/cp
[official-gcc.git] / gcc / function.c
blobc15d47d21033a01ae0ebbf69d78ad5c2fb31d494
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "tm_p.h"
45 #include "stringpool.h"
46 #include "expmed.h"
47 #include "optabs.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "rtl-error.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "varasm.h"
56 #include "except.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "calls.h"
60 #include "expr.h"
61 #include "optabs-tree.h"
62 #include "output.h"
63 #include "langhooks.h"
64 #include "common/common-target.h"
65 #include "gimplify.h"
66 #include "tree-pass.h"
67 #include "cfgrtl.h"
68 #include "cfganal.h"
69 #include "cfgbuild.h"
70 #include "cfgcleanup.h"
71 #include "cfgexpand.h"
72 #include "shrink-wrap.h"
73 #include "toplev.h"
74 #include "rtl-iter.h"
75 #include "tree-chkp.h"
76 #include "rtl-chkp.h"
77 #include "tree-dfa.h"
78 #include "tree-ssa.h"
80 /* So we can assign to cfun in this file. */
81 #undef cfun
83 #ifndef STACK_ALIGNMENT_NEEDED
84 #define STACK_ALIGNMENT_NEEDED 1
85 #endif
87 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* Nonzero once virtual register instantiation has been done.
99 assign_stack_local uses frame_pointer_rtx when this is nonzero.
100 calls.c:emit_library_call_value_1 uses it to set up
101 post-instantiation libcalls. */
102 int virtuals_instantiated;
104 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
105 static GTY(()) int funcdef_no;
107 /* These variables hold pointers to functions to create and destroy
108 target specific, per-function data structures. */
109 struct machine_function * (*init_machine_status) (void);
111 /* The currently compiled function. */
112 struct function *cfun = 0;
114 /* These hashes record the prologue and epilogue insns. */
116 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
118 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
119 static bool equal (rtx a, rtx b) { return a == b; }
122 static GTY((cache))
123 hash_table<insn_cache_hasher> *prologue_insn_hash;
124 static GTY((cache))
125 hash_table<insn_cache_hasher> *epilogue_insn_hash;
128 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
129 vec<tree, va_gc> *types_used_by_cur_var_decl;
131 /* Forward declarations. */
133 static struct temp_slot *find_temp_slot_from_address (rtx);
134 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
135 static void pad_below (struct args_size *, machine_mode, tree);
136 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
137 static int all_blocks (tree, tree *);
138 static tree *get_block_vector (tree, int *);
139 extern tree debug_find_var_in_block_tree (tree, tree);
140 /* We always define `record_insns' even if it's not used so that we
141 can always export `prologue_epilogue_contains'. */
142 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
143 ATTRIBUTE_UNUSED;
144 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
145 static void prepare_function_start (void);
146 static void do_clobber_return_reg (rtx, void *);
147 static void do_use_return_reg (rtx, void *);
150 /* Stack of nested functions. */
151 /* Keep track of the cfun stack. */
153 static vec<function *> function_context_stack;
155 /* Save the current context for compilation of a nested function.
156 This is called from language-specific code. */
158 void
159 push_function_context (void)
161 if (cfun == 0)
162 allocate_struct_function (NULL, false);
164 function_context_stack.safe_push (cfun);
165 set_cfun (NULL);
168 /* Restore the last saved context, at the end of a nested function.
169 This function is called from language-specific code. */
171 void
172 pop_function_context (void)
174 struct function *p = function_context_stack.pop ();
175 set_cfun (p);
176 current_function_decl = p->decl;
178 /* Reset variables that have known state during rtx generation. */
179 virtuals_instantiated = 0;
180 generating_concat_p = 1;
183 /* Clear out all parts of the state in F that can safely be discarded
184 after the function has been parsed, but not compiled, to let
185 garbage collection reclaim the memory. */
187 void
188 free_after_parsing (struct function *f)
190 f->language = 0;
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been compiled, to let garbage collection
195 reclaim the memory. */
197 void
198 free_after_compilation (struct function *f)
200 prologue_insn_hash = NULL;
201 epilogue_insn_hash = NULL;
203 free (crtl->emit.regno_pointer_align);
205 memset (crtl, 0, sizeof (struct rtl_data));
206 f->eh = NULL;
207 f->machine = NULL;
208 f->cfg = NULL;
209 f->curr_properties &= ~PROP_cfg;
211 regno_reg_rtx = NULL;
214 /* Return size needed for stack frame based on slots so far allocated.
215 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
216 the caller may have to do that. */
218 HOST_WIDE_INT
219 get_frame_size (void)
221 if (FRAME_GROWS_DOWNWARD)
222 return -frame_offset;
223 else
224 return frame_offset;
227 /* Issue an error message and return TRUE if frame OFFSET overflows in
228 the signed target pointer arithmetics for function FUNC. Otherwise
229 return FALSE. */
231 bool
232 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
234 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
236 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
237 /* Leave room for the fixed part of the frame. */
238 - 64 * UNITS_PER_WORD)
240 error_at (DECL_SOURCE_LOCATION (func),
241 "total size of local objects too large");
242 return TRUE;
245 return FALSE;
248 /* Return stack slot alignment in bits for TYPE and MODE. */
250 static unsigned int
251 get_stack_local_alignment (tree type, machine_mode mode)
253 unsigned int alignment;
255 if (mode == BLKmode)
256 alignment = BIGGEST_ALIGNMENT;
257 else
258 alignment = GET_MODE_ALIGNMENT (mode);
260 /* Allow the frond-end to (possibly) increase the alignment of this
261 stack slot. */
262 if (! type)
263 type = lang_hooks.types.type_for_mode (mode, 0);
265 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
268 /* Determine whether it is possible to fit a stack slot of size SIZE and
269 alignment ALIGNMENT into an area in the stack frame that starts at
270 frame offset START and has a length of LENGTH. If so, store the frame
271 offset to be used for the stack slot in *POFFSET and return true;
272 return false otherwise. This function will extend the frame size when
273 given a start/length pair that lies at the end of the frame. */
275 static bool
276 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
277 HOST_WIDE_INT size, unsigned int alignment,
278 HOST_WIDE_INT *poffset)
280 HOST_WIDE_INT this_frame_offset;
281 int frame_off, frame_alignment, frame_phase;
283 /* Calculate how many bytes the start of local variables is off from
284 stack alignment. */
285 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
286 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
287 frame_phase = frame_off ? frame_alignment - frame_off : 0;
289 /* Round the frame offset to the specified alignment. */
291 /* We must be careful here, since FRAME_OFFSET might be negative and
292 division with a negative dividend isn't as well defined as we might
293 like. So we instead assume that ALIGNMENT is a power of two and
294 use logical operations which are unambiguous. */
295 if (FRAME_GROWS_DOWNWARD)
296 this_frame_offset
297 = (FLOOR_ROUND (start + length - size - frame_phase,
298 (unsigned HOST_WIDE_INT) alignment)
299 + frame_phase);
300 else
301 this_frame_offset
302 = (CEIL_ROUND (start - frame_phase,
303 (unsigned HOST_WIDE_INT) alignment)
304 + frame_phase);
306 /* See if it fits. If this space is at the edge of the frame,
307 consider extending the frame to make it fit. Our caller relies on
308 this when allocating a new slot. */
309 if (frame_offset == start && this_frame_offset < frame_offset)
310 frame_offset = this_frame_offset;
311 else if (this_frame_offset < start)
312 return false;
313 else if (start + length == frame_offset
314 && this_frame_offset + size > start + length)
315 frame_offset = this_frame_offset + size;
316 else if (this_frame_offset + size > start + length)
317 return false;
319 *poffset = this_frame_offset;
320 return true;
323 /* Create a new frame_space structure describing free space in the stack
324 frame beginning at START and ending at END, and chain it into the
325 function's frame_space_list. */
327 static void
328 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
330 struct frame_space *space = ggc_alloc<frame_space> ();
331 space->next = crtl->frame_space_list;
332 crtl->frame_space_list = space;
333 space->start = start;
334 space->length = end - start;
337 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
338 with machine mode MODE.
340 ALIGN controls the amount of alignment for the address of the slot:
341 0 means according to MODE,
342 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
343 -2 means use BITS_PER_UNIT,
344 positive specifies alignment boundary in bits.
346 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
347 alignment and ASLK_RECORD_PAD bit set if we should remember
348 extra space we allocated for alignment purposes. When we are
349 called from assign_stack_temp_for_type, it is not set so we don't
350 track the same stack slot in two independent lists.
352 We do not round to stack_boundary here. */
355 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
356 int align, int kind)
358 rtx x, addr;
359 int bigend_correction = 0;
360 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
361 unsigned int alignment, alignment_in_bits;
363 if (align == 0)
365 alignment = get_stack_local_alignment (NULL, mode);
366 alignment /= BITS_PER_UNIT;
368 else if (align == -1)
370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
371 size = CEIL_ROUND (size, alignment);
373 else if (align == -2)
374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
375 else
376 alignment = align / BITS_PER_UNIT;
378 alignment_in_bits = alignment * BITS_PER_UNIT;
380 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
381 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
383 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
384 alignment = alignment_in_bits / BITS_PER_UNIT;
387 if (SUPPORTS_STACK_ALIGNMENT)
389 if (crtl->stack_alignment_estimated < alignment_in_bits)
391 if (!crtl->stack_realign_processed)
392 crtl->stack_alignment_estimated = alignment_in_bits;
393 else
395 /* If stack is realigned and stack alignment value
396 hasn't been finalized, it is OK not to increase
397 stack_alignment_estimated. The bigger alignment
398 requirement is recorded in stack_alignment_needed
399 below. */
400 gcc_assert (!crtl->stack_realign_finalized);
401 if (!crtl->stack_realign_needed)
403 /* It is OK to reduce the alignment as long as the
404 requested size is 0 or the estimated stack
405 alignment >= mode alignment. */
406 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
407 || size == 0
408 || (crtl->stack_alignment_estimated
409 >= GET_MODE_ALIGNMENT (mode)));
410 alignment_in_bits = crtl->stack_alignment_estimated;
411 alignment = alignment_in_bits / BITS_PER_UNIT;
417 if (crtl->stack_alignment_needed < alignment_in_bits)
418 crtl->stack_alignment_needed = alignment_in_bits;
419 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
420 crtl->max_used_stack_slot_alignment = alignment_in_bits;
422 if (mode != BLKmode || size != 0)
424 if (kind & ASLK_RECORD_PAD)
426 struct frame_space **psp;
428 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
430 struct frame_space *space = *psp;
431 if (!try_fit_stack_local (space->start, space->length, size,
432 alignment, &slot_offset))
433 continue;
434 *psp = space->next;
435 if (slot_offset > space->start)
436 add_frame_space (space->start, slot_offset);
437 if (slot_offset + size < space->start + space->length)
438 add_frame_space (slot_offset + size,
439 space->start + space->length);
440 goto found_space;
444 else if (!STACK_ALIGNMENT_NEEDED)
446 slot_offset = frame_offset;
447 goto found_space;
450 old_frame_offset = frame_offset;
452 if (FRAME_GROWS_DOWNWARD)
454 frame_offset -= size;
455 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
457 if (kind & ASLK_RECORD_PAD)
459 if (slot_offset > frame_offset)
460 add_frame_space (frame_offset, slot_offset);
461 if (slot_offset + size < old_frame_offset)
462 add_frame_space (slot_offset + size, old_frame_offset);
465 else
467 frame_offset += size;
468 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
470 if (kind & ASLK_RECORD_PAD)
472 if (slot_offset > old_frame_offset)
473 add_frame_space (old_frame_offset, slot_offset);
474 if (slot_offset + size < frame_offset)
475 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (Pmode, frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
519 /* In order to evaluate some expressions, such as function calls returning
520 structures in memory, we need to temporarily allocate stack locations.
521 We record each allocated temporary in the following structure.
523 Associated with each temporary slot is a nesting level. When we pop up
524 one level, all temporaries associated with the previous level are freed.
525 Normally, all temporaries are freed after the execution of the statement
526 in which they were created. However, if we are inside a ({...}) grouping,
527 the result may be in a temporary and hence must be preserved. If the
528 result could be in a temporary, we preserve it if we can determine which
529 one it is in. If we cannot determine which temporary may contain the
530 result, all temporaries are preserved. A temporary is preserved by
531 pretending it was allocated at the previous nesting level. */
533 struct GTY(()) temp_slot {
534 /* Points to next temporary slot. */
535 struct temp_slot *next;
536 /* Points to previous temporary slot. */
537 struct temp_slot *prev;
538 /* The rtx to used to reference the slot. */
539 rtx slot;
540 /* The size, in units, of the slot. */
541 HOST_WIDE_INT size;
542 /* The type of the object in the slot, or zero if it doesn't correspond
543 to a type. We use this to determine whether a slot can be reused.
544 It can be reused if objects of the type of the new slot will always
545 conflict with objects of the type of the old slot. */
546 tree type;
547 /* The alignment (in bits) of the slot. */
548 unsigned int align;
549 /* Nonzero if this temporary is currently in use. */
550 char in_use;
551 /* Nesting level at which this slot is being used. */
552 int level;
553 /* The offset of the slot from the frame_pointer, including extra space
554 for alignment. This info is for combine_temp_slots. */
555 HOST_WIDE_INT base_offset;
556 /* The size of the slot, including extra space for alignment. This
557 info is for combine_temp_slots. */
558 HOST_WIDE_INT full_size;
561 /* Entry for the below hash table. */
562 struct GTY((for_user)) temp_slot_address_entry {
563 hashval_t hash;
564 rtx address;
565 struct temp_slot *temp_slot;
568 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
570 static hashval_t hash (temp_slot_address_entry *);
571 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
574 /* A table of addresses that represent a stack slot. The table is a mapping
575 from address RTXen to a temp slot. */
576 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
577 static size_t n_temp_slots_in_use;
579 /* Removes temporary slot TEMP from LIST. */
581 static void
582 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
584 if (temp->next)
585 temp->next->prev = temp->prev;
586 if (temp->prev)
587 temp->prev->next = temp->next;
588 else
589 *list = temp->next;
591 temp->prev = temp->next = NULL;
594 /* Inserts temporary slot TEMP to LIST. */
596 static void
597 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
599 temp->next = *list;
600 if (*list)
601 (*list)->prev = temp;
602 temp->prev = NULL;
603 *list = temp;
606 /* Returns the list of used temp slots at LEVEL. */
608 static struct temp_slot **
609 temp_slots_at_level (int level)
611 if (level >= (int) vec_safe_length (used_temp_slots))
612 vec_safe_grow_cleared (used_temp_slots, level + 1);
614 return &(*used_temp_slots)[level];
617 /* Returns the maximal temporary slot level. */
619 static int
620 max_slot_level (void)
622 if (!used_temp_slots)
623 return -1;
625 return used_temp_slots->length () - 1;
628 /* Moves temporary slot TEMP to LEVEL. */
630 static void
631 move_slot_to_level (struct temp_slot *temp, int level)
633 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
634 insert_slot_to_list (temp, temp_slots_at_level (level));
635 temp->level = level;
638 /* Make temporary slot TEMP available. */
640 static void
641 make_slot_available (struct temp_slot *temp)
643 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
644 insert_slot_to_list (temp, &avail_temp_slots);
645 temp->in_use = 0;
646 temp->level = -1;
647 n_temp_slots_in_use--;
650 /* Compute the hash value for an address -> temp slot mapping.
651 The value is cached on the mapping entry. */
652 static hashval_t
653 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
655 int do_not_record = 0;
656 return hash_rtx (t->address, GET_MODE (t->address),
657 &do_not_record, NULL, false);
660 /* Return the hash value for an address -> temp slot mapping. */
661 hashval_t
662 temp_address_hasher::hash (temp_slot_address_entry *t)
664 return t->hash;
667 /* Compare two address -> temp slot mapping entries. */
668 bool
669 temp_address_hasher::equal (temp_slot_address_entry *t1,
670 temp_slot_address_entry *t2)
672 return exp_equiv_p (t1->address, t2->address, 0, true);
675 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
676 static void
677 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
679 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
680 t->address = address;
681 t->temp_slot = temp_slot;
682 t->hash = temp_slot_address_compute_hash (t);
683 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
686 /* Remove an address -> temp slot mapping entry if the temp slot is
687 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
689 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
691 const struct temp_slot_address_entry *t = *slot;
692 if (! t->temp_slot->in_use)
693 temp_slot_address_table->clear_slot (slot);
694 return 1;
697 /* Remove all mappings of addresses to unused temp slots. */
698 static void
699 remove_unused_temp_slot_addresses (void)
701 /* Use quicker clearing if there aren't any active temp slots. */
702 if (n_temp_slots_in_use)
703 temp_slot_address_table->traverse
704 <void *, remove_unused_temp_slot_addresses_1> (NULL);
705 else
706 temp_slot_address_table->empty ();
709 /* Find the temp slot corresponding to the object at address X. */
711 static struct temp_slot *
712 find_temp_slot_from_address (rtx x)
714 struct temp_slot *p;
715 struct temp_slot_address_entry tmp, *t;
717 /* First try the easy way:
718 See if X exists in the address -> temp slot mapping. */
719 tmp.address = x;
720 tmp.temp_slot = NULL;
721 tmp.hash = temp_slot_address_compute_hash (&tmp);
722 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
723 if (t)
724 return t->temp_slot;
726 /* If we have a sum involving a register, see if it points to a temp
727 slot. */
728 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
729 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
730 return p;
731 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
732 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
733 return p;
735 /* Last resort: Address is a virtual stack var address. */
736 if (GET_CODE (x) == PLUS
737 && XEXP (x, 0) == virtual_stack_vars_rtx
738 && CONST_INT_P (XEXP (x, 1)))
740 int i;
741 for (i = max_slot_level (); i >= 0; i--)
742 for (p = *temp_slots_at_level (i); p; p = p->next)
744 if (INTVAL (XEXP (x, 1)) >= p->base_offset
745 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
746 return p;
750 return NULL;
753 /* Allocate a temporary stack slot and record it for possible later
754 reuse.
756 MODE is the machine mode to be given to the returned rtx.
758 SIZE is the size in units of the space required. We do no rounding here
759 since assign_stack_local will do any required rounding.
761 TYPE is the type that will be used for the stack slot. */
764 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
765 tree type)
767 unsigned int align;
768 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
769 rtx slot;
771 /* If SIZE is -1 it means that somebody tried to allocate a temporary
772 of a variable size. */
773 gcc_assert (size != -1);
775 align = get_stack_local_alignment (type, mode);
777 /* Try to find an available, already-allocated temporary of the proper
778 mode which meets the size and alignment requirements. Choose the
779 smallest one with the closest alignment.
781 If assign_stack_temp is called outside of the tree->rtl expansion,
782 we cannot reuse the stack slots (that may still refer to
783 VIRTUAL_STACK_VARS_REGNUM). */
784 if (!virtuals_instantiated)
786 for (p = avail_temp_slots; p; p = p->next)
788 if (p->align >= align && p->size >= size
789 && GET_MODE (p->slot) == mode
790 && objects_must_conflict_p (p->type, type)
791 && (best_p == 0 || best_p->size > p->size
792 || (best_p->size == p->size && best_p->align > p->align)))
794 if (p->align == align && p->size == size)
796 selected = p;
797 cut_slot_from_list (selected, &avail_temp_slots);
798 best_p = 0;
799 break;
801 best_p = p;
806 /* Make our best, if any, the one to use. */
807 if (best_p)
809 selected = best_p;
810 cut_slot_from_list (selected, &avail_temp_slots);
812 /* If there are enough aligned bytes left over, make them into a new
813 temp_slot so that the extra bytes don't get wasted. Do this only
814 for BLKmode slots, so that we can be sure of the alignment. */
815 if (GET_MODE (best_p->slot) == BLKmode)
817 int alignment = best_p->align / BITS_PER_UNIT;
818 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
820 if (best_p->size - rounded_size >= alignment)
822 p = ggc_alloc<temp_slot> ();
823 p->in_use = 0;
824 p->size = best_p->size - rounded_size;
825 p->base_offset = best_p->base_offset + rounded_size;
826 p->full_size = best_p->full_size - rounded_size;
827 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
828 p->align = best_p->align;
829 p->type = best_p->type;
830 insert_slot_to_list (p, &avail_temp_slots);
832 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
833 stack_slot_list);
835 best_p->size = rounded_size;
836 best_p->full_size = rounded_size;
841 /* If we still didn't find one, make a new temporary. */
842 if (selected == 0)
844 HOST_WIDE_INT frame_offset_old = frame_offset;
846 p = ggc_alloc<temp_slot> ();
848 /* We are passing an explicit alignment request to assign_stack_local.
849 One side effect of that is assign_stack_local will not round SIZE
850 to ensure the frame offset remains suitably aligned.
852 So for requests which depended on the rounding of SIZE, we go ahead
853 and round it now. We also make sure ALIGNMENT is at least
854 BIGGEST_ALIGNMENT. */
855 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
856 p->slot = assign_stack_local_1 (mode,
857 (mode == BLKmode
858 ? CEIL_ROUND (size,
859 (int) align
860 / BITS_PER_UNIT)
861 : size),
862 align, 0);
864 p->align = align;
866 /* The following slot size computation is necessary because we don't
867 know the actual size of the temporary slot until assign_stack_local
868 has performed all the frame alignment and size rounding for the
869 requested temporary. Note that extra space added for alignment
870 can be either above or below this stack slot depending on which
871 way the frame grows. We include the extra space if and only if it
872 is above this slot. */
873 if (FRAME_GROWS_DOWNWARD)
874 p->size = frame_offset_old - frame_offset;
875 else
876 p->size = size;
878 /* Now define the fields used by combine_temp_slots. */
879 if (FRAME_GROWS_DOWNWARD)
881 p->base_offset = frame_offset;
882 p->full_size = frame_offset_old - frame_offset;
884 else
886 p->base_offset = frame_offset_old;
887 p->full_size = frame_offset - frame_offset_old;
890 selected = p;
893 p = selected;
894 p->in_use = 1;
895 p->type = type;
896 p->level = temp_slot_level;
897 n_temp_slots_in_use++;
899 pp = temp_slots_at_level (p->level);
900 insert_slot_to_list (p, pp);
901 insert_temp_slot_address (XEXP (p->slot, 0), p);
903 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
904 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
905 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
907 /* If we know the alias set for the memory that will be used, use
908 it. If there's no TYPE, then we don't know anything about the
909 alias set for the memory. */
910 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
911 set_mem_align (slot, align);
913 /* If a type is specified, set the relevant flags. */
914 if (type != 0)
915 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
916 MEM_NOTRAP_P (slot) = 1;
918 return slot;
921 /* Allocate a temporary stack slot and record it for possible later
922 reuse. First two arguments are same as in preceding function. */
925 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
927 return assign_stack_temp_for_type (mode, size, NULL_TREE);
930 /* Assign a temporary.
931 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
932 and so that should be used in error messages. In either case, we
933 allocate of the given type.
934 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
935 it is 0 if a register is OK.
936 DONT_PROMOTE is 1 if we should not promote values in register
937 to wider modes. */
940 assign_temp (tree type_or_decl, int memory_required,
941 int dont_promote ATTRIBUTE_UNUSED)
943 tree type, decl;
944 machine_mode mode;
945 #ifdef PROMOTE_MODE
946 int unsignedp;
947 #endif
949 if (DECL_P (type_or_decl))
950 decl = type_or_decl, type = TREE_TYPE (decl);
951 else
952 decl = NULL, type = type_or_decl;
954 mode = TYPE_MODE (type);
955 #ifdef PROMOTE_MODE
956 unsignedp = TYPE_UNSIGNED (type);
957 #endif
959 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
960 end. See also create_tmp_var for the gimplification-time check. */
961 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
963 if (mode == BLKmode || memory_required)
965 HOST_WIDE_INT size = int_size_in_bytes (type);
966 rtx tmp;
968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
969 problems with allocating the stack space. */
970 if (size == 0)
971 size = 1;
973 /* Unfortunately, we don't yet know how to allocate variable-sized
974 temporaries. However, sometimes we can find a fixed upper limit on
975 the size, so try that instead. */
976 else if (size == -1)
977 size = max_int_size_in_bytes (type);
979 /* The size of the temporary may be too large to fit into an integer. */
980 /* ??? Not sure this should happen except for user silliness, so limit
981 this to things that aren't compiler-generated temporaries. The
982 rest of the time we'll die in assign_stack_temp_for_type. */
983 if (decl && size == -1
984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
986 error ("size of variable %q+D is too large", decl);
987 size = 1;
990 tmp = assign_stack_temp_for_type (mode, size, type);
991 return tmp;
994 #ifdef PROMOTE_MODE
995 if (! dont_promote)
996 mode = promote_mode (type, mode, &unsignedp);
997 #endif
999 return gen_reg_rtx (mode);
1002 /* Combine temporary stack slots which are adjacent on the stack.
1004 This allows for better use of already allocated stack space. This is only
1005 done for BLKmode slots because we can be sure that we won't have alignment
1006 problems in this case. */
1008 static void
1009 combine_temp_slots (void)
1011 struct temp_slot *p, *q, *next, *next_q;
1012 int num_slots;
1014 /* We can't combine slots, because the information about which slot
1015 is in which alias set will be lost. */
1016 if (flag_strict_aliasing)
1017 return;
1019 /* If there are a lot of temp slots, don't do anything unless
1020 high levels of optimization. */
1021 if (! flag_expensive_optimizations)
1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1024 return;
1026 for (p = avail_temp_slots; p; p = next)
1028 int delete_p = 0;
1030 next = p->next;
1032 if (GET_MODE (p->slot) != BLKmode)
1033 continue;
1035 for (q = p->next; q; q = next_q)
1037 int delete_q = 0;
1039 next_q = q->next;
1041 if (GET_MODE (q->slot) != BLKmode)
1042 continue;
1044 if (p->base_offset + p->full_size == q->base_offset)
1046 /* Q comes after P; combine Q into P. */
1047 p->size += q->size;
1048 p->full_size += q->full_size;
1049 delete_q = 1;
1051 else if (q->base_offset + q->full_size == p->base_offset)
1053 /* P comes after Q; combine P into Q. */
1054 q->size += p->size;
1055 q->full_size += p->full_size;
1056 delete_p = 1;
1057 break;
1059 if (delete_q)
1060 cut_slot_from_list (q, &avail_temp_slots);
1063 /* Either delete P or advance past it. */
1064 if (delete_p)
1065 cut_slot_from_list (p, &avail_temp_slots);
1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1070 slot that previously was known by OLD_RTX. */
1072 void
1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1075 struct temp_slot *p;
1077 if (rtx_equal_p (old_rtx, new_rtx))
1078 return;
1080 p = find_temp_slot_from_address (old_rtx);
1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1083 NEW_RTX is a register, see if one operand of the PLUS is a
1084 temporary location. If so, NEW_RTX points into it. Otherwise,
1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1086 in common between them. If so, try a recursive call on those
1087 values. */
1088 if (p == 0)
1090 if (GET_CODE (old_rtx) != PLUS)
1091 return;
1093 if (REG_P (new_rtx))
1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1097 return;
1099 else if (GET_CODE (new_rtx) != PLUS)
1100 return;
1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1111 return;
1114 /* Otherwise add an alias for the temp's address. */
1115 insert_temp_slot_address (new_rtx, p);
1118 /* If X could be a reference to a temporary slot, mark that slot as
1119 belonging to the to one level higher than the current level. If X
1120 matched one of our slots, just mark that one. Otherwise, we can't
1121 easily predict which it is, so upgrade all of them.
1123 This is called when an ({...}) construct occurs and a statement
1124 returns a value in memory. */
1126 void
1127 preserve_temp_slots (rtx x)
1129 struct temp_slot *p = 0, *next;
1131 if (x == 0)
1132 return;
1134 /* If X is a register that is being used as a pointer, see if we have
1135 a temporary slot we know it points to. */
1136 if (REG_P (x) && REG_POINTER (x))
1137 p = find_temp_slot_from_address (x);
1139 /* If X is not in memory or is at a constant address, it cannot be in
1140 a temporary slot. */
1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1142 return;
1144 /* First see if we can find a match. */
1145 if (p == 0)
1146 p = find_temp_slot_from_address (XEXP (x, 0));
1148 if (p != 0)
1150 if (p->level == temp_slot_level)
1151 move_slot_to_level (p, temp_slot_level - 1);
1152 return;
1155 /* Otherwise, preserve all non-kept slots at this level. */
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 next = p->next;
1159 move_slot_to_level (p, temp_slot_level - 1);
1163 /* Free all temporaries used so far. This is normally called at the
1164 end of generating code for a statement. */
1166 void
1167 free_temp_slots (void)
1169 struct temp_slot *p, *next;
1170 bool some_available = false;
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 make_slot_available (p);
1176 some_available = true;
1179 if (some_available)
1181 remove_unused_temp_slot_addresses ();
1182 combine_temp_slots ();
1186 /* Push deeper into the nesting level for stack temporaries. */
1188 void
1189 push_temp_slots (void)
1191 temp_slot_level++;
1194 /* Pop a temporary nesting level. All slots in use in the current level
1195 are freed. */
1197 void
1198 pop_temp_slots (void)
1200 free_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 vec_alloc (used_temp_slots, 0);
1212 temp_slot_level = 0;
1213 n_temp_slots_in_use = 0;
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1218 else
1219 temp_slot_address_table->empty ();
1222 /* Functions and data structures to keep track of the values hard regs
1223 had at the start of the function. */
1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1226 and has_hard_reg_initial_val.. */
1227 struct GTY(()) initial_value_pair {
1228 rtx hard_reg;
1229 rtx pseudo;
1231 /* ??? This could be a VEC but there is currently no way to define an
1232 opaque VEC type. This could be worked around by defining struct
1233 initial_value_pair in function.h. */
1234 struct GTY(()) initial_value_struct {
1235 int num_entries;
1236 int max_entries;
1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1240 /* If a pseudo represents an initial hard reg (or expression), return
1241 it, else return NULL_RTX. */
1244 get_hard_reg_initial_reg (rtx reg)
1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1247 int i;
1249 if (ivs == 0)
1250 return NULL_RTX;
1252 for (i = 0; i < ivs->num_entries; i++)
1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1254 return ivs->entries[i].hard_reg;
1256 return NULL_RTX;
1259 /* Make sure that there's a pseudo register of mode MODE that stores the
1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1265 struct initial_value_struct *ivs;
1266 rtx rv;
1268 rv = has_hard_reg_initial_val (mode, regno);
1269 if (rv)
1270 return rv;
1272 ivs = crtl->hard_reg_initial_vals;
1273 if (ivs == 0)
1275 ivs = ggc_alloc<initial_value_struct> ();
1276 ivs->num_entries = 0;
1277 ivs->max_entries = 5;
1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1279 crtl->hard_reg_initial_vals = ivs;
1282 if (ivs->num_entries >= ivs->max_entries)
1284 ivs->max_entries += 5;
1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1286 ivs->max_entries);
1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1292 return ivs->entries[ivs->num_entries++].pseudo;
1295 /* See if get_hard_reg_initial_val has been used to create a pseudo
1296 for the initial value of hard register REGNO in mode MODE. Return
1297 the associated pseudo if so, otherwise return NULL. */
1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1302 struct initial_value_struct *ivs;
1303 int i;
1305 ivs = crtl->hard_reg_initial_vals;
1306 if (ivs != 0)
1307 for (i = 0; i < ivs->num_entries; i++)
1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1309 && REGNO (ivs->entries[i].hard_reg) == regno)
1310 return ivs->entries[i].pseudo;
1312 return NULL_RTX;
1315 unsigned int
1316 emit_initial_value_sets (void)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 int i;
1320 rtx_insn *seq;
1322 if (ivs == 0)
1323 return 0;
1325 start_sequence ();
1326 for (i = 0; i < ivs->num_entries; i++)
1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1328 seq = get_insns ();
1329 end_sequence ();
1331 emit_insn_at_entry (seq);
1332 return 0;
1335 /* Return the hardreg-pseudoreg initial values pair entry I and
1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1337 bool
1338 initial_value_entry (int i, rtx *hreg, rtx *preg)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 if (!ivs || i >= ivs->num_entries)
1342 return false;
1344 *hreg = ivs->entries[i].hard_reg;
1345 *preg = ivs->entries[i].pseudo;
1346 return true;
1349 /* These routines are responsible for converting virtual register references
1350 to the actual hard register references once RTL generation is complete.
1352 The following four variables are used for communication between the
1353 routines. They contain the offsets of the virtual registers from their
1354 respective hard registers. */
1356 static int in_arg_offset;
1357 static int var_offset;
1358 static int dynamic_offset;
1359 static int out_arg_offset;
1360 static int cfa_offset;
1362 /* In most machines, the stack pointer register is equivalent to the bottom
1363 of the stack. */
1365 #ifndef STACK_POINTER_OFFSET
1366 #define STACK_POINTER_OFFSET 0
1367 #endif
1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 #endif
1373 /* If not defined, pick an appropriate default for the offset of dynamically
1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1377 #ifndef STACK_DYNAMIC_OFFSET
1379 /* The bottom of the stack points to the actual arguments. If
1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1382 stack space for register parameters is not pushed by the caller, but
1383 rather part of the fixed stack areas and hence not included in
1384 `crtl->outgoing_args_size'. Nevertheless, we must allow
1385 for it when allocating stack dynamic objects. */
1387 #ifdef INCOMING_REG_PARM_STACK_SPACE
1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1389 ((ACCUMULATE_OUTGOING_ARGS \
1390 ? (crtl->outgoing_args_size \
1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1393 : 0) + (STACK_POINTER_OFFSET))
1394 #else
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1397 + (STACK_POINTER_OFFSET))
1398 #endif
1399 #endif
1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1403 is a virtual register, return the equivalent hard register and set the
1404 offset indirectly through the pointer. Otherwise, return 0. */
1406 static rtx
1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 rtx new_rtx;
1410 HOST_WIDE_INT offset;
1412 if (x == virtual_incoming_args_rtx)
1414 if (stack_realign_drap)
1416 /* Replace virtual_incoming_args_rtx with internal arg
1417 pointer if DRAP is used to realign stack. */
1418 new_rtx = crtl->args.internal_arg_pointer;
1419 offset = 0;
1421 else
1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1424 else if (x == virtual_stack_vars_rtx)
1425 new_rtx = frame_pointer_rtx, offset = var_offset;
1426 else if (x == virtual_stack_dynamic_rtx)
1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1428 else if (x == virtual_outgoing_args_rtx)
1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1430 else if (x == virtual_cfa_rtx)
1432 #ifdef FRAME_POINTER_CFA_OFFSET
1433 new_rtx = frame_pointer_rtx;
1434 #else
1435 new_rtx = arg_pointer_rtx;
1436 #endif
1437 offset = cfa_offset;
1439 else if (x == virtual_preferred_stack_boundary_rtx)
1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1442 offset = 0;
1444 else
1445 return NULL_RTX;
1447 *poffset = offset;
1448 return new_rtx;
1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1452 registers present inside of *LOC. The expression is simplified,
1453 as much as possible, but is not to be considered "valid" in any sense
1454 implied by the target. Return true if any change is made. */
1456 static bool
1457 instantiate_virtual_regs_in_rtx (rtx *loc)
1459 if (!*loc)
1460 return false;
1461 bool changed = false;
1462 subrtx_ptr_iterator::array_type array;
1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1465 rtx *loc = *iter;
1466 if (rtx x = *loc)
1468 rtx new_rtx;
1469 HOST_WIDE_INT offset;
1470 switch (GET_CODE (x))
1472 case REG:
1473 new_rtx = instantiate_new_reg (x, &offset);
1474 if (new_rtx)
1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1477 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1482 case PLUS:
1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1484 if (new_rtx)
1486 XEXP (x, 0) = new_rtx;
1487 *loc = plus_constant (GET_MODE (x), x, offset, true);
1488 changed = true;
1489 iter.skip_subrtxes ();
1490 break;
1493 /* FIXME -- from old code */
1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1495 we can commute the PLUS and SUBREG because pointers into the
1496 frame are well-behaved. */
1497 break;
1499 default:
1500 break;
1504 return changed;
1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1508 matches the predicate for insn CODE operand OPERAND. */
1510 static int
1511 safe_insn_predicate (int code, int operand, rtx x)
1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1517 registers present inside of insn. The result will be a valid insn. */
1519 static void
1520 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1522 HOST_WIDE_INT offset;
1523 int insn_code, i;
1524 bool any_change = false;
1525 rtx set, new_rtx, x;
1526 rtx_insn *seq;
1528 /* There are some special cases to be handled first. */
1529 set = single_set (insn);
1530 if (set)
1532 /* We're allowed to assign to a virtual register. This is interpreted
1533 to mean that the underlying register gets assigned the inverse
1534 transformation. This is used, for example, in the handling of
1535 non-local gotos. */
1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1537 if (new_rtx)
1539 start_sequence ();
1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1543 gen_int_mode (-offset, GET_MODE (new_rtx)));
1544 x = force_operand (x, new_rtx);
1545 if (x != new_rtx)
1546 emit_move_insn (new_rtx, x);
1548 seq = get_insns ();
1549 end_sequence ();
1551 emit_insn_before (seq, insn);
1552 delete_insn (insn);
1553 return;
1556 /* Handle a straight copy from a virtual register by generating a
1557 new add insn. The difference between this and falling through
1558 to the generic case is avoiding a new pseudo and eliminating a
1559 move insn in the initial rtl stream. */
1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1561 if (new_rtx && offset != 0
1562 && REG_P (SET_DEST (set))
1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1565 start_sequence ();
1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1568 gen_int_mode (offset,
1569 GET_MODE (SET_DEST (set))),
1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1571 if (x != SET_DEST (set))
1572 emit_move_insn (SET_DEST (set), x);
1574 seq = get_insns ();
1575 end_sequence ();
1577 emit_insn_before (seq, insn);
1578 delete_insn (insn);
1579 return;
1582 extract_insn (insn);
1583 insn_code = INSN_CODE (insn);
1585 /* Handle a plus involving a virtual register by determining if the
1586 operands remain valid if they're modified in place. */
1587 if (GET_CODE (SET_SRC (set)) == PLUS
1588 && recog_data.n_operands >= 3
1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1591 && CONST_INT_P (recog_data.operand[2])
1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1594 offset += INTVAL (recog_data.operand[2]);
1596 /* If the sum is zero, then replace with a plain move. */
1597 if (offset == 0
1598 && REG_P (SET_DEST (set))
1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1601 start_sequence ();
1602 emit_move_insn (SET_DEST (set), new_rtx);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1613 /* Using validate_change and apply_change_group here leaves
1614 recog_data in an invalid state. Since we know exactly what
1615 we want to check, do those two by hand. */
1616 if (safe_insn_predicate (insn_code, 1, new_rtx)
1617 && safe_insn_predicate (insn_code, 2, x))
1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1621 any_change = true;
1623 /* Fall through into the regular operand fixup loop in
1624 order to take care of operands other than 1 and 2. */
1628 else
1630 extract_insn (insn);
1631 insn_code = INSN_CODE (insn);
1634 /* In the general case, we expect virtual registers to appear only in
1635 operands, and then only as either bare registers or inside memories. */
1636 for (i = 0; i < recog_data.n_operands; ++i)
1638 x = recog_data.operand[i];
1639 switch (GET_CODE (x))
1641 case MEM:
1643 rtx addr = XEXP (x, 0);
1645 if (!instantiate_virtual_regs_in_rtx (&addr))
1646 continue;
1648 start_sequence ();
1649 x = replace_equiv_address (x, addr, true);
1650 /* It may happen that the address with the virtual reg
1651 was valid (e.g. based on the virtual stack reg, which might
1652 be acceptable to the predicates with all offsets), whereas
1653 the address now isn't anymore, for instance when the address
1654 is still offsetted, but the base reg isn't virtual-stack-reg
1655 anymore. Below we would do a force_reg on the whole operand,
1656 but this insn might actually only accept memory. Hence,
1657 before doing that last resort, try to reload the address into
1658 a register, so this operand stays a MEM. */
1659 if (!safe_insn_predicate (insn_code, i, x))
1661 addr = force_reg (GET_MODE (addr), addr);
1662 x = replace_equiv_address (x, addr, true);
1664 seq = get_insns ();
1665 end_sequence ();
1666 if (seq)
1667 emit_insn_before (seq, insn);
1669 break;
1671 case REG:
1672 new_rtx = instantiate_new_reg (x, &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset == 0)
1676 x = new_rtx;
1677 else
1679 start_sequence ();
1681 /* Careful, special mode predicates may have stuff in
1682 insn_data[insn_code].operand[i].mode that isn't useful
1683 to us for computing a new value. */
1684 /* ??? Recognize address_operand and/or "p" constraints
1685 to see if (plus new offset) is a valid before we put
1686 this through expand_simple_binop. */
1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1688 gen_int_mode (offset, GET_MODE (x)),
1689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1690 seq = get_insns ();
1691 end_sequence ();
1692 emit_insn_before (seq, insn);
1694 break;
1696 case SUBREG:
1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (offset != 0)
1702 start_sequence ();
1703 new_rtx = expand_simple_binop
1704 (GET_MODE (new_rtx), PLUS, new_rtx,
1705 gen_int_mode (offset, GET_MODE (new_rtx)),
1706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1707 seq = get_insns ();
1708 end_sequence ();
1709 emit_insn_before (seq, insn);
1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1712 GET_MODE (new_rtx), SUBREG_BYTE (x));
1713 gcc_assert (x);
1714 break;
1716 default:
1717 continue;
1720 /* At this point, X contains the new value for the operand.
1721 Validate the new value vs the insn predicate. Note that
1722 asm insns will have insn_code -1 here. */
1723 if (!safe_insn_predicate (insn_code, i, x))
1725 start_sequence ();
1726 if (REG_P (x))
1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1729 x = copy_to_reg (x);
1731 else
1732 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1733 seq = get_insns ();
1734 end_sequence ();
1735 if (seq)
1736 emit_insn_before (seq, insn);
1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1740 any_change = true;
1743 if (any_change)
1745 /* Propagate operand changes into the duplicates. */
1746 for (i = 0; i < recog_data.n_dups; ++i)
1747 *recog_data.dup_loc[i]
1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1750 /* Force re-recognition of the instruction for validation. */
1751 INSN_CODE (insn) = -1;
1754 if (asm_noperands (PATTERN (insn)) >= 0)
1756 if (!check_asm_operands (PATTERN (insn)))
1758 error_for_asm (insn, "impossible constraint in %<asm%>");
1759 /* For asm goto, instead of fixing up all the edges
1760 just clear the template and clear input operands
1761 (asm goto doesn't have any output operands). */
1762 if (JUMP_P (insn))
1764 rtx asm_op = extract_asm_operands (PATTERN (insn));
1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1769 else
1770 delete_insn (insn);
1773 else
1775 if (recog_memoized (insn) < 0)
1776 fatal_insn_not_found (insn);
1780 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1781 do any instantiation required. */
1783 void
1784 instantiate_decl_rtl (rtx x)
1786 rtx addr;
1788 if (x == 0)
1789 return;
1791 /* If this is a CONCAT, recurse for the pieces. */
1792 if (GET_CODE (x) == CONCAT)
1794 instantiate_decl_rtl (XEXP (x, 0));
1795 instantiate_decl_rtl (XEXP (x, 1));
1796 return;
1799 /* If this is not a MEM, no need to do anything. Similarly if the
1800 address is a constant or a register that is not a virtual register. */
1801 if (!MEM_P (x))
1802 return;
1804 addr = XEXP (x, 0);
1805 if (CONSTANT_P (addr)
1806 || (REG_P (addr)
1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1809 return;
1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1814 /* Helper for instantiate_decls called via walk_tree: Process all decls
1815 in the given DECL_VALUE_EXPR. */
1817 static tree
1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1820 tree t = *tp;
1821 if (! EXPR_P (t))
1823 *walk_subtrees = 0;
1824 if (DECL_P (t))
1826 if (DECL_RTL_SET_P (t))
1827 instantiate_decl_rtl (DECL_RTL (t));
1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1829 && DECL_INCOMING_RTL (t))
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1831 if ((TREE_CODE (t) == VAR_DECL
1832 || TREE_CODE (t) == RESULT_DECL)
1833 && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 return NULL;
1843 /* Subroutine of instantiate_decls: Process all decls in the given
1844 BLOCK node and all its subblocks. */
1846 static void
1847 instantiate_decls_1 (tree let)
1849 tree t;
1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1853 if (DECL_RTL_SET_P (t))
1854 instantiate_decl_rtl (DECL_RTL (t));
1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1857 tree v = DECL_VALUE_EXPR (t);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 /* Process all subblocks. */
1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1864 instantiate_decls_1 (t);
1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1868 all virtual registers in their DECL_RTL's. */
1870 static void
1871 instantiate_decls (tree fndecl)
1873 tree decl;
1874 unsigned ix;
1876 /* Process all parameters of the function. */
1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1881 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 tree v = DECL_VALUE_EXPR (decl);
1884 walk_tree (&v, instantiate_expr, NULL, NULL);
1888 if ((decl = DECL_RESULT (fndecl))
1889 && TREE_CODE (decl) == RESULT_DECL)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 if (DECL_HAS_VALUE_EXPR_P (decl))
1895 tree v = DECL_VALUE_EXPR (decl);
1896 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 /* Process the saved static chain if it exists. */
1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1905 /* Now process all variables defined in the function or its subblocks. */
1906 instantiate_decls_1 (DECL_INITIAL (fndecl));
1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1909 if (DECL_RTL_SET_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 vec_free (cfun->local_decls);
1914 /* Pass through the INSNS of function FNDECL and convert virtual register
1915 references to hard register references. */
1917 static unsigned int
1918 instantiate_virtual_regs (void)
1920 rtx_insn *insn;
1922 /* Compute the offsets to use for this function. */
1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1924 var_offset = STARTING_FRAME_OFFSET;
1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1926 out_arg_offset = STACK_POINTER_OFFSET;
1927 #ifdef FRAME_POINTER_CFA_OFFSET
1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1929 #else
1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1931 #endif
1933 /* Initialize recognition, indicating that volatile is OK. */
1934 init_recog ();
1936 /* Scan through all the insns, instantiating every virtual register still
1937 present. */
1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1939 if (INSN_P (insn))
1941 /* These patterns in the instruction stream can never be recognized.
1942 Fortunately, they shouldn't contain virtual registers either. */
1943 if (GET_CODE (PATTERN (insn)) == USE
1944 || GET_CODE (PATTERN (insn)) == CLOBBER
1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1946 continue;
1947 else if (DEBUG_INSN_P (insn))
1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1949 else
1950 instantiate_virtual_regs_in_insn (insn);
1952 if (insn->deleted ())
1953 continue;
1955 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1958 if (CALL_P (insn))
1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1963 instantiate_decls (current_function_decl);
1965 targetm.instantiate_decls ();
1967 /* Indicate that, from now on, assign_stack_local should use
1968 frame_pointer_rtx. */
1969 virtuals_instantiated = 1;
1971 return 0;
1974 namespace {
1976 const pass_data pass_data_instantiate_virtual_regs =
1978 RTL_PASS, /* type */
1979 "vregs", /* name */
1980 OPTGROUP_NONE, /* optinfo_flags */
1981 TV_NONE, /* tv_id */
1982 0, /* properties_required */
1983 0, /* properties_provided */
1984 0, /* properties_destroyed */
1985 0, /* todo_flags_start */
1986 0, /* todo_flags_finish */
1989 class pass_instantiate_virtual_regs : public rtl_opt_pass
1991 public:
1992 pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1996 /* opt_pass methods: */
1997 virtual unsigned int execute (function *)
1999 return instantiate_virtual_regs ();
2002 }; // class pass_instantiate_virtual_regs
2004 } // anon namespace
2006 rtl_opt_pass *
2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 return new pass_instantiate_virtual_regs (ctxt);
2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2014 This means a type for which function calls must pass an address to the
2015 function or get an address back from the function.
2016 EXP may be a type node or an expression (whose type is tested). */
2019 aggregate_value_p (const_tree exp, const_tree fntype)
2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2022 int i, regno, nregs;
2023 rtx reg;
2025 if (fntype)
2026 switch (TREE_CODE (fntype))
2028 case CALL_EXPR:
2030 tree fndecl = get_callee_fndecl (fntype);
2031 if (fndecl)
2032 fntype = TREE_TYPE (fndecl);
2033 else if (CALL_EXPR_FN (fntype))
2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2035 else
2036 /* For internal functions, assume nothing needs to be
2037 returned in memory. */
2038 return 0;
2040 break;
2041 case FUNCTION_DECL:
2042 fntype = TREE_TYPE (fntype);
2043 break;
2044 case FUNCTION_TYPE:
2045 case METHOD_TYPE:
2046 break;
2047 case IDENTIFIER_NODE:
2048 fntype = NULL_TREE;
2049 break;
2050 default:
2051 /* We don't expect other tree types here. */
2052 gcc_unreachable ();
2055 if (VOID_TYPE_P (type))
2056 return 0;
2058 /* If a record should be passed the same as its first (and only) member
2059 don't pass it as an aggregate. */
2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2061 return aggregate_value_p (first_field (type), fntype);
2063 /* If the front end has decided that this needs to be passed by
2064 reference, do so. */
2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2066 && DECL_BY_REFERENCE (exp))
2067 return 1;
2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2070 if (fntype && TREE_ADDRESSABLE (fntype))
2071 return 1;
2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2074 and thus can't be returned in registers. */
2075 if (TREE_ADDRESSABLE (type))
2076 return 1;
2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2079 return 1;
2081 if (targetm.calls.return_in_memory (type, fntype))
2082 return 1;
2084 /* Make sure we have suitable call-clobbered regs to return
2085 the value in; if not, we must return it in memory. */
2086 reg = hard_function_value (type, 0, fntype, 0);
2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2089 it is OK. */
2090 if (!REG_P (reg))
2091 return 0;
2093 regno = REGNO (reg);
2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2095 for (i = 0; i < nregs; i++)
2096 if (! call_used_regs[regno + i])
2097 return 1;
2099 return 0;
2102 /* Return true if we should assign DECL a pseudo register; false if it
2103 should live on the local stack. */
2105 bool
2106 use_register_for_decl (const_tree decl)
2108 if (TREE_CODE (decl) == SSA_NAME)
2110 /* We often try to use the SSA_NAME, instead of its underlying
2111 decl, to get type information and guide decisions, to avoid
2112 differences of behavior between anonymous and named
2113 variables, but in this one case we have to go for the actual
2114 variable if there is one. The main reason is that, at least
2115 at -O0, we want to place user variables on the stack, but we
2116 don't mind using pseudos for anonymous or ignored temps.
2117 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2118 should go in pseudos, whereas their corresponding variables
2119 might have to go on the stack. So, disregarding the decl
2120 here would negatively impact debug info at -O0, enable
2121 coalescing between SSA_NAMEs that ought to get different
2122 stack/pseudo assignments, and get the incoming argument
2123 processing thoroughly confused by PARM_DECLs expected to live
2124 in stack slots but assigned to pseudos. */
2125 if (!SSA_NAME_VAR (decl))
2126 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2127 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2129 decl = SSA_NAME_VAR (decl);
2132 /* Honor volatile. */
2133 if (TREE_SIDE_EFFECTS (decl))
2134 return false;
2136 /* Honor addressability. */
2137 if (TREE_ADDRESSABLE (decl))
2138 return false;
2140 /* RESULT_DECLs are a bit special in that they're assigned without
2141 regard to use_register_for_decl, but we generally only store in
2142 them. If we coalesce their SSA NAMEs, we'd better return a
2143 result that matches the assignment in expand_function_start. */
2144 if (TREE_CODE (decl) == RESULT_DECL)
2146 /* If it's not an aggregate, we're going to use a REG or a
2147 PARALLEL containing a REG. */
2148 if (!aggregate_value_p (decl, current_function_decl))
2149 return true;
2151 /* If expand_function_start determines the return value, we'll
2152 use MEM if it's not by reference. */
2153 if (cfun->returns_pcc_struct
2154 || (targetm.calls.struct_value_rtx
2155 (TREE_TYPE (current_function_decl), 1)))
2156 return DECL_BY_REFERENCE (decl);
2158 /* Otherwise, we're taking an extra all.function_result_decl
2159 argument. It's set up in assign_parms_augmented_arg_list,
2160 under the (negated) conditions above, and then it's used to
2161 set up the RESULT_DECL rtl in assign_params, after looping
2162 over all parameters. Now, if the RESULT_DECL is not by
2163 reference, we'll use a MEM either way. */
2164 if (!DECL_BY_REFERENCE (decl))
2165 return false;
2167 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2168 the function_result_decl's assignment. Since it's a pointer,
2169 we can short-circuit a number of the tests below, and we must
2170 duplicat e them because we don't have the
2171 function_result_decl to test. */
2172 if (!targetm.calls.allocate_stack_slots_for_args ())
2173 return true;
2174 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2175 if (optimize)
2176 return true;
2177 /* We don't set DECL_REGISTER for the function_result_decl. */
2178 return false;
2181 /* Decl is implicitly addressible by bound stores and loads
2182 if it is an aggregate holding bounds. */
2183 if (chkp_function_instrumented_p (current_function_decl)
2184 && TREE_TYPE (decl)
2185 && !BOUNDED_P (decl)
2186 && chkp_type_has_pointer (TREE_TYPE (decl)))
2187 return false;
2189 /* Only register-like things go in registers. */
2190 if (DECL_MODE (decl) == BLKmode)
2191 return false;
2193 /* If -ffloat-store specified, don't put explicit float variables
2194 into registers. */
2195 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2196 propagates values across these stores, and it probably shouldn't. */
2197 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2198 return false;
2200 if (!targetm.calls.allocate_stack_slots_for_args ())
2201 return true;
2203 /* If we're not interested in tracking debugging information for
2204 this decl, then we can certainly put it in a register. */
2205 if (DECL_IGNORED_P (decl))
2206 return true;
2208 if (optimize)
2209 return true;
2211 if (!DECL_REGISTER (decl))
2212 return false;
2214 switch (TREE_CODE (TREE_TYPE (decl)))
2216 case RECORD_TYPE:
2217 case UNION_TYPE:
2218 case QUAL_UNION_TYPE:
2219 /* When not optimizing, disregard register keyword for variables with
2220 types containing methods, otherwise the methods won't be callable
2221 from the debugger. */
2222 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2223 return false;
2224 break;
2225 default:
2226 break;
2229 return true;
2232 /* Structures to communicate between the subroutines of assign_parms.
2233 The first holds data persistent across all parameters, the second
2234 is cleared out for each parameter. */
2236 struct assign_parm_data_all
2238 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2239 should become a job of the target or otherwise encapsulated. */
2240 CUMULATIVE_ARGS args_so_far_v;
2241 cumulative_args_t args_so_far;
2242 struct args_size stack_args_size;
2243 tree function_result_decl;
2244 tree orig_fnargs;
2245 rtx_insn *first_conversion_insn;
2246 rtx_insn *last_conversion_insn;
2247 HOST_WIDE_INT pretend_args_size;
2248 HOST_WIDE_INT extra_pretend_bytes;
2249 int reg_parm_stack_space;
2252 struct assign_parm_data_one
2254 tree nominal_type;
2255 tree passed_type;
2256 rtx entry_parm;
2257 rtx stack_parm;
2258 machine_mode nominal_mode;
2259 machine_mode passed_mode;
2260 machine_mode promoted_mode;
2261 struct locate_and_pad_arg_data locate;
2262 int partial;
2263 BOOL_BITFIELD named_arg : 1;
2264 BOOL_BITFIELD passed_pointer : 1;
2265 BOOL_BITFIELD on_stack : 1;
2266 BOOL_BITFIELD loaded_in_reg : 1;
2269 struct bounds_parm_data
2271 assign_parm_data_one parm_data;
2272 tree bounds_parm;
2273 tree ptr_parm;
2274 rtx ptr_entry;
2275 int bound_no;
2278 /* A subroutine of assign_parms. Initialize ALL. */
2280 static void
2281 assign_parms_initialize_all (struct assign_parm_data_all *all)
2283 tree fntype ATTRIBUTE_UNUSED;
2285 memset (all, 0, sizeof (*all));
2287 fntype = TREE_TYPE (current_function_decl);
2289 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2290 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2291 #else
2292 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2293 current_function_decl, -1);
2294 #endif
2295 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2297 #ifdef INCOMING_REG_PARM_STACK_SPACE
2298 all->reg_parm_stack_space
2299 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2300 #endif
2303 /* If ARGS contains entries with complex types, split the entry into two
2304 entries of the component type. Return a new list of substitutions are
2305 needed, else the old list. */
2307 static void
2308 split_complex_args (vec<tree> *args)
2310 unsigned i;
2311 tree p;
2313 FOR_EACH_VEC_ELT (*args, i, p)
2315 tree type = TREE_TYPE (p);
2316 if (TREE_CODE (type) == COMPLEX_TYPE
2317 && targetm.calls.split_complex_arg (type))
2319 tree decl;
2320 tree subtype = TREE_TYPE (type);
2321 bool addressable = TREE_ADDRESSABLE (p);
2323 /* Rewrite the PARM_DECL's type with its component. */
2324 p = copy_node (p);
2325 TREE_TYPE (p) = subtype;
2326 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2327 DECL_MODE (p) = VOIDmode;
2328 DECL_SIZE (p) = NULL;
2329 DECL_SIZE_UNIT (p) = NULL;
2330 /* If this arg must go in memory, put it in a pseudo here.
2331 We can't allow it to go in memory as per normal parms,
2332 because the usual place might not have the imag part
2333 adjacent to the real part. */
2334 DECL_ARTIFICIAL (p) = addressable;
2335 DECL_IGNORED_P (p) = addressable;
2336 TREE_ADDRESSABLE (p) = 0;
2337 layout_decl (p, 0);
2338 (*args)[i] = p;
2340 /* Build a second synthetic decl. */
2341 decl = build_decl (EXPR_LOCATION (p),
2342 PARM_DECL, NULL_TREE, subtype);
2343 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2344 DECL_ARTIFICIAL (decl) = addressable;
2345 DECL_IGNORED_P (decl) = addressable;
2346 layout_decl (decl, 0);
2347 args->safe_insert (++i, decl);
2352 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2353 the hidden struct return argument, and (abi willing) complex args.
2354 Return the new parameter list. */
2356 static vec<tree>
2357 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2359 tree fndecl = current_function_decl;
2360 tree fntype = TREE_TYPE (fndecl);
2361 vec<tree> fnargs = vNULL;
2362 tree arg;
2364 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2365 fnargs.safe_push (arg);
2367 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2369 /* If struct value address is treated as the first argument, make it so. */
2370 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2371 && ! cfun->returns_pcc_struct
2372 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2374 tree type = build_pointer_type (TREE_TYPE (fntype));
2375 tree decl;
2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2378 PARM_DECL, get_identifier (".result_ptr"), type);
2379 DECL_ARG_TYPE (decl) = type;
2380 DECL_ARTIFICIAL (decl) = 1;
2381 DECL_NAMELESS (decl) = 1;
2382 TREE_CONSTANT (decl) = 1;
2383 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2384 changes, the end of the RESULT_DECL handling block in
2385 use_register_for_decl must be adjusted to match. */
2387 DECL_CHAIN (decl) = all->orig_fnargs;
2388 all->orig_fnargs = decl;
2389 fnargs.safe_insert (0, decl);
2391 all->function_result_decl = decl;
2393 /* If function is instrumented then bounds of the
2394 passed structure address is the second argument. */
2395 if (chkp_function_instrumented_p (fndecl))
2397 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2398 PARM_DECL, get_identifier (".result_bnd"),
2399 pointer_bounds_type_node);
2400 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2405 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2406 DECL_CHAIN (all->orig_fnargs) = decl;
2407 fnargs.safe_insert (1, decl);
2411 /* If the target wants to split complex arguments into scalars, do so. */
2412 if (targetm.calls.split_complex_arg)
2413 split_complex_args (&fnargs);
2415 return fnargs;
2418 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2419 data for the parameter. Incorporate ABI specifics such as pass-by-
2420 reference and type promotion. */
2422 static void
2423 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2424 struct assign_parm_data_one *data)
2426 tree nominal_type, passed_type;
2427 machine_mode nominal_mode, passed_mode, promoted_mode;
2428 int unsignedp;
2430 memset (data, 0, sizeof (*data));
2432 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2433 if (!cfun->stdarg)
2434 data->named_arg = 1; /* No variadic parms. */
2435 else if (DECL_CHAIN (parm))
2436 data->named_arg = 1; /* Not the last non-variadic parm. */
2437 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2438 data->named_arg = 1; /* Only variadic ones are unnamed. */
2439 else
2440 data->named_arg = 0; /* Treat as variadic. */
2442 nominal_type = TREE_TYPE (parm);
2443 passed_type = DECL_ARG_TYPE (parm);
2445 /* Look out for errors propagating this far. Also, if the parameter's
2446 type is void then its value doesn't matter. */
2447 if (TREE_TYPE (parm) == error_mark_node
2448 /* This can happen after weird syntax errors
2449 or if an enum type is defined among the parms. */
2450 || TREE_CODE (parm) != PARM_DECL
2451 || passed_type == NULL
2452 || VOID_TYPE_P (nominal_type))
2454 nominal_type = passed_type = void_type_node;
2455 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2456 goto egress;
2459 /* Find mode of arg as it is passed, and mode of arg as it should be
2460 during execution of this function. */
2461 passed_mode = TYPE_MODE (passed_type);
2462 nominal_mode = TYPE_MODE (nominal_type);
2464 /* If the parm is to be passed as a transparent union or record, use the
2465 type of the first field for the tests below. We have already verified
2466 that the modes are the same. */
2467 if ((TREE_CODE (passed_type) == UNION_TYPE
2468 || TREE_CODE (passed_type) == RECORD_TYPE)
2469 && TYPE_TRANSPARENT_AGGR (passed_type))
2470 passed_type = TREE_TYPE (first_field (passed_type));
2472 /* See if this arg was passed by invisible reference. */
2473 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2474 passed_type, data->named_arg))
2476 passed_type = nominal_type = build_pointer_type (passed_type);
2477 data->passed_pointer = true;
2478 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2481 /* Find mode as it is passed by the ABI. */
2482 unsignedp = TYPE_UNSIGNED (passed_type);
2483 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2484 TREE_TYPE (current_function_decl), 0);
2486 egress:
2487 data->nominal_type = nominal_type;
2488 data->passed_type = passed_type;
2489 data->nominal_mode = nominal_mode;
2490 data->passed_mode = passed_mode;
2491 data->promoted_mode = promoted_mode;
2494 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2496 static void
2497 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2498 struct assign_parm_data_one *data, bool no_rtl)
2500 int varargs_pretend_bytes = 0;
2502 targetm.calls.setup_incoming_varargs (all->args_so_far,
2503 data->promoted_mode,
2504 data->passed_type,
2505 &varargs_pretend_bytes, no_rtl);
2507 /* If the back-end has requested extra stack space, record how much is
2508 needed. Do not change pretend_args_size otherwise since it may be
2509 nonzero from an earlier partial argument. */
2510 if (varargs_pretend_bytes > 0)
2511 all->pretend_args_size = varargs_pretend_bytes;
2514 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2515 the incoming location of the current parameter. */
2517 static void
2518 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2519 struct assign_parm_data_one *data)
2521 HOST_WIDE_INT pretend_bytes = 0;
2522 rtx entry_parm;
2523 bool in_regs;
2525 if (data->promoted_mode == VOIDmode)
2527 data->entry_parm = data->stack_parm = const0_rtx;
2528 return;
2531 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2532 data->promoted_mode,
2533 data->passed_type,
2534 data->named_arg);
2536 if (entry_parm == 0)
2537 data->promoted_mode = data->passed_mode;
2539 /* Determine parm's home in the stack, in case it arrives in the stack
2540 or we should pretend it did. Compute the stack position and rtx where
2541 the argument arrives and its size.
2543 There is one complexity here: If this was a parameter that would
2544 have been passed in registers, but wasn't only because it is
2545 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2546 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2547 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2548 as it was the previous time. */
2549 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2550 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2551 in_regs = true;
2552 #endif
2553 if (!in_regs && !data->named_arg)
2555 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2557 rtx tem;
2558 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2559 data->promoted_mode,
2560 data->passed_type, true);
2561 in_regs = tem != NULL;
2565 /* If this parameter was passed both in registers and in the stack, use
2566 the copy on the stack. */
2567 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2568 data->passed_type))
2569 entry_parm = 0;
2571 if (entry_parm)
2573 int partial;
2575 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2576 data->promoted_mode,
2577 data->passed_type,
2578 data->named_arg);
2579 data->partial = partial;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2613 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2628 data->entry_parm = entry_parm;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2634 static bool
2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2638 /* Bounds are never passed on the stack to keep compatibility
2639 with not instrumented code. */
2640 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2641 return false;
2642 /* Trivially true if we've no incoming register. */
2643 else if (data->entry_parm == NULL)
2645 /* Also true if we're partially in registers and partially not,
2646 since we've arranged to drop the entire argument on the stack. */
2647 else if (data->partial != 0)
2649 /* Also true if the target says that it's passed in both registers
2650 and on the stack. */
2651 else if (GET_CODE (data->entry_parm) == PARALLEL
2652 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2654 /* Also true if the target says that there's stack allocated for
2655 all register parameters. */
2656 else if (all->reg_parm_stack_space > 0)
2658 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2659 else
2660 return false;
2662 all->stack_args_size.constant += data->locate.size.constant;
2663 if (data->locate.size.var)
2664 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2666 return true;
2669 /* A subroutine of assign_parms. Given that this parameter is allocated
2670 stack space by the ABI, find it. */
2672 static void
2673 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2675 rtx offset_rtx, stack_parm;
2676 unsigned int align, boundary;
2678 /* If we're passing this arg using a reg, make its stack home the
2679 aligned stack slot. */
2680 if (data->entry_parm)
2681 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2682 else
2683 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2685 stack_parm = crtl->args.internal_arg_pointer;
2686 if (offset_rtx != const0_rtx)
2687 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2688 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2690 if (!data->passed_pointer)
2692 set_mem_attributes (stack_parm, parm, 1);
2693 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2694 while promoted mode's size is needed. */
2695 if (data->promoted_mode != BLKmode
2696 && data->promoted_mode != DECL_MODE (parm))
2698 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2699 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2701 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2702 data->promoted_mode);
2703 if (offset)
2704 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2709 boundary = data->locate.boundary;
2710 align = BITS_PER_UNIT;
2712 /* If we're padding upward, we know that the alignment of the slot
2713 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2714 intentionally forcing upward padding. Otherwise we have to come
2715 up with a guess at the alignment based on OFFSET_RTX. */
2716 if (data->locate.where_pad != downward || data->entry_parm)
2717 align = boundary;
2718 else if (CONST_INT_P (offset_rtx))
2720 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2721 align = align & -align;
2723 set_mem_align (stack_parm, align);
2725 if (data->entry_parm)
2726 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2728 data->stack_parm = stack_parm;
2731 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2732 always valid and contiguous. */
2734 static void
2735 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2737 rtx entry_parm = data->entry_parm;
2738 rtx stack_parm = data->stack_parm;
2740 /* If this parm was passed part in regs and part in memory, pretend it
2741 arrived entirely in memory by pushing the register-part onto the stack.
2742 In the special case of a DImode or DFmode that is split, we could put
2743 it together in a pseudoreg directly, but for now that's not worth
2744 bothering with. */
2745 if (data->partial != 0)
2747 /* Handle calls that pass values in multiple non-contiguous
2748 locations. The Irix 6 ABI has examples of this. */
2749 if (GET_CODE (entry_parm) == PARALLEL)
2750 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2751 data->passed_type,
2752 int_size_in_bytes (data->passed_type));
2753 else
2755 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2756 move_block_from_reg (REGNO (entry_parm),
2757 validize_mem (copy_rtx (stack_parm)),
2758 data->partial / UNITS_PER_WORD);
2761 entry_parm = stack_parm;
2764 /* If we didn't decide this parm came in a register, by default it came
2765 on the stack. */
2766 else if (entry_parm == NULL)
2767 entry_parm = stack_parm;
2769 /* When an argument is passed in multiple locations, we can't make use
2770 of this information, but we can save some copying if the whole argument
2771 is passed in a single register. */
2772 else if (GET_CODE (entry_parm) == PARALLEL
2773 && data->nominal_mode != BLKmode
2774 && data->passed_mode != BLKmode)
2776 size_t i, len = XVECLEN (entry_parm, 0);
2778 for (i = 0; i < len; i++)
2779 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2780 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2781 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2782 == data->passed_mode)
2783 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2785 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2786 break;
2790 data->entry_parm = entry_parm;
2793 /* A subroutine of assign_parms. Reconstitute any values which were
2794 passed in multiple registers and would fit in a single register. */
2796 static void
2797 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2799 rtx entry_parm = data->entry_parm;
2801 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2802 This can be done with register operations rather than on the
2803 stack, even if we will store the reconstituted parameter on the
2804 stack later. */
2805 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2807 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2808 emit_group_store (parmreg, entry_parm, data->passed_type,
2809 GET_MODE_SIZE (GET_MODE (entry_parm)));
2810 entry_parm = parmreg;
2813 data->entry_parm = entry_parm;
2816 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2817 always valid and properly aligned. */
2819 static void
2820 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2822 rtx stack_parm = data->stack_parm;
2824 /* If we can't trust the parm stack slot to be aligned enough for its
2825 ultimate type, don't use that slot after entry. We'll make another
2826 stack slot, if we need one. */
2827 if (stack_parm
2828 && ((STRICT_ALIGNMENT
2829 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2830 || (data->nominal_type
2831 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2832 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2833 stack_parm = NULL;
2835 /* If parm was passed in memory, and we need to convert it on entry,
2836 don't store it back in that same slot. */
2837 else if (data->entry_parm == stack_parm
2838 && data->nominal_mode != BLKmode
2839 && data->nominal_mode != data->passed_mode)
2840 stack_parm = NULL;
2842 /* If stack protection is in effect for this function, don't leave any
2843 pointers in their passed stack slots. */
2844 else if (crtl->stack_protect_guard
2845 && (flag_stack_protect == 2
2846 || data->passed_pointer
2847 || POINTER_TYPE_P (data->nominal_type)))
2848 stack_parm = NULL;
2850 data->stack_parm = stack_parm;
2853 /* A subroutine of assign_parms. Return true if the current parameter
2854 should be stored as a BLKmode in the current frame. */
2856 static bool
2857 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2859 if (data->nominal_mode == BLKmode)
2860 return true;
2861 if (GET_MODE (data->entry_parm) == BLKmode)
2862 return true;
2864 #ifdef BLOCK_REG_PADDING
2865 /* Only assign_parm_setup_block knows how to deal with register arguments
2866 that are padded at the least significant end. */
2867 if (REG_P (data->entry_parm)
2868 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2869 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2870 == (BYTES_BIG_ENDIAN ? upward : downward)))
2871 return true;
2872 #endif
2874 return false;
2877 /* A subroutine of assign_parms. Arrange for the parameter to be
2878 present and valid in DATA->STACK_RTL. */
2880 static void
2881 assign_parm_setup_block (struct assign_parm_data_all *all,
2882 tree parm, struct assign_parm_data_one *data)
2884 rtx entry_parm = data->entry_parm;
2885 rtx stack_parm = data->stack_parm;
2886 rtx target_reg = NULL_RTX;
2887 bool in_conversion_seq = false;
2888 HOST_WIDE_INT size;
2889 HOST_WIDE_INT size_stored;
2891 if (GET_CODE (entry_parm) == PARALLEL)
2892 entry_parm = emit_group_move_into_temps (entry_parm);
2894 /* If we want the parameter in a pseudo, don't use a stack slot. */
2895 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2897 tree def = ssa_default_def (cfun, parm);
2898 gcc_assert (def);
2899 machine_mode mode = promote_ssa_mode (def, NULL);
2900 rtx reg = gen_reg_rtx (mode);
2901 if (GET_CODE (reg) != CONCAT)
2902 stack_parm = reg;
2903 else
2905 target_reg = reg;
2906 /* Avoid allocating a stack slot, if there isn't one
2907 preallocated by the ABI. It might seem like we should
2908 always prefer a pseudo, but converting between
2909 floating-point and integer modes goes through the stack
2910 on various machines, so it's better to use the reserved
2911 stack slot than to risk wasting it and allocating more
2912 for the conversion. */
2913 if (stack_parm == NULL_RTX)
2915 int save = generating_concat_p;
2916 generating_concat_p = 0;
2917 stack_parm = gen_reg_rtx (mode);
2918 generating_concat_p = save;
2921 data->stack_parm = NULL;
2924 size = int_size_in_bytes (data->passed_type);
2925 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2926 if (stack_parm == 0)
2928 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2929 stack_parm = assign_stack_local (BLKmode, size_stored,
2930 DECL_ALIGN (parm));
2931 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2932 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2933 set_mem_attributes (stack_parm, parm, 1);
2936 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2937 calls that pass values in multiple non-contiguous locations. */
2938 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2940 rtx mem;
2942 /* Note that we will be storing an integral number of words.
2943 So we have to be careful to ensure that we allocate an
2944 integral number of words. We do this above when we call
2945 assign_stack_local if space was not allocated in the argument
2946 list. If it was, this will not work if PARM_BOUNDARY is not
2947 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2948 if it becomes a problem. Exception is when BLKmode arrives
2949 with arguments not conforming to word_mode. */
2951 if (data->stack_parm == 0)
2953 else if (GET_CODE (entry_parm) == PARALLEL)
2955 else
2956 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2958 mem = validize_mem (copy_rtx (stack_parm));
2960 /* Handle values in multiple non-contiguous locations. */
2961 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2962 emit_group_store (mem, entry_parm, data->passed_type, size);
2963 else if (GET_CODE (entry_parm) == PARALLEL)
2965 push_to_sequence2 (all->first_conversion_insn,
2966 all->last_conversion_insn);
2967 emit_group_store (mem, entry_parm, data->passed_type, size);
2968 all->first_conversion_insn = get_insns ();
2969 all->last_conversion_insn = get_last_insn ();
2970 end_sequence ();
2971 in_conversion_seq = true;
2974 else if (size == 0)
2977 /* If SIZE is that of a mode no bigger than a word, just use
2978 that mode's store operation. */
2979 else if (size <= UNITS_PER_WORD)
2981 machine_mode mode
2982 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2984 if (mode != BLKmode
2985 #ifdef BLOCK_REG_PADDING
2986 && (size == UNITS_PER_WORD
2987 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2988 != (BYTES_BIG_ENDIAN ? upward : downward)))
2989 #endif
2992 rtx reg;
2994 /* We are really truncating a word_mode value containing
2995 SIZE bytes into a value of mode MODE. If such an
2996 operation requires no actual instructions, we can refer
2997 to the value directly in mode MODE, otherwise we must
2998 start with the register in word_mode and explicitly
2999 convert it. */
3000 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
3001 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3002 else
3004 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3005 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3007 emit_move_insn (change_address (mem, mode, 0), reg);
3010 #ifdef BLOCK_REG_PADDING
3011 /* Storing the register in memory as a full word, as
3012 move_block_from_reg below would do, and then using the
3013 MEM in a smaller mode, has the effect of shifting right
3014 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3015 shifting must be explicit. */
3016 else if (!MEM_P (mem))
3018 rtx x;
3020 /* If the assert below fails, we should have taken the
3021 mode != BLKmode path above, unless we have downward
3022 padding of smaller-than-word arguments on a machine
3023 with little-endian bytes, which would likely require
3024 additional changes to work correctly. */
3025 gcc_checking_assert (BYTES_BIG_ENDIAN
3026 && (BLOCK_REG_PADDING (mode,
3027 data->passed_type, 1)
3028 == upward));
3030 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3032 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3033 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3034 NULL_RTX, 1);
3035 x = force_reg (word_mode, x);
3036 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3038 emit_move_insn (mem, x);
3040 #endif
3042 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3043 machine must be aligned to the left before storing
3044 to memory. Note that the previous test doesn't
3045 handle all cases (e.g. SIZE == 3). */
3046 else if (size != UNITS_PER_WORD
3047 #ifdef BLOCK_REG_PADDING
3048 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3049 == downward)
3050 #else
3051 && BYTES_BIG_ENDIAN
3052 #endif
3055 rtx tem, x;
3056 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3057 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3059 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3060 tem = change_address (mem, word_mode, 0);
3061 emit_move_insn (tem, x);
3063 else
3064 move_block_from_reg (REGNO (entry_parm), mem,
3065 size_stored / UNITS_PER_WORD);
3067 else if (!MEM_P (mem))
3069 gcc_checking_assert (size > UNITS_PER_WORD);
3070 #ifdef BLOCK_REG_PADDING
3071 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3072 data->passed_type, 0)
3073 == upward);
3074 #endif
3075 emit_move_insn (mem, entry_parm);
3077 else
3078 move_block_from_reg (REGNO (entry_parm), mem,
3079 size_stored / UNITS_PER_WORD);
3081 else if (data->stack_parm == 0)
3083 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3084 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3085 BLOCK_OP_NORMAL);
3086 all->first_conversion_insn = get_insns ();
3087 all->last_conversion_insn = get_last_insn ();
3088 end_sequence ();
3089 in_conversion_seq = true;
3092 if (target_reg)
3094 if (!in_conversion_seq)
3095 emit_move_insn (target_reg, stack_parm);
3096 else
3098 push_to_sequence2 (all->first_conversion_insn,
3099 all->last_conversion_insn);
3100 emit_move_insn (target_reg, stack_parm);
3101 all->first_conversion_insn = get_insns ();
3102 all->last_conversion_insn = get_last_insn ();
3103 end_sequence ();
3105 stack_parm = target_reg;
3108 data->stack_parm = stack_parm;
3109 set_parm_rtl (parm, stack_parm);
3112 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3113 parameter. Get it there. Perform all ABI specified conversions. */
3115 static void
3116 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3117 struct assign_parm_data_one *data)
3119 rtx parmreg, validated_mem;
3120 rtx equiv_stack_parm;
3121 machine_mode promoted_nominal_mode;
3122 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3123 bool did_conversion = false;
3124 bool need_conversion, moved;
3125 rtx rtl;
3127 /* Store the parm in a pseudoregister during the function, but we may
3128 need to do it in a wider mode. Using 2 here makes the result
3129 consistent with promote_decl_mode and thus expand_expr_real_1. */
3130 promoted_nominal_mode
3131 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3132 TREE_TYPE (current_function_decl), 2);
3134 parmreg = gen_reg_rtx (promoted_nominal_mode);
3135 if (!DECL_ARTIFICIAL (parm))
3136 mark_user_reg (parmreg);
3138 /* If this was an item that we received a pointer to,
3139 set rtl appropriately. */
3140 if (data->passed_pointer)
3142 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3143 set_mem_attributes (rtl, parm, 1);
3145 else
3146 rtl = parmreg;
3148 assign_parm_remove_parallels (data);
3150 /* Copy the value into the register, thus bridging between
3151 assign_parm_find_data_types and expand_expr_real_1. */
3153 equiv_stack_parm = data->stack_parm;
3154 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3156 need_conversion = (data->nominal_mode != data->passed_mode
3157 || promoted_nominal_mode != data->promoted_mode);
3158 moved = false;
3160 if (need_conversion
3161 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3162 && data->nominal_mode == data->passed_mode
3163 && data->nominal_mode == GET_MODE (data->entry_parm))
3165 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3166 mode, by the caller. We now have to convert it to
3167 NOMINAL_MODE, if different. However, PARMREG may be in
3168 a different mode than NOMINAL_MODE if it is being stored
3169 promoted.
3171 If ENTRY_PARM is a hard register, it might be in a register
3172 not valid for operating in its mode (e.g., an odd-numbered
3173 register for a DFmode). In that case, moves are the only
3174 thing valid, so we can't do a convert from there. This
3175 occurs when the calling sequence allow such misaligned
3176 usages.
3178 In addition, the conversion may involve a call, which could
3179 clobber parameters which haven't been copied to pseudo
3180 registers yet.
3182 First, we try to emit an insn which performs the necessary
3183 conversion. We verify that this insn does not clobber any
3184 hard registers. */
3186 enum insn_code icode;
3187 rtx op0, op1;
3189 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3190 unsignedp);
3192 op0 = parmreg;
3193 op1 = validated_mem;
3194 if (icode != CODE_FOR_nothing
3195 && insn_operand_matches (icode, 0, op0)
3196 && insn_operand_matches (icode, 1, op1))
3198 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3199 rtx_insn *insn, *insns;
3200 rtx t = op1;
3201 HARD_REG_SET hardregs;
3203 start_sequence ();
3204 /* If op1 is a hard register that is likely spilled, first
3205 force it into a pseudo, otherwise combiner might extend
3206 its lifetime too much. */
3207 if (GET_CODE (t) == SUBREG)
3208 t = SUBREG_REG (t);
3209 if (REG_P (t)
3210 && HARD_REGISTER_P (t)
3211 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3212 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3214 t = gen_reg_rtx (GET_MODE (op1));
3215 emit_move_insn (t, op1);
3217 else
3218 t = op1;
3219 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3220 data->passed_mode, unsignedp);
3221 emit_insn (pat);
3222 insns = get_insns ();
3224 moved = true;
3225 CLEAR_HARD_REG_SET (hardregs);
3226 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3228 if (INSN_P (insn))
3229 note_stores (PATTERN (insn), record_hard_reg_sets,
3230 &hardregs);
3231 if (!hard_reg_set_empty_p (hardregs))
3232 moved = false;
3235 end_sequence ();
3237 if (moved)
3239 emit_insn (insns);
3240 if (equiv_stack_parm != NULL_RTX)
3241 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3242 equiv_stack_parm);
3247 if (moved)
3248 /* Nothing to do. */
3250 else if (need_conversion)
3252 /* We did not have an insn to convert directly, or the sequence
3253 generated appeared unsafe. We must first copy the parm to a
3254 pseudo reg, and save the conversion until after all
3255 parameters have been moved. */
3257 int save_tree_used;
3258 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3260 emit_move_insn (tempreg, validated_mem);
3262 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3263 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3265 if (GET_CODE (tempreg) == SUBREG
3266 && GET_MODE (tempreg) == data->nominal_mode
3267 && REG_P (SUBREG_REG (tempreg))
3268 && data->nominal_mode == data->passed_mode
3269 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3270 && GET_MODE_SIZE (GET_MODE (tempreg))
3271 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3273 /* The argument is already sign/zero extended, so note it
3274 into the subreg. */
3275 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3276 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3279 /* TREE_USED gets set erroneously during expand_assignment. */
3280 save_tree_used = TREE_USED (parm);
3281 SET_DECL_RTL (parm, rtl);
3282 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3283 SET_DECL_RTL (parm, NULL_RTX);
3284 TREE_USED (parm) = save_tree_used;
3285 all->first_conversion_insn = get_insns ();
3286 all->last_conversion_insn = get_last_insn ();
3287 end_sequence ();
3289 did_conversion = true;
3291 else
3292 emit_move_insn (parmreg, validated_mem);
3294 /* If we were passed a pointer but the actual value can safely live
3295 in a register, retrieve it and use it directly. */
3296 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3298 /* We can't use nominal_mode, because it will have been set to
3299 Pmode above. We must use the actual mode of the parm. */
3300 if (use_register_for_decl (parm))
3302 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3303 mark_user_reg (parmreg);
3305 else
3307 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3308 TYPE_MODE (TREE_TYPE (parm)),
3309 TYPE_ALIGN (TREE_TYPE (parm)));
3310 parmreg
3311 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3312 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3313 align);
3314 set_mem_attributes (parmreg, parm, 1);
3317 if (GET_MODE (parmreg) != GET_MODE (rtl))
3319 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3320 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3322 push_to_sequence2 (all->first_conversion_insn,
3323 all->last_conversion_insn);
3324 emit_move_insn (tempreg, rtl);
3325 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3326 emit_move_insn (parmreg, tempreg);
3327 all->first_conversion_insn = get_insns ();
3328 all->last_conversion_insn = get_last_insn ();
3329 end_sequence ();
3331 did_conversion = true;
3333 else
3334 emit_move_insn (parmreg, rtl);
3336 rtl = parmreg;
3338 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3339 now the parm. */
3340 data->stack_parm = NULL;
3343 set_parm_rtl (parm, rtl);
3345 /* Mark the register as eliminable if we did no conversion and it was
3346 copied from memory at a fixed offset, and the arg pointer was not
3347 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3348 offset formed an invalid address, such memory-equivalences as we
3349 make here would screw up life analysis for it. */
3350 if (data->nominal_mode == data->passed_mode
3351 && !did_conversion
3352 && data->stack_parm != 0
3353 && MEM_P (data->stack_parm)
3354 && data->locate.offset.var == 0
3355 && reg_mentioned_p (virtual_incoming_args_rtx,
3356 XEXP (data->stack_parm, 0)))
3358 rtx_insn *linsn = get_last_insn ();
3359 rtx_insn *sinsn;
3360 rtx set;
3362 /* Mark complex types separately. */
3363 if (GET_CODE (parmreg) == CONCAT)
3365 machine_mode submode
3366 = GET_MODE_INNER (GET_MODE (parmreg));
3367 int regnor = REGNO (XEXP (parmreg, 0));
3368 int regnoi = REGNO (XEXP (parmreg, 1));
3369 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3370 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3371 GET_MODE_SIZE (submode));
3373 /* Scan backwards for the set of the real and
3374 imaginary parts. */
3375 for (sinsn = linsn; sinsn != 0;
3376 sinsn = prev_nonnote_insn (sinsn))
3378 set = single_set (sinsn);
3379 if (set == 0)
3380 continue;
3382 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3383 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3384 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3385 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3388 else
3389 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3392 /* For pointer data type, suggest pointer register. */
3393 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3394 mark_reg_pointer (parmreg,
3395 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3398 /* A subroutine of assign_parms. Allocate stack space to hold the current
3399 parameter. Get it there. Perform all ABI specified conversions. */
3401 static void
3402 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3403 struct assign_parm_data_one *data)
3405 /* Value must be stored in the stack slot STACK_PARM during function
3406 execution. */
3407 bool to_conversion = false;
3409 assign_parm_remove_parallels (data);
3411 if (data->promoted_mode != data->nominal_mode)
3413 /* Conversion is required. */
3414 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3416 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3418 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3419 to_conversion = true;
3421 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3422 TYPE_UNSIGNED (TREE_TYPE (parm)));
3424 if (data->stack_parm)
3426 int offset = subreg_lowpart_offset (data->nominal_mode,
3427 GET_MODE (data->stack_parm));
3428 /* ??? This may need a big-endian conversion on sparc64. */
3429 data->stack_parm
3430 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3431 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3432 set_mem_offset (data->stack_parm,
3433 MEM_OFFSET (data->stack_parm) + offset);
3437 if (data->entry_parm != data->stack_parm)
3439 rtx src, dest;
3441 if (data->stack_parm == 0)
3443 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3444 GET_MODE (data->entry_parm),
3445 TYPE_ALIGN (data->passed_type));
3446 data->stack_parm
3447 = assign_stack_local (GET_MODE (data->entry_parm),
3448 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3449 align);
3450 set_mem_attributes (data->stack_parm, parm, 1);
3453 dest = validize_mem (copy_rtx (data->stack_parm));
3454 src = validize_mem (copy_rtx (data->entry_parm));
3456 if (MEM_P (src))
3458 /* Use a block move to handle potentially misaligned entry_parm. */
3459 if (!to_conversion)
3460 push_to_sequence2 (all->first_conversion_insn,
3461 all->last_conversion_insn);
3462 to_conversion = true;
3464 emit_block_move (dest, src,
3465 GEN_INT (int_size_in_bytes (data->passed_type)),
3466 BLOCK_OP_NORMAL);
3468 else
3470 if (!REG_P (src))
3471 src = force_reg (GET_MODE (src), src);
3472 emit_move_insn (dest, src);
3476 if (to_conversion)
3478 all->first_conversion_insn = get_insns ();
3479 all->last_conversion_insn = get_last_insn ();
3480 end_sequence ();
3483 set_parm_rtl (parm, data->stack_parm);
3486 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3487 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3489 static void
3490 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3491 vec<tree> fnargs)
3493 tree parm;
3494 tree orig_fnargs = all->orig_fnargs;
3495 unsigned i = 0;
3497 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3499 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3500 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3502 rtx tmp, real, imag;
3503 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3505 real = DECL_RTL (fnargs[i]);
3506 imag = DECL_RTL (fnargs[i + 1]);
3507 if (inner != GET_MODE (real))
3509 real = gen_lowpart_SUBREG (inner, real);
3510 imag = gen_lowpart_SUBREG (inner, imag);
3513 if (TREE_ADDRESSABLE (parm))
3515 rtx rmem, imem;
3516 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3517 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3518 DECL_MODE (parm),
3519 TYPE_ALIGN (TREE_TYPE (parm)));
3521 /* split_complex_arg put the real and imag parts in
3522 pseudos. Move them to memory. */
3523 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3524 set_mem_attributes (tmp, parm, 1);
3525 rmem = adjust_address_nv (tmp, inner, 0);
3526 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3527 push_to_sequence2 (all->first_conversion_insn,
3528 all->last_conversion_insn);
3529 emit_move_insn (rmem, real);
3530 emit_move_insn (imem, imag);
3531 all->first_conversion_insn = get_insns ();
3532 all->last_conversion_insn = get_last_insn ();
3533 end_sequence ();
3535 else
3536 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3537 set_parm_rtl (parm, tmp);
3539 real = DECL_INCOMING_RTL (fnargs[i]);
3540 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3541 if (inner != GET_MODE (real))
3543 real = gen_lowpart_SUBREG (inner, real);
3544 imag = gen_lowpart_SUBREG (inner, imag);
3546 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3547 set_decl_incoming_rtl (parm, tmp, false);
3548 i++;
3553 /* Load bounds of PARM from bounds table. */
3554 static void
3555 assign_parm_load_bounds (struct assign_parm_data_one *data,
3556 tree parm,
3557 rtx entry,
3558 unsigned bound_no)
3560 bitmap_iterator bi;
3561 unsigned i, offs = 0;
3562 int bnd_no = -1;
3563 rtx slot = NULL, ptr = NULL;
3565 if (parm)
3567 bitmap slots;
3568 bitmap_obstack_initialize (NULL);
3569 slots = BITMAP_ALLOC (NULL);
3570 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3571 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3573 if (bound_no)
3574 bound_no--;
3575 else
3577 bnd_no = i;
3578 break;
3581 BITMAP_FREE (slots);
3582 bitmap_obstack_release (NULL);
3585 /* We may have bounds not associated with any pointer. */
3586 if (bnd_no != -1)
3587 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3589 /* Find associated pointer. */
3590 if (bnd_no == -1)
3592 /* If bounds are not associated with any bounds,
3593 then it is passed in a register or special slot. */
3594 gcc_assert (data->entry_parm);
3595 ptr = const0_rtx;
3597 else if (MEM_P (entry))
3598 slot = adjust_address (entry, Pmode, offs);
3599 else if (REG_P (entry))
3600 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3601 else if (GET_CODE (entry) == PARALLEL)
3602 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3603 else
3604 gcc_unreachable ();
3605 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3606 data->entry_parm);
3609 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3611 static void
3612 assign_bounds (vec<bounds_parm_data> &bndargs,
3613 struct assign_parm_data_all &all,
3614 bool assign_regs, bool assign_special,
3615 bool assign_bt)
3617 unsigned i, pass;
3618 bounds_parm_data *pbdata;
3620 if (!bndargs.exists ())
3621 return;
3623 /* We make few passes to store input bounds. Firstly handle bounds
3624 passed in registers. After that we load bounds passed in special
3625 slots. Finally we load bounds from Bounds Table. */
3626 for (pass = 0; pass < 3; pass++)
3627 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3629 /* Pass 0 => regs only. */
3630 if (pass == 0
3631 && (!assign_regs
3632 ||(!pbdata->parm_data.entry_parm
3633 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3634 continue;
3635 /* Pass 1 => slots only. */
3636 else if (pass == 1
3637 && (!assign_special
3638 || (!pbdata->parm_data.entry_parm
3639 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3640 continue;
3641 /* Pass 2 => BT only. */
3642 else if (pass == 2
3643 && (!assign_bt
3644 || pbdata->parm_data.entry_parm))
3645 continue;
3647 if (!pbdata->parm_data.entry_parm
3648 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3649 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3650 pbdata->ptr_entry, pbdata->bound_no);
3652 set_decl_incoming_rtl (pbdata->bounds_parm,
3653 pbdata->parm_data.entry_parm, false);
3655 if (assign_parm_setup_block_p (&pbdata->parm_data))
3656 assign_parm_setup_block (&all, pbdata->bounds_parm,
3657 &pbdata->parm_data);
3658 else if (pbdata->parm_data.passed_pointer
3659 || use_register_for_decl (pbdata->bounds_parm))
3660 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3661 &pbdata->parm_data);
3662 else
3663 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3664 &pbdata->parm_data);
3668 /* Assign RTL expressions to the function's parameters. This may involve
3669 copying them into registers and using those registers as the DECL_RTL. */
3671 static void
3672 assign_parms (tree fndecl)
3674 struct assign_parm_data_all all;
3675 tree parm;
3676 vec<tree> fnargs;
3677 unsigned i, bound_no = 0;
3678 tree last_arg = NULL;
3679 rtx last_arg_entry = NULL;
3680 vec<bounds_parm_data> bndargs = vNULL;
3681 bounds_parm_data bdata;
3683 crtl->args.internal_arg_pointer
3684 = targetm.calls.internal_arg_pointer ();
3686 assign_parms_initialize_all (&all);
3687 fnargs = assign_parms_augmented_arg_list (&all);
3689 FOR_EACH_VEC_ELT (fnargs, i, parm)
3691 struct assign_parm_data_one data;
3693 /* Extract the type of PARM; adjust it according to ABI. */
3694 assign_parm_find_data_types (&all, parm, &data);
3696 /* Early out for errors and void parameters. */
3697 if (data.passed_mode == VOIDmode)
3699 SET_DECL_RTL (parm, const0_rtx);
3700 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3701 continue;
3704 /* Estimate stack alignment from parameter alignment. */
3705 if (SUPPORTS_STACK_ALIGNMENT)
3707 unsigned int align
3708 = targetm.calls.function_arg_boundary (data.promoted_mode,
3709 data.passed_type);
3710 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3711 align);
3712 if (TYPE_ALIGN (data.nominal_type) > align)
3713 align = MINIMUM_ALIGNMENT (data.nominal_type,
3714 TYPE_MODE (data.nominal_type),
3715 TYPE_ALIGN (data.nominal_type));
3716 if (crtl->stack_alignment_estimated < align)
3718 gcc_assert (!crtl->stack_realign_processed);
3719 crtl->stack_alignment_estimated = align;
3723 /* Find out where the parameter arrives in this function. */
3724 assign_parm_find_entry_rtl (&all, &data);
3726 /* Find out where stack space for this parameter might be. */
3727 if (assign_parm_is_stack_parm (&all, &data))
3729 assign_parm_find_stack_rtl (parm, &data);
3730 assign_parm_adjust_entry_rtl (&data);
3732 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3734 /* Remember where last non bounds arg was passed in case
3735 we have to load associated bounds for it from Bounds
3736 Table. */
3737 last_arg = parm;
3738 last_arg_entry = data.entry_parm;
3739 bound_no = 0;
3741 /* Record permanently how this parm was passed. */
3742 if (data.passed_pointer)
3744 rtx incoming_rtl
3745 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3746 data.entry_parm);
3747 set_decl_incoming_rtl (parm, incoming_rtl, true);
3749 else
3750 set_decl_incoming_rtl (parm, data.entry_parm, false);
3752 assign_parm_adjust_stack_rtl (&data);
3754 /* Bounds should be loaded in the particular order to
3755 have registers allocated correctly. Collect info about
3756 input bounds and load them later. */
3757 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3759 /* Expect bounds in instrumented functions only. */
3760 gcc_assert (chkp_function_instrumented_p (fndecl));
3762 bdata.parm_data = data;
3763 bdata.bounds_parm = parm;
3764 bdata.ptr_parm = last_arg;
3765 bdata.ptr_entry = last_arg_entry;
3766 bdata.bound_no = bound_no;
3767 bndargs.safe_push (bdata);
3769 else
3771 if (assign_parm_setup_block_p (&data))
3772 assign_parm_setup_block (&all, parm, &data);
3773 else if (data.passed_pointer || use_register_for_decl (parm))
3774 assign_parm_setup_reg (&all, parm, &data);
3775 else
3776 assign_parm_setup_stack (&all, parm, &data);
3779 if (cfun->stdarg && !DECL_CHAIN (parm))
3781 int pretend_bytes = 0;
3783 assign_parms_setup_varargs (&all, &data, false);
3785 if (chkp_function_instrumented_p (fndecl))
3787 /* We expect this is the last parm. Otherwise it is wrong
3788 to assign bounds right now. */
3789 gcc_assert (i == (fnargs.length () - 1));
3790 assign_bounds (bndargs, all, true, false, false);
3791 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3792 data.promoted_mode,
3793 data.passed_type,
3794 &pretend_bytes,
3795 false);
3796 assign_bounds (bndargs, all, false, true, true);
3797 bndargs.release ();
3801 /* Update info on where next arg arrives in registers. */
3802 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3803 data.passed_type, data.named_arg);
3805 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3806 bound_no++;
3809 assign_bounds (bndargs, all, true, true, true);
3810 bndargs.release ();
3812 if (targetm.calls.split_complex_arg)
3813 assign_parms_unsplit_complex (&all, fnargs);
3815 fnargs.release ();
3817 /* Output all parameter conversion instructions (possibly including calls)
3818 now that all parameters have been copied out of hard registers. */
3819 emit_insn (all.first_conversion_insn);
3821 /* Estimate reload stack alignment from scalar return mode. */
3822 if (SUPPORTS_STACK_ALIGNMENT)
3824 if (DECL_RESULT (fndecl))
3826 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3827 machine_mode mode = TYPE_MODE (type);
3829 if (mode != BLKmode
3830 && mode != VOIDmode
3831 && !AGGREGATE_TYPE_P (type))
3833 unsigned int align = GET_MODE_ALIGNMENT (mode);
3834 if (crtl->stack_alignment_estimated < align)
3836 gcc_assert (!crtl->stack_realign_processed);
3837 crtl->stack_alignment_estimated = align;
3843 /* If we are receiving a struct value address as the first argument, set up
3844 the RTL for the function result. As this might require code to convert
3845 the transmitted address to Pmode, we do this here to ensure that possible
3846 preliminary conversions of the address have been emitted already. */
3847 if (all.function_result_decl)
3849 tree result = DECL_RESULT (current_function_decl);
3850 rtx addr = DECL_RTL (all.function_result_decl);
3851 rtx x;
3853 if (DECL_BY_REFERENCE (result))
3855 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3856 x = addr;
3858 else
3860 SET_DECL_VALUE_EXPR (result,
3861 build1 (INDIRECT_REF, TREE_TYPE (result),
3862 all.function_result_decl));
3863 addr = convert_memory_address (Pmode, addr);
3864 x = gen_rtx_MEM (DECL_MODE (result), addr);
3865 set_mem_attributes (x, result, 1);
3868 DECL_HAS_VALUE_EXPR_P (result) = 1;
3870 set_parm_rtl (result, x);
3873 /* We have aligned all the args, so add space for the pretend args. */
3874 crtl->args.pretend_args_size = all.pretend_args_size;
3875 all.stack_args_size.constant += all.extra_pretend_bytes;
3876 crtl->args.size = all.stack_args_size.constant;
3878 /* Adjust function incoming argument size for alignment and
3879 minimum length. */
3881 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3882 crtl->args.size = CEIL_ROUND (crtl->args.size,
3883 PARM_BOUNDARY / BITS_PER_UNIT);
3885 if (ARGS_GROW_DOWNWARD)
3887 crtl->args.arg_offset_rtx
3888 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3889 : expand_expr (size_diffop (all.stack_args_size.var,
3890 size_int (-all.stack_args_size.constant)),
3891 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3893 else
3894 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3896 /* See how many bytes, if any, of its args a function should try to pop
3897 on return. */
3899 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3900 TREE_TYPE (fndecl),
3901 crtl->args.size);
3903 /* For stdarg.h function, save info about
3904 regs and stack space used by the named args. */
3906 crtl->args.info = all.args_so_far_v;
3908 /* Set the rtx used for the function return value. Put this in its
3909 own variable so any optimizers that need this information don't have
3910 to include tree.h. Do this here so it gets done when an inlined
3911 function gets output. */
3913 crtl->return_rtx
3914 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3915 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3917 /* If scalar return value was computed in a pseudo-reg, or was a named
3918 return value that got dumped to the stack, copy that to the hard
3919 return register. */
3920 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3922 tree decl_result = DECL_RESULT (fndecl);
3923 rtx decl_rtl = DECL_RTL (decl_result);
3925 if (REG_P (decl_rtl)
3926 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3927 : DECL_REGISTER (decl_result))
3929 rtx real_decl_rtl;
3931 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3932 fndecl, true);
3933 if (chkp_function_instrumented_p (fndecl))
3934 crtl->return_bnd
3935 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3936 fndecl, true);
3937 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3938 /* The delay slot scheduler assumes that crtl->return_rtx
3939 holds the hard register containing the return value, not a
3940 temporary pseudo. */
3941 crtl->return_rtx = real_decl_rtl;
3946 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3947 For all seen types, gimplify their sizes. */
3949 static tree
3950 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3952 tree t = *tp;
3954 *walk_subtrees = 0;
3955 if (TYPE_P (t))
3957 if (POINTER_TYPE_P (t))
3958 *walk_subtrees = 1;
3959 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3960 && !TYPE_SIZES_GIMPLIFIED (t))
3962 gimplify_type_sizes (t, (gimple_seq *) data);
3963 *walk_subtrees = 1;
3967 return NULL;
3970 /* Gimplify the parameter list for current_function_decl. This involves
3971 evaluating SAVE_EXPRs of variable sized parameters and generating code
3972 to implement callee-copies reference parameters. Returns a sequence of
3973 statements to add to the beginning of the function. */
3975 gimple_seq
3976 gimplify_parameters (void)
3978 struct assign_parm_data_all all;
3979 tree parm;
3980 gimple_seq stmts = NULL;
3981 vec<tree> fnargs;
3982 unsigned i;
3984 assign_parms_initialize_all (&all);
3985 fnargs = assign_parms_augmented_arg_list (&all);
3987 FOR_EACH_VEC_ELT (fnargs, i, parm)
3989 struct assign_parm_data_one data;
3991 /* Extract the type of PARM; adjust it according to ABI. */
3992 assign_parm_find_data_types (&all, parm, &data);
3994 /* Early out for errors and void parameters. */
3995 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3996 continue;
3998 /* Update info on where next arg arrives in registers. */
3999 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
4000 data.passed_type, data.named_arg);
4002 /* ??? Once upon a time variable_size stuffed parameter list
4003 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4004 turned out to be less than manageable in the gimple world.
4005 Now we have to hunt them down ourselves. */
4006 walk_tree_without_duplicates (&data.passed_type,
4007 gimplify_parm_type, &stmts);
4009 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4011 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4012 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4015 if (data.passed_pointer)
4017 tree type = TREE_TYPE (data.passed_type);
4018 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4019 type, data.named_arg))
4021 tree local, t;
4023 /* For constant-sized objects, this is trivial; for
4024 variable-sized objects, we have to play games. */
4025 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4026 && !(flag_stack_check == GENERIC_STACK_CHECK
4027 && compare_tree_int (DECL_SIZE_UNIT (parm),
4028 STACK_CHECK_MAX_VAR_SIZE) > 0))
4030 local = create_tmp_var (type, get_name (parm));
4031 DECL_IGNORED_P (local) = 0;
4032 /* If PARM was addressable, move that flag over
4033 to the local copy, as its address will be taken,
4034 not the PARMs. Keep the parms address taken
4035 as we'll query that flag during gimplification. */
4036 if (TREE_ADDRESSABLE (parm))
4037 TREE_ADDRESSABLE (local) = 1;
4038 else if (TREE_CODE (type) == COMPLEX_TYPE
4039 || TREE_CODE (type) == VECTOR_TYPE)
4040 DECL_GIMPLE_REG_P (local) = 1;
4042 else
4044 tree ptr_type, addr;
4046 ptr_type = build_pointer_type (type);
4047 addr = create_tmp_reg (ptr_type, get_name (parm));
4048 DECL_IGNORED_P (addr) = 0;
4049 local = build_fold_indirect_ref (addr);
4051 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4052 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
4053 size_int (DECL_ALIGN (parm)));
4055 /* The call has been built for a variable-sized object. */
4056 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4057 t = fold_convert (ptr_type, t);
4058 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4059 gimplify_and_add (t, &stmts);
4062 gimplify_assign (local, parm, &stmts);
4064 SET_DECL_VALUE_EXPR (parm, local);
4065 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4070 fnargs.release ();
4072 return stmts;
4075 /* Compute the size and offset from the start of the stacked arguments for a
4076 parm passed in mode PASSED_MODE and with type TYPE.
4078 INITIAL_OFFSET_PTR points to the current offset into the stacked
4079 arguments.
4081 The starting offset and size for this parm are returned in
4082 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4083 nonzero, the offset is that of stack slot, which is returned in
4084 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4085 padding required from the initial offset ptr to the stack slot.
4087 IN_REGS is nonzero if the argument will be passed in registers. It will
4088 never be set if REG_PARM_STACK_SPACE is not defined.
4090 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4091 for arguments which are passed in registers.
4093 FNDECL is the function in which the argument was defined.
4095 There are two types of rounding that are done. The first, controlled by
4096 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4097 argument list to be aligned to the specific boundary (in bits). This
4098 rounding affects the initial and starting offsets, but not the argument
4099 size.
4101 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4102 optionally rounds the size of the parm to PARM_BOUNDARY. The
4103 initial offset is not affected by this rounding, while the size always
4104 is and the starting offset may be. */
4106 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4107 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4108 callers pass in the total size of args so far as
4109 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4111 void
4112 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4113 int reg_parm_stack_space, int partial,
4114 tree fndecl ATTRIBUTE_UNUSED,
4115 struct args_size *initial_offset_ptr,
4116 struct locate_and_pad_arg_data *locate)
4118 tree sizetree;
4119 enum direction where_pad;
4120 unsigned int boundary, round_boundary;
4121 int part_size_in_regs;
4123 /* If we have found a stack parm before we reach the end of the
4124 area reserved for registers, skip that area. */
4125 if (! in_regs)
4127 if (reg_parm_stack_space > 0)
4129 if (initial_offset_ptr->var)
4131 initial_offset_ptr->var
4132 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4133 ssize_int (reg_parm_stack_space));
4134 initial_offset_ptr->constant = 0;
4136 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4137 initial_offset_ptr->constant = reg_parm_stack_space;
4141 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4143 sizetree
4144 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4145 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4146 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4147 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4148 type);
4149 locate->where_pad = where_pad;
4151 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4152 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4153 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4155 locate->boundary = boundary;
4157 if (SUPPORTS_STACK_ALIGNMENT)
4159 /* stack_alignment_estimated can't change after stack has been
4160 realigned. */
4161 if (crtl->stack_alignment_estimated < boundary)
4163 if (!crtl->stack_realign_processed)
4164 crtl->stack_alignment_estimated = boundary;
4165 else
4167 /* If stack is realigned and stack alignment value
4168 hasn't been finalized, it is OK not to increase
4169 stack_alignment_estimated. The bigger alignment
4170 requirement is recorded in stack_alignment_needed
4171 below. */
4172 gcc_assert (!crtl->stack_realign_finalized
4173 && crtl->stack_realign_needed);
4178 /* Remember if the outgoing parameter requires extra alignment on the
4179 calling function side. */
4180 if (crtl->stack_alignment_needed < boundary)
4181 crtl->stack_alignment_needed = boundary;
4182 if (crtl->preferred_stack_boundary < boundary)
4183 crtl->preferred_stack_boundary = boundary;
4185 if (ARGS_GROW_DOWNWARD)
4187 locate->slot_offset.constant = -initial_offset_ptr->constant;
4188 if (initial_offset_ptr->var)
4189 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4190 initial_offset_ptr->var);
4193 tree s2 = sizetree;
4194 if (where_pad != none
4195 && (!tree_fits_uhwi_p (sizetree)
4196 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4197 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4198 SUB_PARM_SIZE (locate->slot_offset, s2);
4201 locate->slot_offset.constant += part_size_in_regs;
4203 if (!in_regs || reg_parm_stack_space > 0)
4204 pad_to_arg_alignment (&locate->slot_offset, boundary,
4205 &locate->alignment_pad);
4207 locate->size.constant = (-initial_offset_ptr->constant
4208 - locate->slot_offset.constant);
4209 if (initial_offset_ptr->var)
4210 locate->size.var = size_binop (MINUS_EXPR,
4211 size_binop (MINUS_EXPR,
4212 ssize_int (0),
4213 initial_offset_ptr->var),
4214 locate->slot_offset.var);
4216 /* Pad_below needs the pre-rounded size to know how much to pad
4217 below. */
4218 locate->offset = locate->slot_offset;
4219 if (where_pad == downward)
4220 pad_below (&locate->offset, passed_mode, sizetree);
4223 else
4225 if (!in_regs || reg_parm_stack_space > 0)
4226 pad_to_arg_alignment (initial_offset_ptr, boundary,
4227 &locate->alignment_pad);
4228 locate->slot_offset = *initial_offset_ptr;
4230 #ifdef PUSH_ROUNDING
4231 if (passed_mode != BLKmode)
4232 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4233 #endif
4235 /* Pad_below needs the pre-rounded size to know how much to pad below
4236 so this must be done before rounding up. */
4237 locate->offset = locate->slot_offset;
4238 if (where_pad == downward)
4239 pad_below (&locate->offset, passed_mode, sizetree);
4241 if (where_pad != none
4242 && (!tree_fits_uhwi_p (sizetree)
4243 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4244 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4246 ADD_PARM_SIZE (locate->size, sizetree);
4248 locate->size.constant -= part_size_in_regs;
4251 #ifdef FUNCTION_ARG_OFFSET
4252 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4253 #endif
4256 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4257 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4259 static void
4260 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4261 struct args_size *alignment_pad)
4263 tree save_var = NULL_TREE;
4264 HOST_WIDE_INT save_constant = 0;
4265 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4266 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4268 #ifdef SPARC_STACK_BOUNDARY_HACK
4269 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4270 the real alignment of %sp. However, when it does this, the
4271 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4272 if (SPARC_STACK_BOUNDARY_HACK)
4273 sp_offset = 0;
4274 #endif
4276 if (boundary > PARM_BOUNDARY)
4278 save_var = offset_ptr->var;
4279 save_constant = offset_ptr->constant;
4282 alignment_pad->var = NULL_TREE;
4283 alignment_pad->constant = 0;
4285 if (boundary > BITS_PER_UNIT)
4287 if (offset_ptr->var)
4289 tree sp_offset_tree = ssize_int (sp_offset);
4290 tree offset = size_binop (PLUS_EXPR,
4291 ARGS_SIZE_TREE (*offset_ptr),
4292 sp_offset_tree);
4293 tree rounded;
4294 if (ARGS_GROW_DOWNWARD)
4295 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4296 else
4297 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4299 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4300 /* ARGS_SIZE_TREE includes constant term. */
4301 offset_ptr->constant = 0;
4302 if (boundary > PARM_BOUNDARY)
4303 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4304 save_var);
4306 else
4308 offset_ptr->constant = -sp_offset +
4309 (ARGS_GROW_DOWNWARD
4310 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4311 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4313 if (boundary > PARM_BOUNDARY)
4314 alignment_pad->constant = offset_ptr->constant - save_constant;
4319 static void
4320 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4322 if (passed_mode != BLKmode)
4324 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4325 offset_ptr->constant
4326 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4327 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4328 - GET_MODE_SIZE (passed_mode));
4330 else
4332 if (TREE_CODE (sizetree) != INTEGER_CST
4333 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4335 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4336 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4337 /* Add it in. */
4338 ADD_PARM_SIZE (*offset_ptr, s2);
4339 SUB_PARM_SIZE (*offset_ptr, sizetree);
4345 /* True if register REGNO was alive at a place where `setjmp' was
4346 called and was set more than once or is an argument. Such regs may
4347 be clobbered by `longjmp'. */
4349 static bool
4350 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4352 /* There appear to be cases where some local vars never reach the
4353 backend but have bogus regnos. */
4354 if (regno >= max_reg_num ())
4355 return false;
4357 return ((REG_N_SETS (regno) > 1
4358 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4359 regno))
4360 && REGNO_REG_SET_P (setjmp_crosses, regno));
4363 /* Walk the tree of blocks describing the binding levels within a
4364 function and warn about variables the might be killed by setjmp or
4365 vfork. This is done after calling flow_analysis before register
4366 allocation since that will clobber the pseudo-regs to hard
4367 regs. */
4369 static void
4370 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4372 tree decl, sub;
4374 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4376 if (TREE_CODE (decl) == VAR_DECL
4377 && DECL_RTL_SET_P (decl)
4378 && REG_P (DECL_RTL (decl))
4379 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4380 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4381 " %<longjmp%> or %<vfork%>", decl);
4384 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4385 setjmp_vars_warning (setjmp_crosses, sub);
4388 /* Do the appropriate part of setjmp_vars_warning
4389 but for arguments instead of local variables. */
4391 static void
4392 setjmp_args_warning (bitmap setjmp_crosses)
4394 tree decl;
4395 for (decl = DECL_ARGUMENTS (current_function_decl);
4396 decl; decl = DECL_CHAIN (decl))
4397 if (DECL_RTL (decl) != 0
4398 && REG_P (DECL_RTL (decl))
4399 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4400 warning (OPT_Wclobbered,
4401 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4402 decl);
4405 /* Generate warning messages for variables live across setjmp. */
4407 void
4408 generate_setjmp_warnings (void)
4410 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4412 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4413 || bitmap_empty_p (setjmp_crosses))
4414 return;
4416 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4417 setjmp_args_warning (setjmp_crosses);
4421 /* Reverse the order of elements in the fragment chain T of blocks,
4422 and return the new head of the chain (old last element).
4423 In addition to that clear BLOCK_SAME_RANGE flags when needed
4424 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4425 its super fragment origin. */
4427 static tree
4428 block_fragments_nreverse (tree t)
4430 tree prev = 0, block, next, prev_super = 0;
4431 tree super = BLOCK_SUPERCONTEXT (t);
4432 if (BLOCK_FRAGMENT_ORIGIN (super))
4433 super = BLOCK_FRAGMENT_ORIGIN (super);
4434 for (block = t; block; block = next)
4436 next = BLOCK_FRAGMENT_CHAIN (block);
4437 BLOCK_FRAGMENT_CHAIN (block) = prev;
4438 if ((prev && !BLOCK_SAME_RANGE (prev))
4439 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4440 != prev_super))
4441 BLOCK_SAME_RANGE (block) = 0;
4442 prev_super = BLOCK_SUPERCONTEXT (block);
4443 BLOCK_SUPERCONTEXT (block) = super;
4444 prev = block;
4446 t = BLOCK_FRAGMENT_ORIGIN (t);
4447 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4448 != prev_super)
4449 BLOCK_SAME_RANGE (t) = 0;
4450 BLOCK_SUPERCONTEXT (t) = super;
4451 return prev;
4454 /* Reverse the order of elements in the chain T of blocks,
4455 and return the new head of the chain (old last element).
4456 Also do the same on subblocks and reverse the order of elements
4457 in BLOCK_FRAGMENT_CHAIN as well. */
4459 static tree
4460 blocks_nreverse_all (tree t)
4462 tree prev = 0, block, next;
4463 for (block = t; block; block = next)
4465 next = BLOCK_CHAIN (block);
4466 BLOCK_CHAIN (block) = prev;
4467 if (BLOCK_FRAGMENT_CHAIN (block)
4468 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4470 BLOCK_FRAGMENT_CHAIN (block)
4471 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4472 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4473 BLOCK_SAME_RANGE (block) = 0;
4475 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4476 prev = block;
4478 return prev;
4482 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4483 and create duplicate blocks. */
4484 /* ??? Need an option to either create block fragments or to create
4485 abstract origin duplicates of a source block. It really depends
4486 on what optimization has been performed. */
4488 void
4489 reorder_blocks (void)
4491 tree block = DECL_INITIAL (current_function_decl);
4493 if (block == NULL_TREE)
4494 return;
4496 auto_vec<tree, 10> block_stack;
4498 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4499 clear_block_marks (block);
4501 /* Prune the old trees away, so that they don't get in the way. */
4502 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4503 BLOCK_CHAIN (block) = NULL_TREE;
4505 /* Recreate the block tree from the note nesting. */
4506 reorder_blocks_1 (get_insns (), block, &block_stack);
4507 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4510 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4512 void
4513 clear_block_marks (tree block)
4515 while (block)
4517 TREE_ASM_WRITTEN (block) = 0;
4518 clear_block_marks (BLOCK_SUBBLOCKS (block));
4519 block = BLOCK_CHAIN (block);
4523 static void
4524 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4525 vec<tree> *p_block_stack)
4527 rtx_insn *insn;
4528 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4530 for (insn = insns; insn; insn = NEXT_INSN (insn))
4532 if (NOTE_P (insn))
4534 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4536 tree block = NOTE_BLOCK (insn);
4537 tree origin;
4539 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4540 origin = block;
4542 if (prev_end)
4543 BLOCK_SAME_RANGE (prev_end) = 0;
4544 prev_end = NULL_TREE;
4546 /* If we have seen this block before, that means it now
4547 spans multiple address regions. Create a new fragment. */
4548 if (TREE_ASM_WRITTEN (block))
4550 tree new_block = copy_node (block);
4552 BLOCK_SAME_RANGE (new_block) = 0;
4553 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4554 BLOCK_FRAGMENT_CHAIN (new_block)
4555 = BLOCK_FRAGMENT_CHAIN (origin);
4556 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4558 NOTE_BLOCK (insn) = new_block;
4559 block = new_block;
4562 if (prev_beg == current_block && prev_beg)
4563 BLOCK_SAME_RANGE (block) = 1;
4565 prev_beg = origin;
4567 BLOCK_SUBBLOCKS (block) = 0;
4568 TREE_ASM_WRITTEN (block) = 1;
4569 /* When there's only one block for the entire function,
4570 current_block == block and we mustn't do this, it
4571 will cause infinite recursion. */
4572 if (block != current_block)
4574 tree super;
4575 if (block != origin)
4576 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4577 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4578 (origin))
4579 == current_block);
4580 if (p_block_stack->is_empty ())
4581 super = current_block;
4582 else
4584 super = p_block_stack->last ();
4585 gcc_assert (super == current_block
4586 || BLOCK_FRAGMENT_ORIGIN (super)
4587 == current_block);
4589 BLOCK_SUPERCONTEXT (block) = super;
4590 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4591 BLOCK_SUBBLOCKS (current_block) = block;
4592 current_block = origin;
4594 p_block_stack->safe_push (block);
4596 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4598 NOTE_BLOCK (insn) = p_block_stack->pop ();
4599 current_block = BLOCK_SUPERCONTEXT (current_block);
4600 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4601 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4602 prev_beg = NULL_TREE;
4603 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4604 ? NOTE_BLOCK (insn) : NULL_TREE;
4607 else
4609 prev_beg = NULL_TREE;
4610 if (prev_end)
4611 BLOCK_SAME_RANGE (prev_end) = 0;
4612 prev_end = NULL_TREE;
4617 /* Reverse the order of elements in the chain T of blocks,
4618 and return the new head of the chain (old last element). */
4620 tree
4621 blocks_nreverse (tree t)
4623 tree prev = 0, block, next;
4624 for (block = t; block; block = next)
4626 next = BLOCK_CHAIN (block);
4627 BLOCK_CHAIN (block) = prev;
4628 prev = block;
4630 return prev;
4633 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4634 by modifying the last node in chain 1 to point to chain 2. */
4636 tree
4637 block_chainon (tree op1, tree op2)
4639 tree t1;
4641 if (!op1)
4642 return op2;
4643 if (!op2)
4644 return op1;
4646 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4647 continue;
4648 BLOCK_CHAIN (t1) = op2;
4650 #ifdef ENABLE_TREE_CHECKING
4652 tree t2;
4653 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4654 gcc_assert (t2 != t1);
4656 #endif
4658 return op1;
4661 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4662 non-NULL, list them all into VECTOR, in a depth-first preorder
4663 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4664 blocks. */
4666 static int
4667 all_blocks (tree block, tree *vector)
4669 int n_blocks = 0;
4671 while (block)
4673 TREE_ASM_WRITTEN (block) = 0;
4675 /* Record this block. */
4676 if (vector)
4677 vector[n_blocks] = block;
4679 ++n_blocks;
4681 /* Record the subblocks, and their subblocks... */
4682 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4683 vector ? vector + n_blocks : 0);
4684 block = BLOCK_CHAIN (block);
4687 return n_blocks;
4690 /* Return a vector containing all the blocks rooted at BLOCK. The
4691 number of elements in the vector is stored in N_BLOCKS_P. The
4692 vector is dynamically allocated; it is the caller's responsibility
4693 to call `free' on the pointer returned. */
4695 static tree *
4696 get_block_vector (tree block, int *n_blocks_p)
4698 tree *block_vector;
4700 *n_blocks_p = all_blocks (block, NULL);
4701 block_vector = XNEWVEC (tree, *n_blocks_p);
4702 all_blocks (block, block_vector);
4704 return block_vector;
4707 static GTY(()) int next_block_index = 2;
4709 /* Set BLOCK_NUMBER for all the blocks in FN. */
4711 void
4712 number_blocks (tree fn)
4714 int i;
4715 int n_blocks;
4716 tree *block_vector;
4718 /* For SDB and XCOFF debugging output, we start numbering the blocks
4719 from 1 within each function, rather than keeping a running
4720 count. */
4721 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4722 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4723 next_block_index = 1;
4724 #endif
4726 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4728 /* The top-level BLOCK isn't numbered at all. */
4729 for (i = 1; i < n_blocks; ++i)
4730 /* We number the blocks from two. */
4731 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4733 free (block_vector);
4735 return;
4738 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4740 DEBUG_FUNCTION tree
4741 debug_find_var_in_block_tree (tree var, tree block)
4743 tree t;
4745 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4746 if (t == var)
4747 return block;
4749 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4751 tree ret = debug_find_var_in_block_tree (var, t);
4752 if (ret)
4753 return ret;
4756 return NULL_TREE;
4759 /* Keep track of whether we're in a dummy function context. If we are,
4760 we don't want to invoke the set_current_function hook, because we'll
4761 get into trouble if the hook calls target_reinit () recursively or
4762 when the initial initialization is not yet complete. */
4764 static bool in_dummy_function;
4766 /* Invoke the target hook when setting cfun. Update the optimization options
4767 if the function uses different options than the default. */
4769 static void
4770 invoke_set_current_function_hook (tree fndecl)
4772 if (!in_dummy_function)
4774 tree opts = ((fndecl)
4775 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4776 : optimization_default_node);
4778 if (!opts)
4779 opts = optimization_default_node;
4781 /* Change optimization options if needed. */
4782 if (optimization_current_node != opts)
4784 optimization_current_node = opts;
4785 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4788 targetm.set_current_function (fndecl);
4789 this_fn_optabs = this_target_optabs;
4791 if (opts != optimization_default_node)
4793 init_tree_optimization_optabs (opts);
4794 if (TREE_OPTIMIZATION_OPTABS (opts))
4795 this_fn_optabs = (struct target_optabs *)
4796 TREE_OPTIMIZATION_OPTABS (opts);
4801 /* cfun should never be set directly; use this function. */
4803 void
4804 set_cfun (struct function *new_cfun)
4806 if (cfun != new_cfun)
4808 cfun = new_cfun;
4809 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4810 redirect_edge_var_map_empty ();
4814 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4816 static vec<function *> cfun_stack;
4818 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4819 current_function_decl accordingly. */
4821 void
4822 push_cfun (struct function *new_cfun)
4824 gcc_assert ((!cfun && !current_function_decl)
4825 || (cfun && current_function_decl == cfun->decl));
4826 cfun_stack.safe_push (cfun);
4827 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4828 set_cfun (new_cfun);
4831 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4833 void
4834 pop_cfun (void)
4836 struct function *new_cfun = cfun_stack.pop ();
4837 /* When in_dummy_function, we do have a cfun but current_function_decl is
4838 NULL. We also allow pushing NULL cfun and subsequently changing
4839 current_function_decl to something else and have both restored by
4840 pop_cfun. */
4841 gcc_checking_assert (in_dummy_function
4842 || !cfun
4843 || current_function_decl == cfun->decl);
4844 set_cfun (new_cfun);
4845 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4848 /* Return value of funcdef and increase it. */
4850 get_next_funcdef_no (void)
4852 return funcdef_no++;
4855 /* Return value of funcdef. */
4857 get_last_funcdef_no (void)
4859 return funcdef_no;
4862 /* Allocate a function structure for FNDECL and set its contents
4863 to the defaults. Set cfun to the newly-allocated object.
4864 Some of the helper functions invoked during initialization assume
4865 that cfun has already been set. Therefore, assign the new object
4866 directly into cfun and invoke the back end hook explicitly at the
4867 very end, rather than initializing a temporary and calling set_cfun
4868 on it.
4870 ABSTRACT_P is true if this is a function that will never be seen by
4871 the middle-end. Such functions are front-end concepts (like C++
4872 function templates) that do not correspond directly to functions
4873 placed in object files. */
4875 void
4876 allocate_struct_function (tree fndecl, bool abstract_p)
4878 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4880 cfun = ggc_cleared_alloc<function> ();
4882 init_eh_for_function ();
4884 if (init_machine_status)
4885 cfun->machine = (*init_machine_status) ();
4887 #ifdef OVERRIDE_ABI_FORMAT
4888 OVERRIDE_ABI_FORMAT (fndecl);
4889 #endif
4891 if (fndecl != NULL_TREE)
4893 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4894 cfun->decl = fndecl;
4895 current_function_funcdef_no = get_next_funcdef_no ();
4898 invoke_set_current_function_hook (fndecl);
4900 if (fndecl != NULL_TREE)
4902 tree result = DECL_RESULT (fndecl);
4904 if (!abstract_p)
4906 /* Now that we have activated any function-specific attributes
4907 that might affect layout, particularly vector modes, relayout
4908 each of the parameters and the result. */
4909 relayout_decl (result);
4910 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4911 parm = DECL_CHAIN (parm))
4912 relayout_decl (parm);
4914 /* Similarly relayout the function decl. */
4915 targetm.target_option.relayout_function (fndecl);
4918 if (!abstract_p && aggregate_value_p (result, fndecl))
4920 #ifdef PCC_STATIC_STRUCT_RETURN
4921 cfun->returns_pcc_struct = 1;
4922 #endif
4923 cfun->returns_struct = 1;
4926 cfun->stdarg = stdarg_p (fntype);
4928 /* Assume all registers in stdarg functions need to be saved. */
4929 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4930 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4932 /* ??? This could be set on a per-function basis by the front-end
4933 but is this worth the hassle? */
4934 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4935 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4937 if (!profile_flag && !flag_instrument_function_entry_exit)
4938 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4942 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4943 instead of just setting it. */
4945 void
4946 push_struct_function (tree fndecl)
4948 /* When in_dummy_function we might be in the middle of a pop_cfun and
4949 current_function_decl and cfun may not match. */
4950 gcc_assert (in_dummy_function
4951 || (!cfun && !current_function_decl)
4952 || (cfun && current_function_decl == cfun->decl));
4953 cfun_stack.safe_push (cfun);
4954 current_function_decl = fndecl;
4955 allocate_struct_function (fndecl, false);
4958 /* Reset crtl and other non-struct-function variables to defaults as
4959 appropriate for emitting rtl at the start of a function. */
4961 static void
4962 prepare_function_start (void)
4964 gcc_assert (!get_last_insn ());
4965 init_temp_slots ();
4966 init_emit ();
4967 init_varasm_status ();
4968 init_expr ();
4969 default_rtl_profile ();
4971 if (flag_stack_usage_info)
4973 cfun->su = ggc_cleared_alloc<stack_usage> ();
4974 cfun->su->static_stack_size = -1;
4977 cse_not_expected = ! optimize;
4979 /* Caller save not needed yet. */
4980 caller_save_needed = 0;
4982 /* We haven't done register allocation yet. */
4983 reg_renumber = 0;
4985 /* Indicate that we have not instantiated virtual registers yet. */
4986 virtuals_instantiated = 0;
4988 /* Indicate that we want CONCATs now. */
4989 generating_concat_p = 1;
4991 /* Indicate we have no need of a frame pointer yet. */
4992 frame_pointer_needed = 0;
4995 void
4996 push_dummy_function (bool with_decl)
4998 tree fn_decl, fn_type, fn_result_decl;
5000 gcc_assert (!in_dummy_function);
5001 in_dummy_function = true;
5003 if (with_decl)
5005 fn_type = build_function_type_list (void_type_node, NULL_TREE);
5006 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
5007 fn_type);
5008 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
5009 NULL_TREE, void_type_node);
5010 DECL_RESULT (fn_decl) = fn_result_decl;
5012 else
5013 fn_decl = NULL_TREE;
5015 push_struct_function (fn_decl);
5018 /* Initialize the rtl expansion mechanism so that we can do simple things
5019 like generate sequences. This is used to provide a context during global
5020 initialization of some passes. You must call expand_dummy_function_end
5021 to exit this context. */
5023 void
5024 init_dummy_function_start (void)
5026 push_dummy_function (false);
5027 prepare_function_start ();
5030 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5031 and initialize static variables for generating RTL for the statements
5032 of the function. */
5034 void
5035 init_function_start (tree subr)
5037 /* Initialize backend, if needed. */
5038 initialize_rtl ();
5040 prepare_function_start ();
5041 decide_function_section (subr);
5043 /* Warn if this value is an aggregate type,
5044 regardless of which calling convention we are using for it. */
5045 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5046 warning (OPT_Waggregate_return, "function returns an aggregate");
5049 /* Expand code to verify the stack_protect_guard. This is invoked at
5050 the end of a function to be protected. */
5052 void
5053 stack_protect_epilogue (void)
5055 tree guard_decl = targetm.stack_protect_guard ();
5056 rtx_code_label *label = gen_label_rtx ();
5057 rtx x, y;
5058 rtx_insn *seq;
5060 x = expand_normal (crtl->stack_protect_guard);
5061 y = expand_normal (guard_decl);
5063 /* Allow the target to compare Y with X without leaking either into
5064 a register. */
5065 if (targetm.have_stack_protect_test ()
5066 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5067 emit_insn (seq);
5068 else
5069 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5071 /* The noreturn predictor has been moved to the tree level. The rtl-level
5072 predictors estimate this branch about 20%, which isn't enough to get
5073 things moved out of line. Since this is the only extant case of adding
5074 a noreturn function at the rtl level, it doesn't seem worth doing ought
5075 except adding the prediction by hand. */
5076 rtx_insn *tmp = get_last_insn ();
5077 if (JUMP_P (tmp))
5078 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5080 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5081 free_temp_slots ();
5082 emit_label (label);
5085 /* Start the RTL for a new function, and set variables used for
5086 emitting RTL.
5087 SUBR is the FUNCTION_DECL node.
5088 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5089 the function's parameters, which must be run at any return statement. */
5091 void
5092 expand_function_start (tree subr)
5094 /* Make sure volatile mem refs aren't considered
5095 valid operands of arithmetic insns. */
5096 init_recog_no_volatile ();
5098 crtl->profile
5099 = (profile_flag
5100 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5102 crtl->limit_stack
5103 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5105 /* Make the label for return statements to jump to. Do not special
5106 case machines with special return instructions -- they will be
5107 handled later during jump, ifcvt, or epilogue creation. */
5108 return_label = gen_label_rtx ();
5110 /* Initialize rtx used to return the value. */
5111 /* Do this before assign_parms so that we copy the struct value address
5112 before any library calls that assign parms might generate. */
5114 /* Decide whether to return the value in memory or in a register. */
5115 tree res = DECL_RESULT (subr);
5116 if (aggregate_value_p (res, subr))
5118 /* Returning something that won't go in a register. */
5119 rtx value_address = 0;
5121 #ifdef PCC_STATIC_STRUCT_RETURN
5122 if (cfun->returns_pcc_struct)
5124 int size = int_size_in_bytes (TREE_TYPE (res));
5125 value_address = assemble_static_space (size);
5127 else
5128 #endif
5130 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5131 /* Expect to be passed the address of a place to store the value.
5132 If it is passed as an argument, assign_parms will take care of
5133 it. */
5134 if (sv)
5136 value_address = gen_reg_rtx (Pmode);
5137 emit_move_insn (value_address, sv);
5140 if (value_address)
5142 rtx x = value_address;
5143 if (!DECL_BY_REFERENCE (res))
5145 x = gen_rtx_MEM (DECL_MODE (res), x);
5146 set_mem_attributes (x, res, 1);
5148 set_parm_rtl (res, x);
5151 else if (DECL_MODE (res) == VOIDmode)
5152 /* If return mode is void, this decl rtl should not be used. */
5153 set_parm_rtl (res, NULL_RTX);
5154 else
5156 /* Compute the return values into a pseudo reg, which we will copy
5157 into the true return register after the cleanups are done. */
5158 tree return_type = TREE_TYPE (res);
5160 /* If we may coalesce this result, make sure it has the expected mode
5161 in case it was promoted. But we need not bother about BLKmode. */
5162 machine_mode promoted_mode
5163 = flag_tree_coalesce_vars && is_gimple_reg (res)
5164 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5165 : BLKmode;
5167 if (promoted_mode != BLKmode)
5168 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5169 else if (TYPE_MODE (return_type) != BLKmode
5170 && targetm.calls.return_in_msb (return_type))
5171 /* expand_function_end will insert the appropriate padding in
5172 this case. Use the return value's natural (unpadded) mode
5173 within the function proper. */
5174 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5175 else
5177 /* In order to figure out what mode to use for the pseudo, we
5178 figure out what the mode of the eventual return register will
5179 actually be, and use that. */
5180 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5182 /* Structures that are returned in registers are not
5183 aggregate_value_p, so we may see a PARALLEL or a REG. */
5184 if (REG_P (hard_reg))
5185 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5186 else
5188 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5189 set_parm_rtl (res, gen_group_rtx (hard_reg));
5193 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5194 result to the real return register(s). */
5195 DECL_REGISTER (res) = 1;
5197 if (chkp_function_instrumented_p (current_function_decl))
5199 tree return_type = TREE_TYPE (res);
5200 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5201 subr, 1);
5202 SET_DECL_BOUNDS_RTL (res, bounds);
5206 /* Initialize rtx for parameters and local variables.
5207 In some cases this requires emitting insns. */
5208 assign_parms (subr);
5210 /* If function gets a static chain arg, store it. */
5211 if (cfun->static_chain_decl)
5213 tree parm = cfun->static_chain_decl;
5214 rtx local, chain;
5215 rtx_insn *insn;
5216 int unsignedp;
5218 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5219 chain = targetm.calls.static_chain (current_function_decl, true);
5221 set_decl_incoming_rtl (parm, chain, false);
5222 set_parm_rtl (parm, local);
5223 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5225 if (GET_MODE (local) != GET_MODE (chain))
5227 convert_move (local, chain, unsignedp);
5228 insn = get_last_insn ();
5230 else
5231 insn = emit_move_insn (local, chain);
5233 /* Mark the register as eliminable, similar to parameters. */
5234 if (MEM_P (chain)
5235 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5236 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5238 /* If we aren't optimizing, save the static chain onto the stack. */
5239 if (!optimize)
5241 tree saved_static_chain_decl
5242 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5243 DECL_NAME (parm), TREE_TYPE (parm));
5244 rtx saved_static_chain_rtx
5245 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5246 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5247 emit_move_insn (saved_static_chain_rtx, chain);
5248 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5249 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5253 /* If the function receives a non-local goto, then store the
5254 bits we need to restore the frame pointer. */
5255 if (cfun->nonlocal_goto_save_area)
5257 tree t_save;
5258 rtx r_save;
5260 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5261 gcc_assert (DECL_RTL_SET_P (var));
5263 t_save = build4 (ARRAY_REF,
5264 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5265 cfun->nonlocal_goto_save_area,
5266 integer_zero_node, NULL_TREE, NULL_TREE);
5267 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5268 gcc_assert (GET_MODE (r_save) == Pmode);
5270 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5271 update_nonlocal_goto_save_area ();
5274 /* The following was moved from init_function_start.
5275 The move is supposed to make sdb output more accurate. */
5276 /* Indicate the beginning of the function body,
5277 as opposed to parm setup. */
5278 emit_note (NOTE_INSN_FUNCTION_BEG);
5280 gcc_assert (NOTE_P (get_last_insn ()));
5282 parm_birth_insn = get_last_insn ();
5284 if (crtl->profile)
5286 #ifdef PROFILE_HOOK
5287 PROFILE_HOOK (current_function_funcdef_no);
5288 #endif
5291 /* If we are doing generic stack checking, the probe should go here. */
5292 if (flag_stack_check == GENERIC_STACK_CHECK)
5293 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5296 void
5297 pop_dummy_function (void)
5299 pop_cfun ();
5300 in_dummy_function = false;
5303 /* Undo the effects of init_dummy_function_start. */
5304 void
5305 expand_dummy_function_end (void)
5307 gcc_assert (in_dummy_function);
5309 /* End any sequences that failed to be closed due to syntax errors. */
5310 while (in_sequence_p ())
5311 end_sequence ();
5313 /* Outside function body, can't compute type's actual size
5314 until next function's body starts. */
5316 free_after_parsing (cfun);
5317 free_after_compilation (cfun);
5318 pop_dummy_function ();
5321 /* Helper for diddle_return_value. */
5323 void
5324 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5326 if (! outgoing)
5327 return;
5329 if (REG_P (outgoing))
5330 (*doit) (outgoing, arg);
5331 else if (GET_CODE (outgoing) == PARALLEL)
5333 int i;
5335 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5337 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5339 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5340 (*doit) (x, arg);
5345 /* Call DOIT for each hard register used as a return value from
5346 the current function. */
5348 void
5349 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5351 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5352 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5355 static void
5356 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5358 emit_clobber (reg);
5361 void
5362 clobber_return_register (void)
5364 diddle_return_value (do_clobber_return_reg, NULL);
5366 /* In case we do use pseudo to return value, clobber it too. */
5367 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5369 tree decl_result = DECL_RESULT (current_function_decl);
5370 rtx decl_rtl = DECL_RTL (decl_result);
5371 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5373 do_clobber_return_reg (decl_rtl, NULL);
5378 static void
5379 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5381 emit_use (reg);
5384 static void
5385 use_return_register (void)
5387 diddle_return_value (do_use_return_reg, NULL);
5390 /* Set the location of the insn chain starting at INSN to LOC. */
5392 static void
5393 set_insn_locations (rtx_insn *insn, int loc)
5395 while (insn != NULL)
5397 if (INSN_P (insn))
5398 INSN_LOCATION (insn) = loc;
5399 insn = NEXT_INSN (insn);
5403 /* Generate RTL for the end of the current function. */
5405 void
5406 expand_function_end (void)
5408 /* If arg_pointer_save_area was referenced only from a nested
5409 function, we will not have initialized it yet. Do that now. */
5410 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5411 get_arg_pointer_save_area ();
5413 /* If we are doing generic stack checking and this function makes calls,
5414 do a stack probe at the start of the function to ensure we have enough
5415 space for another stack frame. */
5416 if (flag_stack_check == GENERIC_STACK_CHECK)
5418 rtx_insn *insn, *seq;
5420 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5421 if (CALL_P (insn))
5423 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5424 start_sequence ();
5425 if (STACK_CHECK_MOVING_SP)
5426 anti_adjust_stack_and_probe (max_frame_size, true);
5427 else
5428 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5429 seq = get_insns ();
5430 end_sequence ();
5431 set_insn_locations (seq, prologue_location);
5432 emit_insn_before (seq, stack_check_probe_note);
5433 break;
5437 /* End any sequences that failed to be closed due to syntax errors. */
5438 while (in_sequence_p ())
5439 end_sequence ();
5441 clear_pending_stack_adjust ();
5442 do_pending_stack_adjust ();
5444 /* Output a linenumber for the end of the function.
5445 SDB depends on this. */
5446 set_curr_insn_location (input_location);
5448 /* Before the return label (if any), clobber the return
5449 registers so that they are not propagated live to the rest of
5450 the function. This can only happen with functions that drop
5451 through; if there had been a return statement, there would
5452 have either been a return rtx, or a jump to the return label.
5454 We delay actual code generation after the current_function_value_rtx
5455 is computed. */
5456 rtx_insn *clobber_after = get_last_insn ();
5458 /* Output the label for the actual return from the function. */
5459 emit_label (return_label);
5461 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5463 /* Let except.c know where it should emit the call to unregister
5464 the function context for sjlj exceptions. */
5465 if (flag_exceptions)
5466 sjlj_emit_function_exit_after (get_last_insn ());
5468 else
5470 /* We want to ensure that instructions that may trap are not
5471 moved into the epilogue by scheduling, because we don't
5472 always emit unwind information for the epilogue. */
5473 if (cfun->can_throw_non_call_exceptions)
5474 emit_insn (gen_blockage ());
5477 /* If this is an implementation of throw, do what's necessary to
5478 communicate between __builtin_eh_return and the epilogue. */
5479 expand_eh_return ();
5481 /* If scalar return value was computed in a pseudo-reg, or was a named
5482 return value that got dumped to the stack, copy that to the hard
5483 return register. */
5484 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5486 tree decl_result = DECL_RESULT (current_function_decl);
5487 rtx decl_rtl = DECL_RTL (decl_result);
5489 if (REG_P (decl_rtl)
5490 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5491 : DECL_REGISTER (decl_result))
5493 rtx real_decl_rtl = crtl->return_rtx;
5495 /* This should be set in assign_parms. */
5496 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5498 /* If this is a BLKmode structure being returned in registers,
5499 then use the mode computed in expand_return. Note that if
5500 decl_rtl is memory, then its mode may have been changed,
5501 but that crtl->return_rtx has not. */
5502 if (GET_MODE (real_decl_rtl) == BLKmode)
5503 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5505 /* If a non-BLKmode return value should be padded at the least
5506 significant end of the register, shift it left by the appropriate
5507 amount. BLKmode results are handled using the group load/store
5508 machinery. */
5509 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5510 && REG_P (real_decl_rtl)
5511 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5513 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5514 REGNO (real_decl_rtl)),
5515 decl_rtl);
5516 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5518 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5520 /* If expand_function_start has created a PARALLEL for decl_rtl,
5521 move the result to the real return registers. Otherwise, do
5522 a group load from decl_rtl for a named return. */
5523 if (GET_CODE (decl_rtl) == PARALLEL)
5524 emit_group_move (real_decl_rtl, decl_rtl);
5525 else
5526 emit_group_load (real_decl_rtl, decl_rtl,
5527 TREE_TYPE (decl_result),
5528 int_size_in_bytes (TREE_TYPE (decl_result)));
5530 /* In the case of complex integer modes smaller than a word, we'll
5531 need to generate some non-trivial bitfield insertions. Do that
5532 on a pseudo and not the hard register. */
5533 else if (GET_CODE (decl_rtl) == CONCAT
5534 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5535 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5537 int old_generating_concat_p;
5538 rtx tmp;
5540 old_generating_concat_p = generating_concat_p;
5541 generating_concat_p = 0;
5542 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5543 generating_concat_p = old_generating_concat_p;
5545 emit_move_insn (tmp, decl_rtl);
5546 emit_move_insn (real_decl_rtl, tmp);
5548 /* If a named return value dumped decl_return to memory, then
5549 we may need to re-do the PROMOTE_MODE signed/unsigned
5550 extension. */
5551 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5553 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5554 promote_function_mode (TREE_TYPE (decl_result),
5555 GET_MODE (decl_rtl), &unsignedp,
5556 TREE_TYPE (current_function_decl), 1);
5558 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5560 else
5561 emit_move_insn (real_decl_rtl, decl_rtl);
5565 /* If returning a structure, arrange to return the address of the value
5566 in a place where debuggers expect to find it.
5568 If returning a structure PCC style,
5569 the caller also depends on this value.
5570 And cfun->returns_pcc_struct is not necessarily set. */
5571 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5572 && !targetm.calls.omit_struct_return_reg)
5574 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5575 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5576 rtx outgoing;
5578 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5579 type = TREE_TYPE (type);
5580 else
5581 value_address = XEXP (value_address, 0);
5583 outgoing = targetm.calls.function_value (build_pointer_type (type),
5584 current_function_decl, true);
5586 /* Mark this as a function return value so integrate will delete the
5587 assignment and USE below when inlining this function. */
5588 REG_FUNCTION_VALUE_P (outgoing) = 1;
5590 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5591 value_address = convert_memory_address (GET_MODE (outgoing),
5592 value_address);
5594 emit_move_insn (outgoing, value_address);
5596 /* Show return register used to hold result (in this case the address
5597 of the result. */
5598 crtl->return_rtx = outgoing;
5601 /* Emit the actual code to clobber return register. Don't emit
5602 it if clobber_after is a barrier, then the previous basic block
5603 certainly doesn't fall thru into the exit block. */
5604 if (!BARRIER_P (clobber_after))
5606 start_sequence ();
5607 clobber_return_register ();
5608 rtx_insn *seq = get_insns ();
5609 end_sequence ();
5611 emit_insn_after (seq, clobber_after);
5614 /* Output the label for the naked return from the function. */
5615 if (naked_return_label)
5616 emit_label (naked_return_label);
5618 /* @@@ This is a kludge. We want to ensure that instructions that
5619 may trap are not moved into the epilogue by scheduling, because
5620 we don't always emit unwind information for the epilogue. */
5621 if (cfun->can_throw_non_call_exceptions
5622 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5623 emit_insn (gen_blockage ());
5625 /* If stack protection is enabled for this function, check the guard. */
5626 if (crtl->stack_protect_guard)
5627 stack_protect_epilogue ();
5629 /* If we had calls to alloca, and this machine needs
5630 an accurate stack pointer to exit the function,
5631 insert some code to save and restore the stack pointer. */
5632 if (! EXIT_IGNORE_STACK
5633 && cfun->calls_alloca)
5635 rtx tem = 0;
5637 start_sequence ();
5638 emit_stack_save (SAVE_FUNCTION, &tem);
5639 rtx_insn *seq = get_insns ();
5640 end_sequence ();
5641 emit_insn_before (seq, parm_birth_insn);
5643 emit_stack_restore (SAVE_FUNCTION, tem);
5646 /* ??? This should no longer be necessary since stupid is no longer with
5647 us, but there are some parts of the compiler (eg reload_combine, and
5648 sh mach_dep_reorg) that still try and compute their own lifetime info
5649 instead of using the general framework. */
5650 use_return_register ();
5654 get_arg_pointer_save_area (void)
5656 rtx ret = arg_pointer_save_area;
5658 if (! ret)
5660 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5661 arg_pointer_save_area = ret;
5664 if (! crtl->arg_pointer_save_area_init)
5666 /* Save the arg pointer at the beginning of the function. The
5667 generated stack slot may not be a valid memory address, so we
5668 have to check it and fix it if necessary. */
5669 start_sequence ();
5670 emit_move_insn (validize_mem (copy_rtx (ret)),
5671 crtl->args.internal_arg_pointer);
5672 rtx_insn *seq = get_insns ();
5673 end_sequence ();
5675 push_topmost_sequence ();
5676 emit_insn_after (seq, entry_of_function ());
5677 pop_topmost_sequence ();
5679 crtl->arg_pointer_save_area_init = true;
5682 return ret;
5685 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5686 for the first time. */
5688 static void
5689 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5691 rtx_insn *tmp;
5692 hash_table<insn_cache_hasher> *hash = *hashp;
5694 if (hash == NULL)
5695 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5697 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5699 rtx *slot = hash->find_slot (tmp, INSERT);
5700 gcc_assert (*slot == NULL);
5701 *slot = tmp;
5705 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5706 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5707 insn, then record COPY as well. */
5709 void
5710 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5712 hash_table<insn_cache_hasher> *hash;
5713 rtx *slot;
5715 hash = epilogue_insn_hash;
5716 if (!hash || !hash->find (insn))
5718 hash = prologue_insn_hash;
5719 if (!hash || !hash->find (insn))
5720 return;
5723 slot = hash->find_slot (copy, INSERT);
5724 gcc_assert (*slot == NULL);
5725 *slot = copy;
5728 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5729 we can be running after reorg, SEQUENCE rtl is possible. */
5731 static bool
5732 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5734 if (hash == NULL)
5735 return false;
5737 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5739 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5740 int i;
5741 for (i = seq->len () - 1; i >= 0; i--)
5742 if (hash->find (seq->element (i)))
5743 return true;
5744 return false;
5747 return hash->find (const_cast<rtx> (insn)) != NULL;
5751 prologue_epilogue_contains (const_rtx insn)
5753 if (contains (insn, prologue_insn_hash))
5754 return 1;
5755 if (contains (insn, epilogue_insn_hash))
5756 return 1;
5757 return 0;
5761 /* Set JUMP_LABEL for a return insn. */
5763 void
5764 set_return_jump_label (rtx_insn *returnjump)
5766 rtx pat = PATTERN (returnjump);
5767 if (GET_CODE (pat) == PARALLEL)
5768 pat = XVECEXP (pat, 0, 0);
5769 if (ANY_RETURN_P (pat))
5770 JUMP_LABEL (returnjump) = pat;
5771 else
5772 JUMP_LABEL (returnjump) = ret_rtx;
5775 /* Return a sequence to be used as the split prologue for the current
5776 function, or NULL. */
5778 static rtx_insn *
5779 make_split_prologue_seq (void)
5781 if (!flag_split_stack
5782 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5783 return NULL;
5785 start_sequence ();
5786 emit_insn (targetm.gen_split_stack_prologue ());
5787 rtx_insn *seq = get_insns ();
5788 end_sequence ();
5790 record_insns (seq, NULL, &prologue_insn_hash);
5791 set_insn_locations (seq, prologue_location);
5793 return seq;
5796 /* Return a sequence to be used as the prologue for the current function,
5797 or NULL. */
5799 static rtx_insn *
5800 make_prologue_seq (void)
5802 if (!targetm.have_prologue ())
5803 return NULL;
5805 start_sequence ();
5806 rtx_insn *seq = targetm.gen_prologue ();
5807 emit_insn (seq);
5809 /* Insert an explicit USE for the frame pointer
5810 if the profiling is on and the frame pointer is required. */
5811 if (crtl->profile && frame_pointer_needed)
5812 emit_use (hard_frame_pointer_rtx);
5814 /* Retain a map of the prologue insns. */
5815 record_insns (seq, NULL, &prologue_insn_hash);
5816 emit_note (NOTE_INSN_PROLOGUE_END);
5818 /* Ensure that instructions are not moved into the prologue when
5819 profiling is on. The call to the profiling routine can be
5820 emitted within the live range of a call-clobbered register. */
5821 if (!targetm.profile_before_prologue () && crtl->profile)
5822 emit_insn (gen_blockage ());
5824 seq = get_insns ();
5825 end_sequence ();
5826 set_insn_locations (seq, prologue_location);
5828 return seq;
5831 /* Return a sequence to be used as the epilogue for the current function,
5832 or NULL. */
5834 static rtx_insn *
5835 make_epilogue_seq (void)
5837 if (!targetm.have_epilogue ())
5838 return NULL;
5840 start_sequence ();
5841 emit_note (NOTE_INSN_EPILOGUE_BEG);
5842 rtx_insn *seq = targetm.gen_epilogue ();
5843 if (seq)
5844 emit_jump_insn (seq);
5846 /* Retain a map of the epilogue insns. */
5847 record_insns (seq, NULL, &epilogue_insn_hash);
5848 set_insn_locations (seq, epilogue_location);
5850 seq = get_insns ();
5851 rtx_insn *returnjump = get_last_insn ();
5852 end_sequence ();
5854 if (JUMP_P (returnjump))
5855 set_return_jump_label (returnjump);
5857 return seq;
5861 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5862 this into place with notes indicating where the prologue ends and where
5863 the epilogue begins. Update the basic block information when possible.
5865 Notes on epilogue placement:
5866 There are several kinds of edges to the exit block:
5867 * a single fallthru edge from LAST_BB
5868 * possibly, edges from blocks containing sibcalls
5869 * possibly, fake edges from infinite loops
5871 The epilogue is always emitted on the fallthru edge from the last basic
5872 block in the function, LAST_BB, into the exit block.
5874 If LAST_BB is empty except for a label, it is the target of every
5875 other basic block in the function that ends in a return. If a
5876 target has a return or simple_return pattern (possibly with
5877 conditional variants), these basic blocks can be changed so that a
5878 return insn is emitted into them, and their target is adjusted to
5879 the real exit block.
5881 Notes on shrink wrapping: We implement a fairly conservative
5882 version of shrink-wrapping rather than the textbook one. We only
5883 generate a single prologue and a single epilogue. This is
5884 sufficient to catch a number of interesting cases involving early
5885 exits.
5887 First, we identify the blocks that require the prologue to occur before
5888 them. These are the ones that modify a call-saved register, or reference
5889 any of the stack or frame pointer registers. To simplify things, we then
5890 mark everything reachable from these blocks as also requiring a prologue.
5891 This takes care of loops automatically, and avoids the need to examine
5892 whether MEMs reference the frame, since it is sufficient to check for
5893 occurrences of the stack or frame pointer.
5895 We then compute the set of blocks for which the need for a prologue
5896 is anticipatable (borrowing terminology from the shrink-wrapping
5897 description in Muchnick's book). These are the blocks which either
5898 require a prologue themselves, or those that have only successors
5899 where the prologue is anticipatable. The prologue needs to be
5900 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5901 is not. For the moment, we ensure that only one such edge exists.
5903 The epilogue is placed as described above, but we make a
5904 distinction between inserting return and simple_return patterns
5905 when modifying other blocks that end in a return. Blocks that end
5906 in a sibcall omit the sibcall_epilogue if the block is not in
5907 ANTIC. */
5909 void
5910 thread_prologue_and_epilogue_insns (void)
5912 df_analyze ();
5914 /* Can't deal with multiple successors of the entry block at the
5915 moment. Function should always have at least one entry
5916 point. */
5917 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5919 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5920 edge orig_entry_edge = entry_edge;
5922 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5923 rtx_insn *prologue_seq = make_prologue_seq ();
5924 rtx_insn *epilogue_seq = make_epilogue_seq ();
5926 /* Try to perform a kind of shrink-wrapping, making sure the
5927 prologue/epilogue is emitted only around those parts of the
5928 function that require it. */
5930 try_shrink_wrapping (&entry_edge, prologue_seq);
5933 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5935 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5936 this marker for the splits of EH_RETURN patterns, and nothing else
5937 uses the flag in the meantime. */
5938 epilogue_completed = 1;
5940 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5941 some targets, these get split to a special version of the epilogue
5942 code. In order to be able to properly annotate these with unwind
5943 info, try to split them now. If we get a valid split, drop an
5944 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5945 edge e;
5946 edge_iterator ei;
5947 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5949 rtx_insn *prev, *last, *trial;
5951 if (e->flags & EDGE_FALLTHRU)
5952 continue;
5953 last = BB_END (e->src);
5954 if (!eh_returnjump_p (last))
5955 continue;
5957 prev = PREV_INSN (last);
5958 trial = try_split (PATTERN (last), last, 1);
5959 if (trial == last)
5960 continue;
5962 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5963 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5966 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5968 if (exit_fallthru_edge)
5970 if (epilogue_seq)
5972 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5973 commit_edge_insertions ();
5975 /* The epilogue insns we inserted may cause the exit edge to no longer
5976 be fallthru. */
5977 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5979 if (((e->flags & EDGE_FALLTHRU) != 0)
5980 && returnjump_p (BB_END (e->src)))
5981 e->flags &= ~EDGE_FALLTHRU;
5984 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5986 /* We have a fall-through edge to the exit block, the source is not
5987 at the end of the function, and there will be an assembler epilogue
5988 at the end of the function.
5989 We can't use force_nonfallthru here, because that would try to
5990 use return. Inserting a jump 'by hand' is extremely messy, so
5991 we take advantage of cfg_layout_finalize using
5992 fixup_fallthru_exit_predecessor. */
5993 cfg_layout_initialize (0);
5994 basic_block cur_bb;
5995 FOR_EACH_BB_FN (cur_bb, cfun)
5996 if (cur_bb->index >= NUM_FIXED_BLOCKS
5997 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5998 cur_bb->aux = cur_bb->next_bb;
5999 cfg_layout_finalize ();
6003 /* Insert the prologue. */
6005 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6007 if (split_prologue_seq || prologue_seq)
6009 if (split_prologue_seq)
6010 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6012 if (prologue_seq)
6013 insert_insn_on_edge (prologue_seq, entry_edge);
6015 commit_edge_insertions ();
6017 /* Look for basic blocks within the prologue insns. */
6018 sbitmap blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6019 bitmap_clear (blocks);
6020 bitmap_set_bit (blocks, entry_edge->dest->index);
6021 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6022 find_many_sub_basic_blocks (blocks);
6023 sbitmap_free (blocks);
6026 default_rtl_profile ();
6028 /* Emit sibling epilogues before any sibling call sites. */
6029 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6030 (e = ei_safe_edge (ei));
6031 ei_next (&ei))
6033 /* Skip those already handled, the ones that run without prologue. */
6034 if (e->flags & EDGE_IGNORE)
6036 e->flags &= ~EDGE_IGNORE;
6037 continue;
6040 rtx_insn *insn = BB_END (e->src);
6042 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6043 continue;
6045 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6047 start_sequence ();
6048 emit_note (NOTE_INSN_EPILOGUE_BEG);
6049 emit_insn (ep_seq);
6050 rtx_insn *seq = get_insns ();
6051 end_sequence ();
6053 /* Retain a map of the epilogue insns. Used in life analysis to
6054 avoid getting rid of sibcall epilogue insns. Do this before we
6055 actually emit the sequence. */
6056 record_insns (seq, NULL, &epilogue_insn_hash);
6057 set_insn_locations (seq, epilogue_location);
6059 emit_insn_before (seq, insn);
6063 if (epilogue_seq)
6065 rtx_insn *insn, *next;
6067 /* Similarly, move any line notes that appear after the epilogue.
6068 There is no need, however, to be quite so anal about the existence
6069 of such a note. Also possibly move
6070 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6071 info generation. */
6072 for (insn = epilogue_seq; insn; insn = next)
6074 next = NEXT_INSN (insn);
6075 if (NOTE_P (insn)
6076 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6077 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6081 /* Threading the prologue and epilogue changes the artificial refs
6082 in the entry and exit blocks. */
6083 epilogue_completed = 1;
6084 df_update_entry_exit_and_calls ();
6087 /* Reposition the prologue-end and epilogue-begin notes after
6088 instruction scheduling. */
6090 void
6091 reposition_prologue_and_epilogue_notes (void)
6093 if (!targetm.have_prologue ()
6094 && !targetm.have_epilogue ()
6095 && !targetm.have_sibcall_epilogue ())
6096 return;
6098 /* Since the hash table is created on demand, the fact that it is
6099 non-null is a signal that it is non-empty. */
6100 if (prologue_insn_hash != NULL)
6102 size_t len = prologue_insn_hash->elements ();
6103 rtx_insn *insn, *last = NULL, *note = NULL;
6105 /* Scan from the beginning until we reach the last prologue insn. */
6106 /* ??? While we do have the CFG intact, there are two problems:
6107 (1) The prologue can contain loops (typically probing the stack),
6108 which means that the end of the prologue isn't in the first bb.
6109 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6110 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6112 if (NOTE_P (insn))
6114 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6115 note = insn;
6117 else if (contains (insn, prologue_insn_hash))
6119 last = insn;
6120 if (--len == 0)
6121 break;
6125 if (last)
6127 if (note == NULL)
6129 /* Scan forward looking for the PROLOGUE_END note. It should
6130 be right at the beginning of the block, possibly with other
6131 insn notes that got moved there. */
6132 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6134 if (NOTE_P (note)
6135 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6136 break;
6140 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6141 if (LABEL_P (last))
6142 last = NEXT_INSN (last);
6143 reorder_insns (note, note, last);
6147 if (epilogue_insn_hash != NULL)
6149 edge_iterator ei;
6150 edge e;
6152 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6154 rtx_insn *insn, *first = NULL, *note = NULL;
6155 basic_block bb = e->src;
6157 /* Scan from the beginning until we reach the first epilogue insn. */
6158 FOR_BB_INSNS (bb, insn)
6160 if (NOTE_P (insn))
6162 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6164 note = insn;
6165 if (first != NULL)
6166 break;
6169 else if (first == NULL && contains (insn, epilogue_insn_hash))
6171 first = insn;
6172 if (note != NULL)
6173 break;
6177 if (note)
6179 /* If the function has a single basic block, and no real
6180 epilogue insns (e.g. sibcall with no cleanup), the
6181 epilogue note can get scheduled before the prologue
6182 note. If we have frame related prologue insns, having
6183 them scanned during the epilogue will result in a crash.
6184 In this case re-order the epilogue note to just before
6185 the last insn in the block. */
6186 if (first == NULL)
6187 first = BB_END (bb);
6189 if (PREV_INSN (first) != note)
6190 reorder_insns (note, note, PREV_INSN (first));
6196 /* Returns the name of function declared by FNDECL. */
6197 const char *
6198 fndecl_name (tree fndecl)
6200 if (fndecl == NULL)
6201 return "(nofn)";
6202 return lang_hooks.decl_printable_name (fndecl, 2);
6205 /* Returns the name of function FN. */
6206 const char *
6207 function_name (struct function *fn)
6209 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6210 return fndecl_name (fndecl);
6213 /* Returns the name of the current function. */
6214 const char *
6215 current_function_name (void)
6217 return function_name (cfun);
6221 static unsigned int
6222 rest_of_handle_check_leaf_regs (void)
6224 #ifdef LEAF_REGISTERS
6225 crtl->uses_only_leaf_regs
6226 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6227 #endif
6228 return 0;
6231 /* Insert a TYPE into the used types hash table of CFUN. */
6233 static void
6234 used_types_insert_helper (tree type, struct function *func)
6236 if (type != NULL && func != NULL)
6238 if (func->used_types_hash == NULL)
6239 func->used_types_hash = hash_set<tree>::create_ggc (37);
6241 func->used_types_hash->add (type);
6245 /* Given a type, insert it into the used hash table in cfun. */
6246 void
6247 used_types_insert (tree t)
6249 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6250 if (TYPE_NAME (t))
6251 break;
6252 else
6253 t = TREE_TYPE (t);
6254 if (TREE_CODE (t) == ERROR_MARK)
6255 return;
6256 if (TYPE_NAME (t) == NULL_TREE
6257 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6258 t = TYPE_MAIN_VARIANT (t);
6259 if (debug_info_level > DINFO_LEVEL_NONE)
6261 if (cfun)
6262 used_types_insert_helper (t, cfun);
6263 else
6265 /* So this might be a type referenced by a global variable.
6266 Record that type so that we can later decide to emit its
6267 debug information. */
6268 vec_safe_push (types_used_by_cur_var_decl, t);
6273 /* Helper to Hash a struct types_used_by_vars_entry. */
6275 static hashval_t
6276 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6278 gcc_assert (entry && entry->var_decl && entry->type);
6280 return iterative_hash_object (entry->type,
6281 iterative_hash_object (entry->var_decl, 0));
6284 /* Hash function of the types_used_by_vars_entry hash table. */
6286 hashval_t
6287 used_type_hasher::hash (types_used_by_vars_entry *entry)
6289 return hash_types_used_by_vars_entry (entry);
6292 /*Equality function of the types_used_by_vars_entry hash table. */
6294 bool
6295 used_type_hasher::equal (types_used_by_vars_entry *e1,
6296 types_used_by_vars_entry *e2)
6298 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6301 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6303 void
6304 types_used_by_var_decl_insert (tree type, tree var_decl)
6306 if (type != NULL && var_decl != NULL)
6308 types_used_by_vars_entry **slot;
6309 struct types_used_by_vars_entry e;
6310 e.var_decl = var_decl;
6311 e.type = type;
6312 if (types_used_by_vars_hash == NULL)
6313 types_used_by_vars_hash
6314 = hash_table<used_type_hasher>::create_ggc (37);
6316 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6317 if (*slot == NULL)
6319 struct types_used_by_vars_entry *entry;
6320 entry = ggc_alloc<types_used_by_vars_entry> ();
6321 entry->type = type;
6322 entry->var_decl = var_decl;
6323 *slot = entry;
6328 namespace {
6330 const pass_data pass_data_leaf_regs =
6332 RTL_PASS, /* type */
6333 "*leaf_regs", /* name */
6334 OPTGROUP_NONE, /* optinfo_flags */
6335 TV_NONE, /* tv_id */
6336 0, /* properties_required */
6337 0, /* properties_provided */
6338 0, /* properties_destroyed */
6339 0, /* todo_flags_start */
6340 0, /* todo_flags_finish */
6343 class pass_leaf_regs : public rtl_opt_pass
6345 public:
6346 pass_leaf_regs (gcc::context *ctxt)
6347 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6350 /* opt_pass methods: */
6351 virtual unsigned int execute (function *)
6353 return rest_of_handle_check_leaf_regs ();
6356 }; // class pass_leaf_regs
6358 } // anon namespace
6360 rtl_opt_pass *
6361 make_pass_leaf_regs (gcc::context *ctxt)
6363 return new pass_leaf_regs (ctxt);
6366 static unsigned int
6367 rest_of_handle_thread_prologue_and_epilogue (void)
6369 /* prepare_shrink_wrap is sensitive to the block structure of the control
6370 flow graph, so clean it up first. */
6371 if (optimize)
6372 cleanup_cfg (0);
6374 /* On some machines, the prologue and epilogue code, or parts thereof,
6375 can be represented as RTL. Doing so lets us schedule insns between
6376 it and the rest of the code and also allows delayed branch
6377 scheduling to operate in the epilogue. */
6378 thread_prologue_and_epilogue_insns ();
6380 /* Some non-cold blocks may now be only reachable from cold blocks.
6381 Fix that up. */
6382 fixup_partitions ();
6384 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6385 see PR57320. */
6386 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6388 /* The stack usage info is finalized during prologue expansion. */
6389 if (flag_stack_usage_info)
6390 output_stack_usage ();
6392 return 0;
6395 namespace {
6397 const pass_data pass_data_thread_prologue_and_epilogue =
6399 RTL_PASS, /* type */
6400 "pro_and_epilogue", /* name */
6401 OPTGROUP_NONE, /* optinfo_flags */
6402 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6403 0, /* properties_required */
6404 0, /* properties_provided */
6405 0, /* properties_destroyed */
6406 0, /* todo_flags_start */
6407 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6410 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6412 public:
6413 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6414 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6417 /* opt_pass methods: */
6418 virtual unsigned int execute (function *)
6420 return rest_of_handle_thread_prologue_and_epilogue ();
6423 }; // class pass_thread_prologue_and_epilogue
6425 } // anon namespace
6427 rtl_opt_pass *
6428 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6430 return new pass_thread_prologue_and_epilogue (ctxt);
6434 /* This mini-pass fixes fall-out from SSA in asm statements that have
6435 in-out constraints. Say you start with
6437 orig = inout;
6438 asm ("": "+mr" (inout));
6439 use (orig);
6441 which is transformed very early to use explicit output and match operands:
6443 orig = inout;
6444 asm ("": "=mr" (inout) : "0" (inout));
6445 use (orig);
6447 Or, after SSA and copyprop,
6449 asm ("": "=mr" (inout_2) : "0" (inout_1));
6450 use (inout_1);
6452 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6453 they represent two separate values, so they will get different pseudo
6454 registers during expansion. Then, since the two operands need to match
6455 per the constraints, but use different pseudo registers, reload can
6456 only register a reload for these operands. But reloads can only be
6457 satisfied by hardregs, not by memory, so we need a register for this
6458 reload, just because we are presented with non-matching operands.
6459 So, even though we allow memory for this operand, no memory can be
6460 used for it, just because the two operands don't match. This can
6461 cause reload failures on register-starved targets.
6463 So it's a symptom of reload not being able to use memory for reloads
6464 or, alternatively it's also a symptom of both operands not coming into
6465 reload as matching (in which case the pseudo could go to memory just
6466 fine, as the alternative allows it, and no reload would be necessary).
6467 We fix the latter problem here, by transforming
6469 asm ("": "=mr" (inout_2) : "0" (inout_1));
6471 back to
6473 inout_2 = inout_1;
6474 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6476 static void
6477 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6479 int i;
6480 bool changed = false;
6481 rtx op = SET_SRC (p_sets[0]);
6482 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6483 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6484 bool *output_matched = XALLOCAVEC (bool, noutputs);
6486 memset (output_matched, 0, noutputs * sizeof (bool));
6487 for (i = 0; i < ninputs; i++)
6489 rtx input, output;
6490 rtx_insn *insns;
6491 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6492 char *end;
6493 int match, j;
6495 if (*constraint == '%')
6496 constraint++;
6498 match = strtoul (constraint, &end, 10);
6499 if (end == constraint)
6500 continue;
6502 gcc_assert (match < noutputs);
6503 output = SET_DEST (p_sets[match]);
6504 input = RTVEC_ELT (inputs, i);
6505 /* Only do the transformation for pseudos. */
6506 if (! REG_P (output)
6507 || rtx_equal_p (output, input)
6508 || (GET_MODE (input) != VOIDmode
6509 && GET_MODE (input) != GET_MODE (output)))
6510 continue;
6512 /* We can't do anything if the output is also used as input,
6513 as we're going to overwrite it. */
6514 for (j = 0; j < ninputs; j++)
6515 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6516 break;
6517 if (j != ninputs)
6518 continue;
6520 /* Avoid changing the same input several times. For
6521 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6522 only change in once (to out1), rather than changing it
6523 first to out1 and afterwards to out2. */
6524 if (i > 0)
6526 for (j = 0; j < noutputs; j++)
6527 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6528 break;
6529 if (j != noutputs)
6530 continue;
6532 output_matched[match] = true;
6534 start_sequence ();
6535 emit_move_insn (output, input);
6536 insns = get_insns ();
6537 end_sequence ();
6538 emit_insn_before (insns, insn);
6540 /* Now replace all mentions of the input with output. We can't
6541 just replace the occurrence in inputs[i], as the register might
6542 also be used in some other input (or even in an address of an
6543 output), which would mean possibly increasing the number of
6544 inputs by one (namely 'output' in addition), which might pose
6545 a too complicated problem for reload to solve. E.g. this situation:
6547 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6549 Here 'input' is used in two occurrences as input (once for the
6550 input operand, once for the address in the second output operand).
6551 If we would replace only the occurrence of the input operand (to
6552 make the matching) we would be left with this:
6554 output = input
6555 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6557 Now we suddenly have two different input values (containing the same
6558 value, but different pseudos) where we formerly had only one.
6559 With more complicated asms this might lead to reload failures
6560 which wouldn't have happen without this pass. So, iterate over
6561 all operands and replace all occurrences of the register used. */
6562 for (j = 0; j < noutputs; j++)
6563 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6564 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6565 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6566 input, output);
6567 for (j = 0; j < ninputs; j++)
6568 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6569 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6570 input, output);
6572 changed = true;
6575 if (changed)
6576 df_insn_rescan (insn);
6579 /* Add the decl D to the local_decls list of FUN. */
6581 void
6582 add_local_decl (struct function *fun, tree d)
6584 gcc_assert (TREE_CODE (d) == VAR_DECL);
6585 vec_safe_push (fun->local_decls, d);
6588 namespace {
6590 const pass_data pass_data_match_asm_constraints =
6592 RTL_PASS, /* type */
6593 "asmcons", /* name */
6594 OPTGROUP_NONE, /* optinfo_flags */
6595 TV_NONE, /* tv_id */
6596 0, /* properties_required */
6597 0, /* properties_provided */
6598 0, /* properties_destroyed */
6599 0, /* todo_flags_start */
6600 0, /* todo_flags_finish */
6603 class pass_match_asm_constraints : public rtl_opt_pass
6605 public:
6606 pass_match_asm_constraints (gcc::context *ctxt)
6607 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6610 /* opt_pass methods: */
6611 virtual unsigned int execute (function *);
6613 }; // class pass_match_asm_constraints
6615 unsigned
6616 pass_match_asm_constraints::execute (function *fun)
6618 basic_block bb;
6619 rtx_insn *insn;
6620 rtx pat, *p_sets;
6621 int noutputs;
6623 if (!crtl->has_asm_statement)
6624 return 0;
6626 df_set_flags (DF_DEFER_INSN_RESCAN);
6627 FOR_EACH_BB_FN (bb, fun)
6629 FOR_BB_INSNS (bb, insn)
6631 if (!INSN_P (insn))
6632 continue;
6634 pat = PATTERN (insn);
6635 if (GET_CODE (pat) == PARALLEL)
6636 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6637 else if (GET_CODE (pat) == SET)
6638 p_sets = &PATTERN (insn), noutputs = 1;
6639 else
6640 continue;
6642 if (GET_CODE (*p_sets) == SET
6643 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6644 match_asm_constraints_1 (insn, p_sets, noutputs);
6648 return TODO_df_finish;
6651 } // anon namespace
6653 rtl_opt_pass *
6654 make_pass_match_asm_constraints (gcc::context *ctxt)
6656 return new pass_match_asm_constraints (ctxt);
6660 #include "gt-function.h"