c++: fix explicit/copy problem [PR109247]
[official-gcc.git] / gcc / dse.cc
blob802b949cfb2523d6cb389f64c88ec7cbfa6606c8
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2023 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #undef BASELINE
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52 #include "calls.h"
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
77 The pass is logically broken into 7 steps:
79 0) Initialization.
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
94 4) Solve the dataflow equations.
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
102 7) Cleanup.
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
121 The global problem is formulated as follows:
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
147 There are two places for further enhancements to this algorithm:
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
152 A <- r100
153 ... <- A
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
220 struct insn_info_type;
222 /* This structure holds information about a candidate store. */
223 class store_info
225 public:
227 /* False means this is a clobber. */
228 bool is_set;
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
238 /* This is the cselib value. */
239 cselib_val *cse_base;
241 /* This canonized mem. */
242 rtx mem;
244 /* Canonized MEM address for use by canon_true_dependence. */
245 rtx mem_addr;
247 /* The offset of the first byte associated with the operation. */
248 poly_int64 offset;
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
252 poly_int64 width;
254 union
256 /* A bitmask as wide as the number of bytes in the word that
257 contains a 1 if the byte may be needed. The store is unused if
258 all of the bits are 0. This is used if IS_LARGE is false. */
259 unsigned HOST_WIDE_INT small_bitmask;
261 struct
263 /* A bitmap with one bit per byte, or null if the number of
264 bytes isn't known at compile time. A cleared bit means
265 the position is needed. Used if IS_LARGE is true. */
266 bitmap bmap;
268 /* When BITMAP is nonnull, this counts the number of set bits
269 (i.e. unneeded bytes) in the bitmap. If it is equal to
270 WIDTH, the whole store is unused.
272 When BITMAP is null:
273 - the store is definitely not needed when COUNT == 1
274 - all the store is needed when COUNT == 0 and RHS is nonnull
275 - otherwise we don't know which parts of the store are needed. */
276 int count;
277 } large;
278 } positions_needed;
280 /* The next store info for this insn. */
281 class store_info *next;
283 /* The right hand side of the store. This is used if there is a
284 subsequent reload of the mems address somewhere later in the
285 basic block. */
286 rtx rhs;
288 /* If rhs is or holds a constant, this contains that constant,
289 otherwise NULL. */
290 rtx const_rhs;
292 /* Set if this store stores the same constant value as REDUNDANT_REASON
293 insn stored. These aren't eliminated early, because doing that
294 might prevent the earlier larger store to be eliminated. */
295 struct insn_info_type *redundant_reason;
298 /* Return a bitmask with the first N low bits set. */
300 static unsigned HOST_WIDE_INT
301 lowpart_bitmask (int n)
303 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
304 return mask >> (HOST_BITS_PER_WIDE_INT - n);
307 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
309 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
311 /* This structure holds information about a load. These are only
312 built for rtx bases. */
313 class read_info_type
315 public:
316 /* The id of the mem group of the base address. */
317 int group_id;
319 /* The offset of the first byte associated with the operation. */
320 poly_int64 offset;
322 /* The number of bytes covered by the operation, or -1 if not known. */
323 poly_int64 width;
325 /* The mem being read. */
326 rtx mem;
328 /* The next read_info for this insn. */
329 class read_info_type *next;
331 typedef class read_info_type *read_info_t;
333 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
335 /* One of these records is created for each insn. */
337 struct insn_info_type
339 /* Set true if the insn contains a store but the insn itself cannot
340 be deleted. This is set if the insn is a parallel and there is
341 more than one non dead output or if the insn is in some way
342 volatile. */
343 bool cannot_delete;
345 /* This field is only used by the global algorithm. It is set true
346 if the insn contains any read of mem except for a (1). This is
347 also set if the insn is a call or has a clobber mem. If the insn
348 contains a wild read, the use_rec will be null. */
349 bool wild_read;
351 /* This is true only for CALL instructions which could potentially read
352 any non-frame memory location. This field is used by the global
353 algorithm. */
354 bool non_frame_wild_read;
356 /* This field is only used for the processing of const functions.
357 These functions cannot read memory, but they can read the stack
358 because that is where they may get their parms. We need to be
359 this conservative because, like the store motion pass, we don't
360 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
361 Moreover, we need to distinguish two cases:
362 1. Before reload (register elimination), the stores related to
363 outgoing arguments are stack pointer based and thus deemed
364 of non-constant base in this pass. This requires special
365 handling but also means that the frame pointer based stores
366 need not be killed upon encountering a const function call.
367 2. After reload, the stores related to outgoing arguments can be
368 either stack pointer or hard frame pointer based. This means
369 that we have no other choice than also killing all the frame
370 pointer based stores upon encountering a const function call.
371 This field is set after reload for const function calls and before
372 reload for const tail function calls on targets where arg pointer
373 is the frame pointer. Having this set is less severe than a wild
374 read, it just means that all the frame related stores are killed
375 rather than all the stores. */
376 bool frame_read;
378 /* This field is only used for the processing of const functions.
379 It is set if the insn may contain a stack pointer based store. */
380 bool stack_pointer_based;
382 /* This is true if any of the sets within the store contains a
383 cselib base. Such stores can only be deleted by the local
384 algorithm. */
385 bool contains_cselib_groups;
387 /* The insn. */
388 rtx_insn *insn;
390 /* The list of mem sets or mem clobbers that are contained in this
391 insn. If the insn is deletable, it contains only one mem set.
392 But it could also contain clobbers. Insns that contain more than
393 one mem set are not deletable, but each of those mems are here in
394 order to provide info to delete other insns. */
395 store_info *store_rec;
397 /* The linked list of mem uses in this insn. Only the reads from
398 rtx bases are listed here. The reads to cselib bases are
399 completely processed during the first scan and so are never
400 created. */
401 read_info_t read_rec;
403 /* The live fixed registers. We assume only fixed registers can
404 cause trouble by being clobbered from an expanded pattern;
405 storing only the live fixed registers (rather than all registers)
406 means less memory needs to be allocated / copied for the individual
407 stores. */
408 regset fixed_regs_live;
410 /* The prev insn in the basic block. */
411 struct insn_info_type * prev_insn;
413 /* The linked list of insns that are in consideration for removal in
414 the forwards pass through the basic block. This pointer may be
415 trash as it is not cleared when a wild read occurs. The only
416 time it is guaranteed to be correct is when the traversal starts
417 at active_local_stores. */
418 struct insn_info_type * next_local_store;
420 typedef struct insn_info_type *insn_info_t;
422 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
424 /* The linked list of stores that are under consideration in this
425 basic block. */
426 static insn_info_t active_local_stores;
427 static int active_local_stores_len;
429 struct dse_bb_info_type
431 /* Pointer to the insn info for the last insn in the block. These
432 are linked so this is how all of the insns are reached. During
433 scanning this is the current insn being scanned. */
434 insn_info_t last_insn;
436 /* The info for the global dataflow problem. */
439 /* This is set if the transfer function should and in the wild_read
440 bitmap before applying the kill and gen sets. That vector knocks
441 out most of the bits in the bitmap and thus speeds up the
442 operations. */
443 bool apply_wild_read;
445 /* The following 4 bitvectors hold information about which positions
446 of which stores are live or dead. They are indexed by
447 get_bitmap_index. */
449 /* The set of store positions that exist in this block before a wild read. */
450 bitmap gen;
452 /* The set of load positions that exist in this block above the
453 same position of a store. */
454 bitmap kill;
456 /* The set of stores that reach the top of the block without being
457 killed by a read.
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill set, this is too
462 expensive. So initially, the in set will only be created for the
463 exit block and any block that contains a wild read. */
464 bitmap in;
466 /* The set of stores that reach the bottom of the block from it's
467 successors.
469 Do not represent the in if it is all ones. Note that this is
470 what the bitvector should logically be initialized to for a set
471 intersection problem. However, like the kill and in set, this is
472 too expensive. So what is done is that the confluence operator
473 just initializes the vector from one of the out sets of the
474 successors of the block. */
475 bitmap out;
477 /* The following bitvector is indexed by the reg number. It
478 contains the set of regs that are live at the current instruction
479 being processed. While it contains info for all of the
480 registers, only the hard registers are actually examined. It is used
481 to assure that shift and/or add sequences that are inserted do not
482 accidentally clobber live hard regs. */
483 bitmap regs_live;
486 typedef struct dse_bb_info_type *bb_info_t;
488 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
489 ("bb_info_pool");
491 /* Table to hold all bb_infos. */
492 static bb_info_t *bb_table;
494 /* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
498 struct group_info
500 /* The actual base of the address. */
501 rtx rtx_base;
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
518 rtx base_mem;
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
523 /* These two sets of two bitmaps are used to keep track of how many
524 stores are actually referencing that position from this base. We
525 only do this for rtx bases as this will be used to assign
526 positions in the bitmaps for the global problem. Bit N is set in
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
546 /* The positions in this bitmap have the same assignments as the in,
547 out, gen and kill bitmaps. This bitmap is all zeros except for
548 the positions that are occupied by stores for this group. */
549 bitmap group_kill;
551 /* The offset_map is used to map the offsets from this base into
552 positions in the global bitmaps. It is only created after all of
553 the all of stores have been scanned and we know which ones we
554 care about. */
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
559 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
561 /* Index into the rtx_group_vec. */
562 static int rtx_group_next_id;
565 static vec<group_info *> rtx_group_vec;
568 /* This structure holds the set of changes that are being deferred
569 when removing read operation. See replace_read. */
570 struct deferred_change
573 /* The mem that is being replaced. */
574 rtx *loc;
576 /* The reg it is being replaced with. */
577 rtx reg;
579 struct deferred_change *next;
582 static object_allocator<deferred_change> deferred_change_pool
583 ("deferred_change_pool");
585 static deferred_change *deferred_change_list = NULL;
587 /* This is true except if cfun->stdarg -- i.e. we cannot do
588 this for vararg functions because they play games with the frame. */
589 static bool stores_off_frame_dead_at_return;
591 /* Counter for stats. */
592 static int globally_deleted;
593 static int locally_deleted;
595 static bitmap all_blocks;
597 /* Locations that are killed by calls in the global phase. */
598 static bitmap kill_on_calls;
600 /* The number of bits used in the global bitmaps. */
601 static unsigned int current_position;
603 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
605 static void
606 print_range (FILE *file, poly_int64 offset, poly_int64 width)
608 fprintf (file, "[");
609 print_dec (offset, file, SIGNED);
610 fprintf (file, "..");
611 print_dec (offset + width, file, SIGNED);
612 fprintf (file, ")");
615 /*----------------------------------------------------------------------------
616 Zeroth step.
618 Initialization.
619 ----------------------------------------------------------------------------*/
622 /* Hashtable callbacks for maintaining the "bases" field of
623 store_group_info, given that the addresses are function invariants. */
625 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
627 static inline hashval_t hash (const group_info *);
628 static inline bool equal (const group_info *, const group_info *);
631 inline bool
632 invariant_group_base_hasher::equal (const group_info *gi1,
633 const group_info *gi2)
635 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
638 inline hashval_t
639 invariant_group_base_hasher::hash (const group_info *gi)
641 int do_not_record;
642 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
645 /* Tables of group_info structures, hashed by base value. */
646 static hash_table<invariant_group_base_hasher> *rtx_group_table;
649 /* Get the GROUP for BASE. Add a new group if it is not there. */
651 static group_info *
652 get_group_info (rtx base)
654 struct group_info tmp_gi;
655 group_info *gi;
656 group_info **slot;
658 gcc_assert (base != NULL_RTX);
660 /* Find the store_base_info structure for BASE, creating a new one
661 if necessary. */
662 tmp_gi.rtx_base = base;
663 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
664 gi = *slot;
666 if (gi == NULL)
668 *slot = gi = group_info_pool.allocate ();
669 gi->rtx_base = base;
670 gi->id = rtx_group_next_id++;
671 gi->base_mem = gen_rtx_MEM (BLKmode, base);
672 gi->canon_base_addr = canon_rtx (base);
673 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->process_globally = false;
681 gi->frame_related =
682 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
683 gi->offset_map_size_n = 0;
684 gi->offset_map_size_p = 0;
685 gi->offset_map_n = NULL;
686 gi->offset_map_p = NULL;
687 rtx_group_vec.safe_push (gi);
690 return gi;
694 /* Initialization of data structures. */
696 static void
697 dse_step0 (void)
699 locally_deleted = 0;
700 globally_deleted = 0;
702 bitmap_obstack_initialize (&dse_bitmap_obstack);
703 gcc_obstack_init (&dse_obstack);
705 scratch = BITMAP_ALLOC (&reg_obstack);
706 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
709 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
711 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
712 rtx_group_next_id = 0;
714 stores_off_frame_dead_at_return = !cfun->stdarg;
716 init_alias_analysis ();
721 /*----------------------------------------------------------------------------
722 First step.
724 Scan all of the insns. Any random ordering of the blocks is fine.
725 Each block is scanned in forward order to accommodate cselib which
726 is used to remove stores with non-constant bases.
727 ----------------------------------------------------------------------------*/
729 /* Delete all of the store_info recs from INSN_INFO. */
731 static void
732 free_store_info (insn_info_t insn_info)
734 store_info *cur = insn_info->store_rec;
735 while (cur)
737 store_info *next = cur->next;
738 if (cur->is_large)
739 BITMAP_FREE (cur->positions_needed.large.bmap);
740 if (cur->cse_base)
741 cse_store_info_pool.remove (cur);
742 else
743 rtx_store_info_pool.remove (cur);
744 cur = next;
747 insn_info->cannot_delete = true;
748 insn_info->contains_cselib_groups = false;
749 insn_info->store_rec = NULL;
752 struct note_add_store_info
754 rtx_insn *first, *current;
755 regset fixed_regs_live;
756 bool failure;
759 /* Callback for emit_inc_dec_insn_before via note_stores.
760 Check if a register is clobbered which is live afterwards. */
762 static void
763 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
765 rtx_insn *insn;
766 note_add_store_info *info = (note_add_store_info *) data;
768 if (!REG_P (loc))
769 return;
771 /* If this register is referenced by the current or an earlier insn,
772 that's OK. E.g. this applies to the register that is being incremented
773 with this addition. */
774 for (insn = info->first;
775 insn != NEXT_INSN (info->current);
776 insn = NEXT_INSN (insn))
777 if (reg_referenced_p (loc, PATTERN (insn)))
778 return;
780 /* If we come here, we have a clobber of a register that's only OK
781 if that register is not live. If we don't have liveness information
782 available, fail now. */
783 if (!info->fixed_regs_live)
785 info->failure = true;
786 return;
788 /* Now check if this is a live fixed register. */
789 unsigned int end_regno = END_REGNO (loc);
790 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
791 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
792 info->failure = true;
795 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
796 SRC + SRCOFF before insn ARG. */
798 static int
799 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
800 rtx op ATTRIBUTE_UNUSED,
801 rtx dest, rtx src, rtx srcoff, void *arg)
803 insn_info_t insn_info = (insn_info_t) arg;
804 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
805 note_add_store_info info;
807 /* We can reuse all operands without copying, because we are about
808 to delete the insn that contained it. */
809 if (srcoff)
811 start_sequence ();
812 emit_insn (gen_add3_insn (dest, src, srcoff));
813 new_insn = get_insns ();
814 end_sequence ();
816 else
817 new_insn = gen_move_insn (dest, src);
818 info.first = new_insn;
819 info.fixed_regs_live = insn_info->fixed_regs_live;
820 info.failure = false;
821 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
823 info.current = cur;
824 note_stores (cur, note_add_store, &info);
827 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
828 return it immediately, communicating the failure to its caller. */
829 if (info.failure)
830 return 1;
832 emit_insn_before (new_insn, insn);
834 return 0;
837 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
838 is there, is split into a separate insn.
839 Return true on success (or if there was nothing to do), false on failure. */
841 static bool
842 check_for_inc_dec_1 (insn_info_t insn_info)
844 rtx_insn *insn = insn_info->insn;
845 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
846 if (note)
847 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
848 insn_info) == 0;
850 /* Punt on stack pushes, those don't have REG_INC notes and we are
851 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
852 subrtx_iterator::array_type array;
853 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
855 const_rtx x = *iter;
856 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
857 return false;
860 return true;
864 /* Entry point for postreload. If you work on reload_cse, or you need this
865 anywhere else, consider if you can provide register liveness information
866 and add a parameter to this function so that it can be passed down in
867 insn_info.fixed_regs_live. */
868 bool
869 check_for_inc_dec (rtx_insn *insn)
871 insn_info_type insn_info;
872 rtx note;
874 insn_info.insn = insn;
875 insn_info.fixed_regs_live = NULL;
876 note = find_reg_note (insn, REG_INC, NULL_RTX);
877 if (note)
878 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
879 &insn_info) == 0;
881 /* Punt on stack pushes, those don't have REG_INC notes and we are
882 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
883 subrtx_iterator::array_type array;
884 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
886 const_rtx x = *iter;
887 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
888 return false;
891 return true;
894 /* Delete the insn and free all of the fields inside INSN_INFO. */
896 static void
897 delete_dead_store_insn (insn_info_t insn_info)
899 read_info_t read_info;
901 if (!dbg_cnt (dse))
902 return;
904 if (!check_for_inc_dec_1 (insn_info))
905 return;
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 fprintf (dump_file, "Locally deleting insn %d\n",
908 INSN_UID (insn_info->insn));
910 free_store_info (insn_info);
911 read_info = insn_info->read_rec;
913 while (read_info)
915 read_info_t next = read_info->next;
916 read_info_type_pool.remove (read_info);
917 read_info = next;
919 insn_info->read_rec = NULL;
921 delete_insn (insn_info->insn);
922 locally_deleted++;
923 insn_info->insn = NULL;
925 insn_info->wild_read = false;
928 /* Return whether DECL, a local variable, can possibly escape the current
929 function scope. */
931 static bool
932 local_variable_can_escape (tree decl)
934 if (TREE_ADDRESSABLE (decl))
935 return true;
937 /* If this is a partitioned variable, we need to consider all the variables
938 in the partition. This is necessary because a store into one of them can
939 be replaced with a store into another and this may not change the outcome
940 of the escape analysis. */
941 if (cfun->gimple_df->decls_to_pointers != NULL)
943 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
944 if (namep)
945 return TREE_ADDRESSABLE (*namep);
948 return false;
951 /* Return whether EXPR can possibly escape the current function scope. */
953 static bool
954 can_escape (tree expr)
956 tree base;
957 if (!expr)
958 return true;
959 base = get_base_address (expr);
960 if (DECL_P (base)
961 && !may_be_aliased (base)
962 && !(VAR_P (base)
963 && !DECL_EXTERNAL (base)
964 && !TREE_STATIC (base)
965 && local_variable_can_escape (base)))
966 return false;
967 return true;
970 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
971 OFFSET and WIDTH. */
973 static void
974 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
975 tree expr)
977 /* Non-constant offsets and widths act as global kills, so there's no point
978 trying to use them to derive global DSE candidates. */
979 HOST_WIDE_INT i, const_offset, const_width;
980 bool expr_escapes = can_escape (expr);
981 if (offset.is_constant (&const_offset)
982 && width.is_constant (&const_width)
983 && const_offset > -MAX_OFFSET
984 && const_offset + const_width < MAX_OFFSET)
985 for (i = const_offset; i < const_offset + const_width; ++i)
987 bitmap store1;
988 bitmap store2;
989 bitmap escaped;
990 int ai;
991 if (i < 0)
993 store1 = group->store1_n;
994 store2 = group->store2_n;
995 escaped = group->escaped_n;
996 ai = -i;
998 else
1000 store1 = group->store1_p;
1001 store2 = group->store2_p;
1002 escaped = group->escaped_p;
1003 ai = i;
1006 if (!bitmap_set_bit (store1, ai))
1007 bitmap_set_bit (store2, ai);
1008 else
1010 if (i < 0)
1012 if (group->offset_map_size_n < ai)
1013 group->offset_map_size_n = ai;
1015 else
1017 if (group->offset_map_size_p < ai)
1018 group->offset_map_size_p = ai;
1021 if (expr_escapes)
1022 bitmap_set_bit (escaped, ai);
1026 static void
1027 reset_active_stores (void)
1029 active_local_stores = NULL;
1030 active_local_stores_len = 0;
1033 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1035 static void
1036 free_read_records (bb_info_t bb_info)
1038 insn_info_t insn_info = bb_info->last_insn;
1039 read_info_t *ptr = &insn_info->read_rec;
1040 while (*ptr)
1042 read_info_t next = (*ptr)->next;
1043 read_info_type_pool.remove (*ptr);
1044 *ptr = next;
1048 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1050 static void
1051 add_wild_read (bb_info_t bb_info)
1053 insn_info_t insn_info = bb_info->last_insn;
1054 insn_info->wild_read = true;
1055 free_read_records (bb_info);
1056 reset_active_stores ();
1059 /* Set the BB_INFO so that the last insn is marked as a wild read of
1060 non-frame locations. */
1062 static void
1063 add_non_frame_wild_read (bb_info_t bb_info)
1065 insn_info_t insn_info = bb_info->last_insn;
1066 insn_info->non_frame_wild_read = true;
1067 free_read_records (bb_info);
1068 reset_active_stores ();
1071 /* Return true if X is a constant or one of the registers that behave
1072 as a constant over the life of a function. This is equivalent to
1073 !rtx_varies_p for memory addresses. */
1075 static bool
1076 const_or_frame_p (rtx x)
1078 if (CONSTANT_P (x))
1079 return true;
1081 if (GET_CODE (x) == REG)
1083 /* Note that we have to test for the actual rtx used for the frame
1084 and arg pointers and not just the register number in case we have
1085 eliminated the frame and/or arg pointer and are using it
1086 for pseudos. */
1087 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1088 /* The arg pointer varies if it is not a fixed register. */
1089 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1090 || x == pic_offset_table_rtx)
1091 return true;
1092 return false;
1095 return false;
1098 /* Take all reasonable action to put the address of MEM into the form
1099 that we can do analysis on.
1101 The gold standard is to get the address into the form: address +
1102 OFFSET where address is something that rtx_varies_p considers a
1103 constant. When we can get the address in this form, we can do
1104 global analysis on it. Note that for constant bases, address is
1105 not actually returned, only the group_id. The address can be
1106 obtained from that.
1108 If that fails, we try cselib to get a value we can at least use
1109 locally. If that fails we return false.
1111 The GROUP_ID is set to -1 for cselib bases and the index of the
1112 group for non_varying bases.
1114 FOR_READ is true if this is a mem read and false if not. */
1116 static bool
1117 canon_address (rtx mem,
1118 int *group_id,
1119 poly_int64 *offset,
1120 cselib_val **base)
1122 machine_mode address_mode = get_address_mode (mem);
1123 rtx mem_address = XEXP (mem, 0);
1124 rtx expanded_address, address;
1125 int expanded;
1127 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1131 fprintf (dump_file, " mem: ");
1132 print_inline_rtx (dump_file, mem_address, 0);
1133 fprintf (dump_file, "\n");
1136 /* First see if just canon_rtx (mem_address) is const or frame,
1137 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1138 address = NULL_RTX;
1139 for (expanded = 0; expanded < 2; expanded++)
1141 if (expanded)
1143 /* Use cselib to replace all of the reg references with the full
1144 expression. This will take care of the case where we have
1146 r_x = base + offset;
1147 val = *r_x;
1149 by making it into
1151 val = *(base + offset); */
1153 expanded_address = cselib_expand_value_rtx (mem_address,
1154 scratch, 5);
1156 /* If this fails, just go with the address from first
1157 iteration. */
1158 if (!expanded_address)
1159 break;
1161 else
1162 expanded_address = mem_address;
1164 /* Split the address into canonical BASE + OFFSET terms. */
1165 address = canon_rtx (expanded_address);
1167 *offset = 0;
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1171 if (expanded)
1173 fprintf (dump_file, "\n after cselib_expand address: ");
1174 print_inline_rtx (dump_file, expanded_address, 0);
1175 fprintf (dump_file, "\n");
1178 fprintf (dump_file, "\n after canon_rtx address: ");
1179 print_inline_rtx (dump_file, address, 0);
1180 fprintf (dump_file, "\n");
1183 if (GET_CODE (address) == CONST)
1184 address = XEXP (address, 0);
1186 address = strip_offset_and_add (address, offset);
1188 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1189 && const_or_frame_p (address))
1191 group_info *group = get_group_info (address);
1193 if (dump_file && (dump_flags & TDF_DETAILS))
1195 fprintf (dump_file, " gid=%d offset=", group->id);
1196 print_dec (*offset, dump_file);
1197 fprintf (dump_file, "\n");
1199 *base = NULL;
1200 *group_id = group->id;
1201 return true;
1205 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1206 *group_id = -1;
1208 if (*base == NULL)
1210 if (dump_file && (dump_flags & TDF_DETAILS))
1211 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1212 return false;
1214 if (dump_file && (dump_flags & TDF_DETAILS))
1216 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1217 (*base)->uid, (*base)->hash);
1218 print_dec (*offset, dump_file);
1219 fprintf (dump_file, "\n");
1221 return true;
1225 /* Clear the rhs field from the active_local_stores array. */
1227 static void
1228 clear_rhs_from_active_local_stores (void)
1230 insn_info_t ptr = active_local_stores;
1232 while (ptr)
1234 store_info *store_info = ptr->store_rec;
1235 /* Skip the clobbers. */
1236 while (!store_info->is_set)
1237 store_info = store_info->next;
1239 store_info->rhs = NULL;
1240 store_info->const_rhs = NULL;
1242 ptr = ptr->next_local_store;
1247 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1249 static inline void
1250 set_position_unneeded (store_info *s_info, int pos)
1252 if (UNLIKELY (s_info->is_large))
1254 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1255 s_info->positions_needed.large.count++;
1257 else
1258 s_info->positions_needed.small_bitmask
1259 &= ~(HOST_WIDE_INT_1U << pos);
1262 /* Mark the whole store S_INFO as unneeded. */
1264 static inline void
1265 set_all_positions_unneeded (store_info *s_info)
1267 if (UNLIKELY (s_info->is_large))
1269 HOST_WIDE_INT width;
1270 if (s_info->width.is_constant (&width))
1272 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1273 s_info->positions_needed.large.count = width;
1275 else
1277 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1278 s_info->positions_needed.large.count = 1;
1281 else
1282 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1285 /* Return TRUE if any bytes from S_INFO store are needed. */
1287 static inline bool
1288 any_positions_needed_p (store_info *s_info)
1290 if (UNLIKELY (s_info->is_large))
1292 HOST_WIDE_INT width;
1293 if (s_info->width.is_constant (&width))
1295 gcc_checking_assert (s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count < width;
1298 else
1300 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1301 return s_info->positions_needed.large.count == 0;
1304 else
1305 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1308 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1309 store are known to be needed. */
1311 static inline bool
1312 all_positions_needed_p (store_info *s_info, poly_int64 start,
1313 poly_int64 width)
1315 gcc_assert (s_info->rhs);
1316 if (!s_info->width.is_constant ())
1318 gcc_assert (s_info->is_large
1319 && !s_info->positions_needed.large.bmap);
1320 return s_info->positions_needed.large.count == 0;
1323 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1324 a non-constant region of a constant-sized store. We can't say for
1325 sure that all positions are needed. */
1326 HOST_WIDE_INT const_start, const_width;
1327 if (!start.is_constant (&const_start)
1328 || !width.is_constant (&const_width))
1329 return false;
1331 if (UNLIKELY (s_info->is_large))
1333 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1334 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1335 return false;
1336 return true;
1338 else
1340 unsigned HOST_WIDE_INT mask
1341 = lowpart_bitmask (const_width) << const_start;
1342 return (s_info->positions_needed.small_bitmask & mask) == mask;
1347 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1348 poly_int64, basic_block, bool);
1351 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1352 there is a candidate store, after adding it to the appropriate
1353 local store group if so. */
1355 static int
1356 record_store (rtx body, bb_info_t bb_info)
1358 rtx mem, rhs, const_rhs, mem_addr;
1359 poly_int64 offset = 0;
1360 poly_int64 width = 0;
1361 insn_info_t insn_info = bb_info->last_insn;
1362 store_info *store_info = NULL;
1363 int group_id;
1364 cselib_val *base = NULL;
1365 insn_info_t ptr, last, redundant_reason;
1366 bool store_is_unused;
1368 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1369 return 0;
1371 mem = SET_DEST (body);
1373 /* If this is not used, then this cannot be used to keep the insn
1374 from being deleted. On the other hand, it does provide something
1375 that can be used to prove that another store is dead. */
1376 store_is_unused
1377 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1379 /* Check whether that value is a suitable memory location. */
1380 if (!MEM_P (mem))
1382 /* If the set or clobber is unused, then it does not effect our
1383 ability to get rid of the entire insn. */
1384 if (!store_is_unused)
1385 insn_info->cannot_delete = true;
1386 return 0;
1389 /* At this point we know mem is a mem. */
1390 if (GET_MODE (mem) == BLKmode)
1392 HOST_WIDE_INT const_size;
1393 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1397 add_wild_read (bb_info);
1398 insn_info->cannot_delete = true;
1399 return 0;
1401 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1402 as memset (addr, 0, 36); */
1403 else if (!MEM_SIZE_KNOWN_P (mem)
1404 || maybe_le (MEM_SIZE (mem), 0)
1405 /* This is a limit on the bitmap size, which is only relevant
1406 for constant-sized MEMs. */
1407 || (MEM_SIZE (mem).is_constant (&const_size)
1408 && const_size > MAX_OFFSET)
1409 || GET_CODE (body) != SET
1410 || !CONST_INT_P (SET_SRC (body)))
1412 if (!store_is_unused)
1414 /* If the set or clobber is unused, then it does not effect our
1415 ability to get rid of the entire insn. */
1416 insn_info->cannot_delete = true;
1417 clear_rhs_from_active_local_stores ();
1419 return 0;
1423 /* We can still process a volatile mem, we just cannot delete it. */
1424 if (MEM_VOLATILE_P (mem))
1425 insn_info->cannot_delete = true;
1427 if (!canon_address (mem, &group_id, &offset, &base))
1429 clear_rhs_from_active_local_stores ();
1430 return 0;
1433 if (GET_MODE (mem) == BLKmode)
1434 width = MEM_SIZE (mem);
1435 else
1436 width = GET_MODE_SIZE (GET_MODE (mem));
1438 if (!endpoint_representable_p (offset, width))
1440 clear_rhs_from_active_local_stores ();
1441 return 0;
1444 if (known_eq (width, 0))
1445 return 0;
1447 if (group_id >= 0)
1449 /* In the restrictive case where the base is a constant or the
1450 frame pointer we can do global analysis. */
1452 group_info *group
1453 = rtx_group_vec[group_id];
1454 tree expr = MEM_EXPR (mem);
1456 store_info = rtx_store_info_pool.allocate ();
1457 set_usage_bits (group, offset, width, expr);
1459 if (dump_file && (dump_flags & TDF_DETAILS))
1461 fprintf (dump_file, " processing const base store gid=%d",
1462 group_id);
1463 print_range (dump_file, offset, width);
1464 fprintf (dump_file, "\n");
1467 else
1469 if (may_be_sp_based_p (XEXP (mem, 0)))
1470 insn_info->stack_pointer_based = true;
1471 insn_info->contains_cselib_groups = true;
1473 store_info = cse_store_info_pool.allocate ();
1474 group_id = -1;
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1478 fprintf (dump_file, " processing cselib store ");
1479 print_range (dump_file, offset, width);
1480 fprintf (dump_file, "\n");
1484 const_rhs = rhs = NULL_RTX;
1485 if (GET_CODE (body) == SET
1486 /* No place to keep the value after ra. */
1487 && !reload_completed
1488 && (REG_P (SET_SRC (body))
1489 || GET_CODE (SET_SRC (body)) == SUBREG
1490 || CONSTANT_P (SET_SRC (body)))
1491 && !MEM_VOLATILE_P (mem)
1492 /* Sometimes the store and reload is used for truncation and
1493 rounding. */
1494 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1496 rhs = SET_SRC (body);
1497 if (CONSTANT_P (rhs))
1498 const_rhs = rhs;
1499 else if (body == PATTERN (insn_info->insn))
1501 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1502 if (tem && CONSTANT_P (XEXP (tem, 0)))
1503 const_rhs = XEXP (tem, 0);
1505 if (const_rhs == NULL_RTX && REG_P (rhs))
1507 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1509 if (tem && CONSTANT_P (tem))
1510 const_rhs = tem;
1511 else
1513 /* If RHS is set only once to a constant, set CONST_RHS
1514 to the constant. */
1515 rtx def_src = df_find_single_def_src (rhs);
1516 if (def_src != nullptr && CONSTANT_P (def_src))
1517 const_rhs = def_src;
1522 /* Check to see if this stores causes some other stores to be
1523 dead. */
1524 ptr = active_local_stores;
1525 last = NULL;
1526 redundant_reason = NULL;
1527 mem = canon_rtx (mem);
1529 if (group_id < 0)
1530 mem_addr = base->val_rtx;
1531 else
1533 group_info *group = rtx_group_vec[group_id];
1534 mem_addr = group->canon_base_addr;
1536 if (maybe_ne (offset, 0))
1537 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1539 while (ptr)
1541 insn_info_t next = ptr->next_local_store;
1542 class store_info *s_info = ptr->store_rec;
1543 bool del = true;
1545 /* Skip the clobbers. We delete the active insn if this insn
1546 shadows the set. To have been put on the active list, it
1547 has exactly on set. */
1548 while (!s_info->is_set)
1549 s_info = s_info->next;
1551 if (s_info->group_id == group_id && s_info->cse_base == base)
1553 HOST_WIDE_INT i;
1554 if (dump_file && (dump_flags & TDF_DETAILS))
1556 fprintf (dump_file, " trying store in insn=%d gid=%d",
1557 INSN_UID (ptr->insn), s_info->group_id);
1558 print_range (dump_file, s_info->offset, s_info->width);
1559 fprintf (dump_file, "\n");
1562 /* Even if PTR won't be eliminated as unneeded, if both
1563 PTR and this insn store the same constant value, we might
1564 eliminate this insn instead. */
1565 if (s_info->const_rhs
1566 && const_rhs
1567 && known_subrange_p (offset, width,
1568 s_info->offset, s_info->width)
1569 && all_positions_needed_p (s_info, offset - s_info->offset,
1570 width)
1571 /* We can only remove the later store if the earlier aliases
1572 at least all accesses the later one. */
1573 && mems_same_for_tbaa_p (s_info->mem, mem))
1575 if (GET_MODE (mem) == BLKmode)
1577 if (GET_MODE (s_info->mem) == BLKmode
1578 && s_info->const_rhs == const_rhs)
1579 redundant_reason = ptr;
1581 else if (s_info->const_rhs == const0_rtx
1582 && const_rhs == const0_rtx)
1583 redundant_reason = ptr;
1584 else
1586 rtx val;
1587 start_sequence ();
1588 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1589 BLOCK_FOR_INSN (insn_info->insn),
1590 true);
1591 if (get_insns () != NULL)
1592 val = NULL_RTX;
1593 end_sequence ();
1594 if (val && rtx_equal_p (val, const_rhs))
1595 redundant_reason = ptr;
1599 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1600 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1601 /* The new store touches every byte that S_INFO does. */
1602 set_all_positions_unneeded (s_info);
1603 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1604 && s_info->width.is_constant (&const_s_width)
1605 && width.is_constant (&const_width))
1607 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1608 begin_unneeded = MAX (begin_unneeded, 0);
1609 end_unneeded = MIN (end_unneeded, const_s_width);
1610 for (i = begin_unneeded; i < end_unneeded; ++i)
1611 set_position_unneeded (s_info, i);
1613 else
1615 /* We don't know which parts of S_INFO are needed and
1616 which aren't, so invalidate the RHS. */
1617 s_info->rhs = NULL;
1618 s_info->const_rhs = NULL;
1621 else if (s_info->rhs)
1622 /* Need to see if it is possible for this store to overwrite
1623 the value of store_info. If it is, set the rhs to NULL to
1624 keep it from being used to remove a load. */
1626 if (canon_output_dependence (s_info->mem, true,
1627 mem, GET_MODE (mem),
1628 mem_addr))
1630 s_info->rhs = NULL;
1631 s_info->const_rhs = NULL;
1635 /* An insn can be deleted if every position of every one of
1636 its s_infos is zero. */
1637 if (any_positions_needed_p (s_info))
1638 del = false;
1640 if (del)
1642 insn_info_t insn_to_delete = ptr;
1644 active_local_stores_len--;
1645 if (last)
1646 last->next_local_store = ptr->next_local_store;
1647 else
1648 active_local_stores = ptr->next_local_store;
1650 if (!insn_to_delete->cannot_delete)
1651 delete_dead_store_insn (insn_to_delete);
1653 else
1654 last = ptr;
1656 ptr = next;
1659 /* Finish filling in the store_info. */
1660 store_info->next = insn_info->store_rec;
1661 insn_info->store_rec = store_info;
1662 store_info->mem = mem;
1663 store_info->mem_addr = mem_addr;
1664 store_info->cse_base = base;
1665 HOST_WIDE_INT const_width;
1666 if (!width.is_constant (&const_width))
1668 store_info->is_large = true;
1669 store_info->positions_needed.large.count = 0;
1670 store_info->positions_needed.large.bmap = NULL;
1672 else if (const_width > HOST_BITS_PER_WIDE_INT)
1674 store_info->is_large = true;
1675 store_info->positions_needed.large.count = 0;
1676 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1678 else
1680 store_info->is_large = false;
1681 store_info->positions_needed.small_bitmask
1682 = lowpart_bitmask (const_width);
1684 store_info->group_id = group_id;
1685 store_info->offset = offset;
1686 store_info->width = width;
1687 store_info->is_set = GET_CODE (body) == SET;
1688 store_info->rhs = rhs;
1689 store_info->const_rhs = const_rhs;
1690 store_info->redundant_reason = redundant_reason;
1692 /* If this is a clobber, we return 0. We will only be able to
1693 delete this insn if there is only one store USED store, but we
1694 can use the clobber to delete other stores earlier. */
1695 return store_info->is_set ? 1 : 0;
1699 static void
1700 dump_insn_info (const char * start, insn_info_t insn_info)
1702 fprintf (dump_file, "%s insn=%d %s\n", start,
1703 INSN_UID (insn_info->insn),
1704 insn_info->store_rec ? "has store" : "naked");
1708 /* If the modes are different and the value's source and target do not
1709 line up, we need to extract the value from lower part of the rhs of
1710 the store, shift it, and then put it into a form that can be shoved
1711 into the read_insn. This function generates a right SHIFT of a
1712 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1713 shift sequence is returned or NULL if we failed to find a
1714 shift. */
1716 static rtx
1717 find_shift_sequence (poly_int64 access_size,
1718 store_info *store_info,
1719 machine_mode read_mode,
1720 poly_int64 shift, bool speed, bool require_cst)
1722 machine_mode store_mode = GET_MODE (store_info->mem);
1723 scalar_int_mode new_mode;
1724 rtx read_reg = NULL;
1726 /* If a constant was stored into memory, try to simplify it here,
1727 otherwise the cost of the shift might preclude this optimization
1728 e.g. at -Os, even when no actual shift will be needed. */
1729 if (store_info->const_rhs)
1731 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1732 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1733 rtx ret
1734 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1735 if (ret && CONSTANT_P (ret))
1737 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1738 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1739 shift_rtx);
1740 if (ret && CONSTANT_P (ret))
1742 byte = subreg_lowpart_offset (read_mode, new_mode);
1743 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1744 if (ret && CONSTANT_P (ret)
1745 && (set_src_cost (ret, read_mode, speed)
1746 <= COSTS_N_INSNS (1)))
1747 return ret;
1752 if (require_cst)
1753 return NULL_RTX;
1755 /* Some machines like the x86 have shift insns for each size of
1756 operand. Other machines like the ppc or the ia-64 may only have
1757 shift insns that shift values within 32 or 64 bit registers.
1758 This loop tries to find the smallest shift insn that will right
1759 justify the value we want to read but is available in one insn on
1760 the machine. */
1762 opt_scalar_int_mode new_mode_iter;
1763 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
1765 rtx target, new_reg, new_lhs;
1766 rtx_insn *shift_seq, *insn;
1767 int cost;
1769 new_mode = new_mode_iter.require ();
1770 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1771 break;
1772 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1773 continue;
1775 /* Try a wider mode if truncating the store mode to NEW_MODE
1776 requires a real instruction. */
1777 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1778 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1779 continue;
1781 /* Also try a wider mode if the necessary punning is either not
1782 desirable or not possible. */
1783 if (!CONSTANT_P (store_info->rhs)
1784 && !targetm.modes_tieable_p (new_mode, store_mode))
1785 continue;
1787 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1788 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1790 /* Try to implement the shift using a subreg. */
1791 poly_int64 offset
1792 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1793 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1794 store_mode, offset);
1795 if (rhs_subreg)
1797 read_reg
1798 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1799 break;
1803 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1804 continue;
1806 new_reg = gen_reg_rtx (new_mode);
1808 start_sequence ();
1810 /* In theory we could also check for an ashr. Ian Taylor knows
1811 of one dsp where the cost of these two was not the same. But
1812 this really is a rare case anyway. */
1813 target = expand_binop (new_mode, lshr_optab, new_reg,
1814 gen_int_shift_amount (new_mode, shift),
1815 new_reg, 1, OPTAB_DIRECT);
1817 shift_seq = get_insns ();
1818 end_sequence ();
1820 if (target != new_reg || shift_seq == NULL)
1821 continue;
1823 cost = 0;
1824 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1825 if (INSN_P (insn))
1826 cost += insn_cost (insn, speed);
1828 /* The computation up to here is essentially independent
1829 of the arguments and could be precomputed. It may
1830 not be worth doing so. We could precompute if
1831 worthwhile or at least cache the results. The result
1832 technically depends on both SHIFT and ACCESS_SIZE,
1833 but in practice the answer will depend only on ACCESS_SIZE. */
1835 if (cost > COSTS_N_INSNS (1))
1836 continue;
1838 new_lhs = extract_low_bits (new_mode, store_mode,
1839 copy_rtx (store_info->rhs));
1840 if (new_lhs == NULL_RTX)
1841 continue;
1843 /* We found an acceptable shift. Generate a move to
1844 take the value from the store and put it into the
1845 shift pseudo, then shift it, then generate another
1846 move to put in into the target of the read. */
1847 emit_move_insn (new_reg, new_lhs);
1848 emit_insn (shift_seq);
1849 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1850 break;
1853 return read_reg;
1857 /* Call back for note_stores to find the hard regs set or clobbered by
1858 insn. Data is a bitmap of the hardregs set so far. */
1860 static void
1861 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1863 bitmap regs_set = (bitmap) data;
1865 if (REG_P (x)
1866 && HARD_REGISTER_P (x))
1867 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1870 /* Helper function for replace_read and record_store.
1871 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1872 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1873 if not successful. If REQUIRE_CST is true, return always constant. */
1875 static rtx
1876 get_stored_val (store_info *store_info, machine_mode read_mode,
1877 poly_int64 read_offset, poly_int64 read_width,
1878 basic_block bb, bool require_cst)
1880 machine_mode store_mode = GET_MODE (store_info->mem);
1881 poly_int64 gap;
1882 rtx read_reg;
1884 /* To get here the read is within the boundaries of the write so
1885 shift will never be negative. Start out with the shift being in
1886 bytes. */
1887 if (store_mode == BLKmode)
1888 gap = 0;
1889 else if (BYTES_BIG_ENDIAN)
1890 gap = ((store_info->offset + store_info->width)
1891 - (read_offset + read_width));
1892 else
1893 gap = read_offset - store_info->offset;
1895 if (gap.is_constant () && maybe_ne (gap, 0))
1897 poly_int64 shift = gap * BITS_PER_UNIT;
1898 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1899 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1900 shift, optimize_bb_for_speed_p (bb),
1901 require_cst);
1903 else if (store_mode == BLKmode)
1905 /* The store is a memset (addr, const_val, const_size). */
1906 gcc_assert (CONST_INT_P (store_info->rhs));
1907 scalar_int_mode int_store_mode;
1908 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1909 read_reg = NULL_RTX;
1910 else if (store_info->rhs == const0_rtx)
1911 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1912 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1913 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1914 read_reg = NULL_RTX;
1915 else
1917 unsigned HOST_WIDE_INT c
1918 = INTVAL (store_info->rhs)
1919 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1920 int shift = BITS_PER_UNIT;
1921 while (shift < HOST_BITS_PER_WIDE_INT)
1923 c |= (c << shift);
1924 shift <<= 1;
1926 read_reg = gen_int_mode (c, int_store_mode);
1927 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1930 else if (store_info->const_rhs
1931 && (require_cst
1932 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1933 read_reg = extract_low_bits (read_mode, store_mode,
1934 copy_rtx (store_info->const_rhs));
1935 else
1936 read_reg = extract_low_bits (read_mode, store_mode,
1937 copy_rtx (store_info->rhs));
1938 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1939 read_reg = NULL_RTX;
1940 return read_reg;
1943 /* Take a sequence of:
1944 A <- r1
1946 ... <- A
1948 and change it into
1949 r2 <- r1
1950 A <- r1
1952 ... <- r2
1956 r3 <- extract (r1)
1957 r3 <- r3 >> shift
1958 r2 <- extract (r3)
1959 ... <- r2
1963 r2 <- extract (r1)
1964 ... <- r2
1966 Depending on the alignment and the mode of the store and
1967 subsequent load.
1970 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1971 and READ_INSN are for the read. Return true if the replacement
1972 went ok. */
1974 static bool
1975 replace_read (store_info *store_info, insn_info_t store_insn,
1976 read_info_t read_info, insn_info_t read_insn, rtx *loc)
1978 machine_mode store_mode = GET_MODE (store_info->mem);
1979 machine_mode read_mode = GET_MODE (read_info->mem);
1980 rtx_insn *insns, *this_insn;
1981 rtx read_reg;
1982 basic_block bb;
1984 if (!dbg_cnt (dse))
1985 return false;
1987 /* Create a sequence of instructions to set up the read register.
1988 This sequence goes immediately before the store and its result
1989 is read by the load.
1991 We need to keep this in perspective. We are replacing a read
1992 with a sequence of insns, but the read will almost certainly be
1993 in cache, so it is not going to be an expensive one. Thus, we
1994 are not willing to do a multi insn shift or worse a subroutine
1995 call to get rid of the read. */
1996 if (dump_file && (dump_flags & TDF_DETAILS))
1997 fprintf (dump_file, "trying to replace %smode load in insn %d"
1998 " from %smode store in insn %d\n",
1999 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
2000 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
2001 start_sequence ();
2002 bb = BLOCK_FOR_INSN (read_insn->insn);
2003 read_reg = get_stored_val (store_info,
2004 read_mode, read_info->offset, read_info->width,
2005 bb, false);
2006 if (read_reg == NULL_RTX)
2008 end_sequence ();
2009 if (dump_file && (dump_flags & TDF_DETAILS))
2010 fprintf (dump_file, " -- could not extract bits of stored value\n");
2011 return false;
2013 /* Force the value into a new register so that it won't be clobbered
2014 between the store and the load. */
2015 if (WORD_REGISTER_OPERATIONS
2016 && GET_CODE (read_reg) == SUBREG
2017 && REG_P (SUBREG_REG (read_reg))
2018 && GET_MODE (SUBREG_REG (read_reg)) == word_mode)
2020 /* For WORD_REGISTER_OPERATIONS with subreg of word_mode register
2021 force SUBREG_REG into a new register rather than the SUBREG. */
2022 rtx r = copy_to_mode_reg (word_mode, SUBREG_REG (read_reg));
2023 read_reg = shallow_copy_rtx (read_reg);
2024 SUBREG_REG (read_reg) = r;
2026 else
2027 read_reg = copy_to_mode_reg (read_mode, read_reg);
2028 insns = get_insns ();
2029 end_sequence ();
2031 if (insns != NULL_RTX)
2033 /* Now we have to scan the set of new instructions to see if the
2034 sequence contains and sets of hardregs that happened to be
2035 live at this point. For instance, this can happen if one of
2036 the insns sets the CC and the CC happened to be live at that
2037 point. This does occasionally happen, see PR 37922. */
2038 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2040 for (this_insn = insns;
2041 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2043 if (insn_invalid_p (this_insn, false))
2045 if (dump_file && (dump_flags & TDF_DETAILS))
2047 fprintf (dump_file, " -- replacing the loaded MEM with ");
2048 print_simple_rtl (dump_file, read_reg);
2049 fprintf (dump_file, " led to an invalid instruction\n");
2051 BITMAP_FREE (regs_set);
2052 return false;
2054 note_stores (this_insn, look_for_hardregs, regs_set);
2057 if (store_insn->fixed_regs_live)
2058 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
2059 if (!bitmap_empty_p (regs_set))
2061 if (dump_file && (dump_flags & TDF_DETAILS))
2063 fprintf (dump_file, "abandoning replacement because sequence "
2064 "clobbers live hardregs:");
2065 df_print_regset (dump_file, regs_set);
2068 BITMAP_FREE (regs_set);
2069 return false;
2071 BITMAP_FREE (regs_set);
2074 subrtx_iterator::array_type array;
2075 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2077 const_rtx x = *iter;
2078 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2080 if (dump_file && (dump_flags & TDF_DETAILS))
2081 fprintf (dump_file, " -- replacing the MEM failed due to address "
2082 "side-effects\n");
2083 return false;
2087 if (validate_change (read_insn->insn, loc, read_reg, 0))
2089 deferred_change *change = deferred_change_pool.allocate ();
2091 /* Insert this right before the store insn where it will be safe
2092 from later insns that might change it before the read. */
2093 emit_insn_before (insns, store_insn->insn);
2095 /* And now for the kludge part: cselib croaks if you just
2096 return at this point. There are two reasons for this:
2098 1) Cselib has an idea of how many pseudos there are and
2099 that does not include the new ones we just added.
2101 2) Cselib does not know about the move insn we added
2102 above the store_info, and there is no way to tell it
2103 about it, because it has "moved on".
2105 Problem (1) is fixable with a certain amount of engineering.
2106 Problem (2) is requires starting the bb from scratch. This
2107 could be expensive.
2109 So we are just going to have to lie. The move/extraction
2110 insns are not really an issue, cselib did not see them. But
2111 the use of the new pseudo read_insn is a real problem because
2112 cselib has not scanned this insn. The way that we solve this
2113 problem is that we are just going to put the mem back for now
2114 and when we are finished with the block, we undo this. We
2115 keep a table of mems to get rid of. At the end of the basic
2116 block we can put them back. */
2118 *loc = read_info->mem;
2119 change->next = deferred_change_list;
2120 deferred_change_list = change;
2121 change->loc = loc;
2122 change->reg = read_reg;
2124 /* Get rid of the read_info, from the point of view of the
2125 rest of dse, play like this read never happened. */
2126 read_insn->read_rec = read_info->next;
2127 read_info_type_pool.remove (read_info);
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2130 fprintf (dump_file, " -- replaced the loaded MEM with ");
2131 print_simple_rtl (dump_file, read_reg);
2132 fprintf (dump_file, "\n");
2134 return true;
2136 else
2138 if (dump_file && (dump_flags & TDF_DETAILS))
2140 fprintf (dump_file, " -- replacing the loaded MEM with ");
2141 print_simple_rtl (dump_file, read_reg);
2142 fprintf (dump_file, " led to an invalid instruction\n");
2144 return false;
2148 /* Check the address of MEM *LOC and kill any appropriate stores that may
2149 be active. */
2151 static void
2152 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2154 rtx mem = *loc, mem_addr;
2155 insn_info_t insn_info;
2156 poly_int64 offset = 0;
2157 poly_int64 width = 0;
2158 cselib_val *base = NULL;
2159 int group_id;
2160 read_info_t read_info;
2162 insn_info = bb_info->last_insn;
2164 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2165 || MEM_VOLATILE_P (mem))
2167 if (crtl->stack_protect_guard
2168 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2169 || (crtl->stack_protect_guard_decl
2170 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2171 && MEM_VOLATILE_P (mem))
2173 /* This is either the stack protector canary on the stack,
2174 which ought to be written by a MEM_VOLATILE_P store and
2175 thus shouldn't be deleted and is read at the very end of
2176 function, but shouldn't conflict with any other store.
2177 Or it is __stack_chk_guard variable or TLS or whatever else
2178 MEM holding the canary value, which really shouldn't be
2179 ever modified in -fstack-protector* protected functions,
2180 otherwise the prologue store wouldn't match the epilogue
2181 check. */
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 fprintf (dump_file, " stack protector canary read ignored.\n");
2184 insn_info->cannot_delete = true;
2185 return;
2188 if (dump_file && (dump_flags & TDF_DETAILS))
2189 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2190 add_wild_read (bb_info);
2191 insn_info->cannot_delete = true;
2192 return;
2195 /* If it is reading readonly mem, then there can be no conflict with
2196 another write. */
2197 if (MEM_READONLY_P (mem))
2198 return;
2200 if (!canon_address (mem, &group_id, &offset, &base))
2202 if (dump_file && (dump_flags & TDF_DETAILS))
2203 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2204 add_wild_read (bb_info);
2205 return;
2208 if (GET_MODE (mem) == BLKmode)
2209 width = -1;
2210 else
2211 width = GET_MODE_SIZE (GET_MODE (mem));
2213 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2215 if (dump_file && (dump_flags & TDF_DETAILS))
2216 fprintf (dump_file, " adding wild read, due to overflow.\n");
2217 add_wild_read (bb_info);
2218 return;
2221 read_info = read_info_type_pool.allocate ();
2222 read_info->group_id = group_id;
2223 read_info->mem = mem;
2224 read_info->offset = offset;
2225 read_info->width = width;
2226 read_info->next = insn_info->read_rec;
2227 insn_info->read_rec = read_info;
2228 if (group_id < 0)
2229 mem_addr = base->val_rtx;
2230 else
2232 group_info *group = rtx_group_vec[group_id];
2233 mem_addr = group->canon_base_addr;
2235 if (maybe_ne (offset, 0))
2236 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2237 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2238 which will over and over re-create proper RTL and re-apply the
2239 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2240 RTXen that way. */
2241 mem_addr = get_addr (mem_addr);
2243 if (group_id >= 0)
2245 /* This is the restricted case where the base is a constant or
2246 the frame pointer and offset is a constant. */
2247 insn_info_t i_ptr = active_local_stores;
2248 insn_info_t last = NULL;
2250 if (dump_file && (dump_flags & TDF_DETAILS))
2252 if (!known_size_p (width))
2253 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2254 group_id);
2255 else
2257 fprintf (dump_file, " processing const load gid=%d", group_id);
2258 print_range (dump_file, offset, width);
2259 fprintf (dump_file, "\n");
2263 while (i_ptr)
2265 bool remove = false;
2266 store_info *store_info = i_ptr->store_rec;
2268 /* Skip the clobbers. */
2269 while (!store_info->is_set)
2270 store_info = store_info->next;
2272 /* There are three cases here. */
2273 if (store_info->group_id < 0)
2274 /* We have a cselib store followed by a read from a
2275 const base. */
2276 remove
2277 = canon_true_dependence (store_info->mem,
2278 GET_MODE (store_info->mem),
2279 store_info->mem_addr,
2280 mem, mem_addr);
2282 else if (group_id == store_info->group_id)
2284 /* This is a block mode load. We may get lucky and
2285 canon_true_dependence may save the day. */
2286 if (!known_size_p (width))
2287 remove
2288 = canon_true_dependence (store_info->mem,
2289 GET_MODE (store_info->mem),
2290 store_info->mem_addr,
2291 mem, mem_addr);
2293 /* If this read is just reading back something that we just
2294 stored, rewrite the read. */
2295 else
2297 if (store_info->rhs
2298 && known_subrange_p (offset, width, store_info->offset,
2299 store_info->width)
2300 && all_positions_needed_p (store_info,
2301 offset - store_info->offset,
2302 width)
2303 && replace_read (store_info, i_ptr, read_info,
2304 insn_info, loc))
2305 return;
2307 /* The bases are the same, just see if the offsets
2308 could overlap. */
2309 if (ranges_maybe_overlap_p (offset, width,
2310 store_info->offset,
2311 store_info->width))
2312 remove = true;
2316 /* else
2317 The else case that is missing here is that the
2318 bases are constant but different. There is nothing
2319 to do here because there is no overlap. */
2321 if (remove)
2323 if (dump_file && (dump_flags & TDF_DETAILS))
2324 dump_insn_info ("removing from active", i_ptr);
2326 active_local_stores_len--;
2327 if (last)
2328 last->next_local_store = i_ptr->next_local_store;
2329 else
2330 active_local_stores = i_ptr->next_local_store;
2332 else
2333 last = i_ptr;
2334 i_ptr = i_ptr->next_local_store;
2337 else
2339 insn_info_t i_ptr = active_local_stores;
2340 insn_info_t last = NULL;
2341 if (dump_file && (dump_flags & TDF_DETAILS))
2343 fprintf (dump_file, " processing cselib load mem:");
2344 print_inline_rtx (dump_file, mem, 0);
2345 fprintf (dump_file, "\n");
2348 while (i_ptr)
2350 bool remove = false;
2351 store_info *store_info = i_ptr->store_rec;
2353 if (dump_file && (dump_flags & TDF_DETAILS))
2354 fprintf (dump_file, " processing cselib load against insn %d\n",
2355 INSN_UID (i_ptr->insn));
2357 /* Skip the clobbers. */
2358 while (!store_info->is_set)
2359 store_info = store_info->next;
2361 /* If this read is just reading back something that we just
2362 stored, rewrite the read. */
2363 if (store_info->rhs
2364 && store_info->group_id == -1
2365 && store_info->cse_base == base
2366 && known_subrange_p (offset, width, store_info->offset,
2367 store_info->width)
2368 && all_positions_needed_p (store_info,
2369 offset - store_info->offset, width)
2370 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
2371 return;
2373 remove = canon_true_dependence (store_info->mem,
2374 GET_MODE (store_info->mem),
2375 store_info->mem_addr,
2376 mem, mem_addr);
2378 if (remove)
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2381 dump_insn_info ("removing from active", i_ptr);
2383 active_local_stores_len--;
2384 if (last)
2385 last->next_local_store = i_ptr->next_local_store;
2386 else
2387 active_local_stores = i_ptr->next_local_store;
2389 else
2390 last = i_ptr;
2391 i_ptr = i_ptr->next_local_store;
2396 /* A note_uses callback in which DATA points the INSN_INFO for
2397 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2398 true for any part of *LOC. */
2400 static void
2401 check_mem_read_use (rtx *loc, void *data)
2403 subrtx_ptr_iterator::array_type array;
2404 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2406 rtx *loc = *iter;
2407 if (MEM_P (*loc))
2408 check_mem_read_rtx (loc, (bb_info_t) data);
2413 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2414 So far it only handles arguments passed in registers. */
2416 static bool
2417 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2419 CUMULATIVE_ARGS args_so_far_v;
2420 cumulative_args_t args_so_far;
2421 tree arg;
2422 int idx;
2424 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2425 args_so_far = pack_cumulative_args (&args_so_far_v);
2427 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2428 for (idx = 0;
2429 arg != void_list_node && idx < nargs;
2430 arg = TREE_CHAIN (arg), idx++)
2432 scalar_int_mode mode;
2433 rtx reg, link, tmp;
2435 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2436 return false;
2438 function_arg_info arg (mode, /*named=*/true);
2439 reg = targetm.calls.function_arg (args_so_far, arg);
2440 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2441 return false;
2443 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2444 link;
2445 link = XEXP (link, 1))
2446 if (GET_CODE (XEXP (link, 0)) == USE)
2448 scalar_int_mode arg_mode;
2449 args[idx] = XEXP (XEXP (link, 0), 0);
2450 if (REG_P (args[idx])
2451 && REGNO (args[idx]) == REGNO (reg)
2452 && (GET_MODE (args[idx]) == mode
2453 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2454 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2455 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2456 break;
2458 if (!link)
2459 return false;
2461 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2462 if (GET_MODE (args[idx]) != mode)
2464 if (!tmp || !CONST_INT_P (tmp))
2465 return false;
2466 tmp = gen_int_mode (INTVAL (tmp), mode);
2468 if (tmp)
2469 args[idx] = tmp;
2471 targetm.calls.function_arg_advance (args_so_far, arg);
2473 if (arg != void_list_node || idx != nargs)
2474 return false;
2475 return true;
2478 /* Return a bitmap of the fixed registers contained in IN. */
2480 static bitmap
2481 copy_fixed_regs (const_bitmap in)
2483 bitmap ret;
2485 ret = ALLOC_REG_SET (NULL);
2486 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2487 return ret;
2490 /* Apply record_store to all candidate stores in INSN. Mark INSN
2491 if some part of it is not a candidate store and assigns to a
2492 non-register target. */
2494 static void
2495 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2497 rtx body;
2498 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2499 int mems_found = 0;
2500 memset (insn_info, 0, sizeof (struct insn_info_type));
2502 if (dump_file && (dump_flags & TDF_DETAILS))
2503 fprintf (dump_file, "\n**scanning insn=%d\n",
2504 INSN_UID (insn));
2506 insn_info->prev_insn = bb_info->last_insn;
2507 insn_info->insn = insn;
2508 bb_info->last_insn = insn_info;
2510 if (DEBUG_INSN_P (insn))
2512 insn_info->cannot_delete = true;
2513 return;
2516 /* Look at all of the uses in the insn. */
2517 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2519 if (CALL_P (insn))
2521 bool const_call;
2522 rtx call, sym;
2523 tree memset_call = NULL_TREE;
2525 insn_info->cannot_delete = true;
2527 /* Const functions cannot do anything bad i.e. read memory,
2528 however, they can read their parameters which may have
2529 been pushed onto the stack.
2530 memset and bzero don't read memory either. */
2531 const_call = RTL_CONST_CALL_P (insn);
2532 if (!const_call
2533 && (call = get_call_rtx_from (insn))
2534 && (sym = XEXP (XEXP (call, 0), 0))
2535 && GET_CODE (sym) == SYMBOL_REF
2536 && SYMBOL_REF_DECL (sym)
2537 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2538 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2539 memset_call = SYMBOL_REF_DECL (sym);
2541 if (const_call || memset_call)
2543 insn_info_t i_ptr = active_local_stores;
2544 insn_info_t last = NULL;
2546 if (dump_file && (dump_flags & TDF_DETAILS))
2547 fprintf (dump_file, "%s call %d\n",
2548 const_call ? "const" : "memset", INSN_UID (insn));
2550 /* See the head comment of the frame_read field. */
2551 if (reload_completed
2552 /* Tail calls are storing their arguments using
2553 arg pointer. If it is a frame pointer on the target,
2554 even before reload we need to kill frame pointer based
2555 stores. */
2556 || (SIBLING_CALL_P (insn)
2557 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2558 insn_info->frame_read = true;
2560 /* Loop over the active stores and remove those which are
2561 killed by the const function call. */
2562 while (i_ptr)
2564 bool remove_store = false;
2566 /* The stack pointer based stores are always killed. */
2567 if (i_ptr->stack_pointer_based)
2568 remove_store = true;
2570 /* If the frame is read, the frame related stores are killed. */
2571 else if (insn_info->frame_read)
2573 store_info *store_info = i_ptr->store_rec;
2575 /* Skip the clobbers. */
2576 while (!store_info->is_set)
2577 store_info = store_info->next;
2579 if (store_info->group_id >= 0
2580 && rtx_group_vec[store_info->group_id]->frame_related)
2581 remove_store = true;
2584 if (remove_store)
2586 if (dump_file && (dump_flags & TDF_DETAILS))
2587 dump_insn_info ("removing from active", i_ptr);
2589 active_local_stores_len--;
2590 if (last)
2591 last->next_local_store = i_ptr->next_local_store;
2592 else
2593 active_local_stores = i_ptr->next_local_store;
2595 else
2596 last = i_ptr;
2598 i_ptr = i_ptr->next_local_store;
2601 if (memset_call)
2603 rtx args[3];
2604 if (get_call_args (insn, memset_call, args, 3)
2605 && CONST_INT_P (args[1])
2606 && CONST_INT_P (args[2])
2607 && INTVAL (args[2]) > 0)
2609 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2610 set_mem_size (mem, INTVAL (args[2]));
2611 body = gen_rtx_SET (mem, args[1]);
2612 mems_found += record_store (body, bb_info);
2613 if (dump_file && (dump_flags & TDF_DETAILS))
2614 fprintf (dump_file, "handling memset as BLKmode store\n");
2615 if (mems_found == 1)
2617 if (active_local_stores_len++ >= max_active_local_stores)
2619 active_local_stores_len = 1;
2620 active_local_stores = NULL;
2622 insn_info->fixed_regs_live
2623 = copy_fixed_regs (bb_info->regs_live);
2624 insn_info->next_local_store = active_local_stores;
2625 active_local_stores = insn_info;
2628 else
2629 clear_rhs_from_active_local_stores ();
2632 else if (SIBLING_CALL_P (insn)
2633 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2634 /* Arguments for a sibling call that are pushed to memory are passed
2635 using the incoming argument pointer of the current function. After
2636 reload that might be (and likely is) frame pointer based. And, if
2637 it is a frame pointer on the target, even before reload we need to
2638 kill frame pointer based stores. */
2639 add_wild_read (bb_info);
2640 else
2641 /* Every other call, including pure functions, may read any memory
2642 that is not relative to the frame. */
2643 add_non_frame_wild_read (bb_info);
2645 return;
2648 /* Assuming that there are sets in these insns, we cannot delete
2649 them. */
2650 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2651 || volatile_refs_p (PATTERN (insn))
2652 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2653 || (RTX_FRAME_RELATED_P (insn))
2654 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2655 insn_info->cannot_delete = true;
2657 body = PATTERN (insn);
2658 if (GET_CODE (body) == PARALLEL)
2660 int i;
2661 for (i = 0; i < XVECLEN (body, 0); i++)
2662 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2664 else
2665 mems_found += record_store (body, bb_info);
2667 if (dump_file && (dump_flags & TDF_DETAILS))
2668 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2669 mems_found, insn_info->cannot_delete ? "true" : "false");
2671 /* If we found some sets of mems, add it into the active_local_stores so
2672 that it can be locally deleted if found dead or used for
2673 replace_read and redundant constant store elimination. Otherwise mark
2674 it as cannot delete. This simplifies the processing later. */
2675 if (mems_found == 1)
2677 if (active_local_stores_len++ >= max_active_local_stores)
2679 active_local_stores_len = 1;
2680 active_local_stores = NULL;
2682 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2683 insn_info->next_local_store = active_local_stores;
2684 active_local_stores = insn_info;
2686 else
2687 insn_info->cannot_delete = true;
2691 /* Remove BASE from the set of active_local_stores. This is a
2692 callback from cselib that is used to get rid of the stores in
2693 active_local_stores. */
2695 static void
2696 remove_useless_values (cselib_val *base)
2698 insn_info_t insn_info = active_local_stores;
2699 insn_info_t last = NULL;
2701 while (insn_info)
2703 store_info *store_info = insn_info->store_rec;
2704 bool del = false;
2706 /* If ANY of the store_infos match the cselib group that is
2707 being deleted, then the insn cannot be deleted. */
2708 while (store_info)
2710 if ((store_info->group_id == -1)
2711 && (store_info->cse_base == base))
2713 del = true;
2714 break;
2716 store_info = store_info->next;
2719 if (del)
2721 active_local_stores_len--;
2722 if (last)
2723 last->next_local_store = insn_info->next_local_store;
2724 else
2725 active_local_stores = insn_info->next_local_store;
2726 free_store_info (insn_info);
2728 else
2729 last = insn_info;
2731 insn_info = insn_info->next_local_store;
2736 /* Do all of step 1. */
2738 static void
2739 dse_step1 (void)
2741 basic_block bb;
2742 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2744 cselib_init (0);
2745 all_blocks = BITMAP_ALLOC (NULL);
2746 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2747 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2749 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2750 since this can consume huge amounts of memory (PR89115). */
2751 int max_active_local_stores = param_max_dse_active_local_stores;
2752 if (optimize < 2)
2753 max_active_local_stores /= 10;
2755 FOR_ALL_BB_FN (bb, cfun)
2757 insn_info_t ptr;
2758 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2760 memset (bb_info, 0, sizeof (dse_bb_info_type));
2761 bitmap_set_bit (all_blocks, bb->index);
2762 bb_info->regs_live = regs_live;
2764 bitmap_copy (regs_live, DF_LR_IN (bb));
2765 df_simulate_initialize_forwards (bb, regs_live);
2767 bb_table[bb->index] = bb_info;
2768 cselib_discard_hook = remove_useless_values;
2770 if (bb->index >= NUM_FIXED_BLOCKS)
2772 rtx_insn *insn;
2774 active_local_stores = NULL;
2775 active_local_stores_len = 0;
2776 cselib_clear_table ();
2778 /* Scan the insns. */
2779 FOR_BB_INSNS (bb, insn)
2781 if (INSN_P (insn))
2782 scan_insn (bb_info, insn, max_active_local_stores);
2783 cselib_process_insn (insn);
2784 if (INSN_P (insn))
2785 df_simulate_one_insn_forwards (bb, insn, regs_live);
2788 /* This is something of a hack, because the global algorithm
2789 is supposed to take care of the case where stores go dead
2790 at the end of the function. However, the global
2791 algorithm must take a more conservative view of block
2792 mode reads than the local alg does. So to get the case
2793 where you have a store to the frame followed by a non
2794 overlapping block more read, we look at the active local
2795 stores at the end of the function and delete all of the
2796 frame and spill based ones. */
2797 if (stores_off_frame_dead_at_return
2798 && (EDGE_COUNT (bb->succs) == 0
2799 || (single_succ_p (bb)
2800 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2801 && ! crtl->calls_eh_return)))
2803 insn_info_t i_ptr = active_local_stores;
2804 while (i_ptr)
2806 store_info *store_info = i_ptr->store_rec;
2808 /* Skip the clobbers. */
2809 while (!store_info->is_set)
2810 store_info = store_info->next;
2811 if (store_info->group_id >= 0)
2813 group_info *group = rtx_group_vec[store_info->group_id];
2814 if (group->frame_related && !i_ptr->cannot_delete)
2815 delete_dead_store_insn (i_ptr);
2818 i_ptr = i_ptr->next_local_store;
2822 /* Get rid of the loads that were discovered in
2823 replace_read. Cselib is finished with this block. */
2824 while (deferred_change_list)
2826 deferred_change *next = deferred_change_list->next;
2828 /* There is no reason to validate this change. That was
2829 done earlier. */
2830 *deferred_change_list->loc = deferred_change_list->reg;
2831 deferred_change_pool.remove (deferred_change_list);
2832 deferred_change_list = next;
2835 /* Get rid of all of the cselib based store_infos in this
2836 block and mark the containing insns as not being
2837 deletable. */
2838 ptr = bb_info->last_insn;
2839 while (ptr)
2841 if (ptr->contains_cselib_groups)
2843 store_info *s_info = ptr->store_rec;
2844 while (s_info && !s_info->is_set)
2845 s_info = s_info->next;
2846 if (s_info
2847 && s_info->redundant_reason
2848 && s_info->redundant_reason->insn
2849 && !ptr->cannot_delete)
2851 if (dump_file && (dump_flags & TDF_DETAILS))
2852 fprintf (dump_file, "Locally deleting insn %d "
2853 "because insn %d stores the "
2854 "same value and couldn't be "
2855 "eliminated\n",
2856 INSN_UID (ptr->insn),
2857 INSN_UID (s_info->redundant_reason->insn));
2858 delete_dead_store_insn (ptr);
2860 free_store_info (ptr);
2862 else
2864 store_info *s_info;
2866 /* Free at least positions_needed bitmaps. */
2867 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2868 if (s_info->is_large)
2870 BITMAP_FREE (s_info->positions_needed.large.bmap);
2871 s_info->is_large = false;
2874 ptr = ptr->prev_insn;
2877 cse_store_info_pool.release ();
2879 bb_info->regs_live = NULL;
2882 BITMAP_FREE (regs_live);
2883 cselib_finish ();
2884 rtx_group_table->empty ();
2888 /*----------------------------------------------------------------------------
2889 Second step.
2891 Assign each byte position in the stores that we are going to
2892 analyze globally to a position in the bitmaps. Returns true if
2893 there are any bit positions assigned.
2894 ----------------------------------------------------------------------------*/
2896 static void
2897 dse_step2_init (void)
2899 unsigned int i;
2900 group_info *group;
2902 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2904 /* For all non stack related bases, we only consider a store to
2905 be deletable if there are two or more stores for that
2906 position. This is because it takes one store to make the
2907 other store redundant. However, for the stores that are
2908 stack related, we consider them if there is only one store
2909 for the position. We do this because the stack related
2910 stores can be deleted if their is no read between them and
2911 the end of the function.
2913 To make this work in the current framework, we take the stack
2914 related bases add all of the bits from store1 into store2.
2915 This has the effect of making the eligible even if there is
2916 only one store. */
2918 if (stores_off_frame_dead_at_return && group->frame_related)
2920 bitmap_ior_into (group->store2_n, group->store1_n);
2921 bitmap_ior_into (group->store2_p, group->store1_p);
2922 if (dump_file && (dump_flags & TDF_DETAILS))
2923 fprintf (dump_file, "group %d is frame related ", i);
2926 group->offset_map_size_n++;
2927 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2928 group->offset_map_size_n);
2929 group->offset_map_size_p++;
2930 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2931 group->offset_map_size_p);
2932 group->process_globally = false;
2933 if (dump_file && (dump_flags & TDF_DETAILS))
2935 fprintf (dump_file, "group %d(%d+%d): ", i,
2936 (int)bitmap_count_bits (group->store2_n),
2937 (int)bitmap_count_bits (group->store2_p));
2938 bitmap_print (dump_file, group->store2_n, "n ", " ");
2939 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2945 /* Init the offset tables. */
2947 static bool
2948 dse_step2 (void)
2950 unsigned int i;
2951 group_info *group;
2952 /* Position 0 is unused because 0 is used in the maps to mean
2953 unused. */
2954 current_position = 1;
2955 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2957 bitmap_iterator bi;
2958 unsigned int j;
2960 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2961 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2962 bitmap_clear (group->group_kill);
2964 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2966 bitmap_set_bit (group->group_kill, current_position);
2967 if (bitmap_bit_p (group->escaped_n, j))
2968 bitmap_set_bit (kill_on_calls, current_position);
2969 group->offset_map_n[j] = current_position++;
2970 group->process_globally = true;
2972 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2974 bitmap_set_bit (group->group_kill, current_position);
2975 if (bitmap_bit_p (group->escaped_p, j))
2976 bitmap_set_bit (kill_on_calls, current_position);
2977 group->offset_map_p[j] = current_position++;
2978 group->process_globally = true;
2981 return current_position != 1;
2986 /*----------------------------------------------------------------------------
2987 Third step.
2989 Build the bit vectors for the transfer functions.
2990 ----------------------------------------------------------------------------*/
2993 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2994 there, return 0. */
2996 static int
2997 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2999 if (offset < 0)
3001 HOST_WIDE_INT offset_p = -offset;
3002 if (offset_p >= group_info->offset_map_size_n)
3003 return 0;
3004 return group_info->offset_map_n[offset_p];
3006 else
3008 if (offset >= group_info->offset_map_size_p)
3009 return 0;
3010 return group_info->offset_map_p[offset];
3015 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3016 may be NULL. */
3018 static void
3019 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
3021 while (store_info)
3023 HOST_WIDE_INT i, offset, width;
3024 group_info *group_info
3025 = rtx_group_vec[store_info->group_id];
3026 /* We can (conservatively) ignore stores whose bounds aren't known;
3027 they simply don't generate new global dse opportunities. */
3028 if (group_info->process_globally
3029 && store_info->offset.is_constant (&offset)
3030 && store_info->width.is_constant (&width))
3032 HOST_WIDE_INT end = offset + width;
3033 for (i = offset; i < end; i++)
3035 int index = get_bitmap_index (group_info, i);
3036 if (index != 0)
3038 bitmap_set_bit (gen, index);
3039 if (kill)
3040 bitmap_clear_bit (kill, index);
3044 store_info = store_info->next;
3049 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3050 may be NULL. */
3052 static void
3053 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
3055 read_info_t read_info = insn_info->read_rec;
3056 int i;
3057 group_info *group;
3059 /* If this insn reads the frame, kill all the frame related stores. */
3060 if (insn_info->frame_read)
3062 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3063 if (group->process_globally && group->frame_related)
3065 if (kill)
3066 bitmap_ior_into (kill, group->group_kill);
3067 bitmap_and_compl_into (gen, group->group_kill);
3070 if (insn_info->non_frame_wild_read)
3072 /* Kill all non-frame related stores. Kill all stores of variables that
3073 escape. */
3074 if (kill)
3075 bitmap_ior_into (kill, kill_on_calls);
3076 bitmap_and_compl_into (gen, kill_on_calls);
3077 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3078 if (group->process_globally && !group->frame_related)
3080 if (kill)
3081 bitmap_ior_into (kill, group->group_kill);
3082 bitmap_and_compl_into (gen, group->group_kill);
3085 while (read_info)
3087 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3089 if (group->process_globally)
3091 if (i == read_info->group_id)
3093 HOST_WIDE_INT offset, width;
3094 /* Reads with non-constant size kill all DSE opportunities
3095 in the group. */
3096 if (!read_info->offset.is_constant (&offset)
3097 || !read_info->width.is_constant (&width)
3098 || !known_size_p (width))
3100 /* Handle block mode reads. */
3101 if (kill)
3102 bitmap_ior_into (kill, group->group_kill);
3103 bitmap_and_compl_into (gen, group->group_kill);
3105 else
3107 /* The groups are the same, just process the
3108 offsets. */
3109 HOST_WIDE_INT j;
3110 HOST_WIDE_INT end = offset + width;
3111 for (j = offset; j < end; j++)
3113 int index = get_bitmap_index (group, j);
3114 if (index != 0)
3116 if (kill)
3117 bitmap_set_bit (kill, index);
3118 bitmap_clear_bit (gen, index);
3123 else
3125 /* The groups are different, if the alias sets
3126 conflict, clear the entire group. We only need
3127 to apply this test if the read_info is a cselib
3128 read. Anything with a constant base cannot alias
3129 something else with a different constant
3130 base. */
3131 if ((read_info->group_id < 0)
3132 && canon_true_dependence (group->base_mem,
3133 GET_MODE (group->base_mem),
3134 group->canon_base_addr,
3135 read_info->mem, NULL_RTX))
3137 if (kill)
3138 bitmap_ior_into (kill, group->group_kill);
3139 bitmap_and_compl_into (gen, group->group_kill);
3145 read_info = read_info->next;
3150 /* Return the insn in BB_INFO before the first wild read or if there
3151 are no wild reads in the block, return the last insn. */
3153 static insn_info_t
3154 find_insn_before_first_wild_read (bb_info_t bb_info)
3156 insn_info_t insn_info = bb_info->last_insn;
3157 insn_info_t last_wild_read = NULL;
3159 while (insn_info)
3161 if (insn_info->wild_read)
3163 last_wild_read = insn_info->prev_insn;
3164 /* Block starts with wild read. */
3165 if (!last_wild_read)
3166 return NULL;
3169 insn_info = insn_info->prev_insn;
3172 if (last_wild_read)
3173 return last_wild_read;
3174 else
3175 return bb_info->last_insn;
3179 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3180 the block in order to build the gen and kill sets for the block.
3181 We start at ptr which may be the last insn in the block or may be
3182 the first insn with a wild read. In the latter case we are able to
3183 skip the rest of the block because it just does not matter:
3184 anything that happens is hidden by the wild read. */
3186 static void
3187 dse_step3_scan (basic_block bb)
3189 bb_info_t bb_info = bb_table[bb->index];
3190 insn_info_t insn_info;
3192 insn_info = find_insn_before_first_wild_read (bb_info);
3194 /* In the spill case or in the no_spill case if there is no wild
3195 read in the block, we will need a kill set. */
3196 if (insn_info == bb_info->last_insn)
3198 if (bb_info->kill)
3199 bitmap_clear (bb_info->kill);
3200 else
3201 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3203 else
3204 if (bb_info->kill)
3205 BITMAP_FREE (bb_info->kill);
3207 while (insn_info)
3209 /* There may have been code deleted by the dce pass run before
3210 this phase. */
3211 if (insn_info->insn && INSN_P (insn_info->insn))
3213 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3214 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3217 insn_info = insn_info->prev_insn;
3222 /* Set the gen set of the exit block, and also any block with no
3223 successors that does not have a wild read. */
3225 static void
3226 dse_step3_exit_block_scan (bb_info_t bb_info)
3228 /* The gen set is all 0's for the exit block except for the
3229 frame_pointer_group. */
3231 if (stores_off_frame_dead_at_return)
3233 unsigned int i;
3234 group_info *group;
3236 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3238 if (group->process_globally && group->frame_related)
3239 bitmap_ior_into (bb_info->gen, group->group_kill);
3245 /* Find all of the blocks that are not backwards reachable from the
3246 exit block or any block with no successors (BB). These are the
3247 infinite loops or infinite self loops. These blocks will still
3248 have their bits set in UNREACHABLE_BLOCKS. */
3250 static void
3251 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3253 edge e;
3254 edge_iterator ei;
3256 if (bitmap_bit_p (unreachable_blocks, bb->index))
3258 bitmap_clear_bit (unreachable_blocks, bb->index);
3259 FOR_EACH_EDGE (e, ei, bb->preds)
3261 mark_reachable_blocks (unreachable_blocks, e->src);
3266 /* Build the transfer functions for the function. */
3268 static void
3269 dse_step3 ()
3271 basic_block bb;
3272 sbitmap_iterator sbi;
3273 bitmap all_ones = NULL;
3274 unsigned int i;
3276 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3277 bitmap_ones (unreachable_blocks);
3279 FOR_ALL_BB_FN (bb, cfun)
3281 bb_info_t bb_info = bb_table[bb->index];
3282 if (bb_info->gen)
3283 bitmap_clear (bb_info->gen);
3284 else
3285 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3287 if (bb->index == ENTRY_BLOCK)
3289 else if (bb->index == EXIT_BLOCK)
3290 dse_step3_exit_block_scan (bb_info);
3291 else
3292 dse_step3_scan (bb);
3293 if (EDGE_COUNT (bb->succs) == 0)
3294 mark_reachable_blocks (unreachable_blocks, bb);
3296 /* If this is the second time dataflow is run, delete the old
3297 sets. */
3298 if (bb_info->in)
3299 BITMAP_FREE (bb_info->in);
3300 if (bb_info->out)
3301 BITMAP_FREE (bb_info->out);
3304 /* For any block in an infinite loop, we must initialize the out set
3305 to all ones. This could be expensive, but almost never occurs in
3306 practice. However, it is common in regression tests. */
3307 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3309 if (bitmap_bit_p (all_blocks, i))
3311 bb_info_t bb_info = bb_table[i];
3312 if (!all_ones)
3314 unsigned int j;
3315 group_info *group;
3317 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3318 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3319 bitmap_ior_into (all_ones, group->group_kill);
3321 if (!bb_info->out)
3323 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3324 bitmap_copy (bb_info->out, all_ones);
3329 if (all_ones)
3330 BITMAP_FREE (all_ones);
3335 /*----------------------------------------------------------------------------
3336 Fourth step.
3338 Solve the bitvector equations.
3339 ----------------------------------------------------------------------------*/
3342 /* Confluence function for blocks with no successors. Create an out
3343 set from the gen set of the exit block. This block logically has
3344 the exit block as a successor. */
3348 static void
3349 dse_confluence_0 (basic_block bb)
3351 bb_info_t bb_info = bb_table[bb->index];
3353 if (bb->index == EXIT_BLOCK)
3354 return;
3356 if (!bb_info->out)
3358 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3359 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3363 /* Propagate the information from the in set of the dest of E to the
3364 out set of the src of E. If the various in or out sets are not
3365 there, that means they are all ones. */
3367 static bool
3368 dse_confluence_n (edge e)
3370 bb_info_t src_info = bb_table[e->src->index];
3371 bb_info_t dest_info = bb_table[e->dest->index];
3373 if (dest_info->in)
3375 if (src_info->out)
3376 bitmap_and_into (src_info->out, dest_info->in);
3377 else
3379 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3380 bitmap_copy (src_info->out, dest_info->in);
3383 return true;
3387 /* Propagate the info from the out to the in set of BB_INDEX's basic
3388 block. There are three cases:
3390 1) The block has no kill set. In this case the kill set is all
3391 ones. It does not matter what the out set of the block is, none of
3392 the info can reach the top. The only thing that reaches the top is
3393 the gen set and we just copy the set.
3395 2) There is a kill set but no out set and bb has successors. In
3396 this case we just return. Eventually an out set will be created and
3397 it is better to wait than to create a set of ones.
3399 3) There is both a kill and out set. We apply the obvious transfer
3400 function.
3403 static bool
3404 dse_transfer_function (int bb_index)
3406 bb_info_t bb_info = bb_table[bb_index];
3408 if (bb_info->kill)
3410 if (bb_info->out)
3412 /* Case 3 above. */
3413 if (bb_info->in)
3414 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3415 bb_info->out, bb_info->kill);
3416 else
3418 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3419 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3420 bb_info->out, bb_info->kill);
3421 return true;
3424 else
3425 /* Case 2 above. */
3426 return false;
3428 else
3430 /* Case 1 above. If there is already an in set, nothing
3431 happens. */
3432 if (bb_info->in)
3433 return false;
3434 else
3436 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3437 bitmap_copy (bb_info->in, bb_info->gen);
3438 return true;
3443 /* Solve the dataflow equations. */
3445 static void
3446 dse_step4 (void)
3448 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3449 dse_confluence_n, dse_transfer_function,
3450 all_blocks, df_get_postorder (DF_BACKWARD),
3451 df_get_n_blocks (DF_BACKWARD));
3452 if (dump_file && (dump_flags & TDF_DETAILS))
3454 basic_block bb;
3456 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3457 FOR_ALL_BB_FN (bb, cfun)
3459 bb_info_t bb_info = bb_table[bb->index];
3461 df_print_bb_index (bb, dump_file);
3462 if (bb_info->in)
3463 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3464 else
3465 fprintf (dump_file, " in: *MISSING*\n");
3466 if (bb_info->gen)
3467 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3468 else
3469 fprintf (dump_file, " gen: *MISSING*\n");
3470 if (bb_info->kill)
3471 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3472 else
3473 fprintf (dump_file, " kill: *MISSING*\n");
3474 if (bb_info->out)
3475 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3476 else
3477 fprintf (dump_file, " out: *MISSING*\n\n");
3484 /*----------------------------------------------------------------------------
3485 Fifth step.
3487 Delete the stores that can only be deleted using the global information.
3488 ----------------------------------------------------------------------------*/
3491 static void
3492 dse_step5 (void)
3494 basic_block bb;
3495 FOR_EACH_BB_FN (bb, cfun)
3497 bb_info_t bb_info = bb_table[bb->index];
3498 insn_info_t insn_info = bb_info->last_insn;
3499 bitmap v = bb_info->out;
3501 while (insn_info)
3503 bool deleted = false;
3504 if (dump_file && insn_info->insn)
3506 fprintf (dump_file, "starting to process insn %d\n",
3507 INSN_UID (insn_info->insn));
3508 bitmap_print (dump_file, v, " v: ", "\n");
3511 /* There may have been code deleted by the dce pass run before
3512 this phase. */
3513 if (insn_info->insn
3514 && INSN_P (insn_info->insn)
3515 && (!insn_info->cannot_delete)
3516 && (!bitmap_empty_p (v)))
3518 store_info *store_info = insn_info->store_rec;
3520 /* Try to delete the current insn. */
3521 deleted = true;
3523 /* Skip the clobbers. */
3524 while (!store_info->is_set)
3525 store_info = store_info->next;
3527 HOST_WIDE_INT i, offset, width;
3528 group_info *group_info = rtx_group_vec[store_info->group_id];
3530 if (!store_info->offset.is_constant (&offset)
3531 || !store_info->width.is_constant (&width))
3532 deleted = false;
3533 else
3535 HOST_WIDE_INT end = offset + width;
3536 for (i = offset; i < end; i++)
3538 int index = get_bitmap_index (group_info, i);
3540 if (dump_file && (dump_flags & TDF_DETAILS))
3541 fprintf (dump_file, "i = %d, index = %d\n",
3542 (int) i, index);
3543 if (index == 0 || !bitmap_bit_p (v, index))
3545 if (dump_file && (dump_flags & TDF_DETAILS))
3546 fprintf (dump_file, "failing at i = %d\n",
3547 (int) i);
3548 deleted = false;
3549 break;
3553 if (deleted)
3555 if (dbg_cnt (dse)
3556 && check_for_inc_dec_1 (insn_info))
3558 delete_insn (insn_info->insn);
3559 insn_info->insn = NULL;
3560 globally_deleted++;
3564 /* We do want to process the local info if the insn was
3565 deleted. For instance, if the insn did a wild read, we
3566 no longer need to trash the info. */
3567 if (insn_info->insn
3568 && INSN_P (insn_info->insn)
3569 && (!deleted))
3571 scan_stores (insn_info->store_rec, v, NULL);
3572 if (insn_info->wild_read)
3574 if (dump_file && (dump_flags & TDF_DETAILS))
3575 fprintf (dump_file, "wild read\n");
3576 bitmap_clear (v);
3578 else if (insn_info->read_rec
3579 || insn_info->non_frame_wild_read
3580 || insn_info->frame_read)
3582 if (dump_file && (dump_flags & TDF_DETAILS))
3584 if (!insn_info->non_frame_wild_read
3585 && !insn_info->frame_read)
3586 fprintf (dump_file, "regular read\n");
3587 if (insn_info->non_frame_wild_read)
3588 fprintf (dump_file, "non-frame wild read\n");
3589 if (insn_info->frame_read)
3590 fprintf (dump_file, "frame read\n");
3592 scan_reads (insn_info, v, NULL);
3596 insn_info = insn_info->prev_insn;
3603 /*----------------------------------------------------------------------------
3604 Sixth step.
3606 Delete stores made redundant by earlier stores (which store the same
3607 value) that couldn't be eliminated.
3608 ----------------------------------------------------------------------------*/
3610 static void
3611 dse_step6 (void)
3613 basic_block bb;
3615 FOR_ALL_BB_FN (bb, cfun)
3617 bb_info_t bb_info = bb_table[bb->index];
3618 insn_info_t insn_info = bb_info->last_insn;
3620 while (insn_info)
3622 /* There may have been code deleted by the dce pass run before
3623 this phase. */
3624 if (insn_info->insn
3625 && INSN_P (insn_info->insn)
3626 && !insn_info->cannot_delete)
3628 store_info *s_info = insn_info->store_rec;
3630 while (s_info && !s_info->is_set)
3631 s_info = s_info->next;
3632 if (s_info
3633 && s_info->redundant_reason
3634 && s_info->redundant_reason->insn
3635 && INSN_P (s_info->redundant_reason->insn))
3637 rtx_insn *rinsn = s_info->redundant_reason->insn;
3638 if (dump_file && (dump_flags & TDF_DETAILS))
3639 fprintf (dump_file, "Locally deleting insn %d "
3640 "because insn %d stores the "
3641 "same value and couldn't be "
3642 "eliminated\n",
3643 INSN_UID (insn_info->insn),
3644 INSN_UID (rinsn));
3645 delete_dead_store_insn (insn_info);
3648 insn_info = insn_info->prev_insn;
3653 /*----------------------------------------------------------------------------
3654 Seventh step.
3656 Destroy everything left standing.
3657 ----------------------------------------------------------------------------*/
3659 static void
3660 dse_step7 (void)
3662 bitmap_obstack_release (&dse_bitmap_obstack);
3663 obstack_free (&dse_obstack, NULL);
3665 end_alias_analysis ();
3666 free (bb_table);
3667 delete rtx_group_table;
3668 rtx_group_table = NULL;
3669 rtx_group_vec.release ();
3670 BITMAP_FREE (all_blocks);
3671 BITMAP_FREE (scratch);
3673 rtx_store_info_pool.release ();
3674 read_info_type_pool.release ();
3675 insn_info_type_pool.release ();
3676 dse_bb_info_type_pool.release ();
3677 group_info_pool.release ();
3678 deferred_change_pool.release ();
3682 /* -------------------------------------------------------------------------
3684 ------------------------------------------------------------------------- */
3686 /* Callback for running pass_rtl_dse. */
3688 static unsigned int
3689 rest_of_handle_dse (void)
3691 df_set_flags (DF_DEFER_INSN_RESCAN);
3693 /* Need the notes since we must track live hardregs in the forwards
3694 direction. */
3695 df_note_add_problem ();
3696 df_analyze ();
3698 dse_step0 ();
3699 dse_step1 ();
3700 /* DSE can eliminate potentially-trapping MEMs.
3701 Remove any EH edges associated with them, since otherwise
3702 DF_LR_RUN_DCE will complain later. */
3703 if ((locally_deleted || globally_deleted)
3704 && cfun->can_throw_non_call_exceptions
3705 && purge_all_dead_edges ())
3707 free_dominance_info (CDI_DOMINATORS);
3708 delete_unreachable_blocks ();
3710 dse_step2_init ();
3711 if (dse_step2 ())
3713 df_set_flags (DF_LR_RUN_DCE);
3714 df_analyze ();
3715 if (dump_file && (dump_flags & TDF_DETAILS))
3716 fprintf (dump_file, "doing global processing\n");
3717 dse_step3 ();
3718 dse_step4 ();
3719 dse_step5 ();
3722 dse_step6 ();
3723 dse_step7 ();
3725 if (dump_file)
3726 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3727 locally_deleted, globally_deleted);
3729 /* DSE can eliminate potentially-trapping MEMs.
3730 Remove any EH edges associated with them. */
3731 if ((locally_deleted || globally_deleted)
3732 && cfun->can_throw_non_call_exceptions
3733 && purge_all_dead_edges ())
3735 free_dominance_info (CDI_DOMINATORS);
3736 cleanup_cfg (0);
3739 return 0;
3742 namespace {
3744 const pass_data pass_data_rtl_dse1 =
3746 RTL_PASS, /* type */
3747 "dse1", /* name */
3748 OPTGROUP_NONE, /* optinfo_flags */
3749 TV_DSE1, /* tv_id */
3750 0, /* properties_required */
3751 0, /* properties_provided */
3752 0, /* properties_destroyed */
3753 0, /* todo_flags_start */
3754 TODO_df_finish, /* todo_flags_finish */
3757 class pass_rtl_dse1 : public rtl_opt_pass
3759 public:
3760 pass_rtl_dse1 (gcc::context *ctxt)
3761 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3764 /* opt_pass methods: */
3765 bool gate (function *) final override
3767 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3770 unsigned int execute (function *) final override
3772 return rest_of_handle_dse ();
3775 }; // class pass_rtl_dse1
3777 } // anon namespace
3779 rtl_opt_pass *
3780 make_pass_rtl_dse1 (gcc::context *ctxt)
3782 return new pass_rtl_dse1 (ctxt);
3785 namespace {
3787 const pass_data pass_data_rtl_dse2 =
3789 RTL_PASS, /* type */
3790 "dse2", /* name */
3791 OPTGROUP_NONE, /* optinfo_flags */
3792 TV_DSE2, /* tv_id */
3793 0, /* properties_required */
3794 0, /* properties_provided */
3795 0, /* properties_destroyed */
3796 0, /* todo_flags_start */
3797 TODO_df_finish, /* todo_flags_finish */
3800 class pass_rtl_dse2 : public rtl_opt_pass
3802 public:
3803 pass_rtl_dse2 (gcc::context *ctxt)
3804 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3807 /* opt_pass methods: */
3808 bool gate (function *) final override
3810 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3813 unsigned int execute (function *) final override
3815 return rest_of_handle_dse ();
3818 }; // class pass_rtl_dse2
3820 } // anon namespace
3822 rtl_opt_pass *
3823 make_pass_rtl_dse2 (gcc::context *ctxt)
3825 return new pass_rtl_dse2 (ctxt);