/cp
[official-gcc.git] / gcc / ifcvt.c
blobfd2951673fb6bd6d9e5d52cdb88765434a603fb6
1 /* If-conversion support.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "cfgcleanup.h"
39 #include "expr.h"
40 #include "output.h"
41 #include "cfgloop.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "shrink-wrap.h"
45 #include "rtl-iter.h"
46 #include "ifcvt.h"
47 #include "params.h"
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
55 #define IFCVT_MULTIPLE_DUMPS 1
57 #define NULL_BLOCK ((basic_block) NULL)
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
72 /* # of changes made. */
73 static int num_true_changes;
75 /* Whether conditional execution changes were made. */
76 static int cond_exec_changed_p;
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
87 int);
88 static rtx cond_exec_get_condition (rtx_insn *);
89 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
90 static int noce_operand_ok (const_rtx);
91 static void merge_if_block (ce_if_block *);
92 static int find_cond_trap (basic_block, edge, edge);
93 static basic_block find_if_header (basic_block, int);
94 static int block_jumps_and_fallthru_p (basic_block, basic_block);
95 static int noce_find_if_block (basic_block, edge, edge, int);
96 static int cond_exec_find_if_block (ce_if_block *);
97 static int find_if_case_1 (basic_block, edge, edge);
98 static int find_if_case_2 (basic_block, edge, edge);
99 static int dead_or_predicable (basic_block, basic_block, basic_block,
100 edge, int);
101 static void noce_emit_move_insn (rtx, rtx);
102 static rtx_insn *block_has_only_trap (basic_block);
104 /* Count the number of non-jump active insns in BB. */
106 static int
107 count_bb_insns (const_basic_block bb)
109 int count = 0;
110 rtx_insn *insn = BB_HEAD (bb);
112 while (1)
114 if (active_insn_p (insn) && !JUMP_P (insn))
115 count++;
117 if (insn == BB_END (bb))
118 break;
119 insn = NEXT_INSN (insn);
122 return count;
125 /* Determine whether the total insn_rtx_cost on non-jump insns in
126 basic block BB is less than MAX_COST. This function returns
127 false if the cost of any instruction could not be estimated.
129 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
130 as those insns are being speculated. MAX_COST is scaled with SCALE
131 plus a small fudge factor. */
133 static bool
134 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
136 int count = 0;
137 rtx_insn *insn = BB_HEAD (bb);
138 bool speed = optimize_bb_for_speed_p (bb);
140 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
141 applied to insn_rtx_cost when optimizing for size. Only do
142 this after combine because if-conversion might interfere with
143 passes before combine.
145 Use optimize_function_for_speed_p instead of the pre-defined
146 variable speed to make sure it is set to same value for all
147 basic blocks in one if-conversion transformation. */
148 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
149 scale = REG_BR_PROB_BASE;
150 /* Our branch probability/scaling factors are just estimates and don't
151 account for cases where we can get speculation for free and other
152 secondary benefits. So we fudge the scale factor to make speculating
153 appear a little more profitable when optimizing for performance. */
154 else
155 scale += REG_BR_PROB_BASE / 8;
158 max_cost *= scale;
160 while (1)
162 if (NONJUMP_INSN_P (insn))
164 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
165 if (cost == 0)
166 return false;
168 /* If this instruction is the load or set of a "stack" register,
169 such as a floating point register on x87, then the cost of
170 speculatively executing this insn may need to include
171 the additional cost of popping its result off of the
172 register stack. Unfortunately, correctly recognizing and
173 accounting for this additional overhead is tricky, so for
174 now we simply prohibit such speculative execution. */
175 #ifdef STACK_REGS
177 rtx set = single_set (insn);
178 if (set && STACK_REG_P (SET_DEST (set)))
179 return false;
181 #endif
183 count += cost;
184 if (count >= max_cost)
185 return false;
187 else if (CALL_P (insn))
188 return false;
190 if (insn == BB_END (bb))
191 break;
192 insn = NEXT_INSN (insn);
195 return true;
198 /* Return the first non-jump active insn in the basic block. */
200 static rtx_insn *
201 first_active_insn (basic_block bb)
203 rtx_insn *insn = BB_HEAD (bb);
205 if (LABEL_P (insn))
207 if (insn == BB_END (bb))
208 return NULL;
209 insn = NEXT_INSN (insn);
212 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
214 if (insn == BB_END (bb))
215 return NULL;
216 insn = NEXT_INSN (insn);
219 if (JUMP_P (insn))
220 return NULL;
222 return insn;
225 /* Return the last non-jump active (non-jump) insn in the basic block. */
227 static rtx_insn *
228 last_active_insn (basic_block bb, int skip_use_p)
230 rtx_insn *insn = BB_END (bb);
231 rtx_insn *head = BB_HEAD (bb);
233 while (NOTE_P (insn)
234 || JUMP_P (insn)
235 || DEBUG_INSN_P (insn)
236 || (skip_use_p
237 && NONJUMP_INSN_P (insn)
238 && GET_CODE (PATTERN (insn)) == USE))
240 if (insn == head)
241 return NULL;
242 insn = PREV_INSN (insn);
245 if (LABEL_P (insn))
246 return NULL;
248 return insn;
251 /* Return the active insn before INSN inside basic block CURR_BB. */
253 static rtx_insn *
254 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
256 if (!insn || insn == BB_HEAD (curr_bb))
257 return NULL;
259 while ((insn = PREV_INSN (insn)) != NULL_RTX)
261 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
262 break;
264 /* No other active insn all the way to the start of the basic block. */
265 if (insn == BB_HEAD (curr_bb))
266 return NULL;
269 return insn;
272 /* Return the active insn after INSN inside basic block CURR_BB. */
274 static rtx_insn *
275 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
277 if (!insn || insn == BB_END (curr_bb))
278 return NULL;
280 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
282 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
283 break;
285 /* No other active insn all the way to the end of the basic block. */
286 if (insn == BB_END (curr_bb))
287 return NULL;
290 return insn;
293 /* Return the basic block reached by falling though the basic block BB. */
295 static basic_block
296 block_fallthru (basic_block bb)
298 edge e = find_fallthru_edge (bb->succs);
300 return (e) ? e->dest : NULL_BLOCK;
303 /* Return true if RTXs A and B can be safely interchanged. */
305 static bool
306 rtx_interchangeable_p (const_rtx a, const_rtx b)
308 if (!rtx_equal_p (a, b))
309 return false;
311 if (GET_CODE (a) != MEM)
312 return true;
314 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
315 reference is not. Interchanging a dead type-unsafe memory reference with
316 a live type-safe one creates a live type-unsafe memory reference, in other
317 words, it makes the program illegal.
318 We check here conservatively whether the two memory references have equal
319 memory attributes. */
321 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
325 /* Go through a bunch of insns, converting them to conditional
326 execution format if possible. Return TRUE if all of the non-note
327 insns were processed. */
329 static int
330 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
331 /* if block information */rtx_insn *start,
332 /* first insn to look at */rtx end,
333 /* last insn to look at */rtx test,
334 /* conditional execution test */int prob_val,
335 /* probability of branch taken. */int mod_ok)
337 int must_be_last = FALSE;
338 rtx_insn *insn;
339 rtx xtest;
340 rtx pattern;
342 if (!start || !end)
343 return FALSE;
345 for (insn = start; ; insn = NEXT_INSN (insn))
347 /* dwarf2out can't cope with conditional prologues. */
348 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
349 return FALSE;
351 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
352 goto insn_done;
354 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
356 /* dwarf2out can't cope with conditional unwind info. */
357 if (RTX_FRAME_RELATED_P (insn))
358 return FALSE;
360 /* Remove USE insns that get in the way. */
361 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
363 /* ??? Ug. Actually unlinking the thing is problematic,
364 given what we'd have to coordinate with our callers. */
365 SET_INSN_DELETED (insn);
366 goto insn_done;
369 /* Last insn wasn't last? */
370 if (must_be_last)
371 return FALSE;
373 if (modified_in_p (test, insn))
375 if (!mod_ok)
376 return FALSE;
377 must_be_last = TRUE;
380 /* Now build the conditional form of the instruction. */
381 pattern = PATTERN (insn);
382 xtest = copy_rtx (test);
384 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
385 two conditions. */
386 if (GET_CODE (pattern) == COND_EXEC)
388 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
389 return FALSE;
391 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
392 COND_EXEC_TEST (pattern));
393 pattern = COND_EXEC_CODE (pattern);
396 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
398 /* If the machine needs to modify the insn being conditionally executed,
399 say for example to force a constant integer operand into a temp
400 register, do so here. */
401 #ifdef IFCVT_MODIFY_INSN
402 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
403 if (! pattern)
404 return FALSE;
405 #endif
407 validate_change (insn, &PATTERN (insn), pattern, 1);
409 if (CALL_P (insn) && prob_val >= 0)
410 validate_change (insn, &REG_NOTES (insn),
411 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
412 prob_val, REG_NOTES (insn)), 1);
414 insn_done:
415 if (insn == end)
416 break;
419 return TRUE;
422 /* Return the condition for a jump. Do not do any special processing. */
424 static rtx
425 cond_exec_get_condition (rtx_insn *jump)
427 rtx test_if, cond;
429 if (any_condjump_p (jump))
430 test_if = SET_SRC (pc_set (jump));
431 else
432 return NULL_RTX;
433 cond = XEXP (test_if, 0);
435 /* If this branches to JUMP_LABEL when the condition is false,
436 reverse the condition. */
437 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
438 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
440 enum rtx_code rev = reversed_comparison_code (cond, jump);
441 if (rev == UNKNOWN)
442 return NULL_RTX;
444 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
445 XEXP (cond, 1));
448 return cond;
451 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
452 to conditional execution. Return TRUE if we were successful at
453 converting the block. */
455 static int
456 cond_exec_process_if_block (ce_if_block * ce_info,
457 /* if block information */int do_multiple_p)
459 basic_block test_bb = ce_info->test_bb; /* last test block */
460 basic_block then_bb = ce_info->then_bb; /* THEN */
461 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
462 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
463 rtx_insn *then_start; /* first insn in THEN block */
464 rtx_insn *then_end; /* last insn + 1 in THEN block */
465 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
466 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
467 int max; /* max # of insns to convert. */
468 int then_mod_ok; /* whether conditional mods are ok in THEN */
469 rtx true_expr; /* test for else block insns */
470 rtx false_expr; /* test for then block insns */
471 int true_prob_val; /* probability of else block */
472 int false_prob_val; /* probability of then block */
473 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
474 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
475 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
476 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
477 int then_n_insns, else_n_insns, n_insns;
478 enum rtx_code false_code;
479 rtx note;
481 /* If test is comprised of && or || elements, and we've failed at handling
482 all of them together, just use the last test if it is the special case of
483 && elements without an ELSE block. */
484 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
486 if (else_bb || ! ce_info->and_and_p)
487 return FALSE;
489 ce_info->test_bb = test_bb = ce_info->last_test_bb;
490 ce_info->num_multiple_test_blocks = 0;
491 ce_info->num_and_and_blocks = 0;
492 ce_info->num_or_or_blocks = 0;
495 /* Find the conditional jump to the ELSE or JOIN part, and isolate
496 the test. */
497 test_expr = cond_exec_get_condition (BB_END (test_bb));
498 if (! test_expr)
499 return FALSE;
501 /* If the conditional jump is more than just a conditional jump,
502 then we can not do conditional execution conversion on this block. */
503 if (! onlyjump_p (BB_END (test_bb)))
504 return FALSE;
506 /* Collect the bounds of where we're to search, skipping any labels, jumps
507 and notes at the beginning and end of the block. Then count the total
508 number of insns and see if it is small enough to convert. */
509 then_start = first_active_insn (then_bb);
510 then_end = last_active_insn (then_bb, TRUE);
511 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
512 n_insns = then_n_insns;
513 max = MAX_CONDITIONAL_EXECUTE;
515 if (else_bb)
517 int n_matching;
519 max *= 2;
520 else_start = first_active_insn (else_bb);
521 else_end = last_active_insn (else_bb, TRUE);
522 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
523 n_insns += else_n_insns;
525 /* Look for matching sequences at the head and tail of the two blocks,
526 and limit the range of insns to be converted if possible. */
527 n_matching = flow_find_cross_jump (then_bb, else_bb,
528 &then_first_tail, &else_first_tail,
529 NULL);
530 if (then_first_tail == BB_HEAD (then_bb))
531 then_start = then_end = NULL;
532 if (else_first_tail == BB_HEAD (else_bb))
533 else_start = else_end = NULL;
535 if (n_matching > 0)
537 if (then_end)
538 then_end = find_active_insn_before (then_bb, then_first_tail);
539 if (else_end)
540 else_end = find_active_insn_before (else_bb, else_first_tail);
541 n_insns -= 2 * n_matching;
544 if (then_start
545 && else_start
546 && then_n_insns > n_matching
547 && else_n_insns > n_matching)
549 int longest_match = MIN (then_n_insns - n_matching,
550 else_n_insns - n_matching);
551 n_matching
552 = flow_find_head_matching_sequence (then_bb, else_bb,
553 &then_last_head,
554 &else_last_head,
555 longest_match);
557 if (n_matching > 0)
559 rtx_insn *insn;
561 /* We won't pass the insns in the head sequence to
562 cond_exec_process_insns, so we need to test them here
563 to make sure that they don't clobber the condition. */
564 for (insn = BB_HEAD (then_bb);
565 insn != NEXT_INSN (then_last_head);
566 insn = NEXT_INSN (insn))
567 if (!LABEL_P (insn) && !NOTE_P (insn)
568 && !DEBUG_INSN_P (insn)
569 && modified_in_p (test_expr, insn))
570 return FALSE;
573 if (then_last_head == then_end)
574 then_start = then_end = NULL;
575 if (else_last_head == else_end)
576 else_start = else_end = NULL;
578 if (n_matching > 0)
580 if (then_start)
581 then_start = find_active_insn_after (then_bb, then_last_head);
582 if (else_start)
583 else_start = find_active_insn_after (else_bb, else_last_head);
584 n_insns -= 2 * n_matching;
589 if (n_insns > max)
590 return FALSE;
592 /* Map test_expr/test_jump into the appropriate MD tests to use on
593 the conditionally executed code. */
595 true_expr = test_expr;
597 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
598 if (false_code != UNKNOWN)
599 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
600 XEXP (true_expr, 0), XEXP (true_expr, 1));
601 else
602 false_expr = NULL_RTX;
604 #ifdef IFCVT_MODIFY_TESTS
605 /* If the machine description needs to modify the tests, such as setting a
606 conditional execution register from a comparison, it can do so here. */
607 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
609 /* See if the conversion failed. */
610 if (!true_expr || !false_expr)
611 goto fail;
612 #endif
614 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
615 if (note)
617 true_prob_val = XINT (note, 0);
618 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
620 else
622 true_prob_val = -1;
623 false_prob_val = -1;
626 /* If we have && or || tests, do them here. These tests are in the adjacent
627 blocks after the first block containing the test. */
628 if (ce_info->num_multiple_test_blocks > 0)
630 basic_block bb = test_bb;
631 basic_block last_test_bb = ce_info->last_test_bb;
633 if (! false_expr)
634 goto fail;
638 rtx_insn *start, *end;
639 rtx t, f;
640 enum rtx_code f_code;
642 bb = block_fallthru (bb);
643 start = first_active_insn (bb);
644 end = last_active_insn (bb, TRUE);
645 if (start
646 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
647 false_prob_val, FALSE))
648 goto fail;
650 /* If the conditional jump is more than just a conditional jump, then
651 we can not do conditional execution conversion on this block. */
652 if (! onlyjump_p (BB_END (bb)))
653 goto fail;
655 /* Find the conditional jump and isolate the test. */
656 t = cond_exec_get_condition (BB_END (bb));
657 if (! t)
658 goto fail;
660 f_code = reversed_comparison_code (t, BB_END (bb));
661 if (f_code == UNKNOWN)
662 goto fail;
664 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
665 if (ce_info->and_and_p)
667 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
668 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
670 else
672 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
673 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
676 /* If the machine description needs to modify the tests, such as
677 setting a conditional execution register from a comparison, it can
678 do so here. */
679 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
680 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
682 /* See if the conversion failed. */
683 if (!t || !f)
684 goto fail;
685 #endif
687 true_expr = t;
688 false_expr = f;
690 while (bb != last_test_bb);
693 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
694 on then THEN block. */
695 then_mod_ok = (else_bb == NULL_BLOCK);
697 /* Go through the THEN and ELSE blocks converting the insns if possible
698 to conditional execution. */
700 if (then_end
701 && (! false_expr
702 || ! cond_exec_process_insns (ce_info, then_start, then_end,
703 false_expr, false_prob_val,
704 then_mod_ok)))
705 goto fail;
707 if (else_bb && else_end
708 && ! cond_exec_process_insns (ce_info, else_start, else_end,
709 true_expr, true_prob_val, TRUE))
710 goto fail;
712 /* If we cannot apply the changes, fail. Do not go through the normal fail
713 processing, since apply_change_group will call cancel_changes. */
714 if (! apply_change_group ())
716 #ifdef IFCVT_MODIFY_CANCEL
717 /* Cancel any machine dependent changes. */
718 IFCVT_MODIFY_CANCEL (ce_info);
719 #endif
720 return FALSE;
723 #ifdef IFCVT_MODIFY_FINAL
724 /* Do any machine dependent final modifications. */
725 IFCVT_MODIFY_FINAL (ce_info);
726 #endif
728 /* Conversion succeeded. */
729 if (dump_file)
730 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
731 n_insns, (n_insns == 1) ? " was" : "s were");
733 /* Merge the blocks! If we had matching sequences, make sure to delete one
734 copy at the appropriate location first: delete the copy in the THEN branch
735 for a tail sequence so that the remaining one is executed last for both
736 branches, and delete the copy in the ELSE branch for a head sequence so
737 that the remaining one is executed first for both branches. */
738 if (then_first_tail)
740 rtx_insn *from = then_first_tail;
741 if (!INSN_P (from))
742 from = find_active_insn_after (then_bb, from);
743 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
745 if (else_last_head)
746 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
748 merge_if_block (ce_info);
749 cond_exec_changed_p = TRUE;
750 return TRUE;
752 fail:
753 #ifdef IFCVT_MODIFY_CANCEL
754 /* Cancel any machine dependent changes. */
755 IFCVT_MODIFY_CANCEL (ce_info);
756 #endif
758 cancel_changes (0);
759 return FALSE;
762 /* Used by noce_process_if_block to communicate with its subroutines.
764 The subroutines know that A and B may be evaluated freely. They
765 know that X is a register. They should insert new instructions
766 before cond_earliest. */
768 struct noce_if_info
770 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
771 basic_block test_bb, then_bb, else_bb, join_bb;
773 /* The jump that ends TEST_BB. */
774 rtx_insn *jump;
776 /* The jump condition. */
777 rtx cond;
779 /* New insns should be inserted before this one. */
780 rtx_insn *cond_earliest;
782 /* Insns in the THEN and ELSE block. There is always just this
783 one insns in those blocks. The insns are single_set insns.
784 If there was no ELSE block, INSN_B is the last insn before
785 COND_EARLIEST, or NULL_RTX. In the former case, the insn
786 operands are still valid, as if INSN_B was moved down below
787 the jump. */
788 rtx_insn *insn_a, *insn_b;
790 /* The SET_SRC of INSN_A and INSN_B. */
791 rtx a, b;
793 /* The SET_DEST of INSN_A. */
794 rtx x;
796 /* The original set destination that the THEN and ELSE basic blocks finally
797 write their result to. */
798 rtx orig_x;
799 /* True if this if block is not canonical. In the canonical form of
800 if blocks, the THEN_BB is the block reached via the fallthru edge
801 from TEST_BB. For the noce transformations, we allow the symmetric
802 form as well. */
803 bool then_else_reversed;
805 /* True if the contents of then_bb and else_bb are a
806 simple single set instruction. */
807 bool then_simple;
808 bool else_simple;
810 /* The total rtx cost of the instructions in then_bb and else_bb. */
811 unsigned int then_cost;
812 unsigned int else_cost;
814 /* Estimated cost of the particular branch instruction. */
815 unsigned int branch_cost;
817 /* The name of the noce transform that succeeded in if-converting
818 this structure. Used for debugging. */
819 const char *transform_name;
822 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
823 static int noce_try_move (struct noce_if_info *);
824 static int noce_try_ifelse_collapse (struct noce_if_info *);
825 static int noce_try_store_flag (struct noce_if_info *);
826 static int noce_try_addcc (struct noce_if_info *);
827 static int noce_try_store_flag_constants (struct noce_if_info *);
828 static int noce_try_store_flag_mask (struct noce_if_info *);
829 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
830 rtx, rtx, rtx);
831 static int noce_try_cmove (struct noce_if_info *);
832 static int noce_try_cmove_arith (struct noce_if_info *);
833 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
834 static int noce_try_minmax (struct noce_if_info *);
835 static int noce_try_abs (struct noce_if_info *);
836 static int noce_try_sign_mask (struct noce_if_info *);
838 /* Helper function for noce_try_store_flag*. */
840 static rtx
841 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
842 int normalize)
844 rtx cond = if_info->cond;
845 int cond_complex;
846 enum rtx_code code;
848 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
849 || ! general_operand (XEXP (cond, 1), VOIDmode));
851 /* If earliest == jump, or when the condition is complex, try to
852 build the store_flag insn directly. */
854 if (cond_complex)
856 rtx set = pc_set (if_info->jump);
857 cond = XEXP (SET_SRC (set), 0);
858 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
859 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
860 reversep = !reversep;
861 if (if_info->then_else_reversed)
862 reversep = !reversep;
865 if (reversep)
866 code = reversed_comparison_code (cond, if_info->jump);
867 else
868 code = GET_CODE (cond);
870 if ((if_info->cond_earliest == if_info->jump || cond_complex)
871 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
873 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
874 XEXP (cond, 1));
875 rtx set = gen_rtx_SET (x, src);
877 start_sequence ();
878 rtx_insn *insn = emit_insn (set);
880 if (recog_memoized (insn) >= 0)
882 rtx_insn *seq = get_insns ();
883 end_sequence ();
884 emit_insn (seq);
886 if_info->cond_earliest = if_info->jump;
888 return x;
891 end_sequence ();
894 /* Don't even try if the comparison operands or the mode of X are weird. */
895 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
896 return NULL_RTX;
898 return emit_store_flag (x, code, XEXP (cond, 0),
899 XEXP (cond, 1), VOIDmode,
900 (code == LTU || code == LEU
901 || code == GEU || code == GTU), normalize);
904 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
905 X is the destination/target and Y is the value to copy. */
907 static void
908 noce_emit_move_insn (rtx x, rtx y)
910 machine_mode outmode;
911 rtx outer, inner;
912 int bitpos;
914 if (GET_CODE (x) != STRICT_LOW_PART)
916 rtx_insn *seq, *insn;
917 rtx target;
918 optab ot;
920 start_sequence ();
921 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
922 otherwise construct a suitable SET pattern ourselves. */
923 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
924 ? emit_move_insn (x, y)
925 : emit_insn (gen_rtx_SET (x, y));
926 seq = get_insns ();
927 end_sequence ();
929 if (recog_memoized (insn) <= 0)
931 if (GET_CODE (x) == ZERO_EXTRACT)
933 rtx op = XEXP (x, 0);
934 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
935 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
937 /* store_bit_field expects START to be relative to
938 BYTES_BIG_ENDIAN and adjusts this value for machines with
939 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
940 invoke store_bit_field again it is necessary to have the START
941 value from the first call. */
942 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
944 if (MEM_P (op))
945 start = BITS_PER_UNIT - start - size;
946 else
948 gcc_assert (REG_P (op));
949 start = BITS_PER_WORD - start - size;
953 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
954 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
955 return;
958 switch (GET_RTX_CLASS (GET_CODE (y)))
960 case RTX_UNARY:
961 ot = code_to_optab (GET_CODE (y));
962 if (ot)
964 start_sequence ();
965 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
966 if (target != NULL_RTX)
968 if (target != x)
969 emit_move_insn (x, target);
970 seq = get_insns ();
972 end_sequence ();
974 break;
976 case RTX_BIN_ARITH:
977 case RTX_COMM_ARITH:
978 ot = code_to_optab (GET_CODE (y));
979 if (ot)
981 start_sequence ();
982 target = expand_binop (GET_MODE (y), ot,
983 XEXP (y, 0), XEXP (y, 1),
984 x, 0, OPTAB_DIRECT);
985 if (target != NULL_RTX)
987 if (target != x)
988 emit_move_insn (x, target);
989 seq = get_insns ();
991 end_sequence ();
993 break;
995 default:
996 break;
1000 emit_insn (seq);
1001 return;
1004 outer = XEXP (x, 0);
1005 inner = XEXP (outer, 0);
1006 outmode = GET_MODE (outer);
1007 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1008 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1009 0, 0, outmode, y, false);
1012 /* Return the CC reg if it is used in COND. */
1014 static rtx
1015 cc_in_cond (rtx cond)
1017 if (have_cbranchcc4 && cond
1018 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1019 return XEXP (cond, 0);
1021 return NULL_RTX;
1024 /* Return sequence of instructions generated by if conversion. This
1025 function calls end_sequence() to end the current stream, ensures
1026 that the instructions are unshared, recognizable non-jump insns.
1027 On failure, this function returns a NULL_RTX. */
1029 static rtx_insn *
1030 end_ifcvt_sequence (struct noce_if_info *if_info)
1032 rtx_insn *insn;
1033 rtx_insn *seq = get_insns ();
1034 rtx cc = cc_in_cond (if_info->cond);
1036 set_used_flags (if_info->x);
1037 set_used_flags (if_info->cond);
1038 set_used_flags (if_info->a);
1039 set_used_flags (if_info->b);
1041 for (insn = seq; insn; insn = NEXT_INSN (insn))
1042 set_used_flags (insn);
1044 unshare_all_rtl_in_chain (seq);
1045 end_sequence ();
1047 /* Make sure that all of the instructions emitted are recognizable,
1048 and that we haven't introduced a new jump instruction.
1049 As an exercise for the reader, build a general mechanism that
1050 allows proper placement of required clobbers. */
1051 for (insn = seq; insn; insn = NEXT_INSN (insn))
1052 if (JUMP_P (insn)
1053 || recog_memoized (insn) == -1
1054 /* Make sure new generated code does not clobber CC. */
1055 || (cc && set_of (cc, insn)))
1056 return NULL;
1058 return seq;
1061 /* Return true iff the then and else basic block (if it exists)
1062 consist of a single simple set instruction. */
1064 static bool
1065 noce_simple_bbs (struct noce_if_info *if_info)
1067 if (!if_info->then_simple)
1068 return false;
1070 if (if_info->else_bb)
1071 return if_info->else_simple;
1073 return true;
1076 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1077 "if (a == b) x = a; else x = b" into "x = b". */
1079 static int
1080 noce_try_move (struct noce_if_info *if_info)
1082 rtx cond = if_info->cond;
1083 enum rtx_code code = GET_CODE (cond);
1084 rtx y;
1085 rtx_insn *seq;
1087 if (code != NE && code != EQ)
1088 return FALSE;
1090 if (!noce_simple_bbs (if_info))
1091 return FALSE;
1093 /* This optimization isn't valid if either A or B could be a NaN
1094 or a signed zero. */
1095 if (HONOR_NANS (if_info->x)
1096 || HONOR_SIGNED_ZEROS (if_info->x))
1097 return FALSE;
1099 /* Check whether the operands of the comparison are A and in
1100 either order. */
1101 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1102 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1103 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1104 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1106 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1107 return FALSE;
1109 y = (code == EQ) ? if_info->a : if_info->b;
1111 /* Avoid generating the move if the source is the destination. */
1112 if (! rtx_equal_p (if_info->x, y))
1114 start_sequence ();
1115 noce_emit_move_insn (if_info->x, y);
1116 seq = end_ifcvt_sequence (if_info);
1117 if (!seq)
1118 return FALSE;
1120 emit_insn_before_setloc (seq, if_info->jump,
1121 INSN_LOCATION (if_info->insn_a));
1123 if_info->transform_name = "noce_try_move";
1124 return TRUE;
1126 return FALSE;
1129 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1130 through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
1131 If that is the case, emit the result into x. */
1133 static int
1134 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1136 if (!noce_simple_bbs (if_info))
1137 return FALSE;
1139 machine_mode mode = GET_MODE (if_info->x);
1140 rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1141 if_info->cond, if_info->b,
1142 if_info->a);
1144 if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1145 return FALSE;
1147 rtx_insn *seq;
1148 start_sequence ();
1149 noce_emit_move_insn (if_info->x, if_then_else);
1150 seq = end_ifcvt_sequence (if_info);
1151 if (!seq)
1152 return FALSE;
1154 emit_insn_before_setloc (seq, if_info->jump,
1155 INSN_LOCATION (if_info->insn_a));
1157 if_info->transform_name = "noce_try_ifelse_collapse";
1158 return TRUE;
1162 /* Convert "if (test) x = 1; else x = 0".
1164 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1165 tried in noce_try_store_flag_constants after noce_try_cmove has had
1166 a go at the conversion. */
1168 static int
1169 noce_try_store_flag (struct noce_if_info *if_info)
1171 int reversep;
1172 rtx target;
1173 rtx_insn *seq;
1175 if (!noce_simple_bbs (if_info))
1176 return FALSE;
1178 if (CONST_INT_P (if_info->b)
1179 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1180 && if_info->a == const0_rtx)
1181 reversep = 0;
1182 else if (if_info->b == const0_rtx
1183 && CONST_INT_P (if_info->a)
1184 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1185 && (reversed_comparison_code (if_info->cond, if_info->jump)
1186 != UNKNOWN))
1187 reversep = 1;
1188 else
1189 return FALSE;
1191 start_sequence ();
1193 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1194 if (target)
1196 if (target != if_info->x)
1197 noce_emit_move_insn (if_info->x, target);
1199 seq = end_ifcvt_sequence (if_info);
1200 if (! seq)
1201 return FALSE;
1203 emit_insn_before_setloc (seq, if_info->jump,
1204 INSN_LOCATION (if_info->insn_a));
1205 if_info->transform_name = "noce_try_store_flag";
1206 return TRUE;
1208 else
1210 end_sequence ();
1211 return FALSE;
1216 /* Convert "if (test) x = -A; else x = A" into
1217 x = A; if (test) x = -x if the machine can do the
1218 conditional negate form of this cheaply.
1219 Try this before noce_try_cmove that will just load the
1220 immediates into two registers and do a conditional select
1221 between them. If the target has a conditional negate or
1222 conditional invert operation we can save a potentially
1223 expensive constant synthesis. */
1225 static bool
1226 noce_try_inverse_constants (struct noce_if_info *if_info)
1228 if (!noce_simple_bbs (if_info))
1229 return false;
1231 if (!CONST_INT_P (if_info->a)
1232 || !CONST_INT_P (if_info->b)
1233 || !REG_P (if_info->x))
1234 return false;
1236 machine_mode mode = GET_MODE (if_info->x);
1238 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1239 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1241 rtx cond = if_info->cond;
1243 rtx x = if_info->x;
1244 rtx target;
1246 start_sequence ();
1248 rtx_code code;
1249 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1250 code = NEG;
1251 else if (val_a == ~val_b)
1252 code = NOT;
1253 else
1255 end_sequence ();
1256 return false;
1259 rtx tmp = gen_reg_rtx (mode);
1260 noce_emit_move_insn (tmp, if_info->a);
1262 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1264 if (target)
1266 rtx_insn *seq = get_insns ();
1268 if (!seq)
1270 end_sequence ();
1271 return false;
1274 if (target != if_info->x)
1275 noce_emit_move_insn (if_info->x, target);
1277 seq = end_ifcvt_sequence (if_info);
1279 if (!seq)
1280 return false;
1282 emit_insn_before_setloc (seq, if_info->jump,
1283 INSN_LOCATION (if_info->insn_a));
1284 if_info->transform_name = "noce_try_inverse_constants";
1285 return true;
1288 end_sequence ();
1289 return false;
1293 /* Convert "if (test) x = a; else x = b", for A and B constant.
1294 Also allow A = y + c1, B = y + c2, with a common y between A
1295 and B. */
1297 static int
1298 noce_try_store_flag_constants (struct noce_if_info *if_info)
1300 rtx target;
1301 rtx_insn *seq;
1302 bool reversep;
1303 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1304 int normalize;
1305 bool can_reverse;
1306 machine_mode mode = GET_MODE (if_info->x);;
1307 rtx common = NULL_RTX;
1309 rtx a = if_info->a;
1310 rtx b = if_info->b;
1312 /* Handle cases like x := test ? y + 3 : y + 4. */
1313 if (GET_CODE (a) == PLUS
1314 && GET_CODE (b) == PLUS
1315 && CONST_INT_P (XEXP (a, 1))
1316 && CONST_INT_P (XEXP (b, 1))
1317 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1318 /* Allow expressions that are not using the result or plain
1319 registers where we handle overlap below. */
1320 && (REG_P (XEXP (a, 0))
1321 || (noce_operand_ok (XEXP (a, 0))
1322 && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0))))
1323 && if_info->branch_cost >= 2)
1325 common = XEXP (a, 0);
1326 a = XEXP (a, 1);
1327 b = XEXP (b, 1);
1330 if (!noce_simple_bbs (if_info))
1331 return FALSE;
1333 if (CONST_INT_P (a)
1334 && CONST_INT_P (b))
1336 ifalse = INTVAL (a);
1337 itrue = INTVAL (b);
1338 bool subtract_flag_p = false;
1340 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1341 /* Make sure we can represent the difference between the two values. */
1342 if ((diff > 0)
1343 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1344 return FALSE;
1346 diff = trunc_int_for_mode (diff, mode);
1348 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1349 != UNKNOWN);
1351 reversep = false;
1352 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1354 normalize = 0;
1355 /* We could collapse these cases but it is easier to follow the
1356 diff/STORE_FLAG_VALUE combinations when they are listed
1357 explicitly. */
1359 /* test ? 3 : 4
1360 => 4 + (test != 0). */
1361 if (diff < 0 && STORE_FLAG_VALUE < 0)
1362 reversep = false;
1363 /* test ? 4 : 3
1364 => can_reverse | 4 + (test == 0)
1365 !can_reverse | 3 - (test != 0). */
1366 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1368 reversep = can_reverse;
1369 subtract_flag_p = !can_reverse;
1370 /* If we need to subtract the flag and we have PLUS-immediate
1371 A and B then it is unlikely to be beneficial to play tricks
1372 here. */
1373 if (subtract_flag_p && common)
1374 return FALSE;
1376 /* test ? 3 : 4
1377 => can_reverse | 3 + (test == 0)
1378 !can_reverse | 4 - (test != 0). */
1379 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1381 reversep = can_reverse;
1382 subtract_flag_p = !can_reverse;
1383 /* If we need to subtract the flag and we have PLUS-immediate
1384 A and B then it is unlikely to be beneficial to play tricks
1385 here. */
1386 if (subtract_flag_p && common)
1387 return FALSE;
1389 /* test ? 4 : 3
1390 => 4 + (test != 0). */
1391 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1392 reversep = false;
1393 else
1394 gcc_unreachable ();
1396 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1397 && (STORE_FLAG_VALUE == 1
1398 || if_info->branch_cost >= 2))
1399 normalize = 1;
1400 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1401 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1403 normalize = 1;
1404 reversep = true;
1406 else if (itrue == -1
1407 && (STORE_FLAG_VALUE == -1
1408 || if_info->branch_cost >= 2))
1409 normalize = -1;
1410 else if (ifalse == -1 && can_reverse
1411 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1413 normalize = -1;
1414 reversep = true;
1416 else
1417 return FALSE;
1419 if (reversep)
1421 std::swap (itrue, ifalse);
1422 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1425 start_sequence ();
1427 /* If we have x := test ? x + 3 : x + 4 then move the original
1428 x out of the way while we store flags. */
1429 if (common && rtx_equal_p (common, if_info->x))
1431 common = gen_reg_rtx (mode);
1432 noce_emit_move_insn (common, if_info->x);
1435 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1436 if (! target)
1438 end_sequence ();
1439 return FALSE;
1442 /* if (test) x = 3; else x = 4;
1443 => x = 3 + (test == 0); */
1444 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1446 /* Add the common part now. This may allow combine to merge this
1447 with the store flag operation earlier into some sort of conditional
1448 increment/decrement if the target allows it. */
1449 if (common)
1450 target = expand_simple_binop (mode, PLUS,
1451 target, common,
1452 target, 0, OPTAB_WIDEN);
1454 /* Always use ifalse here. It should have been swapped with itrue
1455 when appropriate when reversep is true. */
1456 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1457 gen_int_mode (ifalse, mode), target,
1458 if_info->x, 0, OPTAB_WIDEN);
1460 /* Other cases are not beneficial when the original A and B are PLUS
1461 expressions. */
1462 else if (common)
1464 end_sequence ();
1465 return FALSE;
1467 /* if (test) x = 8; else x = 0;
1468 => x = (test != 0) << 3; */
1469 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1471 target = expand_simple_binop (mode, ASHIFT,
1472 target, GEN_INT (tmp), if_info->x, 0,
1473 OPTAB_WIDEN);
1476 /* if (test) x = -1; else x = b;
1477 => x = -(test != 0) | b; */
1478 else if (itrue == -1)
1480 target = expand_simple_binop (mode, IOR,
1481 target, gen_int_mode (ifalse, mode),
1482 if_info->x, 0, OPTAB_WIDEN);
1484 else
1486 end_sequence ();
1487 return FALSE;
1490 if (! target)
1492 end_sequence ();
1493 return FALSE;
1496 if (target != if_info->x)
1497 noce_emit_move_insn (if_info->x, target);
1499 seq = end_ifcvt_sequence (if_info);
1500 if (!seq)
1501 return FALSE;
1503 emit_insn_before_setloc (seq, if_info->jump,
1504 INSN_LOCATION (if_info->insn_a));
1505 if_info->transform_name = "noce_try_store_flag_constants";
1507 return TRUE;
1510 return FALSE;
1513 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1514 similarly for "foo--". */
1516 static int
1517 noce_try_addcc (struct noce_if_info *if_info)
1519 rtx target;
1520 rtx_insn *seq;
1521 int subtract, normalize;
1523 if (!noce_simple_bbs (if_info))
1524 return FALSE;
1526 if (GET_CODE (if_info->a) == PLUS
1527 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1528 && (reversed_comparison_code (if_info->cond, if_info->jump)
1529 != UNKNOWN))
1531 rtx cond = if_info->cond;
1532 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1534 /* First try to use addcc pattern. */
1535 if (general_operand (XEXP (cond, 0), VOIDmode)
1536 && general_operand (XEXP (cond, 1), VOIDmode))
1538 start_sequence ();
1539 target = emit_conditional_add (if_info->x, code,
1540 XEXP (cond, 0),
1541 XEXP (cond, 1),
1542 VOIDmode,
1543 if_info->b,
1544 XEXP (if_info->a, 1),
1545 GET_MODE (if_info->x),
1546 (code == LTU || code == GEU
1547 || code == LEU || code == GTU));
1548 if (target)
1550 if (target != if_info->x)
1551 noce_emit_move_insn (if_info->x, target);
1553 seq = end_ifcvt_sequence (if_info);
1554 if (!seq)
1555 return FALSE;
1557 emit_insn_before_setloc (seq, if_info->jump,
1558 INSN_LOCATION (if_info->insn_a));
1559 if_info->transform_name = "noce_try_addcc";
1561 return TRUE;
1563 end_sequence ();
1566 /* If that fails, construct conditional increment or decrement using
1567 setcc. */
1568 if (if_info->branch_cost >= 2
1569 && (XEXP (if_info->a, 1) == const1_rtx
1570 || XEXP (if_info->a, 1) == constm1_rtx))
1572 start_sequence ();
1573 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1574 subtract = 0, normalize = 0;
1575 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1576 subtract = 1, normalize = 0;
1577 else
1578 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1581 target = noce_emit_store_flag (if_info,
1582 gen_reg_rtx (GET_MODE (if_info->x)),
1583 1, normalize);
1585 if (target)
1586 target = expand_simple_binop (GET_MODE (if_info->x),
1587 subtract ? MINUS : PLUS,
1588 if_info->b, target, if_info->x,
1589 0, OPTAB_WIDEN);
1590 if (target)
1592 if (target != if_info->x)
1593 noce_emit_move_insn (if_info->x, target);
1595 seq = end_ifcvt_sequence (if_info);
1596 if (!seq)
1597 return FALSE;
1599 emit_insn_before_setloc (seq, if_info->jump,
1600 INSN_LOCATION (if_info->insn_a));
1601 if_info->transform_name = "noce_try_addcc";
1602 return TRUE;
1604 end_sequence ();
1608 return FALSE;
1611 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1613 static int
1614 noce_try_store_flag_mask (struct noce_if_info *if_info)
1616 rtx target;
1617 rtx_insn *seq;
1618 int reversep;
1620 if (!noce_simple_bbs (if_info))
1621 return FALSE;
1623 reversep = 0;
1624 if ((if_info->branch_cost >= 2
1625 || STORE_FLAG_VALUE == -1)
1626 && ((if_info->a == const0_rtx
1627 && rtx_equal_p (if_info->b, if_info->x))
1628 || ((reversep = (reversed_comparison_code (if_info->cond,
1629 if_info->jump)
1630 != UNKNOWN))
1631 && if_info->b == const0_rtx
1632 && rtx_equal_p (if_info->a, if_info->x))))
1634 start_sequence ();
1635 target = noce_emit_store_flag (if_info,
1636 gen_reg_rtx (GET_MODE (if_info->x)),
1637 reversep, -1);
1638 if (target)
1639 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1640 if_info->x,
1641 target, if_info->x, 0,
1642 OPTAB_WIDEN);
1644 if (target)
1646 int old_cost, new_cost, insn_cost;
1647 int speed_p;
1649 if (target != if_info->x)
1650 noce_emit_move_insn (if_info->x, target);
1652 seq = end_ifcvt_sequence (if_info);
1653 if (!seq)
1654 return FALSE;
1656 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1657 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1658 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1659 new_cost = seq_cost (seq, speed_p);
1661 if (new_cost > old_cost)
1662 return FALSE;
1664 emit_insn_before_setloc (seq, if_info->jump,
1665 INSN_LOCATION (if_info->insn_a));
1666 if_info->transform_name = "noce_try_store_flag_mask";
1668 return TRUE;
1671 end_sequence ();
1674 return FALSE;
1677 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1679 static rtx
1680 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1681 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1683 rtx target ATTRIBUTE_UNUSED;
1684 int unsignedp ATTRIBUTE_UNUSED;
1686 /* If earliest == jump, try to build the cmove insn directly.
1687 This is helpful when combine has created some complex condition
1688 (like for alpha's cmovlbs) that we can't hope to regenerate
1689 through the normal interface. */
1691 if (if_info->cond_earliest == if_info->jump)
1693 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1694 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1695 cond, vtrue, vfalse);
1696 rtx set = gen_rtx_SET (x, if_then_else);
1698 start_sequence ();
1699 rtx_insn *insn = emit_insn (set);
1701 if (recog_memoized (insn) >= 0)
1703 rtx_insn *seq = get_insns ();
1704 end_sequence ();
1705 emit_insn (seq);
1707 return x;
1710 end_sequence ();
1713 /* Don't even try if the comparison operands are weird
1714 except that the target supports cbranchcc4. */
1715 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1716 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1718 if (!have_cbranchcc4
1719 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1720 || cmp_b != const0_rtx)
1721 return NULL_RTX;
1724 unsignedp = (code == LTU || code == GEU
1725 || code == LEU || code == GTU);
1727 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1728 vtrue, vfalse, GET_MODE (x),
1729 unsignedp);
1730 if (target)
1731 return target;
1733 /* We might be faced with a situation like:
1735 x = (reg:M TARGET)
1736 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1737 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1739 We can't do a conditional move in mode M, but it's possible that we
1740 could do a conditional move in mode N instead and take a subreg of
1741 the result.
1743 If we can't create new pseudos, though, don't bother. */
1744 if (reload_completed)
1745 return NULL_RTX;
1747 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1749 rtx reg_vtrue = SUBREG_REG (vtrue);
1750 rtx reg_vfalse = SUBREG_REG (vfalse);
1751 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1752 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1753 rtx promoted_target;
1755 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1756 || byte_vtrue != byte_vfalse
1757 || (SUBREG_PROMOTED_VAR_P (vtrue)
1758 != SUBREG_PROMOTED_VAR_P (vfalse))
1759 || (SUBREG_PROMOTED_GET (vtrue)
1760 != SUBREG_PROMOTED_GET (vfalse)))
1761 return NULL_RTX;
1763 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1765 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1766 VOIDmode, reg_vtrue, reg_vfalse,
1767 GET_MODE (reg_vtrue), unsignedp);
1768 /* Nope, couldn't do it in that mode either. */
1769 if (!target)
1770 return NULL_RTX;
1772 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1773 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1774 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1775 emit_move_insn (x, target);
1776 return x;
1778 else
1779 return NULL_RTX;
1782 /* Try only simple constants and registers here. More complex cases
1783 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1784 has had a go at it. */
1786 static int
1787 noce_try_cmove (struct noce_if_info *if_info)
1789 enum rtx_code code;
1790 rtx target;
1791 rtx_insn *seq;
1793 if (!noce_simple_bbs (if_info))
1794 return FALSE;
1796 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1797 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1799 start_sequence ();
1801 code = GET_CODE (if_info->cond);
1802 target = noce_emit_cmove (if_info, if_info->x, code,
1803 XEXP (if_info->cond, 0),
1804 XEXP (if_info->cond, 1),
1805 if_info->a, if_info->b);
1807 if (target)
1809 if (target != if_info->x)
1810 noce_emit_move_insn (if_info->x, target);
1812 seq = end_ifcvt_sequence (if_info);
1813 if (!seq)
1814 return FALSE;
1816 emit_insn_before_setloc (seq, if_info->jump,
1817 INSN_LOCATION (if_info->insn_a));
1818 if_info->transform_name = "noce_try_cmove";
1820 return TRUE;
1822 /* If both a and b are constants try a last-ditch transformation:
1823 if (test) x = a; else x = b;
1824 => x = (-(test != 0) & (b - a)) + a;
1825 Try this only if the target-specific expansion above has failed.
1826 The target-specific expander may want to generate sequences that
1827 we don't know about, so give them a chance before trying this
1828 approach. */
1829 else if (!targetm.have_conditional_execution ()
1830 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b)
1831 && ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1832 || if_info->branch_cost >= 3))
1834 machine_mode mode = GET_MODE (if_info->x);
1835 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1836 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1837 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1838 if (!target)
1840 end_sequence ();
1841 return FALSE;
1844 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1845 /* Make sure we can represent the difference
1846 between the two values. */
1847 if ((diff > 0)
1848 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1850 end_sequence ();
1851 return FALSE;
1854 diff = trunc_int_for_mode (diff, mode);
1855 target = expand_simple_binop (mode, AND,
1856 target, gen_int_mode (diff, mode),
1857 if_info->x, 0, OPTAB_WIDEN);
1858 if (target)
1859 target = expand_simple_binop (mode, PLUS,
1860 target, gen_int_mode (ifalse, mode),
1861 if_info->x, 0, OPTAB_WIDEN);
1862 if (target)
1864 if (target != if_info->x)
1865 noce_emit_move_insn (if_info->x, target);
1867 seq = end_ifcvt_sequence (if_info);
1868 if (!seq)
1869 return FALSE;
1871 emit_insn_before_setloc (seq, if_info->jump,
1872 INSN_LOCATION (if_info->insn_a));
1873 if_info->transform_name = "noce_try_cmove";
1874 return TRUE;
1876 else
1878 end_sequence ();
1879 return FALSE;
1882 else
1883 end_sequence ();
1886 return FALSE;
1889 /* Return true if X contains a conditional code mode rtx. */
1891 static bool
1892 contains_ccmode_rtx_p (rtx x)
1894 subrtx_iterator::array_type array;
1895 FOR_EACH_SUBRTX (iter, array, x, ALL)
1896 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1897 return true;
1899 return false;
1902 /* Helper for bb_valid_for_noce_process_p. Validate that
1903 the rtx insn INSN is a single set that does not set
1904 the conditional register CC and is in general valid for
1905 if-conversion. */
1907 static bool
1908 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1910 if (!insn
1911 || !NONJUMP_INSN_P (insn)
1912 || (cc && set_of (cc, insn)))
1913 return false;
1915 rtx sset = single_set (insn);
1917 /* Currently support only simple single sets in test_bb. */
1918 if (!sset
1919 || !noce_operand_ok (SET_DEST (sset))
1920 || contains_ccmode_rtx_p (SET_DEST (sset))
1921 || !noce_operand_ok (SET_SRC (sset)))
1922 return false;
1924 return true;
1928 /* Return true iff the registers that the insns in BB_A set do not get
1929 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1930 renamed later by the caller and so conflicts on it should be ignored
1931 in this function. */
1933 static bool
1934 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1936 rtx_insn *a_insn;
1937 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
1939 df_ref def;
1940 df_ref use;
1942 FOR_BB_INSNS (bb_a, a_insn)
1944 if (!active_insn_p (a_insn))
1945 continue;
1947 rtx sset_a = single_set (a_insn);
1949 if (!sset_a)
1951 BITMAP_FREE (bba_sets);
1952 return false;
1954 /* Record all registers that BB_A sets. */
1955 FOR_EACH_INSN_DEF (def, a_insn)
1956 if (!(to_rename && DF_REF_REG (def) == to_rename))
1957 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
1960 rtx_insn *b_insn;
1962 FOR_BB_INSNS (bb_b, b_insn)
1964 if (!active_insn_p (b_insn))
1965 continue;
1967 rtx sset_b = single_set (b_insn);
1969 if (!sset_b)
1971 BITMAP_FREE (bba_sets);
1972 return false;
1975 /* Make sure this is a REG and not some instance
1976 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
1977 If we have a memory destination then we have a pair of simple
1978 basic blocks performing an operation of the form [addr] = c ? a : b.
1979 bb_valid_for_noce_process_p will have ensured that these are
1980 the only stores present. In that case [addr] should be the location
1981 to be renamed. Assert that the callers set this up properly. */
1982 if (MEM_P (SET_DEST (sset_b)))
1983 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
1984 else if (!REG_P (SET_DEST (sset_b)))
1986 BITMAP_FREE (bba_sets);
1987 return false;
1990 /* If the insn uses a reg set in BB_A return false. */
1991 FOR_EACH_INSN_USE (use, b_insn)
1993 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
1995 BITMAP_FREE (bba_sets);
1996 return false;
2002 BITMAP_FREE (bba_sets);
2003 return true;
2006 /* Emit copies of all the active instructions in BB except the last.
2007 This is a helper for noce_try_cmove_arith. */
2009 static void
2010 noce_emit_all_but_last (basic_block bb)
2012 rtx_insn *last = last_active_insn (bb, FALSE);
2013 rtx_insn *insn;
2014 FOR_BB_INSNS (bb, insn)
2016 if (insn != last && active_insn_p (insn))
2018 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2020 emit_insn (PATTERN (to_emit));
2025 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
2026 the resulting insn or NULL if it's not a valid insn. */
2028 static rtx_insn *
2029 noce_emit_insn (rtx to_emit)
2031 gcc_assert (to_emit);
2032 rtx_insn *insn = emit_insn (to_emit);
2034 if (recog_memoized (insn) < 0)
2035 return NULL;
2037 return insn;
2040 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
2041 and including the penultimate one in BB if it is not simple
2042 (as indicated by SIMPLE). Then emit LAST_INSN as the last
2043 insn in the block. The reason for that is that LAST_INSN may
2044 have been modified by the preparation in noce_try_cmove_arith. */
2046 static bool
2047 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2049 if (bb && !simple)
2050 noce_emit_all_but_last (bb);
2052 if (last_insn && !noce_emit_insn (last_insn))
2053 return false;
2055 return true;
2058 /* Try more complex cases involving conditional_move. */
2060 static int
2061 noce_try_cmove_arith (struct noce_if_info *if_info)
2063 rtx a = if_info->a;
2064 rtx b = if_info->b;
2065 rtx x = if_info->x;
2066 rtx orig_a, orig_b;
2067 rtx_insn *insn_a, *insn_b;
2068 bool a_simple = if_info->then_simple;
2069 bool b_simple = if_info->else_simple;
2070 basic_block then_bb = if_info->then_bb;
2071 basic_block else_bb = if_info->else_bb;
2072 rtx target;
2073 int is_mem = 0;
2074 enum rtx_code code;
2075 rtx_insn *ifcvt_seq;
2077 /* A conditional move from two memory sources is equivalent to a
2078 conditional on their addresses followed by a load. Don't do this
2079 early because it'll screw alias analysis. Note that we've
2080 already checked for no side effects. */
2081 /* ??? FIXME: Magic number 5. */
2082 if (cse_not_expected
2083 && MEM_P (a) && MEM_P (b)
2084 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
2085 && if_info->branch_cost >= 5)
2087 machine_mode address_mode = get_address_mode (a);
2089 a = XEXP (a, 0);
2090 b = XEXP (b, 0);
2091 x = gen_reg_rtx (address_mode);
2092 is_mem = 1;
2095 /* ??? We could handle this if we knew that a load from A or B could
2096 not trap or fault. This is also true if we've already loaded
2097 from the address along the path from ENTRY. */
2098 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2099 return FALSE;
2101 /* if (test) x = a + b; else x = c - d;
2102 => y = a + b;
2103 x = c - d;
2104 if (test)
2105 x = y;
2108 code = GET_CODE (if_info->cond);
2109 insn_a = if_info->insn_a;
2110 insn_b = if_info->insn_b;
2112 machine_mode x_mode = GET_MODE (x);
2114 if (!can_conditionally_move_p (x_mode))
2115 return FALSE;
2117 unsigned int then_cost;
2118 unsigned int else_cost;
2119 if (insn_a)
2120 then_cost = if_info->then_cost;
2121 else
2122 then_cost = 0;
2124 if (insn_b)
2125 else_cost = if_info->else_cost;
2126 else
2127 else_cost = 0;
2129 /* We're going to execute one of the basic blocks anyway, so
2130 bail out if the most expensive of the two blocks is unacceptable. */
2131 if (MAX (then_cost, else_cost) > COSTS_N_INSNS (if_info->branch_cost))
2132 return FALSE;
2134 /* Possibly rearrange operands to make things come out more natural. */
2135 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
2137 int reversep = 0;
2138 if (rtx_equal_p (b, x))
2139 reversep = 1;
2140 else if (general_operand (b, GET_MODE (b)))
2141 reversep = 1;
2143 if (reversep)
2145 code = reversed_comparison_code (if_info->cond, if_info->jump);
2146 std::swap (a, b);
2147 std::swap (insn_a, insn_b);
2148 std::swap (a_simple, b_simple);
2149 std::swap (then_bb, else_bb);
2153 if (then_bb && else_bb
2154 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2155 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2156 return FALSE;
2158 start_sequence ();
2160 /* If one of the blocks is empty then the corresponding B or A value
2161 came from the test block. The non-empty complex block that we will
2162 emit might clobber the register used by B or A, so move it to a pseudo
2163 first. */
2165 rtx tmp_a = NULL_RTX;
2166 rtx tmp_b = NULL_RTX;
2168 if (b_simple || !else_bb)
2169 tmp_b = gen_reg_rtx (x_mode);
2171 if (a_simple || !then_bb)
2172 tmp_a = gen_reg_rtx (x_mode);
2174 orig_a = a;
2175 orig_b = b;
2177 rtx emit_a = NULL_RTX;
2178 rtx emit_b = NULL_RTX;
2179 rtx_insn *tmp_insn = NULL;
2180 bool modified_in_a = false;
2181 bool modified_in_b = false;
2182 /* If either operand is complex, load it into a register first.
2183 The best way to do this is to copy the original insn. In this
2184 way we preserve any clobbers etc that the insn may have had.
2185 This is of course not possible in the IS_MEM case. */
2187 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2190 if (is_mem)
2192 rtx reg = gen_reg_rtx (GET_MODE (a));
2193 emit_a = gen_rtx_SET (reg, a);
2195 else
2197 if (insn_a)
2199 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2201 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2202 rtx set = single_set (copy_of_a);
2203 SET_DEST (set) = a;
2205 emit_a = PATTERN (copy_of_a);
2207 else
2209 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2210 emit_a = gen_rtx_SET (tmp_reg, a);
2211 a = tmp_reg;
2216 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2218 if (is_mem)
2220 rtx reg = gen_reg_rtx (GET_MODE (b));
2221 emit_b = gen_rtx_SET (reg, b);
2223 else
2225 if (insn_b)
2227 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2228 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2229 rtx set = single_set (copy_of_b);
2231 SET_DEST (set) = b;
2232 emit_b = PATTERN (copy_of_b);
2234 else
2236 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2237 emit_b = gen_rtx_SET (tmp_reg, b);
2238 b = tmp_reg;
2243 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2244 if (tmp_b && then_bb)
2246 FOR_BB_INSNS (then_bb, tmp_insn)
2247 /* Don't check inside insn_a. We will have changed it to emit_a
2248 with a destination that doesn't conflict. */
2249 if (!(insn_a && tmp_insn == insn_a)
2250 && modified_in_p (orig_b, tmp_insn))
2252 modified_in_a = true;
2253 break;
2258 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2259 if (tmp_a && else_bb)
2261 FOR_BB_INSNS (else_bb, tmp_insn)
2262 /* Don't check inside insn_b. We will have changed it to emit_b
2263 with a destination that doesn't conflict. */
2264 if (!(insn_b && tmp_insn == insn_b)
2265 && modified_in_p (orig_a, tmp_insn))
2267 modified_in_b = true;
2268 break;
2272 /* If insn to set up A clobbers any registers B depends on, try to
2273 swap insn that sets up A with the one that sets up B. If even
2274 that doesn't help, punt. */
2275 if (modified_in_a && !modified_in_b)
2277 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2278 goto end_seq_and_fail;
2280 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2281 goto end_seq_and_fail;
2283 else if (!modified_in_a)
2285 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2286 goto end_seq_and_fail;
2288 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2289 goto end_seq_and_fail;
2291 else
2292 goto end_seq_and_fail;
2294 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
2295 XEXP (if_info->cond, 1), a, b);
2297 if (! target)
2298 goto end_seq_and_fail;
2300 /* If we're handling a memory for above, emit the load now. */
2301 if (is_mem)
2303 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2305 /* Copy over flags as appropriate. */
2306 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2307 MEM_VOLATILE_P (mem) = 1;
2308 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2309 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2310 set_mem_align (mem,
2311 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2313 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2314 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2316 noce_emit_move_insn (if_info->x, mem);
2318 else if (target != x)
2319 noce_emit_move_insn (x, target);
2321 ifcvt_seq = end_ifcvt_sequence (if_info);
2322 if (!ifcvt_seq)
2323 return FALSE;
2325 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2326 INSN_LOCATION (if_info->insn_a));
2327 if_info->transform_name = "noce_try_cmove_arith";
2328 return TRUE;
2330 end_seq_and_fail:
2331 end_sequence ();
2332 return FALSE;
2335 /* For most cases, the simplified condition we found is the best
2336 choice, but this is not the case for the min/max/abs transforms.
2337 For these we wish to know that it is A or B in the condition. */
2339 static rtx
2340 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2341 rtx_insn **earliest)
2343 rtx cond, set;
2344 rtx_insn *insn;
2345 int reverse;
2347 /* If target is already mentioned in the known condition, return it. */
2348 if (reg_mentioned_p (target, if_info->cond))
2350 *earliest = if_info->cond_earliest;
2351 return if_info->cond;
2354 set = pc_set (if_info->jump);
2355 cond = XEXP (SET_SRC (set), 0);
2356 reverse
2357 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2358 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2359 if (if_info->then_else_reversed)
2360 reverse = !reverse;
2362 /* If we're looking for a constant, try to make the conditional
2363 have that constant in it. There are two reasons why it may
2364 not have the constant we want:
2366 1. GCC may have needed to put the constant in a register, because
2367 the target can't compare directly against that constant. For
2368 this case, we look for a SET immediately before the comparison
2369 that puts a constant in that register.
2371 2. GCC may have canonicalized the conditional, for example
2372 replacing "if x < 4" with "if x <= 3". We can undo that (or
2373 make equivalent types of changes) to get the constants we need
2374 if they're off by one in the right direction. */
2376 if (CONST_INT_P (target))
2378 enum rtx_code code = GET_CODE (if_info->cond);
2379 rtx op_a = XEXP (if_info->cond, 0);
2380 rtx op_b = XEXP (if_info->cond, 1);
2381 rtx_insn *prev_insn;
2383 /* First, look to see if we put a constant in a register. */
2384 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
2385 if (prev_insn
2386 && BLOCK_FOR_INSN (prev_insn)
2387 == BLOCK_FOR_INSN (if_info->cond_earliest)
2388 && INSN_P (prev_insn)
2389 && GET_CODE (PATTERN (prev_insn)) == SET)
2391 rtx src = find_reg_equal_equiv_note (prev_insn);
2392 if (!src)
2393 src = SET_SRC (PATTERN (prev_insn));
2394 if (CONST_INT_P (src))
2396 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2397 op_a = src;
2398 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2399 op_b = src;
2401 if (CONST_INT_P (op_a))
2403 std::swap (op_a, op_b);
2404 code = swap_condition (code);
2409 /* Now, look to see if we can get the right constant by
2410 adjusting the conditional. */
2411 if (CONST_INT_P (op_b))
2413 HOST_WIDE_INT desired_val = INTVAL (target);
2414 HOST_WIDE_INT actual_val = INTVAL (op_b);
2416 switch (code)
2418 case LT:
2419 if (desired_val != HOST_WIDE_INT_MAX
2420 && actual_val == desired_val + 1)
2422 code = LE;
2423 op_b = GEN_INT (desired_val);
2425 break;
2426 case LE:
2427 if (desired_val != HOST_WIDE_INT_MIN
2428 && actual_val == desired_val - 1)
2430 code = LT;
2431 op_b = GEN_INT (desired_val);
2433 break;
2434 case GT:
2435 if (desired_val != HOST_WIDE_INT_MIN
2436 && actual_val == desired_val - 1)
2438 code = GE;
2439 op_b = GEN_INT (desired_val);
2441 break;
2442 case GE:
2443 if (desired_val != HOST_WIDE_INT_MAX
2444 && actual_val == desired_val + 1)
2446 code = GT;
2447 op_b = GEN_INT (desired_val);
2449 break;
2450 default:
2451 break;
2455 /* If we made any changes, generate a new conditional that is
2456 equivalent to what we started with, but has the right
2457 constants in it. */
2458 if (code != GET_CODE (if_info->cond)
2459 || op_a != XEXP (if_info->cond, 0)
2460 || op_b != XEXP (if_info->cond, 1))
2462 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2463 *earliest = if_info->cond_earliest;
2464 return cond;
2468 cond = canonicalize_condition (if_info->jump, cond, reverse,
2469 earliest, target, have_cbranchcc4, true);
2470 if (! cond || ! reg_mentioned_p (target, cond))
2471 return NULL;
2473 /* We almost certainly searched back to a different place.
2474 Need to re-verify correct lifetimes. */
2476 /* X may not be mentioned in the range (cond_earliest, jump]. */
2477 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2478 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2479 return NULL;
2481 /* A and B may not be modified in the range [cond_earliest, jump). */
2482 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2483 if (INSN_P (insn)
2484 && (modified_in_p (if_info->a, insn)
2485 || modified_in_p (if_info->b, insn)))
2486 return NULL;
2488 return cond;
2491 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2493 static int
2494 noce_try_minmax (struct noce_if_info *if_info)
2496 rtx cond, target;
2497 rtx_insn *earliest, *seq;
2498 enum rtx_code code, op;
2499 int unsignedp;
2501 if (!noce_simple_bbs (if_info))
2502 return FALSE;
2504 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2505 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2506 to get the target to tell us... */
2507 if (HONOR_SIGNED_ZEROS (if_info->x)
2508 || HONOR_NANS (if_info->x))
2509 return FALSE;
2511 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2512 if (!cond)
2513 return FALSE;
2515 /* Verify the condition is of the form we expect, and canonicalize
2516 the comparison code. */
2517 code = GET_CODE (cond);
2518 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2520 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2521 return FALSE;
2523 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2525 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2526 return FALSE;
2527 code = swap_condition (code);
2529 else
2530 return FALSE;
2532 /* Determine what sort of operation this is. Note that the code is for
2533 a taken branch, so the code->operation mapping appears backwards. */
2534 switch (code)
2536 case LT:
2537 case LE:
2538 case UNLT:
2539 case UNLE:
2540 op = SMAX;
2541 unsignedp = 0;
2542 break;
2543 case GT:
2544 case GE:
2545 case UNGT:
2546 case UNGE:
2547 op = SMIN;
2548 unsignedp = 0;
2549 break;
2550 case LTU:
2551 case LEU:
2552 op = UMAX;
2553 unsignedp = 1;
2554 break;
2555 case GTU:
2556 case GEU:
2557 op = UMIN;
2558 unsignedp = 1;
2559 break;
2560 default:
2561 return FALSE;
2564 start_sequence ();
2566 target = expand_simple_binop (GET_MODE (if_info->x), op,
2567 if_info->a, if_info->b,
2568 if_info->x, unsignedp, OPTAB_WIDEN);
2569 if (! target)
2571 end_sequence ();
2572 return FALSE;
2574 if (target != if_info->x)
2575 noce_emit_move_insn (if_info->x, target);
2577 seq = end_ifcvt_sequence (if_info);
2578 if (!seq)
2579 return FALSE;
2581 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2582 if_info->cond = cond;
2583 if_info->cond_earliest = earliest;
2584 if_info->transform_name = "noce_try_minmax";
2586 return TRUE;
2589 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2590 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2591 etc. */
2593 static int
2594 noce_try_abs (struct noce_if_info *if_info)
2596 rtx cond, target, a, b, c;
2597 rtx_insn *earliest, *seq;
2598 int negate;
2599 bool one_cmpl = false;
2601 if (!noce_simple_bbs (if_info))
2602 return FALSE;
2604 /* Reject modes with signed zeros. */
2605 if (HONOR_SIGNED_ZEROS (if_info->x))
2606 return FALSE;
2608 /* Recognize A and B as constituting an ABS or NABS. The canonical
2609 form is a branch around the negation, taken when the object is the
2610 first operand of a comparison against 0 that evaluates to true. */
2611 a = if_info->a;
2612 b = if_info->b;
2613 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2614 negate = 0;
2615 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2617 std::swap (a, b);
2618 negate = 1;
2620 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2622 negate = 0;
2623 one_cmpl = true;
2625 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2627 std::swap (a, b);
2628 negate = 1;
2629 one_cmpl = true;
2631 else
2632 return FALSE;
2634 cond = noce_get_alt_condition (if_info, b, &earliest);
2635 if (!cond)
2636 return FALSE;
2638 /* Verify the condition is of the form we expect. */
2639 if (rtx_equal_p (XEXP (cond, 0), b))
2640 c = XEXP (cond, 1);
2641 else if (rtx_equal_p (XEXP (cond, 1), b))
2643 c = XEXP (cond, 0);
2644 negate = !negate;
2646 else
2647 return FALSE;
2649 /* Verify that C is zero. Search one step backward for a
2650 REG_EQUAL note or a simple source if necessary. */
2651 if (REG_P (c))
2653 rtx set;
2654 rtx_insn *insn = prev_nonnote_insn (earliest);
2655 if (insn
2656 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2657 && (set = single_set (insn))
2658 && rtx_equal_p (SET_DEST (set), c))
2660 rtx note = find_reg_equal_equiv_note (insn);
2661 if (note)
2662 c = XEXP (note, 0);
2663 else
2664 c = SET_SRC (set);
2666 else
2667 return FALSE;
2669 if (MEM_P (c)
2670 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2671 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2672 c = get_pool_constant (XEXP (c, 0));
2674 /* Work around funny ideas get_condition has wrt canonicalization.
2675 Note that these rtx constants are known to be CONST_INT, and
2676 therefore imply integer comparisons.
2677 The one_cmpl case is more complicated, as we want to handle
2678 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2679 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2680 but not other cases (x > -1 is equivalent of x >= 0). */
2681 if (c == constm1_rtx && GET_CODE (cond) == GT)
2683 else if (c == const1_rtx && GET_CODE (cond) == LT)
2685 if (one_cmpl)
2686 return FALSE;
2688 else if (c == CONST0_RTX (GET_MODE (b)))
2690 if (one_cmpl
2691 && GET_CODE (cond) != GE
2692 && GET_CODE (cond) != LT)
2693 return FALSE;
2695 else
2696 return FALSE;
2698 /* Determine what sort of operation this is. */
2699 switch (GET_CODE (cond))
2701 case LT:
2702 case LE:
2703 case UNLT:
2704 case UNLE:
2705 negate = !negate;
2706 break;
2707 case GT:
2708 case GE:
2709 case UNGT:
2710 case UNGE:
2711 break;
2712 default:
2713 return FALSE;
2716 start_sequence ();
2717 if (one_cmpl)
2718 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2719 if_info->x);
2720 else
2721 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2723 /* ??? It's a quandary whether cmove would be better here, especially
2724 for integers. Perhaps combine will clean things up. */
2725 if (target && negate)
2727 if (one_cmpl)
2728 target = expand_simple_unop (GET_MODE (target), NOT, target,
2729 if_info->x, 0);
2730 else
2731 target = expand_simple_unop (GET_MODE (target), NEG, target,
2732 if_info->x, 0);
2735 if (! target)
2737 end_sequence ();
2738 return FALSE;
2741 if (target != if_info->x)
2742 noce_emit_move_insn (if_info->x, target);
2744 seq = end_ifcvt_sequence (if_info);
2745 if (!seq)
2746 return FALSE;
2748 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2749 if_info->cond = cond;
2750 if_info->cond_earliest = earliest;
2751 if_info->transform_name = "noce_try_abs";
2753 return TRUE;
2756 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2758 static int
2759 noce_try_sign_mask (struct noce_if_info *if_info)
2761 rtx cond, t, m, c;
2762 rtx_insn *seq;
2763 machine_mode mode;
2764 enum rtx_code code;
2765 bool t_unconditional;
2767 if (!noce_simple_bbs (if_info))
2768 return FALSE;
2770 cond = if_info->cond;
2771 code = GET_CODE (cond);
2772 m = XEXP (cond, 0);
2773 c = XEXP (cond, 1);
2775 t = NULL_RTX;
2776 if (if_info->a == const0_rtx)
2778 if ((code == LT && c == const0_rtx)
2779 || (code == LE && c == constm1_rtx))
2780 t = if_info->b;
2782 else if (if_info->b == const0_rtx)
2784 if ((code == GE && c == const0_rtx)
2785 || (code == GT && c == constm1_rtx))
2786 t = if_info->a;
2789 if (! t || side_effects_p (t))
2790 return FALSE;
2792 /* We currently don't handle different modes. */
2793 mode = GET_MODE (t);
2794 if (GET_MODE (m) != mode)
2795 return FALSE;
2797 /* This is only profitable if T is unconditionally executed/evaluated in the
2798 original insn sequence or T is cheap. The former happens if B is the
2799 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2800 INSN_B which can happen for e.g. conditional stores to memory. For the
2801 cost computation use the block TEST_BB where the evaluation will end up
2802 after the transformation. */
2803 t_unconditional =
2804 (t == if_info->b
2805 && (if_info->insn_b == NULL_RTX
2806 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2807 if (!(t_unconditional
2808 || (set_src_cost (t, mode, optimize_bb_for_speed_p (if_info->test_bb))
2809 < COSTS_N_INSNS (2))))
2810 return FALSE;
2812 start_sequence ();
2813 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2814 "(signed) m >> 31" directly. This benefits targets with specialized
2815 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2816 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2817 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2818 : NULL_RTX;
2820 if (!t)
2822 end_sequence ();
2823 return FALSE;
2826 noce_emit_move_insn (if_info->x, t);
2828 seq = end_ifcvt_sequence (if_info);
2829 if (!seq)
2830 return FALSE;
2832 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2833 if_info->transform_name = "noce_try_sign_mask";
2835 return TRUE;
2839 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2840 transformations. */
2842 static int
2843 noce_try_bitop (struct noce_if_info *if_info)
2845 rtx cond, x, a, result;
2846 rtx_insn *seq;
2847 machine_mode mode;
2848 enum rtx_code code;
2849 int bitnum;
2851 x = if_info->x;
2852 cond = if_info->cond;
2853 code = GET_CODE (cond);
2855 if (!noce_simple_bbs (if_info))
2856 return FALSE;
2858 /* Check for no else condition. */
2859 if (! rtx_equal_p (x, if_info->b))
2860 return FALSE;
2862 /* Check for a suitable condition. */
2863 if (code != NE && code != EQ)
2864 return FALSE;
2865 if (XEXP (cond, 1) != const0_rtx)
2866 return FALSE;
2867 cond = XEXP (cond, 0);
2869 /* ??? We could also handle AND here. */
2870 if (GET_CODE (cond) == ZERO_EXTRACT)
2872 if (XEXP (cond, 1) != const1_rtx
2873 || !CONST_INT_P (XEXP (cond, 2))
2874 || ! rtx_equal_p (x, XEXP (cond, 0)))
2875 return FALSE;
2876 bitnum = INTVAL (XEXP (cond, 2));
2877 mode = GET_MODE (x);
2878 if (BITS_BIG_ENDIAN)
2879 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2880 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2881 return FALSE;
2883 else
2884 return FALSE;
2886 a = if_info->a;
2887 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2889 /* Check for "if (X & C) x = x op C". */
2890 if (! rtx_equal_p (x, XEXP (a, 0))
2891 || !CONST_INT_P (XEXP (a, 1))
2892 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2893 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2894 return FALSE;
2896 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2897 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2898 if (GET_CODE (a) == IOR)
2899 result = (code == NE) ? a : NULL_RTX;
2900 else if (code == NE)
2902 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2903 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2904 result = simplify_gen_binary (IOR, mode, x, result);
2906 else
2908 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2909 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2910 result = simplify_gen_binary (AND, mode, x, result);
2913 else if (GET_CODE (a) == AND)
2915 /* Check for "if (X & C) x &= ~C". */
2916 if (! rtx_equal_p (x, XEXP (a, 0))
2917 || !CONST_INT_P (XEXP (a, 1))
2918 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2919 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2920 return FALSE;
2922 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2923 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2924 result = (code == EQ) ? a : NULL_RTX;
2926 else
2927 return FALSE;
2929 if (result)
2931 start_sequence ();
2932 noce_emit_move_insn (x, result);
2933 seq = end_ifcvt_sequence (if_info);
2934 if (!seq)
2935 return FALSE;
2937 emit_insn_before_setloc (seq, if_info->jump,
2938 INSN_LOCATION (if_info->insn_a));
2940 if_info->transform_name = "noce_try_bitop";
2941 return TRUE;
2945 /* Similar to get_condition, only the resulting condition must be
2946 valid at JUMP, instead of at EARLIEST.
2948 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2949 THEN block of the caller, and we have to reverse the condition. */
2951 static rtx
2952 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2954 rtx cond, set, tmp;
2955 bool reverse;
2957 if (! any_condjump_p (jump))
2958 return NULL_RTX;
2960 set = pc_set (jump);
2962 /* If this branches to JUMP_LABEL when the condition is false,
2963 reverse the condition. */
2964 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2965 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2967 /* We may have to reverse because the caller's if block is not canonical,
2968 i.e. the THEN block isn't the fallthrough block for the TEST block
2969 (see find_if_header). */
2970 if (then_else_reversed)
2971 reverse = !reverse;
2973 /* If the condition variable is a register and is MODE_INT, accept it. */
2975 cond = XEXP (SET_SRC (set), 0);
2976 tmp = XEXP (cond, 0);
2977 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2978 && (GET_MODE (tmp) != BImode
2979 || !targetm.small_register_classes_for_mode_p (BImode)))
2981 *earliest = jump;
2983 if (reverse)
2984 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2985 GET_MODE (cond), tmp, XEXP (cond, 1));
2986 return cond;
2989 /* Otherwise, fall back on canonicalize_condition to do the dirty
2990 work of manipulating MODE_CC values and COMPARE rtx codes. */
2991 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2992 NULL_RTX, have_cbranchcc4, true);
2994 /* We don't handle side-effects in the condition, like handling
2995 REG_INC notes and making sure no duplicate conditions are emitted. */
2996 if (tmp != NULL_RTX && side_effects_p (tmp))
2997 return NULL_RTX;
2999 return tmp;
3002 /* Return true if OP is ok for if-then-else processing. */
3004 static int
3005 noce_operand_ok (const_rtx op)
3007 if (side_effects_p (op))
3008 return FALSE;
3010 /* We special-case memories, so handle any of them with
3011 no address side effects. */
3012 if (MEM_P (op))
3013 return ! side_effects_p (XEXP (op, 0));
3015 return ! may_trap_p (op);
3018 /* Return true if X contains a MEM subrtx. */
3020 static bool
3021 contains_mem_rtx_p (rtx x)
3023 subrtx_iterator::array_type array;
3024 FOR_EACH_SUBRTX (iter, array, x, ALL)
3025 if (MEM_P (*iter))
3026 return true;
3028 return false;
3031 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3032 The condition used in this if-conversion is in COND.
3033 In practice, check that TEST_BB ends with a single set
3034 x := a and all previous computations
3035 in TEST_BB don't produce any values that are live after TEST_BB.
3036 In other words, all the insns in TEST_BB are there only
3037 to compute a value for x. Put the rtx cost of the insns
3038 in TEST_BB into COST. Record whether TEST_BB is a single simple
3039 set instruction in SIMPLE_P. */
3041 static bool
3042 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3043 unsigned int *cost, bool *simple_p)
3045 if (!test_bb)
3046 return false;
3048 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
3049 rtx last_set = NULL_RTX;
3051 rtx cc = cc_in_cond (cond);
3053 if (!insn_valid_noce_process_p (last_insn, cc))
3054 return false;
3055 last_set = single_set (last_insn);
3057 rtx x = SET_DEST (last_set);
3058 rtx_insn *first_insn = first_active_insn (test_bb);
3059 rtx first_set = single_set (first_insn);
3061 if (!first_set)
3062 return false;
3064 /* We have a single simple set, that's okay. */
3065 bool speed_p = optimize_bb_for_speed_p (test_bb);
3067 if (first_insn == last_insn)
3069 *simple_p = noce_operand_ok (SET_DEST (first_set));
3070 *cost = insn_rtx_cost (first_set, speed_p);
3071 return *simple_p;
3074 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3075 gcc_assert (prev_last_insn);
3077 /* For now, disallow setting x multiple times in test_bb. */
3078 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3079 return false;
3081 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3083 /* The regs that are live out of test_bb. */
3084 bitmap test_bb_live_out = df_get_live_out (test_bb);
3086 int potential_cost = insn_rtx_cost (last_set, speed_p);
3087 rtx_insn *insn;
3088 FOR_BB_INSNS (test_bb, insn)
3090 if (insn != last_insn)
3092 if (!active_insn_p (insn))
3093 continue;
3095 if (!insn_valid_noce_process_p (insn, cc))
3096 goto free_bitmap_and_fail;
3098 rtx sset = single_set (insn);
3099 gcc_assert (sset);
3101 if (contains_mem_rtx_p (SET_SRC (sset))
3102 || !REG_P (SET_DEST (sset))
3103 || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3104 goto free_bitmap_and_fail;
3106 potential_cost += insn_rtx_cost (sset, speed_p);
3107 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3111 /* If any of the intermediate results in test_bb are live after test_bb
3112 then fail. */
3113 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3114 goto free_bitmap_and_fail;
3116 BITMAP_FREE (test_bb_temps);
3117 *cost = potential_cost;
3118 *simple_p = false;
3119 return true;
3121 free_bitmap_and_fail:
3122 BITMAP_FREE (test_bb_temps);
3123 return false;
3126 /* We have something like:
3128 if (x > y)
3129 { i = a; j = b; k = c; }
3131 Make it:
3133 tmp_i = (x > y) ? a : i;
3134 tmp_j = (x > y) ? b : j;
3135 tmp_k = (x > y) ? c : k;
3136 i = tmp_i;
3137 j = tmp_j;
3138 k = tmp_k;
3140 Subsequent passes are expected to clean up the extra moves.
3142 Look for special cases such as writes to one register which are
3143 read back in another SET, as might occur in a swap idiom or
3144 similar.
3146 These look like:
3148 if (x > y)
3149 i = a;
3150 j = i;
3152 Which we want to rewrite to:
3154 tmp_i = (x > y) ? a : i;
3155 tmp_j = (x > y) ? tmp_i : j;
3156 i = tmp_i;
3157 j = tmp_j;
3159 We can catch these when looking at (SET x y) by keeping a list of the
3160 registers we would have targeted before if-conversion and looking back
3161 through it for an overlap with Y. If we find one, we rewire the
3162 conditional set to use the temporary we introduced earlier.
3164 IF_INFO contains the useful information about the block structure and
3165 jump instructions. */
3167 static int
3168 noce_convert_multiple_sets (struct noce_if_info *if_info)
3170 basic_block test_bb = if_info->test_bb;
3171 basic_block then_bb = if_info->then_bb;
3172 basic_block join_bb = if_info->join_bb;
3173 rtx_insn *jump = if_info->jump;
3174 rtx_insn *cond_earliest;
3175 rtx_insn *insn;
3177 start_sequence ();
3179 /* Decompose the condition attached to the jump. */
3180 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3181 rtx x = XEXP (cond, 0);
3182 rtx y = XEXP (cond, 1);
3183 rtx_code cond_code = GET_CODE (cond);
3185 /* The true targets for a conditional move. */
3186 auto_vec<rtx> targets;
3187 /* The temporaries introduced to allow us to not consider register
3188 overlap. */
3189 auto_vec<rtx> temporaries;
3190 /* The insns we've emitted. */
3191 auto_vec<rtx_insn *> unmodified_insns;
3192 int count = 0;
3194 FOR_BB_INSNS (then_bb, insn)
3196 /* Skip over non-insns. */
3197 if (!active_insn_p (insn))
3198 continue;
3200 rtx set = single_set (insn);
3201 gcc_checking_assert (set);
3203 rtx target = SET_DEST (set);
3204 rtx temp = gen_reg_rtx (GET_MODE (target));
3205 rtx new_val = SET_SRC (set);
3206 rtx old_val = target;
3208 /* If we were supposed to read from an earlier write in this block,
3209 we've changed the register allocation. Rewire the read. While
3210 we are looking, also try to catch a swap idiom. */
3211 for (int i = count - 1; i >= 0; --i)
3212 if (reg_overlap_mentioned_p (new_val, targets[i]))
3214 /* Catch a "swap" style idiom. */
3215 if (find_reg_note (insn, REG_DEAD, new_val) != NULL_RTX)
3216 /* The write to targets[i] is only live until the read
3217 here. As the condition codes match, we can propagate
3218 the set to here. */
3219 new_val = SET_SRC (single_set (unmodified_insns[i]));
3220 else
3221 new_val = temporaries[i];
3222 break;
3225 /* If we had a non-canonical conditional jump (i.e. one where
3226 the fallthrough is to the "else" case) we need to reverse
3227 the conditional select. */
3228 if (if_info->then_else_reversed)
3229 std::swap (old_val, new_val);
3231 /* Actually emit the conditional move. */
3232 rtx temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3233 x, y, new_val, old_val);
3235 /* If we failed to expand the conditional move, drop out and don't
3236 try to continue. */
3237 if (temp_dest == NULL_RTX)
3239 end_sequence ();
3240 return FALSE;
3243 /* Bookkeeping. */
3244 count++;
3245 targets.safe_push (target);
3246 temporaries.safe_push (temp_dest);
3247 unmodified_insns.safe_push (insn);
3250 /* We must have seen some sort of insn to insert, otherwise we were
3251 given an empty BB to convert, and we can't handle that. */
3252 gcc_assert (!unmodified_insns.is_empty ());
3254 /* Now fixup the assignments. */
3255 for (int i = 0; i < count; i++)
3256 noce_emit_move_insn (targets[i], temporaries[i]);
3258 /* Actually emit the sequence. */
3259 rtx_insn *seq = get_insns ();
3261 for (insn = seq; insn; insn = NEXT_INSN (insn))
3262 set_used_flags (insn);
3264 /* Mark all our temporaries and targets as used. */
3265 for (int i = 0; i < count; i++)
3267 set_used_flags (temporaries[i]);
3268 set_used_flags (targets[i]);
3271 set_used_flags (cond);
3272 set_used_flags (x);
3273 set_used_flags (y);
3275 unshare_all_rtl_in_chain (seq);
3276 end_sequence ();
3278 if (!seq)
3279 return FALSE;
3281 for (insn = seq; insn; insn = NEXT_INSN (insn))
3282 if (JUMP_P (insn)
3283 || recog_memoized (insn) == -1)
3284 return FALSE;
3286 emit_insn_before_setloc (seq, if_info->jump,
3287 INSN_LOCATION (unmodified_insns.last ()));
3289 /* Clean up THEN_BB and the edges in and out of it. */
3290 remove_edge (find_edge (test_bb, join_bb));
3291 remove_edge (find_edge (then_bb, join_bb));
3292 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3293 delete_basic_block (then_bb);
3294 num_true_changes++;
3296 /* Maybe merge blocks now the jump is simple enough. */
3297 if (can_merge_blocks_p (test_bb, join_bb))
3299 merge_blocks (test_bb, join_bb);
3300 num_true_changes++;
3303 num_updated_if_blocks++;
3304 if_info->transform_name = "noce_convert_multiple_sets";
3305 return TRUE;
3308 /* Return true iff basic block TEST_BB is comprised of only
3309 (SET (REG) (REG)) insns suitable for conversion to a series
3310 of conditional moves. FORNOW: Use II to find the expected cost of
3311 the branch into/over TEST_BB.
3313 TODO: This creates an implicit "magic number" for branch_cost.
3314 II->branch_cost now guides the maximum number of set instructions in
3315 a basic block which is considered profitable to completely
3316 if-convert. */
3318 static bool
3319 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb,
3320 struct noce_if_info *ii)
3322 rtx_insn *insn;
3323 unsigned count = 0;
3324 unsigned param = PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS);
3325 unsigned limit = MIN (ii->branch_cost, param);
3327 FOR_BB_INSNS (test_bb, insn)
3329 /* Skip over notes etc. */
3330 if (!active_insn_p (insn))
3331 continue;
3333 /* We only handle SET insns. */
3334 rtx set = single_set (insn);
3335 if (set == NULL_RTX)
3336 return false;
3338 rtx dest = SET_DEST (set);
3339 rtx src = SET_SRC (set);
3341 /* We can possibly relax this, but for now only handle REG to REG
3342 (including subreg) moves. This avoids any issues that might come
3343 from introducing loads/stores that might violate data-race-freedom
3344 guarantees. */
3345 if (!REG_P (dest))
3346 return false;
3348 if (!(REG_P (src)
3349 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3350 && subreg_lowpart_p (src))))
3351 return false;
3353 /* Destination must be appropriate for a conditional write. */
3354 if (!noce_operand_ok (dest))
3355 return false;
3357 /* We must be able to conditionally move in this mode. */
3358 if (!can_conditionally_move_p (GET_MODE (dest)))
3359 return false;
3361 /* FORNOW: Our cost model is a count of the number of instructions we
3362 would if-convert. This is suboptimal, and should be improved as part
3363 of a wider rework of branch_cost. */
3364 if (++count > limit)
3365 return false;
3368 return count > 1;
3371 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3372 it without using conditional execution. Return TRUE if we were successful
3373 at converting the block. */
3375 static int
3376 noce_process_if_block (struct noce_if_info *if_info)
3378 basic_block test_bb = if_info->test_bb; /* test block */
3379 basic_block then_bb = if_info->then_bb; /* THEN */
3380 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3381 basic_block join_bb = if_info->join_bb; /* JOIN */
3382 rtx_insn *jump = if_info->jump;
3383 rtx cond = if_info->cond;
3384 rtx_insn *insn_a, *insn_b;
3385 rtx set_a, set_b;
3386 rtx orig_x, x, a, b;
3388 /* We're looking for patterns of the form
3390 (1) if (...) x = a; else x = b;
3391 (2) x = b; if (...) x = a;
3392 (3) if (...) x = a; // as if with an initial x = x.
3393 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3394 The later patterns require jumps to be more expensive.
3395 For the if (...) x = a; else x = b; case we allow multiple insns
3396 inside the then and else blocks as long as their only effect is
3397 to calculate a value for x.
3398 ??? For future expansion, further expand the "multiple X" rules. */
3400 /* First look for multiple SETS. */
3401 if (!else_bb
3402 && HAVE_conditional_move
3403 && !HAVE_cc0
3404 && bb_ok_for_noce_convert_multiple_sets (then_bb, if_info))
3406 if (noce_convert_multiple_sets (if_info))
3408 if (dump_file && if_info->transform_name)
3409 fprintf (dump_file, "if-conversion succeeded through %s\n",
3410 if_info->transform_name);
3411 return TRUE;
3415 if (! bb_valid_for_noce_process_p (then_bb, cond, &if_info->then_cost,
3416 &if_info->then_simple))
3417 return false;
3419 if (else_bb
3420 && ! bb_valid_for_noce_process_p (else_bb, cond, &if_info->else_cost,
3421 &if_info->else_simple))
3422 return false;
3424 insn_a = last_active_insn (then_bb, FALSE);
3425 set_a = single_set (insn_a);
3426 gcc_assert (set_a);
3428 x = SET_DEST (set_a);
3429 a = SET_SRC (set_a);
3431 /* Look for the other potential set. Make sure we've got equivalent
3432 destinations. */
3433 /* ??? This is overconservative. Storing to two different mems is
3434 as easy as conditionally computing the address. Storing to a
3435 single mem merely requires a scratch memory to use as one of the
3436 destination addresses; often the memory immediately below the
3437 stack pointer is available for this. */
3438 set_b = NULL_RTX;
3439 if (else_bb)
3441 insn_b = last_active_insn (else_bb, FALSE);
3442 set_b = single_set (insn_b);
3443 gcc_assert (set_b);
3445 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3446 return FALSE;
3448 else
3450 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
3451 /* We're going to be moving the evaluation of B down from above
3452 COND_EARLIEST to JUMP. Make sure the relevant data is still
3453 intact. */
3454 if (! insn_b
3455 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3456 || !NONJUMP_INSN_P (insn_b)
3457 || (set_b = single_set (insn_b)) == NULL_RTX
3458 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3459 || ! noce_operand_ok (SET_SRC (set_b))
3460 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3461 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3462 /* Avoid extending the lifetime of hard registers on small
3463 register class machines. */
3464 || (REG_P (SET_SRC (set_b))
3465 && HARD_REGISTER_P (SET_SRC (set_b))
3466 && targetm.small_register_classes_for_mode_p
3467 (GET_MODE (SET_SRC (set_b))))
3468 /* Likewise with X. In particular this can happen when
3469 noce_get_condition looks farther back in the instruction
3470 stream than one might expect. */
3471 || reg_overlap_mentioned_p (x, cond)
3472 || reg_overlap_mentioned_p (x, a)
3473 || modified_between_p (x, insn_b, jump))
3475 insn_b = NULL;
3476 set_b = NULL_RTX;
3480 /* If x has side effects then only the if-then-else form is safe to
3481 convert. But even in that case we would need to restore any notes
3482 (such as REG_INC) at then end. That can be tricky if
3483 noce_emit_move_insn expands to more than one insn, so disable the
3484 optimization entirely for now if there are side effects. */
3485 if (side_effects_p (x))
3486 return FALSE;
3488 b = (set_b ? SET_SRC (set_b) : x);
3490 /* Only operate on register destinations, and even then avoid extending
3491 the lifetime of hard registers on small register class machines. */
3492 orig_x = x;
3493 if_info->orig_x = orig_x;
3494 if (!REG_P (x)
3495 || (HARD_REGISTER_P (x)
3496 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3498 if (GET_MODE (x) == BLKmode)
3499 return FALSE;
3501 if (GET_CODE (x) == ZERO_EXTRACT
3502 && (!CONST_INT_P (XEXP (x, 1))
3503 || !CONST_INT_P (XEXP (x, 2))))
3504 return FALSE;
3506 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3507 ? XEXP (x, 0) : x));
3510 /* Don't operate on sources that may trap or are volatile. */
3511 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3512 return FALSE;
3514 retry:
3515 /* Set up the info block for our subroutines. */
3516 if_info->insn_a = insn_a;
3517 if_info->insn_b = insn_b;
3518 if_info->x = x;
3519 if_info->a = a;
3520 if_info->b = b;
3522 /* Try optimizations in some approximation of a useful order. */
3523 /* ??? Should first look to see if X is live incoming at all. If it
3524 isn't, we don't need anything but an unconditional set. */
3526 /* Look and see if A and B are really the same. Avoid creating silly
3527 cmove constructs that no one will fix up later. */
3528 if (noce_simple_bbs (if_info)
3529 && rtx_interchangeable_p (a, b))
3531 /* If we have an INSN_B, we don't have to create any new rtl. Just
3532 move the instruction that we already have. If we don't have an
3533 INSN_B, that means that A == X, and we've got a noop move. In
3534 that case don't do anything and let the code below delete INSN_A. */
3535 if (insn_b && else_bb)
3537 rtx note;
3539 if (else_bb && insn_b == BB_END (else_bb))
3540 BB_END (else_bb) = PREV_INSN (insn_b);
3541 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3543 /* If there was a REG_EQUAL note, delete it since it may have been
3544 true due to this insn being after a jump. */
3545 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3546 remove_note (insn_b, note);
3548 insn_b = NULL;
3550 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3551 x must be executed twice. */
3552 else if (insn_b && side_effects_p (orig_x))
3553 return FALSE;
3555 x = orig_x;
3556 goto success;
3559 if (!set_b && MEM_P (orig_x))
3560 /* We want to avoid store speculation to avoid cases like
3561 if (pthread_mutex_trylock(mutex))
3562 ++global_variable;
3563 Rather than go to much effort here, we rely on the SSA optimizers,
3564 which do a good enough job these days. */
3565 return FALSE;
3567 if (noce_try_move (if_info))
3568 goto success;
3569 if (noce_try_ifelse_collapse (if_info))
3570 goto success;
3571 if (noce_try_store_flag (if_info))
3572 goto success;
3573 if (noce_try_bitop (if_info))
3574 goto success;
3575 if (noce_try_minmax (if_info))
3576 goto success;
3577 if (noce_try_abs (if_info))
3578 goto success;
3579 if (noce_try_inverse_constants (if_info))
3580 goto success;
3581 if (!targetm.have_conditional_execution ()
3582 && noce_try_store_flag_constants (if_info))
3583 goto success;
3584 if (HAVE_conditional_move
3585 && noce_try_cmove (if_info))
3586 goto success;
3587 if (! targetm.have_conditional_execution ())
3589 if (noce_try_addcc (if_info))
3590 goto success;
3591 if (noce_try_store_flag_mask (if_info))
3592 goto success;
3593 if (HAVE_conditional_move
3594 && noce_try_cmove_arith (if_info))
3595 goto success;
3596 if (noce_try_sign_mask (if_info))
3597 goto success;
3600 if (!else_bb && set_b)
3602 insn_b = NULL;
3603 set_b = NULL_RTX;
3604 b = orig_x;
3605 goto retry;
3608 return FALSE;
3610 success:
3611 if (dump_file && if_info->transform_name)
3612 fprintf (dump_file, "if-conversion succeeded through %s\n",
3613 if_info->transform_name);
3615 /* If we used a temporary, fix it up now. */
3616 if (orig_x != x)
3618 rtx_insn *seq;
3620 start_sequence ();
3621 noce_emit_move_insn (orig_x, x);
3622 seq = get_insns ();
3623 set_used_flags (orig_x);
3624 unshare_all_rtl_in_chain (seq);
3625 end_sequence ();
3627 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
3630 /* The original THEN and ELSE blocks may now be removed. The test block
3631 must now jump to the join block. If the test block and the join block
3632 can be merged, do so. */
3633 if (else_bb)
3635 delete_basic_block (else_bb);
3636 num_true_changes++;
3638 else
3639 remove_edge (find_edge (test_bb, join_bb));
3641 remove_edge (find_edge (then_bb, join_bb));
3642 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3643 delete_basic_block (then_bb);
3644 num_true_changes++;
3646 if (can_merge_blocks_p (test_bb, join_bb))
3648 merge_blocks (test_bb, join_bb);
3649 num_true_changes++;
3652 num_updated_if_blocks++;
3653 return TRUE;
3656 /* Check whether a block is suitable for conditional move conversion.
3657 Every insn must be a simple set of a register to a constant or a
3658 register. For each assignment, store the value in the pointer map
3659 VALS, keyed indexed by register pointer, then store the register
3660 pointer in REGS. COND is the condition we will test. */
3662 static int
3663 check_cond_move_block (basic_block bb,
3664 hash_map<rtx, rtx> *vals,
3665 vec<rtx> *regs,
3666 rtx cond)
3668 rtx_insn *insn;
3669 rtx cc = cc_in_cond (cond);
3671 /* We can only handle simple jumps at the end of the basic block.
3672 It is almost impossible to update the CFG otherwise. */
3673 insn = BB_END (bb);
3674 if (JUMP_P (insn) && !onlyjump_p (insn))
3675 return FALSE;
3677 FOR_BB_INSNS (bb, insn)
3679 rtx set, dest, src;
3681 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3682 continue;
3683 set = single_set (insn);
3684 if (!set)
3685 return FALSE;
3687 dest = SET_DEST (set);
3688 src = SET_SRC (set);
3689 if (!REG_P (dest)
3690 || (HARD_REGISTER_P (dest)
3691 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
3692 return FALSE;
3694 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
3695 return FALSE;
3697 if (side_effects_p (src) || side_effects_p (dest))
3698 return FALSE;
3700 if (may_trap_p (src) || may_trap_p (dest))
3701 return FALSE;
3703 /* Don't try to handle this if the source register was
3704 modified earlier in the block. */
3705 if ((REG_P (src)
3706 && vals->get (src))
3707 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3708 && vals->get (SUBREG_REG (src))))
3709 return FALSE;
3711 /* Don't try to handle this if the destination register was
3712 modified earlier in the block. */
3713 if (vals->get (dest))
3714 return FALSE;
3716 /* Don't try to handle this if the condition uses the
3717 destination register. */
3718 if (reg_overlap_mentioned_p (dest, cond))
3719 return FALSE;
3721 /* Don't try to handle this if the source register is modified
3722 later in the block. */
3723 if (!CONSTANT_P (src)
3724 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
3725 return FALSE;
3727 /* Skip it if the instruction to be moved might clobber CC. */
3728 if (cc && set_of (cc, insn))
3729 return FALSE;
3731 vals->put (dest, src);
3733 regs->safe_push (dest);
3736 return TRUE;
3739 /* Given a basic block BB suitable for conditional move conversion,
3740 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3741 the register values depending on COND, emit the insns in the block as
3742 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3743 processed. The caller has started a sequence for the conversion.
3744 Return true if successful, false if something goes wrong. */
3746 static bool
3747 cond_move_convert_if_block (struct noce_if_info *if_infop,
3748 basic_block bb, rtx cond,
3749 hash_map<rtx, rtx> *then_vals,
3750 hash_map<rtx, rtx> *else_vals,
3751 bool else_block_p)
3753 enum rtx_code code;
3754 rtx_insn *insn;
3755 rtx cond_arg0, cond_arg1;
3757 code = GET_CODE (cond);
3758 cond_arg0 = XEXP (cond, 0);
3759 cond_arg1 = XEXP (cond, 1);
3761 FOR_BB_INSNS (bb, insn)
3763 rtx set, target, dest, t, e;
3765 /* ??? Maybe emit conditional debug insn? */
3766 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
3767 continue;
3768 set = single_set (insn);
3769 gcc_assert (set && REG_P (SET_DEST (set)));
3771 dest = SET_DEST (set);
3773 rtx *then_slot = then_vals->get (dest);
3774 rtx *else_slot = else_vals->get (dest);
3775 t = then_slot ? *then_slot : NULL_RTX;
3776 e = else_slot ? *else_slot : NULL_RTX;
3778 if (else_block_p)
3780 /* If this register was set in the then block, we already
3781 handled this case there. */
3782 if (t)
3783 continue;
3784 t = dest;
3785 gcc_assert (e);
3787 else
3789 gcc_assert (t);
3790 if (!e)
3791 e = dest;
3794 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
3795 t, e);
3796 if (!target)
3797 return false;
3799 if (target != dest)
3800 noce_emit_move_insn (dest, target);
3803 return true;
3806 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3807 it using only conditional moves. Return TRUE if we were successful at
3808 converting the block. */
3810 static int
3811 cond_move_process_if_block (struct noce_if_info *if_info)
3813 basic_block test_bb = if_info->test_bb;
3814 basic_block then_bb = if_info->then_bb;
3815 basic_block else_bb = if_info->else_bb;
3816 basic_block join_bb = if_info->join_bb;
3817 rtx_insn *jump = if_info->jump;
3818 rtx cond = if_info->cond;
3819 rtx_insn *seq, *loc_insn;
3820 rtx reg;
3821 int c;
3822 vec<rtx> then_regs = vNULL;
3823 vec<rtx> else_regs = vNULL;
3824 unsigned int i;
3825 int success_p = FALSE;
3826 int limit = PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS);
3828 /* Build a mapping for each block to the value used for each
3829 register. */
3830 hash_map<rtx, rtx> then_vals;
3831 hash_map<rtx, rtx> else_vals;
3833 /* Make sure the blocks are suitable. */
3834 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3835 || (else_bb
3836 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3837 goto done;
3839 /* Make sure the blocks can be used together. If the same register
3840 is set in both blocks, and is not set to a constant in both
3841 cases, then both blocks must set it to the same register. We
3842 have already verified that if it is set to a register, that the
3843 source register does not change after the assignment. Also count
3844 the number of registers set in only one of the blocks. */
3845 c = 0;
3846 FOR_EACH_VEC_ELT (then_regs, i, reg)
3848 rtx *then_slot = then_vals.get (reg);
3849 rtx *else_slot = else_vals.get (reg);
3851 gcc_checking_assert (then_slot);
3852 if (!else_slot)
3853 ++c;
3854 else
3856 rtx then_val = *then_slot;
3857 rtx else_val = *else_slot;
3858 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3859 && !rtx_equal_p (then_val, else_val))
3860 goto done;
3864 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3865 FOR_EACH_VEC_ELT (else_regs, i, reg)
3867 gcc_checking_assert (else_vals.get (reg));
3868 if (!then_vals.get (reg))
3869 ++c;
3872 /* Make sure it is reasonable to convert this block. What matters
3873 is the number of assignments currently made in only one of the
3874 branches, since if we convert we are going to always execute
3875 them. */
3876 if (c > MAX_CONDITIONAL_EXECUTE
3877 || c > limit)
3878 goto done;
3880 /* Try to emit the conditional moves. First do the then block,
3881 then do anything left in the else blocks. */
3882 start_sequence ();
3883 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3884 &then_vals, &else_vals, false)
3885 || (else_bb
3886 && !cond_move_convert_if_block (if_info, else_bb, cond,
3887 &then_vals, &else_vals, true)))
3889 end_sequence ();
3890 goto done;
3892 seq = end_ifcvt_sequence (if_info);
3893 if (!seq)
3894 goto done;
3896 loc_insn = first_active_insn (then_bb);
3897 if (!loc_insn)
3899 loc_insn = first_active_insn (else_bb);
3900 gcc_assert (loc_insn);
3902 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3904 if (else_bb)
3906 delete_basic_block (else_bb);
3907 num_true_changes++;
3909 else
3910 remove_edge (find_edge (test_bb, join_bb));
3912 remove_edge (find_edge (then_bb, join_bb));
3913 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3914 delete_basic_block (then_bb);
3915 num_true_changes++;
3917 if (can_merge_blocks_p (test_bb, join_bb))
3919 merge_blocks (test_bb, join_bb);
3920 num_true_changes++;
3923 num_updated_if_blocks++;
3924 success_p = TRUE;
3926 done:
3927 then_regs.release ();
3928 else_regs.release ();
3929 return success_p;
3933 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3934 IF-THEN-ELSE-JOIN block.
3936 If so, we'll try to convert the insns to not require the branch,
3937 using only transformations that do not require conditional execution.
3939 Return TRUE if we were successful at converting the block. */
3941 static int
3942 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3943 int pass)
3945 basic_block then_bb, else_bb, join_bb;
3946 bool then_else_reversed = false;
3947 rtx_insn *jump;
3948 rtx cond;
3949 rtx_insn *cond_earliest;
3950 struct noce_if_info if_info;
3952 /* We only ever should get here before reload. */
3953 gcc_assert (!reload_completed);
3955 /* Recognize an IF-THEN-ELSE-JOIN block. */
3956 if (single_pred_p (then_edge->dest)
3957 && single_succ_p (then_edge->dest)
3958 && single_pred_p (else_edge->dest)
3959 && single_succ_p (else_edge->dest)
3960 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3962 then_bb = then_edge->dest;
3963 else_bb = else_edge->dest;
3964 join_bb = single_succ (then_bb);
3966 /* Recognize an IF-THEN-JOIN block. */
3967 else if (single_pred_p (then_edge->dest)
3968 && single_succ_p (then_edge->dest)
3969 && single_succ (then_edge->dest) == else_edge->dest)
3971 then_bb = then_edge->dest;
3972 else_bb = NULL_BLOCK;
3973 join_bb = else_edge->dest;
3975 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3976 of basic blocks in cfglayout mode does not matter, so the fallthrough
3977 edge can go to any basic block (and not just to bb->next_bb, like in
3978 cfgrtl mode). */
3979 else if (single_pred_p (else_edge->dest)
3980 && single_succ_p (else_edge->dest)
3981 && single_succ (else_edge->dest) == then_edge->dest)
3983 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3984 To make this work, we have to invert the THEN and ELSE blocks
3985 and reverse the jump condition. */
3986 then_bb = else_edge->dest;
3987 else_bb = NULL_BLOCK;
3988 join_bb = single_succ (then_bb);
3989 then_else_reversed = true;
3991 else
3992 /* Not a form we can handle. */
3993 return FALSE;
3995 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3996 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3997 return FALSE;
3998 if (else_bb
3999 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4000 return FALSE;
4002 num_possible_if_blocks++;
4004 if (dump_file)
4006 fprintf (dump_file,
4007 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4008 (else_bb) ? "-ELSE" : "",
4009 pass, test_bb->index, then_bb->index);
4011 if (else_bb)
4012 fprintf (dump_file, ", else %d", else_bb->index);
4014 fprintf (dump_file, ", join %d\n", join_bb->index);
4017 /* If the conditional jump is more than just a conditional
4018 jump, then we can not do if-conversion on this block. */
4019 jump = BB_END (test_bb);
4020 if (! onlyjump_p (jump))
4021 return FALSE;
4023 /* If this is not a standard conditional jump, we can't parse it. */
4024 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
4025 if (!cond)
4026 return FALSE;
4028 /* We must be comparing objects whose modes imply the size. */
4029 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4030 return FALSE;
4032 /* Initialize an IF_INFO struct to pass around. */
4033 memset (&if_info, 0, sizeof if_info);
4034 if_info.test_bb = test_bb;
4035 if_info.then_bb = then_bb;
4036 if_info.else_bb = else_bb;
4037 if_info.join_bb = join_bb;
4038 if_info.cond = cond;
4039 if_info.cond_earliest = cond_earliest;
4040 if_info.jump = jump;
4041 if_info.then_else_reversed = then_else_reversed;
4042 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
4043 predictable_edge_p (then_edge));
4045 /* Do the real work. */
4047 if (noce_process_if_block (&if_info))
4048 return TRUE;
4050 if (HAVE_conditional_move
4051 && cond_move_process_if_block (&if_info))
4052 return TRUE;
4054 return FALSE;
4058 /* Merge the blocks and mark for local life update. */
4060 static void
4061 merge_if_block (struct ce_if_block * ce_info)
4063 basic_block test_bb = ce_info->test_bb; /* last test block */
4064 basic_block then_bb = ce_info->then_bb; /* THEN */
4065 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
4066 basic_block join_bb = ce_info->join_bb; /* join block */
4067 basic_block combo_bb;
4069 /* All block merging is done into the lower block numbers. */
4071 combo_bb = test_bb;
4072 df_set_bb_dirty (test_bb);
4074 /* Merge any basic blocks to handle && and || subtests. Each of
4075 the blocks are on the fallthru path from the predecessor block. */
4076 if (ce_info->num_multiple_test_blocks > 0)
4078 basic_block bb = test_bb;
4079 basic_block last_test_bb = ce_info->last_test_bb;
4080 basic_block fallthru = block_fallthru (bb);
4084 bb = fallthru;
4085 fallthru = block_fallthru (bb);
4086 merge_blocks (combo_bb, bb);
4087 num_true_changes++;
4089 while (bb != last_test_bb);
4092 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4093 label, but it might if there were || tests. That label's count should be
4094 zero, and it normally should be removed. */
4096 if (then_bb)
4098 /* If THEN_BB has no successors, then there's a BARRIER after it.
4099 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4100 is no longer needed, and in fact it is incorrect to leave it in
4101 the insn stream. */
4102 if (EDGE_COUNT (then_bb->succs) == 0
4103 && EDGE_COUNT (combo_bb->succs) > 1)
4105 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4106 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4107 end = NEXT_INSN (end);
4109 if (end && BARRIER_P (end))
4110 delete_insn (end);
4112 merge_blocks (combo_bb, then_bb);
4113 num_true_changes++;
4116 /* The ELSE block, if it existed, had a label. That label count
4117 will almost always be zero, but odd things can happen when labels
4118 get their addresses taken. */
4119 if (else_bb)
4121 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4122 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4123 is no longer needed, and in fact it is incorrect to leave it in
4124 the insn stream. */
4125 if (EDGE_COUNT (else_bb->succs) == 0
4126 && EDGE_COUNT (combo_bb->succs) > 1)
4128 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4129 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4130 end = NEXT_INSN (end);
4132 if (end && BARRIER_P (end))
4133 delete_insn (end);
4135 merge_blocks (combo_bb, else_bb);
4136 num_true_changes++;
4139 /* If there was no join block reported, that means it was not adjacent
4140 to the others, and so we cannot merge them. */
4142 if (! join_bb)
4144 rtx_insn *last = BB_END (combo_bb);
4146 /* The outgoing edge for the current COMBO block should already
4147 be correct. Verify this. */
4148 if (EDGE_COUNT (combo_bb->succs) == 0)
4149 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4150 || (NONJUMP_INSN_P (last)
4151 && GET_CODE (PATTERN (last)) == TRAP_IF
4152 && (TRAP_CONDITION (PATTERN (last))
4153 == const_true_rtx)));
4155 else
4156 /* There should still be something at the end of the THEN or ELSE
4157 blocks taking us to our final destination. */
4158 gcc_assert (JUMP_P (last)
4159 || (EDGE_SUCC (combo_bb, 0)->dest
4160 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4161 && CALL_P (last)
4162 && SIBLING_CALL_P (last))
4163 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4164 && can_throw_internal (last)));
4167 /* The JOIN block may have had quite a number of other predecessors too.
4168 Since we've already merged the TEST, THEN and ELSE blocks, we should
4169 have only one remaining edge from our if-then-else diamond. If there
4170 is more than one remaining edge, it must come from elsewhere. There
4171 may be zero incoming edges if the THEN block didn't actually join
4172 back up (as with a call to a non-return function). */
4173 else if (EDGE_COUNT (join_bb->preds) < 2
4174 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4176 /* We can merge the JOIN cleanly and update the dataflow try
4177 again on this pass.*/
4178 merge_blocks (combo_bb, join_bb);
4179 num_true_changes++;
4181 else
4183 /* We cannot merge the JOIN. */
4185 /* The outgoing edge for the current COMBO block should already
4186 be correct. Verify this. */
4187 gcc_assert (single_succ_p (combo_bb)
4188 && single_succ (combo_bb) == join_bb);
4190 /* Remove the jump and cruft from the end of the COMBO block. */
4191 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4192 tidy_fallthru_edge (single_succ_edge (combo_bb));
4195 num_updated_if_blocks++;
4198 /* Find a block ending in a simple IF condition and try to transform it
4199 in some way. When converting a multi-block condition, put the new code
4200 in the first such block and delete the rest. Return a pointer to this
4201 first block if some transformation was done. Return NULL otherwise. */
4203 static basic_block
4204 find_if_header (basic_block test_bb, int pass)
4206 ce_if_block ce_info;
4207 edge then_edge;
4208 edge else_edge;
4210 /* The kind of block we're looking for has exactly two successors. */
4211 if (EDGE_COUNT (test_bb->succs) != 2)
4212 return NULL;
4214 then_edge = EDGE_SUCC (test_bb, 0);
4215 else_edge = EDGE_SUCC (test_bb, 1);
4217 if (df_get_bb_dirty (then_edge->dest))
4218 return NULL;
4219 if (df_get_bb_dirty (else_edge->dest))
4220 return NULL;
4222 /* Neither edge should be abnormal. */
4223 if ((then_edge->flags & EDGE_COMPLEX)
4224 || (else_edge->flags & EDGE_COMPLEX))
4225 return NULL;
4227 /* Nor exit the loop. */
4228 if ((then_edge->flags & EDGE_LOOP_EXIT)
4229 || (else_edge->flags & EDGE_LOOP_EXIT))
4230 return NULL;
4232 /* The THEN edge is canonically the one that falls through. */
4233 if (then_edge->flags & EDGE_FALLTHRU)
4235 else if (else_edge->flags & EDGE_FALLTHRU)
4236 std::swap (then_edge, else_edge);
4237 else
4238 /* Otherwise this must be a multiway branch of some sort. */
4239 return NULL;
4241 memset (&ce_info, 0, sizeof (ce_info));
4242 ce_info.test_bb = test_bb;
4243 ce_info.then_bb = then_edge->dest;
4244 ce_info.else_bb = else_edge->dest;
4245 ce_info.pass = pass;
4247 #ifdef IFCVT_MACHDEP_INIT
4248 IFCVT_MACHDEP_INIT (&ce_info);
4249 #endif
4251 if (!reload_completed
4252 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4253 goto success;
4255 if (reload_completed
4256 && targetm.have_conditional_execution ()
4257 && cond_exec_find_if_block (&ce_info))
4258 goto success;
4260 if (targetm.have_trap ()
4261 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4262 && find_cond_trap (test_bb, then_edge, else_edge))
4263 goto success;
4265 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4266 && (reload_completed || !targetm.have_conditional_execution ()))
4268 if (find_if_case_1 (test_bb, then_edge, else_edge))
4269 goto success;
4270 if (find_if_case_2 (test_bb, then_edge, else_edge))
4271 goto success;
4274 return NULL;
4276 success:
4277 if (dump_file)
4278 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4279 /* Set this so we continue looking. */
4280 cond_exec_changed_p = TRUE;
4281 return ce_info.test_bb;
4284 /* Return true if a block has two edges, one of which falls through to the next
4285 block, and the other jumps to a specific block, so that we can tell if the
4286 block is part of an && test or an || test. Returns either -1 or the number
4287 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4289 static int
4290 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4292 edge cur_edge;
4293 int fallthru_p = FALSE;
4294 int jump_p = FALSE;
4295 rtx_insn *insn;
4296 rtx_insn *end;
4297 int n_insns = 0;
4298 edge_iterator ei;
4300 if (!cur_bb || !target_bb)
4301 return -1;
4303 /* If no edges, obviously it doesn't jump or fallthru. */
4304 if (EDGE_COUNT (cur_bb->succs) == 0)
4305 return FALSE;
4307 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4309 if (cur_edge->flags & EDGE_COMPLEX)
4310 /* Anything complex isn't what we want. */
4311 return -1;
4313 else if (cur_edge->flags & EDGE_FALLTHRU)
4314 fallthru_p = TRUE;
4316 else if (cur_edge->dest == target_bb)
4317 jump_p = TRUE;
4319 else
4320 return -1;
4323 if ((jump_p & fallthru_p) == 0)
4324 return -1;
4326 /* Don't allow calls in the block, since this is used to group && and ||
4327 together for conditional execution support. ??? we should support
4328 conditional execution support across calls for IA-64 some day, but
4329 for now it makes the code simpler. */
4330 end = BB_END (cur_bb);
4331 insn = BB_HEAD (cur_bb);
4333 while (insn != NULL_RTX)
4335 if (CALL_P (insn))
4336 return -1;
4338 if (INSN_P (insn)
4339 && !JUMP_P (insn)
4340 && !DEBUG_INSN_P (insn)
4341 && GET_CODE (PATTERN (insn)) != USE
4342 && GET_CODE (PATTERN (insn)) != CLOBBER)
4343 n_insns++;
4345 if (insn == end)
4346 break;
4348 insn = NEXT_INSN (insn);
4351 return n_insns;
4354 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4355 block. If so, we'll try to convert the insns to not require the branch.
4356 Return TRUE if we were successful at converting the block. */
4358 static int
4359 cond_exec_find_if_block (struct ce_if_block * ce_info)
4361 basic_block test_bb = ce_info->test_bb;
4362 basic_block then_bb = ce_info->then_bb;
4363 basic_block else_bb = ce_info->else_bb;
4364 basic_block join_bb = NULL_BLOCK;
4365 edge cur_edge;
4366 basic_block next;
4367 edge_iterator ei;
4369 ce_info->last_test_bb = test_bb;
4371 /* We only ever should get here after reload,
4372 and if we have conditional execution. */
4373 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4375 /* Discover if any fall through predecessors of the current test basic block
4376 were && tests (which jump to the else block) or || tests (which jump to
4377 the then block). */
4378 if (single_pred_p (test_bb)
4379 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4381 basic_block bb = single_pred (test_bb);
4382 basic_block target_bb;
4383 int max_insns = MAX_CONDITIONAL_EXECUTE;
4384 int n_insns;
4386 /* Determine if the preceding block is an && or || block. */
4387 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4389 ce_info->and_and_p = TRUE;
4390 target_bb = else_bb;
4392 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4394 ce_info->and_and_p = FALSE;
4395 target_bb = then_bb;
4397 else
4398 target_bb = NULL_BLOCK;
4400 if (target_bb && n_insns <= max_insns)
4402 int total_insns = 0;
4403 int blocks = 0;
4405 ce_info->last_test_bb = test_bb;
4407 /* Found at least one && or || block, look for more. */
4410 ce_info->test_bb = test_bb = bb;
4411 total_insns += n_insns;
4412 blocks++;
4414 if (!single_pred_p (bb))
4415 break;
4417 bb = single_pred (bb);
4418 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4420 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4422 ce_info->num_multiple_test_blocks = blocks;
4423 ce_info->num_multiple_test_insns = total_insns;
4425 if (ce_info->and_and_p)
4426 ce_info->num_and_and_blocks = blocks;
4427 else
4428 ce_info->num_or_or_blocks = blocks;
4432 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4433 other than any || blocks which jump to the THEN block. */
4434 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4435 return FALSE;
4437 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4438 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4440 if (cur_edge->flags & EDGE_COMPLEX)
4441 return FALSE;
4444 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4446 if (cur_edge->flags & EDGE_COMPLEX)
4447 return FALSE;
4450 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4451 if (EDGE_COUNT (then_bb->succs) > 0
4452 && (!single_succ_p (then_bb)
4453 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4454 || (epilogue_completed
4455 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4456 return FALSE;
4458 /* If the THEN block has no successors, conditional execution can still
4459 make a conditional call. Don't do this unless the ELSE block has
4460 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4461 Check for the last insn of the THEN block being an indirect jump, which
4462 is listed as not having any successors, but confuses the rest of the CE
4463 code processing. ??? we should fix this in the future. */
4464 if (EDGE_COUNT (then_bb->succs) == 0)
4466 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4468 rtx_insn *last_insn = BB_END (then_bb);
4470 while (last_insn
4471 && NOTE_P (last_insn)
4472 && last_insn != BB_HEAD (then_bb))
4473 last_insn = PREV_INSN (last_insn);
4475 if (last_insn
4476 && JUMP_P (last_insn)
4477 && ! simplejump_p (last_insn))
4478 return FALSE;
4480 join_bb = else_bb;
4481 else_bb = NULL_BLOCK;
4483 else
4484 return FALSE;
4487 /* If the THEN block's successor is the other edge out of the TEST block,
4488 then we have an IF-THEN combo without an ELSE. */
4489 else if (single_succ (then_bb) == else_bb)
4491 join_bb = else_bb;
4492 else_bb = NULL_BLOCK;
4495 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4496 has exactly one predecessor and one successor, and the outgoing edge
4497 is not complex, then we have an IF-THEN-ELSE combo. */
4498 else if (single_succ_p (else_bb)
4499 && single_succ (then_bb) == single_succ (else_bb)
4500 && single_pred_p (else_bb)
4501 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4502 && !(epilogue_completed
4503 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4504 join_bb = single_succ (else_bb);
4506 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4507 else
4508 return FALSE;
4510 num_possible_if_blocks++;
4512 if (dump_file)
4514 fprintf (dump_file,
4515 "\nIF-THEN%s block found, pass %d, start block %d "
4516 "[insn %d], then %d [%d]",
4517 (else_bb) ? "-ELSE" : "",
4518 ce_info->pass,
4519 test_bb->index,
4520 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4521 then_bb->index,
4522 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4524 if (else_bb)
4525 fprintf (dump_file, ", else %d [%d]",
4526 else_bb->index,
4527 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
4529 fprintf (dump_file, ", join %d [%d]",
4530 join_bb->index,
4531 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
4533 if (ce_info->num_multiple_test_blocks > 0)
4534 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
4535 ce_info->num_multiple_test_blocks,
4536 (ce_info->and_and_p) ? "&&" : "||",
4537 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
4538 ce_info->last_test_bb->index,
4539 ((BB_HEAD (ce_info->last_test_bb))
4540 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
4541 : -1));
4543 fputc ('\n', dump_file);
4546 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4547 first condition for free, since we've already asserted that there's a
4548 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4549 we checked the FALLTHRU flag, those are already adjacent to the last IF
4550 block. */
4551 /* ??? As an enhancement, move the ELSE block. Have to deal with
4552 BLOCK notes, if by no other means than backing out the merge if they
4553 exist. Sticky enough I don't want to think about it now. */
4554 next = then_bb;
4555 if (else_bb && (next = next->next_bb) != else_bb)
4556 return FALSE;
4557 if ((next = next->next_bb) != join_bb
4558 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4560 if (else_bb)
4561 join_bb = NULL;
4562 else
4563 return FALSE;
4566 /* Do the real work. */
4568 ce_info->else_bb = else_bb;
4569 ce_info->join_bb = join_bb;
4571 /* If we have && and || tests, try to first handle combining the && and ||
4572 tests into the conditional code, and if that fails, go back and handle
4573 it without the && and ||, which at present handles the && case if there
4574 was no ELSE block. */
4575 if (cond_exec_process_if_block (ce_info, TRUE))
4576 return TRUE;
4578 if (ce_info->num_multiple_test_blocks)
4580 cancel_changes (0);
4582 if (cond_exec_process_if_block (ce_info, FALSE))
4583 return TRUE;
4586 return FALSE;
4589 /* Convert a branch over a trap, or a branch
4590 to a trap, into a conditional trap. */
4592 static int
4593 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
4595 basic_block then_bb = then_edge->dest;
4596 basic_block else_bb = else_edge->dest;
4597 basic_block other_bb, trap_bb;
4598 rtx_insn *trap, *jump;
4599 rtx cond;
4600 rtx_insn *cond_earliest;
4601 enum rtx_code code;
4603 /* Locate the block with the trap instruction. */
4604 /* ??? While we look for no successors, we really ought to allow
4605 EH successors. Need to fix merge_if_block for that to work. */
4606 if ((trap = block_has_only_trap (then_bb)) != NULL)
4607 trap_bb = then_bb, other_bb = else_bb;
4608 else if ((trap = block_has_only_trap (else_bb)) != NULL)
4609 trap_bb = else_bb, other_bb = then_bb;
4610 else
4611 return FALSE;
4613 if (dump_file)
4615 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
4616 test_bb->index, trap_bb->index);
4619 /* If this is not a standard conditional jump, we can't parse it. */
4620 jump = BB_END (test_bb);
4621 cond = noce_get_condition (jump, &cond_earliest, false);
4622 if (! cond)
4623 return FALSE;
4625 /* If the conditional jump is more than just a conditional jump, then
4626 we can not do if-conversion on this block. Give up for returnjump_p,
4627 changing a conditional return followed by unconditional trap for
4628 conditional trap followed by unconditional return is likely not
4629 beneficial and harder to handle. */
4630 if (! onlyjump_p (jump) || returnjump_p (jump))
4631 return FALSE;
4633 /* We must be comparing objects whose modes imply the size. */
4634 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4635 return FALSE;
4637 /* Reverse the comparison code, if necessary. */
4638 code = GET_CODE (cond);
4639 if (then_bb == trap_bb)
4641 code = reversed_comparison_code (cond, jump);
4642 if (code == UNKNOWN)
4643 return FALSE;
4646 /* Attempt to generate the conditional trap. */
4647 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
4648 copy_rtx (XEXP (cond, 1)),
4649 TRAP_CODE (PATTERN (trap)));
4650 if (seq == NULL)
4651 return FALSE;
4653 /* Emit the new insns before cond_earliest. */
4654 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
4656 /* Delete the trap block if possible. */
4657 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
4658 df_set_bb_dirty (test_bb);
4659 df_set_bb_dirty (then_bb);
4660 df_set_bb_dirty (else_bb);
4662 if (EDGE_COUNT (trap_bb->preds) == 0)
4664 delete_basic_block (trap_bb);
4665 num_true_changes++;
4668 /* Wire together the blocks again. */
4669 if (current_ir_type () == IR_RTL_CFGLAYOUT)
4670 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
4671 else if (trap_bb == then_bb)
4673 rtx lab = JUMP_LABEL (jump);
4674 rtx_insn *seq = targetm.gen_jump (lab);
4675 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
4676 LABEL_NUSES (lab) += 1;
4677 JUMP_LABEL (newjump) = lab;
4678 emit_barrier_after (newjump);
4680 delete_insn (jump);
4682 if (can_merge_blocks_p (test_bb, other_bb))
4684 merge_blocks (test_bb, other_bb);
4685 num_true_changes++;
4688 num_updated_if_blocks++;
4689 return TRUE;
4692 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4693 return it. */
4695 static rtx_insn *
4696 block_has_only_trap (basic_block bb)
4698 rtx_insn *trap;
4700 /* We're not the exit block. */
4701 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4702 return NULL;
4704 /* The block must have no successors. */
4705 if (EDGE_COUNT (bb->succs) > 0)
4706 return NULL;
4708 /* The only instruction in the THEN block must be the trap. */
4709 trap = first_active_insn (bb);
4710 if (! (trap == BB_END (bb)
4711 && GET_CODE (PATTERN (trap)) == TRAP_IF
4712 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
4713 return NULL;
4715 return trap;
4718 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4719 transformable, but not necessarily the other. There need be no
4720 JOIN block.
4722 Return TRUE if we were successful at converting the block.
4724 Cases we'd like to look at:
4727 if (test) goto over; // x not live
4728 x = a;
4729 goto label;
4730 over:
4732 becomes
4734 x = a;
4735 if (! test) goto label;
4738 if (test) goto E; // x not live
4739 x = big();
4740 goto L;
4742 x = b;
4743 goto M;
4745 becomes
4747 x = b;
4748 if (test) goto M;
4749 x = big();
4750 goto L;
4752 (3) // This one's really only interesting for targets that can do
4753 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4754 // it results in multiple branches on a cache line, which often
4755 // does not sit well with predictors.
4757 if (test1) goto E; // predicted not taken
4758 x = a;
4759 if (test2) goto F;
4762 x = b;
4765 becomes
4767 x = a;
4768 if (test1) goto E;
4769 if (test2) goto F;
4771 Notes:
4773 (A) Don't do (2) if the branch is predicted against the block we're
4774 eliminating. Do it anyway if we can eliminate a branch; this requires
4775 that the sole successor of the eliminated block postdominate the other
4776 side of the if.
4778 (B) With CE, on (3) we can steal from both sides of the if, creating
4780 if (test1) x = a;
4781 if (!test1) x = b;
4782 if (test1) goto J;
4783 if (test2) goto F;
4787 Again, this is most useful if J postdominates.
4789 (C) CE substitutes for helpful life information.
4791 (D) These heuristics need a lot of work. */
4793 /* Tests for case 1 above. */
4795 static int
4796 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4798 basic_block then_bb = then_edge->dest;
4799 basic_block else_bb = else_edge->dest;
4800 basic_block new_bb;
4801 int then_bb_index, then_prob;
4802 rtx else_target = NULL_RTX;
4804 /* If we are partitioning hot/cold basic blocks, we don't want to
4805 mess up unconditional or indirect jumps that cross between hot
4806 and cold sections.
4808 Basic block partitioning may result in some jumps that appear to
4809 be optimizable (or blocks that appear to be mergeable), but which really
4810 must be left untouched (they are required to make it safely across
4811 partition boundaries). See the comments at the top of
4812 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4814 if ((BB_END (then_bb)
4815 && JUMP_P (BB_END (then_bb))
4816 && CROSSING_JUMP_P (BB_END (then_bb)))
4817 || (BB_END (test_bb)
4818 && JUMP_P (BB_END (test_bb))
4819 && CROSSING_JUMP_P (BB_END (test_bb)))
4820 || (BB_END (else_bb)
4821 && JUMP_P (BB_END (else_bb))
4822 && CROSSING_JUMP_P (BB_END (else_bb))))
4823 return FALSE;
4825 /* THEN has one successor. */
4826 if (!single_succ_p (then_bb))
4827 return FALSE;
4829 /* THEN does not fall through, but is not strange either. */
4830 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4831 return FALSE;
4833 /* THEN has one predecessor. */
4834 if (!single_pred_p (then_bb))
4835 return FALSE;
4837 /* THEN must do something. */
4838 if (forwarder_block_p (then_bb))
4839 return FALSE;
4841 num_possible_if_blocks++;
4842 if (dump_file)
4843 fprintf (dump_file,
4844 "\nIF-CASE-1 found, start %d, then %d\n",
4845 test_bb->index, then_bb->index);
4847 if (then_edge->probability)
4848 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4849 else
4850 then_prob = REG_BR_PROB_BASE / 2;
4852 /* We're speculating from the THEN path, we want to make sure the cost
4853 of speculation is within reason. */
4854 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4855 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4856 predictable_edge_p (then_edge)))))
4857 return FALSE;
4859 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4861 rtx_insn *jump = BB_END (else_edge->src);
4862 gcc_assert (JUMP_P (jump));
4863 else_target = JUMP_LABEL (jump);
4866 /* Registers set are dead, or are predicable. */
4867 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4868 single_succ_edge (then_bb), 1))
4869 return FALSE;
4871 /* Conversion went ok, including moving the insns and fixing up the
4872 jump. Adjust the CFG to match. */
4874 /* We can avoid creating a new basic block if then_bb is immediately
4875 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4876 through to else_bb. */
4878 if (then_bb->next_bb == else_bb
4879 && then_bb->prev_bb == test_bb
4880 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4882 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4883 new_bb = 0;
4885 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4886 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4887 else_bb, else_target);
4888 else
4889 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4890 else_bb);
4892 df_set_bb_dirty (test_bb);
4893 df_set_bb_dirty (else_bb);
4895 then_bb_index = then_bb->index;
4896 delete_basic_block (then_bb);
4898 /* Make rest of code believe that the newly created block is the THEN_BB
4899 block we removed. */
4900 if (new_bb)
4902 df_bb_replace (then_bb_index, new_bb);
4903 /* This should have been done above via force_nonfallthru_and_redirect
4904 (possibly called from redirect_edge_and_branch_force). */
4905 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4908 num_true_changes++;
4909 num_updated_if_blocks++;
4910 return TRUE;
4913 /* Test for case 2 above. */
4915 static int
4916 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4918 basic_block then_bb = then_edge->dest;
4919 basic_block else_bb = else_edge->dest;
4920 edge else_succ;
4921 int then_prob, else_prob;
4923 /* We do not want to speculate (empty) loop latches. */
4924 if (current_loops
4925 && else_bb->loop_father->latch == else_bb)
4926 return FALSE;
4928 /* If we are partitioning hot/cold basic blocks, we don't want to
4929 mess up unconditional or indirect jumps that cross between hot
4930 and cold sections.
4932 Basic block partitioning may result in some jumps that appear to
4933 be optimizable (or blocks that appear to be mergeable), but which really
4934 must be left untouched (they are required to make it safely across
4935 partition boundaries). See the comments at the top of
4936 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4938 if ((BB_END (then_bb)
4939 && JUMP_P (BB_END (then_bb))
4940 && CROSSING_JUMP_P (BB_END (then_bb)))
4941 || (BB_END (test_bb)
4942 && JUMP_P (BB_END (test_bb))
4943 && CROSSING_JUMP_P (BB_END (test_bb)))
4944 || (BB_END (else_bb)
4945 && JUMP_P (BB_END (else_bb))
4946 && CROSSING_JUMP_P (BB_END (else_bb))))
4947 return FALSE;
4949 /* ELSE has one successor. */
4950 if (!single_succ_p (else_bb))
4951 return FALSE;
4952 else
4953 else_succ = single_succ_edge (else_bb);
4955 /* ELSE outgoing edge is not complex. */
4956 if (else_succ->flags & EDGE_COMPLEX)
4957 return FALSE;
4959 /* ELSE has one predecessor. */
4960 if (!single_pred_p (else_bb))
4961 return FALSE;
4963 /* THEN is not EXIT. */
4964 if (then_bb->index < NUM_FIXED_BLOCKS)
4965 return FALSE;
4967 if (else_edge->probability)
4969 else_prob = else_edge->probability;
4970 then_prob = REG_BR_PROB_BASE - else_prob;
4972 else
4974 else_prob = REG_BR_PROB_BASE / 2;
4975 then_prob = REG_BR_PROB_BASE / 2;
4978 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4979 if (else_prob > then_prob)
4981 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4982 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4983 else_succ->dest))
4985 else
4986 return FALSE;
4988 num_possible_if_blocks++;
4989 if (dump_file)
4990 fprintf (dump_file,
4991 "\nIF-CASE-2 found, start %d, else %d\n",
4992 test_bb->index, else_bb->index);
4994 /* We're speculating from the ELSE path, we want to make sure the cost
4995 of speculation is within reason. */
4996 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4997 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4998 predictable_edge_p (else_edge)))))
4999 return FALSE;
5001 /* Registers set are dead, or are predicable. */
5002 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
5003 return FALSE;
5005 /* Conversion went ok, including moving the insns and fixing up the
5006 jump. Adjust the CFG to match. */
5008 df_set_bb_dirty (test_bb);
5009 df_set_bb_dirty (then_bb);
5010 delete_basic_block (else_bb);
5012 num_true_changes++;
5013 num_updated_if_blocks++;
5015 /* ??? We may now fallthru from one of THEN's successors into a join
5016 block. Rerun cleanup_cfg? Examine things manually? Wait? */
5018 return TRUE;
5021 /* Used by the code above to perform the actual rtl transformations.
5022 Return TRUE if successful.
5024 TEST_BB is the block containing the conditional branch. MERGE_BB
5025 is the block containing the code to manipulate. DEST_EDGE is an
5026 edge representing a jump to the join block; after the conversion,
5027 TEST_BB should be branching to its destination.
5028 REVERSEP is true if the sense of the branch should be reversed. */
5030 static int
5031 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5032 basic_block other_bb, edge dest_edge, int reversep)
5034 basic_block new_dest = dest_edge->dest;
5035 rtx_insn *head, *end, *jump;
5036 rtx_insn *earliest = NULL;
5037 rtx old_dest;
5038 bitmap merge_set = NULL;
5039 /* Number of pending changes. */
5040 int n_validated_changes = 0;
5041 rtx new_dest_label = NULL_RTX;
5043 jump = BB_END (test_bb);
5045 /* Find the extent of the real code in the merge block. */
5046 head = BB_HEAD (merge_bb);
5047 end = BB_END (merge_bb);
5049 while (DEBUG_INSN_P (end) && end != head)
5050 end = PREV_INSN (end);
5052 /* If merge_bb ends with a tablejump, predicating/moving insn's
5053 into test_bb and then deleting merge_bb will result in the jumptable
5054 that follows merge_bb being removed along with merge_bb and then we
5055 get an unresolved reference to the jumptable. */
5056 if (tablejump_p (end, NULL, NULL))
5057 return FALSE;
5059 if (LABEL_P (head))
5060 head = NEXT_INSN (head);
5061 while (DEBUG_INSN_P (head) && head != end)
5062 head = NEXT_INSN (head);
5063 if (NOTE_P (head))
5065 if (head == end)
5067 head = end = NULL;
5068 goto no_body;
5070 head = NEXT_INSN (head);
5071 while (DEBUG_INSN_P (head) && head != end)
5072 head = NEXT_INSN (head);
5075 if (JUMP_P (end))
5077 if (!onlyjump_p (end))
5078 return FALSE;
5079 if (head == end)
5081 head = end = NULL;
5082 goto no_body;
5084 end = PREV_INSN (end);
5085 while (DEBUG_INSN_P (end) && end != head)
5086 end = PREV_INSN (end);
5089 /* Don't move frame-related insn across the conditional branch. This
5090 can lead to one of the paths of the branch having wrong unwind info. */
5091 if (epilogue_completed)
5093 rtx_insn *insn = head;
5094 while (1)
5096 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5097 return FALSE;
5098 if (insn == end)
5099 break;
5100 insn = NEXT_INSN (insn);
5104 /* Disable handling dead code by conditional execution if the machine needs
5105 to do anything funny with the tests, etc. */
5106 #ifndef IFCVT_MODIFY_TESTS
5107 if (targetm.have_conditional_execution ())
5109 /* In the conditional execution case, we have things easy. We know
5110 the condition is reversible. We don't have to check life info
5111 because we're going to conditionally execute the code anyway.
5112 All that's left is making sure the insns involved can actually
5113 be predicated. */
5115 rtx cond;
5117 cond = cond_exec_get_condition (jump);
5118 if (! cond)
5119 return FALSE;
5121 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5122 int prob_val = (note ? XINT (note, 0) : -1);
5124 if (reversep)
5126 enum rtx_code rev = reversed_comparison_code (cond, jump);
5127 if (rev == UNKNOWN)
5128 return FALSE;
5129 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5130 XEXP (cond, 1));
5131 if (prob_val >= 0)
5132 prob_val = REG_BR_PROB_BASE - prob_val;
5135 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5136 && verify_changes (0))
5137 n_validated_changes = num_validated_changes ();
5138 else
5139 cancel_changes (0);
5141 earliest = jump;
5143 #endif
5145 /* If we allocated new pseudos (e.g. in the conditional move
5146 expander called from noce_emit_cmove), we must resize the
5147 array first. */
5148 if (max_regno < max_reg_num ())
5149 max_regno = max_reg_num ();
5151 /* Try the NCE path if the CE path did not result in any changes. */
5152 if (n_validated_changes == 0)
5154 rtx cond;
5155 rtx_insn *insn;
5156 regset live;
5157 bool success;
5159 /* In the non-conditional execution case, we have to verify that there
5160 are no trapping operations, no calls, no references to memory, and
5161 that any registers modified are dead at the branch site. */
5163 if (!any_condjump_p (jump))
5164 return FALSE;
5166 /* Find the extent of the conditional. */
5167 cond = noce_get_condition (jump, &earliest, false);
5168 if (!cond)
5169 return FALSE;
5171 live = BITMAP_ALLOC (&reg_obstack);
5172 simulate_backwards_to_point (merge_bb, live, end);
5173 success = can_move_insns_across (head, end, earliest, jump,
5174 merge_bb, live,
5175 df_get_live_in (other_bb), NULL);
5176 BITMAP_FREE (live);
5177 if (!success)
5178 return FALSE;
5180 /* Collect the set of registers set in MERGE_BB. */
5181 merge_set = BITMAP_ALLOC (&reg_obstack);
5183 FOR_BB_INSNS (merge_bb, insn)
5184 if (NONDEBUG_INSN_P (insn))
5185 df_simulate_find_defs (insn, merge_set);
5187 /* If shrink-wrapping, disable this optimization when test_bb is
5188 the first basic block and merge_bb exits. The idea is to not
5189 move code setting up a return register as that may clobber a
5190 register used to pass function parameters, which then must be
5191 saved in caller-saved regs. A caller-saved reg requires the
5192 prologue, killing a shrink-wrap opportunity. */
5193 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5194 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5195 && single_succ_p (new_dest)
5196 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5197 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5199 regset return_regs;
5200 unsigned int i;
5202 return_regs = BITMAP_ALLOC (&reg_obstack);
5204 /* Start off with the intersection of regs used to pass
5205 params and regs used to return values. */
5206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5207 if (FUNCTION_ARG_REGNO_P (i)
5208 && targetm.calls.function_value_regno_p (i))
5209 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5211 bitmap_and_into (return_regs,
5212 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5213 bitmap_and_into (return_regs,
5214 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5215 if (!bitmap_empty_p (return_regs))
5217 FOR_BB_INSNS_REVERSE (new_dest, insn)
5218 if (NONDEBUG_INSN_P (insn))
5220 df_ref def;
5222 /* If this insn sets any reg in return_regs, add all
5223 reg uses to the set of regs we're interested in. */
5224 FOR_EACH_INSN_DEF (def, insn)
5225 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5227 df_simulate_uses (insn, return_regs);
5228 break;
5231 if (bitmap_intersect_p (merge_set, return_regs))
5233 BITMAP_FREE (return_regs);
5234 BITMAP_FREE (merge_set);
5235 return FALSE;
5238 BITMAP_FREE (return_regs);
5242 no_body:
5243 /* We don't want to use normal invert_jump or redirect_jump because
5244 we don't want to delete_insn called. Also, we want to do our own
5245 change group management. */
5247 old_dest = JUMP_LABEL (jump);
5248 if (other_bb != new_dest)
5250 if (!any_condjump_p (jump))
5251 goto cancel;
5253 if (JUMP_P (BB_END (dest_edge->src)))
5254 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5255 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5256 new_dest_label = ret_rtx;
5257 else
5258 new_dest_label = block_label (new_dest);
5260 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5261 if (reversep
5262 ? ! invert_jump_1 (jump_insn, new_dest_label)
5263 : ! redirect_jump_1 (jump_insn, new_dest_label))
5264 goto cancel;
5267 if (verify_changes (n_validated_changes))
5268 confirm_change_group ();
5269 else
5270 goto cancel;
5272 if (other_bb != new_dest)
5274 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5275 0, reversep);
5277 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5278 if (reversep)
5280 std::swap (BRANCH_EDGE (test_bb)->count,
5281 FALLTHRU_EDGE (test_bb)->count);
5282 std::swap (BRANCH_EDGE (test_bb)->probability,
5283 FALLTHRU_EDGE (test_bb)->probability);
5284 update_br_prob_note (test_bb);
5288 /* Move the insns out of MERGE_BB to before the branch. */
5289 if (head != NULL)
5291 rtx_insn *insn;
5293 if (end == BB_END (merge_bb))
5294 BB_END (merge_bb) = PREV_INSN (head);
5296 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5297 notes being moved might become invalid. */
5298 insn = head;
5301 rtx note;
5303 if (! INSN_P (insn))
5304 continue;
5305 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5306 if (! note)
5307 continue;
5308 remove_note (insn, note);
5309 } while (insn != end && (insn = NEXT_INSN (insn)));
5311 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5312 notes referring to the registers being set might become invalid. */
5313 if (merge_set)
5315 unsigned i;
5316 bitmap_iterator bi;
5318 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5319 remove_reg_equal_equiv_notes_for_regno (i);
5321 BITMAP_FREE (merge_set);
5324 reorder_insns (head, end, PREV_INSN (earliest));
5327 /* Remove the jump and edge if we can. */
5328 if (other_bb == new_dest)
5330 delete_insn (jump);
5331 remove_edge (BRANCH_EDGE (test_bb));
5332 /* ??? Can't merge blocks here, as then_bb is still in use.
5333 At minimum, the merge will get done just before bb-reorder. */
5336 return TRUE;
5338 cancel:
5339 cancel_changes (0);
5341 if (merge_set)
5342 BITMAP_FREE (merge_set);
5344 return FALSE;
5347 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5348 we are after combine pass. */
5350 static void
5351 if_convert (bool after_combine)
5353 basic_block bb;
5354 int pass;
5356 if (optimize == 1)
5358 df_live_add_problem ();
5359 df_live_set_all_dirty ();
5362 /* Record whether we are after combine pass. */
5363 ifcvt_after_combine = after_combine;
5364 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5365 != CODE_FOR_nothing);
5366 num_possible_if_blocks = 0;
5367 num_updated_if_blocks = 0;
5368 num_true_changes = 0;
5370 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5371 mark_loop_exit_edges ();
5372 loop_optimizer_finalize ();
5373 free_dominance_info (CDI_DOMINATORS);
5375 /* Compute postdominators. */
5376 calculate_dominance_info (CDI_POST_DOMINATORS);
5378 df_set_flags (DF_LR_RUN_DCE);
5380 /* Go through each of the basic blocks looking for things to convert. If we
5381 have conditional execution, we make multiple passes to allow us to handle
5382 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5383 pass = 0;
5386 df_analyze ();
5387 /* Only need to do dce on the first pass. */
5388 df_clear_flags (DF_LR_RUN_DCE);
5389 cond_exec_changed_p = FALSE;
5390 pass++;
5392 #ifdef IFCVT_MULTIPLE_DUMPS
5393 if (dump_file && pass > 1)
5394 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5395 #endif
5397 FOR_EACH_BB_FN (bb, cfun)
5399 basic_block new_bb;
5400 while (!df_get_bb_dirty (bb)
5401 && (new_bb = find_if_header (bb, pass)) != NULL)
5402 bb = new_bb;
5405 #ifdef IFCVT_MULTIPLE_DUMPS
5406 if (dump_file && cond_exec_changed_p)
5407 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5408 #endif
5410 while (cond_exec_changed_p);
5412 #ifdef IFCVT_MULTIPLE_DUMPS
5413 if (dump_file)
5414 fprintf (dump_file, "\n\n========== no more changes\n");
5415 #endif
5417 free_dominance_info (CDI_POST_DOMINATORS);
5419 if (dump_file)
5420 fflush (dump_file);
5422 clear_aux_for_blocks ();
5424 /* If we allocated new pseudos, we must resize the array for sched1. */
5425 if (max_regno < max_reg_num ())
5426 max_regno = max_reg_num ();
5428 /* Write the final stats. */
5429 if (dump_file && num_possible_if_blocks > 0)
5431 fprintf (dump_file,
5432 "\n%d possible IF blocks searched.\n",
5433 num_possible_if_blocks);
5434 fprintf (dump_file,
5435 "%d IF blocks converted.\n",
5436 num_updated_if_blocks);
5437 fprintf (dump_file,
5438 "%d true changes made.\n\n\n",
5439 num_true_changes);
5442 if (optimize == 1)
5443 df_remove_problem (df_live);
5445 checking_verify_flow_info ();
5448 /* If-conversion and CFG cleanup. */
5449 static unsigned int
5450 rest_of_handle_if_conversion (void)
5452 if (flag_if_conversion)
5454 if (dump_file)
5456 dump_reg_info (dump_file);
5457 dump_flow_info (dump_file, dump_flags);
5459 cleanup_cfg (CLEANUP_EXPENSIVE);
5460 if_convert (false);
5463 cleanup_cfg (0);
5464 return 0;
5467 namespace {
5469 const pass_data pass_data_rtl_ifcvt =
5471 RTL_PASS, /* type */
5472 "ce1", /* name */
5473 OPTGROUP_NONE, /* optinfo_flags */
5474 TV_IFCVT, /* tv_id */
5475 0, /* properties_required */
5476 0, /* properties_provided */
5477 0, /* properties_destroyed */
5478 0, /* todo_flags_start */
5479 TODO_df_finish, /* todo_flags_finish */
5482 class pass_rtl_ifcvt : public rtl_opt_pass
5484 public:
5485 pass_rtl_ifcvt (gcc::context *ctxt)
5486 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5489 /* opt_pass methods: */
5490 virtual bool gate (function *)
5492 return (optimize > 0) && dbg_cnt (if_conversion);
5495 virtual unsigned int execute (function *)
5497 return rest_of_handle_if_conversion ();
5500 }; // class pass_rtl_ifcvt
5502 } // anon namespace
5504 rtl_opt_pass *
5505 make_pass_rtl_ifcvt (gcc::context *ctxt)
5507 return new pass_rtl_ifcvt (ctxt);
5511 /* Rerun if-conversion, as combine may have simplified things enough
5512 to now meet sequence length restrictions. */
5514 namespace {
5516 const pass_data pass_data_if_after_combine =
5518 RTL_PASS, /* type */
5519 "ce2", /* name */
5520 OPTGROUP_NONE, /* optinfo_flags */
5521 TV_IFCVT, /* tv_id */
5522 0, /* properties_required */
5523 0, /* properties_provided */
5524 0, /* properties_destroyed */
5525 0, /* todo_flags_start */
5526 TODO_df_finish, /* todo_flags_finish */
5529 class pass_if_after_combine : public rtl_opt_pass
5531 public:
5532 pass_if_after_combine (gcc::context *ctxt)
5533 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
5536 /* opt_pass methods: */
5537 virtual bool gate (function *)
5539 return optimize > 0 && flag_if_conversion
5540 && dbg_cnt (if_after_combine);
5543 virtual unsigned int execute (function *)
5545 if_convert (true);
5546 return 0;
5549 }; // class pass_if_after_combine
5551 } // anon namespace
5553 rtl_opt_pass *
5554 make_pass_if_after_combine (gcc::context *ctxt)
5556 return new pass_if_after_combine (ctxt);
5560 namespace {
5562 const pass_data pass_data_if_after_reload =
5564 RTL_PASS, /* type */
5565 "ce3", /* name */
5566 OPTGROUP_NONE, /* optinfo_flags */
5567 TV_IFCVT2, /* tv_id */
5568 0, /* properties_required */
5569 0, /* properties_provided */
5570 0, /* properties_destroyed */
5571 0, /* todo_flags_start */
5572 TODO_df_finish, /* todo_flags_finish */
5575 class pass_if_after_reload : public rtl_opt_pass
5577 public:
5578 pass_if_after_reload (gcc::context *ctxt)
5579 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
5582 /* opt_pass methods: */
5583 virtual bool gate (function *)
5585 return optimize > 0 && flag_if_conversion2
5586 && dbg_cnt (if_after_reload);
5589 virtual unsigned int execute (function *)
5591 if_convert (true);
5592 return 0;
5595 }; // class pass_if_after_reload
5597 } // anon namespace
5599 rtl_opt_pass *
5600 make_pass_if_after_reload (gcc::context *ctxt)
5602 return new pass_if_after_reload (ctxt);