1 /* Generic partial redundancy elimination with lazy code motion support.
2 Copyright (C) 1998-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* These routines are meant to be used by various optimization
21 passes which can be modeled as lazy code motion problems.
22 Including, but not limited to:
24 * Traditional partial redundancy elimination.
26 * Placement of caller/caller register save/restores.
32 * Conversion of flat register files to a stacked register
35 * Dead load/store elimination.
37 These routines accept as input:
39 * Basic block information (number of blocks, lists of
40 predecessors and successors). Note the granularity
41 does not need to be basic block, they could be statements
44 * Bitmaps of local properties (computed, transparent and
45 anticipatable expressions).
47 The output of these routines is bitmap of redundant computations
48 and a bitmap of optimal placement points. */
53 #include "coretypes.h"
58 /* Edge based LCM routines. */
59 static void compute_antinout_edge (sbitmap
*, sbitmap
*, sbitmap
*, sbitmap
*);
60 static void compute_earliest (struct edge_list
*, int, sbitmap
*, sbitmap
*,
61 sbitmap
*, sbitmap
*, sbitmap
*);
62 static void compute_laterin (struct edge_list
*, sbitmap
*, sbitmap
*,
63 sbitmap
*, sbitmap
*);
64 static void compute_insert_delete (struct edge_list
*edge_list
, sbitmap
*,
65 sbitmap
*, sbitmap
*, sbitmap
*, sbitmap
*);
67 /* Edge based LCM routines on a reverse flowgraph. */
68 static void compute_farthest (struct edge_list
*, int, sbitmap
*, sbitmap
*,
69 sbitmap
*, sbitmap
*, sbitmap
*);
70 static void compute_nearerout (struct edge_list
*, sbitmap
*, sbitmap
*,
71 sbitmap
*, sbitmap
*);
72 static void compute_rev_insert_delete (struct edge_list
*edge_list
, sbitmap
*,
73 sbitmap
*, sbitmap
*, sbitmap
*,
76 /* Edge based lcm routines. */
78 /* Compute expression anticipatability at entrance and exit of each block.
79 This is done based on the flow graph, and not on the pred-succ lists.
80 Other than that, its pretty much identical to compute_antinout. */
83 compute_antinout_edge (sbitmap
*antloc
, sbitmap
*transp
, sbitmap
*antin
,
88 basic_block
*worklist
, *qin
, *qout
, *qend
;
92 /* Allocate a worklist array/queue. Entries are only added to the
93 list if they were not already on the list. So the size is
94 bounded by the number of basic blocks. */
95 qin
= qout
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
97 /* We want a maximal solution, so make an optimistic initialization of
99 bitmap_vector_ones (antin
, last_basic_block_for_fn (cfun
));
101 /* Put every block on the worklist; this is necessary because of the
102 optimistic initialization of ANTIN above. Use reverse postorder
103 on the inverted graph to make the backward dataflow problem require
105 int *rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
106 int n
= inverted_rev_post_order_compute (cfun
, rpo
);
107 for (int i
= 0; i
< n
; ++i
)
109 bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
110 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
111 || bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
119 qend
= &worklist
[n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
];
120 qlen
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
122 /* Mark blocks which are predecessors of the exit block so that we
123 can easily identify them below. */
124 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
125 e
->src
->aux
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
127 /* Iterate until the worklist is empty. */
130 /* Take the first entry off the worklist. */
137 if (bb
->aux
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
138 /* Do not clear the aux field for blocks which are predecessors of
139 the EXIT block. That way we never add then to the worklist
141 bitmap_clear (antout
[bb
->index
]);
144 /* Clear the aux field of this block so that it can be added to
145 the worklist again if necessary. */
147 bitmap_intersection_of_succs (antout
[bb
->index
], antin
, bb
);
150 if (bitmap_or_and (antin
[bb
->index
], antloc
[bb
->index
],
151 transp
[bb
->index
], antout
[bb
->index
]))
152 /* If the in state of this block changed, then we need
153 to add the predecessors of this block to the worklist
154 if they are not already on the worklist. */
155 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
156 if (!e
->src
->aux
&& e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
166 clear_aux_for_edges ();
167 clear_aux_for_blocks ();
171 /* Compute the earliest vector for edge based lcm. */
174 compute_earliest (struct edge_list
*edge_list
, int n_exprs
, sbitmap
*antin
,
175 sbitmap
*antout
, sbitmap
*avout
, sbitmap
*kill
,
179 basic_block pred
, succ
;
181 num_edges
= NUM_EDGES (edge_list
);
183 auto_sbitmap
difference (n_exprs
), temp_bitmap (n_exprs
);
184 for (x
= 0; x
< num_edges
; x
++)
186 pred
= INDEX_EDGE_PRED_BB (edge_list
, x
);
187 succ
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
188 if (pred
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
189 bitmap_copy (earliest
[x
], antin
[succ
->index
]);
192 if (succ
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
193 bitmap_clear (earliest
[x
]);
196 bitmap_and_compl (difference
, antin
[succ
->index
],
198 bitmap_not (temp_bitmap
, antout
[pred
->index
]);
199 bitmap_and_or (earliest
[x
], difference
,
200 kill
[pred
->index
], temp_bitmap
);
206 /* later(p,s) is dependent on the calculation of laterin(p).
207 laterin(p) is dependent on the calculation of later(p2,p).
209 laterin(ENTRY) is defined as all 0's
210 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
211 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
213 If we progress in this manner, starting with all basic blocks
214 in the work list, anytime we change later(bb), we need to add
215 succs(bb) to the worklist if they are not already on the worklist.
219 We prime the worklist all the normal basic blocks. The ENTRY block can
220 never be added to the worklist since it is never the successor of any
221 block. We explicitly prevent the EXIT block from being added to the
224 We optimistically initialize LATER. That is the only time this routine
225 will compute LATER for an edge out of the entry block since the entry
226 block is never on the worklist. Thus, LATERIN is neither used nor
227 computed for the ENTRY block.
229 Since the EXIT block is never added to the worklist, we will neither
230 use nor compute LATERIN for the exit block. Edges which reach the
231 EXIT block are handled in the normal fashion inside the loop. However,
232 the insertion/deletion computation needs LATERIN(EXIT), so we have
236 compute_laterin (struct edge_list
*edge_list
, sbitmap
*earliest
,
237 sbitmap
*antloc
, sbitmap
*later
, sbitmap
*laterin
)
241 basic_block
*worklist
, *qin
, *qout
, *qend
, bb
;
245 num_edges
= NUM_EDGES (edge_list
);
247 /* Allocate a worklist array/queue. Entries are only added to the
248 list if they were not already on the list. So the size is
249 bounded by the number of basic blocks. */
250 qin
= qout
= worklist
251 = XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
253 /* Initialize a mapping from each edge to its index. */
254 for (i
= 0; i
< num_edges
; i
++)
255 INDEX_EDGE (edge_list
, i
)->aux
= (void *) (size_t) i
;
257 /* We want a maximal solution, so initially consider LATER true for
258 all edges. This allows propagation through a loop since the incoming
259 loop edge will have LATER set, so if all the other incoming edges
260 to the loop are set, then LATERIN will be set for the head of the
263 If the optimistic setting of LATER on that edge was incorrect (for
264 example the expression is ANTLOC in a block within the loop) then
265 this algorithm will detect it when we process the block at the head
266 of the optimistic edge. That will requeue the affected blocks. */
267 bitmap_vector_ones (later
, num_edges
);
269 /* Note that even though we want an optimistic setting of LATER, we
270 do not want to be overly optimistic. Consider an outgoing edge from
271 the entry block. That edge should always have a LATER value the
272 same as EARLIEST for that edge. */
273 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
274 bitmap_copy (later
[(size_t) e
->aux
], earliest
[(size_t) e
->aux
]);
276 /* Add all the blocks to the worklist. This prevents an early exit from
277 the loop given our optimistic initialization of LATER above. */
278 int *rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
279 int n
= pre_and_rev_post_order_compute_fn (cfun
, NULL
, rpo
, false);
280 for (int i
= 0; i
< n
; ++i
)
282 bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
288 /* Note that we do not use the last allocated element for our queue,
289 as EXIT_BLOCK is never inserted into it. */
291 qend
= &worklist
[n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
];
292 qlen
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
294 /* Iterate until the worklist is empty. */
297 /* Take the first entry off the worklist. */
304 /* Compute LATERIN as the intersection of LATER for each incoming
306 bitmap_ones (laterin
[bb
->index
]);
307 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
308 bitmap_and (laterin
[bb
->index
], laterin
[bb
->index
],
309 later
[(size_t)e
->aux
]);
311 /* Calculate LATER for all outgoing edges of BB. */
312 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
313 if (bitmap_ior_and_compl (later
[(size_t) e
->aux
],
314 earliest
[(size_t) e
->aux
],
317 /* If LATER for an outgoing edge was changed, then we need
318 to add the target of the outgoing edge to the worklist. */
319 && e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && e
->dest
->aux
== 0)
329 /* Computation of insertion and deletion points requires computing LATERIN
330 for the EXIT block. We allocated an extra entry in the LATERIN array
331 for just this purpose. */
332 bitmap_ones (laterin
[last_basic_block_for_fn (cfun
)]);
333 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
334 bitmap_and (laterin
[last_basic_block_for_fn (cfun
)],
335 laterin
[last_basic_block_for_fn (cfun
)],
336 later
[(size_t) e
->aux
]);
338 clear_aux_for_edges ();
342 /* Compute the insertion and deletion points for edge based LCM. */
345 compute_insert_delete (struct edge_list
*edge_list
, sbitmap
*antloc
,
346 sbitmap
*later
, sbitmap
*laterin
, sbitmap
*insert
,
352 FOR_EACH_BB_FN (bb
, cfun
)
353 bitmap_and_compl (del
[bb
->index
], antloc
[bb
->index
],
356 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
358 basic_block b
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
360 if (b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
361 bitmap_and_compl (insert
[x
], later
[x
],
362 laterin
[last_basic_block_for_fn (cfun
)]);
364 bitmap_and_compl (insert
[x
], later
[x
], laterin
[b
->index
]);
368 /* Given local properties TRANSP, ANTLOC, AVLOC, KILL return the insert and
369 delete vectors for edge based LCM and return the AVIN, AVOUT bitmap.
370 map the insert vector to what edge an expression should be inserted on. */
373 pre_edge_lcm_avs (int n_exprs
, sbitmap
*transp
,
374 sbitmap
*avloc
, sbitmap
*antloc
, sbitmap
*kill
,
375 sbitmap
*avin
, sbitmap
*avout
,
376 sbitmap
**insert
, sbitmap
**del
)
378 sbitmap
*antin
, *antout
, *earliest
;
379 sbitmap
*later
, *laterin
;
380 struct edge_list
*edge_list
;
383 edge_list
= create_edge_list ();
384 num_edges
= NUM_EDGES (edge_list
);
386 #ifdef LCM_DEBUG_INFO
389 fprintf (dump_file
, "Edge List:\n");
390 verify_edge_list (dump_file
, edge_list
);
391 print_edge_list (dump_file
, edge_list
);
392 dump_bitmap_vector (dump_file
, "transp", "", transp
,
393 last_basic_block_for_fn (cfun
));
394 dump_bitmap_vector (dump_file
, "antloc", "", antloc
,
395 last_basic_block_for_fn (cfun
));
396 dump_bitmap_vector (dump_file
, "avloc", "", avloc
,
397 last_basic_block_for_fn (cfun
));
398 dump_bitmap_vector (dump_file
, "kill", "", kill
,
399 last_basic_block_for_fn (cfun
));
403 /* Compute global availability. */
404 compute_available (avloc
, kill
, avout
, avin
);
406 /* Compute global anticipatability. */
407 antin
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
408 antout
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
409 compute_antinout_edge (antloc
, transp
, antin
, antout
);
411 #ifdef LCM_DEBUG_INFO
414 dump_bitmap_vector (dump_file
, "antin", "", antin
,
415 last_basic_block_for_fn (cfun
));
416 dump_bitmap_vector (dump_file
, "antout", "", antout
,
417 last_basic_block_for_fn (cfun
));
421 /* Compute earliestness. */
422 earliest
= sbitmap_vector_alloc (num_edges
, n_exprs
);
423 compute_earliest (edge_list
, n_exprs
, antin
, antout
, avout
, kill
, earliest
);
425 #ifdef LCM_DEBUG_INFO
427 dump_bitmap_vector (dump_file
, "earliest", "", earliest
, num_edges
);
430 sbitmap_vector_free (antout
);
431 sbitmap_vector_free (antin
);
433 later
= sbitmap_vector_alloc (num_edges
, n_exprs
);
435 /* Allocate an extra element for the exit block in the laterin vector. */
436 laterin
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
) + 1,
438 compute_laterin (edge_list
, earliest
, antloc
, later
, laterin
);
440 #ifdef LCM_DEBUG_INFO
443 dump_bitmap_vector (dump_file
, "laterin", "", laterin
,
444 last_basic_block_for_fn (cfun
) + 1);
445 dump_bitmap_vector (dump_file
, "later", "", later
, num_edges
);
449 sbitmap_vector_free (earliest
);
451 *insert
= sbitmap_vector_alloc (num_edges
, n_exprs
);
452 *del
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
453 bitmap_vector_clear (*insert
, num_edges
);
454 bitmap_vector_clear (*del
, last_basic_block_for_fn (cfun
));
455 compute_insert_delete (edge_list
, antloc
, later
, laterin
, *insert
, *del
);
457 sbitmap_vector_free (laterin
);
458 sbitmap_vector_free (later
);
460 #ifdef LCM_DEBUG_INFO
463 dump_bitmap_vector (dump_file
, "pre_insert_map", "", *insert
, num_edges
);
464 dump_bitmap_vector (dump_file
, "pre_delete_map", "", *del
,
465 last_basic_block_for_fn (cfun
));
472 /* Wrapper to allocate avin/avout and call pre_edge_lcm_avs. */
475 pre_edge_lcm (int n_exprs
, sbitmap
*transp
,
476 sbitmap
*avloc
, sbitmap
*antloc
, sbitmap
*kill
,
477 sbitmap
**insert
, sbitmap
**del
)
479 struct edge_list
*edge_list
;
480 sbitmap
*avin
, *avout
;
482 avin
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
483 avout
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
485 edge_list
= pre_edge_lcm_avs (n_exprs
, transp
, avloc
, antloc
, kill
,
486 avin
, avout
, insert
, del
);
488 sbitmap_vector_free (avout
);
489 sbitmap_vector_free (avin
);
494 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
495 Return the number of passes we performed to iterate to a solution. */
498 compute_available (sbitmap
*avloc
, sbitmap
*kill
, sbitmap
*avout
,
502 basic_block
*worklist
, *qin
, *qout
, *qend
, bb
;
506 /* Allocate a worklist array/queue. Entries are only added to the
507 list if they were not already on the list. So the size is
508 bounded by the number of basic blocks. */
509 qin
= qout
= worklist
=
510 XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
512 /* We want a maximal solution. */
513 bitmap_vector_ones (avout
, last_basic_block_for_fn (cfun
));
515 /* Put every block on the worklist; this is necessary because of the
516 optimistic initialization of AVOUT above. Use reverse postorder
517 to make the forward dataflow problem require less iterations. */
518 int *rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
519 int n
= pre_and_rev_post_order_compute_fn (cfun
, NULL
, rpo
, false);
520 for (int i
= 0; i
< n
; ++i
)
522 bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
529 qend
= &worklist
[n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
];
530 qlen
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
532 /* Mark blocks which are successors of the entry block so that we
533 can easily identify them below. */
534 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
535 e
->dest
->aux
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
537 /* Iterate until the worklist is empty. */
540 /* Take the first entry off the worklist. */
547 /* If one of the predecessor blocks is the ENTRY block, then the
548 intersection of avouts is the null set. We can identify such blocks
549 by the special value in the AUX field in the block structure. */
550 if (bb
->aux
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
551 /* Do not clear the aux field for blocks which are successors of the
552 ENTRY block. That way we never add then to the worklist again. */
553 bitmap_clear (avin
[bb
->index
]);
556 /* Clear the aux field of this block so that it can be added to
557 the worklist again if necessary. */
559 bitmap_intersection_of_preds (avin
[bb
->index
], avout
, bb
);
562 if (bitmap_ior_and_compl (avout
[bb
->index
], avloc
[bb
->index
],
563 avin
[bb
->index
], kill
[bb
->index
]))
564 /* If the out state of this block changed, then we need
565 to add the successors of this block to the worklist
566 if they are not already on the worklist. */
567 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
568 if (!e
->dest
->aux
&& e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
579 clear_aux_for_edges ();
580 clear_aux_for_blocks ();
584 /* Compute the farthest vector for edge based lcm. */
587 compute_farthest (struct edge_list
*edge_list
, int n_exprs
,
588 sbitmap
*st_avout
, sbitmap
*st_avin
, sbitmap
*st_antin
,
589 sbitmap
*kill
, sbitmap
*farthest
)
592 basic_block pred
, succ
;
594 num_edges
= NUM_EDGES (edge_list
);
596 auto_sbitmap
difference (n_exprs
), temp_bitmap (n_exprs
);
597 for (x
= 0; x
< num_edges
; x
++)
599 pred
= INDEX_EDGE_PRED_BB (edge_list
, x
);
600 succ
= INDEX_EDGE_SUCC_BB (edge_list
, x
);
601 if (succ
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
602 bitmap_copy (farthest
[x
], st_avout
[pred
->index
]);
605 if (pred
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
606 bitmap_clear (farthest
[x
]);
609 bitmap_and_compl (difference
, st_avout
[pred
->index
],
610 st_antin
[succ
->index
]);
611 bitmap_not (temp_bitmap
, st_avin
[succ
->index
]);
612 bitmap_and_or (farthest
[x
], difference
,
613 kill
[succ
->index
], temp_bitmap
);
619 /* Compute nearer and nearerout vectors for edge based lcm.
621 This is the mirror of compute_laterin, additional comments on the
622 implementation can be found before compute_laterin. */
625 compute_nearerout (struct edge_list
*edge_list
, sbitmap
*farthest
,
626 sbitmap
*st_avloc
, sbitmap
*nearer
, sbitmap
*nearerout
)
630 basic_block
*worklist
, *tos
, bb
;
633 num_edges
= NUM_EDGES (edge_list
);
635 /* Allocate a worklist array/queue. Entries are only added to the
636 list if they were not already on the list. So the size is
637 bounded by the number of basic blocks. */
638 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
640 /* Initialize NEARER for each edge and build a mapping from an edge to
642 for (i
= 0; i
< num_edges
; i
++)
643 INDEX_EDGE (edge_list
, i
)->aux
= (void *) (size_t) i
;
645 /* We want a maximal solution. */
646 bitmap_vector_ones (nearer
, num_edges
);
648 /* Note that even though we want an optimistic setting of NEARER, we
649 do not want to be overly optimistic. Consider an incoming edge to
650 the exit block. That edge should always have a NEARER value the
651 same as FARTHEST for that edge. */
652 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
653 bitmap_copy (nearer
[(size_t)e
->aux
], farthest
[(size_t)e
->aux
]);
655 /* Add all the blocks to the worklist. This prevents an early exit
656 from the loop given our optimistic initialization of NEARER. */
657 FOR_EACH_BB_FN (bb
, cfun
)
663 /* Iterate until the worklist is empty. */
664 while (tos
!= worklist
)
666 /* Take the first entry off the worklist. */
670 /* Compute the intersection of NEARER for each outgoing edge from B. */
671 bitmap_ones (nearerout
[bb
->index
]);
672 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
673 bitmap_and (nearerout
[bb
->index
], nearerout
[bb
->index
],
674 nearer
[(size_t) e
->aux
]);
676 /* Calculate NEARER for all incoming edges. */
677 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
678 if (bitmap_ior_and_compl (nearer
[(size_t) e
->aux
],
679 farthest
[(size_t) e
->aux
],
680 nearerout
[e
->dest
->index
],
681 st_avloc
[e
->dest
->index
])
682 /* If NEARER for an incoming edge was changed, then we need
683 to add the source of the incoming edge to the worklist. */
684 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && e
->src
->aux
== 0)
691 /* Computation of insertion and deletion points requires computing NEAREROUT
692 for the ENTRY block. We allocated an extra entry in the NEAREROUT array
693 for just this purpose. */
694 bitmap_ones (nearerout
[last_basic_block_for_fn (cfun
)]);
695 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
696 bitmap_and (nearerout
[last_basic_block_for_fn (cfun
)],
697 nearerout
[last_basic_block_for_fn (cfun
)],
698 nearer
[(size_t) e
->aux
]);
700 clear_aux_for_edges ();
704 /* Compute the insertion and deletion points for edge based LCM. */
707 compute_rev_insert_delete (struct edge_list
*edge_list
, sbitmap
*st_avloc
,
708 sbitmap
*nearer
, sbitmap
*nearerout
,
709 sbitmap
*insert
, sbitmap
*del
)
714 FOR_EACH_BB_FN (bb
, cfun
)
715 bitmap_and_compl (del
[bb
->index
], st_avloc
[bb
->index
],
716 nearerout
[bb
->index
]);
718 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
720 basic_block b
= INDEX_EDGE_PRED_BB (edge_list
, x
);
721 if (b
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
722 bitmap_and_compl (insert
[x
], nearer
[x
],
723 nearerout
[last_basic_block_for_fn (cfun
)]);
725 bitmap_and_compl (insert
[x
], nearer
[x
], nearerout
[b
->index
]);
729 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
730 insert and delete vectors for edge based reverse LCM. Returns an
731 edgelist which is used to map the insert vector to what edge
732 an expression should be inserted on. */
735 pre_edge_rev_lcm (int n_exprs
, sbitmap
*transp
,
736 sbitmap
*st_avloc
, sbitmap
*st_antloc
, sbitmap
*kill
,
737 sbitmap
**insert
, sbitmap
**del
)
739 sbitmap
*st_antin
, *st_antout
;
740 sbitmap
*st_avout
, *st_avin
, *farthest
;
741 sbitmap
*nearer
, *nearerout
;
742 struct edge_list
*edge_list
;
745 edge_list
= create_edge_list ();
746 num_edges
= NUM_EDGES (edge_list
);
748 st_antin
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
749 st_antout
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
750 bitmap_vector_clear (st_antin
, last_basic_block_for_fn (cfun
));
751 bitmap_vector_clear (st_antout
, last_basic_block_for_fn (cfun
));
752 compute_antinout_edge (st_antloc
, transp
, st_antin
, st_antout
);
754 /* Compute global anticipatability. */
755 st_avout
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
756 st_avin
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
757 compute_available (st_avloc
, kill
, st_avout
, st_avin
);
759 #ifdef LCM_DEBUG_INFO
762 fprintf (dump_file
, "Edge List:\n");
763 verify_edge_list (dump_file
, edge_list
);
764 print_edge_list (dump_file
, edge_list
);
765 dump_bitmap_vector (dump_file
, "transp", "", transp
,
766 last_basic_block_for_fn (cfun
));
767 dump_bitmap_vector (dump_file
, "st_avloc", "", st_avloc
,
768 last_basic_block_for_fn (cfun
));
769 dump_bitmap_vector (dump_file
, "st_antloc", "", st_antloc
,
770 last_basic_block_for_fn (cfun
));
771 dump_bitmap_vector (dump_file
, "st_antin", "", st_antin
,
772 last_basic_block_for_fn (cfun
));
773 dump_bitmap_vector (dump_file
, "st_antout", "", st_antout
,
774 last_basic_block_for_fn (cfun
));
775 dump_bitmap_vector (dump_file
, "st_kill", "", kill
,
776 last_basic_block_for_fn (cfun
));
780 #ifdef LCM_DEBUG_INFO
783 dump_bitmap_vector (dump_file
, "st_avout", "", st_avout
, last_basic_block_for_fn (cfun
));
784 dump_bitmap_vector (dump_file
, "st_avin", "", st_avin
, last_basic_block_for_fn (cfun
));
788 /* Compute farthestness. */
789 farthest
= sbitmap_vector_alloc (num_edges
, n_exprs
);
790 compute_farthest (edge_list
, n_exprs
, st_avout
, st_avin
, st_antin
,
793 #ifdef LCM_DEBUG_INFO
795 dump_bitmap_vector (dump_file
, "farthest", "", farthest
, num_edges
);
798 sbitmap_vector_free (st_antin
);
799 sbitmap_vector_free (st_antout
);
801 sbitmap_vector_free (st_avin
);
802 sbitmap_vector_free (st_avout
);
804 nearer
= sbitmap_vector_alloc (num_edges
, n_exprs
);
806 /* Allocate an extra element for the entry block. */
807 nearerout
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
) + 1,
809 compute_nearerout (edge_list
, farthest
, st_avloc
, nearer
, nearerout
);
811 #ifdef LCM_DEBUG_INFO
814 dump_bitmap_vector (dump_file
, "nearerout", "", nearerout
,
815 last_basic_block_for_fn (cfun
) + 1);
816 dump_bitmap_vector (dump_file
, "nearer", "", nearer
, num_edges
);
820 sbitmap_vector_free (farthest
);
822 *insert
= sbitmap_vector_alloc (num_edges
, n_exprs
);
823 *del
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), n_exprs
);
824 compute_rev_insert_delete (edge_list
, st_avloc
, nearer
, nearerout
,
827 sbitmap_vector_free (nearerout
);
828 sbitmap_vector_free (nearer
);
830 #ifdef LCM_DEBUG_INFO
833 dump_bitmap_vector (dump_file
, "pre_insert_map", "", *insert
, num_edges
);
834 dump_bitmap_vector (dump_file
, "pre_delete_map", "", *del
,
835 last_basic_block_for_fn (cfun
));