Improve max_insns_skipped logic
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobf78e4b420c3ffdb5081ca6fa12cbe698d40ef850
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
45 /*************************************************************************
46 Simple Loop Peeling Utilities
48 Utilities to support loop peeling for vectorization purposes.
49 *************************************************************************/
52 /* Renames the use *OP_P. */
54 static void
55 rename_use_op (use_operand_p op_p)
57 tree new_name;
59 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
60 return;
62 new_name = get_current_def (USE_FROM_PTR (op_p));
64 /* Something defined outside of the loop. */
65 if (!new_name)
66 return;
68 /* An ordinary ssa name defined in the loop. */
70 SET_USE (op_p, new_name);
74 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
75 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
76 true. */
78 static void
79 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
81 gimple *stmt;
82 use_operand_p use_p;
83 ssa_op_iter iter;
84 edge e;
85 edge_iterator ei;
86 struct loop *loop = bb->loop_father;
87 struct loop *outer_loop = NULL;
89 if (rename_from_outer_loop)
91 gcc_assert (loop);
92 outer_loop = loop_outer (loop);
95 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
96 gsi_next (&gsi))
98 stmt = gsi_stmt (gsi);
99 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
100 rename_use_op (use_p);
103 FOR_EACH_EDGE (e, ei, bb->preds)
105 if (!flow_bb_inside_loop_p (loop, e->src))
107 if (!rename_from_outer_loop)
108 continue;
109 if (e->src != outer_loop->header)
111 if (outer_loop->inner->next)
113 /* If outer_loop has 2 inner loops, allow there to
114 be an extra basic block which decides which of the
115 two loops to use using LOOP_VECTORIZED. */
116 if (!single_pred_p (e->src)
117 || single_pred (e->src) != outer_loop->header)
118 continue;
120 else
121 continue;
124 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
125 gsi_next (&gsi))
126 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
131 struct adjust_info
133 tree from, to;
134 basic_block bb;
137 /* A stack of values to be adjusted in debug stmts. We have to
138 process them LIFO, so that the closest substitution applies. If we
139 processed them FIFO, without the stack, we might substitute uses
140 with a PHI DEF that would soon become non-dominant, and when we got
141 to the suitable one, it wouldn't have anything to substitute any
142 more. */
143 static vec<adjust_info, va_heap> adjust_vec;
145 /* Adjust any debug stmts that referenced AI->from values to use the
146 loop-closed AI->to, if the references are dominated by AI->bb and
147 not by the definition of AI->from. */
149 static void
150 adjust_debug_stmts_now (adjust_info *ai)
152 basic_block bbphi = ai->bb;
153 tree orig_def = ai->from;
154 tree new_def = ai->to;
155 imm_use_iterator imm_iter;
156 gimple *stmt;
157 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
159 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
161 /* Adjust any debug stmts that held onto non-loop-closed
162 references. */
163 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
165 use_operand_p use_p;
166 basic_block bbuse;
168 if (!is_gimple_debug (stmt))
169 continue;
171 gcc_assert (gimple_debug_bind_p (stmt));
173 bbuse = gimple_bb (stmt);
175 if ((bbuse == bbphi
176 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
177 && !(bbuse == bbdef
178 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
180 if (new_def)
181 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
182 SET_USE (use_p, new_def);
183 else
185 gimple_debug_bind_reset_value (stmt);
186 update_stmt (stmt);
192 /* Adjust debug stmts as scheduled before. */
194 static void
195 adjust_vec_debug_stmts (void)
197 if (!MAY_HAVE_DEBUG_STMTS)
198 return;
200 gcc_assert (adjust_vec.exists ());
202 while (!adjust_vec.is_empty ())
204 adjust_debug_stmts_now (&adjust_vec.last ());
205 adjust_vec.pop ();
209 /* Adjust any debug stmts that referenced FROM values to use the
210 loop-closed TO, if the references are dominated by BB and not by
211 the definition of FROM. If adjust_vec is non-NULL, adjustments
212 will be postponed until adjust_vec_debug_stmts is called. */
214 static void
215 adjust_debug_stmts (tree from, tree to, basic_block bb)
217 adjust_info ai;
219 if (MAY_HAVE_DEBUG_STMTS
220 && TREE_CODE (from) == SSA_NAME
221 && ! SSA_NAME_IS_DEFAULT_DEF (from)
222 && ! virtual_operand_p (from))
224 ai.from = from;
225 ai.to = to;
226 ai.bb = bb;
228 if (adjust_vec.exists ())
229 adjust_vec.safe_push (ai);
230 else
231 adjust_debug_stmts_now (&ai);
235 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
236 to adjust any debug stmts that referenced the old phi arg,
237 presumably non-loop-closed references left over from other
238 transformations. */
240 static void
241 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
243 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
245 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
247 if (MAY_HAVE_DEBUG_STMTS)
248 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
249 gimple_bb (update_phi));
252 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
253 that starts at zero, increases by one and its limit is NITERS.
255 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
257 void
258 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
260 tree indx_before_incr, indx_after_incr;
261 gcond *cond_stmt;
262 gcond *orig_cond;
263 edge exit_edge = single_exit (loop);
264 gimple_stmt_iterator loop_cond_gsi;
265 gimple_stmt_iterator incr_gsi;
266 bool insert_after;
267 tree init = build_int_cst (TREE_TYPE (niters), 0);
268 tree step = build_int_cst (TREE_TYPE (niters), 1);
269 source_location loop_loc;
270 enum tree_code code;
272 orig_cond = get_loop_exit_condition (loop);
273 gcc_assert (orig_cond);
274 loop_cond_gsi = gsi_for_stmt (orig_cond);
276 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
277 create_iv (init, step, NULL_TREE, loop,
278 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
280 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
281 true, NULL_TREE, true,
282 GSI_SAME_STMT);
283 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
284 true, GSI_SAME_STMT);
286 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
287 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
288 NULL_TREE);
290 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
292 /* Remove old loop exit test: */
293 gsi_remove (&loop_cond_gsi, true);
294 free_stmt_vec_info (orig_cond);
296 loop_loc = find_loop_location (loop);
297 if (dump_enabled_p ())
299 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
300 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
301 LOCATION_LINE (loop_loc));
302 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
305 /* Record the number of latch iterations. */
306 loop->nb_iterations = fold_build2 (MINUS_EXPR, TREE_TYPE (niters), niters,
307 build_int_cst (TREE_TYPE (niters), 1));
310 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
311 For all PHI arguments in FROM->dest and TO->dest from those
312 edges ensure that TO->dest PHI arguments have current_def
313 to that in from. */
315 static void
316 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
318 gimple_stmt_iterator gsi_from, gsi_to;
320 for (gsi_from = gsi_start_phis (from->dest),
321 gsi_to = gsi_start_phis (to->dest);
322 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
324 gimple *from_phi = gsi_stmt (gsi_from);
325 gimple *to_phi = gsi_stmt (gsi_to);
326 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
327 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
328 if (virtual_operand_p (from_arg))
330 gsi_next (&gsi_from);
331 continue;
333 if (virtual_operand_p (to_arg))
335 gsi_next (&gsi_to);
336 continue;
338 if (TREE_CODE (from_arg) != SSA_NAME)
339 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
340 else
342 if (get_current_def (to_arg) == NULL_TREE)
343 set_current_def (to_arg, get_current_def (from_arg));
345 gsi_next (&gsi_from);
346 gsi_next (&gsi_to);
349 gphi *from_phi = get_virtual_phi (from->dest);
350 gphi *to_phi = get_virtual_phi (to->dest);
351 if (from_phi)
352 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
353 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
357 /* Given LOOP this function generates a new copy of it and puts it
358 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
359 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
360 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
361 entry or exit of LOOP. */
363 struct loop *
364 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
365 struct loop *scalar_loop, edge e)
367 struct loop *new_loop;
368 basic_block *new_bbs, *bbs, *pbbs;
369 bool at_exit;
370 bool was_imm_dom;
371 basic_block exit_dest;
372 edge exit, new_exit;
373 bool duplicate_outer_loop = false;
375 exit = single_exit (loop);
376 at_exit = (e == exit);
377 if (!at_exit && e != loop_preheader_edge (loop))
378 return NULL;
380 if (scalar_loop == NULL)
381 scalar_loop = loop;
383 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
384 pbbs = bbs + 1;
385 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
386 /* Allow duplication of outer loops. */
387 if (scalar_loop->inner)
388 duplicate_outer_loop = true;
389 /* Check whether duplication is possible. */
390 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
392 free (bbs);
393 return NULL;
396 /* Generate new loop structure. */
397 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
398 duplicate_subloops (scalar_loop, new_loop);
400 exit_dest = exit->dest;
401 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
402 exit_dest) == loop->header ?
403 true : false);
405 /* Also copy the pre-header, this avoids jumping through hoops to
406 duplicate the loop entry PHI arguments. Create an empty
407 pre-header unconditionally for this. */
408 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
409 edge entry_e = single_pred_edge (preheader);
410 bbs[0] = preheader;
411 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
413 exit = single_exit (scalar_loop);
414 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
415 &exit, 1, &new_exit, NULL,
416 at_exit ? loop->latch : e->src, true);
417 exit = single_exit (loop);
418 basic_block new_preheader = new_bbs[0];
420 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
422 if (scalar_loop != loop)
424 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
425 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
426 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
427 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
428 header) to have current_def set, so copy them over. */
429 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
430 exit);
431 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
433 EDGE_SUCC (loop->latch, 0));
436 if (at_exit) /* Add the loop copy at exit. */
438 if (scalar_loop != loop)
440 gphi_iterator gsi;
441 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
443 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
444 gsi_next (&gsi))
446 gphi *phi = gsi.phi ();
447 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
448 location_t orig_locus
449 = gimple_phi_arg_location_from_edge (phi, e);
451 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
454 redirect_edge_and_branch_force (e, new_preheader);
455 flush_pending_stmts (e);
456 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
457 if (was_imm_dom || duplicate_outer_loop)
458 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
460 /* And remove the non-necessary forwarder again. Keep the other
461 one so we have a proper pre-header for the loop at the exit edge. */
462 redirect_edge_pred (single_succ_edge (preheader),
463 single_pred (preheader));
464 delete_basic_block (preheader);
465 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
466 loop_preheader_edge (scalar_loop)->src);
468 else /* Add the copy at entry. */
470 if (scalar_loop != loop)
472 /* Remove the non-necessary forwarder of scalar_loop again. */
473 redirect_edge_pred (single_succ_edge (preheader),
474 single_pred (preheader));
475 delete_basic_block (preheader);
476 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
477 loop_preheader_edge (scalar_loop)->src);
478 preheader = split_edge (loop_preheader_edge (loop));
479 entry_e = single_pred_edge (preheader);
482 redirect_edge_and_branch_force (entry_e, new_preheader);
483 flush_pending_stmts (entry_e);
484 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
486 redirect_edge_and_branch_force (new_exit, preheader);
487 flush_pending_stmts (new_exit);
488 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
490 /* And remove the non-necessary forwarder again. Keep the other
491 one so we have a proper pre-header for the loop at the exit edge. */
492 redirect_edge_pred (single_succ_edge (new_preheader),
493 single_pred (new_preheader));
494 delete_basic_block (new_preheader);
495 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
496 loop_preheader_edge (new_loop)->src);
499 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
500 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
502 if (scalar_loop != loop)
504 /* Update new_loop->header PHIs, so that on the preheader
505 edge they are the ones from loop rather than scalar_loop. */
506 gphi_iterator gsi_orig, gsi_new;
507 edge orig_e = loop_preheader_edge (loop);
508 edge new_e = loop_preheader_edge (new_loop);
510 for (gsi_orig = gsi_start_phis (loop->header),
511 gsi_new = gsi_start_phis (new_loop->header);
512 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
513 gsi_next (&gsi_orig), gsi_next (&gsi_new))
515 gphi *orig_phi = gsi_orig.phi ();
516 gphi *new_phi = gsi_new.phi ();
517 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
518 location_t orig_locus
519 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
521 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
525 free (new_bbs);
526 free (bbs);
528 checking_verify_dominators (CDI_DOMINATORS);
530 return new_loop;
534 /* Given the condition expression COND, put it as the last statement of
535 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
536 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
537 skip the loop. PROBABILITY is the skip edge's probability. Mark the
538 new edge as irreducible if IRREDUCIBLE_P is true. */
540 static edge
541 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
542 basic_block guard_to, basic_block dom_bb,
543 profile_probability probability, bool irreducible_p)
545 gimple_stmt_iterator gsi;
546 edge new_e, enter_e;
547 gcond *cond_stmt;
548 gimple_seq gimplify_stmt_list = NULL;
550 enter_e = EDGE_SUCC (guard_bb, 0);
551 enter_e->flags &= ~EDGE_FALLTHRU;
552 enter_e->flags |= EDGE_FALSE_VALUE;
553 gsi = gsi_last_bb (guard_bb);
555 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
556 NULL_TREE);
557 if (gimplify_stmt_list)
558 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
560 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
561 gsi = gsi_last_bb (guard_bb);
562 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
564 /* Add new edge to connect guard block to the merge/loop-exit block. */
565 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
567 new_e->count = guard_bb->count;
568 new_e->probability = probability;
569 new_e->count = enter_e->count.apply_probability (probability);
570 if (irreducible_p)
571 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
573 enter_e->count -= new_e->count;
574 enter_e->probability = probability.invert ();
575 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
577 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
578 if (enter_e->dest->loop_father->header == enter_e->dest)
579 split_edge (enter_e);
581 return new_e;
585 /* This function verifies that the following restrictions apply to LOOP:
586 (1) it consists of exactly 2 basic blocks - header, and an empty latch
587 for innermost loop and 5 basic blocks for outer-loop.
588 (2) it is single entry, single exit
589 (3) its exit condition is the last stmt in the header
590 (4) E is the entry/exit edge of LOOP.
593 bool
594 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
596 edge exit_e = single_exit (loop);
597 edge entry_e = loop_preheader_edge (loop);
598 gcond *orig_cond = get_loop_exit_condition (loop);
599 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
600 unsigned int num_bb = loop->inner? 5 : 2;
602 /* All loops have an outer scope; the only case loop->outer is NULL is for
603 the function itself. */
604 if (!loop_outer (loop)
605 || loop->num_nodes != num_bb
606 || !empty_block_p (loop->latch)
607 || !single_exit (loop)
608 /* Verify that new loop exit condition can be trivially modified. */
609 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
610 || (e != exit_e && e != entry_e))
611 return false;
613 return true;
616 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
617 in the exit bb and rename all the uses after the loop. This simplifies
618 the *guard[12] routines, which assume loop closed SSA form for all PHIs
619 (but normally loop closed SSA form doesn't require virtual PHIs to be
620 in the same form). Doing this early simplifies the checking what
621 uses should be renamed. */
623 static void
624 create_lcssa_for_virtual_phi (struct loop *loop)
626 gphi_iterator gsi;
627 edge exit_e = single_exit (loop);
629 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
630 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
632 gphi *phi = gsi.phi ();
633 for (gsi = gsi_start_phis (exit_e->dest);
634 !gsi_end_p (gsi); gsi_next (&gsi))
635 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
636 break;
637 if (gsi_end_p (gsi))
639 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
640 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
641 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
642 imm_use_iterator imm_iter;
643 gimple *stmt;
644 use_operand_p use_p;
646 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
647 gimple_phi_set_result (new_phi, new_vop);
648 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
649 if (stmt != new_phi
650 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
651 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
652 SET_USE (use_p, new_vop);
654 break;
659 /* Function vect_get_loop_location.
661 Extract the location of the loop in the source code.
662 If the loop is not well formed for vectorization, an estimated
663 location is calculated.
664 Return the loop location if succeed and NULL if not. */
666 source_location
667 find_loop_location (struct loop *loop)
669 gimple *stmt = NULL;
670 basic_block bb;
671 gimple_stmt_iterator si;
673 if (!loop)
674 return UNKNOWN_LOCATION;
676 stmt = get_loop_exit_condition (loop);
678 if (stmt
679 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
680 return gimple_location (stmt);
682 /* If we got here the loop is probably not "well formed",
683 try to estimate the loop location */
685 if (!loop->header)
686 return UNKNOWN_LOCATION;
688 bb = loop->header;
690 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
692 stmt = gsi_stmt (si);
693 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
694 return gimple_location (stmt);
697 return UNKNOWN_LOCATION;
700 /* Return true if PHI defines an IV of the loop to be vectorized. */
702 static bool
703 iv_phi_p (gphi *phi)
705 if (virtual_operand_p (PHI_RESULT (phi)))
706 return false;
708 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
709 gcc_assert (stmt_info != NULL);
710 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
711 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
712 return false;
714 return true;
717 /* Function vect_can_advance_ivs_p
719 In case the number of iterations that LOOP iterates is unknown at compile
720 time, an epilog loop will be generated, and the loop induction variables
721 (IVs) will be "advanced" to the value they are supposed to take just before
722 the epilog loop. Here we check that the access function of the loop IVs
723 and the expression that represents the loop bound are simple enough.
724 These restrictions will be relaxed in the future. */
726 bool
727 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
729 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
730 basic_block bb = loop->header;
731 gphi_iterator gsi;
733 /* Analyze phi functions of the loop header. */
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
737 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
739 tree evolution_part;
741 gphi *phi = gsi.phi ();
742 if (dump_enabled_p ())
744 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
745 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
748 /* Skip virtual phi's. The data dependences that are associated with
749 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
751 Skip reduction phis. */
752 if (!iv_phi_p (phi))
754 if (dump_enabled_p ())
755 dump_printf_loc (MSG_NOTE, vect_location,
756 "reduc or virtual phi. skip.\n");
757 continue;
760 /* Analyze the evolution function. */
762 evolution_part
763 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
764 if (evolution_part == NULL_TREE)
766 if (dump_enabled_p ())
767 dump_printf (MSG_MISSED_OPTIMIZATION,
768 "No access function or evolution.\n");
769 return false;
772 /* FORNOW: We do not transform initial conditions of IVs
773 which evolution functions are not invariants in the loop. */
775 if (!expr_invariant_in_loop_p (loop, evolution_part))
777 if (dump_enabled_p ())
778 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
779 "evolution not invariant in loop.\n");
780 return false;
783 /* FORNOW: We do not transform initial conditions of IVs
784 which evolution functions are a polynomial of degree >= 2. */
786 if (tree_is_chrec (evolution_part))
788 if (dump_enabled_p ())
789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
790 "evolution is chrec.\n");
791 return false;
795 return true;
799 /* Function vect_update_ivs_after_vectorizer.
801 "Advance" the induction variables of LOOP to the value they should take
802 after the execution of LOOP. This is currently necessary because the
803 vectorizer does not handle induction variables that are used after the
804 loop. Such a situation occurs when the last iterations of LOOP are
805 peeled, because:
806 1. We introduced new uses after LOOP for IVs that were not originally used
807 after LOOP: the IVs of LOOP are now used by an epilog loop.
808 2. LOOP is going to be vectorized; this means that it will iterate N/VF
809 times, whereas the loop IVs should be bumped N times.
811 Input:
812 - LOOP - a loop that is going to be vectorized. The last few iterations
813 of LOOP were peeled.
814 - NITERS - the number of iterations that LOOP executes (before it is
815 vectorized). i.e, the number of times the ivs should be bumped.
816 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
817 coming out from LOOP on which there are uses of the LOOP ivs
818 (this is the path from LOOP->exit to epilog_loop->preheader).
820 The new definitions of the ivs are placed in LOOP->exit.
821 The phi args associated with the edge UPDATE_E in the bb
822 UPDATE_E->dest are updated accordingly.
824 Assumption 1: Like the rest of the vectorizer, this function assumes
825 a single loop exit that has a single predecessor.
827 Assumption 2: The phi nodes in the LOOP header and in update_bb are
828 organized in the same order.
830 Assumption 3: The access function of the ivs is simple enough (see
831 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
833 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
834 coming out of LOOP on which the ivs of LOOP are used (this is the path
835 that leads to the epilog loop; other paths skip the epilog loop). This
836 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
837 needs to have its phis updated.
840 static void
841 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
842 tree niters, edge update_e)
844 gphi_iterator gsi, gsi1;
845 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
846 basic_block update_bb = update_e->dest;
847 basic_block exit_bb = single_exit (loop)->dest;
849 /* Make sure there exists a single-predecessor exit bb: */
850 gcc_assert (single_pred_p (exit_bb));
851 gcc_assert (single_succ_edge (exit_bb) == update_e);
853 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
854 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
855 gsi_next (&gsi), gsi_next (&gsi1))
857 tree init_expr;
858 tree step_expr, off;
859 tree type;
860 tree var, ni, ni_name;
861 gimple_stmt_iterator last_gsi;
863 gphi *phi = gsi.phi ();
864 gphi *phi1 = gsi1.phi ();
865 if (dump_enabled_p ())
867 dump_printf_loc (MSG_NOTE, vect_location,
868 "vect_update_ivs_after_vectorizer: phi: ");
869 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
872 /* Skip reduction and virtual phis. */
873 if (!iv_phi_p (phi))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "reduc or virtual phi. skip.\n");
878 continue;
881 type = TREE_TYPE (gimple_phi_result (phi));
882 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
883 step_expr = unshare_expr (step_expr);
885 /* FORNOW: We do not support IVs whose evolution function is a polynomial
886 of degree >= 2 or exponential. */
887 gcc_assert (!tree_is_chrec (step_expr));
889 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
891 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
892 fold_convert (TREE_TYPE (step_expr), niters),
893 step_expr);
894 if (POINTER_TYPE_P (type))
895 ni = fold_build_pointer_plus (init_expr, off);
896 else
897 ni = fold_build2 (PLUS_EXPR, type,
898 init_expr, fold_convert (type, off));
900 var = create_tmp_var (type, "tmp");
902 last_gsi = gsi_last_bb (exit_bb);
903 gimple_seq new_stmts = NULL;
904 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
905 /* Exit_bb shouldn't be empty. */
906 if (!gsi_end_p (last_gsi))
907 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
908 else
909 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
911 /* Fix phi expressions in the successor bb. */
912 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
916 /* Function vect_gen_prolog_loop_niters
918 Generate the number of iterations which should be peeled as prolog for the
919 loop represented by LOOP_VINFO. It is calculated as the misalignment of
920 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
921 As a result, after the execution of this loop, the data reference DR will
922 refer to an aligned location. The following computation is generated:
924 If the misalignment of DR is known at compile time:
925 addr_mis = int mis = DR_MISALIGNMENT (dr);
926 Else, compute address misalignment in bytes:
927 addr_mis = addr & (vectype_align - 1)
929 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
931 (elem_size = element type size; an element is the scalar element whose type
932 is the inner type of the vectype)
934 The computations will be emitted at the end of BB. We also compute and
935 store upper bound (included) of the result in BOUND.
937 When the step of the data-ref in the loop is not 1 (as in interleaved data
938 and SLP), the number of iterations of the prolog must be divided by the step
939 (which is equal to the size of interleaved group).
941 The above formulas assume that VF == number of elements in the vector. This
942 may not hold when there are multiple-types in the loop.
943 In this case, for some data-references in the loop the VF does not represent
944 the number of elements that fit in the vector. Therefore, instead of VF we
945 use TYPE_VECTOR_SUBPARTS. */
947 static tree
948 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
949 basic_block bb, int *bound)
951 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
952 tree var;
953 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
954 gimple_seq stmts = NULL, new_stmts = NULL;
955 tree iters, iters_name;
956 gimple *dr_stmt = DR_STMT (dr);
957 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
958 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
959 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
960 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
962 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
964 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
966 if (dump_enabled_p ())
967 dump_printf_loc (MSG_NOTE, vect_location,
968 "known peeling = %d.\n", npeel);
970 iters = build_int_cst (niters_type, npeel);
971 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
973 else
975 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
976 tree offset = negative
977 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
978 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
979 &stmts, offset);
980 tree type = unsigned_type_for (TREE_TYPE (start_addr));
981 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
982 HOST_WIDE_INT elem_size =
983 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
984 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
985 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
986 tree nelements_tree = build_int_cst (type, nelements);
987 tree byte_misalign;
988 tree elem_misalign;
990 /* Create: byte_misalign = addr & (vectype_align - 1) */
991 byte_misalign =
992 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
993 vectype_align_minus_1);
995 /* Create: elem_misalign = byte_misalign / element_size */
996 elem_misalign =
997 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
999 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1000 if (negative)
1001 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1002 else
1003 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1004 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1005 iters = fold_convert (niters_type, iters);
1006 *bound = nelements - 1;
1009 if (dump_enabled_p ())
1011 dump_printf_loc (MSG_NOTE, vect_location,
1012 "niters for prolog loop: ");
1013 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1014 dump_printf (MSG_NOTE, "\n");
1017 var = create_tmp_var (niters_type, "prolog_loop_niters");
1018 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1020 if (new_stmts)
1021 gimple_seq_add_seq (&stmts, new_stmts);
1022 if (stmts)
1024 gcc_assert (single_succ_p (bb));
1025 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1026 if (gsi_end_p (gsi))
1027 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1028 else
1029 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1031 return iters_name;
1035 /* Function vect_update_init_of_dr
1037 NITERS iterations were peeled from LOOP. DR represents a data reference
1038 in LOOP. This function updates the information recorded in DR to
1039 account for the fact that the first NITERS iterations had already been
1040 executed. Specifically, it updates the OFFSET field of DR. */
1042 static void
1043 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1045 tree offset = DR_OFFSET (dr);
1047 niters = fold_build2 (MULT_EXPR, sizetype,
1048 fold_convert (sizetype, niters),
1049 fold_convert (sizetype, DR_STEP (dr)));
1050 offset = fold_build2 (PLUS_EXPR, sizetype,
1051 fold_convert (sizetype, offset), niters);
1052 DR_OFFSET (dr) = offset;
1056 /* Function vect_update_inits_of_drs
1058 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1059 This function updates the information recorded for the data references in
1060 the loop to account for the fact that the first NITERS iterations had
1061 already been executed. Specifically, it updates the initial_condition of
1062 the access_function of all the data_references in the loop. */
1064 static void
1065 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1067 unsigned int i;
1068 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1069 struct data_reference *dr;
1071 if (dump_enabled_p ())
1072 dump_printf_loc (MSG_NOTE, vect_location,
1073 "=== vect_update_inits_of_dr ===\n");
1075 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1076 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1078 gimple_seq seq;
1079 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1080 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1082 niters = fold_convert (sizetype, niters);
1083 niters = force_gimple_operand (niters, &seq, false, var);
1084 if (seq)
1086 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1087 gcc_assert (!new_bb);
1091 FOR_EACH_VEC_ELT (datarefs, i, dr)
1092 vect_update_init_of_dr (dr, niters);
1096 /* This function builds ni_name = number of iterations. Statements
1097 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1098 it to TRUE if new ssa_var is generated. */
1100 tree
1101 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1103 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1104 if (TREE_CODE (ni) == INTEGER_CST)
1105 return ni;
1106 else
1108 tree ni_name, var;
1109 gimple_seq stmts = NULL;
1110 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1112 var = create_tmp_var (TREE_TYPE (ni), "niters");
1113 ni_name = force_gimple_operand (ni, &stmts, false, var);
1114 if (stmts)
1116 gsi_insert_seq_on_edge_immediate (pe, stmts);
1117 if (new_var_p != NULL)
1118 *new_var_p = true;
1121 return ni_name;
1125 /* Calculate the number of iterations above which vectorized loop will be
1126 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1127 of prolog loop. If it's integer const, the integer number is also passed
1128 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (included) of
1129 number of iterations of prolog loop. VFM1 is vector factor minus one.
1130 If CHECK_PROFITABILITY is true, TH is the threshold below which scalar
1131 (rather than vectorized) loop will be executed. This function stores
1132 upper bound (included) of the result in BOUND_SCALAR. */
1134 static tree
1135 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1136 int bound_prolog, int vfm1, int th,
1137 int *bound_scalar, bool check_profitability)
1139 tree type = TREE_TYPE (niters_prolog);
1140 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1141 build_int_cst (type, vfm1));
1143 *bound_scalar = vfm1 + bound_prolog;
1144 if (check_profitability)
1146 /* TH indicates the minimum niters of vectorized loop, while we
1147 compute the maximum niters of scalar loop. */
1148 th--;
1149 /* Peeling for constant times. */
1150 if (int_niters_prolog >= 0)
1152 *bound_scalar = (int_niters_prolog + vfm1 < th
1153 ? th
1154 : vfm1 + int_niters_prolog);
1155 return build_int_cst (type, *bound_scalar);
1157 /* Peeling for unknown times. Note BOUND_PROLOG is the upper
1158 bound (inlcuded) of niters of prolog loop. */
1159 if (th >= vfm1 + bound_prolog)
1161 *bound_scalar = th;
1162 return build_int_cst (type, th);
1164 /* Need to do runtime comparison, but BOUND_SCALAR remains the same. */
1165 else if (th > vfm1)
1166 return fold_build2 (MAX_EXPR, type, build_int_cst (type, th), niters);
1168 return niters;
1171 /* This function generates the following statements:
1173 niters = number of iterations loop executes (after peeling)
1174 niters_vector = niters / vf
1176 and places them on the loop preheader edge. NITERS_NO_OVERFLOW is
1177 true if NITERS doesn't overflow. */
1179 void
1180 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1181 tree *niters_vector_ptr, bool niters_no_overflow)
1183 tree ni_minus_gap, var;
1184 tree niters_vector, type = TREE_TYPE (niters);
1185 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1186 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1187 tree log_vf = build_int_cst (type, exact_log2 (vf));
1189 /* If epilogue loop is required because of data accesses with gaps, we
1190 subtract one iteration from the total number of iterations here for
1191 correct calculation of RATIO. */
1192 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1194 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1195 build_one_cst (type));
1196 if (!is_gimple_val (ni_minus_gap))
1198 var = create_tmp_var (type, "ni_gap");
1199 gimple *stmts = NULL;
1200 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1201 true, var);
1202 gsi_insert_seq_on_edge_immediate (pe, stmts);
1205 else
1206 ni_minus_gap = niters;
1208 /* Create: niters >> log2(vf) */
1209 /* If it's known that niters == number of latch executions + 1 doesn't
1210 overflow, we can generate niters >> log2(vf); otherwise we generate
1211 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1212 will be at least one. */
1213 if (niters_no_overflow)
1214 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1215 else
1216 niters_vector
1217 = fold_build2 (PLUS_EXPR, type,
1218 fold_build2 (RSHIFT_EXPR, type,
1219 fold_build2 (MINUS_EXPR, type, ni_minus_gap,
1220 build_int_cst (type, vf)),
1221 log_vf),
1222 build_int_cst (type, 1));
1224 if (!is_gimple_val (niters_vector))
1226 var = create_tmp_var (type, "bnd");
1227 gimple_seq stmts = NULL;
1228 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1229 gsi_insert_seq_on_edge_immediate (pe, stmts);
1230 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1231 we set range information to make niters analyzer's life easier. */
1232 if (stmts != NULL)
1233 set_range_info (niters_vector, VR_RANGE, build_int_cst (type, 1),
1234 fold_build2 (RSHIFT_EXPR, type,
1235 TYPE_MAX_VALUE (type), log_vf));
1237 *niters_vector_ptr = niters_vector;
1239 return;
1242 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1243 loop specified by LOOP_VINFO after vectorization, compute the number
1244 of iterations before vectorization (niters_vector * vf) and store it
1245 to NITERS_VECTOR_MULT_VF_PTR. */
1247 static void
1248 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1249 tree niters_vector,
1250 tree *niters_vector_mult_vf_ptr)
1252 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1253 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1254 tree type = TREE_TYPE (niters_vector);
1255 tree log_vf = build_int_cst (type, exact_log2 (vf));
1256 basic_block exit_bb = single_exit (loop)->dest;
1258 gcc_assert (niters_vector_mult_vf_ptr != NULL);
1259 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
1260 niters_vector, log_vf);
1261 if (!is_gimple_val (niters_vector_mult_vf))
1263 tree var = create_tmp_var (type, "niters_vector_mult_vf");
1264 gimple_seq stmts = NULL;
1265 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
1266 &stmts, true, var);
1267 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
1268 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1270 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
1273 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
1274 from SECOND/FIRST and puts it at the original loop's preheader/exit
1275 edge, the two loops are arranged as below:
1277 preheader_a:
1278 first_loop:
1279 header_a:
1280 i_1 = PHI<i_0, i_2>;
1282 i_2 = i_1 + 1;
1283 if (cond_a)
1284 goto latch_a;
1285 else
1286 goto between_bb;
1287 latch_a:
1288 goto header_a;
1290 between_bb:
1291 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
1293 second_loop:
1294 header_b:
1295 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
1296 or with i_2 if no LCSSA phi is created
1297 under condition of CREATE_LCSSA_FOR_IV_PHIS.
1299 i_4 = i_3 + 1;
1300 if (cond_b)
1301 goto latch_b;
1302 else
1303 goto exit_bb;
1304 latch_b:
1305 goto header_b;
1307 exit_bb:
1309 This function creates loop closed SSA for the first loop; update the
1310 second loop's PHI nodes by replacing argument on incoming edge with the
1311 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
1312 is false, Loop closed ssa phis will only be created for non-iv phis for
1313 the first loop.
1315 This function assumes exit bb of the first loop is preheader bb of the
1316 second loop, i.e, between_bb in the example code. With PHIs updated,
1317 the second loop will execute rest iterations of the first. */
1319 static void
1320 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
1321 struct loop *first, struct loop *second,
1322 bool create_lcssa_for_iv_phis)
1324 gphi_iterator gsi_update, gsi_orig;
1325 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1327 edge first_latch_e = EDGE_SUCC (first->latch, 0);
1328 edge second_preheader_e = loop_preheader_edge (second);
1329 basic_block between_bb = single_exit (first)->dest;
1331 gcc_assert (between_bb == second_preheader_e->src);
1332 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
1333 /* Either the first loop or the second is the loop to be vectorized. */
1334 gcc_assert (loop == first || loop == second);
1336 for (gsi_orig = gsi_start_phis (first->header),
1337 gsi_update = gsi_start_phis (second->header);
1338 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1339 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1341 gphi *orig_phi = gsi_orig.phi ();
1342 gphi *update_phi = gsi_update.phi ();
1344 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
1345 /* Generate lcssa PHI node for the first loop. */
1346 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
1347 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
1349 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1350 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
1351 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
1352 arg = new_res;
1355 /* Update PHI node in the second loop by replacing arg on the loop's
1356 incoming edge. */
1357 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
1361 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
1362 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
1363 are two pred edges of the merge point before UPDATE_LOOP. The two loops
1364 appear like below:
1366 guard_bb:
1367 if (cond)
1368 goto merge_bb;
1369 else
1370 goto skip_loop;
1372 skip_loop:
1373 header_a:
1374 i_1 = PHI<i_0, i_2>;
1376 i_2 = i_1 + 1;
1377 if (cond_a)
1378 goto latch_a;
1379 else
1380 goto exit_a;
1381 latch_a:
1382 goto header_a;
1384 exit_a:
1385 i_5 = PHI<i_2>;
1387 merge_bb:
1388 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
1390 update_loop:
1391 header_b:
1392 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
1394 i_4 = i_3 + 1;
1395 if (cond_b)
1396 goto latch_b;
1397 else
1398 goto exit_bb;
1399 latch_b:
1400 goto header_b;
1402 exit_bb:
1404 This function creates PHI nodes at merge_bb and replaces the use of i_5
1405 in the update_loop's PHI node with the result of new PHI result. */
1407 static void
1408 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
1409 struct loop *update_loop,
1410 edge guard_edge, edge merge_edge)
1412 source_location merge_loc, guard_loc;
1413 edge orig_e = loop_preheader_edge (skip_loop);
1414 edge update_e = loop_preheader_edge (update_loop);
1415 gphi_iterator gsi_orig, gsi_update;
1417 for ((gsi_orig = gsi_start_phis (skip_loop->header),
1418 gsi_update = gsi_start_phis (update_loop->header));
1419 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1420 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1422 gphi *orig_phi = gsi_orig.phi ();
1423 gphi *update_phi = gsi_update.phi ();
1425 /* Generate new phi node at merge bb of the guard. */
1426 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1427 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
1429 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
1430 args in NEW_PHI for these edges. */
1431 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
1432 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1433 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
1434 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1435 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
1436 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
1438 /* Update phi in UPDATE_PHI. */
1439 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
1443 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
1444 this function searches for the corresponding lcssa phi node in exit
1445 bb of LOOP. If it is found, return the phi result; otherwise return
1446 NULL. */
1448 static tree
1449 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
1450 gphi *lcssa_phi)
1452 gphi_iterator gsi;
1453 edge e = single_exit (loop);
1455 gcc_assert (single_pred_p (e->dest));
1456 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
1458 gphi *phi = gsi.phi ();
1459 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
1460 PHI_ARG_DEF (lcssa_phi, 0), 0))
1461 return PHI_RESULT (phi);
1463 return NULL_TREE;
1466 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
1467 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
1468 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
1469 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
1470 The CFG looks like:
1472 loop:
1473 header_a:
1474 i_1 = PHI<i_0, i_2>;
1476 i_2 = i_1 + 1;
1477 if (cond_a)
1478 goto latch_a;
1479 else
1480 goto exit_a;
1481 latch_a:
1482 goto header_a;
1484 exit_a:
1486 guard_bb:
1487 if (cond)
1488 goto merge_bb;
1489 else
1490 goto epilog_loop;
1492 ;; fall_through_bb
1494 epilog_loop:
1495 header_b:
1496 i_3 = PHI<i_2, i_4>;
1498 i_4 = i_3 + 1;
1499 if (cond_b)
1500 goto latch_b;
1501 else
1502 goto merge_bb;
1503 latch_b:
1504 goto header_b;
1506 merge_bb:
1507 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
1509 exit_bb:
1510 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
1512 For each name used out side EPILOG (i.e - for each name that has a lcssa
1513 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
1514 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
1515 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
1516 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
1517 in exit_bb will also be updated. */
1519 static void
1520 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
1521 edge guard_edge, edge merge_edge)
1523 gphi_iterator gsi;
1524 basic_block merge_bb = guard_edge->dest;
1526 gcc_assert (single_succ_p (merge_bb));
1527 edge e = single_succ_edge (merge_bb);
1528 basic_block exit_bb = e->dest;
1529 gcc_assert (single_pred_p (exit_bb));
1530 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
1532 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1534 gphi *update_phi = gsi.phi ();
1535 tree old_arg = PHI_ARG_DEF (update_phi, 0);
1536 /* This loop-closed-phi actually doesn't represent a use out of the
1537 loop - the phi arg is a constant. */
1538 if (TREE_CODE (old_arg) != SSA_NAME)
1539 continue;
1541 tree merge_arg = get_current_def (old_arg);
1542 if (!merge_arg)
1543 merge_arg = old_arg;
1545 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
1546 /* If the var is live after loop but not a reduction, we simply
1547 use the old arg. */
1548 if (!guard_arg)
1549 guard_arg = old_arg;
1551 /* Create new phi node in MERGE_BB: */
1552 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
1553 gphi *merge_phi = create_phi_node (new_res, merge_bb);
1555 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
1556 the two PHI args in merge_phi for these edges. */
1557 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
1558 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
1560 /* Update the original phi in exit_bb. */
1561 adjust_phi_and_debug_stmts (update_phi, e, new_res);
1565 /* EPILOG loop is duplicated from the original loop for vectorizing,
1566 the arg of its loop closed ssa PHI needs to be updated. */
1568 static void
1569 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
1571 gphi_iterator gsi;
1572 basic_block exit_bb = single_exit (epilog)->dest;
1574 gcc_assert (single_pred_p (exit_bb));
1575 edge e = EDGE_PRED (exit_bb, 0);
1576 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1577 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
1580 /* Function vect_do_peeling.
1582 Input:
1583 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
1585 preheader:
1586 LOOP:
1587 header_bb:
1588 loop_body
1589 if (exit_loop_cond) goto exit_bb
1590 else goto header_bb
1591 exit_bb:
1593 - NITERS: The number of iterations of the loop.
1594 - NITERSM1: The number of iterations of the loop's latch.
1595 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
1596 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
1597 CHECK_PROFITABILITY is true.
1598 Output:
1599 - NITERS_VECTOR: The number of iterations of loop after vectorization.
1601 This function peels prolog and epilog from the loop, adds guards skipping
1602 PROLOG and EPILOG for various conditions. As a result, the changed CFG
1603 would look like:
1605 guard_bb_1:
1606 if (prefer_scalar_loop) goto merge_bb_1
1607 else goto guard_bb_2
1609 guard_bb_2:
1610 if (skip_prolog) goto merge_bb_2
1611 else goto prolog_preheader
1613 prolog_preheader:
1614 PROLOG:
1615 prolog_header_bb:
1616 prolog_body
1617 if (exit_prolog_cond) goto prolog_exit_bb
1618 else goto prolog_header_bb
1619 prolog_exit_bb:
1621 merge_bb_2:
1623 vector_preheader:
1624 VECTOR LOOP:
1625 vector_header_bb:
1626 vector_body
1627 if (exit_vector_cond) goto vector_exit_bb
1628 else goto vector_header_bb
1629 vector_exit_bb:
1631 guard_bb_3:
1632 if (skip_epilog) goto merge_bb_3
1633 else goto epilog_preheader
1635 merge_bb_1:
1637 epilog_preheader:
1638 EPILOG:
1639 epilog_header_bb:
1640 epilog_body
1641 if (exit_epilog_cond) goto merge_bb_3
1642 else goto epilog_header_bb
1644 merge_bb_3:
1646 Note this function peels prolog and epilog only if it's necessary,
1647 as well as guards.
1648 Returns created epilogue or NULL.
1650 TODO: Guard for prefer_scalar_loop should be emitted along with
1651 versioning conditions if loop versioning is needed. */
1654 struct loop *
1655 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
1656 tree *niters_vector, int th, bool check_profitability,
1657 bool niters_no_overflow)
1659 edge e, guard_e;
1660 tree type = TREE_TYPE (niters), guard_cond;
1661 basic_block guard_bb, guard_to;
1662 profile_probability prob_prolog, prob_vector, prob_epilog;
1663 int bound_prolog = 0, bound_scalar = 0, bound = 0;
1664 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1665 int prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1666 bool epilog_peeling = (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
1667 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
1669 if (!prolog_peeling && !epilog_peeling)
1670 return NULL;
1672 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
1673 if ((vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo)) == 2)
1674 vf = 3;
1675 prob_prolog = prob_epilog = profile_probability::guessed_always ()
1676 .apply_scale (vf - 1, vf);
1677 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1679 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
1680 struct loop *first_loop = loop;
1681 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1682 create_lcssa_for_virtual_phi (loop);
1683 update_ssa (TODO_update_ssa_only_virtuals);
1685 if (MAY_HAVE_DEBUG_STMTS)
1687 gcc_assert (!adjust_vec.exists ());
1688 adjust_vec.create (32);
1690 initialize_original_copy_tables ();
1692 /* Prolog loop may be skipped. */
1693 bool skip_prolog = (prolog_peeling != 0);
1694 /* Skip to epilog if scalar loop may be preferred. It's only needed
1695 when we peel for epilog loop and when it hasn't been checked with
1696 loop versioning. */
1697 bool skip_vector = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1698 && !LOOP_REQUIRES_VERSIONING (loop_vinfo));
1699 /* Epilog loop must be executed if the number of iterations for epilog
1700 loop is known at compile time, otherwise we need to add a check at
1701 the end of vector loop and skip to the end of epilog loop. */
1702 bool skip_epilog = (prolog_peeling < 0
1703 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo));
1704 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
1705 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1706 skip_epilog = false;
1708 /* Record the anchor bb at which guard should be placed if scalar loop
1709 may be preferred. */
1710 basic_block anchor = loop_preheader_edge (loop)->src;
1711 if (skip_vector)
1713 split_edge (loop_preheader_edge (loop));
1715 /* Due to the order in which we peel prolog and epilog, we first
1716 propagate probability to the whole loop. The purpose is to
1717 avoid adjusting probabilities of both prolog and vector loops
1718 separately. Note in this case, the probability of epilog loop
1719 needs to be scaled back later. */
1720 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
1721 if (prob_vector.initialized_p ())
1722 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
1723 scale_loop_profile (loop, prob_vector, bound);
1726 tree niters_prolog = build_int_cst (type, 0);
1727 source_location loop_loc = find_loop_location (loop);
1728 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1729 if (prolog_peeling)
1731 e = loop_preheader_edge (loop);
1732 if (!slpeel_can_duplicate_loop_p (loop, e))
1734 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1735 "loop can't be duplicated to preheader edge.\n");
1736 gcc_unreachable ();
1738 /* Peel prolog and put it on preheader edge of loop. */
1739 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1740 if (!prolog)
1742 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1743 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1744 gcc_unreachable ();
1746 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
1747 first_loop = prolog;
1748 reset_original_copy_tables ();
1750 /* Generate and update the number of iterations for prolog loop. */
1751 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
1752 &bound_prolog);
1753 slpeel_make_loop_iterate_ntimes (prolog, niters_prolog);
1755 /* Skip the prolog loop. */
1756 if (skip_prolog)
1758 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1759 niters_prolog, build_int_cst (type, 0));
1760 guard_bb = loop_preheader_edge (prolog)->src;
1761 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
1762 guard_to = split_edge (loop_preheader_edge (loop));
1763 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1764 guard_to, guard_bb,
1765 prob_prolog.invert (),
1766 irred_flag);
1767 e = EDGE_PRED (guard_to, 0);
1768 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1769 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
1771 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
1772 scale_loop_profile (prolog, prob_prolog, bound_prolog);
1774 /* Update init address of DRs. */
1775 vect_update_inits_of_drs (loop_vinfo, niters_prolog);
1776 /* Update niters for vector loop. */
1777 LOOP_VINFO_NITERS (loop_vinfo)
1778 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
1779 LOOP_VINFO_NITERSM1 (loop_vinfo)
1780 = fold_build2 (MINUS_EXPR, type,
1781 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
1782 bool new_var_p = false;
1783 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
1784 /* It's guaranteed that vector loop bound before vectorization is at
1785 least VF, so set range information for newly generated var. */
1786 if (new_var_p)
1787 set_range_info (niters, VR_RANGE,
1788 build_int_cst (type, vf), TYPE_MAX_VALUE (type));
1790 /* Prolog iterates at most bound_prolog times, latch iterates at
1791 most bound_prolog - 1 times. */
1792 record_niter_bound (prolog, bound_prolog - 1, false, true);
1793 delete_update_ssa ();
1794 adjust_vec_debug_stmts ();
1795 scev_reset ();
1798 if (epilog_peeling)
1800 e = single_exit (loop);
1801 if (!slpeel_can_duplicate_loop_p (loop, e))
1803 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1804 "loop can't be duplicated to exit edge.\n");
1805 gcc_unreachable ();
1807 /* Peel epilog and put it on exit edge of loop. */
1808 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1809 if (!epilog)
1811 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1812 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1813 gcc_unreachable ();
1815 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
1817 /* Scalar version loop may be preferred. In this case, add guard
1818 and skip to epilog. Note this only happens when the number of
1819 iterations of loop is unknown at compile time, otherwise this
1820 won't be vectorized. */
1821 if (skip_vector)
1823 /* Additional epilogue iteration is peeled if gap exists. */
1824 bool peel_for_gaps = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
1825 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
1826 bound_prolog,
1827 peel_for_gaps ? vf : vf - 1,
1828 th, &bound_scalar,
1829 check_profitability);
1830 /* Build guard against NITERSM1 since NITERS may overflow. */
1831 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
1832 guard_bb = anchor;
1833 guard_to = split_edge (loop_preheader_edge (epilog));
1834 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1835 guard_to, guard_bb,
1836 prob_vector.invert (),
1837 irred_flag);
1838 e = EDGE_PRED (guard_to, 0);
1839 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1840 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
1842 /* Simply propagate profile info from guard_bb to guard_to which is
1843 a merge point of control flow. */
1844 guard_to->frequency = guard_bb->frequency;
1845 guard_to->count = guard_bb->count;
1846 single_succ_edge (guard_to)->count = guard_to->count;
1847 /* Scale probability of epilog loop back.
1848 FIXME: We should avoid scaling down and back up. Profile may
1849 get lost if we scale down to 0. */
1850 int scale_up = REG_BR_PROB_BASE * REG_BR_PROB_BASE
1851 / prob_vector.to_reg_br_prob_base ();
1852 basic_block *bbs = get_loop_body (epilog);
1853 scale_bbs_frequencies_int (bbs, epilog->num_nodes, scale_up,
1854 REG_BR_PROB_BASE);
1855 free (bbs);
1858 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
1859 tree niters_vector_mult_vf;
1860 /* If loop is peeled for non-zero constant times, now niters refers to
1861 orig_niters - prolog_peeling, it won't overflow even the orig_niters
1862 overflows. */
1863 niters_no_overflow |= (prolog_peeling > 0);
1864 vect_gen_vector_loop_niters (loop_vinfo, niters,
1865 niters_vector, niters_no_overflow);
1866 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
1867 &niters_vector_mult_vf);
1868 /* Update IVs of original loop as if they were advanced by
1869 niters_vector_mult_vf steps. */
1870 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1871 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
1872 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
1873 update_e);
1875 if (skip_epilog)
1877 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1878 niters, niters_vector_mult_vf);
1879 guard_bb = single_exit (loop)->dest;
1880 guard_to = split_edge (single_exit (epilog));
1881 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
1882 skip_vector ? anchor : guard_bb,
1883 prob_epilog.invert (),
1884 irred_flag);
1885 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
1886 single_exit (epilog));
1887 /* Only need to handle basic block before epilog loop if it's not
1888 the guard_bb, which is the case when skip_vector is true. */
1889 if (guard_bb != bb_before_epilog)
1891 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
1893 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
1895 scale_loop_profile (epilog, prob_epilog, bound);
1897 else
1898 slpeel_update_phi_nodes_for_lcssa (epilog);
1900 bound = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? vf - 1 : vf - 2;
1901 /* We share epilog loop with scalar version loop. */
1902 bound = MAX (bound, bound_scalar - 1);
1903 record_niter_bound (epilog, bound, false, true);
1905 delete_update_ssa ();
1906 adjust_vec_debug_stmts ();
1907 scev_reset ();
1909 adjust_vec.release ();
1910 free_original_copy_tables ();
1912 return epilog;
1915 /* Function vect_create_cond_for_niters_checks.
1917 Create a conditional expression that represents the run-time checks for
1918 loop's niter. The loop is guaranteed to to terminate if the run-time
1919 checks hold.
1921 Input:
1922 COND_EXPR - input conditional expression. New conditions will be chained
1923 with logical AND operation. If it is NULL, then the function
1924 is used to return the number of alias checks.
1925 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
1926 to be checked.
1928 Output:
1929 COND_EXPR - conditional expression.
1931 The returned COND_EXPR is the conditional expression to be used in the
1932 if statement that controls which version of the loop gets executed at
1933 runtime. */
1935 static void
1936 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
1938 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
1940 if (*cond_expr)
1941 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1942 *cond_expr, part_cond_expr);
1943 else
1944 *cond_expr = part_cond_expr;
1947 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
1948 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
1950 static void
1951 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
1953 if (*cond_expr)
1954 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1955 *cond_expr, part_cond_expr);
1956 else
1957 *cond_expr = part_cond_expr;
1960 /* Function vect_create_cond_for_align_checks.
1962 Create a conditional expression that represents the alignment checks for
1963 all of data references (array element references) whose alignment must be
1964 checked at runtime.
1966 Input:
1967 COND_EXPR - input conditional expression. New conditions will be chained
1968 with logical AND operation.
1969 LOOP_VINFO - two fields of the loop information are used.
1970 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
1971 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
1973 Output:
1974 COND_EXPR_STMT_LIST - statements needed to construct the conditional
1975 expression.
1976 The returned value is the conditional expression to be used in the if
1977 statement that controls which version of the loop gets executed at runtime.
1979 The algorithm makes two assumptions:
1980 1) The number of bytes "n" in a vector is a power of 2.
1981 2) An address "a" is aligned if a%n is zero and that this
1982 test can be done as a&(n-1) == 0. For example, for 16
1983 byte vectors the test is a&0xf == 0. */
1985 static void
1986 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
1987 tree *cond_expr,
1988 gimple_seq *cond_expr_stmt_list)
1990 vec<gimple *> may_misalign_stmts
1991 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1992 gimple *ref_stmt;
1993 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
1994 tree mask_cst;
1995 unsigned int i;
1996 tree int_ptrsize_type;
1997 char tmp_name[20];
1998 tree or_tmp_name = NULL_TREE;
1999 tree and_tmp_name;
2000 gimple *and_stmt;
2001 tree ptrsize_zero;
2002 tree part_cond_expr;
2004 /* Check that mask is one less than a power of 2, i.e., mask is
2005 all zeros followed by all ones. */
2006 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2008 int_ptrsize_type = signed_type_for (ptr_type_node);
2010 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2011 of the first vector of the i'th data reference. */
2013 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2015 gimple_seq new_stmt_list = NULL;
2016 tree addr_base;
2017 tree addr_tmp_name;
2018 tree new_or_tmp_name;
2019 gimple *addr_stmt, *or_stmt;
2020 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2021 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2022 bool negative = tree_int_cst_compare
2023 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2024 tree offset = negative
2025 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2027 /* create: addr_tmp = (int)(address_of_first_vector) */
2028 addr_base =
2029 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2030 offset);
2031 if (new_stmt_list != NULL)
2032 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2034 sprintf (tmp_name, "addr2int%d", i);
2035 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2036 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2037 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2039 /* The addresses are OR together. */
2041 if (or_tmp_name != NULL_TREE)
2043 /* create: or_tmp = or_tmp | addr_tmp */
2044 sprintf (tmp_name, "orptrs%d", i);
2045 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2046 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2047 or_tmp_name, addr_tmp_name);
2048 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2049 or_tmp_name = new_or_tmp_name;
2051 else
2052 or_tmp_name = addr_tmp_name;
2054 } /* end for i */
2056 mask_cst = build_int_cst (int_ptrsize_type, mask);
2058 /* create: and_tmp = or_tmp & mask */
2059 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2061 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2062 or_tmp_name, mask_cst);
2063 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2065 /* Make and_tmp the left operand of the conditional test against zero.
2066 if and_tmp has a nonzero bit then some address is unaligned. */
2067 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2068 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2069 and_tmp_name, ptrsize_zero);
2070 chain_cond_expr (cond_expr, part_cond_expr);
2073 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2074 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2075 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2076 and this new condition are true. Treat a null *COND_EXPR as "true". */
2078 static void
2079 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2081 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2082 unsigned int i;
2083 vec_object_pair *pair;
2084 FOR_EACH_VEC_ELT (pairs, i, pair)
2086 tree addr1 = build_fold_addr_expr (pair->first);
2087 tree addr2 = build_fold_addr_expr (pair->second);
2088 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2089 addr1, addr2);
2090 chain_cond_expr (cond_expr, part_cond_expr);
2094 /* Function vect_create_cond_for_alias_checks.
2096 Create a conditional expression that represents the run-time checks for
2097 overlapping of address ranges represented by a list of data references
2098 relations passed as input.
2100 Input:
2101 COND_EXPR - input conditional expression. New conditions will be chained
2102 with logical AND operation. If it is NULL, then the function
2103 is used to return the number of alias checks.
2104 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2105 to be checked.
2107 Output:
2108 COND_EXPR - conditional expression.
2110 The returned COND_EXPR is the conditional expression to be used in the if
2111 statement that controls which version of the loop gets executed at runtime.
2114 void
2115 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2117 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2118 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2120 if (comp_alias_ddrs.is_empty ())
2121 return;
2123 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2124 &comp_alias_ddrs, cond_expr);
2125 if (dump_enabled_p ())
2126 dump_printf_loc (MSG_NOTE, vect_location,
2127 "created %u versioning for alias checks.\n",
2128 comp_alias_ddrs.length ());
2132 /* Function vect_loop_versioning.
2134 If the loop has data references that may or may not be aligned or/and
2135 has data reference relations whose independence was not proven then
2136 two versions of the loop need to be generated, one which is vectorized
2137 and one which isn't. A test is then generated to control which of the
2138 loops is executed. The test checks for the alignment of all of the
2139 data references that may or may not be aligned. An additional
2140 sequence of runtime tests is generated for each pairs of DDRs whose
2141 independence was not proven. The vectorized version of loop is
2142 executed only if both alias and alignment tests are passed.
2144 The test generated to check which version of loop is executed
2145 is modified to also check for profitability as indicated by the
2146 cost model threshold TH.
2148 The versioning precondition(s) are placed in *COND_EXPR and
2149 *COND_EXPR_STMT_LIST. */
2151 void
2152 vect_loop_versioning (loop_vec_info loop_vinfo,
2153 unsigned int th, bool check_profitability)
2155 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2156 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2157 basic_block condition_bb;
2158 gphi_iterator gsi;
2159 gimple_stmt_iterator cond_exp_gsi;
2160 basic_block merge_bb;
2161 basic_block new_exit_bb;
2162 edge new_exit_e, e;
2163 gphi *orig_phi, *new_phi;
2164 tree cond_expr = NULL_TREE;
2165 gimple_seq cond_expr_stmt_list = NULL;
2166 tree arg;
2167 profile_probability prob = profile_probability::likely ();
2168 gimple_seq gimplify_stmt_list = NULL;
2169 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2170 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2171 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2172 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2174 if (check_profitability)
2175 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2176 build_int_cst (TREE_TYPE (scalar_loop_iters),
2177 th - 1));
2179 if (version_niter)
2180 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
2182 if (cond_expr)
2183 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2184 is_gimple_condexpr, NULL_TREE);
2186 if (version_align)
2187 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2188 &cond_expr_stmt_list);
2190 if (version_alias)
2192 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
2193 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2196 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2197 is_gimple_condexpr, NULL_TREE);
2198 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2200 initialize_original_copy_tables ();
2201 if (scalar_loop)
2203 edge scalar_e;
2204 basic_block preheader, scalar_preheader;
2206 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2207 scale LOOP's frequencies instead. */
2208 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
2209 prob, prob.invert (), prob, prob.invert (), true);
2210 scale_loop_frequencies (loop, prob);
2211 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2212 while we need to move it above LOOP's preheader. */
2213 e = loop_preheader_edge (loop);
2214 scalar_e = loop_preheader_edge (scalar_loop);
2215 gcc_assert (empty_block_p (e->src)
2216 && single_pred_p (e->src));
2217 gcc_assert (empty_block_p (scalar_e->src)
2218 && single_pred_p (scalar_e->src));
2219 gcc_assert (single_pred_p (condition_bb));
2220 preheader = e->src;
2221 scalar_preheader = scalar_e->src;
2222 scalar_e = find_edge (condition_bb, scalar_preheader);
2223 e = single_pred_edge (preheader);
2224 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2225 scalar_preheader);
2226 redirect_edge_and_branch_force (scalar_e, preheader);
2227 redirect_edge_and_branch_force (e, condition_bb);
2228 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2229 single_pred (condition_bb));
2230 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2231 single_pred (scalar_preheader));
2232 set_immediate_dominator (CDI_DOMINATORS, preheader,
2233 condition_bb);
2235 else
2236 nloop = loop_version (loop, cond_expr, &condition_bb,
2237 prob, prob.invert (), prob, prob.invert (), true);
2239 if (version_niter)
2241 /* The versioned loop could be infinite, we need to clear existing
2242 niter information which is copied from the original loop. */
2243 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
2244 vect_free_loop_info_assumptions (nloop);
2245 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
2246 loop_constraint_set (loop, LOOP_C_INFINITE);
2249 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2250 && dump_enabled_p ())
2252 if (version_alias)
2253 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2254 "loop versioned for vectorization because of "
2255 "possible aliasing\n");
2256 if (version_align)
2257 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2258 "loop versioned for vectorization to enhance "
2259 "alignment\n");
2262 free_original_copy_tables ();
2264 /* Loop versioning violates an assumption we try to maintain during
2265 vectorization - that the loop exit block has a single predecessor.
2266 After versioning, the exit block of both loop versions is the same
2267 basic block (i.e. it has two predecessors). Just in order to simplify
2268 following transformations in the vectorizer, we fix this situation
2269 here by adding a new (empty) block on the exit-edge of the loop,
2270 with the proper loop-exit phis to maintain loop-closed-form.
2271 If loop versioning wasn't done from loop, but scalar_loop instead,
2272 merge_bb will have already just a single successor. */
2274 merge_bb = single_exit (loop)->dest;
2275 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2277 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2278 new_exit_bb = split_edge (single_exit (loop));
2279 new_exit_e = single_exit (loop);
2280 e = EDGE_SUCC (new_exit_bb, 0);
2282 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2284 tree new_res;
2285 orig_phi = gsi.phi ();
2286 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2287 new_phi = create_phi_node (new_res, new_exit_bb);
2288 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2289 add_phi_arg (new_phi, arg, new_exit_e,
2290 gimple_phi_arg_location_from_edge (orig_phi, e));
2291 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2295 /* End loop-exit-fixes after versioning. */
2297 if (cond_expr_stmt_list)
2299 cond_exp_gsi = gsi_last_bb (condition_bb);
2300 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2301 GSI_SAME_STMT);
2303 update_ssa (TODO_update_ssa);