Improve max_insns_skipped logic
[official-gcc.git] / gcc / hwint.c
blob43fdcf2756729f703934ffe9897672b111606d62
1 /* Operations on HOST_WIDE_INT.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
24 #if GCC_VERSION < 3004
26 /* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2, ceil_log2,
27 and exact_log2 are defined as inline functions in hwint.h
28 if GCC_VERSION >= 3004.
29 The definitions here are used for older versions of GCC and
30 non-GCC bootstrap compilers. */
32 /* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
33 If X is 0, return -1. */
35 int
36 floor_log2 (unsigned HOST_WIDE_INT x)
38 int t = 0;
40 if (x == 0)
41 return -1;
43 if (HOST_BITS_PER_WIDE_INT > 64)
44 if (x >= HOST_WIDE_INT_1U << (t + 64))
45 t += 64;
46 if (HOST_BITS_PER_WIDE_INT > 32)
47 if (x >= HOST_WIDE_INT_1U << (t + 32))
48 t += 32;
49 if (x >= HOST_WIDE_INT_1U << (t + 16))
50 t += 16;
51 if (x >= HOST_WIDE_INT_1U << (t + 8))
52 t += 8;
53 if (x >= HOST_WIDE_INT_1U << (t + 4))
54 t += 4;
55 if (x >= HOST_WIDE_INT_1U << (t + 2))
56 t += 2;
57 if (x >= HOST_WIDE_INT_1U << (t + 1))
58 t += 1;
60 return t;
63 /* Given X, an unsigned number, return the largest Y such that 2**Y >= X. */
65 int
66 ceil_log2 (unsigned HOST_WIDE_INT x)
68 return floor_log2 (x - 1) + 1;
71 /* Return the logarithm of X, base 2, considering X unsigned,
72 if X is a power of 2. Otherwise, returns -1. */
74 int
75 exact_log2 (unsigned HOST_WIDE_INT x)
77 if (!pow2p_hwi (x))
78 return -1;
79 return floor_log2 (x);
82 /* Given X, an unsigned number, return the number of least significant bits
83 that are zero. When X == 0, the result is the word size. */
85 int
86 ctz_hwi (unsigned HOST_WIDE_INT x)
88 return x ? floor_log2 (least_bit_hwi (x)) : HOST_BITS_PER_WIDE_INT;
91 /* Similarly for most significant bits. */
93 int
94 clz_hwi (unsigned HOST_WIDE_INT x)
96 return HOST_BITS_PER_WIDE_INT - 1 - floor_log2 (x);
99 /* Similar to ctz_hwi, except that the least significant bit is numbered
100 starting from 1, and X == 0 yields 0. */
103 ffs_hwi (unsigned HOST_WIDE_INT x)
105 return 1 + floor_log2 (least_bit_hwi (x));
108 /* Return the number of set bits in X. */
111 popcount_hwi (unsigned HOST_WIDE_INT x)
113 int i, ret = 0;
114 size_t bits = sizeof (x) * CHAR_BIT;
116 for (i = 0; i < bits; i += 1)
118 ret += x & 1;
119 x >>= 1;
122 return ret;
125 #endif /* GCC_VERSION < 3004 */
128 /* Compute the greatest common divisor of two numbers A and B using
129 Euclid's algorithm. */
131 HOST_WIDE_INT
132 gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
134 HOST_WIDE_INT x, y, z;
136 x = abs_hwi (a);
137 y = abs_hwi (b);
139 while (x > 0)
141 z = y % x;
142 y = x;
143 x = z;
146 return y;
149 /* For X and Y positive integers, return X multiplied by Y and check
150 that the result does not overflow. */
152 HOST_WIDE_INT
153 pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
155 if (x != 0)
156 gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
158 return x * y;
161 /* Return X multiplied by Y and check that the result does not
162 overflow. */
164 HOST_WIDE_INT
165 mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
167 gcc_checking_assert (x != HOST_WIDE_INT_MIN
168 && y != HOST_WIDE_INT_MIN);
170 if (x >= 0)
172 if (y >= 0)
173 return pos_mul_hwi (x, y);
175 return -pos_mul_hwi (x, -y);
178 if (y >= 0)
179 return -pos_mul_hwi (-x, y);
181 return pos_mul_hwi (-x, -y);
184 /* Compute the least common multiple of two numbers A and B . */
186 HOST_WIDE_INT
187 least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
189 return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));