Improve max_insns_skipped logic
[official-gcc.git] / gcc / ada / g-pehage.adb
blob76ecb02356f24d496060ff7d136dfdbd4b615b62
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2002-2016, AdaCore --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.IO_Exceptions; use Ada.IO_Exceptions;
33 with Ada.Characters.Handling; use Ada.Characters.Handling;
34 with Ada.Directories;
36 with GNAT.Heap_Sort_G;
37 with GNAT.OS_Lib; use GNAT.OS_Lib;
38 with GNAT.Table;
40 package body GNAT.Perfect_Hash_Generators is
42 -- We are using the algorithm of J. Czech as described in Zbigniew J.
43 -- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
44 -- Generating Minimal Perfect Hash Functions'', Information Processing
45 -- Letters, 43(1992) pp.257-264, Oct.1992
47 -- This minimal perfect hash function generator is based on random graphs
48 -- and produces a hash function of the form:
50 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
52 -- where f1 and f2 are functions that map strings into integers, and g is
53 -- a function that maps integers into [0, m-1]. h can be order preserving.
54 -- For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
55 -- such that h (w_i) = i.
57 -- This algorithm defines two possible constructions of f1 and f2. Method
58 -- b) stores the hash function in less memory space at the expense of
59 -- greater CPU time.
61 -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
63 -- size (Tk) = max (for w in W) (length (w)) * size (used char set)
65 -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
67 -- size (Tk) = max (for w in W) (length (w)) but the table lookups are
68 -- replaced by multiplications.
70 -- where Tk values are randomly generated. n is defined later on but the
71 -- algorithm recommends to use a value a little bit greater than 2m. Note
72 -- that for large values of m, the main memory space requirements comes
73 -- from the memory space for storing function g (>= 2m entries).
75 -- Random graphs are frequently used to solve difficult problems that do
76 -- not have polynomial solutions. This algorithm is based on a weighted
77 -- undirected graph. It comprises two steps: mapping and assignment.
79 -- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
80 -- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
81 -- assignment step to be successful, G has to be acyclic. To have a high
82 -- probability of generating an acyclic graph, n >= 2m. If it is not
83 -- acyclic, Tk have to be regenerated.
85 -- In the assignment step, the algorithm builds function g. As G is
86 -- acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
87 -- the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
88 -- construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
89 -- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
90 -- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
91 -- neighbor, then another vertex is selected. The algorithm traverses G to
92 -- assign values to all the vertices. It cannot assign a value to an
93 -- already assigned vertex as G is acyclic.
95 subtype Word_Id is Integer;
96 subtype Key_Id is Integer;
97 subtype Vertex_Id is Integer;
98 subtype Edge_Id is Integer;
99 subtype Table_Id is Integer;
101 No_Vertex : constant Vertex_Id := -1;
102 No_Edge : constant Edge_Id := -1;
103 No_Table : constant Table_Id := -1;
105 type Word_Type is new String_Access;
106 procedure Free_Word (W : in out Word_Type) renames Free;
107 function New_Word (S : String) return Word_Type;
109 procedure Resize_Word (W : in out Word_Type; Len : Natural);
110 -- Resize string W to have a length Len
112 type Key_Type is record
113 Edge : Edge_Id;
114 end record;
115 -- A key corresponds to an edge in the algorithm graph
117 type Vertex_Type is record
118 First : Edge_Id;
119 Last : Edge_Id;
120 end record;
121 -- A vertex can be involved in several edges. First and Last are the bounds
122 -- of an array of edges stored in a global edge table.
124 type Edge_Type is record
125 X : Vertex_Id;
126 Y : Vertex_Id;
127 Key : Key_Id;
128 end record;
129 -- An edge is a peer of vertices. In the algorithm, a key is associated to
130 -- an edge.
132 package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
133 package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
134 -- The two main tables. WT is used to store the words in their initial
135 -- version and in their reduced version (that is words reduced to their
136 -- significant characters). As an instance of GNAT.Table, WT does not
137 -- initialize string pointers to null. This initialization has to be done
138 -- manually when the table is allocated. IT is used to store several
139 -- tables of components containing only integers.
141 function Image (Int : Integer; W : Natural := 0) return String;
142 function Image (Str : String; W : Natural := 0) return String;
143 -- Return a string which includes string Str or integer Int preceded by
144 -- leading spaces if required by width W.
146 function Trim_Trailing_Nuls (Str : String) return String;
147 -- Return Str with trailing NUL characters removed
149 Output : File_Descriptor renames GNAT.OS_Lib.Standout;
150 -- Shortcuts
152 EOL : constant Character := ASCII.LF;
154 Max : constant := 78;
155 Last : Natural := 0;
156 Line : String (1 .. Max);
157 -- Use this line to provide buffered IO
159 procedure Add (C : Character);
160 procedure Add (S : String);
161 -- Add a character or a string in Line and update Last
163 procedure Put
164 (F : File_Descriptor;
165 S : String;
166 F1 : Natural;
167 L1 : Natural;
168 C1 : Natural;
169 F2 : Natural;
170 L2 : Natural;
171 C2 : Natural);
172 -- Write string S into file F as a element of an array of one or two
173 -- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
174 -- current) index in the k-th dimension. If F1 = L1 the array is considered
175 -- as a one dimension array. This dimension is described by F2 and L2. This
176 -- routine takes care of all the parenthesis, spaces and commas needed to
177 -- format correctly the array. Moreover, the array is well indented and is
178 -- wrapped to fit in a 80 col line. When the line is full, the routine
179 -- writes it into file F. When the array is completed, the routine adds
180 -- semi-colon and writes the line into file F.
182 procedure New_Line (File : File_Descriptor);
183 -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
185 procedure Put (File : File_Descriptor; Str : String);
186 -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
188 procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
189 -- Output a title and a used character set
191 procedure Put_Int_Vector
192 (File : File_Descriptor;
193 Title : String;
194 Vector : Integer;
195 Length : Natural);
196 -- Output a title and a vector
198 procedure Put_Int_Matrix
199 (File : File_Descriptor;
200 Title : String;
201 Table : Table_Id;
202 Len_1 : Natural;
203 Len_2 : Natural);
204 -- Output a title and a matrix. When the matrix has only one non-empty
205 -- dimension (Len_2 = 0), output a vector.
207 procedure Put_Edges (File : File_Descriptor; Title : String);
208 -- Output a title and an edge table
210 procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
211 -- Output a title and a key table
213 procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
214 -- Output a title and a key table
216 procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
217 -- Output a title and a vertex table
219 function Ada_File_Base_Name (Pkg_Name : String) return String;
220 -- Return the base file name (i.e. without .ads/.adb extension) for an
221 -- Ada source file containing the named package, using the standard GNAT
222 -- file-naming convention. For example, if Pkg_Name is "Parent.Child", we
223 -- return "parent-child".
225 ----------------------------------
226 -- Character Position Selection --
227 ----------------------------------
229 -- We reduce the maximum key size by selecting representative positions
230 -- in these keys. We build a matrix with one word per line. We fill the
231 -- remaining space of a line with ASCII.NUL. The heuristic selects the
232 -- position that induces the minimum number of collisions. If there are
233 -- collisions, select another position on the reduced key set responsible
234 -- of the collisions. Apply the heuristic until there is no more collision.
236 procedure Apply_Position_Selection;
237 -- Apply Position selection and build the reduced key table
239 procedure Parse_Position_Selection (Argument : String);
240 -- Parse Argument and compute the position set. Argument is list of
241 -- substrings separated by commas. Each substring represents a position
242 -- or a range of positions (like x-y).
244 procedure Select_Character_Set;
245 -- Define an optimized used character set like Character'Pos in order not
246 -- to allocate tables of 256 entries.
248 procedure Select_Char_Position;
249 -- Find a min char position set in order to reduce the max key length. The
250 -- heuristic selects the position that induces the minimum number of
251 -- collisions. If there are collisions, select another position on the
252 -- reduced key set responsible of the collisions. Apply the heuristic until
253 -- there is no collision.
255 -----------------------------
256 -- Random Graph Generation --
257 -----------------------------
259 procedure Random (Seed : in out Natural);
260 -- Simulate Ada.Discrete_Numerics.Random
262 procedure Generate_Mapping_Table
263 (Tab : Table_Id;
264 L1 : Natural;
265 L2 : Natural;
266 Seed : in out Natural);
267 -- Random generation of the tables below. T is already allocated
269 procedure Generate_Mapping_Tables
270 (Opt : Optimization;
271 Seed : in out Natural);
272 -- Generate the mapping tables T1 and T2. They are used to define fk (w) =
273 -- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
274 -- are used to compute the matrix size.
276 ---------------------------
277 -- Algorithm Computation --
278 ---------------------------
280 procedure Compute_Edges_And_Vertices (Opt : Optimization);
281 -- Compute the edge and vertex tables. These are empty when a self loop is
282 -- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
283 -- Y value. Keys is the key table and NK the number of keys. Chars is the
284 -- set of characters really used in Keys. NV is the number of vertices
285 -- recommended by the algorithm. T1 and T2 are the mapping tables needed to
286 -- compute f1 (w) and f2 (w).
288 function Acyclic return Boolean;
289 -- Return True when the graph is acyclic. Vertices is the current vertex
290 -- table and Edges the current edge table.
292 procedure Assign_Values_To_Vertices;
293 -- Execute the assignment step of the algorithm. Keys is the current key
294 -- table. Vertices and Edges represent the random graph. G is the result of
295 -- the assignment step such that:
296 -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
298 function Sum
299 (Word : Word_Type;
300 Table : Table_Id;
301 Opt : Optimization) return Natural;
302 -- For an optimization of CPU_Time return
303 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
304 -- For an optimization of Memory_Space return
305 -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
306 -- Here NV = n
308 -------------------------------
309 -- Internal Table Management --
310 -------------------------------
312 function Allocate (N : Natural; S : Natural := 1) return Table_Id;
313 -- Allocate N * S ints from IT table
315 ----------
316 -- Keys --
317 ----------
319 Keys : Table_Id := No_Table;
320 NK : Natural := 0;
321 -- NK : Number of Keys
323 function Initial (K : Key_Id) return Word_Id;
324 pragma Inline (Initial);
326 function Reduced (K : Key_Id) return Word_Id;
327 pragma Inline (Reduced);
329 function Get_Key (N : Key_Id) return Key_Type;
330 procedure Set_Key (N : Key_Id; Item : Key_Type);
331 -- Get or Set Nth element of Keys table
333 ------------------
334 -- Char_Pos_Set --
335 ------------------
337 Char_Pos_Set : Table_Id := No_Table;
338 Char_Pos_Set_Len : Natural;
339 -- Character Selected Position Set
341 function Get_Char_Pos (P : Natural) return Natural;
342 procedure Set_Char_Pos (P : Natural; Item : Natural);
343 -- Get or Set the string position of the Pth selected character
345 -------------------
346 -- Used_Char_Set --
347 -------------------
349 Used_Char_Set : Table_Id := No_Table;
350 Used_Char_Set_Len : Natural;
351 -- Used Character Set : Define a new character mapping. When all the
352 -- characters are not present in the keys, in order to reduce the size
353 -- of some tables, we redefine the character mapping.
355 function Get_Used_Char (C : Character) return Natural;
356 procedure Set_Used_Char (C : Character; Item : Natural);
358 ------------
359 -- Tables --
360 ------------
362 T1 : Table_Id := No_Table;
363 T2 : Table_Id := No_Table;
364 T1_Len : Natural;
365 T2_Len : Natural;
366 -- T1 : Values table to compute F1
367 -- T2 : Values table to compute F2
369 function Get_Table (T : Integer; X, Y : Natural) return Natural;
370 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
372 -----------
373 -- Graph --
374 -----------
376 G : Table_Id := No_Table;
377 G_Len : Natural;
378 -- Values table to compute G
380 NT : Natural := Default_Tries;
381 -- Number of tries running the algorithm before raising an error
383 function Get_Graph (N : Natural) return Integer;
384 procedure Set_Graph (N : Natural; Item : Integer);
385 -- Get or Set Nth element of graph
387 -----------
388 -- Edges --
389 -----------
391 Edge_Size : constant := 3;
392 Edges : Table_Id := No_Table;
393 Edges_Len : Natural;
394 -- Edges : Edge table of the random graph G
396 function Get_Edges (F : Natural) return Edge_Type;
397 procedure Set_Edges (F : Natural; Item : Edge_Type);
399 --------------
400 -- Vertices --
401 --------------
403 Vertex_Size : constant := 2;
405 Vertices : Table_Id := No_Table;
406 -- Vertex table of the random graph G
408 NV : Natural;
409 -- Number of Vertices
411 function Get_Vertices (F : Natural) return Vertex_Type;
412 procedure Set_Vertices (F : Natural; Item : Vertex_Type);
413 -- Comments needed ???
415 K2V : Float;
416 -- Ratio between Keys and Vertices (parameter of Czech's algorithm)
418 Opt : Optimization;
419 -- Optimization mode (memory vs CPU)
421 Max_Key_Len : Natural := 0;
422 Min_Key_Len : Natural := 0;
423 -- Maximum and minimum of all the word length
425 S : Natural;
426 -- Seed
428 function Type_Size (L : Natural) return Natural;
429 -- Given the last L of an unsigned integer type T, return its size
431 -------------
432 -- Acyclic --
433 -------------
435 function Acyclic return Boolean is
436 Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
438 function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
439 -- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
440 -- it to the edges of Y except the one representing the same key. Return
441 -- False when Y is marked with Mark.
443 --------------
444 -- Traverse --
445 --------------
447 function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
448 E : constant Edge_Type := Get_Edges (Edge);
449 K : constant Key_Id := E.Key;
450 Y : constant Vertex_Id := E.Y;
451 M : constant Vertex_Id := Marks (E.Y);
452 V : Vertex_Type;
454 begin
455 if M = Mark then
456 return False;
458 elsif M = No_Vertex then
459 Marks (Y) := Mark;
460 V := Get_Vertices (Y);
462 for J in V.First .. V.Last loop
464 -- Do not propagate to the edge representing the same key
466 if Get_Edges (J).Key /= K
467 and then not Traverse (J, Mark)
468 then
469 return False;
470 end if;
471 end loop;
472 end if;
474 return True;
475 end Traverse;
477 Edge : Edge_Type;
479 -- Start of processing for Acyclic
481 begin
482 -- Edges valid range is
484 for J in 1 .. Edges_Len - 1 loop
486 Edge := Get_Edges (J);
488 -- Mark X of E when it has not been already done
490 if Marks (Edge.X) = No_Vertex then
491 Marks (Edge.X) := Edge.X;
492 end if;
494 -- Traverse E when this has not already been done
496 if Marks (Edge.Y) = No_Vertex
497 and then not Traverse (J, Edge.X)
498 then
499 return False;
500 end if;
501 end loop;
503 return True;
504 end Acyclic;
506 ------------------------
507 -- Ada_File_Base_Name --
508 ------------------------
510 function Ada_File_Base_Name (Pkg_Name : String) return String is
511 begin
512 -- Convert to lower case, then replace '.' with '-'
514 return Result : String := To_Lower (Pkg_Name) do
515 for J in Result'Range loop
516 if Result (J) = '.' then
517 Result (J) := '-';
518 end if;
519 end loop;
520 end return;
521 end Ada_File_Base_Name;
523 ---------
524 -- Add --
525 ---------
527 procedure Add (C : Character) is
528 pragma Assert (C /= ASCII.NUL);
529 begin
530 Line (Last + 1) := C;
531 Last := Last + 1;
532 end Add;
534 ---------
535 -- Add --
536 ---------
538 procedure Add (S : String) is
539 Len : constant Natural := S'Length;
540 begin
541 for J in S'Range loop
542 pragma Assert (S (J) /= ASCII.NUL);
543 null;
544 end loop;
546 Line (Last + 1 .. Last + Len) := S;
547 Last := Last + Len;
548 end Add;
550 --------------
551 -- Allocate --
552 --------------
554 function Allocate (N : Natural; S : Natural := 1) return Table_Id is
555 L : constant Integer := IT.Last;
556 begin
557 IT.Set_Last (L + N * S);
559 -- Initialize, so debugging printouts don't trip over uninitialized
560 -- components.
562 for J in L + 1 .. IT.Last loop
563 IT.Table (J) := -1;
564 end loop;
566 return L + 1;
567 end Allocate;
569 ------------------------------
570 -- Apply_Position_Selection --
571 ------------------------------
573 procedure Apply_Position_Selection is
574 begin
575 for J in 0 .. NK - 1 loop
576 declare
577 IW : constant String := WT.Table (Initial (J)).all;
578 RW : String (1 .. IW'Length) := (others => ASCII.NUL);
579 N : Natural := IW'First - 1;
581 begin
582 -- Select the characters of Word included in the position
583 -- selection.
585 for C in 0 .. Char_Pos_Set_Len - 1 loop
586 exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
587 N := N + 1;
588 RW (N) := IW (Get_Char_Pos (C));
589 end loop;
591 -- Build the new table with the reduced word. Be careful
592 -- to deallocate the old version to avoid memory leaks.
594 Free_Word (WT.Table (Reduced (J)));
595 WT.Table (Reduced (J)) := New_Word (RW);
596 Set_Key (J, (Edge => No_Edge));
597 end;
598 end loop;
599 end Apply_Position_Selection;
601 -------------------------------
602 -- Assign_Values_To_Vertices --
603 -------------------------------
605 procedure Assign_Values_To_Vertices is
606 X : Vertex_Id;
608 procedure Assign (X : Vertex_Id);
609 -- Execute assignment on X's neighbors except the vertex that we are
610 -- coming from which is already assigned.
612 ------------
613 -- Assign --
614 ------------
616 procedure Assign (X : Vertex_Id) is
617 E : Edge_Type;
618 V : constant Vertex_Type := Get_Vertices (X);
620 begin
621 for J in V.First .. V.Last loop
622 E := Get_Edges (J);
624 if Get_Graph (E.Y) = -1 then
625 Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
626 Assign (E.Y);
627 end if;
628 end loop;
629 end Assign;
631 -- Start of processing for Assign_Values_To_Vertices
633 begin
634 -- Value -1 denotes an uninitialized value as it is supposed to
635 -- be in the range 0 .. NK.
637 if G = No_Table then
638 G_Len := NV;
639 G := Allocate (G_Len, 1);
640 end if;
642 for J in 0 .. G_Len - 1 loop
643 Set_Graph (J, -1);
644 end loop;
646 for K in 0 .. NK - 1 loop
647 X := Get_Edges (Get_Key (K).Edge).X;
649 if Get_Graph (X) = -1 then
650 Set_Graph (X, 0);
651 Assign (X);
652 end if;
653 end loop;
655 for J in 0 .. G_Len - 1 loop
656 if Get_Graph (J) = -1 then
657 Set_Graph (J, 0);
658 end if;
659 end loop;
661 if Verbose then
662 Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
663 end if;
664 end Assign_Values_To_Vertices;
666 -------------
667 -- Compute --
668 -------------
670 procedure Compute (Position : String := Default_Position) is
671 Success : Boolean := False;
673 begin
674 if NK = 0 then
675 raise Program_Error with "keywords set cannot be empty";
676 end if;
678 if Verbose then
679 Put_Initial_Keys (Output, "Initial Key Table");
680 end if;
682 if Position'Length /= 0 then
683 Parse_Position_Selection (Position);
684 else
685 Select_Char_Position;
686 end if;
688 if Verbose then
689 Put_Int_Vector
690 (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
691 end if;
693 Apply_Position_Selection;
695 if Verbose then
696 Put_Reduced_Keys (Output, "Reduced Keys Table");
697 end if;
699 Select_Character_Set;
701 if Verbose then
702 Put_Used_Char_Set (Output, "Character Position Table");
703 end if;
705 -- Perform Czech's algorithm
707 for J in 1 .. NT loop
708 Generate_Mapping_Tables (Opt, S);
709 Compute_Edges_And_Vertices (Opt);
711 -- When graph is not empty (no self-loop from previous operation) and
712 -- not acyclic.
714 if 0 < Edges_Len and then Acyclic then
715 Success := True;
716 exit;
717 end if;
718 end loop;
720 if not Success then
721 raise Too_Many_Tries;
722 end if;
724 Assign_Values_To_Vertices;
725 end Compute;
727 --------------------------------
728 -- Compute_Edges_And_Vertices --
729 --------------------------------
731 procedure Compute_Edges_And_Vertices (Opt : Optimization) is
732 X : Natural;
733 Y : Natural;
734 Key : Key_Type;
735 Edge : Edge_Type;
736 Vertex : Vertex_Type;
737 Not_Acyclic : Boolean := False;
739 procedure Move (From : Natural; To : Natural);
740 function Lt (L, R : Natural) return Boolean;
741 -- Subprograms needed for GNAT.Heap_Sort_G
743 --------
744 -- Lt --
745 --------
747 function Lt (L, R : Natural) return Boolean is
748 EL : constant Edge_Type := Get_Edges (L);
749 ER : constant Edge_Type := Get_Edges (R);
750 begin
751 return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
752 end Lt;
754 ----------
755 -- Move --
756 ----------
758 procedure Move (From : Natural; To : Natural) is
759 begin
760 Set_Edges (To, Get_Edges (From));
761 end Move;
763 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
765 -- Start of processing for Compute_Edges_And_Vertices
767 begin
768 -- We store edges from 1 to 2 * NK and leave zero alone in order to use
769 -- GNAT.Heap_Sort_G.
771 Edges_Len := 2 * NK + 1;
773 if Edges = No_Table then
774 Edges := Allocate (Edges_Len, Edge_Size);
775 end if;
777 if Vertices = No_Table then
778 Vertices := Allocate (NV, Vertex_Size);
779 end if;
781 for J in 0 .. NV - 1 loop
782 Set_Vertices (J, (No_Vertex, No_Vertex - 1));
783 end loop;
785 -- For each w, X = f1 (w) and Y = f2 (w)
787 for J in 0 .. NK - 1 loop
788 Key := Get_Key (J);
789 Key.Edge := No_Edge;
790 Set_Key (J, Key);
792 X := Sum (WT.Table (Reduced (J)), T1, Opt);
793 Y := Sum (WT.Table (Reduced (J)), T2, Opt);
795 -- Discard T1 and T2 as soon as we discover a self loop
797 if X = Y then
798 Not_Acyclic := True;
799 exit;
800 end if;
802 -- We store (X, Y) and (Y, X) to ease assignment step
804 Set_Edges (2 * J + 1, (X, Y, J));
805 Set_Edges (2 * J + 2, (Y, X, J));
806 end loop;
808 -- Return an empty graph when self loop detected
810 if Not_Acyclic then
811 Edges_Len := 0;
813 else
814 if Verbose then
815 Put_Edges (Output, "Unsorted Edge Table");
816 Put_Int_Matrix (Output, "Function Table 1", T1,
817 T1_Len, T2_Len);
818 Put_Int_Matrix (Output, "Function Table 2", T2,
819 T1_Len, T2_Len);
820 end if;
822 -- Enforce consistency between edges and keys. Construct Vertices and
823 -- compute the list of neighbors of a vertex First .. Last as Edges
824 -- is sorted by X and then Y. To compute the neighbor list, sort the
825 -- edges.
827 Sorting.Sort (Edges_Len - 1);
829 if Verbose then
830 Put_Edges (Output, "Sorted Edge Table");
831 Put_Int_Matrix (Output, "Function Table 1", T1,
832 T1_Len, T2_Len);
833 Put_Int_Matrix (Output, "Function Table 2", T2,
834 T1_Len, T2_Len);
835 end if;
837 -- Edges valid range is 1 .. 2 * NK
839 for E in 1 .. Edges_Len - 1 loop
840 Edge := Get_Edges (E);
841 Key := Get_Key (Edge.Key);
843 if Key.Edge = No_Edge then
844 Key.Edge := E;
845 Set_Key (Edge.Key, Key);
846 end if;
848 Vertex := Get_Vertices (Edge.X);
850 if Vertex.First = No_Edge then
851 Vertex.First := E;
852 end if;
854 Vertex.Last := E;
855 Set_Vertices (Edge.X, Vertex);
856 end loop;
858 if Verbose then
859 Put_Reduced_Keys (Output, "Key Table");
860 Put_Edges (Output, "Edge Table");
861 Put_Vertex_Table (Output, "Vertex Table");
862 end if;
863 end if;
864 end Compute_Edges_And_Vertices;
866 ------------
867 -- Define --
868 ------------
870 procedure Define
871 (Name : Table_Name;
872 Item_Size : out Natural;
873 Length_1 : out Natural;
874 Length_2 : out Natural)
876 begin
877 case Name is
878 when Character_Position =>
879 Item_Size := 8;
880 Length_1 := Char_Pos_Set_Len;
881 Length_2 := 0;
883 when Used_Character_Set =>
884 Item_Size := 8;
885 Length_1 := 256;
886 Length_2 := 0;
888 when Function_Table_1
889 | Function_Table_2
891 Item_Size := Type_Size (NV);
892 Length_1 := T1_Len;
893 Length_2 := T2_Len;
895 when Graph_Table =>
896 Item_Size := Type_Size (NK);
897 Length_1 := NV;
898 Length_2 := 0;
899 end case;
900 end Define;
902 --------------
903 -- Finalize --
904 --------------
906 procedure Finalize is
907 begin
908 if Verbose then
909 Put (Output, "Finalize");
910 New_Line (Output);
911 end if;
913 -- Deallocate all the WT components (both initial and reduced ones) to
914 -- avoid memory leaks.
916 for W in 0 .. WT.Last loop
918 -- Note: WT.Table (NK) is a temporary variable, do not free it since
919 -- this would cause a double free.
921 if W /= NK then
922 Free_Word (WT.Table (W));
923 end if;
924 end loop;
926 WT.Release;
927 IT.Release;
929 -- Reset all variables for next usage
931 Keys := No_Table;
933 Char_Pos_Set := No_Table;
934 Char_Pos_Set_Len := 0;
936 Used_Char_Set := No_Table;
937 Used_Char_Set_Len := 0;
939 T1 := No_Table;
940 T2 := No_Table;
942 T1_Len := 0;
943 T2_Len := 0;
945 G := No_Table;
946 G_Len := 0;
948 Edges := No_Table;
949 Edges_Len := 0;
951 Vertices := No_Table;
952 NV := 0;
954 NK := 0;
955 Max_Key_Len := 0;
956 Min_Key_Len := 0;
957 end Finalize;
959 ----------------------------
960 -- Generate_Mapping_Table --
961 ----------------------------
963 procedure Generate_Mapping_Table
964 (Tab : Integer;
965 L1 : Natural;
966 L2 : Natural;
967 Seed : in out Natural)
969 begin
970 for J in 0 .. L1 - 1 loop
971 for K in 0 .. L2 - 1 loop
972 Random (Seed);
973 Set_Table (Tab, J, K, Seed mod NV);
974 end loop;
975 end loop;
976 end Generate_Mapping_Table;
978 -----------------------------
979 -- Generate_Mapping_Tables --
980 -----------------------------
982 procedure Generate_Mapping_Tables
983 (Opt : Optimization;
984 Seed : in out Natural)
986 begin
987 -- If T1 and T2 are already allocated no need to do it twice. Reuse them
988 -- as their size has not changed.
990 if T1 = No_Table and then T2 = No_Table then
991 declare
992 Used_Char_Last : Natural := 0;
993 Used_Char : Natural;
995 begin
996 if Opt = CPU_Time then
997 for P in reverse Character'Range loop
998 Used_Char := Get_Used_Char (P);
999 if Used_Char /= 0 then
1000 Used_Char_Last := Used_Char;
1001 exit;
1002 end if;
1003 end loop;
1004 end if;
1006 T1_Len := Char_Pos_Set_Len;
1007 T2_Len := Used_Char_Last + 1;
1008 T1 := Allocate (T1_Len * T2_Len);
1009 T2 := Allocate (T1_Len * T2_Len);
1010 end;
1011 end if;
1013 Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
1014 Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
1016 if Verbose then
1017 Put_Used_Char_Set (Output, "Used Character Set");
1018 Put_Int_Matrix (Output, "Function Table 1", T1,
1019 T1_Len, T2_Len);
1020 Put_Int_Matrix (Output, "Function Table 2", T2,
1021 T1_Len, T2_Len);
1022 end if;
1023 end Generate_Mapping_Tables;
1025 ------------------
1026 -- Get_Char_Pos --
1027 ------------------
1029 function Get_Char_Pos (P : Natural) return Natural is
1030 N : constant Natural := Char_Pos_Set + P;
1031 begin
1032 return IT.Table (N);
1033 end Get_Char_Pos;
1035 ---------------
1036 -- Get_Edges --
1037 ---------------
1039 function Get_Edges (F : Natural) return Edge_Type is
1040 N : constant Natural := Edges + (F * Edge_Size);
1041 E : Edge_Type;
1042 begin
1043 E.X := IT.Table (N);
1044 E.Y := IT.Table (N + 1);
1045 E.Key := IT.Table (N + 2);
1046 return E;
1047 end Get_Edges;
1049 ---------------
1050 -- Get_Graph --
1051 ---------------
1053 function Get_Graph (N : Natural) return Integer is
1054 begin
1055 return IT.Table (G + N);
1056 end Get_Graph;
1058 -------------
1059 -- Get_Key --
1060 -------------
1062 function Get_Key (N : Key_Id) return Key_Type is
1063 K : Key_Type;
1064 begin
1065 K.Edge := IT.Table (Keys + N);
1066 return K;
1067 end Get_Key;
1069 ---------------
1070 -- Get_Table --
1071 ---------------
1073 function Get_Table (T : Integer; X, Y : Natural) return Natural is
1074 N : constant Natural := T + (Y * T1_Len) + X;
1075 begin
1076 return IT.Table (N);
1077 end Get_Table;
1079 -------------------
1080 -- Get_Used_Char --
1081 -------------------
1083 function Get_Used_Char (C : Character) return Natural is
1084 N : constant Natural := Used_Char_Set + Character'Pos (C);
1085 begin
1086 return IT.Table (N);
1087 end Get_Used_Char;
1089 ------------------
1090 -- Get_Vertices --
1091 ------------------
1093 function Get_Vertices (F : Natural) return Vertex_Type is
1094 N : constant Natural := Vertices + (F * Vertex_Size);
1095 V : Vertex_Type;
1096 begin
1097 V.First := IT.Table (N);
1098 V.Last := IT.Table (N + 1);
1099 return V;
1100 end Get_Vertices;
1102 -----------
1103 -- Image --
1104 -----------
1106 function Image (Int : Integer; W : Natural := 0) return String is
1107 B : String (1 .. 32);
1108 L : Natural := 0;
1110 procedure Img (V : Natural);
1111 -- Compute image of V into B, starting at B (L), incrementing L
1113 ---------
1114 -- Img --
1115 ---------
1117 procedure Img (V : Natural) is
1118 begin
1119 if V > 9 then
1120 Img (V / 10);
1121 end if;
1123 L := L + 1;
1124 B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
1125 end Img;
1127 -- Start of processing for Image
1129 begin
1130 if Int < 0 then
1131 L := L + 1;
1132 B (L) := '-';
1133 Img (-Int);
1134 else
1135 Img (Int);
1136 end if;
1138 return Image (B (1 .. L), W);
1139 end Image;
1141 -----------
1142 -- Image --
1143 -----------
1145 function Image (Str : String; W : Natural := 0) return String is
1146 Len : constant Natural := Str'Length;
1147 Max : Natural := Len;
1149 begin
1150 if Max < W then
1151 Max := W;
1152 end if;
1154 declare
1155 Buf : String (1 .. Max) := (1 .. Max => ' ');
1157 begin
1158 for J in 0 .. Len - 1 loop
1159 Buf (Max - Len + 1 + J) := Str (Str'First + J);
1160 end loop;
1162 return Buf;
1163 end;
1164 end Image;
1166 -------------
1167 -- Initial --
1168 -------------
1170 function Initial (K : Key_Id) return Word_Id is
1171 begin
1172 return K;
1173 end Initial;
1175 ----------------
1176 -- Initialize --
1177 ----------------
1179 procedure Initialize
1180 (Seed : Natural;
1181 K_To_V : Float := Default_K_To_V;
1182 Optim : Optimization := Memory_Space;
1183 Tries : Positive := Default_Tries)
1185 begin
1186 if Verbose then
1187 Put (Output, "Initialize");
1188 New_Line (Output);
1189 end if;
1191 -- Deallocate the part of the table concerning the reduced words.
1192 -- Initial words are already present in the table. We may have reduced
1193 -- words already there because a previous computation failed. We are
1194 -- currently retrying and the reduced words have to be deallocated.
1196 for W in Reduced (0) .. WT.Last loop
1197 Free_Word (WT.Table (W));
1198 end loop;
1200 IT.Init;
1202 -- Initialize of computation variables
1204 Keys := No_Table;
1206 Char_Pos_Set := No_Table;
1207 Char_Pos_Set_Len := 0;
1209 Used_Char_Set := No_Table;
1210 Used_Char_Set_Len := 0;
1212 T1 := No_Table;
1213 T2 := No_Table;
1215 T1_Len := 0;
1216 T2_Len := 0;
1218 G := No_Table;
1219 G_Len := 0;
1221 Edges := No_Table;
1222 Edges_Len := 0;
1224 Vertices := No_Table;
1225 NV := 0;
1227 S := Seed;
1228 K2V := K_To_V;
1229 Opt := Optim;
1230 NT := Tries;
1232 if K2V <= 2.0 then
1233 raise Program_Error with "K to V ratio cannot be lower than 2.0";
1234 end if;
1236 -- Do not accept a value of K2V too close to 2.0 such that once
1237 -- rounded up, NV = 2 * NK because the algorithm would not converge.
1239 NV := Natural (Float (NK) * K2V);
1240 if NV <= 2 * NK then
1241 NV := 2 * NK + 1;
1242 end if;
1244 Keys := Allocate (NK);
1246 -- Resize initial words to have all of them at the same size
1247 -- (so the size of the largest one).
1249 for K in 0 .. NK - 1 loop
1250 Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
1251 end loop;
1253 -- Allocated the table to store the reduced words. As WT is a
1254 -- GNAT.Table (using C memory management), pointers have to be
1255 -- explicitly initialized to null.
1257 WT.Set_Last (Reduced (NK - 1));
1259 -- Note: Reduced (0) = NK + 1
1261 WT.Table (NK) := null;
1263 for W in 0 .. NK - 1 loop
1264 WT.Table (Reduced (W)) := null;
1265 end loop;
1266 end Initialize;
1268 ------------
1269 -- Insert --
1270 ------------
1272 procedure Insert (Value : String) is
1273 Len : constant Natural := Value'Length;
1275 begin
1276 if Verbose then
1277 Put (Output, "Inserting """ & Value & """");
1278 New_Line (Output);
1279 end if;
1281 for J in Value'Range loop
1282 pragma Assert (Value (J) /= ASCII.NUL);
1283 null;
1284 end loop;
1286 WT.Set_Last (NK);
1287 WT.Table (NK) := New_Word (Value);
1288 NK := NK + 1;
1290 if Max_Key_Len < Len then
1291 Max_Key_Len := Len;
1292 end if;
1294 if Min_Key_Len = 0 or else Len < Min_Key_Len then
1295 Min_Key_Len := Len;
1296 end if;
1297 end Insert;
1299 --------------
1300 -- New_Line --
1301 --------------
1303 procedure New_Line (File : File_Descriptor) is
1304 begin
1305 if Write (File, EOL'Address, 1) /= 1 then
1306 raise Program_Error;
1307 end if;
1308 end New_Line;
1310 --------------
1311 -- New_Word --
1312 --------------
1314 function New_Word (S : String) return Word_Type is
1315 begin
1316 return new String'(S);
1317 end New_Word;
1319 ------------------------------
1320 -- Parse_Position_Selection --
1321 ------------------------------
1323 procedure Parse_Position_Selection (Argument : String) is
1324 N : Natural := Argument'First;
1325 L : constant Natural := Argument'Last;
1326 M : constant Natural := Max_Key_Len;
1328 T : array (1 .. M) of Boolean := (others => False);
1330 function Parse_Index return Natural;
1331 -- Parse argument starting at index N to find an index
1333 -----------------
1334 -- Parse_Index --
1335 -----------------
1337 function Parse_Index return Natural is
1338 C : Character := Argument (N);
1339 V : Natural := 0;
1341 begin
1342 if C = '$' then
1343 N := N + 1;
1344 return M;
1345 end if;
1347 if C not in '0' .. '9' then
1348 raise Program_Error with "cannot read position argument";
1349 end if;
1351 while C in '0' .. '9' loop
1352 V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
1353 N := N + 1;
1354 exit when L < N;
1355 C := Argument (N);
1356 end loop;
1358 return V;
1359 end Parse_Index;
1361 -- Start of processing for Parse_Position_Selection
1363 begin
1364 -- Empty specification means all the positions
1366 if L < N then
1367 Char_Pos_Set_Len := M;
1368 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1370 for C in 0 .. Char_Pos_Set_Len - 1 loop
1371 Set_Char_Pos (C, C + 1);
1372 end loop;
1374 else
1375 loop
1376 declare
1377 First, Last : Natural;
1379 begin
1380 First := Parse_Index;
1381 Last := First;
1383 -- Detect a range
1385 if N <= L and then Argument (N) = '-' then
1386 N := N + 1;
1387 Last := Parse_Index;
1388 end if;
1390 -- Include the positions in the selection
1392 for J in First .. Last loop
1393 T (J) := True;
1394 end loop;
1395 end;
1397 exit when L < N;
1399 if Argument (N) /= ',' then
1400 raise Program_Error with "cannot read position argument";
1401 end if;
1403 N := N + 1;
1404 end loop;
1406 -- Compute position selection length
1408 N := 0;
1409 for J in T'Range loop
1410 if T (J) then
1411 N := N + 1;
1412 end if;
1413 end loop;
1415 -- Fill position selection
1417 Char_Pos_Set_Len := N;
1418 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1420 N := 0;
1421 for J in T'Range loop
1422 if T (J) then
1423 Set_Char_Pos (N, J);
1424 N := N + 1;
1425 end if;
1426 end loop;
1427 end if;
1428 end Parse_Position_Selection;
1430 -------------
1431 -- Produce --
1432 -------------
1434 procedure Produce
1435 (Pkg_Name : String := Default_Pkg_Name;
1436 Use_Stdout : Boolean := False)
1438 File : File_Descriptor := Standout;
1440 Status : Boolean;
1441 -- For call to Close
1443 function Array_Img (N, T, R1 : String; R2 : String := "") return String;
1444 -- Return string "N : constant array (R1[, R2]) of T;"
1446 function Range_Img (F, L : Natural; T : String := "") return String;
1447 -- Return string "[T range ]F .. L"
1449 function Type_Img (L : Natural) return String;
1450 -- Return the larger unsigned type T such that T'Last < L
1452 ---------------
1453 -- Array_Img --
1454 ---------------
1456 function Array_Img
1457 (N, T, R1 : String;
1458 R2 : String := "") return String
1460 begin
1461 Last := 0;
1462 Add (" ");
1463 Add (N);
1464 Add (" : constant array (");
1465 Add (R1);
1467 if R2 /= "" then
1468 Add (", ");
1469 Add (R2);
1470 end if;
1472 Add (") of ");
1473 Add (T);
1474 Add (" :=");
1475 return Line (1 .. Last);
1476 end Array_Img;
1478 ---------------
1479 -- Range_Img --
1480 ---------------
1482 function Range_Img (F, L : Natural; T : String := "") return String is
1483 FI : constant String := Image (F);
1484 FL : constant Natural := FI'Length;
1485 LI : constant String := Image (L);
1486 LL : constant Natural := LI'Length;
1487 TL : constant Natural := T'Length;
1488 RI : String (1 .. TL + 7 + FL + 4 + LL);
1489 Len : Natural := 0;
1491 begin
1492 if TL /= 0 then
1493 RI (Len + 1 .. Len + TL) := T;
1494 Len := Len + TL;
1495 RI (Len + 1 .. Len + 7) := " range ";
1496 Len := Len + 7;
1497 end if;
1499 RI (Len + 1 .. Len + FL) := FI;
1500 Len := Len + FL;
1501 RI (Len + 1 .. Len + 4) := " .. ";
1502 Len := Len + 4;
1503 RI (Len + 1 .. Len + LL) := LI;
1504 Len := Len + LL;
1505 return RI (1 .. Len);
1506 end Range_Img;
1508 --------------
1509 -- Type_Img --
1510 --------------
1512 function Type_Img (L : Natural) return String is
1513 S : constant String := Image (Type_Size (L));
1514 U : String := "Unsigned_ ";
1515 N : Natural := 9;
1517 begin
1518 for J in S'Range loop
1519 N := N + 1;
1520 U (N) := S (J);
1521 end loop;
1523 return U (1 .. N);
1524 end Type_Img;
1526 F : Natural;
1527 L : Natural;
1528 P : Natural;
1530 FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
1531 -- Initially, the name of the spec file, then modified to be the name of
1532 -- the body file. Not used if Use_Stdout is True.
1534 -- Start of processing for Produce
1536 begin
1538 if Verbose and then not Use_Stdout then
1539 Put (Output,
1540 "Producing " & Ada.Directories.Current_Directory & "/" & FName);
1541 New_Line (Output);
1542 end if;
1544 if not Use_Stdout then
1545 File := Create_File (FName, Binary);
1547 if File = Invalid_FD then
1548 raise Program_Error with "cannot create: " & FName;
1549 end if;
1550 end if;
1552 Put (File, "package ");
1553 Put (File, Pkg_Name);
1554 Put (File, " is");
1555 New_Line (File);
1556 Put (File, " function Hash (S : String) return Natural;");
1557 New_Line (File);
1558 Put (File, "end ");
1559 Put (File, Pkg_Name);
1560 Put (File, ";");
1561 New_Line (File);
1563 if not Use_Stdout then
1564 Close (File, Status);
1566 if not Status then
1567 raise Device_Error;
1568 end if;
1569 end if;
1571 if not Use_Stdout then
1573 -- Set to body file name
1575 FName (FName'Last) := 'b';
1577 File := Create_File (FName, Binary);
1579 if File = Invalid_FD then
1580 raise Program_Error with "cannot create: " & FName;
1581 end if;
1582 end if;
1584 Put (File, "with Interfaces; use Interfaces;");
1585 New_Line (File);
1586 New_Line (File);
1587 Put (File, "package body ");
1588 Put (File, Pkg_Name);
1589 Put (File, " is");
1590 New_Line (File);
1591 New_Line (File);
1593 if Opt = CPU_Time then
1594 Put (File, Array_Img ("C", Type_Img (256), "Character"));
1595 New_Line (File);
1597 F := Character'Pos (Character'First);
1598 L := Character'Pos (Character'Last);
1600 for J in Character'Range loop
1601 P := Get_Used_Char (J);
1602 Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
1603 end loop;
1605 New_Line (File);
1606 end if;
1608 F := 0;
1609 L := Char_Pos_Set_Len - 1;
1611 Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
1612 New_Line (File);
1614 for J in F .. L loop
1615 Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
1616 end loop;
1618 New_Line (File);
1620 case Opt is
1621 when CPU_Time =>
1622 Put_Int_Matrix
1623 (File,
1624 Array_Img ("T1", Type_Img (NV),
1625 Range_Img (0, T1_Len - 1),
1626 Range_Img (0, T2_Len - 1, Type_Img (256))),
1627 T1, T1_Len, T2_Len);
1629 when Memory_Space =>
1630 Put_Int_Matrix
1631 (File,
1632 Array_Img ("T1", Type_Img (NV),
1633 Range_Img (0, T1_Len - 1)),
1634 T1, T1_Len, 0);
1635 end case;
1637 New_Line (File);
1639 case Opt is
1640 when CPU_Time =>
1641 Put_Int_Matrix
1642 (File,
1643 Array_Img ("T2", Type_Img (NV),
1644 Range_Img (0, T1_Len - 1),
1645 Range_Img (0, T2_Len - 1, Type_Img (256))),
1646 T2, T1_Len, T2_Len);
1648 when Memory_Space =>
1649 Put_Int_Matrix
1650 (File,
1651 Array_Img ("T2", Type_Img (NV),
1652 Range_Img (0, T1_Len - 1)),
1653 T2, T1_Len, 0);
1654 end case;
1656 New_Line (File);
1658 Put_Int_Vector
1659 (File,
1660 Array_Img ("G", Type_Img (NK),
1661 Range_Img (0, G_Len - 1)),
1662 G, G_Len);
1663 New_Line (File);
1665 Put (File, " function Hash (S : String) return Natural is");
1666 New_Line (File);
1667 Put (File, " F : constant Natural := S'First - 1;");
1668 New_Line (File);
1669 Put (File, " L : constant Natural := S'Length;");
1670 New_Line (File);
1671 Put (File, " F1, F2 : Natural := 0;");
1672 New_Line (File);
1674 Put (File, " J : ");
1676 case Opt is
1677 when CPU_Time =>
1678 Put (File, Type_Img (256));
1680 when Memory_Space =>
1681 Put (File, "Natural");
1682 end case;
1684 Put (File, ";");
1685 New_Line (File);
1687 Put (File, " begin");
1688 New_Line (File);
1689 Put (File, " for K in P'Range loop");
1690 New_Line (File);
1691 Put (File, " exit when L < P (K);");
1692 New_Line (File);
1693 Put (File, " J := ");
1695 case Opt is
1696 when CPU_Time =>
1697 Put (File, "C");
1699 when Memory_Space =>
1700 Put (File, "Character'Pos");
1701 end case;
1703 Put (File, " (S (P (K) + F));");
1704 New_Line (File);
1706 Put (File, " F1 := (F1 + Natural (T1 (K");
1708 if Opt = CPU_Time then
1709 Put (File, ", J");
1710 end if;
1712 Put (File, "))");
1714 if Opt = Memory_Space then
1715 Put (File, " * J");
1716 end if;
1718 Put (File, ") mod ");
1719 Put (File, Image (NV));
1720 Put (File, ";");
1721 New_Line (File);
1723 Put (File, " F2 := (F2 + Natural (T2 (K");
1725 if Opt = CPU_Time then
1726 Put (File, ", J");
1727 end if;
1729 Put (File, "))");
1731 if Opt = Memory_Space then
1732 Put (File, " * J");
1733 end if;
1735 Put (File, ") mod ");
1736 Put (File, Image (NV));
1737 Put (File, ";");
1738 New_Line (File);
1740 Put (File, " end loop;");
1741 New_Line (File);
1743 Put (File,
1744 " return (Natural (G (F1)) + Natural (G (F2))) mod ");
1746 Put (File, Image (NK));
1747 Put (File, ";");
1748 New_Line (File);
1749 Put (File, " end Hash;");
1750 New_Line (File);
1751 New_Line (File);
1752 Put (File, "end ");
1753 Put (File, Pkg_Name);
1754 Put (File, ";");
1755 New_Line (File);
1757 if not Use_Stdout then
1758 Close (File, Status);
1760 if not Status then
1761 raise Device_Error;
1762 end if;
1763 end if;
1764 end Produce;
1766 ---------
1767 -- Put --
1768 ---------
1770 procedure Put (File : File_Descriptor; Str : String) is
1771 Len : constant Natural := Str'Length;
1772 begin
1773 for J in Str'Range loop
1774 pragma Assert (Str (J) /= ASCII.NUL);
1775 null;
1776 end loop;
1778 if Write (File, Str'Address, Len) /= Len then
1779 raise Program_Error;
1780 end if;
1781 end Put;
1783 ---------
1784 -- Put --
1785 ---------
1787 procedure Put
1788 (F : File_Descriptor;
1789 S : String;
1790 F1 : Natural;
1791 L1 : Natural;
1792 C1 : Natural;
1793 F2 : Natural;
1794 L2 : Natural;
1795 C2 : Natural)
1797 Len : constant Natural := S'Length;
1799 procedure Flush;
1800 -- Write current line, followed by LF
1802 -----------
1803 -- Flush --
1804 -----------
1806 procedure Flush is
1807 begin
1808 Put (F, Line (1 .. Last));
1809 New_Line (F);
1810 Last := 0;
1811 end Flush;
1813 -- Start of processing for Put
1815 begin
1816 if C1 = F1 and then C2 = F2 then
1817 Last := 0;
1818 end if;
1820 if Last + Len + 3 >= Max then
1821 Flush;
1822 end if;
1824 if Last = 0 then
1825 Add (" ");
1827 if F1 <= L1 then
1828 if C1 = F1 and then C2 = F2 then
1829 Add ('(');
1831 if F1 = L1 then
1832 Add ("0 .. 0 => ");
1833 end if;
1835 else
1836 Add (' ');
1837 end if;
1838 end if;
1839 end if;
1841 if C2 = F2 then
1842 Add ('(');
1844 if F2 = L2 then
1845 Add ("0 .. 0 => ");
1846 end if;
1848 else
1849 Add (' ');
1850 end if;
1852 Add (S);
1854 if C2 = L2 then
1855 Add (')');
1857 if F1 > L1 then
1858 Add (';');
1859 Flush;
1861 elsif C1 /= L1 then
1862 Add (',');
1863 Flush;
1865 else
1866 Add (')');
1867 Add (';');
1868 Flush;
1869 end if;
1871 else
1872 Add (',');
1873 end if;
1874 end Put;
1876 ---------------
1877 -- Put_Edges --
1878 ---------------
1880 procedure Put_Edges (File : File_Descriptor; Title : String) is
1881 E : Edge_Type;
1882 F1 : constant Natural := 1;
1883 L1 : constant Natural := Edges_Len - 1;
1884 M : constant Natural := Max / 5;
1886 begin
1887 Put (File, Title);
1888 New_Line (File);
1890 -- Edges valid range is 1 .. Edge_Len - 1
1892 for J in F1 .. L1 loop
1893 E := Get_Edges (J);
1894 Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
1895 Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
1896 Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
1897 Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
1898 end loop;
1899 end Put_Edges;
1901 ----------------------
1902 -- Put_Initial_Keys --
1903 ----------------------
1905 procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
1906 F1 : constant Natural := 0;
1907 L1 : constant Natural := NK - 1;
1908 M : constant Natural := Max / 5;
1909 K : Key_Type;
1911 begin
1912 Put (File, Title);
1913 New_Line (File);
1915 for J in F1 .. L1 loop
1916 K := Get_Key (J);
1917 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
1918 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
1919 Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
1920 F1, L1, J, 1, 3, 3);
1921 end loop;
1922 end Put_Initial_Keys;
1924 --------------------
1925 -- Put_Int_Matrix --
1926 --------------------
1928 procedure Put_Int_Matrix
1929 (File : File_Descriptor;
1930 Title : String;
1931 Table : Integer;
1932 Len_1 : Natural;
1933 Len_2 : Natural)
1935 F1 : constant Integer := 0;
1936 L1 : constant Integer := Len_1 - 1;
1937 F2 : constant Integer := 0;
1938 L2 : constant Integer := Len_2 - 1;
1939 Ix : Natural;
1941 begin
1942 Put (File, Title);
1943 New_Line (File);
1945 if Len_2 = 0 then
1946 for J in F1 .. L1 loop
1947 Ix := IT.Table (Table + J);
1948 Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
1949 end loop;
1951 else
1952 for J in F1 .. L1 loop
1953 for K in F2 .. L2 loop
1954 Ix := IT.Table (Table + J + K * Len_1);
1955 Put (File, Image (Ix), F1, L1, J, F2, L2, K);
1956 end loop;
1957 end loop;
1958 end if;
1959 end Put_Int_Matrix;
1961 --------------------
1962 -- Put_Int_Vector --
1963 --------------------
1965 procedure Put_Int_Vector
1966 (File : File_Descriptor;
1967 Title : String;
1968 Vector : Integer;
1969 Length : Natural)
1971 F2 : constant Natural := 0;
1972 L2 : constant Natural := Length - 1;
1974 begin
1975 Put (File, Title);
1976 New_Line (File);
1978 for J in F2 .. L2 loop
1979 Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
1980 end loop;
1981 end Put_Int_Vector;
1983 ----------------------
1984 -- Put_Reduced_Keys --
1985 ----------------------
1987 procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
1988 F1 : constant Natural := 0;
1989 L1 : constant Natural := NK - 1;
1990 M : constant Natural := Max / 5;
1991 K : Key_Type;
1993 begin
1994 Put (File, Title);
1995 New_Line (File);
1997 for J in F1 .. L1 loop
1998 K := Get_Key (J);
1999 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
2000 Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
2001 Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
2002 F1, L1, J, 1, 3, 3);
2003 end loop;
2004 end Put_Reduced_Keys;
2006 -----------------------
2007 -- Put_Used_Char_Set --
2008 -----------------------
2010 procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
2011 F : constant Natural := Character'Pos (Character'First);
2012 L : constant Natural := Character'Pos (Character'Last);
2014 begin
2015 Put (File, Title);
2016 New_Line (File);
2018 for J in Character'Range loop
2020 (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
2021 end loop;
2022 end Put_Used_Char_Set;
2024 ----------------------
2025 -- Put_Vertex_Table --
2026 ----------------------
2028 procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
2029 F1 : constant Natural := 0;
2030 L1 : constant Natural := NV - 1;
2031 M : constant Natural := Max / 4;
2032 V : Vertex_Type;
2034 begin
2035 Put (File, Title);
2036 New_Line (File);
2038 for J in F1 .. L1 loop
2039 V := Get_Vertices (J);
2040 Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
2041 Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
2042 Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
2043 end loop;
2044 end Put_Vertex_Table;
2046 ------------
2047 -- Random --
2048 ------------
2050 procedure Random (Seed : in out Natural) is
2052 -- Park & Miller Standard Minimal using Schrage's algorithm to avoid
2053 -- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
2055 R : Natural;
2056 Q : Natural;
2057 X : Integer;
2059 begin
2060 R := Seed mod 127773;
2061 Q := Seed / 127773;
2062 X := 16807 * R - 2836 * Q;
2064 Seed := (if X < 0 then X + 2147483647 else X);
2065 end Random;
2067 -------------
2068 -- Reduced --
2069 -------------
2071 function Reduced (K : Key_Id) return Word_Id is
2072 begin
2073 return K + NK + 1;
2074 end Reduced;
2076 -----------------
2077 -- Resize_Word --
2078 -----------------
2080 procedure Resize_Word (W : in out Word_Type; Len : Natural) is
2081 S1 : constant String := W.all;
2082 S2 : String (1 .. Len) := (others => ASCII.NUL);
2083 L : constant Natural := S1'Length;
2084 begin
2085 if L /= Len then
2086 Free_Word (W);
2087 S2 (1 .. L) := S1;
2088 W := New_Word (S2);
2089 end if;
2090 end Resize_Word;
2092 --------------------------
2093 -- Select_Char_Position --
2094 --------------------------
2096 procedure Select_Char_Position is
2098 type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
2100 procedure Build_Identical_Keys_Sets
2101 (Table : in out Vertex_Table_Type;
2102 Last : in out Natural;
2103 Pos : Natural);
2104 -- Build a list of keys subsets that are identical with the current
2105 -- position selection plus Pos. Once this routine is called, reduced
2106 -- words are sorted by subsets and each item (First, Last) in Sets
2107 -- defines the range of identical keys.
2108 -- Need comment saying exactly what Last is ???
2110 function Count_Different_Keys
2111 (Table : Vertex_Table_Type;
2112 Last : Natural;
2113 Pos : Natural) return Natural;
2114 -- For each subset in Sets, count the number of different keys if we add
2115 -- Pos to the current position selection.
2117 Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
2118 Last_Sel_Pos : Natural := 0;
2119 Max_Sel_Pos : Natural := 0;
2121 -------------------------------
2122 -- Build_Identical_Keys_Sets --
2123 -------------------------------
2125 procedure Build_Identical_Keys_Sets
2126 (Table : in out Vertex_Table_Type;
2127 Last : in out Natural;
2128 Pos : Natural)
2130 S : constant Vertex_Table_Type := Table (Table'First .. Last);
2131 C : constant Natural := Pos;
2132 -- Shortcuts (why are these not renames ???)
2134 F : Integer;
2135 L : Integer;
2136 -- First and last words of a subset
2138 Offset : Natural;
2139 -- GNAT.Heap_Sort assumes that the first array index is 1. Offset
2140 -- defines the translation to operate.
2142 function Lt (L, R : Natural) return Boolean;
2143 procedure Move (From : Natural; To : Natural);
2144 -- Subprograms needed by GNAT.Heap_Sort_G
2146 --------
2147 -- Lt --
2148 --------
2150 function Lt (L, R : Natural) return Boolean is
2151 C : constant Natural := Pos;
2152 Left : Natural;
2153 Right : Natural;
2155 begin
2156 if L = 0 then
2157 Left := NK;
2158 Right := Offset + R;
2159 elsif R = 0 then
2160 Left := Offset + L;
2161 Right := NK;
2162 else
2163 Left := Offset + L;
2164 Right := Offset + R;
2165 end if;
2167 return WT.Table (Left)(C) < WT.Table (Right)(C);
2168 end Lt;
2170 ----------
2171 -- Move --
2172 ----------
2174 procedure Move (From : Natural; To : Natural) is
2175 Target, Source : Natural;
2177 begin
2178 if From = 0 then
2179 Source := NK;
2180 Target := Offset + To;
2181 elsif To = 0 then
2182 Source := Offset + From;
2183 Target := NK;
2184 else
2185 Source := Offset + From;
2186 Target := Offset + To;
2187 end if;
2189 WT.Table (Target) := WT.Table (Source);
2190 WT.Table (Source) := null;
2191 end Move;
2193 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
2195 -- Start of processing for Build_Identical_Key_Sets
2197 begin
2198 Last := 0;
2200 -- For each subset in S, extract the new subsets we have by adding C
2201 -- in the position selection.
2203 for J in S'Range loop
2204 if S (J).First = S (J).Last then
2205 F := S (J).First;
2206 L := S (J).Last;
2207 Last := Last + 1;
2208 Table (Last) := (F, L);
2210 else
2211 Offset := Reduced (S (J).First) - 1;
2212 Sorting.Sort (S (J).Last - S (J).First + 1);
2214 F := S (J).First;
2215 L := F;
2216 for N in S (J).First .. S (J).Last loop
2218 -- For the last item, close the last subset
2220 if N = S (J).Last then
2221 Last := Last + 1;
2222 Table (Last) := (F, N);
2224 -- Two contiguous words are identical when they have the
2225 -- same Cth character.
2227 elsif WT.Table (Reduced (N))(C) =
2228 WT.Table (Reduced (N + 1))(C)
2229 then
2230 L := N + 1;
2232 -- Find a new subset of identical keys. Store the current
2233 -- one and create a new subset.
2235 else
2236 Last := Last + 1;
2237 Table (Last) := (F, L);
2238 F := N + 1;
2239 L := F;
2240 end if;
2241 end loop;
2242 end if;
2243 end loop;
2244 end Build_Identical_Keys_Sets;
2246 --------------------------
2247 -- Count_Different_Keys --
2248 --------------------------
2250 function Count_Different_Keys
2251 (Table : Vertex_Table_Type;
2252 Last : Natural;
2253 Pos : Natural) return Natural
2255 N : array (Character) of Natural;
2256 C : Character;
2257 T : Natural := 0;
2259 begin
2260 -- For each subset, count the number of words that are still
2261 -- different when we include Pos in the position selection. Only
2262 -- focus on this position as the other positions already produce
2263 -- identical keys.
2265 for S in 1 .. Last loop
2267 -- Count the occurrences of the different characters
2269 N := (others => 0);
2270 for K in Table (S).First .. Table (S).Last loop
2271 C := WT.Table (Reduced (K))(Pos);
2272 N (C) := N (C) + 1;
2273 end loop;
2275 -- Update the number of different keys. Each character used
2276 -- denotes a different key.
2278 for J in N'Range loop
2279 if N (J) > 0 then
2280 T := T + 1;
2281 end if;
2282 end loop;
2283 end loop;
2285 return T;
2286 end Count_Different_Keys;
2288 -- Start of processing for Select_Char_Position
2290 begin
2291 -- Initialize the reduced words set
2293 for K in 0 .. NK - 1 loop
2294 WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
2295 end loop;
2297 declare
2298 Differences : Natural;
2299 Max_Differences : Natural := 0;
2300 Old_Differences : Natural;
2301 Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
2302 Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
2303 Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
2304 Same_Keys_Sets_Last : Natural := 1;
2306 begin
2307 for C in Sel_Position'Range loop
2308 Sel_Position (C) := C;
2309 end loop;
2311 Same_Keys_Sets_Table (1) := (0, NK - 1);
2313 loop
2314 -- Preserve maximum number of different keys and check later on
2315 -- that this value is strictly incrementing. Otherwise, it means
2316 -- that two keys are strictly identical.
2318 Old_Differences := Max_Differences;
2320 -- The first position should not exceed the minimum key length.
2321 -- Otherwise, we may end up with an empty word once reduced.
2323 Max_Sel_Pos :=
2324 (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
2326 -- Find which position increases more the number of differences
2328 for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
2329 Differences := Count_Different_Keys
2330 (Same_Keys_Sets_Table,
2331 Same_Keys_Sets_Last,
2332 Sel_Position (J));
2334 if Verbose then
2335 Put (Output,
2336 "Selecting position" & Sel_Position (J)'Img &
2337 " results in" & Differences'Img &
2338 " differences");
2339 New_Line (Output);
2340 end if;
2342 if Differences > Max_Differences then
2343 Max_Differences := Differences;
2344 Max_Diff_Sel_Pos := Sel_Position (J);
2345 Max_Diff_Sel_Pos_Idx := J;
2346 end if;
2347 end loop;
2349 if Old_Differences = Max_Differences then
2350 raise Program_Error with "some keys are identical";
2351 end if;
2353 -- Insert selected position and sort Sel_Position table
2355 Last_Sel_Pos := Last_Sel_Pos + 1;
2356 Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
2357 Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
2358 Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
2360 for P in 1 .. Last_Sel_Pos - 1 loop
2361 if Max_Diff_Sel_Pos < Sel_Position (P) then
2362 Sel_Position (P + 1 .. Last_Sel_Pos) :=
2363 Sel_Position (P .. Last_Sel_Pos - 1);
2364 Sel_Position (P) := Max_Diff_Sel_Pos;
2365 exit;
2366 end if;
2367 end loop;
2369 exit when Max_Differences = NK;
2371 Build_Identical_Keys_Sets
2372 (Same_Keys_Sets_Table,
2373 Same_Keys_Sets_Last,
2374 Max_Diff_Sel_Pos);
2376 if Verbose then
2377 Put (Output,
2378 "Selecting position" & Max_Diff_Sel_Pos'Img &
2379 " results in" & Max_Differences'Img &
2380 " differences");
2381 New_Line (Output);
2382 Put (Output, "--");
2383 New_Line (Output);
2384 for J in 1 .. Same_Keys_Sets_Last loop
2385 for K in
2386 Same_Keys_Sets_Table (J).First ..
2387 Same_Keys_Sets_Table (J).Last
2388 loop
2389 Put (Output,
2390 Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
2391 New_Line (Output);
2392 end loop;
2393 Put (Output, "--");
2394 New_Line (Output);
2395 end loop;
2396 end if;
2397 end loop;
2398 end;
2400 Char_Pos_Set_Len := Last_Sel_Pos;
2401 Char_Pos_Set := Allocate (Char_Pos_Set_Len);
2403 for C in 1 .. Last_Sel_Pos loop
2404 Set_Char_Pos (C - 1, Sel_Position (C));
2405 end loop;
2406 end Select_Char_Position;
2408 --------------------------
2409 -- Select_Character_Set --
2410 --------------------------
2412 procedure Select_Character_Set is
2413 Last : Natural := 0;
2414 Used : array (Character) of Boolean := (others => False);
2415 Char : Character;
2417 begin
2418 for J in 0 .. NK - 1 loop
2419 for K in 0 .. Char_Pos_Set_Len - 1 loop
2420 Char := WT.Table (Initial (J))(Get_Char_Pos (K));
2421 exit when Char = ASCII.NUL;
2422 Used (Char) := True;
2423 end loop;
2424 end loop;
2426 Used_Char_Set_Len := 256;
2427 Used_Char_Set := Allocate (Used_Char_Set_Len);
2429 for J in Used'Range loop
2430 if Used (J) then
2431 Set_Used_Char (J, Last);
2432 Last := Last + 1;
2433 else
2434 Set_Used_Char (J, 0);
2435 end if;
2436 end loop;
2437 end Select_Character_Set;
2439 ------------------
2440 -- Set_Char_Pos --
2441 ------------------
2443 procedure Set_Char_Pos (P : Natural; Item : Natural) is
2444 N : constant Natural := Char_Pos_Set + P;
2445 begin
2446 IT.Table (N) := Item;
2447 end Set_Char_Pos;
2449 ---------------
2450 -- Set_Edges --
2451 ---------------
2453 procedure Set_Edges (F : Natural; Item : Edge_Type) is
2454 N : constant Natural := Edges + (F * Edge_Size);
2455 begin
2456 IT.Table (N) := Item.X;
2457 IT.Table (N + 1) := Item.Y;
2458 IT.Table (N + 2) := Item.Key;
2459 end Set_Edges;
2461 ---------------
2462 -- Set_Graph --
2463 ---------------
2465 procedure Set_Graph (N : Natural; Item : Integer) is
2466 begin
2467 IT.Table (G + N) := Item;
2468 end Set_Graph;
2470 -------------
2471 -- Set_Key --
2472 -------------
2474 procedure Set_Key (N : Key_Id; Item : Key_Type) is
2475 begin
2476 IT.Table (Keys + N) := Item.Edge;
2477 end Set_Key;
2479 ---------------
2480 -- Set_Table --
2481 ---------------
2483 procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
2484 N : constant Natural := T + ((Y * T1_Len) + X);
2485 begin
2486 IT.Table (N) := Item;
2487 end Set_Table;
2489 -------------------
2490 -- Set_Used_Char --
2491 -------------------
2493 procedure Set_Used_Char (C : Character; Item : Natural) is
2494 N : constant Natural := Used_Char_Set + Character'Pos (C);
2495 begin
2496 IT.Table (N) := Item;
2497 end Set_Used_Char;
2499 ------------------
2500 -- Set_Vertices --
2501 ------------------
2503 procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
2504 N : constant Natural := Vertices + (F * Vertex_Size);
2505 begin
2506 IT.Table (N) := Item.First;
2507 IT.Table (N + 1) := Item.Last;
2508 end Set_Vertices;
2510 ---------
2511 -- Sum --
2512 ---------
2514 function Sum
2515 (Word : Word_Type;
2516 Table : Table_Id;
2517 Opt : Optimization) return Natural
2519 S : Natural := 0;
2520 R : Natural;
2522 begin
2523 case Opt is
2524 when CPU_Time =>
2525 for J in 0 .. T1_Len - 1 loop
2526 exit when Word (J + 1) = ASCII.NUL;
2527 R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
2528 S := (S + R) mod NV;
2529 end loop;
2531 when Memory_Space =>
2532 for J in 0 .. T1_Len - 1 loop
2533 exit when Word (J + 1) = ASCII.NUL;
2534 R := Get_Table (Table, J, 0);
2535 S := (S + R * Character'Pos (Word (J + 1))) mod NV;
2536 end loop;
2537 end case;
2539 return S;
2540 end Sum;
2542 ------------------------
2543 -- Trim_Trailing_Nuls --
2544 ------------------------
2546 function Trim_Trailing_Nuls (Str : String) return String is
2547 begin
2548 for J in reverse Str'Range loop
2549 if Str (J) /= ASCII.NUL then
2550 return Str (Str'First .. J);
2551 end if;
2552 end loop;
2554 return Str;
2555 end Trim_Trailing_Nuls;
2557 ---------------
2558 -- Type_Size --
2559 ---------------
2561 function Type_Size (L : Natural) return Natural is
2562 begin
2563 if L <= 2 ** 8 then
2564 return 8;
2565 elsif L <= 2 ** 16 then
2566 return 16;
2567 else
2568 return 32;
2569 end if;
2570 end Type_Size;
2572 -----------
2573 -- Value --
2574 -----------
2576 function Value
2577 (Name : Table_Name;
2578 J : Natural;
2579 K : Natural := 0) return Natural
2581 begin
2582 case Name is
2583 when Character_Position =>
2584 return Get_Char_Pos (J);
2586 when Used_Character_Set =>
2587 return Get_Used_Char (Character'Val (J));
2589 when Function_Table_1 =>
2590 return Get_Table (T1, J, K);
2592 when Function_Table_2 =>
2593 return Get_Table (T2, J, K);
2595 when Graph_Table =>
2596 return Get_Graph (J);
2597 end case;
2598 end Value;
2600 end GNAT.Perfect_Hash_Generators;