
2081 "profitable.\n");
2082 goto again;
2085 min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2086 * vectorization_factor);
2088 /* Use the cost model only if it is more conservative than user specified
2089 threshold. */
2090 th = (unsigned) MAX (min_scalar_loop_bound, min_profitable_iters);
2092 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2094 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2095 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
2097 if (dump_enabled_p ())
2098 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2099 "not vectorized: vectorization not profitable.\n");
2100 if (dump_enabled_p ())
2101 dump_printf_loc (MSG_NOTE, vect_location,
2102 "not vectorized: iteration count smaller than user "
2103 "specified loop bound parameter or minimum profitable "
2104 "iterations (whichever is more conservative).\n");
2105 goto again;
2108 estimated_niter
2109 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2110 if (estimated_niter == -1)
2111 estimated_niter = max_niter;
2112 if (estimated_niter != -1
2113 && ((unsigned HOST_WIDE_INT) estimated_niter
2114 < MAX (th, (unsigned) min_profitable_estimate)))
2116 if (dump_enabled_p ())
2117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2118 "not vectorized: estimated iteration count too "
2119 "small.\n");
2120 if (dump_enabled_p ())
2121 dump_printf_loc (MSG_NOTE, vect_location,
2122 "not vectorized: estimated iteration count smaller "
2123 "than specified loop bound parameter or minimum "
2124 "profitable iterations (whichever is more "
2125 "conservative).\n");
2126 goto again;
2129 /* Decide whether we need to create an epilogue loop to handle
2130 remaining scalar iterations. */
2131 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo)
2132 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2133 * LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2135 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2136 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2138 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2139 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2140 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2141 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2143 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2144 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2145 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2146 /* In case of versioning, check if the maximum number of
2147 iterations is greater than th. If they are identical,
2148 the epilogue is unnecessary. */
2149 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2150 || (unsigned HOST_WIDE_INT) max_niter > th)))
2151 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2153 /* If an epilogue loop is required make sure we can create one. */
2154 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2155 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2157 if (dump_enabled_p ())
2158 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2159 if (!vect_can_advance_ivs_p (loop_vinfo)
2160 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2161 single_exit (LOOP_VINFO_LOOP
2162 (loop_vinfo))))
2164 if (dump_enabled_p ())
2165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2166 "not vectorized: can't create required "
2167 "epilog loop\n");
2168 goto again;
2172 /* During peeling, we need to check if number of loop iterations is
2173 enough for both peeled prolog loop and vector loop. This check
2174 can be merged along with threshold check of loop versioning, so
2175 increase threshold for this case if necessary. */
2176 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2177 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2178 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2180 unsigned niters_th;
2182 /* Niters for peeled prolog loop. */
2183 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2185 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2186 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2188 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2190 else
2191 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2193 /* Niters for at least one iteration of vectorized loop. */
2194 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2195 /* One additional iteration because of peeling for gap. */
2196 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2197 niters_th++;
2198 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2199 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2202 gcc_assert (vectorization_factor
2203 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2205 /* Ok to vectorize! */
2206 return true;
2208 again:
2209 /* Try again with SLP forced off but if we didn't do any SLP there is
2210 no point in re-trying. */
2211 if (!slp)
2212 return false;
2214 /* If there are reduction chains re-trying will fail anyway. */
2215 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2216 return false;
2218 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2219 via interleaving or lane instructions. */
2220 slp_instance instance;
2221 slp_tree node;
2222 unsigned i, j;
2223 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2225 stmt_vec_info vinfo;
2226 vinfo = vinfo_for_stmt
2227 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2228 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2229 continue;
2230 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2231 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2232 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2233 if (! vect_store_lanes_supported (vectype, size)
2234 && ! vect_grouped_store_supported (vectype, size))
2235 return false;
2236 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2238 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2239 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2240 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2241 size = STMT_VINFO_GROUP_SIZE (vinfo);
2242 vectype = STMT_VINFO_VECTYPE (vinfo);
2243 if (! vect_load_lanes_supported (vectype, size)
2244 && ! vect_grouped_load_supported (vectype, single_element_p,
2245 size))
2246 return false;
2250 if (dump_enabled_p ())
2251 dump_printf_loc (MSG_NOTE, vect_location,
2252 "re-trying with SLP disabled\n");
2254 /* Roll back state appropriately. No SLP this time. */
2255 slp = false;
2256 /* Restore vectorization factor as it were without SLP. */
2257 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2258 /* Free the SLP instances. */
2259 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2260 vect_free_slp_instance (instance);
2261 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2262 /* Reset SLP type to loop_vect on all stmts. */
2263 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2265 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2266 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2267 !gsi_end_p (si); gsi_next (&si))
2269 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2270 STMT_SLP_TYPE (stmt_info) = loop_vect;
2272 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2273 !gsi_end_p (si); gsi_next (&si))
2275 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2276 STMT_SLP_TYPE (stmt_info) = loop_vect;
2277 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2279 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2280 STMT_SLP_TYPE (stmt_info) = loop_vect;
2281 for (gimple_stmt_iterator pi
2282 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2283 !gsi_end_p (pi); gsi_next (&pi))
2285 gimple *pstmt = gsi_stmt (pi);
2286 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2291 /* Free optimized alias test DDRS. */
2292 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2293 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
2294 /* Reset target cost data. */
2295 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2296 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2297 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2298 /* Reset assorted flags. */
2299 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2300 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2301 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2303 goto start_over;
2306 /* Function vect_analyze_loop.
2308 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2309 for it. The different analyses will record information in the
2310 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2311 be vectorized. */
2312 loop_vec_info
2313 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2315 loop_vec_info loop_vinfo;
2316 unsigned int vector_sizes;
2318 /* Autodetect first vector size we try. */
2319 current_vector_size = 0;
2320 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2322 if (dump_enabled_p ())
2323 dump_printf_loc (MSG_NOTE, vect_location,
2324 "===== analyze_loop_nest =====\n");
2326 if (loop_outer (loop)
2327 && loop_vec_info_for_loop (loop_outer (loop))
2328 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2330 if (dump_enabled_p ())
2331 dump_printf_loc (MSG_NOTE, vect_location,
2332 "outer-loop already vectorized.\n");
2333 return NULL;
2336 while (1)
2338 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2339 loop_vinfo = vect_analyze_loop_form (loop);
2340 if (!loop_vinfo)
2342 if (dump_enabled_p ())
2343 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2344 "bad loop form.\n");
2345 return NULL;
2348 bool fatal = false;
2350 if (orig_loop_vinfo)
2351 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2353 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2355 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2357 return loop_vinfo;
2360 delete loop_vinfo;
2362 vector_sizes &= ~current_vector_size;
2363 if (fatal
2364 || vector_sizes == 0
2365 || current_vector_size == 0)
2366 return NULL;
2368 /* Try the next biggest vector size. */
2369 current_vector_size = 1 << floor_log2 (vector_sizes);
2370 if (dump_enabled_p ())
2371 dump_printf_loc (MSG_NOTE, vect_location,
2372 "***** Re-trying analysis with "
2373 "vector size %d\n", current_vector_size);
2378 /* Function reduction_code_for_scalar_code
2380 Input:
2381 CODE - tree_code of a reduction operations.
2383 Output:
2384 REDUC_CODE - the corresponding tree-code to be used to reduce the
2385 vector of partial results into a single scalar result, or ERROR_MARK
2386 if the operation is a supported reduction operation, but does not have
2387 such a tree-code.
2389 Return FALSE if CODE currently cannot be vectorized as reduction. */
2391 static bool
2392 reduction_code_for_scalar_code (enum tree_code code,
2393 enum tree_code *reduc_code)
2395 switch (code)
2397 case MAX_EXPR:
2398 *reduc_code = REDUC_MAX_EXPR;
2399 return true;
2401 case MIN_EXPR:
2402 *reduc_code = REDUC_MIN_EXPR;
2403 return true;
2405 case PLUS_EXPR:
2406 *reduc_code = REDUC_PLUS_EXPR;
2407 return true;
2409 case MULT_EXPR:
2410 case MINUS_EXPR:
2411 case BIT_IOR_EXPR:
2412 case BIT_XOR_EXPR:
2413 case BIT_AND_EXPR:
2414 *reduc_code = ERROR_MARK;
2415 return true;
2417 default:
2418 return false;
2423 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2424 STMT is printed with a message MSG. */
2426 static void
2427 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2429 dump_printf_loc (msg_type, vect_location, "%s", msg);
2430 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2434 /* Detect SLP reduction of the form:
2436 #a1 = phi <a5, a0>
2437 a2 = operation (a1)
2438 a3 = operation (a2)
2439 a4 = operation (a3)
2440 a5 = operation (a4)
2442 #a = phi <a5>
2444 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2445 FIRST_STMT is the first reduction stmt in the chain
2446 (a2 = operation (a1)).
2448 Return TRUE if a reduction chain was detected. */
2450 static bool
2451 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2452 gimple *first_stmt)
2454 struct loop *loop = (gimple_bb (phi))->loop_father;
2455 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2456 enum tree_code code;
2457 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2458 stmt_vec_info use_stmt_info, current_stmt_info;
2459 tree lhs;
2460 imm_use_iterator imm_iter;
2461 use_operand_p use_p;
2462 int nloop_uses, size = 0, n_out_of_loop_uses;
2463 bool found = false;
2465 if (loop != vect_loop)
2466 return false;
2468 lhs = PHI_RESULT (phi);
2469 code = gimple_assign_rhs_code (first_stmt);
2470 while (1)
2472 nloop_uses = 0;
2473 n_out_of_loop_uses = 0;
2474 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2476 gimple *use_stmt = USE_STMT (use_p);
2477 if (is_gimple_debug (use_stmt))
2478 continue;
2480 /* Check if we got back to the reduction phi. */
2481 if (use_stmt == phi)
2483 loop_use_stmt = use_stmt;
2484 found = true;
2485 break;
2488 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2490 loop_use_stmt = use_stmt;
2491 nloop_uses++;
2493 else
2494 n_out_of_loop_uses++;
2496 /* There are can be either a single use in the loop or two uses in
2497 phi nodes. */
2498 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2499 return false;
2502 if (found)
2503 break;
2505 /* We reached a statement with no loop uses. */
2506 if (nloop_uses == 0)
2507 return false;
2509 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2510 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2511 return false;
2513 if (!is_gimple_assign (loop_use_stmt)
2514 || code != gimple_assign_rhs_code (loop_use_stmt)
2515 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2516 return false;
2518 /* Insert USE_STMT into reduction chain. */
2519 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2520 if (current_stmt)
2522 current_stmt_info = vinfo_for_stmt (current_stmt);
2523 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2524 GROUP_FIRST_ELEMENT (use_stmt_info)
2525 = GROUP_FIRST_ELEMENT (current_stmt_info);
2527 else
2528 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2530 lhs = gimple_assign_lhs (loop_use_stmt);
2531 current_stmt = loop_use_stmt;
2532 size++;
2535 if (!found || loop_use_stmt != phi || size < 2)
2536 return false;
2538 /* Swap the operands, if needed, to make the reduction operand be the second
2539 operand. */
2540 lhs = PHI_RESULT (phi);
2541 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2542 while (next_stmt)
2544 if (gimple_assign_rhs2 (next_stmt) == lhs)
2546 tree op = gimple_assign_rhs1 (next_stmt);
2547 gimple *def_stmt = NULL;
2549 if (TREE_CODE (op) == SSA_NAME)
2550 def_stmt = SSA_NAME_DEF_STMT (op);
2552 /* Check that the other def is either defined in the loop
2553 ("vect_internal_def"), or it's an induction (defined by a
2554 loop-header phi-node). */
2555 if (def_stmt
2556 && gimple_bb (def_stmt)
2557 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2558 && (is_gimple_assign (def_stmt)
2559 || is_gimple_call (def_stmt)
2560 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2561 == vect_induction_def
2562 || (gimple_code (def_stmt) == GIMPLE_PHI
2563 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2564 == vect_internal_def
2565 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2567 lhs = gimple_assign_lhs (next_stmt);
2568 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2569 continue;
2572 return false;
2574 else
2576 tree op = gimple_assign_rhs2 (next_stmt);
2577 gimple *def_stmt = NULL;
2579 if (TREE_CODE (op) == SSA_NAME)
2580 def_stmt = SSA_NAME_DEF_STMT (op);
2582 /* Check that the other def is either defined in the loop
2583 ("vect_internal_def"), or it's an induction (defined by a
2584 loop-header phi-node). */
2585 if (def_stmt
2586 && gimple_bb (def_stmt)
2587 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2588 && (is_gimple_assign (def_stmt)
2589 || is_gimple_call (def_stmt)
2590 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2591 == vect_induction_def
2592 || (gimple_code (def_stmt) == GIMPLE_PHI
2593 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2594 == vect_internal_def
2595 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2597 if (dump_enabled_p ())
2599 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2600 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2603 swap_ssa_operands (next_stmt,
2604 gimple_assign_rhs1_ptr (next_stmt),
2605 gimple_assign_rhs2_ptr (next_stmt));
2606 update_stmt (next_stmt);
2608 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2609 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2611 else
2612 return false;
2615 lhs = gimple_assign_lhs (next_stmt);
2616 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2619 /* Save the chain for further analysis in SLP detection. */
2620 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2621 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2622 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2624 return true;
2628 /* Function vect_is_simple_reduction
2630 (1) Detect a cross-iteration def-use cycle that represents a simple
2631 reduction computation. We look for the following pattern:
2633 loop_header:
2634 a1 = phi < a0, a2 >
2635 a3 = ...
2636 a2 = operation (a3, a1)
2640 a3 = ...
2641 loop_header:
2642 a1 = phi < a0, a2 >
2643 a2 = operation (a3, a1)
2645 such that:
2646 1. operation is commutative and associative and it is safe to
2647 change the order of the computation
2648 2. no uses for a2 in the loop (a2 is used out of the loop)
2649 3. no uses of a1 in the loop besides the reduction operation
2650 4. no uses of a1 outside the loop.
2652 Conditions 1,4 are tested here.
2653 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2655 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2656 nested cycles.
2658 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2659 reductions:
2661 a1 = phi < a0, a2 >
2662 inner loop (def of a3)
2663 a2 = phi < a3 >
2665 (4) Detect condition expressions, ie:
2666 for (int i = 0; i < N; i++)
2667 if (a[i] < val)
2668 ret_val = a[i];
2672 static gimple *
2673 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2674 bool *double_reduc,
2675 bool need_wrapping_integral_overflow,
2676 enum vect_reduction_type *v_reduc_type)
2678 struct loop *loop = (gimple_bb (phi))->loop_father;
2679 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2680 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2681 enum tree_code orig_code, code;
2682 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2683 tree type;
2684 int nloop_uses;
2685 tree name;
2686 imm_use_iterator imm_iter;
2687 use_operand_p use_p;
2688 bool phi_def;
2690 *double_reduc = false;
2691 *v_reduc_type = TREE_CODE_REDUCTION;
2693 tree phi_name = PHI_RESULT (phi);
2694 /* ??? If there are no uses of the PHI result the inner loop reduction
2695 won't be detected as possibly double-reduction by vectorizable_reduction
2696 because that tries to walk the PHI arg from the preheader edge which
2697 can be constant. See PR60382. */
2698 if (has_zero_uses (phi_name))
2699 return NULL;
2700 nloop_uses = 0;
2701 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
2703 gimple *use_stmt = USE_STMT (use_p);
2704 if (is_gimple_debug (use_stmt))
2705 continue;
2707 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2709 if (dump_enabled_p ())
2710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2711 "intermediate value used outside loop.\n");
2713 return NULL;
2716 nloop_uses++;
2717 if (nloop_uses > 1)
2719 if (dump_enabled_p ())
2720 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2721 "reduction value used in loop.\n");
2722 return NULL;
2725 phi_use_stmt = use_stmt;
2728 edge latch_e = loop_latch_edge (loop);
2729 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2730 if (TREE_CODE (loop_arg) != SSA_NAME)
2732 if (dump_enabled_p ())
2734 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2735 "reduction: not ssa_name: ");
2736 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2737 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2739 return NULL;
2742 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2743 if (is_gimple_assign (def_stmt))
2745 name = gimple_assign_lhs (def_stmt);
2746 phi_def = false;
2748 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2750 name = PHI_RESULT (def_stmt);
2751 phi_def = true;
2753 else
2755 if (dump_enabled_p ())
2757 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2758 "reduction: unhandled reduction operation: ");
2759 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2761 return NULL;
2764 if (! flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2765 return NULL;
2767 nloop_uses = 0;
2768 auto_vec<gphi *, 3> lcphis;
2769 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2771 gimple *use_stmt = USE_STMT (use_p);
2772 if (is_gimple_debug (use_stmt))
2773 continue;
2774 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2775 nloop_uses++;
2776 else
2777 /* We can have more than one loop-closed PHI. */
2778 lcphis.safe_push (as_a <gphi *> (use_stmt));
2779 if (nloop_uses > 1)
2781 if (dump_enabled_p ())
2782 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2783 "reduction used in loop.\n");
2784 return NULL;
2788 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2789 defined in the inner loop. */
2790 if (phi_def)
2792 op1 = PHI_ARG_DEF (def_stmt, 0);
2794 if (gimple_phi_num_args (def_stmt) != 1
2795 || TREE_CODE (op1) != SSA_NAME)
2797 if (dump_enabled_p ())
2798 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2799 "unsupported phi node definition.\n");
2801 return NULL;
2804 def1 = SSA_NAME_DEF_STMT (op1);
2805 if (gimple_bb (def1)
2806 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2807 && loop->inner
2808 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2809 && is_gimple_assign (def1)
2810 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2812 if (dump_enabled_p ())
2813 report_vect_op (MSG_NOTE, def_stmt,
2814 "detected double reduction: ");
2816 *double_reduc = true;
2817 return def_stmt;
2820 return NULL;
2823 /* If we are vectorizing an inner reduction we are executing that
2824 in the original order only in case we are not dealing with a
2825 double reduction. */
2826 bool check_reduction = true;
2827 if (flow_loop_nested_p (vect_loop, loop))
2829 gphi *lcphi;
2830 unsigned i;
2831 check_reduction = false;
2832 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2833 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2835 gimple *use_stmt = USE_STMT (use_p);
2836 if (is_gimple_debug (use_stmt))
2837 continue;
2838 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2839 check_reduction = true;
2843 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2844 code = orig_code = gimple_assign_rhs_code (def_stmt);
2846 /* We can handle "res -= x[i]", which is non-associative by
2847 simply rewriting this into "res += -x[i]". Avoid changing
2848 gimple instruction for the first simple tests and only do this
2849 if we're allowed to change code at all. */
2850 if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
2851 code = PLUS_EXPR;
2853 if (code == COND_EXPR)
2855 if (! nested_in_vect_loop)
2856 *v_reduc_type = COND_REDUCTION;
2858 op3 = gimple_assign_rhs1 (def_stmt);
2859 if (COMPARISON_CLASS_P (op3))
2861 op4 = TREE_OPERAND (op3, 1);
2862 op3 = TREE_OPERAND (op3, 0);
2864 if (op3 == phi_name || op4 == phi_name)
2866 if (dump_enabled_p ())
2867 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2868 "reduction: condition depends on previous"
2869 " iteration: ");
2870 return NULL;
2873 op1 = gimple_assign_rhs2 (def_stmt);
2874 op2 = gimple_assign_rhs3 (def_stmt);
2876 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2878 if (dump_enabled_p ())
2879 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2880 "reduction: not commutative/associative: ");
2881 return NULL;
2883 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2885 op1 = gimple_assign_rhs1 (def_stmt);
2886 op2 = gimple_assign_rhs2 (def_stmt);
2888 else
2890 if (dump_enabled_p ())
2891 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2892 "reduction: not handled operation: ");
2893 return NULL;
2896 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2898 if (dump_enabled_p ())
2899 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2900 "reduction: both uses not ssa_names: ");
2902 return NULL;
2905 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2906 if ((TREE_CODE (op1) == SSA_NAME
2907 && !types_compatible_p (type,TREE_TYPE (op1)))
2908 || (TREE_CODE (op2) == SSA_NAME
2909 && !types_compatible_p (type, TREE_TYPE (op2)))
2910 || (op3 && TREE_CODE (op3) == SSA_NAME
2911 && !types_compatible_p (type, TREE_TYPE (op3)))
2912 || (op4 && TREE_CODE (op4) == SSA_NAME
2913 && !types_compatible_p (type, TREE_TYPE (op4))))
2915 if (dump_enabled_p ())
2917 dump_printf_loc (MSG_NOTE, vect_location,
2918 "reduction: multiple types: operation type: ");
2919 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2920 dump_printf (MSG_NOTE, ", operands types: ");
2921 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2922 TREE_TYPE (op1));
2923 dump_printf (MSG_NOTE, ",");
2924 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2925 TREE_TYPE (op2));
2926 if (op3)
2928 dump_printf (MSG_NOTE, ",");
2929 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2930 TREE_TYPE (op3));
2933 if (op4)
2935 dump_printf (MSG_NOTE, ",");
2936 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2937 TREE_TYPE (op4));
2939 dump_printf (MSG_NOTE, "\n");
2942 return NULL;
2945 /* Check that it's ok to change the order of the computation.
2946 Generally, when vectorizing a reduction we change the order of the
2947 computation. This may change the behavior of the program in some
2948 cases, so we need to check that this is ok. One exception is when
2949 vectorizing an outer-loop: the inner-loop is executed sequentially,
2950 and therefore vectorizing reductions in the inner-loop during
2951 outer-loop vectorization is safe. */
2953 if (*v_reduc_type != COND_REDUCTION
2954 && check_reduction)
2956 /* CHECKME: check for !flag_finite_math_only too? */
2957 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
2959 /* Changing the order of operations changes the semantics. */
2960 if (dump_enabled_p ())
2961 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2962 "reduction: unsafe fp math optimization: ");
2963 return NULL;
2965 else if (INTEGRAL_TYPE_P (type))
2967 if (!operation_no_trapping_overflow (type, code))
2969 /* Changing the order of operations changes the semantics. */
2970 if (dump_enabled_p ())
2971 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2972 "reduction: unsafe int math optimization"
2973 " (overflow traps): ");
2974 return NULL;
2976 if (need_wrapping_integral_overflow
2977 && !TYPE_OVERFLOW_WRAPS (type)
2978 && operation_can_overflow (code))
2980 /* Changing the order of operations changes the semantics. */
2981 if (dump_enabled_p ())
2982 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2983 "reduction: unsafe int math optimization"
2984 " (overflow doesn't wrap): ");
2985 return NULL;
2988 else if (SAT_FIXED_POINT_TYPE_P (type))
2990 /* Changing the order of operations changes the semantics. */
2991 if (dump_enabled_p ())
2992 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2993 "reduction: unsafe fixed-point math optimization: ");
2994 return NULL;
2998 /* Reduction is safe. We're dealing with one of the following:
2999 1) integer arithmetic and no trapv
3000 2) floating point arithmetic, and special flags permit this optimization
3001 3) nested cycle (i.e., outer loop vectorization). */
3002 if (TREE_CODE (op1) == SSA_NAME)
3003 def1 = SSA_NAME_DEF_STMT (op1);
3005 if (TREE_CODE (op2) == SSA_NAME)
3006 def2 = SSA_NAME_DEF_STMT (op2);
3008 if (code != COND_EXPR
3009 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3011 if (dump_enabled_p ())
3012 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3013 return NULL;
3016 /* Check that one def is the reduction def, defined by PHI,
3017 the other def is either defined in the loop ("vect_internal_def"),
3018 or it's an induction (defined by a loop-header phi-node). */
3020 if (def2 && def2 == phi
3021 && (code == COND_EXPR
3022 || !def1 || gimple_nop_p (def1)
3023 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3024 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3025 && (is_gimple_assign (def1)
3026 || is_gimple_call (def1)
3027 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3028 == vect_induction_def
3029 || (gimple_code (def1) == GIMPLE_PHI
3030 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3031 == vect_internal_def
3032 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3034 if (dump_enabled_p ())
3035 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3036 return def_stmt;
3039 if (def1 && def1 == phi
3040 && (code == COND_EXPR
3041 || !def2 || gimple_nop_p (def2)
3042 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3043 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3044 && (is_gimple_assign (def2)
3045 || is_gimple_call (def2)
3046 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3047 == vect_induction_def
3048 || (gimple_code (def2) == GIMPLE_PHI
3049 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3050 == vect_internal_def
3051 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3053 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3055 /* Check if we can swap operands (just for simplicity - so that
3056 the rest of the code can assume that the reduction variable
3057 is always the last (second) argument). */
3058 if (code == COND_EXPR)
3060 /* Swap cond_expr by inverting the condition. */
3061 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3062 enum tree_code invert_code = ERROR_MARK;
3063 enum tree_code cond_code = TREE_CODE (cond_expr);
3065 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3067 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3068 invert_code = invert_tree_comparison (cond_code, honor_nans);
3070 if (invert_code != ERROR_MARK)
3072 TREE_SET_CODE (cond_expr, invert_code);
3073 swap_ssa_operands (def_stmt,
3074 gimple_assign_rhs2_ptr (def_stmt),
3075 gimple_assign_rhs3_ptr (def_stmt));
3077 else
3079 if (dump_enabled_p ())
3080 report_vect_op (MSG_NOTE, def_stmt,
3081 "detected reduction: cannot swap operands "
3082 "for cond_expr");
3083 return NULL;
3086 else
3087 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3088 gimple_assign_rhs2_ptr (def_stmt));
3090 if (dump_enabled_p ())
3091 report_vect_op (MSG_NOTE, def_stmt,
3092 "detected reduction: need to swap operands: ");
3094 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3095 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3097 else
3099 if (dump_enabled_p ())
3100 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3103 return def_stmt;
3106 /* Try to find SLP reduction chain. */
3107 if (! nested_in_vect_loop
3108 && code != COND_EXPR
3109 && orig_code != MINUS_EXPR
3110 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3112 if (dump_enabled_p ())
3113 report_vect_op (MSG_NOTE, def_stmt,
3114 "reduction: detected reduction chain: ");
3116 return def_stmt;
3119 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3120 gimple *first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
3121 while (first)
3123 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
3124 GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
3125 GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
3126 first = next;
3129 /* Look for the expression computing loop_arg from loop PHI result. */
3130 auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
3131 auto_bitmap visited;
3132 tree lookfor = PHI_RESULT (phi);
3133 ssa_op_iter curri;
3134 use_operand_p curr = op_iter_init_phiuse (&curri, as_a <gphi *>(phi),
3135 SSA_OP_USE);
3136 while (USE_FROM_PTR (curr) != loop_arg)
3137 curr = op_iter_next_use (&curri);
3138 curri.i = curri.numops;
3141 path.safe_push (std::make_pair (curri, curr));
3142 tree use = USE_FROM_PTR (curr);
3143 if (use == lookfor)
3144 break;
3145 gimple *def = SSA_NAME_DEF_STMT (use);
3146 if (gimple_nop_p (def)
3147 || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
3149 pop:
3152 std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
3153 curri = x.first;
3154 curr = x.second;
3156 curr = op_iter_next_use (&curri);
3157 /* Skip already visited or non-SSA operands (from iterating
3158 over PHI args). */
3159 while (curr != NULL_USE_OPERAND_P
3160 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3161 || ! bitmap_set_bit (visited,
3162 SSA_NAME_VERSION
3163 (USE_FROM_PTR (curr)))));
3165 while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
3166 if (curr == NULL_USE_OPERAND_P)
3167 break;
3169 else
3171 if (gimple_code (def) == GIMPLE_PHI)
3172 curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
3173 else
3174 curr = op_iter_init_use (&curri, def, SSA_OP_USE);
3175 while (curr != NULL_USE_OPERAND_P
3176 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3177 || ! bitmap_set_bit (visited,
3178 SSA_NAME_VERSION
3179 (USE_FROM_PTR (curr)))))
3180 curr = op_iter_next_use (&curri);
3181 if (curr == NULL_USE_OPERAND_P)
3182 goto pop;
3185 while (1);
3186 if (dump_file && (dump_flags & TDF_DETAILS))
3188 dump_printf_loc (MSG_NOTE, vect_location,
3189 "reduction path: ");
3190 unsigned i;
3191 std::pair<ssa_op_iter, use_operand_p> *x;
3192 FOR_EACH_VEC_ELT (path, i, x)
3194 dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
3195 dump_printf (MSG_NOTE, " ");
3197 dump_printf (MSG_NOTE, "\n");
3200 /* Check whether the reduction path detected is valid. */
3201 bool fail = path.length () == 0;
3202 bool neg = false;
3203 for (unsigned i = 1; i < path.length (); ++i)
3205 gimple *use_stmt = USE_STMT (path[i].second);
3206 tree op = USE_FROM_PTR (path[i].second);
3207 if (! has_single_use (op)
3208 || ! is_gimple_assign (use_stmt))
3210 fail = true;
3211 break;
3213 if (gimple_assign_rhs_code (use_stmt) != code)
3215 if (code == PLUS_EXPR
3216 && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3218 /* Track whether we negate the reduction value each iteration. */
3219 if (gimple_assign_rhs2 (use_stmt) == op)
3220 neg = ! neg;
3222 else
3224 fail = true;
3225 break;
3229 if (! fail && ! neg)
3230 return def_stmt;
3232 if (dump_enabled_p ())
3234 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3235 "reduction: unknown pattern: ");
3238 return NULL;
3241 /* Wrapper around vect_is_simple_reduction, which will modify code
3242 in-place if it enables detection of more reductions. Arguments
3243 as there. */
3245 gimple *
3246 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3247 bool *double_reduc,
3248 bool need_wrapping_integral_overflow)
3250 enum vect_reduction_type v_reduc_type;
3251 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3252 need_wrapping_integral_overflow,
3253 &v_reduc_type);
3254 if (def)
3256 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3257 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3258 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3259 reduc_def_info = vinfo_for_stmt (def);
3260 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3262 return def;
3265 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3267 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3268 int *peel_iters_epilogue,
3269 stmt_vector_for_cost *scalar_cost_vec,
3270 stmt_vector_for_cost *prologue_cost_vec,
3271 stmt_vector_for_cost *epilogue_cost_vec)
3273 int retval = 0;
3274 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3276 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3278 *peel_iters_epilogue = vf/2;
3279 if (dump_enabled_p ())
3280 dump_printf_loc (MSG_NOTE, vect_location,
3281 "cost model: epilogue peel iters set to vf/2 "
3282 "because loop iterations are unknown .\n");
3284 /* If peeled iterations are known but number of scalar loop
3285 iterations are unknown, count a taken branch per peeled loop. */
3286 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3287 NULL, 0, vect_prologue);
3288 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3289 NULL, 0, vect_epilogue);
3291 else
3293 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3294 peel_iters_prologue = niters < peel_iters_prologue ?
3295 niters : peel_iters_prologue;
3296 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3297 /* If we need to peel for gaps, but no peeling is required, we have to
3298 peel VF iterations. */
3299 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3300 *peel_iters_epilogue = vf;
3303 stmt_info_for_cost *si;
3304 int j;
3305 if (peel_iters_prologue)
3306 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3308 stmt_vec_info stmt_info
3309 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3310 retval += record_stmt_cost (prologue_cost_vec,
3311 si->count * peel_iters_prologue,
3312 si->kind, stmt_info, si->misalign,
3313 vect_prologue);
3315 if (*peel_iters_epilogue)
3316 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3318 stmt_vec_info stmt_info
3319 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3320 retval += record_stmt_cost (epilogue_cost_vec,
3321 si->count * *peel_iters_epilogue,
3322 si->kind, stmt_info, si->misalign,
3323 vect_epilogue);
3326 return retval;
3329 /* Function vect_estimate_min_profitable_iters
3331 Return the number of iterations required for the vector version of the
3332 loop to be profitable relative to the cost of the scalar version of the
3333 loop.
3335 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3336 of iterations for vectorization. -1 value means loop vectorization
3337 is not profitable. This returned value may be used for dynamic
3338 profitability check.
3340 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3341 for static check against estimated number of iterations. */
3343 static void
3344 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3345 int *ret_min_profitable_niters,
3346 int *ret_min_profitable_estimate)
3348 int min_profitable_iters;
3349 int min_profitable_estimate;
3350 int peel_iters_prologue;
3351 int peel_iters_epilogue;
3352 unsigned vec_inside_cost = 0;
3353 int vec_outside_cost = 0;
3354 unsigned vec_prologue_cost = 0;
3355 unsigned vec_epilogue_cost = 0;
3356 int scalar_single_iter_cost = 0;
3357 int scalar_outside_cost = 0;
3358 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3359 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3360 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3362 /* Cost model disabled. */
3363 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3365 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3366 *ret_min_profitable_niters = 0;
3367 *ret_min_profitable_estimate = 0;
3368 return;
3371 /* Requires loop versioning tests to handle misalignment. */
3372 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3374 /* FIXME: Make cost depend on complexity of individual check. */
3375 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3376 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3377 vect_prologue);
3378 dump_printf (MSG_NOTE,
3379 "cost model: Adding cost of checks for loop "
3380 "versioning to treat misalignment.\n");
3383 /* Requires loop versioning with alias checks. */
3384 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3386 /* FIXME: Make cost depend on complexity of individual check. */
3387 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3388 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3389 vect_prologue);
3390 len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
3391 if (len)
3392 /* Count LEN - 1 ANDs and LEN comparisons. */
3393 (void) add_stmt_cost (target_cost_data, len * 2 - 1, scalar_stmt,
3394 NULL, 0, vect_prologue);
3395 dump_printf (MSG_NOTE,
3396 "cost model: Adding cost of checks for loop "
3397 "versioning aliasing.\n");
3400 /* Requires loop versioning with niter checks. */
3401 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3403 /* FIXME: Make cost depend on complexity of individual check. */
3404 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3405 vect_prologue);
3406 dump_printf (MSG_NOTE,
3407 "cost model: Adding cost of checks for loop "
3408 "versioning niters.\n");
3411 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3412 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3413 vect_prologue);
3415 /* Count statements in scalar loop. Using this as scalar cost for a single
3416 iteration for now.
3418 TODO: Add outer loop support.
3420 TODO: Consider assigning different costs to different scalar
3421 statements. */
3423 scalar_single_iter_cost
3424 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3426 /* Add additional cost for the peeled instructions in prologue and epilogue
3427 loop.
3429 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3430 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3432 TODO: Build an expression that represents peel_iters for prologue and
3433 epilogue to be used in a run-time test. */
3435 if (npeel < 0)
3437 peel_iters_prologue = vf/2;
3438 dump_printf (MSG_NOTE, "cost model: "
3439 "prologue peel iters set to vf/2.\n");
3441 /* If peeling for alignment is unknown, loop bound of main loop becomes
3442 unknown. */
3443 peel_iters_epilogue = vf/2;
3444 dump_printf (MSG_NOTE, "cost model: "
3445 "epilogue peel iters set to vf/2 because "
3446 "peeling for alignment is unknown.\n");
3448 /* If peeled iterations are unknown, count a taken branch and a not taken
3449 branch per peeled loop. Even if scalar loop iterations are known,
3450 vector iterations are not known since peeled prologue iterations are
3451 not known. Hence guards remain the same. */
3452 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3453 NULL, 0, vect_prologue);
3454 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3455 NULL, 0, vect_prologue);
3456 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3457 NULL, 0, vect_epilogue);
3458 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3459 NULL, 0, vect_epilogue);
3460 stmt_info_for_cost *si;
3461 int j;
3462 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3464 struct _stmt_vec_info *stmt_info
3465 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3466 (void) add_stmt_cost (target_cost_data,
3467 si->count * peel_iters_prologue,
3468 si->kind, stmt_info, si->misalign,
3469 vect_prologue);
3470 (void) add_stmt_cost (target_cost_data,
3471 si->count * peel_iters_epilogue,
3472 si->kind, stmt_info, si->misalign,
3473 vect_epilogue);
3476 else
3478 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3479 stmt_info_for_cost *si;
3480 int j;
3481 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3483 prologue_cost_vec.create (2);
3484 epilogue_cost_vec.create (2);
3485 peel_iters_prologue = npeel;
3487 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3488 &peel_iters_epilogue,
3489 &LOOP_VINFO_SCALAR_ITERATION_COST
3490 (loop_vinfo),
3491 &prologue_cost_vec,
3492 &epilogue_cost_vec);
3494 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3496 struct _stmt_vec_info *stmt_info
3497 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3498 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3499 si->misalign, vect_prologue);
3502 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3504 struct _stmt_vec_info *stmt_info
3505 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3506 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3507 si->misalign, vect_epilogue);
3510 prologue_cost_vec.release ();
3511 epilogue_cost_vec.release ();
3514 /* FORNOW: The scalar outside cost is incremented in one of the
3515 following ways:
3517 1. The vectorizer checks for alignment and aliasing and generates
3518 a condition that allows dynamic vectorization. A cost model
3519 check is ANDED with the versioning condition. Hence scalar code
3520 path now has the added cost of the versioning check.
3522 if (cost > th & versioning_check)
3523 jmp to vector code
3525 Hence run-time scalar is incremented by not-taken branch cost.
3527 2. The vectorizer then checks if a prologue is required. If the
3528 cost model check was not done before during versioning, it has to
3529 be done before the prologue check.
3531 if (cost <= th)
3532 prologue = scalar_iters
3533 if (prologue == 0)
3534 jmp to vector code
3535 else
3536 execute prologue
3537 if (prologue == num_iters)
3538 go to exit
3540 Hence the run-time scalar cost is incremented by a taken branch,
3541 plus a not-taken branch, plus a taken branch cost.
3543 3. The vectorizer then checks if an epilogue is required. If the
3544 cost model check was not done before during prologue check, it
3545 has to be done with the epilogue check.
3547 if (prologue == 0)
3548 jmp to vector code
3549 else
3550 execute prologue
3551 if (prologue == num_iters)
3552 go to exit
3553 vector code:
3554 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3555 jmp to epilogue
3557 Hence the run-time scalar cost should be incremented by 2 taken
3558 branches.
3560 TODO: The back end may reorder the BBS's differently and reverse
3561 conditions/branch directions. Change the estimates below to
3562 something more reasonable. */
3564 /* If the number of iterations is known and we do not do versioning, we can
3565 decide whether to vectorize at compile time. Hence the scalar version
3566 do not carry cost model guard costs. */
3567 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3568 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3570 /* Cost model check occurs at versioning. */
3571 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3572 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3573 else
3575 /* Cost model check occurs at prologue generation. */
3576 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3577 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3578 + vect_get_stmt_cost (cond_branch_not_taken);
3579 /* Cost model check occurs at epilogue generation. */
3580 else
3581 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3585 /* Complete the target-specific cost calculations. */
3586 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3587 &vec_inside_cost, &vec_epilogue_cost);
3589 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3591 if (dump_enabled_p ())
3593 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3594 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3595 vec_inside_cost);
3596 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3597 vec_prologue_cost);
3598 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3599 vec_epilogue_cost);
3600 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3601 scalar_single_iter_cost);
3602 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3603 scalar_outside_cost);
3604 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3605 vec_outside_cost);
3606 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3607 peel_iters_prologue);
3608 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3609 peel_iters_epilogue);
3612 /* Calculate number of iterations required to make the vector version
3613 profitable, relative to the loop bodies only. The following condition
3614 must hold true:
3615 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3616 where
3617 SIC = scalar iteration cost, VIC = vector iteration cost,
3618 VOC = vector outside cost, VF = vectorization factor,
3619 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3620 SOC = scalar outside cost for run time cost model check. */
3622 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3624 if (vec_outside_cost <= 0)
3625 min_profitable_iters = 0;
3626 else
3628 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3629 - vec_inside_cost * peel_iters_prologue
3630 - vec_inside_cost * peel_iters_epilogue)
3631 / ((scalar_single_iter_cost * vf)
3632 - vec_inside_cost);
3634 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3635 <= (((int) vec_inside_cost * min_profitable_iters)
3636 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3637 min_profitable_iters++;
3640 /* vector version will never be profitable. */
3641 else
3643 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3644 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3645 "did not happen for a simd loop");
3647 if (dump_enabled_p ())
3648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3649 "cost model: the vector iteration cost = %d "
3650 "divided by the scalar iteration cost = %d "
3651 "is greater or equal to the vectorization factor = %d"
3652 ".\n",
3653 vec_inside_cost, scalar_single_iter_cost, vf);
3654 *ret_min_profitable_niters = -1;
3655 *ret_min_profitable_estimate = -1;
3656 return;
3659 dump_printf (MSG_NOTE,
3660 " Calculated minimum iters for profitability: %d\n",
3661 min_profitable_iters);
3663 /* We want the vectorized loop to execute at least once. */
3664 if (min_profitable_iters < (vf + peel_iters_prologue + peel_iters_epilogue))
3665 min_profitable_iters = vf + peel_iters_prologue + peel_iters_epilogue;
3667 if (dump_enabled_p ())
3668 dump_printf_loc (MSG_NOTE, vect_location,
3669 " Runtime profitability threshold = %d\n",
3670 min_profitable_iters);
3672 *ret_min_profitable_niters = min_profitable_iters;
3674 /* Calculate number of iterations required to make the vector version
3675 profitable, relative to the loop bodies only.
3677 Non-vectorized variant is SIC * niters and it must win over vector
3678 variant on the expected loop trip count. The following condition must hold true:
3679 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3681 if (vec_outside_cost <= 0)
3682 min_profitable_estimate = 0;
3683 else
3685 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3686 - vec_inside_cost * peel_iters_prologue
3687 - vec_inside_cost * peel_iters_epilogue)
3688 / ((scalar_single_iter_cost * vf)
3689 - vec_inside_cost);
3691 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3692 if (dump_enabled_p ())
3693 dump_printf_loc (MSG_NOTE, vect_location,
3694 " Static estimate profitability threshold = %d\n",
3695 min_profitable_estimate);
3697 *ret_min_profitable_estimate = min_profitable_estimate;
3700 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3701 vector elements (not bits) for a vector of mode MODE. */
3702 static void
3703 calc_vec_perm_mask_for_shift (machine_mode mode, unsigned int offset,
3704 unsigned char *sel)
3706 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3708 for (i = 0; i < nelt; i++)
3709 sel[i] = (i + offset) & (2*nelt - 1);
3712 /* Checks whether the target supports whole-vector shifts for vectors of mode
3713 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3714 it supports vec_perm_const with masks for all necessary shift amounts. */
3715 static bool
3716 have_whole_vector_shift (machine_mode mode)
3718 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3719 return true;
3721 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3722 return false;
3724 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3725 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3727 for (i = nelt/2; i >= 1; i/=2)
3729 calc_vec_perm_mask_for_shift (mode, i, sel);
3730 if (!can_vec_perm_p (mode, false, sel))
3731 return false;
3733 return true;
3736 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3737 functions. Design better to avoid maintenance issues. */
3739 /* Function vect_model_reduction_cost.
3741 Models cost for a reduction operation, including the vector ops
3742 generated within the strip-mine loop, the initial definition before
3743 the loop, and the epilogue code that must be generated. */
3745 static void
3746 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3747 int ncopies)
3749 int prologue_cost = 0, epilogue_cost = 0;
3750 enum tree_code code;
3751 optab optab;
3752 tree vectype;
3753 gimple *orig_stmt;
3754 machine_mode mode;
3755 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3756 struct loop *loop = NULL;
3757 void *target_cost_data;
3759 if (loop_vinfo)
3761 loop = LOOP_VINFO_LOOP (loop_vinfo);
3762 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3764 else
3765 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3767 /* Condition reductions generate two reductions in the loop. */
3768 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3769 ncopies *= 2;
3771 /* Cost of reduction op inside loop. */
3772 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3773 stmt_info, 0, vect_body);
3775 vectype = STMT_VINFO_VECTYPE (stmt_info);
3776 mode = TYPE_MODE (vectype);
3777 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3779 if (!orig_stmt)
3780 orig_stmt = STMT_VINFO_STMT (stmt_info);
3782 code = gimple_assign_rhs_code (orig_stmt);
3784 /* Add in cost for initial definition.
3785 For cond reduction we have four vectors: initial index, step, initial
3786 result of the data reduction, initial value of the index reduction. */
3787 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3788 == COND_REDUCTION ? 4 : 1;
3789 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3790 scalar_to_vec, stmt_info, 0,
3791 vect_prologue);
3793 /* Determine cost of epilogue code.
3795 We have a reduction operator that will reduce the vector in one statement.
3796 Also requires scalar extract. */
3798 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3800 if (reduc_code != ERROR_MARK)
3802 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3804 /* An EQ stmt and an COND_EXPR stmt. */
3805 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3806 vector_stmt, stmt_info, 0,
3807 vect_epilogue);
3808 /* Reduction of the max index and a reduction of the found
3809 values. */
3810 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3811 vec_to_scalar, stmt_info, 0,
3812 vect_epilogue);
3813 /* A broadcast of the max value. */
3814 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3815 scalar_to_vec, stmt_info, 0,
3816 vect_epilogue);
3818 else
3820 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3821 stmt_info, 0, vect_epilogue);
3822 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3823 vec_to_scalar, stmt_info, 0,
3824 vect_epilogue);
3827 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3829 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3830 /* Extraction of scalar elements. */
3831 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3832 vec_to_scalar, stmt_info, 0,
3833 vect_epilogue);
3834 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3835 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3836 scalar_stmt, stmt_info, 0,
3837 vect_epilogue);
3839 else
3841 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3842 tree bitsize =
3843 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3844 int element_bitsize = tree_to_uhwi (bitsize);
3845 int nelements = vec_size_in_bits / element_bitsize;
3847 if (code == COND_EXPR)
3848 code = MAX_EXPR;
3850 optab = optab_for_tree_code (code, vectype, optab_default);
3852 /* We have a whole vector shift available. */
3853 if (optab != unknown_optab
3854 && VECTOR_MODE_P (mode)
3855 && optab_handler (optab, mode) != CODE_FOR_nothing
3856 && have_whole_vector_shift (mode))
3858 /* Final reduction via vector shifts and the reduction operator.
3859 Also requires scalar extract. */
3860 epilogue_cost += add_stmt_cost (target_cost_data,
3861 exact_log2 (nelements) * 2,
3862 vector_stmt, stmt_info, 0,
3863 vect_epilogue);
3864 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3865 vec_to_scalar, stmt_info, 0,
3866 vect_epilogue);
3868 else
3869 /* Use extracts and reduction op for final reduction. For N
3870 elements, we have N extracts and N-1 reduction ops. */
3871 epilogue_cost += add_stmt_cost (target_cost_data,
3872 nelements + nelements - 1,
3873 vector_stmt, stmt_info, 0,
3874 vect_epilogue);
3878 if (dump_enabled_p ())
3879 dump_printf (MSG_NOTE,
3880 "vect_model_reduction_cost: inside_cost = %d, "
3881 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3882 prologue_cost, epilogue_cost);
3886 /* Function vect_model_induction_cost.
3888 Models cost for induction operations. */
3890 static void
3891 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3893 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3894 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3895 unsigned inside_cost, prologue_cost;
3897 if (PURE_SLP_STMT (stmt_info))
3898 return;
3900 /* loop cost for vec_loop. */
3901 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3902 stmt_info, 0, vect_body);
3904 /* prologue cost for vec_init and vec_step. */
3905 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3906 stmt_info, 0, vect_prologue);
3908 if (dump_enabled_p ())
3909 dump_printf_loc (MSG_NOTE, vect_location,
3910 "vect_model_induction_cost: inside_cost = %d, "
3911 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3916 /* Function get_initial_def_for_reduction
3918 Input:
3919 STMT - a stmt that performs a reduction operation in the loop.
3920 INIT_VAL - the initial value of the reduction variable
3922 Output:
3923 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3924 of the reduction (used for adjusting the epilog - see below).
3925 Return a vector variable, initialized according to the operation that STMT
3926 performs. This vector will be used as the initial value of the
3927 vector of partial results.
3929 Option1 (adjust in epilog): Initialize the vector as follows:
3930 add/bit or/xor: [0,0,...,0,0]
3931 mult/bit and: [1,1,...,1,1]
3932 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3933 and when necessary (e.g. add/mult case) let the caller know
3934 that it needs to adjust the result by init_val.
3936 Option2: Initialize the vector as follows:
3937 add/bit or/xor: [init_val,0,0,...,0]
3938 mult/bit and: [init_val,1,1,...,1]
3939 min/max/cond_expr: [init_val,init_val,...,init_val]
3940 and no adjustments are needed.
3942 For example, for the following code:
3944 s = init_val;
3945 for (i=0;i<n;i++)
3946 s = s + a[i];
3948 STMT is 's = s + a[i]', and the reduction variable is 's'.
3949 For a vector of 4 units, we want to return either [0,0,0,init_val],
3950 or [0,0,0,0] and let the caller know that it needs to adjust
3951 the result at the end by 'init_val'.
3953 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3954 initialization vector is simpler (same element in all entries), if
3955 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3957 A cost model should help decide between these two schemes. */
3959 tree
3960 get_initial_def_for_reduction (gimple *stmt, tree init_val,
3961 tree *adjustment_def)
3963 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3964 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3965 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3966 tree scalar_type = TREE_TYPE (init_val);
3967 tree vectype = get_vectype_for_scalar_type (scalar_type);
3968 int nunits;
3969 enum tree_code code = gimple_assign_rhs_code (stmt);
3970 tree def_for_init;
3971 tree init_def;
3972 tree *elts;
3973 int i;
3974 bool nested_in_vect_loop = false;
3975 REAL_VALUE_TYPE real_init_val = dconst0;
3976 int int_init_val = 0;
3977 gimple *def_stmt = NULL;
3978 gimple_seq stmts = NULL;
3980 gcc_assert (vectype);
3981 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3983 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3984 || SCALAR_FLOAT_TYPE_P (scalar_type));
3986 if (nested_in_vect_loop_p (loop, stmt))
3987 nested_in_vect_loop = true;
3988 else
3989 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3991 /* In case of double reduction we only create a vector variable to be put
3992 in the reduction phi node. The actual statement creation is done in
3993 vect_create_epilog_for_reduction. */
3994 if (adjustment_def && nested_in_vect_loop
3995 && TREE_CODE (init_val) == SSA_NAME
3996 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3997 && gimple_code (def_stmt) == GIMPLE_PHI
3998 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3999 && vinfo_for_stmt (def_stmt)
4000 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4001 == vect_double_reduction_def)
4003 *adjustment_def = NULL;
4004 return vect_create_destination_var (init_val, vectype);
4007 /* In case of a nested reduction do not use an adjustment def as
4008 that case is not supported by the epilogue generation correctly
4009 if ncopies is not one. */
4010 if (adjustment_def && nested_in_vect_loop)
4012 *adjustment_def = NULL;
4013 return vect_get_vec_def_for_operand (init_val, stmt);
4016 switch (code)
4018 case WIDEN_SUM_EXPR:
4019 case DOT_PROD_EXPR:
4020 case SAD_EXPR:
4021 case PLUS_EXPR:
4022 case MINUS_EXPR:
4023 case BIT_IOR_EXPR:
4024 case BIT_XOR_EXPR:
4025 case MULT_EXPR:
4026 case BIT_AND_EXPR:
4027 /* ADJUSMENT_DEF is NULL when called from
4028 vect_create_epilog_for_reduction to vectorize double reduction. */
4029 if (adjustment_def)
4030 *adjustment_def = init_val;
4032 if (code == MULT_EXPR)
4034 real_init_val = dconst1;
4035 int_init_val = 1;
4038 if (code == BIT_AND_EXPR)
4039 int_init_val = -1;
4041 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4042 def_for_init = build_real (scalar_type, real_init_val);
4043 else
4044 def_for_init = build_int_cst (scalar_type, int_init_val);
4046 /* Create a vector of '0' or '1' except the first element. */
4047 elts = XALLOCAVEC (tree, nunits);
4048 for (i = nunits - 2; i >= 0; --i)
4049 elts[i + 1] = def_for_init;
4051 /* Option1: the first element is '0' or '1' as well. */
4052 if (adjustment_def)
4054 elts[0] = def_for_init;
4055 init_def = build_vector (vectype, elts);
4056 break;
4059 /* Option2: the first element is INIT_VAL. */
4060 elts[0] = init_val;
4061 if (TREE_CONSTANT (init_val))
4062 init_def = build_vector (vectype, elts);
4063 else
4065 vec<constructor_elt, va_gc> *v;
4066 vec_alloc (v, nunits);
4067 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4068 for (i = 1; i < nunits; ++i)
4069 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4070 init_def = build_constructor (vectype, v);
4073 break;
4075 case MIN_EXPR:
4076 case MAX_EXPR:
4077 case COND_EXPR:
4078 if (adjustment_def)
4080 *adjustment_def = NULL_TREE;
4081 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4083 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4084 break;
4087 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4088 if (! gimple_seq_empty_p (stmts))
4089 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4090 init_def = build_vector_from_val (vectype, init_val);
4091 break;
4093 default:
4094 gcc_unreachable ();
4097 return init_def;
4100 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4101 NUMBER_OF_VECTORS is the number of vector defs to create. */
4103 static void
4104 get_initial_defs_for_reduction (slp_tree slp_node,
4105 vec<tree> *vec_oprnds,
4106 unsigned int number_of_vectors,
4107 enum tree_code code, bool reduc_chain)
4109 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4110 gimple *stmt = stmts[0];
4111 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4112 unsigned nunits;
4113 tree vec_cst;
4114 tree *elts;
4115 unsigned j, number_of_places_left_in_vector;
4116 tree vector_type, scalar_type;
4117 tree vop;
4118 int group_size = stmts.length ();
4119 unsigned int vec_num, i;
4120 unsigned number_of_copies = 1;
4121 vec<tree> voprnds;
4122 voprnds.create (number_of_vectors);
4123 bool constant_p;
4124 tree neutral_op = NULL;
4125 struct loop *loop;
4126 gimple_seq ctor_seq = NULL;
4128 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4129 scalar_type = TREE_TYPE (vector_type);
4130 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
4132 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
4134 loop = (gimple_bb (stmt))->loop_father;
4135 gcc_assert (loop);
4137 /* op is the reduction operand of the first stmt already. */
4138 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
4139 we need either neutral operands or the original operands. See
4140 get_initial_def_for_reduction() for details. */
4141 switch (code)
4143 case WIDEN_SUM_EXPR:
4144 case DOT_PROD_EXPR:
4145 case SAD_EXPR:
4146 case PLUS_EXPR:
4147 case MINUS_EXPR:
4148 case BIT_IOR_EXPR:
4149 case BIT_XOR_EXPR:
4150 neutral_op = build_zero_cst (scalar_type);
4151 break;
4153 case MULT_EXPR:
4154 neutral_op = build_one_cst (scalar_type);
4155 break;
4157 case BIT_AND_EXPR:
4158 neutral_op = build_all_ones_cst (scalar_type);
4159 break;
4161 /* For MIN/MAX we don't have an easy neutral operand but
4162 the initial values can be used fine here. Only for
4163 a reduction chain we have to force a neutral element. */
4164 case MAX_EXPR:
4165 case MIN_EXPR:
4166 if (! reduc_chain)
4167 neutral_op = NULL;
4168 else
4169 neutral_op = PHI_ARG_DEF_FROM_EDGE (stmt,
4170 loop_preheader_edge (loop));
4171 break;
4173 default:
4174 gcc_assert (! reduc_chain);
4175 neutral_op = NULL;
4178 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4179 created vectors. It is greater than 1 if unrolling is performed.
4181 For example, we have two scalar operands, s1 and s2 (e.g., group of
4182 strided accesses of size two), while NUNITS is four (i.e., four scalars
4183 of this type can be packed in a vector). The output vector will contain
4184 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4185 will be 2).
4187 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
4188 containing the operands.
4190 For example, NUNITS is four as before, and the group size is 8
4191 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4192 {s5, s6, s7, s8}. */
4194 number_of_copies = nunits * number_of_vectors / group_size;
4196 number_of_places_left_in_vector = nunits;
4197 constant_p = true;
4198 elts = XALLOCAVEC (tree, nunits);
4199 for (j = 0; j < number_of_copies; j++)
4201 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4203 tree op;
4204 /* Get the def before the loop. In reduction chain we have only
4205 one initial value. */
4206 if ((j != (number_of_copies - 1)
4207 || (reduc_chain && i != 0))
4208 && neutral_op)
4209 op = neutral_op;
4210 else
4211 op = PHI_ARG_DEF_FROM_EDGE (stmt,
4212 loop_preheader_edge (loop));
4214 /* Create 'vect_ = {op0,op1,...,opn}'. */
4215 number_of_places_left_in_vector--;
4216 elts[number_of_places_left_in_vector] = op;
4217 if (!CONSTANT_CLASS_P (op))
4218 constant_p = false;
4220 if (number_of_places_left_in_vector == 0)
4222 if (constant_p)
4223 vec_cst = build_vector (vector_type, elts);
4224 else
4226 vec<constructor_elt, va_gc> *v;
4227 unsigned k;
4228 vec_alloc (v, nunits);
4229 for (k = 0; k < nunits; ++k)
4230 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
4231 vec_cst = build_constructor (vector_type, v);
4233 tree init;
4234 gimple_stmt_iterator gsi;
4235 init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
4236 if (ctor_seq != NULL)
4238 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
4239 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
4240 GSI_SAME_STMT);
4241 ctor_seq = NULL;
4243 voprnds.quick_push (init);
4245 number_of_places_left_in_vector = nunits;
4246 constant_p = true;
4251 /* Since the vectors are created in the reverse order, we should invert
4252 them. */
4253 vec_num = voprnds.length ();
4254 for (j = vec_num; j != 0; j--)
4256 vop = voprnds[j - 1];
4257 vec_oprnds->quick_push (vop);
4260 voprnds.release ();
4262 /* In case that VF is greater than the unrolling factor needed for the SLP
4263 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4264 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4265 to replicate the vectors. */
4266 while (number_of_vectors > vec_oprnds->length ())
4268 tree neutral_vec = NULL;
4270 if (neutral_op)
4272 if (!neutral_vec)
4273 neutral_vec = build_vector_from_val (vector_type, neutral_op);
4275 vec_oprnds->quick_push (neutral_vec);
4277 else
4279 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4280 vec_oprnds->quick_push (vop);
4286 /* Function vect_create_epilog_for_reduction
4288 Create code at the loop-epilog to finalize the result of a reduction
4289 computation.
4291 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4292 reduction statements.
4293 STMT is the scalar reduction stmt that is being vectorized.
4294 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4295 number of elements that we can fit in a vectype (nunits). In this case
4296 we have to generate more than one vector stmt - i.e - we need to "unroll"
4297 the vector stmt by a factor VF/nunits. For more details see documentation
4298 in vectorizable_operation.
4299 REDUC_CODE is the tree-code for the epilog reduction.
4300 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4301 computation.
4302 REDUC_INDEX is the index of the operand in the right hand side of the
4303 statement that is defined by REDUCTION_PHI.
4304 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4305 SLP_NODE is an SLP node containing a group of reduction statements. The
4306 first one in this group is STMT.
4308 This function:
4309 1. Creates the reduction def-use cycles: sets the arguments for
4310 REDUCTION_PHIS:
4311 The loop-entry argument is the vectorized initial-value of the reduction.
4312 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4313 sums.
4314 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4315 by applying the operation specified by REDUC_CODE if available, or by
4316 other means (whole-vector shifts or a scalar loop).
4317 The function also creates a new phi node at the loop exit to preserve
4318 loop-closed form, as illustrated below.
4320 The flow at the entry to this function:
4322 loop:
4323 vec_def = phi <null, null> # REDUCTION_PHI
4324 VECT_DEF = vector_stmt # vectorized form of STMT
4325 s_loop = scalar_stmt # (scalar) STMT
4326 loop_exit:
4327 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4328 use <s_out0>
4329 use <s_out0>
4331 The above is transformed by this function into:
4333 loop:
4334 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4335 VECT_DEF = vector_stmt # vectorized form of STMT
4336 s_loop = scalar_stmt # (scalar) STMT
4337 loop_exit:
4338 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4339 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4340 v_out2 = reduce <v_out1>
4341 s_out3 = extract_field <v_out2, 0>
4342 s_out4 = adjust_result <s_out3>
4343 use <s_out4>
4344 use <s_out4>
4347 static void
4348 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4349 gimple *reduc_def_stmt,
4350 int ncopies, enum tree_code reduc_code,
4351 vec<gimple *> reduction_phis,
4352 bool double_reduc,
4353 slp_tree slp_node,
4354 slp_instance slp_node_instance)
4356 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4357 stmt_vec_info prev_phi_info;
4358 tree vectype;
4359 machine_mode mode;
4360 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4361 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4362 basic_block exit_bb;
4363 tree scalar_dest;
4364 tree scalar_type;
4365 gimple *new_phi = NULL, *phi;
4366 gimple_stmt_iterator exit_gsi;
4367 tree vec_dest;
4368 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4369 gimple *epilog_stmt = NULL;
4370 enum tree_code code = gimple_assign_rhs_code (stmt);
4371 gimple *exit_phi;
4372 tree bitsize;
4373 tree adjustment_def = NULL;
4374 tree vec_initial_def = NULL;
4375 tree expr, def, initial_def = NULL;
4376 tree orig_name, scalar_result;
4377 imm_use_iterator imm_iter, phi_imm_iter;
4378 use_operand_p use_p, phi_use_p;
4379 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4380 bool nested_in_vect_loop = false;
4381 auto_vec<gimple *> new_phis;
4382 auto_vec<gimple *> inner_phis;
4383 enum vect_def_type dt = vect_unknown_def_type;
4384 int j, i;
4385 auto_vec<tree> scalar_results;
4386 unsigned int group_size = 1, k, ratio;
4387 auto_vec<tree> vec_initial_defs;
4388 auto_vec<gimple *> phis;
4389 bool slp_reduc = false;
4390 tree new_phi_result;
4391 gimple *inner_phi = NULL;
4392 tree induction_index = NULL_TREE;
4394 if (slp_node)
4395 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4397 if (nested_in_vect_loop_p (loop, stmt))
4399 outer_loop = loop;
4400 loop = loop->inner;
4401 nested_in_vect_loop = true;
4402 gcc_assert (!slp_node);
4405 vectype = STMT_VINFO_VECTYPE (stmt_info);
4406 gcc_assert (vectype);
4407 mode = TYPE_MODE (vectype);
4409 /* 1. Create the reduction def-use cycle:
4410 Set the arguments of REDUCTION_PHIS, i.e., transform
4412 loop:
4413 vec_def = phi <null, null> # REDUCTION_PHI
4414 VECT_DEF = vector_stmt # vectorized form of STMT
4417 into:
4419 loop:
4420 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4421 VECT_DEF = vector_stmt # vectorized form of STMT
4424 (in case of SLP, do it for all the phis). */
4426 /* Get the loop-entry arguments. */
4427 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4428 if (slp_node)
4430 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4431 vec_initial_defs.reserve (vec_num);
4432 get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
4433 &vec_initial_defs, vec_num, code,
4434 GROUP_FIRST_ELEMENT (stmt_info));
4436 else
4438 /* Get at the scalar def before the loop, that defines the initial value
4439 of the reduction variable. */
4440 gimple *def_stmt;
4441 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4442 loop_preheader_edge (loop));
4443 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4444 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4445 &adjustment_def);
4446 vec_initial_defs.create (1);
4447 vec_initial_defs.quick_push (vec_initial_def);
4450 /* Set phi nodes arguments. */
4451 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4453 tree vec_init_def, def;
4454 gimple_seq stmts;
4455 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4456 true, NULL_TREE);
4457 if (stmts)
4458 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4460 def = vect_defs[i];
4461 for (j = 0; j < ncopies; j++)
4463 if (j != 0)
4465 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4466 if (nested_in_vect_loop)
4467 vec_init_def
4468 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4469 vec_init_def);
4472 /* Set the loop-entry arg of the reduction-phi. */
4474 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4475 == INTEGER_INDUC_COND_REDUCTION)
4477 /* Initialise the reduction phi to zero. This prevents initial
4478 values of non-zero interferring with the reduction op. */
4479 gcc_assert (ncopies == 1);
4480 gcc_assert (i == 0);
4482 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4483 tree zero_vec = build_zero_cst (vec_init_def_type);
4485 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4486 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4488 else
4489 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4490 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4492 /* Set the loop-latch arg for the reduction-phi. */
4493 if (j > 0)
4494 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4496 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4497 UNKNOWN_LOCATION);
4499 if (dump_enabled_p ())
4501 dump_printf_loc (MSG_NOTE, vect_location,
4502 "transform reduction: created def-use cycle: ");
4503 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4504 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4509 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4510 which is updated with the current index of the loop for every match of
4511 the original loop's cond_expr (VEC_STMT). This results in a vector
4512 containing the last time the condition passed for that vector lane.
4513 The first match will be a 1 to allow 0 to be used for non-matching
4514 indexes. If there are no matches at all then the vector will be all
4515 zeroes. */
4516 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4518 tree indx_before_incr, indx_after_incr;
4519 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4520 int k;
4522 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4523 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4525 int scalar_precision
4526 = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (vectype)));
4527 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4528 tree cr_index_vector_type = build_vector_type
4529 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4531 /* First we create a simple vector induction variable which starts
4532 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4533 vector size (STEP). */
4535 /* Create a {1,2,3,...} vector. */
4536 tree *vtemp = XALLOCAVEC (tree, nunits_out);
4537 for (k = 0; k < nunits_out; ++k)
4538 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
4539 tree series_vect = build_vector (cr_index_vector_type, vtemp);
4541 /* Create a vector of the step value. */
4542 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4543 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4545 /* Create an induction variable. */
4546 gimple_stmt_iterator incr_gsi;
4547 bool insert_after;
4548 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4549 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4550 insert_after, &indx_before_incr, &indx_after_incr);
4552 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4553 filled with zeros (VEC_ZERO). */
4555 /* Create a vector of 0s. */
4556 tree zero = build_zero_cst (cr_index_scalar_type);
4557 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4559 /* Create a vector phi node. */
4560 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4561 new_phi = create_phi_node (new_phi_tree, loop->header);
4562 set_vinfo_for_stmt (new_phi,
4563 new_stmt_vec_info (new_phi, loop_vinfo));
4564 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4565 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4567 /* Now take the condition from the loops original cond_expr
4568 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4569 every match uses values from the induction variable
4570 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4571 (NEW_PHI_TREE).
4572 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4573 the new cond_expr (INDEX_COND_EXPR). */
4575 /* Duplicate the condition from vec_stmt. */
4576 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4578 /* Create a conditional, where the condition is taken from vec_stmt
4579 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4580 else is the phi (NEW_PHI_TREE). */
4581 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4582 ccompare, indx_before_incr,
4583 new_phi_tree);
4584 induction_index = make_ssa_name (cr_index_vector_type);
4585 gimple *index_condition = gimple_build_assign (induction_index,
4586 index_cond_expr);
4587 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4588 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
4589 loop_vinfo);
4590 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4591 set_vinfo_for_stmt (index_condition, index_vec_info);
4593 /* Update the phi with the vec cond. */
4594 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4595 loop_latch_edge (loop), UNKNOWN_LOCATION);
4598 /* 2. Create epilog code.
4599 The reduction epilog code operates across the elements of the vector
4600 of partial results computed by the vectorized loop.
4601 The reduction epilog code consists of:
4603 step 1: compute the scalar result in a vector (v_out2)
4604 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4605 step 3: adjust the scalar result (s_out3) if needed.
4607 Step 1 can be accomplished using one the following three schemes:
4608 (scheme 1) using reduc_code, if available.
4609 (scheme 2) using whole-vector shifts, if available.
4610 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4611 combined.
4613 The overall epilog code looks like this:
4615 s_out0 = phi <s_loop> # original EXIT_PHI
4616 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4617 v_out2 = reduce <v_out1> # step 1
4618 s_out3 = extract_field <v_out2, 0> # step 2
4619 s_out4 = adjust_result <s_out3> # step 3
4621 (step 3 is optional, and steps 1 and 2 may be combined).
4622 Lastly, the uses of s_out0 are replaced by s_out4. */
4625 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4626 v_out1 = phi <VECT_DEF>
4627 Store them in NEW_PHIS. */
4629 exit_bb = single_exit (loop)->dest;
4630 prev_phi_info = NULL;
4631 new_phis.create (vect_defs.length ());
4632 FOR_EACH_VEC_ELT (vect_defs, i, def)
4634 for (j = 0; j < ncopies; j++)
4636 tree new_def = copy_ssa_name (def);
4637 phi = create_phi_node (new_def, exit_bb);
4638 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4639 if (j == 0)
4640 new_phis.quick_push (phi);
4641 else
4643 def = vect_get_vec_def_for_stmt_copy (dt, def);
4644 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4647 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4648 prev_phi_info = vinfo_for_stmt (phi);
4652 /* The epilogue is created for the outer-loop, i.e., for the loop being
4653 vectorized. Create exit phis for the outer loop. */
4654 if (double_reduc)
4656 loop = outer_loop;
4657 exit_bb = single_exit (loop)->dest;
4658 inner_phis.create (vect_defs.length ());
4659 FOR_EACH_VEC_ELT (new_phis, i, phi)
4661 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4662 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4663 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4664 PHI_RESULT (phi));
4665 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4666 loop_vinfo));
4667 inner_phis.quick_push (phi);
4668 new_phis[i] = outer_phi;
4669 prev_phi_info = vinfo_for_stmt (outer_phi);
4670 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4672 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4673 new_result = copy_ssa_name (PHI_RESULT (phi));
4674 outer_phi = create_phi_node (new_result, exit_bb);
4675 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4676 PHI_RESULT (phi));
4677 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4678 loop_vinfo));
4679 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4680 prev_phi_info = vinfo_for_stmt (outer_phi);
4685 exit_gsi = gsi_after_labels (exit_bb);
4687 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4688 (i.e. when reduc_code is not available) and in the final adjustment
4689 code (if needed). Also get the original scalar reduction variable as
4690 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4691 represents a reduction pattern), the tree-code and scalar-def are
4692 taken from the original stmt that the pattern-stmt (STMT) replaces.
4693 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4694 are taken from STMT. */
4696 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4697 if (!orig_stmt)
4699 /* Regular reduction */
4700 orig_stmt = stmt;
4702 else
4704 /* Reduction pattern */
4705 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4706 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4707 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4710 code = gimple_assign_rhs_code (orig_stmt);
4711 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4712 partial results are added and not subtracted. */
4713 if (code == MINUS_EXPR)
4714 code = PLUS_EXPR;
4716 scalar_dest = gimple_assign_lhs (orig_stmt);
4717 scalar_type = TREE_TYPE (scalar_dest);
4718 scalar_results.create (group_size);
4719 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4720 bitsize = TYPE_SIZE (scalar_type);
4722 /* In case this is a reduction in an inner-loop while vectorizing an outer
4723 loop - we don't need to extract a single scalar result at the end of the
4724 inner-loop (unless it is double reduction, i.e., the use of reduction is
4725 outside the outer-loop). The final vector of partial results will be used
4726 in the vectorized outer-loop, or reduced to a scalar result at the end of
4727 the outer-loop. */
4728 if (nested_in_vect_loop && !double_reduc)
4729 goto vect_finalize_reduction;
4731 /* SLP reduction without reduction chain, e.g.,
4732 # a1 = phi <a2, a0>
4733 # b1 = phi <b2, b0>
4734 a2 = operation (a1)
4735 b2 = operation (b1) */
4736 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4738 /* In case of reduction chain, e.g.,
4739 # a1 = phi <a3, a0>
4740 a2 = operation (a1)
4741 a3 = operation (a2),
4743 we may end up with more than one vector result. Here we reduce them to
4744 one vector. */
4745 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4747 tree first_vect = PHI_RESULT (new_phis[0]);
4748 gassign *new_vec_stmt = NULL;
4749 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4750 for (k = 1; k < new_phis.length (); k++)
4752 gimple *next_phi = new_phis[k];
4753 tree second_vect = PHI_RESULT (next_phi);
4754 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4755 new_vec_stmt = gimple_build_assign (tem, code,
4756 first_vect, second_vect);
4757 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4758 first_vect = tem;
4761 new_phi_result = first_vect;
4762 if (new_vec_stmt)
4764 new_phis.truncate (0);
4765 new_phis.safe_push (new_vec_stmt);
4768 /* Likewise if we couldn't use a single defuse cycle. */
4769 else if (ncopies > 1)
4771 gcc_assert (new_phis.length () == 1);
4772 tree first_vect = PHI_RESULT (new_phis[0]);
4773 gassign *new_vec_stmt = NULL;
4774 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4775 gimple *next_phi = new_phis[0];
4776 for (int k = 1; k < ncopies; ++k)
4778 next_phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi));
4779 tree second_vect = PHI_RESULT (next_phi);
4780 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4781 new_vec_stmt = gimple_build_assign (tem, code,
4782 first_vect, second_vect);
4783 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4784 first_vect = tem;
4786 new_phi_result = first_vect;
4787 new_phis.truncate (0);
4788 new_phis.safe_push (new_vec_stmt);
4790 else
4791 new_phi_result = PHI_RESULT (new_phis[0]);
4793 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4794 && reduc_code != ERROR_MARK)
4796 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4797 various data values where the condition matched and another vector
4798 (INDUCTION_INDEX) containing all the indexes of those matches. We
4799 need to extract the last matching index (which will be the index with
4800 highest value) and use this to index into the data vector.
4801 For the case where there were no matches, the data vector will contain
4802 all default values and the index vector will be all zeros. */
4804 /* Get various versions of the type of the vector of indexes. */
4805 tree index_vec_type = TREE_TYPE (induction_index);
4806 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4807 tree index_scalar_type = TREE_TYPE (index_vec_type);
4808 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4809 (index_vec_type);
4811 /* Get an unsigned integer version of the type of the data vector. */
4812 int scalar_precision
4813 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
4814 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4815 tree vectype_unsigned = build_vector_type
4816 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4818 /* First we need to create a vector (ZERO_VEC) of zeros and another
4819 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4820 can create using a MAX reduction and then expanding.
4821 In the case where the loop never made any matches, the max index will
4822 be zero. */
4824 /* Vector of {0, 0, 0,...}. */
4825 tree zero_vec = make_ssa_name (vectype);
4826 tree zero_vec_rhs = build_zero_cst (vectype);
4827 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4828 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4830 /* Find maximum value from the vector of found indexes. */
4831 tree max_index = make_ssa_name (index_scalar_type);
4832 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4833 induction_index);
4834 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4836 /* Vector of {max_index, max_index, max_index,...}. */
4837 tree max_index_vec = make_ssa_name (index_vec_type);
4838 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4839 max_index);
4840 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4841 max_index_vec_rhs);
4842 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4844 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4845 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4846 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4847 otherwise. Only one value should match, resulting in a vector
4848 (VEC_COND) with one data value and the rest zeros.
4849 In the case where the loop never made any matches, every index will
4850 match, resulting in a vector with all data values (which will all be
4851 the default value). */
4853 /* Compare the max index vector to the vector of found indexes to find
4854 the position of the max value. */
4855 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4856 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4857 induction_index,
4858 max_index_vec);
4859 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4861 /* Use the compare to choose either values from the data vector or
4862 zero. */
4863 tree vec_cond = make_ssa_name (vectype);
4864 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4865 vec_compare, new_phi_result,
4866 zero_vec);
4867 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4869 /* Finally we need to extract the data value from the vector (VEC_COND)
4870 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4871 reduction, but because this doesn't exist, we can use a MAX reduction
4872 instead. The data value might be signed or a float so we need to cast
4873 it first.
4874 In the case where the loop never made any matches, the data values are
4875 all identical, and so will reduce down correctly. */
4877 /* Make the matched data values unsigned. */
4878 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4879 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4880 vec_cond);
4881 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4882 VIEW_CONVERT_EXPR,
4883 vec_cond_cast_rhs);
4884 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4886 /* Reduce down to a scalar value. */
4887 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4888 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4889 optab_default);
4890 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4891 != CODE_FOR_nothing);
4892 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4893 REDUC_MAX_EXPR,
4894 vec_cond_cast);
4895 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4897 /* Convert the reduced value back to the result type and set as the
4898 result. */
4899 gimple_seq stmts = NULL;
4900 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4901 data_reduc);
4902 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4903 scalar_results.safe_push (new_temp);
4905 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4906 && reduc_code == ERROR_MARK)
4908 /* Condition redution without supported REDUC_MAX_EXPR. Generate
4909 idx = 0;
4910 idx_val = induction_index[0];
4911 val = data_reduc[0];
4912 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4913 if (induction_index[i] > idx_val)
4914 val = data_reduc[i], idx_val = induction_index[i];
4915 return val; */
4917 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4918 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4919 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4920 unsigned HOST_WIDE_INT v_size
4921 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4922 tree idx_val = NULL_TREE, val = NULL_TREE;
4923 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4925 tree old_idx_val = idx_val;
4926 tree old_val = val;
4927 idx_val = make_ssa_name (idx_eltype);
4928 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4929 build3 (BIT_FIELD_REF, idx_eltype,
4930 induction_index,
4931 bitsize_int (el_size),
4932 bitsize_int (off)));
4933 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4934 val = make_ssa_name (data_eltype);
4935 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4936 build3 (BIT_FIELD_REF,
4937 data_eltype,
4938 new_phi_result,
4939 bitsize_int (el_size),
4940 bitsize_int (off)));
4941 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4942 if (off != 0)
4944 tree new_idx_val = idx_val;
4945 tree new_val = val;
4946 if (off != v_size - el_size)
4948 new_idx_val = make_ssa_name (idx_eltype);
4949 epilog_stmt = gimple_build_assign (new_idx_val,
4950 MAX_EXPR, idx_val,
4951 old_idx_val);
4952 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4954 new_val = make_ssa_name (data_eltype);
4955 epilog_stmt = gimple_build_assign (new_val,
4956 COND_EXPR,
4957 build2 (GT_EXPR,
4958 boolean_type_node,
4959 idx_val,
4960 old_idx_val),
4961 val, old_val);
4962 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4963 idx_val = new_idx_val;
4964 val = new_val;
4967 /* Convert the reduced value back to the result type and set as the
4968 result. */
4969 gimple_seq stmts = NULL;
4970 val = gimple_convert (&stmts, scalar_type, val);
4971 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4972 scalar_results.safe_push (val);
4975 /* 2.3 Create the reduction code, using one of the three schemes described
4976 above. In SLP we simply need to extract all the elements from the
4977 vector (without reducing them), so we use scalar shifts. */
4978 else if (reduc_code != ERROR_MARK && !slp_reduc)
4980 tree tmp;
4981 tree vec_elem_type;
4983 /* Case 1: Create:
4984 v_out2 = reduc_expr <v_out1> */
4986 if (dump_enabled_p ())
4987 dump_printf_loc (MSG_NOTE, vect_location,
4988 "Reduce using direct vector reduction.\n");
4990 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4991 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4993 tree tmp_dest =
4994 vect_create_destination_var (scalar_dest, vec_elem_type);
4995 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4996 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4997 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4998 gimple_assign_set_lhs (epilog_stmt, new_temp);
4999 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5001 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
5003 else
5004 tmp = build1 (reduc_code, scalar_type, new_phi_result);
5006 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
5007 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5008 gimple_assign_set_lhs (epilog_stmt, new_temp);
5009 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5011 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5012 == INTEGER_INDUC_COND_REDUCTION)
5014 /* Earlier we set the initial value to be zero. Check the result
5015 and if it is zero then replace with the original initial
5016 value. */
5017 tree zero = build_zero_cst (scalar_type);
5018 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5020 tmp = make_ssa_name (new_scalar_dest);
5021 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5022 initial_def, new_temp);
5023 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5024 new_temp = tmp;
5027 scalar_results.safe_push (new_temp);
5029 else
5031 bool reduce_with_shift = have_whole_vector_shift (mode);
5032 int element_bitsize = tree_to_uhwi (bitsize);
5033 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5034 tree vec_temp;
5036 /* COND reductions all do the final reduction with MAX_EXPR. */
5037 if (code == COND_EXPR)
5038 code = MAX_EXPR;
5040 /* Regardless of whether we have a whole vector shift, if we're
5041 emulating the operation via tree-vect-generic, we don't want
5042 to use it. Only the first round of the reduction is likely
5043 to still be profitable via emulation. */
5044 /* ??? It might be better to emit a reduction tree code here, so that
5045 tree-vect-generic can expand the first round via bit tricks. */
5046 if (!VECTOR_MODE_P (mode))
5047 reduce_with_shift = false;
5048 else
5050 optab optab = optab_for_tree_code (code, vectype, optab_default);
5051 if (optab_handler (optab, mode) == CODE_FOR_nothing)
5052 reduce_with_shift = false;
5055 if (reduce_with_shift && !slp_reduc)
5057 int nelements = vec_size_in_bits / element_bitsize;
5058 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
5060 int elt_offset;
5062 tree zero_vec = build_zero_cst (vectype);
5063 /* Case 2: Create:
5064 for (offset = nelements/2; offset >= 1; offset/=2)
5066 Create: va' = vec_shift <va, offset>
5067 Create: va = vop <va, va'>
5068 } */
5070 tree rhs;
5072 if (dump_enabled_p ())
5073 dump_printf_loc (MSG_NOTE, vect_location,
5074 "Reduce using vector shifts\n");
5076 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5077 new_temp = new_phi_result;
5078 for (elt_offset = nelements / 2;
5079 elt_offset >= 1;
5080 elt_offset /= 2)
5082 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
5083 tree mask = vect_gen_perm_mask_any (vectype, sel);
5084 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5085 new_temp, zero_vec, mask);
5086 new_name = make_ssa_name (vec_dest, epilog_stmt);
5087 gimple_assign_set_lhs (epilog_stmt, new_name);
5088 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5090 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5091 new_temp);
5092 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5093 gimple_assign_set_lhs (epilog_stmt, new_temp);
5094 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5097 /* 2.4 Extract the final scalar result. Create:
5098 s_out3 = extract_field <v_out2, bitpos> */
5100 if (dump_enabled_p ())
5101 dump_printf_loc (MSG_NOTE, vect_location,
5102 "extract scalar result\n");
5104 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5105 bitsize, bitsize_zero_node);
5106 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5107 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5108 gimple_assign_set_lhs (epilog_stmt, new_temp);
5109 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5110 scalar_results.safe_push (new_temp);
5112 else
5114 /* Case 3: Create:
5115 s = extract_field <v_out2, 0>
5116 for (offset = element_size;
5117 offset < vector_size;
5118 offset += element_size;)
5120 Create: s' = extract_field <v_out2, offset>
5121 Create: s = op <s, s'> // For non SLP cases
5122 } */
5124 if (dump_enabled_p ())
5125 dump_printf_loc (MSG_NOTE, vect_location,
5126 "Reduce using scalar code.\n");
5128 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5129 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5131 int bit_offset;
5132 if (gimple_code (new_phi) == GIMPLE_PHI)
5133 vec_temp = PHI_RESULT (new_phi);
5134 else
5135 vec_temp = gimple_assign_lhs (new_phi);
5136 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5137 bitsize_zero_node);
5138 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5139 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5140 gimple_assign_set_lhs (epilog_stmt, new_temp);
5141 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5143 /* In SLP we don't need to apply reduction operation, so we just
5144 collect s' values in SCALAR_RESULTS. */
5145 if (slp_reduc)
5146 scalar_results.safe_push (new_temp);
5148 for (bit_offset = element_bitsize;
5149 bit_offset < vec_size_in_bits;
5150 bit_offset += element_bitsize)
5152 tree bitpos = bitsize_int (bit_offset);
5153 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5154 bitsize, bitpos);
5156 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5157 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5158 gimple_assign_set_lhs (epilog_stmt, new_name);
5159 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5161 if (slp_reduc)
5163 /* In SLP we don't need to apply reduction operation, so
5164 we just collect s' values in SCALAR_RESULTS. */
5165 new_temp = new_name;
5166 scalar_results.safe_push (new_name);
5168 else
5170 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5171 new_name, new_temp);
5172 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5173 gimple_assign_set_lhs (epilog_stmt, new_temp);
5174 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5179 /* The only case where we need to reduce scalar results in SLP, is
5180 unrolling. If the size of SCALAR_RESULTS is greater than
5181 GROUP_SIZE, we reduce them combining elements modulo
5182 GROUP_SIZE. */
5183 if (slp_reduc)
5185 tree res, first_res, new_res;
5186 gimple *new_stmt;
5188 /* Reduce multiple scalar results in case of SLP unrolling. */
5189 for (j = group_size; scalar_results.iterate (j, &res);
5190 j++)
5192 first_res = scalar_results[j % group_size];
5193 new_stmt = gimple_build_assign (new_scalar_dest, code,
5194 first_res, res);
5195 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5196 gimple_assign_set_lhs (new_stmt, new_res);
5197 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5198 scalar_results[j % group_size] = new_res;
5201 else
5202 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5203 scalar_results.safe_push (new_temp);
5206 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5207 == INTEGER_INDUC_COND_REDUCTION)
5209 /* Earlier we set the initial value to be zero. Check the result
5210 and if it is zero then replace with the original initial
5211 value. */
5212 tree zero = build_zero_cst (scalar_type);
5213 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5215 tree tmp = make_ssa_name (new_scalar_dest);
5216 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5217 initial_def, new_temp);
5218 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5219 scalar_results[0] = tmp;
5223 vect_finalize_reduction:
5225 if (double_reduc)
5226 loop = loop->inner;
5228 /* 2.5 Adjust the final result by the initial value of the reduction
5229 variable. (When such adjustment is not needed, then
5230 'adjustment_def' is zero). For example, if code is PLUS we create:
5231 new_temp = loop_exit_def + adjustment_def */
5233 if (adjustment_def)
5235 gcc_assert (!slp_reduc);
5236 if (nested_in_vect_loop)
5238 new_phi = new_phis[0];
5239 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5240 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5241 new_dest = vect_create_destination_var (scalar_dest, vectype);
5243 else
5245 new_temp = scalar_results[0];
5246 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5247 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5248 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5251 epilog_stmt = gimple_build_assign (new_dest, expr);
5252 new_temp = make_ssa_name (new_dest, epilog_stmt);
5253 gimple_assign_set_lhs (epilog_stmt, new_temp);
5254 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5255 if (nested_in_vect_loop)
5257 set_vinfo_for_stmt (epilog_stmt,
5258 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5259 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5260 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5262 if (!double_reduc)
5263 scalar_results.quick_push (new_temp);
5264 else
5265 scalar_results[0] = new_temp;
5267 else
5268 scalar_results[0] = new_temp;
5270 new_phis[0] = epilog_stmt;
5273 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5274 phis with new adjusted scalar results, i.e., replace use <s_out0>
5275 with use <s_out4>.
5277 Transform:
5278 loop_exit:
5279 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5280 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5281 v_out2 = reduce <v_out1>
5282 s_out3 = extract_field <v_out2, 0>
5283 s_out4 = adjust_result <s_out3>
5284 use <s_out0>
5285 use <s_out0>
5287 into:
5289 loop_exit:
5290 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5291 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5292 v_out2 = reduce <v_out1>
5293 s_out3 = extract_field <v_out2, 0>
5294 s_out4 = adjust_result <s_out3>
5295 use <s_out4>
5296 use <s_out4> */
5299 /* In SLP reduction chain we reduce vector results into one vector if
5300 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5301 the last stmt in the reduction chain, since we are looking for the loop
5302 exit phi node. */
5303 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5305 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5306 /* Handle reduction patterns. */
5307 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5308 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5310 scalar_dest = gimple_assign_lhs (dest_stmt);
5311 group_size = 1;
5314 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5315 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5316 need to match SCALAR_RESULTS with corresponding statements. The first
5317 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5318 the first vector stmt, etc.
5319 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5320 if (group_size > new_phis.length ())
5322 ratio = group_size / new_phis.length ();
5323 gcc_assert (!(group_size % new_phis.length ()));
5325 else
5326 ratio = 1;
5328 for (k = 0; k < group_size; k++)
5330 if (k % ratio == 0)
5332 epilog_stmt = new_phis[k / ratio];
5333 reduction_phi = reduction_phis[k / ratio];
5334 if (double_reduc)
5335 inner_phi = inner_phis[k / ratio];
5338 if (slp_reduc)
5340 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5342 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5343 /* SLP statements can't participate in patterns. */
5344 gcc_assert (!orig_stmt);
5345 scalar_dest = gimple_assign_lhs (current_stmt);
5348 phis.create (3);
5349 /* Find the loop-closed-use at the loop exit of the original scalar
5350 result. (The reduction result is expected to have two immediate uses -
5351 one at the latch block, and one at the loop exit). */
5352 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5353 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5354 && !is_gimple_debug (USE_STMT (use_p)))
5355 phis.safe_push (USE_STMT (use_p));
5357 /* While we expect to have found an exit_phi because of loop-closed-ssa
5358 form we can end up without one if the scalar cycle is dead. */
5360 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5362 if (outer_loop)
5364 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5365 gphi *vect_phi;
5367 /* FORNOW. Currently not supporting the case that an inner-loop
5368 reduction is not used in the outer-loop (but only outside the
5369 outer-loop), unless it is double reduction. */
5370 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5371 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5372 || double_reduc);
5374 if (double_reduc)
5375 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5376 else
5377 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5378 if (!double_reduc
5379 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5380 != vect_double_reduction_def)
5381 continue;
5383 /* Handle double reduction:
5385 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5386 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5387 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5388 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5390 At that point the regular reduction (stmt2 and stmt3) is
5391 already vectorized, as well as the exit phi node, stmt4.
5392 Here we vectorize the phi node of double reduction, stmt1, and
5393 update all relevant statements. */
5395 /* Go through all the uses of s2 to find double reduction phi
5396 node, i.e., stmt1 above. */
5397 orig_name = PHI_RESULT (exit_phi);
5398 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5400 stmt_vec_info use_stmt_vinfo;
5401 stmt_vec_info new_phi_vinfo;
5402 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5403 basic_block bb = gimple_bb (use_stmt);
5404 gimple *use;
5406 /* Check that USE_STMT is really double reduction phi
5407 node. */
5408 if (gimple_code (use_stmt) != GIMPLE_PHI
5409 || gimple_phi_num_args (use_stmt) != 2
5410 || bb->loop_father != outer_loop)
5411 continue;
5412 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5413 if (!use_stmt_vinfo
5414 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5415 != vect_double_reduction_def)
5416 continue;
5418 /* Create vector phi node for double reduction:
5419 vs1 = phi <vs0, vs2>
5420 vs1 was created previously in this function by a call to
5421 vect_get_vec_def_for_operand and is stored in
5422 vec_initial_def;
5423 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5424 vs0 is created here. */
5426 /* Create vector phi node. */
5427 vect_phi = create_phi_node (vec_initial_def, bb);
5428 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5429 loop_vec_info_for_loop (outer_loop));
5430 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5432 /* Create vs0 - initial def of the double reduction phi. */
5433 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5434 loop_preheader_edge (outer_loop));
5435 init_def = get_initial_def_for_reduction (stmt,
5436 preheader_arg, NULL);
5437 vect_phi_init = vect_init_vector (use_stmt, init_def,
5438 vectype, NULL);
5440 /* Update phi node arguments with vs0 and vs2. */
5441 add_phi_arg (vect_phi, vect_phi_init,
5442 loop_preheader_edge (outer_loop),
5443 UNKNOWN_LOCATION);
5444 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5445 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5446 if (dump_enabled_p ())
5448 dump_printf_loc (MSG_NOTE, vect_location,
5449 "created double reduction phi node: ");
5450 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5453 vect_phi_res = PHI_RESULT (vect_phi);
5455 /* Replace the use, i.e., set the correct vs1 in the regular
5456 reduction phi node. FORNOW, NCOPIES is always 1, so the
5457 loop is redundant. */
5458 use = reduction_phi;
5459 for (j = 0; j < ncopies; j++)
5461 edge pr_edge = loop_preheader_edge (loop);
5462 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5463 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5469 phis.release ();
5470 if (nested_in_vect_loop)
5472 if (double_reduc)
5473 loop = outer_loop;
5474 else
5475 continue;
5478 phis.create (3);
5479 /* Find the loop-closed-use at the loop exit of the original scalar
5480 result. (The reduction result is expected to have two immediate uses,
5481 one at the latch block, and one at the loop exit). For double
5482 reductions we are looking for exit phis of the outer loop. */
5483 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5485 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5487 if (!is_gimple_debug (USE_STMT (use_p)))
5488 phis.safe_push (USE_STMT (use_p));
5490 else
5492 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5494 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5496 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5498 if (!flow_bb_inside_loop_p (loop,
5499 gimple_bb (USE_STMT (phi_use_p)))
5500 && !is_gimple_debug (USE_STMT (phi_use_p)))
5501 phis.safe_push (USE_STMT (phi_use_p));
5507 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5509 /* Replace the uses: */
5510 orig_name = PHI_RESULT (exit_phi);
5511 scalar_result = scalar_results[k];
5512 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5513 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5514 SET_USE (use_p, scalar_result);
5517 phis.release ();
5522 /* Function is_nonwrapping_integer_induction.
5524 Check if STMT (which is part of loop LOOP) both increments and
5525 does not cause overflow. */
5527 static bool
5528 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5530 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5531 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5532 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5533 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5534 widest_int ni, max_loop_value, lhs_max;
5535 bool overflow = false;
5537 /* Make sure the loop is integer based. */
5538 if (TREE_CODE (base) != INTEGER_CST
5539 || TREE_CODE (step) != INTEGER_CST)
5540 return false;
5542 /* Check that the induction increments. */
5543 if (tree_int_cst_sgn (step) == -1)
5544 return false;
5546 /* Check that the max size of the loop will not wrap. */
5548 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5549 return true;
5551 if (! max_stmt_executions (loop, &ni))
5552 return false;
5554 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5555 &overflow);
5556 if (overflow)
5557 return false;
5559 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5560 TYPE_SIGN (lhs_type), &overflow);
5561 if (overflow)
5562 return false;
5564 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5565 <= TYPE_PRECISION (lhs_type));
5568 /* Function vectorizable_reduction.
5570 Check if STMT performs a reduction operation that can be vectorized.
5571 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5572 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5573 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5575 This function also handles reduction idioms (patterns) that have been
5576 recognized in advance during vect_pattern_recog. In this case, STMT may be
5577 of this form:
5578 X = pattern_expr (arg0, arg1, ..., X)
5579 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5580 sequence that had been detected and replaced by the pattern-stmt (STMT).
5582 This function also handles reduction of condition expressions, for example:
5583 for (int i = 0; i < N; i++)
5584 if (a[i] < value)
5585 last = a[i];
5586 This is handled by vectorising the loop and creating an additional vector
5587 containing the loop indexes for which "a[i] < value" was true. In the
5588 function epilogue this is reduced to a single max value and then used to
5589 index into the vector of results.
5591 In some cases of reduction patterns, the type of the reduction variable X is
5592 different than the type of the other arguments of STMT.
5593 In such cases, the vectype that is used when transforming STMT into a vector
5594 stmt is different than the vectype that is used to determine the
5595 vectorization factor, because it consists of a different number of elements
5596 than the actual number of elements that are being operated upon in parallel.
5598 For example, consider an accumulation of shorts into an int accumulator.
5599 On some targets it's possible to vectorize this pattern operating on 8
5600 shorts at a time (hence, the vectype for purposes of determining the
5601 vectorization factor should be V8HI); on the other hand, the vectype that
5602 is used to create the vector form is actually V4SI (the type of the result).
5604 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5605 indicates what is the actual level of parallelism (V8HI in the example), so
5606 that the right vectorization factor would be derived. This vectype
5607 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5608 be used to create the vectorized stmt. The right vectype for the vectorized
5609 stmt is obtained from the type of the result X:
5610 get_vectype_for_scalar_type (TREE_TYPE (X))
5612 This means that, contrary to "regular" reductions (or "regular" stmts in
5613 general), the following equation:
5614 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5615 does *NOT* necessarily hold for reduction patterns. */
5617 bool
5618 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5619 gimple **vec_stmt, slp_tree slp_node,
5620 slp_instance slp_node_instance)
5622 tree vec_dest;
5623 tree scalar_dest;
5624 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5625 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5626 tree vectype_in = NULL_TREE;
5627 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5628 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5629 enum tree_code code, orig_code, epilog_reduc_code;
5630 machine_mode vec_mode;
5631 int op_type;
5632 optab optab, reduc_optab;
5633 tree new_temp = NULL_TREE;
5634 gimple *def_stmt;
5635 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5636 tree scalar_type;
5637 bool is_simple_use;
5638 gimple *orig_stmt;
5639 stmt_vec_info orig_stmt_info = NULL;
5640 int i;
5641 int ncopies;
5642 int epilog_copies;
5643 stmt_vec_info prev_stmt_info, prev_phi_info;
5644 bool single_defuse_cycle = false;
5645 gimple *new_stmt = NULL;
5646 int j;
5647 tree ops[3];
5648 enum vect_def_type dts[3];
5649 bool nested_cycle = false, found_nested_cycle_def = false;
5650 bool double_reduc = false;
5651 basic_block def_bb;
5652 struct loop * def_stmt_loop, *outer_loop = NULL;
5653 tree def_arg;
5654 gimple *def_arg_stmt;
5655 auto_vec<tree> vec_oprnds0;
5656 auto_vec<tree> vec_oprnds1;
5657 auto_vec<tree> vec_oprnds2;
5658 auto_vec<tree> vect_defs;
5659 auto_vec<gimple *> phis;
5660 int vec_num;
5661 tree def0, tem;
5662 bool first_p = true;
5663 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5664 tree cond_reduc_val = NULL_TREE;
5666 /* Make sure it was already recognized as a reduction computation. */
5667 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5668 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5669 return false;
5671 if (nested_in_vect_loop_p (loop, stmt))
5673 outer_loop = loop;
5674 loop = loop->inner;
5675 nested_cycle = true;
5678 /* In case of reduction chain we switch to the first stmt in the chain, but
5679 we don't update STMT_INFO, since only the last stmt is marked as reduction
5680 and has reduction properties. */
5681 if (GROUP_FIRST_ELEMENT (stmt_info)
5682 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5684 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5685 first_p = false;
5688 if (gimple_code (stmt) == GIMPLE_PHI)
5690 /* Analysis is fully done on the reduction stmt invocation. */
5691 if (! vec_stmt)
5693 if (slp_node)
5694 slp_node_instance->reduc_phis = slp_node;
5696 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5697 return true;
5700 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5701 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
5702 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
5704 gcc_assert (is_gimple_assign (reduc_stmt));
5705 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
5707 tree op = gimple_op (reduc_stmt, k);
5708 if (op == gimple_phi_result (stmt))
5709 continue;
5710 if (k == 1
5711 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
5712 continue;
5713 tem = get_vectype_for_scalar_type (TREE_TYPE (op));
5714 if (! vectype_in
5715 || TYPE_VECTOR_SUBPARTS (tem) < TYPE_VECTOR_SUBPARTS (vectype_in))
5716 vectype_in = tem;
5717 break;
5719 gcc_assert (vectype_in);
5721 if (slp_node)
5722 ncopies = 1;
5723 else
5724 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5725 / TYPE_VECTOR_SUBPARTS (vectype_in));
5727 use_operand_p use_p;
5728 gimple *use_stmt;
5729 if (ncopies > 1
5730 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
5731 <= vect_used_only_live)
5732 && single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
5733 && (use_stmt == reduc_stmt
5734 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
5735 == reduc_stmt)))
5736 single_defuse_cycle = true;
5738 /* Create the destination vector */
5739 scalar_dest = gimple_assign_lhs (reduc_stmt);
5740 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5742 if (slp_node)
5743 /* The size vect_schedule_slp_instance computes is off for us. */
5744 vec_num = ((LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5745 * SLP_TREE_SCALAR_STMTS (slp_node).length ())
5746 / TYPE_VECTOR_SUBPARTS (vectype_in));
5747 else
5748 vec_num = 1;
5750 /* Generate the reduction PHIs upfront. */
5751 prev_phi_info = NULL;
5752 for (j = 0; j < ncopies; j++)
5754 if (j == 0 || !single_defuse_cycle)
5756 for (i = 0; i < vec_num; i++)
5758 /* Create the reduction-phi that defines the reduction
5759 operand. */
5760 gimple *new_phi = create_phi_node (vec_dest, loop->header);
5761 set_vinfo_for_stmt (new_phi,
5762 new_stmt_vec_info (new_phi, loop_vinfo));
5764 if (slp_node)
5765 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
5766 else
5768 if (j == 0)
5769 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
5770 else
5771 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5772 prev_phi_info = vinfo_for_stmt (new_phi);
5778 return true;
5781 /* 1. Is vectorizable reduction? */
5782 /* Not supportable if the reduction variable is used in the loop, unless
5783 it's a reduction chain. */
5784 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5785 && !GROUP_FIRST_ELEMENT (stmt_info))
5786 return false;
5788 /* Reductions that are not used even in an enclosing outer-loop,
5789 are expected to be "live" (used out of the loop). */
5790 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5791 && !STMT_VINFO_LIVE_P (stmt_info))
5792 return false;
5794 /* 2. Has this been recognized as a reduction pattern?
5796 Check if STMT represents a pattern that has been recognized
5797 in earlier analysis stages. For stmts that represent a pattern,
5798 the STMT_VINFO_RELATED_STMT field records the last stmt in
5799 the original sequence that constitutes the pattern. */
5801 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5802 if (orig_stmt)
5804 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5805 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5806 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5809 /* 3. Check the operands of the operation. The first operands are defined
5810 inside the loop body. The last operand is the reduction variable,
5811 which is defined by the loop-header-phi. */
5813 gcc_assert (is_gimple_assign (stmt));
5815 /* Flatten RHS. */
5816 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5818 case GIMPLE_BINARY_RHS:
5819 code = gimple_assign_rhs_code (stmt);
5820 op_type = TREE_CODE_LENGTH (code);
5821 gcc_assert (op_type == binary_op);
5822 ops[0] = gimple_assign_rhs1 (stmt);
5823 ops[1] = gimple_assign_rhs2 (stmt);
5824 break;
5826 case GIMPLE_TERNARY_RHS:
5827 code = gimple_assign_rhs_code (stmt);
5828 op_type = TREE_CODE_LENGTH (code);
5829 gcc_assert (op_type == ternary_op);
5830 ops[0] = gimple_assign_rhs1 (stmt);
5831 ops[1] = gimple_assign_rhs2 (stmt);
5832 ops[2] = gimple_assign_rhs3 (stmt);
5833 break;
5835 case GIMPLE_UNARY_RHS:
5836 return false;
5838 default:
5839 gcc_unreachable ();
5842 if (code == COND_EXPR && slp_node)
5843 return false;
5845 scalar_dest = gimple_assign_lhs (stmt);
5846 scalar_type = TREE_TYPE (scalar_dest);
5847 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5848 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5849 return false;
5851 /* Do not try to vectorize bit-precision reductions. */
5852 if (!type_has_mode_precision_p (scalar_type))
5853 return false;
5855 /* All uses but the last are expected to be defined in the loop.
5856 The last use is the reduction variable. In case of nested cycle this
5857 assumption is not true: we use reduc_index to record the index of the
5858 reduction variable. */
5859 gimple *reduc_def_stmt = NULL;
5860 int reduc_index = -1;
5861 for (i = 0; i < op_type; i++)
5863 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5864 if (i == 0 && code == COND_EXPR)
5865 continue;
5867 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5868 &def_stmt, &dts[i], &tem);
5869 dt = dts[i];
5870 gcc_assert (is_simple_use);
5871 if (dt == vect_reduction_def)
5873 reduc_def_stmt = def_stmt;
5874 reduc_index = i;
5875 continue;
5877 else
5879 if (!vectype_in)
5880 vectype_in = tem;
5883 if (dt != vect_internal_def
5884 && dt != vect_external_def
5885 && dt != vect_constant_def
5886 && dt != vect_induction_def
5887 && !(dt == vect_nested_cycle && nested_cycle))
5888 return false;
5890 if (dt == vect_nested_cycle)
5892 found_nested_cycle_def = true;
5893 reduc_def_stmt = def_stmt;
5894 reduc_index = i;
5897 if (i == 1 && code == COND_EXPR)
5899 /* Record how value of COND_EXPR is defined. */
5900 if (dt == vect_constant_def)
5902 cond_reduc_dt = dt;
5903 cond_reduc_val = ops[i];
5905 if (dt == vect_induction_def && def_stmt != NULL
5906 && is_nonwrapping_integer_induction (def_stmt, loop))
5907 cond_reduc_dt = dt;
5911 if (!vectype_in)
5912 vectype_in = vectype_out;
5914 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
5915 directy used in stmt. */
5916 if (reduc_index == -1)
5918 if (orig_stmt)
5919 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
5920 else
5921 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5924 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5925 return false;
5927 if (!(reduc_index == -1
5928 || dts[reduc_index] == vect_reduction_def
5929 || dts[reduc_index] == vect_nested_cycle
5930 || ((dts[reduc_index] == vect_internal_def
5931 || dts[reduc_index] == vect_external_def
5932 || dts[reduc_index] == vect_constant_def
5933 || dts[reduc_index] == vect_induction_def)
5934 && nested_cycle && found_nested_cycle_def)))
5936 /* For pattern recognized stmts, orig_stmt might be a reduction,
5937 but some helper statements for the pattern might not, or
5938 might be COND_EXPRs with reduction uses in the condition. */
5939 gcc_assert (orig_stmt);
5940 return false;
5943 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5944 enum vect_reduction_type v_reduc_type
5945 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5946 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5948 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5949 /* If we have a condition reduction, see if we can simplify it further. */
5950 if (v_reduc_type == COND_REDUCTION)
5952 if (cond_reduc_dt == vect_induction_def)
5954 if (dump_enabled_p ())
5955 dump_printf_loc (MSG_NOTE, vect_location,
5956 "condition expression based on "
5957 "integer induction.\n");
5958 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5959 = INTEGER_INDUC_COND_REDUCTION;
5962 /* Loop peeling modifies initial value of reduction PHI, which
5963 makes the reduction stmt to be transformed different to the
5964 original stmt analyzed. We need to record reduction code for
5965 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5966 it can be used directly at transform stage. */
5967 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5968 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5970 /* Also set the reduction type to CONST_COND_REDUCTION. */
5971 gcc_assert (cond_reduc_dt == vect_constant_def);
5972 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5974 else if (cond_reduc_dt == vect_constant_def)
5976 enum vect_def_type cond_initial_dt;
5977 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
5978 tree cond_initial_val
5979 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
5981 gcc_assert (cond_reduc_val != NULL_TREE);
5982 vect_is_simple_use (cond_initial_val, loop_vinfo,
5983 &def_stmt, &cond_initial_dt);
5984 if (cond_initial_dt == vect_constant_def
5985 && types_compatible_p (TREE_TYPE (cond_initial_val),
5986 TREE_TYPE (cond_reduc_val)))
5988 tree e = fold_binary (LE_EXPR, boolean_type_node,
5989 cond_initial_val, cond_reduc_val);
5990 if (e && (integer_onep (e) || integer_zerop (e)))
5992 if (dump_enabled_p ())
5993 dump_printf_loc (MSG_NOTE, vect_location,
5994 "condition expression based on "
5995 "compile time constant.\n");
5996 /* Record reduction code at analysis stage. */
5997 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
5998 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
5999 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6000 = CONST_COND_REDUCTION;
6006 if (orig_stmt)
6007 gcc_assert (tmp == orig_stmt
6008 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
6009 else
6010 /* We changed STMT to be the first stmt in reduction chain, hence we
6011 check that in this case the first element in the chain is STMT. */
6012 gcc_assert (stmt == tmp
6013 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
6015 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
6016 return false;
6018 if (slp_node)
6019 ncopies = 1;
6020 else
6021 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6022 / TYPE_VECTOR_SUBPARTS (vectype_in));
6024 gcc_assert (ncopies >= 1);
6026 vec_mode = TYPE_MODE (vectype_in);
6028 if (code == COND_EXPR)
6030 /* Only call during the analysis stage, otherwise we'll lose
6031 STMT_VINFO_TYPE. */
6032 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
6033 ops[reduc_index], 0, NULL))
6035 if (dump_enabled_p ())
6036 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6037 "unsupported condition in reduction\n");
6038 return false;
6041 else
6043 /* 4. Supportable by target? */
6045 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
6046 || code == LROTATE_EXPR || code == RROTATE_EXPR)
6048 /* Shifts and rotates are only supported by vectorizable_shifts,
6049 not vectorizable_reduction. */
6050 if (dump_enabled_p ())
6051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6052 "unsupported shift or rotation.\n");
6053 return false;
6056 /* 4.1. check support for the operation in the loop */
6057 optab = optab_for_tree_code (code, vectype_in, optab_default);
6058 if (!optab)
6060 if (dump_enabled_p ())
6061 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6062 "no optab.\n");
6064 return false;
6067 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
6069 if (dump_enabled_p ())
6070 dump_printf (MSG_NOTE, "op not supported by target.\n");
6072 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
6073 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6074 < vect_min_worthwhile_factor (code))
6075 return false;
6077 if (dump_enabled_p ())
6078 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6081 /* Worthwhile without SIMD support? */
6082 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6083 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6084 < vect_min_worthwhile_factor (code))
6086 if (dump_enabled_p ())
6087 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6088 "not worthwhile without SIMD support.\n");
6090 return false;
6094 /* 4.2. Check support for the epilog operation.
6096 If STMT represents a reduction pattern, then the type of the
6097 reduction variable may be different than the type of the rest
6098 of the arguments. For example, consider the case of accumulation
6099 of shorts into an int accumulator; The original code:
6100 S1: int_a = (int) short_a;
6101 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6103 was replaced with:
6104 STMT: int_acc = widen_sum <short_a, int_acc>
6106 This means that:
6107 1. The tree-code that is used to create the vector operation in the
6108 epilog code (that reduces the partial results) is not the
6109 tree-code of STMT, but is rather the tree-code of the original
6110 stmt from the pattern that STMT is replacing. I.e, in the example
6111 above we want to use 'widen_sum' in the loop, but 'plus' in the
6112 epilog.
6113 2. The type (mode) we use to check available target support
6114 for the vector operation to be created in the *epilog*, is
6115 determined by the type of the reduction variable (in the example
6116 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6117 However the type (mode) we use to check available target support
6118 for the vector operation to be created *inside the loop*, is
6119 determined by the type of the other arguments to STMT (in the
6120 example we'd check this: optab_handler (widen_sum_optab,
6121 vect_short_mode)).
6123 This is contrary to "regular" reductions, in which the types of all
6124 the arguments are the same as the type of the reduction variable.
6125 For "regular" reductions we can therefore use the same vector type
6126 (and also the same tree-code) when generating the epilog code and
6127 when generating the code inside the loop. */
6129 if (orig_stmt)
6131 /* This is a reduction pattern: get the vectype from the type of the
6132 reduction variable, and get the tree-code from orig_stmt. */
6133 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6134 == TREE_CODE_REDUCTION);
6135 orig_code = gimple_assign_rhs_code (orig_stmt);
6136 gcc_assert (vectype_out);
6137 vec_mode = TYPE_MODE (vectype_out);
6139 else
6141 /* Regular reduction: use the same vectype and tree-code as used for
6142 the vector code inside the loop can be used for the epilog code. */
6143 orig_code = code;
6145 if (code == MINUS_EXPR)
6146 orig_code = PLUS_EXPR;
6148 /* For simple condition reductions, replace with the actual expression
6149 we want to base our reduction around. */
6150 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
6152 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6153 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6155 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6156 == INTEGER_INDUC_COND_REDUCTION)
6157 orig_code = MAX_EXPR;
6160 if (nested_cycle)
6162 def_bb = gimple_bb (reduc_def_stmt);
6163 def_stmt_loop = def_bb->loop_father;
6164 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6165 loop_preheader_edge (def_stmt_loop));
6166 if (TREE_CODE (def_arg) == SSA_NAME
6167 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
6168 && gimple_code (def_arg_stmt) == GIMPLE_PHI
6169 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
6170 && vinfo_for_stmt (def_arg_stmt)
6171 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
6172 == vect_double_reduction_def)
6173 double_reduc = true;
6176 epilog_reduc_code = ERROR_MARK;
6178 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
6180 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
6182 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
6183 optab_default);
6184 if (!reduc_optab)
6186 if (dump_enabled_p ())
6187 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6188 "no optab for reduction.\n");
6190 epilog_reduc_code = ERROR_MARK;
6192 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
6194 if (dump_enabled_p ())
6195 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6196 "reduc op not supported by target.\n");
6198 epilog_reduc_code = ERROR_MARK;
6201 else
6203 if (!nested_cycle || double_reduc)
6205 if (dump_enabled_p ())
6206 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6207 "no reduc code for scalar code.\n");
6209 return false;
6213 else
6215 int scalar_precision
6216 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
6217 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6218 cr_index_vector_type = build_vector_type
6219 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
6221 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
6222 optab_default);
6223 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
6224 != CODE_FOR_nothing)
6225 epilog_reduc_code = REDUC_MAX_EXPR;
6228 if ((double_reduc
6229 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6230 && ncopies > 1)
6232 if (dump_enabled_p ())
6233 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6234 "multiple types in double reduction or condition "
6235 "reduction.\n");
6236 return false;
6239 /* In case of widenning multiplication by a constant, we update the type
6240 of the constant to be the type of the other operand. We check that the
6241 constant fits the type in the pattern recognition pass. */
6242 if (code == DOT_PROD_EXPR
6243 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6245 if (TREE_CODE (ops[0]) == INTEGER_CST)
6246 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6247 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6248 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6249 else
6251 if (dump_enabled_p ())
6252 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6253 "invalid types in dot-prod\n");
6255 return false;
6259 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6261 widest_int ni;
6263 if (! max_loop_iterations (loop, &ni))
6265 if (dump_enabled_p ())
6266 dump_printf_loc (MSG_NOTE, vect_location,
6267 "loop count not known, cannot create cond "
6268 "reduction.\n");
6269 return false;
6271 /* Convert backedges to iterations. */
6272 ni += 1;
6274 /* The additional index will be the same type as the condition. Check
6275 that the loop can fit into this less one (because we'll use up the
6276 zero slot for when there are no matches). */
6277 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6278 if (wi::geu_p (ni, wi::to_widest (max_index)))
6280 if (dump_enabled_p ())
6281 dump_printf_loc (MSG_NOTE, vect_location,
6282 "loop size is greater than data size.\n");
6283 return false;
6287 /* In case the vectorization factor (VF) is bigger than the number
6288 of elements that we can fit in a vectype (nunits), we have to generate
6289 more than one vector stmt - i.e - we need to "unroll" the
6290 vector stmt by a factor VF/nunits. For more details see documentation
6291 in vectorizable_operation. */
6293 /* If the reduction is used in an outer loop we need to generate
6294 VF intermediate results, like so (e.g. for ncopies=2):
6295 r0 = phi (init, r0)
6296 r1 = phi (init, r1)
6297 r0 = x0 + r0;
6298 r1 = x1 + r1;
6299 (i.e. we generate VF results in 2 registers).
6300 In this case we have a separate def-use cycle for each copy, and therefore
6301 for each copy we get the vector def for the reduction variable from the
6302 respective phi node created for this copy.
6304 Otherwise (the reduction is unused in the loop nest), we can combine
6305 together intermediate results, like so (e.g. for ncopies=2):
6306 r = phi (init, r)
6307 r = x0 + r;
6308 r = x1 + r;
6309 (i.e. we generate VF/2 results in a single register).
6310 In this case for each copy we get the vector def for the reduction variable
6311 from the vectorized reduction operation generated in the previous iteration.
6313 This only works when we see both the reduction PHI and its only consumer
6314 in vectorizable_reduction and there are no intermediate stmts
6315 participating. */
6316 use_operand_p use_p;
6317 gimple *use_stmt;
6318 if (ncopies > 1
6319 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6320 && single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
6321 && (use_stmt == stmt
6322 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
6324 single_defuse_cycle = true;
6325 epilog_copies = 1;
6327 else
6328 epilog_copies = ncopies;
6330 /* If the reduction stmt is one of the patterns that have lane
6331 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
6332 if ((ncopies > 1
6333 && ! single_defuse_cycle)
6334 && (code == DOT_PROD_EXPR
6335 || code == WIDEN_SUM_EXPR
6336 || code == SAD_EXPR))
6338 if (dump_enabled_p ())
6339 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6340 "multi def-use cycle not possible for lane-reducing "
6341 "reduction operation\n");
6342 return false;
6345 if (!vec_stmt) /* transformation not required. */
6347 if (first_p)
6348 vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
6349 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6350 return true;
6353 /* Transform. */
6355 if (dump_enabled_p ())
6356 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6358 /* FORNOW: Multiple types are not supported for condition. */
6359 if (code == COND_EXPR)
6360 gcc_assert (ncopies == 1);
6362 /* Create the destination vector */
6363 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6365 prev_stmt_info = NULL;
6366 prev_phi_info = NULL;
6367 if (slp_node)
6368 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6369 else
6371 vec_num = 1;
6372 vec_oprnds0.create (1);
6373 vec_oprnds1.create (1);
6374 if (op_type == ternary_op)
6375 vec_oprnds2.create (1);
6378 phis.create (vec_num);
6379 vect_defs.create (vec_num);
6380 if (!slp_node)
6381 vect_defs.quick_push (NULL_TREE);
6383 if (slp_node)
6384 phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
6385 else
6386 phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
6388 for (j = 0; j < ncopies; j++)
6390 if (code == COND_EXPR)
6392 gcc_assert (!slp_node);
6393 vectorizable_condition (stmt, gsi, vec_stmt,
6394 PHI_RESULT (phis[0]),
6395 reduc_index, NULL);
6396 /* Multiple types are not supported for condition. */
6397 break;
6400 /* Handle uses. */
6401 if (j == 0)
6403 if (slp_node)
6405 /* Get vec defs for all the operands except the reduction index,
6406 ensuring the ordering of the ops in the vector is kept. */
6407 auto_vec<tree, 3> slp_ops;
6408 auto_vec<vec<tree>, 3> vec_defs;
6410 slp_ops.quick_push (ops[0]);
6411 slp_ops.quick_push (ops[1]);
6412 if (op_type == ternary_op)
6413 slp_ops.quick_push (ops[2]);
6415 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
6417 vec_oprnds0.safe_splice (vec_defs[0]);
6418 vec_defs[0].release ();
6419 vec_oprnds1.safe_splice (vec_defs[1]);
6420 vec_defs[1].release ();
6421 if (op_type == ternary_op)
6423 vec_oprnds2.safe_splice (vec_defs[2]);
6424 vec_defs[2].release ();
6427 else
6429 vec_oprnds0.quick_push
6430 (vect_get_vec_def_for_operand (ops[0], stmt));
6431 vec_oprnds1.quick_push
6432 (vect_get_vec_def_for_operand (ops[1], stmt));
6433 if (op_type == ternary_op)
6434 vec_oprnds2.quick_push
6435 (vect_get_vec_def_for_operand (ops[2], stmt));
6438 else
6440 if (!slp_node)
6442 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
6444 if (single_defuse_cycle && reduc_index == 0)
6445 vec_oprnds0[0] = gimple_assign_lhs (new_stmt);
6446 else
6447 vec_oprnds0[0]
6448 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
6449 if (single_defuse_cycle && reduc_index == 1)
6450 vec_oprnds1[0] = gimple_assign_lhs (new_stmt);
6451 else
6452 vec_oprnds1[0]
6453 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
6454 if (op_type == ternary_op)
6456 if (single_defuse_cycle && reduc_index == 2)
6457 vec_oprnds2[0] = gimple_assign_lhs (new_stmt);
6458 else
6459 vec_oprnds2[0]
6460 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
6465 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6467 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
6468 if (op_type == ternary_op)
6469 vop[2] = vec_oprnds2[i];
6471 new_temp = make_ssa_name (vec_dest, new_stmt);
6472 new_stmt = gimple_build_assign (new_temp, code,
6473 vop[0], vop[1], vop[2]);
6474 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6476 if (slp_node)
6478 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6479 vect_defs.quick_push (new_temp);
6481 else
6482 vect_defs[0] = new_temp;
6485 if (slp_node)
6486 continue;
6488 if (j == 0)
6489 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6490 else
6491 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6493 prev_stmt_info = vinfo_for_stmt (new_stmt);
6496 /* Finalize the reduction-phi (set its arguments) and create the
6497 epilog reduction code. */
6498 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6499 vect_defs[0] = gimple_assign_lhs (*vec_stmt);
6501 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
6502 epilog_copies,
6503 epilog_reduc_code, phis,
6504 double_reduc, slp_node, slp_node_instance);
6506 return true;
6509 /* Function vect_min_worthwhile_factor.
6511 For a loop where we could vectorize the operation indicated by CODE,
6512 return the minimum vectorization factor that makes it worthwhile
6513 to use generic vectors. */
6515 vect_min_worthwhile_factor (enum tree_code code)
6517 switch (code)
6519 case PLUS_EXPR:
6520 case MINUS_EXPR:
6521 case NEGATE_EXPR:
6522 return 4;
6524 case BIT_AND_EXPR:
6525 case BIT_IOR_EXPR:
6526 case BIT_XOR_EXPR:
6527 case BIT_NOT_EXPR:
6528 return 2;
6530 default:
6531 return INT_MAX;
6536 /* Function vectorizable_induction
6538 Check if PHI performs an induction computation that can be vectorized.
6539 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6540 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6541 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6543 bool
6544 vectorizable_induction (gimple *phi,
6545 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6546 gimple **vec_stmt, slp_tree slp_node)
6548 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6549 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6550 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6551 unsigned ncopies;
6552 bool nested_in_vect_loop = false;
6553 struct loop *iv_loop;
6554 tree vec_def;
6555 edge pe = loop_preheader_edge (loop);
6556 basic_block new_bb;
6557 tree new_vec, vec_init, vec_step, t;
6558 tree new_name;
6559 gimple *new_stmt;
6560 gphi *induction_phi;
6561 tree induc_def, vec_dest;
6562 tree init_expr, step_expr;
6563 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6564 unsigned i;
6565 tree expr;
6566 gimple_seq stmts;
6567 imm_use_iterator imm_iter;
6568 use_operand_p use_p;
6569 gimple *exit_phi;
6570 edge latch_e;
6571 tree loop_arg;
6572 gimple_stmt_iterator si;
6573 basic_block bb = gimple_bb (phi);
6575 if (gimple_code (phi) != GIMPLE_PHI)
6576 return false;
6578 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6579 return false;
6581 /* Make sure it was recognized as induction computation. */
6582 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6583 return false;
6585 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6586 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6588 if (slp_node)
6589 ncopies = 1;
6590 else
6591 ncopies = vf / nunits;
6592 gcc_assert (ncopies >= 1);
6594 /* FORNOW. These restrictions should be relaxed. */
6595 if (nested_in_vect_loop_p (loop, phi))
6597 imm_use_iterator imm_iter;
6598 use_operand_p use_p;
6599 gimple *exit_phi;
6600 edge latch_e;
6601 tree loop_arg;
6603 if (ncopies > 1)
6605 if (dump_enabled_p ())
6606 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6607 "multiple types in nested loop.\n");
6608 return false;
6611 /* FORNOW: outer loop induction with SLP not supported. */
6612 if (STMT_SLP_TYPE (stmt_info))
6613 return false;
6615 exit_phi = NULL;
6616 latch_e = loop_latch_edge (loop->inner);
6617 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6618 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6620 gimple *use_stmt = USE_STMT (use_p);
6621 if (is_gimple_debug (use_stmt))
6622 continue;
6624 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6626 exit_phi = use_stmt;
6627 break;
6630 if (exit_phi)
6632 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6633 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6634 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6636 if (dump_enabled_p ())
6637 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6638 "inner-loop induction only used outside "
6639 "of the outer vectorized loop.\n");
6640 return false;
6644 nested_in_vect_loop = true;
6645 iv_loop = loop->inner;
6647 else
6648 iv_loop = loop;
6649 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6651 if (!vec_stmt) /* transformation not required. */
6653 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6654 if (dump_enabled_p ())
6655 dump_printf_loc (MSG_NOTE, vect_location,
6656 "=== vectorizable_induction ===\n");
6657 vect_model_induction_cost (stmt_info, ncopies);
6658 return true;
6661 /* Transform. */
6663 /* Compute a vector variable, initialized with the first VF values of
6664 the induction variable. E.g., for an iv with IV_PHI='X' and
6665 evolution S, for a vector of 4 units, we want to compute:
6666 [X, X + S, X + 2*S, X + 3*S]. */
6668 if (dump_enabled_p ())
6669 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6671 latch_e = loop_latch_edge (iv_loop);
6672 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6674 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6675 gcc_assert (step_expr != NULL_TREE);
6677 pe = loop_preheader_edge (iv_loop);
6678 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6679 loop_preheader_edge (iv_loop));
6681 /* Convert the step to the desired type. */
6682 stmts = NULL;
6683 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6684 if (stmts)
6686 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6687 gcc_assert (!new_bb);
6690 /* Find the first insertion point in the BB. */
6691 si = gsi_after_labels (bb);
6693 /* For SLP induction we have to generate several IVs as for example
6694 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6695 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6696 [VF*S, VF*S, VF*S, VF*S] for all. */
6697 if (slp_node)
6699 /* Convert the init to the desired type. */
6700 stmts = NULL;
6701 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6702 if (stmts)
6704 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6705 gcc_assert (!new_bb);
6708 /* Generate [VF*S, VF*S, ... ]. */
6709 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6711 expr = build_int_cst (integer_type_node, vf);
6712 expr = fold_convert (TREE_TYPE (step_expr), expr);
6714 else
6715 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6716 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6717 expr, step_expr);
6718 if (! CONSTANT_CLASS_P (new_name))
6719 new_name = vect_init_vector (phi, new_name,
6720 TREE_TYPE (step_expr), NULL);
6721 new_vec = build_vector_from_val (vectype, new_name);
6722 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6724 /* Now generate the IVs. */
6725 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6726 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6727 unsigned elts = nunits * nvects;
6728 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6729 gcc_assert (elts % group_size == 0);
6730 tree elt = init_expr;
6731 unsigned ivn;
6732 for (ivn = 0; ivn < nivs; ++ivn)
6734 tree *elts = XALLOCAVEC (tree, nunits);
6735 bool constant_p = true;
6736 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6738 if (ivn*nunits + eltn >= group_size
6739 && (ivn*nunits + eltn) % group_size == 0)
6741 stmts = NULL;
6742 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6743 elt, step_expr);
6744 if (stmts)
6746 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6747 gcc_assert (!new_bb);
6750 if (! CONSTANT_CLASS_P (elt))
6751 constant_p = false;
6752 elts[eltn] = elt;
6754 if (constant_p)
6755 new_vec = build_vector (vectype, elts);
6756 else
6758 vec<constructor_elt, va_gc> *v;
6759 vec_alloc (v, nunits);
6760 for (i = 0; i < nunits; ++i)
6761 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6762 new_vec = build_constructor (vectype, v);
6764 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6766 /* Create the induction-phi that defines the induction-operand. */
6767 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6768 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6769 set_vinfo_for_stmt (induction_phi,
6770 new_stmt_vec_info (induction_phi, loop_vinfo));
6771 induc_def = PHI_RESULT (induction_phi);
6773 /* Create the iv update inside the loop */
6774 vec_def = make_ssa_name (vec_dest);
6775 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6776 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6777 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6779 /* Set the arguments of the phi node: */
6780 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6781 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6782 UNKNOWN_LOCATION);
6784 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6787 /* Re-use IVs when we can. */
6788 if (ivn < nvects)
6790 unsigned vfp
6791 = least_common_multiple (group_size, nunits) / group_size;
6792 /* Generate [VF'*S, VF'*S, ... ]. */
6793 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6795 expr = build_int_cst (integer_type_node, vfp);
6796 expr = fold_convert (TREE_TYPE (step_expr), expr);
6798 else
6799 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6800 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6801 expr, step_expr);
6802 if (! CONSTANT_CLASS_P (new_name))
6803 new_name = vect_init_vector (phi, new_name,
6804 TREE_TYPE (step_expr), NULL);
6805 new_vec = build_vector_from_val (vectype, new_name);
6806 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6807 for (; ivn < nvects; ++ivn)
6809 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6810 tree def;
6811 if (gimple_code (iv) == GIMPLE_PHI)
6812 def = gimple_phi_result (iv);
6813 else
6814 def = gimple_assign_lhs (iv);
6815 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6816 PLUS_EXPR,
6817 def, vec_step);
6818 if (gimple_code (iv) == GIMPLE_PHI)
6819 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6820 else
6822 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6823 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6825 set_vinfo_for_stmt (new_stmt,
6826 new_stmt_vec_info (new_stmt, loop_vinfo));
6827 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6831 return true;
6834 /* Create the vector that holds the initial_value of the induction. */
6835 if (nested_in_vect_loop)
6837 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6838 been created during vectorization of previous stmts. We obtain it
6839 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6840 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6841 /* If the initial value is not of proper type, convert it. */
6842 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6844 new_stmt
6845 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6846 vect_simple_var,
6847 "vec_iv_"),
6848 VIEW_CONVERT_EXPR,
6849 build1 (VIEW_CONVERT_EXPR, vectype,
6850 vec_init));
6851 vec_init = gimple_assign_lhs (new_stmt);
6852 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6853 new_stmt);
6854 gcc_assert (!new_bb);
6855 set_vinfo_for_stmt (new_stmt,
6856 new_stmt_vec_info (new_stmt, loop_vinfo));
6859 else
6861 vec<constructor_elt, va_gc> *v;
6863 /* iv_loop is the loop to be vectorized. Create:
6864 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6865 stmts = NULL;
6866 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6868 vec_alloc (v, nunits);
6869 bool constant_p = is_gimple_min_invariant (new_name);
6870 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6871 for (i = 1; i < nunits; i++)
6873 /* Create: new_name_i = new_name + step_expr */
6874 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6875 new_name, step_expr);
6876 if (!is_gimple_min_invariant (new_name))
6877 constant_p = false;
6878 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6880 if (stmts)
6882 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6883 gcc_assert (!new_bb);
6886 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6887 if (constant_p)
6888 new_vec = build_vector_from_ctor (vectype, v);
6889 else
6890 new_vec = build_constructor (vectype, v);
6891 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6895 /* Create the vector that holds the step of the induction. */
6896 if (nested_in_vect_loop)
6897 /* iv_loop is nested in the loop to be vectorized. Generate:
6898 vec_step = [S, S, S, S] */
6899 new_name = step_expr;
6900 else
6902 /* iv_loop is the loop to be vectorized. Generate:
6903 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6904 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6906 expr = build_int_cst (integer_type_node, vf);
6907 expr = fold_convert (TREE_TYPE (step_expr), expr);
6909 else
6910 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6911 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6912 expr, step_expr);
6913 if (TREE_CODE (step_expr) == SSA_NAME)
6914 new_name = vect_init_vector (phi, new_name,
6915 TREE_TYPE (step_expr), NULL);
6918 t = unshare_expr (new_name);
6919 gcc_assert (CONSTANT_CLASS_P (new_name)
6920 || TREE_CODE (new_name) == SSA_NAME);
6921 new_vec = build_vector_from_val (vectype, t);
6922 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6925 /* Create the following def-use cycle:
6926 loop prolog:
6927 vec_init = ...
6928 vec_step = ...
6929 loop:
6930 vec_iv = PHI <vec_init, vec_loop>
6932 STMT
6934 vec_loop = vec_iv + vec_step; */
6936 /* Create the induction-phi that defines the induction-operand. */
6937 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6938 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6939 set_vinfo_for_stmt (induction_phi,
6940 new_stmt_vec_info (induction_phi, loop_vinfo));
6941 induc_def = PHI_RESULT (induction_phi);
6943 /* Create the iv update inside the loop */
6944 vec_def = make_ssa_name (vec_dest);
6945 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6946 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6947 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6949 /* Set the arguments of the phi node: */
6950 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6951 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6952 UNKNOWN_LOCATION);
6954 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6956 /* In case that vectorization factor (VF) is bigger than the number
6957 of elements that we can fit in a vectype (nunits), we have to generate
6958 more than one vector stmt - i.e - we need to "unroll" the
6959 vector stmt by a factor VF/nunits. For more details see documentation
6960 in vectorizable_operation. */
6962 if (ncopies > 1)
6964 stmt_vec_info prev_stmt_vinfo;
6965 /* FORNOW. This restriction should be relaxed. */
6966 gcc_assert (!nested_in_vect_loop);
6968 /* Create the vector that holds the step of the induction. */
6969 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6971 expr = build_int_cst (integer_type_node, nunits);
6972 expr = fold_convert (TREE_TYPE (step_expr), expr);
6974 else
6975 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6976 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6977 expr, step_expr);
6978 if (TREE_CODE (step_expr) == SSA_NAME)
6979 new_name = vect_init_vector (phi, new_name,
6980 TREE_TYPE (step_expr), NULL);
6981 t = unshare_expr (new_name);
6982 gcc_assert (CONSTANT_CLASS_P (new_name)
6983 || TREE_CODE (new_name) == SSA_NAME);
6984 new_vec = build_vector_from_val (vectype, t);
6985 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6987 vec_def = induc_def;
6988 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
6989 for (i = 1; i < ncopies; i++)
6991 /* vec_i = vec_prev + vec_step */
6992 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
6993 vec_def, vec_step);
6994 vec_def = make_ssa_name (vec_dest, new_stmt);
6995 gimple_assign_set_lhs (new_stmt, vec_def);
6997 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6998 set_vinfo_for_stmt (new_stmt,
6999 new_stmt_vec_info (new_stmt, loop_vinfo));
7000 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
7001 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
7005 if (nested_in_vect_loop)
7007 /* Find the loop-closed exit-phi of the induction, and record
7008 the final vector of induction results: */
7009 exit_phi = NULL;
7010 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7012 gimple *use_stmt = USE_STMT (use_p);
7013 if (is_gimple_debug (use_stmt))
7014 continue;
7016 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
7018 exit_phi = use_stmt;
7019 break;
7022 if (exit_phi)
7024 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
7025 /* FORNOW. Currently not supporting the case that an inner-loop induction
7026 is not used in the outer-loop (i.e. only outside the outer-loop). */
7027 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
7028 && !STMT_VINFO_LIVE_P (stmt_vinfo));
7030 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
7031 if (dump_enabled_p ())
7033 dump_printf_loc (MSG_NOTE, vect_location,
7034 "vector of inductions after inner-loop:");
7035 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
7041 if (dump_enabled_p ())
7043 dump_printf_loc (MSG_NOTE, vect_location,
7044 "transform induction: created def-use cycle: ");
7045 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
7046 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7047 SSA_NAME_DEF_STMT (vec_def), 0);
7050 return true;
7053 /* Function vectorizable_live_operation.
7055 STMT computes a value that is used outside the loop. Check if
7056 it can be supported. */
7058 bool
7059 vectorizable_live_operation (gimple *stmt,
7060 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7061 slp_tree slp_node, int slp_index,
7062 gimple **vec_stmt)
7064 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7065 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7066 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7067 imm_use_iterator imm_iter;
7068 tree lhs, lhs_type, bitsize, vec_bitsize;
7069 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7070 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7071 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7072 gimple *use_stmt;
7073 auto_vec<tree> vec_oprnds;
7075 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7077 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7078 return false;
7080 /* FORNOW. CHECKME. */
7081 if (nested_in_vect_loop_p (loop, stmt))
7082 return false;
7084 /* If STMT is not relevant and it is a simple assignment and its inputs are
7085 invariant then it can remain in place, unvectorized. The original last
7086 scalar value that it computes will be used. */
7087 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7089 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7090 if (dump_enabled_p ())
7091 dump_printf_loc (MSG_NOTE, vect_location,
7092 "statement is simple and uses invariant. Leaving in "
7093 "place.\n");
7094 return true;
7097 if (!vec_stmt)
7098 /* No transformation required. */
7099 return true;
7101 /* If stmt has a related stmt, then use that for getting the lhs. */
7102 if (is_pattern_stmt_p (stmt_info))
7103 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7105 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7106 : gimple_get_lhs (stmt);
7107 lhs_type = TREE_TYPE (lhs);
7109 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
7110 vec_bitsize = TYPE_SIZE (vectype);
7112 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7113 tree vec_lhs, bitstart;
7114 if (slp_node)
7116 gcc_assert (slp_index >= 0);
7118 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7119 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7121 /* Get the last occurrence of the scalar index from the concatenation of
7122 all the slp vectors. Calculate which slp vector it is and the index
7123 within. */
7124 int pos = (num_vec * nunits) - num_scalar + slp_index;
7125 int vec_entry = pos / nunits;
7126 int vec_index = pos % nunits;
7128 /* Get the correct slp vectorized stmt. */
7129 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
7131 /* Get entry to use. */
7132 bitstart = build_int_cst (unsigned_type_node, vec_index);
7133 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7135 else
7137 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7138 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7140 /* For multiple copies, get the last copy. */
7141 for (int i = 1; i < ncopies; ++i)
7142 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7143 vec_lhs);
7145 /* Get the last lane in the vector. */
7146 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7149 /* Create a new vectorized stmt for the uses of STMT and insert outside the
7150 loop. */
7151 gimple_seq stmts = NULL;
7152 tree bftype = TREE_TYPE (vectype);
7153 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7154 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7155 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
7156 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
7157 true, NULL_TREE);
7158 if (stmts)
7159 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
7161 /* Replace use of lhs with newly computed result. If the use stmt is a
7162 single arg PHI, just replace all uses of PHI result. It's necessary
7163 because lcssa PHI defining lhs may be before newly inserted stmt. */
7164 use_operand_p use_p;
7165 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
7166 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
7167 && !is_gimple_debug (use_stmt))
7169 if (gimple_code (use_stmt) == GIMPLE_PHI
7170 && gimple_phi_num_args (use_stmt) == 1)
7172 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
7174 else
7176 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7177 SET_USE (use_p, new_tree);
7179 update_stmt (use_stmt);
7182 return true;
7185 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
7187 static void
7188 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
7190 ssa_op_iter op_iter;
7191 imm_use_iterator imm_iter;
7192 def_operand_p def_p;
7193 gimple *ustmt;
7195 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
7197 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
7199 basic_block bb;
7201 if (!is_gimple_debug (ustmt))
7202 continue;
7204 bb = gimple_bb (ustmt);
7206 if (!flow_bb_inside_loop_p (loop, bb))
7208 if (gimple_debug_bind_p (ustmt))
7210 if (dump_enabled_p ())
7211 dump_printf_loc (MSG_NOTE, vect_location,
7212 "killing debug use\n");
7214 gimple_debug_bind_reset_value (ustmt);
7215 update_stmt (ustmt);
7217 else
7218 gcc_unreachable ();
7224 /* Given loop represented by LOOP_VINFO, return true if computation of
7225 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
7226 otherwise. */
7228 static bool
7229 loop_niters_no_overflow (loop_vec_info loop_vinfo)
7231 /* Constant case. */
7232 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7234 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
7235 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
7237 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
7238 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
7239 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
7240 return true;
7243 widest_int max;
7244 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7245 /* Check the upper bound of loop niters. */
7246 if (get_max_loop_iterations (loop, &max))
7248 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
7249 signop sgn = TYPE_SIGN (type);
7250 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
7251 if (max < type_max)
7252 return true;
7254 return false;
7257 /* Scale profiling counters by estimation for LOOP which is vectorized
7258 by factor VF. */
7260 static void
7261 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
7263 edge preheader = loop_preheader_edge (loop);
7264 /* Reduce loop iterations by the vectorization factor. */
7265 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
7266 profile_count freq_h = loop->header->count, freq_e = preheader->count;
7268 /* Use frequency only if counts are zero. */
7269 if (!(freq_h > 0) && !(freq_e > 0))
7271 freq_h = profile_count::from_gcov_type (loop->header->frequency);
7272 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
7274 if (freq_h > 0)
7276 profile_probability p;
7278 /* Avoid dropping loop body profile counter to 0 because of zero count
7279 in loop's preheader. */
7280 if (!(freq_e > profile_count::from_gcov_type (1)))
7281 freq_e = profile_count::from_gcov_type (1);
7282 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
7283 scale_loop_frequencies (loop, p);
7286 basic_block exit_bb = single_pred (loop->latch);
7287 edge exit_e = single_exit (loop);
7288 exit_e->count = loop_preheader_edge (loop)->count;
7289 exit_e->probability = profile_probability::always ()
7290 .apply_scale (1, new_est_niter + 1);
7292 edge exit_l = single_pred_edge (loop->latch);
7293 profile_probability prob = exit_l->probability;
7294 exit_l->probability = exit_e->probability.invert ();
7295 exit_l->count = exit_bb->count - exit_e->count;
7296 if (prob.initialized_p () && exit_l->probability.initialized_p ())
7297 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
7300 /* Function vect_transform_loop.
7302 The analysis phase has determined that the loop is vectorizable.
7303 Vectorize the loop - created vectorized stmts to replace the scalar
7304 stmts in the loop, and update the loop exit condition.
7305 Returns scalar epilogue loop if any. */
7307 struct loop *
7308 vect_transform_loop (loop_vec_info loop_vinfo)
7310 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7311 struct loop *epilogue = NULL;
7312 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
7313 int nbbs = loop->num_nodes;
7314 int i;
7315 tree niters_vector = NULL;
7316 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7317 bool grouped_store;
7318 bool slp_scheduled = false;
7319 gimple *stmt, *pattern_stmt;
7320 gimple_seq pattern_def_seq = NULL;
7321 gimple_stmt_iterator pattern_def_si = gsi_none ();
7322 bool transform_pattern_stmt = false;
7323 bool check_profitability = false;
7324 int th;
7326 if (dump_enabled_p ())
7327 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
7329 /* Use the more conservative vectorization threshold. If the number
7330 of iterations is constant assume the cost check has been performed
7331 by our caller. If the threshold makes all loops profitable that
7332 run at least the vectorization factor number of times checking
7333 is pointless, too. */
7334 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
7335 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo)
7336 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7338 if (dump_enabled_p ())
7339 dump_printf_loc (MSG_NOTE, vect_location,
7340 "Profitability threshold is %d loop iterations.\n",
7341 th);
7342 check_profitability = true;
7345 /* Make sure there exists a single-predecessor exit bb. Do this before
7346 versioning. */
7347 edge e = single_exit (loop);
7348 if (! single_pred_p (e->dest))
7350 split_loop_exit_edge (e);
7351 if (dump_enabled_p ())
7352 dump_printf (MSG_NOTE, "split exit edge\n");
7355 /* Version the loop first, if required, so the profitability check
7356 comes first. */
7358 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
7360 vect_loop_versioning (loop_vinfo, th, check_profitability);
7361 check_profitability = false;
7364 /* Make sure there exists a single-predecessor exit bb also on the
7365 scalar loop copy. Do this after versioning but before peeling
7366 so CFG structure is fine for both scalar and if-converted loop
7367 to make slpeel_duplicate_current_defs_from_edges face matched
7368 loop closed PHI nodes on the exit. */
7369 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7371 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7372 if (! single_pred_p (e->dest))
7374 split_loop_exit_edge (e);
7375 if (dump_enabled_p ())
7376 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7380 tree niters = vect_build_loop_niters (loop_vinfo);
7381 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7382 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7383 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7384 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7385 check_profitability, niters_no_overflow);
7386 if (niters_vector == NULL_TREE)
7388 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7389 niters_vector
7390 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7391 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7392 else
7393 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7394 niters_no_overflow);
7397 /* 1) Make sure the loop header has exactly two entries
7398 2) Make sure we have a preheader basic block. */
7400 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7402 split_edge (loop_preheader_edge (loop));
7404 /* FORNOW: the vectorizer supports only loops which body consist
7405 of one basic block (header + empty latch). When the vectorizer will
7406 support more involved loop forms, the order by which the BBs are
7407 traversed need to be reconsidered. */
7409 for (i = 0; i < nbbs; i++)
7411 basic_block bb = bbs[i];
7412 stmt_vec_info stmt_info;
7414 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7415 gsi_next (&si))
7417 gphi *phi = si.phi ();
7418 if (dump_enabled_p ())
7420 dump_printf_loc (MSG_NOTE, vect_location,
7421 "------>vectorizing phi: ");
7422 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7424 stmt_info = vinfo_for_stmt (phi);
7425 if (!stmt_info)
7426 continue;
7428 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7429 vect_loop_kill_debug_uses (loop, phi);
7431 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7432 && !STMT_VINFO_LIVE_P (stmt_info))
7433 continue;
7435 if (STMT_VINFO_VECTYPE (stmt_info)
7436 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7437 != (unsigned HOST_WIDE_INT) vf)
7438 && dump_enabled_p ())
7439 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7441 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7442 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
7443 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
7444 && ! PURE_SLP_STMT (stmt_info))
7446 if (dump_enabled_p ())
7447 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7448 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7452 pattern_stmt = NULL;
7453 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7454 !gsi_end_p (si) || transform_pattern_stmt;)
7456 bool is_store;
7458 if (transform_pattern_stmt)
7459 stmt = pattern_stmt;
7460 else
7462 stmt = gsi_stmt (si);
7463 /* During vectorization remove existing clobber stmts. */
7464 if (gimple_clobber_p (stmt))
7466 unlink_stmt_vdef (stmt);
7467 gsi_remove (&si, true);
7468 release_defs (stmt);
7469 continue;
7473 if (dump_enabled_p ())
7475 dump_printf_loc (MSG_NOTE, vect_location,
7476 "------>vectorizing statement: ");
7477 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7480 stmt_info = vinfo_for_stmt (stmt);
7482 /* vector stmts created in the outer-loop during vectorization of
7483 stmts in an inner-loop may not have a stmt_info, and do not
7484 need to be vectorized. */
7485 if (!stmt_info)
7487 gsi_next (&si);
7488 continue;
7491 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7492 vect_loop_kill_debug_uses (loop, stmt);
7494 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7495 && !STMT_VINFO_LIVE_P (stmt_info))
7497 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7498 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7499 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7500 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7502 stmt = pattern_stmt;
7503 stmt_info = vinfo_for_stmt (stmt);
7505 else
7507 gsi_next (&si);
7508 continue;
7511 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7512 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7513 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7514 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7515 transform_pattern_stmt = true;
7517 /* If pattern statement has def stmts, vectorize them too. */
7518 if (is_pattern_stmt_p (stmt_info))
7520 if (pattern_def_seq == NULL)
7522 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7523 pattern_def_si = gsi_start (pattern_def_seq);
7525 else if (!gsi_end_p (pattern_def_si))
7526 gsi_next (&pattern_def_si);
7527 if (pattern_def_seq != NULL)
7529 gimple *pattern_def_stmt = NULL;
7530 stmt_vec_info pattern_def_stmt_info = NULL;
7532 while (!gsi_end_p (pattern_def_si))
7534 pattern_def_stmt = gsi_stmt (pattern_def_si);
7535 pattern_def_stmt_info
7536 = vinfo_for_stmt (pattern_def_stmt);
7537 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7538 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7539 break;
7540 gsi_next (&pattern_def_si);
7543 if (!gsi_end_p (pattern_def_si))
7545 if (dump_enabled_p ())
7547 dump_printf_loc (MSG_NOTE, vect_location,
7548 "==> vectorizing pattern def "
7549 "stmt: ");
7550 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7551 pattern_def_stmt, 0);
7554 stmt = pattern_def_stmt;
7555 stmt_info = pattern_def_stmt_info;
7557 else
7559 pattern_def_si = gsi_none ();
7560 transform_pattern_stmt = false;
7563 else
7564 transform_pattern_stmt = false;
7567 if (STMT_VINFO_VECTYPE (stmt_info))
7569 unsigned int nunits
7570 = (unsigned int)
7571 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7572 if (!STMT_SLP_TYPE (stmt_info)
7573 && nunits != (unsigned int) vf
7574 && dump_enabled_p ())
7575 /* For SLP VF is set according to unrolling factor, and not
7576 to vector size, hence for SLP this print is not valid. */
7577 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7580 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7581 reached. */
7582 if (STMT_SLP_TYPE (stmt_info))
7584 if (!slp_scheduled)
7586 slp_scheduled = true;
7588 if (dump_enabled_p ())
7589 dump_printf_loc (MSG_NOTE, vect_location,
7590 "=== scheduling SLP instances ===\n");
7592 vect_schedule_slp (loop_vinfo);
7595 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7596 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7598 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7600 pattern_def_seq = NULL;
7601 gsi_next (&si);
7603 continue;
7607 /* -------- vectorize statement ------------ */
7608 if (dump_enabled_p ())
7609 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7611 grouped_store = false;
7612 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7613 if (is_store)
7615 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7617 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7618 interleaving chain was completed - free all the stores in
7619 the chain. */
7620 gsi_next (&si);
7621 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7623 else
7625 /* Free the attached stmt_vec_info and remove the stmt. */
7626 gimple *store = gsi_stmt (si);
7627 free_stmt_vec_info (store);
7628 unlink_stmt_vdef (store);
7629 gsi_remove (&si, true);
7630 release_defs (store);
7633 /* Stores can only appear at the end of pattern statements. */
7634 gcc_assert (!transform_pattern_stmt);
7635 pattern_def_seq = NULL;
7637 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7639 pattern_def_seq = NULL;
7640 gsi_next (&si);
7642 } /* stmts in BB */
7643 } /* BBs in loop */
7645 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7647 scale_profile_for_vect_loop (loop, vf);
7649 /* The minimum number of iterations performed by the epilogue. This
7650 is 1 when peeling for gaps because we always need a final scalar
7651 iteration. */
7652 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7653 /* +1 to convert latch counts to loop iteration counts,
7654 -min_epilogue_iters to remove iterations that cannot be performed
7655 by the vector code. */
7656 int bias = 1 - min_epilogue_iters;
7657 /* In these calculations the "- 1" converts loop iteration counts
7658 back to latch counts. */
7659 if (loop->any_upper_bound)
7660 loop->nb_iterations_upper_bound
7661 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7662 if (loop->any_likely_upper_bound)
7663 loop->nb_iterations_likely_upper_bound
7664 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7665 if (loop->any_estimate)
7666 loop->nb_iterations_estimate
7667 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7669 if (dump_enabled_p ())
7671 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7673 dump_printf_loc (MSG_NOTE, vect_location,
7674 "LOOP VECTORIZED\n");
7675 if (loop->inner)
7676 dump_printf_loc (MSG_NOTE, vect_location,
7677 "OUTER LOOP VECTORIZED\n");
7678 dump_printf (MSG_NOTE, "\n");
7680 else
7681 dump_printf_loc (MSG_NOTE, vect_location,
7682 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7683 current_vector_size);
7686 /* Free SLP instances here because otherwise stmt reference counting
7687 won't work. */
7688 slp_instance instance;
7689 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7690 vect_free_slp_instance (instance);
7691 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7692 /* Clear-up safelen field since its value is invalid after vectorization
7693 since vectorized loop can have loop-carried dependencies. */
7694 loop->safelen = 0;
7696 /* Don't vectorize epilogue for epilogue. */
7697 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7698 epilogue = NULL;
7700 if (epilogue)
7702 unsigned int vector_sizes
7703 = targetm.vectorize.autovectorize_vector_sizes ();
7704 vector_sizes &= current_vector_size - 1;
7706 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7707 epilogue = NULL;
7708 else if (!vector_sizes)
7709 epilogue = NULL;
7710 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7711 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7713 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7714 int ratio = current_vector_size / smallest_vec_size;
7715 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7716 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7717 eiters = eiters % vf;
7719 epilogue->nb_iterations_upper_bound = eiters - 1;
7721 if (eiters < vf / ratio)
7722 epilogue = NULL;
7726 if (epilogue)
7728 epilogue->force_vectorize = loop->force_vectorize;
7729 epilogue->safelen = loop->safelen;
7730 epilogue->dont_vectorize = false;
7732 /* We may need to if-convert epilogue to vectorize it. */
7733 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7734 tree_if_conversion (epilogue);
7737 return epilogue;
7740 /* The code below is trying to perform simple optimization - revert
7741 if-conversion for masked stores, i.e. if the mask of a store is zero
7742 do not perform it and all stored value producers also if possible.
7743 For example,
7744 for (i=0; i<n; i++)
7745 if (c[i])
7747 p1[i] += 1;
7748 p2[i] = p3[i] +2;
7750 this transformation will produce the following semi-hammock:
7752 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7754 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7755 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7756 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7757 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7758 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7759 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7763 void
7764 optimize_mask_stores (struct loop *loop)
7766 basic_block *bbs = get_loop_body (loop);
7767 unsigned nbbs = loop->num_nodes;
7768 unsigned i;
7769 basic_block bb;
7770 struct loop *bb_loop;
7771 gimple_stmt_iterator gsi;
7772 gimple *stmt;
7773 auto_vec<gimple *> worklist;
7775 vect_location = find_loop_location (loop);
7776 /* Pick up all masked stores in loop if any. */
7777 for (i = 0; i < nbbs; i++)
7779 bb = bbs[i];
7780 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7781 gsi_next (&gsi))
7783 stmt = gsi_stmt (gsi);
7784 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7785 worklist.safe_push (stmt);
7789 free (bbs);
7790 if (worklist.is_empty ())
7791 return;
7793 /* Loop has masked stores. */
7794 while (!worklist.is_empty ())
7796 gimple *last, *last_store;
7797 edge e, efalse;
7798 tree mask;
7799 basic_block store_bb, join_bb;
7800 gimple_stmt_iterator gsi_to;
7801 tree vdef, new_vdef;
7802 gphi *phi;
7803 tree vectype;
7804 tree zero;
7806 last = worklist.pop ();
7807 mask = gimple_call_arg (last, 2);
7808 bb = gimple_bb (last);
7809 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7810 the same loop as if_bb. It could be different to LOOP when two
7811 level loop-nest is vectorized and mask_store belongs to the inner
7812 one. */
7813 e = split_block (bb, last);
7814 bb_loop = bb->loop_father;
7815 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7816 join_bb = e->dest;
7817 store_bb = create_empty_bb (bb);
7818 add_bb_to_loop (store_bb, bb_loop);
7819 e->flags = EDGE_TRUE_VALUE;
7820 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7821 /* Put STORE_BB to likely part. */
7822 efalse->probability = profile_probability::unlikely ();
7823 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7824 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
7825 if (dom_info_available_p (CDI_DOMINATORS))
7826 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7827 if (dump_enabled_p ())
7828 dump_printf_loc (MSG_NOTE, vect_location,
7829 "Create new block %d to sink mask stores.",
7830 store_bb->index);
7831 /* Create vector comparison with boolean result. */
7832 vectype = TREE_TYPE (mask);
7833 zero = build_zero_cst (vectype);
7834 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7835 gsi = gsi_last_bb (bb);
7836 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7837 /* Create new PHI node for vdef of the last masked store:
7838 .MEM_2 = VDEF <.MEM_1>
7839 will be converted to
7840 .MEM.3 = VDEF <.MEM_1>
7841 and new PHI node will be created in join bb
7842 .MEM_2 = PHI <.MEM_1, .MEM_3>
7844 vdef = gimple_vdef (last);
7845 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7846 gimple_set_vdef (last, new_vdef);
7847 phi = create_phi_node (vdef, join_bb);
7848 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7850 /* Put all masked stores with the same mask to STORE_BB if possible. */
7851 while (true)
7853 gimple_stmt_iterator gsi_from;
7854 gimple *stmt1 = NULL;
7856 /* Move masked store to STORE_BB. */
7857 last_store = last;
7858 gsi = gsi_for_stmt (last);
7859 gsi_from = gsi;
7860 /* Shift GSI to the previous stmt for further traversal. */
7861 gsi_prev (&gsi);
7862 gsi_to = gsi_start_bb (store_bb);
7863 gsi_move_before (&gsi_from, &gsi_to);
7864 /* Setup GSI_TO to the non-empty block start. */
7865 gsi_to = gsi_start_bb (store_bb);
7866 if (dump_enabled_p ())
7868 dump_printf_loc (MSG_NOTE, vect_location,
7869 "Move stmt to created bb\n");
7870 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7872 /* Move all stored value producers if possible. */
7873 while (!gsi_end_p (gsi))
7875 tree lhs;
7876 imm_use_iterator imm_iter;
7877 use_operand_p use_p;
7878 bool res;
7880 /* Skip debug statements. */
7881 if (is_gimple_debug (gsi_stmt (gsi)))
7883 gsi_prev (&gsi);
7884 continue;
7886 stmt1 = gsi_stmt (gsi);
7887 /* Do not consider statements writing to memory or having
7888 volatile operand. */
7889 if (gimple_vdef (stmt1)
7890 || gimple_has_volatile_ops (stmt1))
7891 break;
7892 gsi_from = gsi;
7893 gsi_prev (&gsi);
7894 lhs = gimple_get_lhs (stmt1);
7895 if (!lhs)
7896 break;
7898 /* LHS of vectorized stmt must be SSA_NAME. */
7899 if (TREE_CODE (lhs) != SSA_NAME)
7900 break;
7902 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7904 /* Remove dead scalar statement. */
7905 if (has_zero_uses (lhs))
7907 gsi_remove (&gsi_from, true);
7908 continue;
7912 /* Check that LHS does not have uses outside of STORE_BB. */
7913 res = true;
7914 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7916 gimple *use_stmt;
7917 use_stmt = USE_STMT (use_p);
7918 if (is_gimple_debug (use_stmt))
7919 continue;
7920 if (gimple_bb (use_stmt) != store_bb)
7922 res = false;
7923 break;
7926 if (!res)
7927 break;
7929 if (gimple_vuse (stmt1)
7930 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7931 break;
7933 /* Can move STMT1 to STORE_BB. */
7934 if (dump_enabled_p ())
7936 dump_printf_loc (MSG_NOTE, vect_location,
7937 "Move stmt to created bb\n");
7938 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7940 gsi_move_before (&gsi_from, &gsi_to);
7941 /* Shift GSI_TO for further insertion. */
7942 gsi_prev (&gsi_to);
7944 /* Put other masked stores with the same mask to STORE_BB. */
7945 if (worklist.is_empty ()
7946 || gimple_call_arg (worklist.last (), 2) != mask
7947 || worklist.last () != stmt1)
7948 break;
7949 last = worklist.pop ();
7951 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);