2018-12-03 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vrp.c
blobb00eca87c82f018789dd28d9af5f7c34469ebf4a
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 void
77 value_range_base::set (enum value_range_kind kind, tree min, tree max)
79 m_kind = kind;
80 m_min = min;
81 m_max = max;
82 if (flag_checking)
83 check ();
86 void
87 value_range::set_equiv (bitmap equiv)
89 /* Since updating the equivalence set involves deep copying the
90 bitmaps, only do it if absolutely necessary.
92 All equivalence bitmaps are allocated from the same obstack. So
93 we can use the obstack associated with EQUIV to allocate vr->equiv. */
94 if (m_equiv == NULL
95 && equiv != NULL)
96 m_equiv = BITMAP_ALLOC (equiv->obstack);
98 if (equiv != m_equiv)
100 if (equiv && !bitmap_empty_p (equiv))
101 bitmap_copy (m_equiv, equiv);
102 else
103 bitmap_clear (m_equiv);
107 /* Initialize value_range. */
109 void
110 value_range::set (enum value_range_kind kind, tree min, tree max,
111 bitmap equiv)
113 value_range_base::set (kind, min, max);
114 set_equiv (equiv);
115 if (flag_checking)
116 check ();
119 value_range_base::value_range_base (value_range_kind kind, tree min, tree max)
121 set (kind, min, max);
124 value_range::value_range (value_range_kind kind, tree min, tree max,
125 bitmap equiv)
127 m_equiv = NULL;
128 set (kind, min, max, equiv);
131 value_range::value_range (const value_range_base &other)
133 m_equiv = NULL;
134 set (other.kind (), other.min(), other.max (), NULL);
137 /* Like set, but keep the equivalences in place. */
139 void
140 value_range::update (value_range_kind kind, tree min, tree max)
142 set (kind, min, max,
143 (kind != VR_UNDEFINED && kind != VR_VARYING) ? m_equiv : NULL);
146 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
148 Note: The code that avoids the bitmap sharing looks at the existing
149 this->m_equiv, so this function cannot be used to initalize an
150 object. Use the constructors for initialization. */
152 void
153 value_range::deep_copy (const value_range *from)
155 set (from->m_kind, from->min (), from->max (), from->m_equiv);
158 void
159 value_range::move (value_range *from)
161 set (from->m_kind, from->min (), from->max ());
162 m_equiv = from->m_equiv;
163 from->m_equiv = NULL;
166 /* Check the validity of the range. */
168 void
169 value_range_base::check ()
171 switch (m_kind)
173 case VR_RANGE:
174 case VR_ANTI_RANGE:
176 int cmp;
178 gcc_assert (m_min && m_max);
180 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
182 /* Creating ~[-MIN, +MAX] is stupid because that would be
183 the empty set. */
184 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
185 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
187 cmp = compare_values (m_min, m_max);
188 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
189 break;
191 case VR_UNDEFINED:
192 case VR_VARYING:
193 gcc_assert (!min () && !max ());
194 break;
195 default:
196 gcc_unreachable ();
200 void
201 value_range::check ()
203 value_range_base::check ();
204 switch (m_kind)
206 case VR_UNDEFINED:
207 case VR_VARYING:
208 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
209 default:;
213 /* Equality operator. We purposely do not overload ==, to avoid
214 confusion with the equality bitmap in the derived value_range
215 class. */
217 bool
218 value_range_base::equal_p (const value_range_base &other) const
220 return (m_kind == other.m_kind
221 && vrp_operand_equal_p (m_min, other.m_min)
222 && vrp_operand_equal_p (m_max, other.m_max));
225 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
226 IGNORE_EQUIVS is TRUE. */
228 bool
229 value_range::equal_p (const value_range &other, bool ignore_equivs) const
231 return (value_range_base::equal_p (other)
232 && (ignore_equivs
233 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
236 /* Return TRUE if this is a symbolic range. */
238 bool
239 value_range_base::symbolic_p () const
241 return (!varying_p ()
242 && !undefined_p ()
243 && (!is_gimple_min_invariant (m_min)
244 || !is_gimple_min_invariant (m_max)));
247 /* NOTE: This is not the inverse of symbolic_p because the range
248 could also be varying or undefined. Ideally they should be inverse
249 of each other, with varying only applying to symbolics. Varying of
250 constants would be represented as [-MIN, +MAX]. */
252 bool
253 value_range_base::constant_p () const
255 return (!varying_p ()
256 && !undefined_p ()
257 && TREE_CODE (m_min) == INTEGER_CST
258 && TREE_CODE (m_max) == INTEGER_CST);
261 void
262 value_range_base::set_undefined ()
264 set (VR_UNDEFINED, NULL, NULL);
267 void
268 value_range::set_undefined ()
270 set (VR_UNDEFINED, NULL, NULL, NULL);
273 void
274 value_range_base::set_varying ()
276 set (VR_VARYING, NULL, NULL);
279 void
280 value_range::set_varying ()
282 set (VR_VARYING, NULL, NULL, NULL);
285 /* Return TRUE if it is possible that range contains VAL. */
287 bool
288 value_range_base::may_contain_p (tree val) const
290 if (varying_p ())
291 return true;
293 if (undefined_p ())
294 return true;
296 if (m_kind == VR_ANTI_RANGE)
298 int res = value_inside_range (val, min (), max ());
299 return res == 0 || res == -2;
301 return value_inside_range (val, min (), max ()) != 0;
304 void
305 value_range::equiv_clear ()
307 if (m_equiv)
308 bitmap_clear (m_equiv);
311 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
312 bitmap. If no equivalence table has been created, OBSTACK is the
313 obstack to use (NULL for the default obstack).
315 This is the central point where equivalence processing can be
316 turned on/off. */
318 void
319 value_range::equiv_add (const_tree var,
320 const value_range *var_vr,
321 bitmap_obstack *obstack)
323 if (!m_equiv)
324 m_equiv = BITMAP_ALLOC (obstack);
325 unsigned ver = SSA_NAME_VERSION (var);
326 bitmap_set_bit (m_equiv, ver);
327 if (var_vr && var_vr->m_equiv)
328 bitmap_ior_into (m_equiv, var_vr->m_equiv);
331 /* If range is a singleton, place it in RESULT and return TRUE.
332 Note: A singleton can be any gimple invariant, not just constants.
333 So, [&x, &x] counts as a singleton. */
335 bool
336 value_range_base::singleton_p (tree *result) const
338 if (m_kind == VR_RANGE
339 && vrp_operand_equal_p (min (), max ())
340 && is_gimple_min_invariant (min ()))
342 if (result)
343 *result = min ();
344 return true;
346 return false;
349 tree
350 value_range_base::type () const
352 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
353 known to have non-zero min/max. */
354 gcc_assert (min ());
355 return TREE_TYPE (min ());
358 void
359 value_range_base::dump (FILE *file) const
361 if (undefined_p ())
362 fprintf (file, "UNDEFINED");
363 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
365 tree ttype = type ();
367 print_generic_expr (file, ttype);
368 fprintf (file, " ");
370 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
372 if (INTEGRAL_TYPE_P (ttype)
373 && !TYPE_UNSIGNED (ttype)
374 && vrp_val_is_min (min ())
375 && TYPE_PRECISION (ttype) != 1)
376 fprintf (file, "-INF");
377 else
378 print_generic_expr (file, min ());
380 fprintf (file, ", ");
382 if (INTEGRAL_TYPE_P (ttype)
383 && vrp_val_is_max (max ())
384 && TYPE_PRECISION (ttype) != 1)
385 fprintf (file, "+INF");
386 else
387 print_generic_expr (file, max ());
389 fprintf (file, "]");
391 else if (varying_p ())
392 fprintf (file, "VARYING");
393 else
394 gcc_unreachable ();
397 void
398 value_range::dump (FILE *file) const
400 value_range_base::dump (file);
401 if ((m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
402 && m_equiv)
404 bitmap_iterator bi;
405 unsigned i, c = 0;
407 fprintf (file, " EQUIVALENCES: { ");
409 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
411 print_generic_expr (file, ssa_name (i));
412 fprintf (file, " ");
413 c++;
416 fprintf (file, "} (%u elements)", c);
420 void
421 dump_value_range (FILE *file, const value_range *vr)
423 if (!vr)
424 fprintf (file, "[]");
425 else
426 vr->dump (file);
429 void
430 dump_value_range (FILE *file, const value_range_base *vr)
432 if (!vr)
433 fprintf (file, "[]");
434 else
435 vr->dump (file);
438 DEBUG_FUNCTION void
439 debug (const value_range_base *vr)
441 dump_value_range (stderr, vr);
444 DEBUG_FUNCTION void
445 debug (const value_range_base &vr)
447 dump_value_range (stderr, &vr);
450 DEBUG_FUNCTION void
451 debug (const value_range *vr)
453 dump_value_range (stderr, vr);
456 DEBUG_FUNCTION void
457 debug (const value_range &vr)
459 dump_value_range (stderr, &vr);
462 /* Return true if the SSA name NAME is live on the edge E. */
464 static bool
465 live_on_edge (edge e, tree name)
467 return (live[e->dest->index]
468 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
471 /* Location information for ASSERT_EXPRs. Each instance of this
472 structure describes an ASSERT_EXPR for an SSA name. Since a single
473 SSA name may have more than one assertion associated with it, these
474 locations are kept in a linked list attached to the corresponding
475 SSA name. */
476 struct assert_locus
478 /* Basic block where the assertion would be inserted. */
479 basic_block bb;
481 /* Some assertions need to be inserted on an edge (e.g., assertions
482 generated by COND_EXPRs). In those cases, BB will be NULL. */
483 edge e;
485 /* Pointer to the statement that generated this assertion. */
486 gimple_stmt_iterator si;
488 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
489 enum tree_code comp_code;
491 /* Value being compared against. */
492 tree val;
494 /* Expression to compare. */
495 tree expr;
497 /* Next node in the linked list. */
498 assert_locus *next;
501 /* If bit I is present, it means that SSA name N_i has a list of
502 assertions that should be inserted in the IL. */
503 static bitmap need_assert_for;
505 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
506 holds a list of ASSERT_LOCUS_T nodes that describe where
507 ASSERT_EXPRs for SSA name N_I should be inserted. */
508 static assert_locus **asserts_for;
510 /* Return the maximum value for TYPE. */
512 tree
513 vrp_val_max (const_tree type)
515 if (!INTEGRAL_TYPE_P (type))
516 return NULL_TREE;
518 return TYPE_MAX_VALUE (type);
521 /* Return the minimum value for TYPE. */
523 tree
524 vrp_val_min (const_tree type)
526 if (!INTEGRAL_TYPE_P (type))
527 return NULL_TREE;
529 return TYPE_MIN_VALUE (type);
532 /* Return whether VAL is equal to the maximum value of its type.
533 We can't do a simple equality comparison with TYPE_MAX_VALUE because
534 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
535 is not == to the integer constant with the same value in the type. */
537 bool
538 vrp_val_is_max (const_tree val)
540 tree type_max = vrp_val_max (TREE_TYPE (val));
541 return (val == type_max
542 || (type_max != NULL_TREE
543 && operand_equal_p (val, type_max, 0)));
546 /* Return whether VAL is equal to the minimum value of its type. */
548 bool
549 vrp_val_is_min (const_tree val)
551 tree type_min = vrp_val_min (TREE_TYPE (val));
552 return (val == type_min
553 || (type_min != NULL_TREE
554 && operand_equal_p (val, type_min, 0)));
557 /* VR_TYPE describes a range with mininum value *MIN and maximum
558 value *MAX. Restrict the range to the set of values that have
559 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
560 return the new range type.
562 SGN gives the sign of the values described by the range. */
564 enum value_range_kind
565 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
566 wide_int *min, wide_int *max,
567 const wide_int &nonzero_bits,
568 signop sgn)
570 if (vr_type == VR_ANTI_RANGE)
572 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
573 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
574 to create an inclusive upper bound for A and an inclusive lower
575 bound for B. */
576 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
577 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
579 /* If the calculation of A_MAX wrapped, A is effectively empty
580 and A_MAX is the highest value that satisfies NONZERO_BITS.
581 Likewise if the calculation of B_MIN wrapped, B is effectively
582 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
583 bool a_empty = wi::ge_p (a_max, *min, sgn);
584 bool b_empty = wi::le_p (b_min, *max, sgn);
586 /* If both A and B are empty, there are no valid values. */
587 if (a_empty && b_empty)
588 return VR_UNDEFINED;
590 /* If exactly one of A or B is empty, return a VR_RANGE for the
591 other one. */
592 if (a_empty || b_empty)
594 *min = b_min;
595 *max = a_max;
596 gcc_checking_assert (wi::le_p (*min, *max, sgn));
597 return VR_RANGE;
600 /* Update the VR_ANTI_RANGE bounds. */
601 *min = a_max + 1;
602 *max = b_min - 1;
603 gcc_checking_assert (wi::le_p (*min, *max, sgn));
605 /* Now check whether the excluded range includes any values that
606 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
607 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
609 unsigned int precision = min->get_precision ();
610 *min = wi::min_value (precision, sgn);
611 *max = wi::max_value (precision, sgn);
612 vr_type = VR_RANGE;
615 if (vr_type == VR_RANGE)
617 *max = wi::round_down_for_mask (*max, nonzero_bits);
619 /* Check that the range contains at least one valid value. */
620 if (wi::gt_p (*min, *max, sgn))
621 return VR_UNDEFINED;
623 *min = wi::round_up_for_mask (*min, nonzero_bits);
624 gcc_checking_assert (wi::le_p (*min, *max, sgn));
626 return vr_type;
630 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
631 This means adjusting VRTYPE, MIN and MAX representing the case of a
632 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
633 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
634 In corner cases where MAX+1 or MIN-1 wraps this will fall back
635 to varying.
636 This routine exists to ease canonicalization in the case where we
637 extract ranges from var + CST op limit. */
639 void
640 value_range_base::set_and_canonicalize (enum value_range_kind kind,
641 tree min, tree max)
643 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
644 if (kind == VR_UNDEFINED)
646 set_undefined ();
647 return;
649 else if (kind == VR_VARYING)
651 set_varying ();
652 return;
655 /* Nothing to canonicalize for symbolic ranges. */
656 if (TREE_CODE (min) != INTEGER_CST
657 || TREE_CODE (max) != INTEGER_CST)
659 set (kind, min, max);
660 return;
663 /* Wrong order for min and max, to swap them and the VR type we need
664 to adjust them. */
665 if (tree_int_cst_lt (max, min))
667 tree one, tmp;
669 /* For one bit precision if max < min, then the swapped
670 range covers all values, so for VR_RANGE it is varying and
671 for VR_ANTI_RANGE empty range, so drop to varying as well. */
672 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
674 set_varying ();
675 return;
678 one = build_int_cst (TREE_TYPE (min), 1);
679 tmp = int_const_binop (PLUS_EXPR, max, one);
680 max = int_const_binop (MINUS_EXPR, min, one);
681 min = tmp;
683 /* There's one corner case, if we had [C+1, C] before we now have
684 that again. But this represents an empty value range, so drop
685 to varying in this case. */
686 if (tree_int_cst_lt (max, min))
688 set_varying ();
689 return;
692 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
695 /* Anti-ranges that can be represented as ranges should be so. */
696 if (kind == VR_ANTI_RANGE)
698 /* For -fstrict-enums we may receive out-of-range ranges so consider
699 values < -INF and values > INF as -INF/INF as well. */
700 tree type = TREE_TYPE (min);
701 bool is_min = (INTEGRAL_TYPE_P (type)
702 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
703 bool is_max = (INTEGRAL_TYPE_P (type)
704 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
706 if (is_min && is_max)
708 /* We cannot deal with empty ranges, drop to varying.
709 ??? This could be VR_UNDEFINED instead. */
710 set_varying ();
711 return;
713 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
714 && (is_min || is_max))
716 /* Non-empty boolean ranges can always be represented
717 as a singleton range. */
718 if (is_min)
719 min = max = vrp_val_max (TREE_TYPE (min));
720 else
721 min = max = vrp_val_min (TREE_TYPE (min));
722 kind = VR_RANGE;
724 else if (is_min
725 /* As a special exception preserve non-null ranges. */
726 && !(TYPE_UNSIGNED (TREE_TYPE (min))
727 && integer_zerop (max)))
729 tree one = build_int_cst (TREE_TYPE (max), 1);
730 min = int_const_binop (PLUS_EXPR, max, one);
731 max = vrp_val_max (TREE_TYPE (max));
732 kind = VR_RANGE;
734 else if (is_max)
736 tree one = build_int_cst (TREE_TYPE (min), 1);
737 max = int_const_binop (MINUS_EXPR, min, one);
738 min = vrp_val_min (TREE_TYPE (min));
739 kind = VR_RANGE;
743 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
744 to make sure VRP iteration terminates, otherwise we can get into
745 oscillations. */
747 set (kind, min, max);
750 void
751 value_range::set_and_canonicalize (enum value_range_kind kind,
752 tree min, tree max, bitmap equiv)
754 value_range_base::set_and_canonicalize (kind, min, max);
755 if (this->kind () == VR_RANGE || this->kind () == VR_ANTI_RANGE)
756 set_equiv (equiv);
757 else
758 equiv_clear ();
761 void
762 value_range_base::set (tree val)
764 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
765 if (TREE_OVERFLOW_P (val))
766 val = drop_tree_overflow (val);
767 set (VR_RANGE, val, val);
770 void
771 value_range::set (tree val)
773 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
774 if (TREE_OVERFLOW_P (val))
775 val = drop_tree_overflow (val);
776 set (VR_RANGE, val, val, NULL);
779 /* Set value range VR to a non-NULL range of type TYPE. */
781 void
782 value_range_base::set_nonnull (tree type)
784 tree zero = build_int_cst (type, 0);
785 set (VR_ANTI_RANGE, zero, zero);
788 void
789 value_range::set_nonnull (tree type)
791 tree zero = build_int_cst (type, 0);
792 set (VR_ANTI_RANGE, zero, zero, NULL);
795 /* Set value range VR to a NULL range of type TYPE. */
797 void
798 value_range_base::set_null (tree type)
800 set (build_int_cst (type, 0));
803 void
804 value_range::set_null (tree type)
806 set (build_int_cst (type, 0));
809 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
811 bool
812 vrp_operand_equal_p (const_tree val1, const_tree val2)
814 if (val1 == val2)
815 return true;
816 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
817 return false;
818 return true;
821 /* Return true, if the bitmaps B1 and B2 are equal. */
823 bool
824 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
826 return (b1 == b2
827 || ((!b1 || bitmap_empty_p (b1))
828 && (!b2 || bitmap_empty_p (b2)))
829 || (b1 && b2
830 && bitmap_equal_p (b1, b2)));
833 /* Return true if VR is [0, 0]. */
835 static inline bool
836 range_is_null (const value_range_base *vr)
838 return vr->zero_p ();
841 static inline bool
842 range_is_nonnull (const value_range_base *vr)
844 return (vr->kind () == VR_ANTI_RANGE
845 && vr->min () == vr->max ()
846 && integer_zerop (vr->min ()));
849 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
850 a singleton. */
852 bool
853 range_int_cst_p (const value_range_base *vr)
855 return (vr->kind () == VR_RANGE
856 && TREE_CODE (vr->min ()) == INTEGER_CST
857 && TREE_CODE (vr->max ()) == INTEGER_CST);
860 /* Return true if VR is a INTEGER_CST singleton. */
862 bool
863 range_int_cst_singleton_p (const value_range_base *vr)
865 return (range_int_cst_p (vr)
866 && tree_int_cst_equal (vr->min (), vr->max ()));
869 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
870 otherwise. We only handle additive operations and set NEG to true if the
871 symbol is negated and INV to the invariant part, if any. */
873 tree
874 get_single_symbol (tree t, bool *neg, tree *inv)
876 bool neg_;
877 tree inv_;
879 *inv = NULL_TREE;
880 *neg = false;
882 if (TREE_CODE (t) == PLUS_EXPR
883 || TREE_CODE (t) == POINTER_PLUS_EXPR
884 || TREE_CODE (t) == MINUS_EXPR)
886 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
888 neg_ = (TREE_CODE (t) == MINUS_EXPR);
889 inv_ = TREE_OPERAND (t, 0);
890 t = TREE_OPERAND (t, 1);
892 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
894 neg_ = false;
895 inv_ = TREE_OPERAND (t, 1);
896 t = TREE_OPERAND (t, 0);
898 else
899 return NULL_TREE;
901 else
903 neg_ = false;
904 inv_ = NULL_TREE;
907 if (TREE_CODE (t) == NEGATE_EXPR)
909 t = TREE_OPERAND (t, 0);
910 neg_ = !neg_;
913 if (TREE_CODE (t) != SSA_NAME)
914 return NULL_TREE;
916 if (inv_ && TREE_OVERFLOW_P (inv_))
917 inv_ = drop_tree_overflow (inv_);
919 *neg = neg_;
920 *inv = inv_;
921 return t;
924 /* The reverse operation: build a symbolic expression with TYPE
925 from symbol SYM, negated according to NEG, and invariant INV. */
927 static tree
928 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
930 const bool pointer_p = POINTER_TYPE_P (type);
931 tree t = sym;
933 if (neg)
934 t = build1 (NEGATE_EXPR, type, t);
936 if (integer_zerop (inv))
937 return t;
939 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
942 /* Return
943 1 if VAL < VAL2
944 0 if !(VAL < VAL2)
945 -2 if those are incomparable. */
947 operand_less_p (tree val, tree val2)
949 /* LT is folded faster than GE and others. Inline the common case. */
950 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
951 return tree_int_cst_lt (val, val2);
952 else
954 tree tcmp;
956 fold_defer_overflow_warnings ();
958 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
960 fold_undefer_and_ignore_overflow_warnings ();
962 if (!tcmp
963 || TREE_CODE (tcmp) != INTEGER_CST)
964 return -2;
966 if (!integer_zerop (tcmp))
967 return 1;
970 return 0;
973 /* Compare two values VAL1 and VAL2. Return
975 -2 if VAL1 and VAL2 cannot be compared at compile-time,
976 -1 if VAL1 < VAL2,
977 0 if VAL1 == VAL2,
978 +1 if VAL1 > VAL2, and
979 +2 if VAL1 != VAL2
981 This is similar to tree_int_cst_compare but supports pointer values
982 and values that cannot be compared at compile time.
984 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
985 true if the return value is only valid if we assume that signed
986 overflow is undefined. */
989 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
991 if (val1 == val2)
992 return 0;
994 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
995 both integers. */
996 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
997 == POINTER_TYPE_P (TREE_TYPE (val2)));
999 /* Convert the two values into the same type. This is needed because
1000 sizetype causes sign extension even for unsigned types. */
1001 val2 = fold_convert (TREE_TYPE (val1), val2);
1002 STRIP_USELESS_TYPE_CONVERSION (val2);
1004 const bool overflow_undefined
1005 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1006 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1007 tree inv1, inv2;
1008 bool neg1, neg2;
1009 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1010 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1012 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1013 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1014 if (sym1 && sym2)
1016 /* Both values must use the same name with the same sign. */
1017 if (sym1 != sym2 || neg1 != neg2)
1018 return -2;
1020 /* [-]NAME + CST == [-]NAME + CST. */
1021 if (inv1 == inv2)
1022 return 0;
1024 /* If overflow is defined we cannot simplify more. */
1025 if (!overflow_undefined)
1026 return -2;
1028 if (strict_overflow_p != NULL
1029 /* Symbolic range building sets TREE_NO_WARNING to declare
1030 that overflow doesn't happen. */
1031 && (!inv1 || !TREE_NO_WARNING (val1))
1032 && (!inv2 || !TREE_NO_WARNING (val2)))
1033 *strict_overflow_p = true;
1035 if (!inv1)
1036 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1037 if (!inv2)
1038 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1040 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
1041 TYPE_SIGN (TREE_TYPE (val1)));
1044 const bool cst1 = is_gimple_min_invariant (val1);
1045 const bool cst2 = is_gimple_min_invariant (val2);
1047 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1048 it might be possible to say something depending on the constants. */
1049 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1051 if (!overflow_undefined)
1052 return -2;
1054 if (strict_overflow_p != NULL
1055 /* Symbolic range building sets TREE_NO_WARNING to declare
1056 that overflow doesn't happen. */
1057 && (!sym1 || !TREE_NO_WARNING (val1))
1058 && (!sym2 || !TREE_NO_WARNING (val2)))
1059 *strict_overflow_p = true;
1061 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1062 tree cst = cst1 ? val1 : val2;
1063 tree inv = cst1 ? inv2 : inv1;
1065 /* Compute the difference between the constants. If it overflows or
1066 underflows, this means that we can trivially compare the NAME with
1067 it and, consequently, the two values with each other. */
1068 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
1069 if (wi::cmp (0, wi::to_wide (inv), sgn)
1070 != wi::cmp (diff, wi::to_wide (cst), sgn))
1072 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
1073 return cst1 ? res : -res;
1076 return -2;
1079 /* We cannot say anything more for non-constants. */
1080 if (!cst1 || !cst2)
1081 return -2;
1083 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1085 /* We cannot compare overflowed values. */
1086 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1087 return -2;
1089 if (TREE_CODE (val1) == INTEGER_CST
1090 && TREE_CODE (val2) == INTEGER_CST)
1091 return tree_int_cst_compare (val1, val2);
1093 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1095 if (known_eq (wi::to_poly_widest (val1),
1096 wi::to_poly_widest (val2)))
1097 return 0;
1098 if (known_lt (wi::to_poly_widest (val1),
1099 wi::to_poly_widest (val2)))
1100 return -1;
1101 if (known_gt (wi::to_poly_widest (val1),
1102 wi::to_poly_widest (val2)))
1103 return 1;
1106 return -2;
1108 else
1110 tree t;
1112 /* First see if VAL1 and VAL2 are not the same. */
1113 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1114 return 0;
1116 /* If VAL1 is a lower address than VAL2, return -1. */
1117 if (operand_less_p (val1, val2) == 1)
1118 return -1;
1120 /* If VAL1 is a higher address than VAL2, return +1. */
1121 if (operand_less_p (val2, val1) == 1)
1122 return 1;
1124 /* If VAL1 is different than VAL2, return +2.
1125 For integer constants we either have already returned -1 or 1
1126 or they are equivalent. We still might succeed in proving
1127 something about non-trivial operands. */
1128 if (TREE_CODE (val1) != INTEGER_CST
1129 || TREE_CODE (val2) != INTEGER_CST)
1131 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1132 if (t && integer_onep (t))
1133 return 2;
1136 return -2;
1140 /* Compare values like compare_values_warnv. */
1143 compare_values (tree val1, tree val2)
1145 bool sop;
1146 return compare_values_warnv (val1, val2, &sop);
1150 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1151 0 if VAL is not inside [MIN, MAX],
1152 -2 if we cannot tell either way.
1154 Benchmark compile/20001226-1.c compilation time after changing this
1155 function. */
1158 value_inside_range (tree val, tree min, tree max)
1160 int cmp1, cmp2;
1162 cmp1 = operand_less_p (val, min);
1163 if (cmp1 == -2)
1164 return -2;
1165 if (cmp1 == 1)
1166 return 0;
1168 cmp2 = operand_less_p (max, val);
1169 if (cmp2 == -2)
1170 return -2;
1172 return !cmp2;
1176 /* Return TRUE if *VR includes the value zero. */
1178 bool
1179 range_includes_zero_p (const value_range_base *vr)
1181 if (vr->varying_p () || vr->undefined_p ())
1182 return true;
1183 tree zero = build_int_cst (vr->type (), 0);
1184 return vr->may_contain_p (zero);
1187 /* If *VR has a value range that is a single constant value return that,
1188 otherwise return NULL_TREE.
1190 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1191 is not the best name. */
1193 tree
1194 value_range_constant_singleton (const value_range_base *vr)
1196 tree result = NULL;
1197 if (vr->singleton_p (&result))
1198 return result;
1199 return NULL;
1202 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1204 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1206 Return TRUE if VR was a constant range and we were able to compute
1207 the bit masks. */
1209 bool
1210 vrp_set_zero_nonzero_bits (const tree expr_type,
1211 const value_range_base *vr,
1212 wide_int *may_be_nonzero,
1213 wide_int *must_be_nonzero)
1215 if (!range_int_cst_p (vr))
1217 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1218 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1219 return false;
1221 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1222 wi::to_wide (vr->min ()),
1223 wi::to_wide (vr->max ()),
1224 *may_be_nonzero, *must_be_nonzero);
1225 return true;
1228 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1229 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1230 false otherwise. If *AR can be represented with a single range
1231 *VR1 will be VR_UNDEFINED. */
1233 static bool
1234 ranges_from_anti_range (const value_range_base *ar,
1235 value_range_base *vr0, value_range_base *vr1)
1237 tree type = ar->type ();
1239 vr0->set_undefined ();
1240 vr1->set_undefined ();
1242 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1243 [A+1, +INF]. Not sure if this helps in practice, though. */
1245 if (ar->kind () != VR_ANTI_RANGE
1246 || TREE_CODE (ar->min ()) != INTEGER_CST
1247 || TREE_CODE (ar->max ()) != INTEGER_CST
1248 || !vrp_val_min (type)
1249 || !vrp_val_max (type))
1250 return false;
1252 if (tree_int_cst_lt (vrp_val_min (type), ar->min ()))
1253 vr0->set (VR_RANGE,
1254 vrp_val_min (type),
1255 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1256 if (tree_int_cst_lt (ar->max (), vrp_val_max (type)))
1257 vr1->set (VR_RANGE,
1258 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1259 vrp_val_max (type));
1260 if (vr0->undefined_p ())
1262 *vr0 = *vr1;
1263 vr1->set_undefined ();
1266 return !vr0->undefined_p ();
1269 /* Extract the components of a value range into a pair of wide ints in
1270 [WMIN, WMAX].
1272 If the value range is anything but a VR_*RANGE of constants, the
1273 resulting wide ints are set to [-MIN, +MAX] for the type. */
1275 static void inline
1276 extract_range_into_wide_ints (const value_range_base *vr,
1277 signop sign, unsigned prec,
1278 wide_int &wmin, wide_int &wmax)
1280 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1281 if (range_int_cst_p (vr))
1283 wmin = wi::to_wide (vr->min ());
1284 wmax = wi::to_wide (vr->max ());
1286 else
1288 wmin = wi::min_value (prec, sign);
1289 wmax = wi::max_value (prec, sign);
1293 /* Value range wrapper for wide_int_range_multiplicative_op:
1295 *VR = *VR0 .CODE. *VR1. */
1297 static void
1298 extract_range_from_multiplicative_op (value_range_base *vr,
1299 enum tree_code code,
1300 const value_range_base *vr0,
1301 const value_range_base *vr1)
1303 gcc_assert (code == MULT_EXPR
1304 || code == TRUNC_DIV_EXPR
1305 || code == FLOOR_DIV_EXPR
1306 || code == CEIL_DIV_EXPR
1307 || code == EXACT_DIV_EXPR
1308 || code == ROUND_DIV_EXPR
1309 || code == RSHIFT_EXPR
1310 || code == LSHIFT_EXPR);
1311 gcc_assert (vr0->kind () == VR_RANGE
1312 && vr0->kind () == vr1->kind ());
1314 tree type = vr0->type ();
1315 wide_int res_lb, res_ub;
1316 wide_int vr0_lb = wi::to_wide (vr0->min ());
1317 wide_int vr0_ub = wi::to_wide (vr0->max ());
1318 wide_int vr1_lb = wi::to_wide (vr1->min ());
1319 wide_int vr1_ub = wi::to_wide (vr1->max ());
1320 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1321 unsigned prec = TYPE_PRECISION (type);
1323 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1324 code, TYPE_SIGN (type), prec,
1325 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1326 overflow_undefined))
1327 vr->set_and_canonicalize (VR_RANGE,
1328 wide_int_to_tree (type, res_lb),
1329 wide_int_to_tree (type, res_ub));
1330 else
1331 vr->set_varying ();
1334 /* If BOUND will include a symbolic bound, adjust it accordingly,
1335 otherwise leave it as is.
1337 CODE is the original operation that combined the bounds (PLUS_EXPR
1338 or MINUS_EXPR).
1340 TYPE is the type of the original operation.
1342 SYM_OPn is the symbolic for OPn if it has a symbolic.
1344 NEG_OPn is TRUE if the OPn was negated. */
1346 static void
1347 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1348 tree sym_op0, tree sym_op1,
1349 bool neg_op0, bool neg_op1)
1351 bool minus_p = (code == MINUS_EXPR);
1352 /* If the result bound is constant, we're done; otherwise, build the
1353 symbolic lower bound. */
1354 if (sym_op0 == sym_op1)
1356 else if (sym_op0)
1357 bound = build_symbolic_expr (type, sym_op0,
1358 neg_op0, bound);
1359 else if (sym_op1)
1361 /* We may not negate if that might introduce
1362 undefined overflow. */
1363 if (!minus_p
1364 || neg_op1
1365 || TYPE_OVERFLOW_WRAPS (type))
1366 bound = build_symbolic_expr (type, sym_op1,
1367 neg_op1 ^ minus_p, bound);
1368 else
1369 bound = NULL_TREE;
1373 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1374 int bound according to CODE. CODE is the operation combining the
1375 bound (either a PLUS_EXPR or a MINUS_EXPR).
1377 TYPE is the type of the combine operation.
1379 WI is the wide int to store the result.
1381 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1382 if over/underflow occurred. */
1384 static void
1385 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1386 tree type, tree op0, tree op1)
1388 bool minus_p = (code == MINUS_EXPR);
1389 const signop sgn = TYPE_SIGN (type);
1390 const unsigned int prec = TYPE_PRECISION (type);
1392 /* Combine the bounds, if any. */
1393 if (op0 && op1)
1395 if (minus_p)
1396 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1397 else
1398 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1400 else if (op0)
1401 wi = wi::to_wide (op0);
1402 else if (op1)
1404 if (minus_p)
1405 wi = wi::neg (wi::to_wide (op1), &ovf);
1406 else
1407 wi = wi::to_wide (op1);
1409 else
1410 wi = wi::shwi (0, prec);
1413 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1414 put the result in VR.
1416 TYPE is the type of the range.
1418 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1419 occurred while originally calculating WMIN or WMAX. -1 indicates
1420 underflow. +1 indicates overflow. 0 indicates neither. */
1422 static void
1423 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1424 tree type,
1425 const wide_int &wmin, const wide_int &wmax,
1426 wi::overflow_type min_ovf,
1427 wi::overflow_type max_ovf)
1429 const signop sgn = TYPE_SIGN (type);
1430 const unsigned int prec = TYPE_PRECISION (type);
1432 /* For one bit precision if max < min, then the swapped
1433 range covers all values. */
1434 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1436 kind = VR_VARYING;
1437 return;
1440 if (TYPE_OVERFLOW_WRAPS (type))
1442 /* If overflow wraps, truncate the values and adjust the
1443 range kind and bounds appropriately. */
1444 wide_int tmin = wide_int::from (wmin, prec, sgn);
1445 wide_int tmax = wide_int::from (wmax, prec, sgn);
1446 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1448 /* If the limits are swapped, we wrapped around and cover
1449 the entire range. We have a similar check at the end of
1450 extract_range_from_binary_expr. */
1451 if (wi::gt_p (tmin, tmax, sgn))
1452 kind = VR_VARYING;
1453 else
1455 kind = VR_RANGE;
1456 /* No overflow or both overflow or underflow. The
1457 range kind stays VR_RANGE. */
1458 min = wide_int_to_tree (type, tmin);
1459 max = wide_int_to_tree (type, tmax);
1461 return;
1463 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1464 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1466 /* Min underflow or max overflow. The range kind
1467 changes to VR_ANTI_RANGE. */
1468 bool covers = false;
1469 wide_int tem = tmin;
1470 tmin = tmax + 1;
1471 if (wi::cmp (tmin, tmax, sgn) < 0)
1472 covers = true;
1473 tmax = tem - 1;
1474 if (wi::cmp (tmax, tem, sgn) > 0)
1475 covers = true;
1476 /* If the anti-range would cover nothing, drop to varying.
1477 Likewise if the anti-range bounds are outside of the
1478 types values. */
1479 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1481 kind = VR_VARYING;
1482 return;
1484 kind = VR_ANTI_RANGE;
1485 min = wide_int_to_tree (type, tmin);
1486 max = wide_int_to_tree (type, tmax);
1487 return;
1489 else
1491 /* Other underflow and/or overflow, drop to VR_VARYING. */
1492 kind = VR_VARYING;
1493 return;
1496 else
1498 /* If overflow does not wrap, saturate to the types min/max
1499 value. */
1500 wide_int type_min = wi::min_value (prec, sgn);
1501 wide_int type_max = wi::max_value (prec, sgn);
1502 kind = VR_RANGE;
1503 if (min_ovf == wi::OVF_UNDERFLOW)
1504 min = wide_int_to_tree (type, type_min);
1505 else if (min_ovf == wi::OVF_OVERFLOW)
1506 min = wide_int_to_tree (type, type_max);
1507 else
1508 min = wide_int_to_tree (type, wmin);
1510 if (max_ovf == wi::OVF_UNDERFLOW)
1511 max = wide_int_to_tree (type, type_min);
1512 else if (max_ovf == wi::OVF_OVERFLOW)
1513 max = wide_int_to_tree (type, type_max);
1514 else
1515 max = wide_int_to_tree (type, wmax);
1519 /* Extract range information from a binary operation CODE based on
1520 the ranges of each of its operands *VR0 and *VR1 with resulting
1521 type EXPR_TYPE. The resulting range is stored in *VR. */
1523 void
1524 extract_range_from_binary_expr (value_range_base *vr,
1525 enum tree_code code, tree expr_type,
1526 const value_range_base *vr0_,
1527 const value_range_base *vr1_)
1529 signop sign = TYPE_SIGN (expr_type);
1530 unsigned int prec = TYPE_PRECISION (expr_type);
1531 value_range_base vr0 = *vr0_, vr1 = *vr1_;
1532 value_range_base vrtem0, vrtem1;
1533 enum value_range_kind type;
1534 tree min = NULL_TREE, max = NULL_TREE;
1535 int cmp;
1537 if (!INTEGRAL_TYPE_P (expr_type)
1538 && !POINTER_TYPE_P (expr_type))
1540 vr->set_varying ();
1541 return;
1544 /* Not all binary expressions can be applied to ranges in a
1545 meaningful way. Handle only arithmetic operations. */
1546 if (code != PLUS_EXPR
1547 && code != MINUS_EXPR
1548 && code != POINTER_PLUS_EXPR
1549 && code != MULT_EXPR
1550 && code != TRUNC_DIV_EXPR
1551 && code != FLOOR_DIV_EXPR
1552 && code != CEIL_DIV_EXPR
1553 && code != EXACT_DIV_EXPR
1554 && code != ROUND_DIV_EXPR
1555 && code != TRUNC_MOD_EXPR
1556 && code != RSHIFT_EXPR
1557 && code != LSHIFT_EXPR
1558 && code != MIN_EXPR
1559 && code != MAX_EXPR
1560 && code != BIT_AND_EXPR
1561 && code != BIT_IOR_EXPR
1562 && code != BIT_XOR_EXPR)
1564 vr->set_varying ();
1565 return;
1568 /* If both ranges are UNDEFINED, so is the result. */
1569 if (vr0.undefined_p () && vr1.undefined_p ())
1571 vr->set_undefined ();
1572 return;
1574 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1575 code. At some point we may want to special-case operations that
1576 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1577 operand. */
1578 else if (vr0.undefined_p ())
1579 vr0.set_varying ();
1580 else if (vr1.undefined_p ())
1581 vr1.set_varying ();
1583 /* We get imprecise results from ranges_from_anti_range when
1584 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1585 range, but then we also need to hack up vrp_union. It's just
1586 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1587 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1589 vr->set_nonnull (expr_type);
1590 return;
1593 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1594 and express ~[] op X as ([]' op X) U ([]'' op X). */
1595 if (vr0.kind () == VR_ANTI_RANGE
1596 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1598 extract_range_from_binary_expr (vr, code, expr_type, &vrtem0, vr1_);
1599 if (!vrtem1.undefined_p ())
1601 value_range_base vrres;
1602 extract_range_from_binary_expr (&vrres, code, expr_type,
1603 &vrtem1, vr1_);
1604 vr->union_ (&vrres);
1606 return;
1608 /* Likewise for X op ~[]. */
1609 if (vr1.kind () == VR_ANTI_RANGE
1610 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1612 extract_range_from_binary_expr (vr, code, expr_type, vr0_, &vrtem0);
1613 if (!vrtem1.undefined_p ())
1615 value_range_base vrres;
1616 extract_range_from_binary_expr (&vrres, code, expr_type,
1617 vr0_, &vrtem1);
1618 vr->union_ (&vrres);
1620 return;
1623 /* The type of the resulting value range defaults to VR0.TYPE. */
1624 type = vr0.kind ();
1626 /* Refuse to operate on VARYING ranges, ranges of different kinds
1627 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1628 because we may be able to derive a useful range even if one of
1629 the operands is VR_VARYING or symbolic range. Similarly for
1630 divisions, MIN/MAX and PLUS/MINUS.
1632 TODO, we may be able to derive anti-ranges in some cases. */
1633 if (code != BIT_AND_EXPR
1634 && code != BIT_IOR_EXPR
1635 && code != TRUNC_DIV_EXPR
1636 && code != FLOOR_DIV_EXPR
1637 && code != CEIL_DIV_EXPR
1638 && code != EXACT_DIV_EXPR
1639 && code != ROUND_DIV_EXPR
1640 && code != TRUNC_MOD_EXPR
1641 && code != MIN_EXPR
1642 && code != MAX_EXPR
1643 && code != PLUS_EXPR
1644 && code != MINUS_EXPR
1645 && code != RSHIFT_EXPR
1646 && code != POINTER_PLUS_EXPR
1647 && (vr0.varying_p ()
1648 || vr1.varying_p ()
1649 || vr0.kind () != vr1.kind ()
1650 || vr0.symbolic_p ()
1651 || vr1.symbolic_p ()))
1653 vr->set_varying ();
1654 return;
1657 /* Now evaluate the expression to determine the new range. */
1658 if (POINTER_TYPE_P (expr_type))
1660 if (code == MIN_EXPR || code == MAX_EXPR)
1662 /* For MIN/MAX expressions with pointers, we only care about
1663 nullness, if both are non null, then the result is nonnull.
1664 If both are null, then the result is null. Otherwise they
1665 are varying. */
1666 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1667 vr->set_nonnull (expr_type);
1668 else if (range_is_null (&vr0) && range_is_null (&vr1))
1669 vr->set_null (expr_type);
1670 else
1671 vr->set_varying ();
1673 else if (code == POINTER_PLUS_EXPR)
1675 /* For pointer types, we are really only interested in asserting
1676 whether the expression evaluates to non-NULL. */
1677 if (!range_includes_zero_p (&vr0)
1678 || !range_includes_zero_p (&vr1))
1679 vr->set_nonnull (expr_type);
1680 else if (range_is_null (&vr0) && range_is_null (&vr1))
1681 vr->set_null (expr_type);
1682 else
1683 vr->set_varying ();
1685 else if (code == BIT_AND_EXPR)
1687 /* For pointer types, we are really only interested in asserting
1688 whether the expression evaluates to non-NULL. */
1689 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1690 vr->set_nonnull (expr_type);
1691 else if (range_is_null (&vr0) || range_is_null (&vr1))
1692 vr->set_null (expr_type);
1693 else
1694 vr->set_varying ();
1696 else
1697 vr->set_varying ();
1699 return;
1702 /* For integer ranges, apply the operation to each end of the
1703 range and see what we end up with. */
1704 if (code == PLUS_EXPR || code == MINUS_EXPR)
1706 /* This will normalize things such that calculating
1707 [0,0] - VR_VARYING is not dropped to varying, but is
1708 calculated as [MIN+1, MAX]. */
1709 if (vr0.varying_p ())
1710 vr0.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1711 if (vr1.varying_p ())
1712 vr1.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1714 const bool minus_p = (code == MINUS_EXPR);
1715 tree min_op0 = vr0.min ();
1716 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1717 tree max_op0 = vr0.max ();
1718 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1719 tree sym_min_op0 = NULL_TREE;
1720 tree sym_min_op1 = NULL_TREE;
1721 tree sym_max_op0 = NULL_TREE;
1722 tree sym_max_op1 = NULL_TREE;
1723 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1725 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1727 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1728 single-symbolic ranges, try to compute the precise resulting range,
1729 but only if we know that this resulting range will also be constant
1730 or single-symbolic. */
1731 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1732 && (TREE_CODE (min_op0) == INTEGER_CST
1733 || (sym_min_op0
1734 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1735 && (TREE_CODE (min_op1) == INTEGER_CST
1736 || (sym_min_op1
1737 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1738 && (!(sym_min_op0 && sym_min_op1)
1739 || (sym_min_op0 == sym_min_op1
1740 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1741 && (TREE_CODE (max_op0) == INTEGER_CST
1742 || (sym_max_op0
1743 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1744 && (TREE_CODE (max_op1) == INTEGER_CST
1745 || (sym_max_op1
1746 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1747 && (!(sym_max_op0 && sym_max_op1)
1748 || (sym_max_op0 == sym_max_op1
1749 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1751 wide_int wmin, wmax;
1752 wi::overflow_type min_ovf = wi::OVF_NONE;
1753 wi::overflow_type max_ovf = wi::OVF_NONE;
1755 /* Build the bounds. */
1756 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1757 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1759 /* If we have overflow for the constant part and the resulting
1760 range will be symbolic, drop to VR_VARYING. */
1761 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1762 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1764 vr->set_varying ();
1765 return;
1768 /* Adjust the range for possible overflow. */
1769 min = NULL_TREE;
1770 max = NULL_TREE;
1771 set_value_range_with_overflow (type, min, max, expr_type,
1772 wmin, wmax, min_ovf, max_ovf);
1773 if (type == VR_VARYING)
1775 vr->set_varying ();
1776 return;
1779 /* Build the symbolic bounds if needed. */
1780 adjust_symbolic_bound (min, code, expr_type,
1781 sym_min_op0, sym_min_op1,
1782 neg_min_op0, neg_min_op1);
1783 adjust_symbolic_bound (max, code, expr_type,
1784 sym_max_op0, sym_max_op1,
1785 neg_max_op0, neg_max_op1);
1787 else
1789 /* For other cases, for example if we have a PLUS_EXPR with two
1790 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1791 to compute a precise range for such a case.
1792 ??? General even mixed range kind operations can be expressed
1793 by for example transforming ~[3, 5] + [1, 2] to range-only
1794 operations and a union primitive:
1795 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1796 [-INF+1, 4] U [6, +INF(OVF)]
1797 though usually the union is not exactly representable with
1798 a single range or anti-range as the above is
1799 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1800 but one could use a scheme similar to equivalences for this. */
1801 vr->set_varying ();
1802 return;
1805 else if (code == MIN_EXPR
1806 || code == MAX_EXPR)
1808 wide_int wmin, wmax;
1809 wide_int vr0_min, vr0_max;
1810 wide_int vr1_min, vr1_max;
1811 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1812 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1813 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1814 vr0_min, vr0_max, vr1_min, vr1_max))
1815 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1816 wide_int_to_tree (expr_type, wmax));
1817 else
1818 vr->set_varying ();
1819 return;
1821 else if (code == MULT_EXPR)
1823 if (!range_int_cst_p (&vr0)
1824 || !range_int_cst_p (&vr1))
1826 vr->set_varying ();
1827 return;
1829 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1830 return;
1832 else if (code == RSHIFT_EXPR
1833 || code == LSHIFT_EXPR)
1835 if (range_int_cst_p (&vr1)
1836 && !wide_int_range_shift_undefined_p
1837 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1838 prec,
1839 wi::to_wide (vr1.min ()),
1840 wi::to_wide (vr1.max ())))
1842 if (code == RSHIFT_EXPR)
1844 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1845 useful ranges just from the shift count. E.g.
1846 x >> 63 for signed 64-bit x is always [-1, 0]. */
1847 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1848 vr0.set (VR_RANGE, vrp_val_min (expr_type),
1849 vrp_val_max (expr_type));
1850 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1851 return;
1853 else if (code == LSHIFT_EXPR
1854 && range_int_cst_p (&vr0))
1856 wide_int res_lb, res_ub;
1857 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1858 wi::to_wide (vr0.min ()),
1859 wi::to_wide (vr0.max ()),
1860 wi::to_wide (vr1.min ()),
1861 wi::to_wide (vr1.max ()),
1862 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1864 min = wide_int_to_tree (expr_type, res_lb);
1865 max = wide_int_to_tree (expr_type, res_ub);
1866 vr->set_and_canonicalize (VR_RANGE, min, max);
1867 return;
1871 vr->set_varying ();
1872 return;
1874 else if (code == TRUNC_DIV_EXPR
1875 || code == FLOOR_DIV_EXPR
1876 || code == CEIL_DIV_EXPR
1877 || code == EXACT_DIV_EXPR
1878 || code == ROUND_DIV_EXPR)
1880 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1881 wide_int wmin, wmax, extra_min, extra_max;
1882 bool extra_range_p;
1884 /* Special case explicit division by zero as undefined. */
1885 if (range_is_null (&vr1))
1887 vr->set_undefined ();
1888 return;
1891 /* First, normalize ranges into constants we can handle. Note
1892 that VR_ANTI_RANGE's of constants were already normalized
1893 before arriving here.
1895 NOTE: As a future improvement, we may be able to do better
1896 with mixed symbolic (anti-)ranges like [0, A]. See note in
1897 ranges_from_anti_range. */
1898 extract_range_into_wide_ints (&vr0, sign, prec,
1899 dividend_min, dividend_max);
1900 extract_range_into_wide_ints (&vr1, sign, prec,
1901 divisor_min, divisor_max);
1902 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1903 dividend_min, dividend_max,
1904 divisor_min, divisor_max,
1905 TYPE_OVERFLOW_UNDEFINED (expr_type),
1906 extra_range_p, extra_min, extra_max))
1908 vr->set_varying ();
1909 return;
1911 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1912 wide_int_to_tree (expr_type, wmax));
1913 if (extra_range_p)
1915 value_range_base
1916 extra_range (VR_RANGE, wide_int_to_tree (expr_type, extra_min),
1917 wide_int_to_tree (expr_type, extra_max));
1918 vr->union_ (&extra_range);
1920 return;
1922 else if (code == TRUNC_MOD_EXPR)
1924 if (range_is_null (&vr1))
1926 vr->set_undefined ();
1927 return;
1929 wide_int wmin, wmax, tmp;
1930 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1931 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1932 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1933 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1934 vr0_min, vr0_max, vr1_min, vr1_max);
1935 min = wide_int_to_tree (expr_type, wmin);
1936 max = wide_int_to_tree (expr_type, wmax);
1937 vr->set (VR_RANGE, min, max);
1938 return;
1940 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1942 wide_int may_be_nonzero0, may_be_nonzero1;
1943 wide_int must_be_nonzero0, must_be_nonzero1;
1944 wide_int wmin, wmax;
1945 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1946 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1947 &may_be_nonzero0, &must_be_nonzero0);
1948 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1949 &may_be_nonzero1, &must_be_nonzero1);
1950 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1951 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1952 if (code == BIT_AND_EXPR)
1954 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1955 vr0_min, vr0_max,
1956 vr1_min, vr1_max,
1957 must_be_nonzero0,
1958 may_be_nonzero0,
1959 must_be_nonzero1,
1960 may_be_nonzero1))
1962 min = wide_int_to_tree (expr_type, wmin);
1963 max = wide_int_to_tree (expr_type, wmax);
1964 vr->set (VR_RANGE, min, max);
1966 else
1967 vr->set_varying ();
1968 return;
1970 else if (code == BIT_IOR_EXPR)
1972 if (wide_int_range_bit_ior (wmin, wmax, sign,
1973 vr0_min, vr0_max,
1974 vr1_min, vr1_max,
1975 must_be_nonzero0,
1976 may_be_nonzero0,
1977 must_be_nonzero1,
1978 may_be_nonzero1))
1980 min = wide_int_to_tree (expr_type, wmin);
1981 max = wide_int_to_tree (expr_type, wmax);
1982 vr->set (VR_RANGE, min, max);
1984 else
1985 vr->set_varying ();
1986 return;
1988 else if (code == BIT_XOR_EXPR)
1990 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
1991 must_be_nonzero0,
1992 may_be_nonzero0,
1993 must_be_nonzero1,
1994 may_be_nonzero1))
1996 min = wide_int_to_tree (expr_type, wmin);
1997 max = wide_int_to_tree (expr_type, wmax);
1998 vr->set (VR_RANGE, min, max);
2000 else
2001 vr->set_varying ();
2002 return;
2005 else
2006 gcc_unreachable ();
2008 /* If either MIN or MAX overflowed, then set the resulting range to
2009 VARYING. */
2010 if (min == NULL_TREE
2011 || TREE_OVERFLOW_P (min)
2012 || max == NULL_TREE
2013 || TREE_OVERFLOW_P (max))
2015 vr->set_varying ();
2016 return;
2019 /* We punt for [-INF, +INF].
2020 We learn nothing when we have INF on both sides.
2021 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
2022 if (vrp_val_is_min (min) && vrp_val_is_max (max))
2024 vr->set_varying ();
2025 return;
2028 cmp = compare_values (min, max);
2029 if (cmp == -2 || cmp == 1)
2031 /* If the new range has its limits swapped around (MIN > MAX),
2032 then the operation caused one of them to wrap around, mark
2033 the new range VARYING. */
2034 vr->set_varying ();
2036 else
2037 vr->set (type, min, max);
2040 /* Extract range information from a unary operation CODE based on
2041 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2042 The resulting range is stored in *VR. */
2044 void
2045 extract_range_from_unary_expr (value_range_base *vr,
2046 enum tree_code code, tree type,
2047 const value_range_base *vr0_, tree op0_type)
2049 signop sign = TYPE_SIGN (type);
2050 unsigned int prec = TYPE_PRECISION (type);
2051 value_range_base vr0 = *vr0_;
2052 value_range_base vrtem0, vrtem1;
2054 /* VRP only operates on integral and pointer types. */
2055 if (!(INTEGRAL_TYPE_P (op0_type)
2056 || POINTER_TYPE_P (op0_type))
2057 || !(INTEGRAL_TYPE_P (type)
2058 || POINTER_TYPE_P (type)))
2060 vr->set_varying ();
2061 return;
2064 /* If VR0 is UNDEFINED, so is the result. */
2065 if (vr0.undefined_p ())
2067 vr->set_undefined ();
2068 return;
2071 /* Handle operations that we express in terms of others. */
2072 if (code == PAREN_EXPR)
2074 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
2075 *vr = vr0;
2076 return;
2078 else if (code == NEGATE_EXPR)
2080 /* -X is simply 0 - X, so re-use existing code that also handles
2081 anti-ranges fine. */
2082 value_range_base zero;
2083 zero.set (build_int_cst (type, 0));
2084 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &zero, &vr0);
2085 return;
2087 else if (code == BIT_NOT_EXPR)
2089 /* ~X is simply -1 - X, so re-use existing code that also handles
2090 anti-ranges fine. */
2091 value_range_base minusone;
2092 minusone.set (build_int_cst (type, -1));
2093 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &minusone, &vr0);
2094 return;
2097 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2098 and express op ~[] as (op []') U (op []''). */
2099 if (vr0.kind () == VR_ANTI_RANGE
2100 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2102 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2103 if (!vrtem1.undefined_p ())
2105 value_range_base vrres;
2106 extract_range_from_unary_expr (&vrres, code, type,
2107 &vrtem1, op0_type);
2108 vr->union_ (&vrres);
2110 return;
2113 if (CONVERT_EXPR_CODE_P (code))
2115 tree inner_type = op0_type;
2116 tree outer_type = type;
2118 /* If the expression involves a pointer, we are only interested in
2119 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2121 This may lose precision when converting (char *)~[0,2] to
2122 int, because we'll forget that the pointer can also not be 1
2123 or 2. In practice we don't care, as this is some idiot
2124 storing a magic constant to a pointer. */
2125 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2127 if (!range_includes_zero_p (&vr0))
2128 vr->set_nonnull (type);
2129 else if (range_is_null (&vr0))
2130 vr->set_null (type);
2131 else
2132 vr->set_varying ();
2133 return;
2136 /* The POINTER_TYPE_P code above will have dealt with all
2137 pointer anti-ranges. Any remaining anti-ranges at this point
2138 will be integer conversions from SSA names that will be
2139 normalized into VARYING. For instance: ~[x_55, x_55]. */
2140 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2141 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2143 /* NOTES: Previously we were returning VARYING for all symbolics, but
2144 we can do better by treating them as [-MIN, +MAX]. For
2145 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2146 we can return: ~[0x8000000, 0xffffffff7fffffff].
2148 We were also failing to convert ~[0,0] from char* to unsigned,
2149 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2150 wide_int vr0_min, vr0_max, wmin, wmax;
2151 signop inner_sign = TYPE_SIGN (inner_type);
2152 signop outer_sign = TYPE_SIGN (outer_type);
2153 unsigned inner_prec = TYPE_PRECISION (inner_type);
2154 unsigned outer_prec = TYPE_PRECISION (outer_type);
2155 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2156 vr0_min, vr0_max);
2157 if (wide_int_range_convert (wmin, wmax,
2158 inner_sign, inner_prec,
2159 outer_sign, outer_prec,
2160 vr0_min, vr0_max))
2162 tree min = wide_int_to_tree (outer_type, wmin);
2163 tree max = wide_int_to_tree (outer_type, wmax);
2164 vr->set_and_canonicalize (VR_RANGE, min, max);
2166 else
2167 vr->set_varying ();
2168 return;
2170 else if (code == ABS_EXPR)
2172 wide_int wmin, wmax;
2173 wide_int vr0_min, vr0_max;
2174 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2175 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2176 TYPE_OVERFLOW_UNDEFINED (type)))
2177 vr->set (VR_RANGE, wide_int_to_tree (type, wmin),
2178 wide_int_to_tree (type, wmax));
2179 else
2180 vr->set_varying ();
2181 return;
2184 /* For unhandled operations fall back to varying. */
2185 vr->set_varying ();
2186 return;
2189 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2190 create a new SSA name N and return the assertion assignment
2191 'N = ASSERT_EXPR <V, V OP W>'. */
2193 static gimple *
2194 build_assert_expr_for (tree cond, tree v)
2196 tree a;
2197 gassign *assertion;
2199 gcc_assert (TREE_CODE (v) == SSA_NAME
2200 && COMPARISON_CLASS_P (cond));
2202 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2203 assertion = gimple_build_assign (NULL_TREE, a);
2205 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2206 operand of the ASSERT_EXPR. Create it so the new name and the old one
2207 are registered in the replacement table so that we can fix the SSA web
2208 after adding all the ASSERT_EXPRs. */
2209 tree new_def = create_new_def_for (v, assertion, NULL);
2210 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2211 given we have to be able to fully propagate those out to re-create
2212 valid SSA when removing the asserts. */
2213 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2214 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2216 return assertion;
2220 /* Return false if EXPR is a predicate expression involving floating
2221 point values. */
2223 static inline bool
2224 fp_predicate (gimple *stmt)
2226 GIMPLE_CHECK (stmt, GIMPLE_COND);
2228 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2231 /* If the range of values taken by OP can be inferred after STMT executes,
2232 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2233 describes the inferred range. Return true if a range could be
2234 inferred. */
2236 bool
2237 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2239 *val_p = NULL_TREE;
2240 *comp_code_p = ERROR_MARK;
2242 /* Do not attempt to infer anything in names that flow through
2243 abnormal edges. */
2244 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2245 return false;
2247 /* If STMT is the last statement of a basic block with no normal
2248 successors, there is no point inferring anything about any of its
2249 operands. We would not be able to find a proper insertion point
2250 for the assertion, anyway. */
2251 if (stmt_ends_bb_p (stmt))
2253 edge_iterator ei;
2254 edge e;
2256 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2257 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2258 break;
2259 if (e == NULL)
2260 return false;
2263 if (infer_nonnull_range (stmt, op))
2265 *val_p = build_int_cst (TREE_TYPE (op), 0);
2266 *comp_code_p = NE_EXPR;
2267 return true;
2270 return false;
2274 void dump_asserts_for (FILE *, tree);
2275 void debug_asserts_for (tree);
2276 void dump_all_asserts (FILE *);
2277 void debug_all_asserts (void);
2279 /* Dump all the registered assertions for NAME to FILE. */
2281 void
2282 dump_asserts_for (FILE *file, tree name)
2284 assert_locus *loc;
2286 fprintf (file, "Assertions to be inserted for ");
2287 print_generic_expr (file, name);
2288 fprintf (file, "\n");
2290 loc = asserts_for[SSA_NAME_VERSION (name)];
2291 while (loc)
2293 fprintf (file, "\t");
2294 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2295 fprintf (file, "\n\tBB #%d", loc->bb->index);
2296 if (loc->e)
2298 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2299 loc->e->dest->index);
2300 dump_edge_info (file, loc->e, dump_flags, 0);
2302 fprintf (file, "\n\tPREDICATE: ");
2303 print_generic_expr (file, loc->expr);
2304 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2305 print_generic_expr (file, loc->val);
2306 fprintf (file, "\n\n");
2307 loc = loc->next;
2310 fprintf (file, "\n");
2314 /* Dump all the registered assertions for NAME to stderr. */
2316 DEBUG_FUNCTION void
2317 debug_asserts_for (tree name)
2319 dump_asserts_for (stderr, name);
2323 /* Dump all the registered assertions for all the names to FILE. */
2325 void
2326 dump_all_asserts (FILE *file)
2328 unsigned i;
2329 bitmap_iterator bi;
2331 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2332 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2333 dump_asserts_for (file, ssa_name (i));
2334 fprintf (file, "\n");
2338 /* Dump all the registered assertions for all the names to stderr. */
2340 DEBUG_FUNCTION void
2341 debug_all_asserts (void)
2343 dump_all_asserts (stderr);
2346 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2348 static void
2349 add_assert_info (vec<assert_info> &asserts,
2350 tree name, tree expr, enum tree_code comp_code, tree val)
2352 assert_info info;
2353 info.comp_code = comp_code;
2354 info.name = name;
2355 if (TREE_OVERFLOW_P (val))
2356 val = drop_tree_overflow (val);
2357 info.val = val;
2358 info.expr = expr;
2359 asserts.safe_push (info);
2360 if (dump_enabled_p ())
2361 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
2362 "Adding assert for %T from %T %s %T\n",
2363 name, expr, op_symbol_code (comp_code), val);
2366 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2367 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2368 E->DEST, then register this location as a possible insertion point
2369 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2371 BB, E and SI provide the exact insertion point for the new
2372 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2373 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2374 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2375 must not be NULL. */
2377 static void
2378 register_new_assert_for (tree name, tree expr,
2379 enum tree_code comp_code,
2380 tree val,
2381 basic_block bb,
2382 edge e,
2383 gimple_stmt_iterator si)
2385 assert_locus *n, *loc, *last_loc;
2386 basic_block dest_bb;
2388 gcc_checking_assert (bb == NULL || e == NULL);
2390 if (e == NULL)
2391 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2392 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2394 /* Never build an assert comparing against an integer constant with
2395 TREE_OVERFLOW set. This confuses our undefined overflow warning
2396 machinery. */
2397 if (TREE_OVERFLOW_P (val))
2398 val = drop_tree_overflow (val);
2400 /* The new assertion A will be inserted at BB or E. We need to
2401 determine if the new location is dominated by a previously
2402 registered location for A. If we are doing an edge insertion,
2403 assume that A will be inserted at E->DEST. Note that this is not
2404 necessarily true.
2406 If E is a critical edge, it will be split. But even if E is
2407 split, the new block will dominate the same set of blocks that
2408 E->DEST dominates.
2410 The reverse, however, is not true, blocks dominated by E->DEST
2411 will not be dominated by the new block created to split E. So,
2412 if the insertion location is on a critical edge, we will not use
2413 the new location to move another assertion previously registered
2414 at a block dominated by E->DEST. */
2415 dest_bb = (bb) ? bb : e->dest;
2417 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2418 VAL at a block dominating DEST_BB, then we don't need to insert a new
2419 one. Similarly, if the same assertion already exists at a block
2420 dominated by DEST_BB and the new location is not on a critical
2421 edge, then update the existing location for the assertion (i.e.,
2422 move the assertion up in the dominance tree).
2424 Note, this is implemented as a simple linked list because there
2425 should not be more than a handful of assertions registered per
2426 name. If this becomes a performance problem, a table hashed by
2427 COMP_CODE and VAL could be implemented. */
2428 loc = asserts_for[SSA_NAME_VERSION (name)];
2429 last_loc = loc;
2430 while (loc)
2432 if (loc->comp_code == comp_code
2433 && (loc->val == val
2434 || operand_equal_p (loc->val, val, 0))
2435 && (loc->expr == expr
2436 || operand_equal_p (loc->expr, expr, 0)))
2438 /* If E is not a critical edge and DEST_BB
2439 dominates the existing location for the assertion, move
2440 the assertion up in the dominance tree by updating its
2441 location information. */
2442 if ((e == NULL || !EDGE_CRITICAL_P (e))
2443 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2445 loc->bb = dest_bb;
2446 loc->e = e;
2447 loc->si = si;
2448 return;
2452 /* Update the last node of the list and move to the next one. */
2453 last_loc = loc;
2454 loc = loc->next;
2457 /* If we didn't find an assertion already registered for
2458 NAME COMP_CODE VAL, add a new one at the end of the list of
2459 assertions associated with NAME. */
2460 n = XNEW (struct assert_locus);
2461 n->bb = dest_bb;
2462 n->e = e;
2463 n->si = si;
2464 n->comp_code = comp_code;
2465 n->val = val;
2466 n->expr = expr;
2467 n->next = NULL;
2469 if (last_loc)
2470 last_loc->next = n;
2471 else
2472 asserts_for[SSA_NAME_VERSION (name)] = n;
2474 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2477 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2478 Extract a suitable test code and value and store them into *CODE_P and
2479 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2481 If no extraction was possible, return FALSE, otherwise return TRUE.
2483 If INVERT is true, then we invert the result stored into *CODE_P. */
2485 static bool
2486 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2487 tree cond_op0, tree cond_op1,
2488 bool invert, enum tree_code *code_p,
2489 tree *val_p)
2491 enum tree_code comp_code;
2492 tree val;
2494 /* Otherwise, we have a comparison of the form NAME COMP VAL
2495 or VAL COMP NAME. */
2496 if (name == cond_op1)
2498 /* If the predicate is of the form VAL COMP NAME, flip
2499 COMP around because we need to register NAME as the
2500 first operand in the predicate. */
2501 comp_code = swap_tree_comparison (cond_code);
2502 val = cond_op0;
2504 else if (name == cond_op0)
2506 /* The comparison is of the form NAME COMP VAL, so the
2507 comparison code remains unchanged. */
2508 comp_code = cond_code;
2509 val = cond_op1;
2511 else
2512 gcc_unreachable ();
2514 /* Invert the comparison code as necessary. */
2515 if (invert)
2516 comp_code = invert_tree_comparison (comp_code, 0);
2518 /* VRP only handles integral and pointer types. */
2519 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2520 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2521 return false;
2523 /* Do not register always-false predicates.
2524 FIXME: this works around a limitation in fold() when dealing with
2525 enumerations. Given 'enum { N1, N2 } x;', fold will not
2526 fold 'if (x > N2)' to 'if (0)'. */
2527 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2528 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2530 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2531 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2533 if (comp_code == GT_EXPR
2534 && (!max
2535 || compare_values (val, max) == 0))
2536 return false;
2538 if (comp_code == LT_EXPR
2539 && (!min
2540 || compare_values (val, min) == 0))
2541 return false;
2543 *code_p = comp_code;
2544 *val_p = val;
2545 return true;
2548 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2549 (otherwise return VAL). VAL and MASK must be zero-extended for
2550 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2551 (to transform signed values into unsigned) and at the end xor
2552 SGNBIT back. */
2554 static wide_int
2555 masked_increment (const wide_int &val_in, const wide_int &mask,
2556 const wide_int &sgnbit, unsigned int prec)
2558 wide_int bit = wi::one (prec), res;
2559 unsigned int i;
2561 wide_int val = val_in ^ sgnbit;
2562 for (i = 0; i < prec; i++, bit += bit)
2564 res = mask;
2565 if ((res & bit) == 0)
2566 continue;
2567 res = bit - 1;
2568 res = wi::bit_and_not (val + bit, res);
2569 res &= mask;
2570 if (wi::gtu_p (res, val))
2571 return res ^ sgnbit;
2573 return val ^ sgnbit;
2576 /* Helper for overflow_comparison_p
2578 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2579 OP1's defining statement to see if it ultimately has the form
2580 OP0 CODE (OP0 PLUS INTEGER_CST)
2582 If so, return TRUE indicating this is an overflow test and store into
2583 *NEW_CST an updated constant that can be used in a narrowed range test.
2585 REVERSED indicates if the comparison was originally:
2587 OP1 CODE' OP0.
2589 This affects how we build the updated constant. */
2591 static bool
2592 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2593 bool follow_assert_exprs, bool reversed, tree *new_cst)
2595 /* See if this is a relational operation between two SSA_NAMES with
2596 unsigned, overflow wrapping values. If so, check it more deeply. */
2597 if ((code == LT_EXPR || code == LE_EXPR
2598 || code == GE_EXPR || code == GT_EXPR)
2599 && TREE_CODE (op0) == SSA_NAME
2600 && TREE_CODE (op1) == SSA_NAME
2601 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2602 && TYPE_UNSIGNED (TREE_TYPE (op0))
2603 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2605 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2607 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2608 if (follow_assert_exprs)
2610 while (gimple_assign_single_p (op1_def)
2611 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2613 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2614 if (TREE_CODE (op1) != SSA_NAME)
2615 break;
2616 op1_def = SSA_NAME_DEF_STMT (op1);
2620 /* Now look at the defining statement of OP1 to see if it adds
2621 or subtracts a nonzero constant from another operand. */
2622 if (op1_def
2623 && is_gimple_assign (op1_def)
2624 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2625 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2626 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2628 tree target = gimple_assign_rhs1 (op1_def);
2630 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2631 for one where TARGET appears on the RHS. */
2632 if (follow_assert_exprs)
2634 /* Now see if that "other operand" is op0, following the chain
2635 of ASSERT_EXPRs if necessary. */
2636 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2637 while (op0 != target
2638 && gimple_assign_single_p (op0_def)
2639 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2641 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2642 if (TREE_CODE (op0) != SSA_NAME)
2643 break;
2644 op0_def = SSA_NAME_DEF_STMT (op0);
2648 /* If we did not find our target SSA_NAME, then this is not
2649 an overflow test. */
2650 if (op0 != target)
2651 return false;
2653 tree type = TREE_TYPE (op0);
2654 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2655 tree inc = gimple_assign_rhs2 (op1_def);
2656 if (reversed)
2657 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2658 else
2659 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2660 return true;
2663 return false;
2666 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2667 OP1's defining statement to see if it ultimately has the form
2668 OP0 CODE (OP0 PLUS INTEGER_CST)
2670 If so, return TRUE indicating this is an overflow test and store into
2671 *NEW_CST an updated constant that can be used in a narrowed range test.
2673 These statements are left as-is in the IL to facilitate discovery of
2674 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2675 the alternate range representation is often useful within VRP. */
2677 bool
2678 overflow_comparison_p (tree_code code, tree name, tree val,
2679 bool use_equiv_p, tree *new_cst)
2681 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2682 return true;
2683 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2684 use_equiv_p, true, new_cst);
2688 /* Try to register an edge assertion for SSA name NAME on edge E for
2689 the condition COND contributing to the conditional jump pointed to by BSI.
2690 Invert the condition COND if INVERT is true. */
2692 static void
2693 register_edge_assert_for_2 (tree name, edge e,
2694 enum tree_code cond_code,
2695 tree cond_op0, tree cond_op1, bool invert,
2696 vec<assert_info> &asserts)
2698 tree val;
2699 enum tree_code comp_code;
2701 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2702 cond_op0,
2703 cond_op1,
2704 invert, &comp_code, &val))
2705 return;
2707 /* Queue the assert. */
2708 tree x;
2709 if (overflow_comparison_p (comp_code, name, val, false, &x))
2711 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2712 ? GT_EXPR : LE_EXPR);
2713 add_assert_info (asserts, name, name, new_code, x);
2715 add_assert_info (asserts, name, name, comp_code, val);
2717 /* In the case of NAME <= CST and NAME being defined as
2718 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2719 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2720 This catches range and anti-range tests. */
2721 if ((comp_code == LE_EXPR
2722 || comp_code == GT_EXPR)
2723 && TREE_CODE (val) == INTEGER_CST
2724 && TYPE_UNSIGNED (TREE_TYPE (val)))
2726 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2727 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2729 /* Extract CST2 from the (optional) addition. */
2730 if (is_gimple_assign (def_stmt)
2731 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2733 name2 = gimple_assign_rhs1 (def_stmt);
2734 cst2 = gimple_assign_rhs2 (def_stmt);
2735 if (TREE_CODE (name2) == SSA_NAME
2736 && TREE_CODE (cst2) == INTEGER_CST)
2737 def_stmt = SSA_NAME_DEF_STMT (name2);
2740 /* Extract NAME2 from the (optional) sign-changing cast. */
2741 if (gimple_assign_cast_p (def_stmt))
2743 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2744 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2745 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2746 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2747 name3 = gimple_assign_rhs1 (def_stmt);
2750 /* If name3 is used later, create an ASSERT_EXPR for it. */
2751 if (name3 != NULL_TREE
2752 && TREE_CODE (name3) == SSA_NAME
2753 && (cst2 == NULL_TREE
2754 || TREE_CODE (cst2) == INTEGER_CST)
2755 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2757 tree tmp;
2759 /* Build an expression for the range test. */
2760 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2761 if (cst2 != NULL_TREE)
2762 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2763 add_assert_info (asserts, name3, tmp, comp_code, val);
2766 /* If name2 is used later, create an ASSERT_EXPR for it. */
2767 if (name2 != NULL_TREE
2768 && TREE_CODE (name2) == SSA_NAME
2769 && TREE_CODE (cst2) == INTEGER_CST
2770 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2772 tree tmp;
2774 /* Build an expression for the range test. */
2775 tmp = name2;
2776 if (TREE_TYPE (name) != TREE_TYPE (name2))
2777 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2778 if (cst2 != NULL_TREE)
2779 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2780 add_assert_info (asserts, name2, tmp, comp_code, val);
2784 /* In the case of post-in/decrement tests like if (i++) ... and uses
2785 of the in/decremented value on the edge the extra name we want to
2786 assert for is not on the def chain of the name compared. Instead
2787 it is in the set of use stmts.
2788 Similar cases happen for conversions that were simplified through
2789 fold_{sign_changed,widened}_comparison. */
2790 if ((comp_code == NE_EXPR
2791 || comp_code == EQ_EXPR)
2792 && TREE_CODE (val) == INTEGER_CST)
2794 imm_use_iterator ui;
2795 gimple *use_stmt;
2796 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2798 if (!is_gimple_assign (use_stmt))
2799 continue;
2801 /* Cut off to use-stmts that are dominating the predecessor. */
2802 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2803 continue;
2805 tree name2 = gimple_assign_lhs (use_stmt);
2806 if (TREE_CODE (name2) != SSA_NAME)
2807 continue;
2809 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2810 tree cst;
2811 if (code == PLUS_EXPR
2812 || code == MINUS_EXPR)
2814 cst = gimple_assign_rhs2 (use_stmt);
2815 if (TREE_CODE (cst) != INTEGER_CST)
2816 continue;
2817 cst = int_const_binop (code, val, cst);
2819 else if (CONVERT_EXPR_CODE_P (code))
2821 /* For truncating conversions we cannot record
2822 an inequality. */
2823 if (comp_code == NE_EXPR
2824 && (TYPE_PRECISION (TREE_TYPE (name2))
2825 < TYPE_PRECISION (TREE_TYPE (name))))
2826 continue;
2827 cst = fold_convert (TREE_TYPE (name2), val);
2829 else
2830 continue;
2832 if (TREE_OVERFLOW_P (cst))
2833 cst = drop_tree_overflow (cst);
2834 add_assert_info (asserts, name2, name2, comp_code, cst);
2838 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2839 && TREE_CODE (val) == INTEGER_CST)
2841 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2842 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2843 tree val2 = NULL_TREE;
2844 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2845 wide_int mask = wi::zero (prec);
2846 unsigned int nprec = prec;
2847 enum tree_code rhs_code = ERROR_MARK;
2849 if (is_gimple_assign (def_stmt))
2850 rhs_code = gimple_assign_rhs_code (def_stmt);
2852 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2853 assert that A != CST1 -+ CST2. */
2854 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2855 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2857 tree op0 = gimple_assign_rhs1 (def_stmt);
2858 tree op1 = gimple_assign_rhs2 (def_stmt);
2859 if (TREE_CODE (op0) == SSA_NAME
2860 && TREE_CODE (op1) == INTEGER_CST)
2862 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2863 ? MINUS_EXPR : PLUS_EXPR);
2864 op1 = int_const_binop (reverse_op, val, op1);
2865 if (TREE_OVERFLOW (op1))
2866 op1 = drop_tree_overflow (op1);
2867 add_assert_info (asserts, op0, op0, comp_code, op1);
2871 /* Add asserts for NAME cmp CST and NAME being defined
2872 as NAME = (int) NAME2. */
2873 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2874 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2875 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2876 && gimple_assign_cast_p (def_stmt))
2878 name2 = gimple_assign_rhs1 (def_stmt);
2879 if (CONVERT_EXPR_CODE_P (rhs_code)
2880 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2881 && TYPE_UNSIGNED (TREE_TYPE (name2))
2882 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2883 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2884 || !tree_int_cst_equal (val,
2885 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2887 tree tmp, cst;
2888 enum tree_code new_comp_code = comp_code;
2890 cst = fold_convert (TREE_TYPE (name2),
2891 TYPE_MIN_VALUE (TREE_TYPE (val)));
2892 /* Build an expression for the range test. */
2893 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2894 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2895 fold_convert (TREE_TYPE (name2), val));
2896 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2898 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2899 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2900 build_int_cst (TREE_TYPE (name2), 1));
2902 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2906 /* Add asserts for NAME cmp CST and NAME being defined as
2907 NAME = NAME2 >> CST2.
2909 Extract CST2 from the right shift. */
2910 if (rhs_code == RSHIFT_EXPR)
2912 name2 = gimple_assign_rhs1 (def_stmt);
2913 cst2 = gimple_assign_rhs2 (def_stmt);
2914 if (TREE_CODE (name2) == SSA_NAME
2915 && tree_fits_uhwi_p (cst2)
2916 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2917 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2918 && type_has_mode_precision_p (TREE_TYPE (val)))
2920 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2921 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2924 if (val2 != NULL_TREE
2925 && TREE_CODE (val2) == INTEGER_CST
2926 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2927 TREE_TYPE (val),
2928 val2, cst2), val))
2930 enum tree_code new_comp_code = comp_code;
2931 tree tmp, new_val;
2933 tmp = name2;
2934 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2936 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2938 tree type = build_nonstandard_integer_type (prec, 1);
2939 tmp = build1 (NOP_EXPR, type, name2);
2940 val2 = fold_convert (type, val2);
2942 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2943 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2944 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2946 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2948 wide_int minval
2949 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2950 new_val = val2;
2951 if (minval == wi::to_wide (new_val))
2952 new_val = NULL_TREE;
2954 else
2956 wide_int maxval
2957 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2958 mask |= wi::to_wide (val2);
2959 if (wi::eq_p (mask, maxval))
2960 new_val = NULL_TREE;
2961 else
2962 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2965 if (new_val)
2966 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2969 /* If we have a conversion that doesn't change the value of the source
2970 simply register the same assert for it. */
2971 if (CONVERT_EXPR_CODE_P (rhs_code))
2973 wide_int rmin, rmax;
2974 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2975 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2976 && int_fits_type_p (val, TREE_TYPE (rhs1))
2977 && ((TYPE_PRECISION (TREE_TYPE (name))
2978 > TYPE_PRECISION (TREE_TYPE (rhs1)))
2979 || (get_range_info (rhs1, &rmin, &rmax) == VR_RANGE
2980 && wi::fits_to_tree_p (rmin, TREE_TYPE (name))
2981 && wi::fits_to_tree_p (rmax, TREE_TYPE (name)))))
2982 add_assert_info (asserts, rhs1, rhs1,
2983 comp_code, fold_convert (TREE_TYPE (rhs1), val));
2986 /* Add asserts for NAME cmp CST and NAME being defined as
2987 NAME = NAME2 & CST2.
2989 Extract CST2 from the and.
2991 Also handle
2992 NAME = (unsigned) NAME2;
2993 casts where NAME's type is unsigned and has smaller precision
2994 than NAME2's type as if it was NAME = NAME2 & MASK. */
2995 names[0] = NULL_TREE;
2996 names[1] = NULL_TREE;
2997 cst2 = NULL_TREE;
2998 if (rhs_code == BIT_AND_EXPR
2999 || (CONVERT_EXPR_CODE_P (rhs_code)
3000 && INTEGRAL_TYPE_P (TREE_TYPE (val))
3001 && TYPE_UNSIGNED (TREE_TYPE (val))
3002 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
3003 > prec))
3005 name2 = gimple_assign_rhs1 (def_stmt);
3006 if (rhs_code == BIT_AND_EXPR)
3007 cst2 = gimple_assign_rhs2 (def_stmt);
3008 else
3010 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
3011 nprec = TYPE_PRECISION (TREE_TYPE (name2));
3013 if (TREE_CODE (name2) == SSA_NAME
3014 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3015 && TREE_CODE (cst2) == INTEGER_CST
3016 && !integer_zerop (cst2)
3017 && (nprec > 1
3018 || TYPE_UNSIGNED (TREE_TYPE (val))))
3020 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
3021 if (gimple_assign_cast_p (def_stmt2))
3023 names[1] = gimple_assign_rhs1 (def_stmt2);
3024 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
3025 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
3026 || (TYPE_PRECISION (TREE_TYPE (name2))
3027 != TYPE_PRECISION (TREE_TYPE (names[1]))))
3028 names[1] = NULL_TREE;
3030 names[0] = name2;
3033 if (names[0] || names[1])
3035 wide_int minv, maxv, valv, cst2v;
3036 wide_int tem, sgnbit;
3037 bool valid_p = false, valn, cst2n;
3038 enum tree_code ccode = comp_code;
3040 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
3041 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
3042 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
3043 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
3044 /* If CST2 doesn't have most significant bit set,
3045 but VAL is negative, we have comparison like
3046 if ((x & 0x123) > -4) (always true). Just give up. */
3047 if (!cst2n && valn)
3048 ccode = ERROR_MARK;
3049 if (cst2n)
3050 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3051 else
3052 sgnbit = wi::zero (nprec);
3053 minv = valv & cst2v;
3054 switch (ccode)
3056 case EQ_EXPR:
3057 /* Minimum unsigned value for equality is VAL & CST2
3058 (should be equal to VAL, otherwise we probably should
3059 have folded the comparison into false) and
3060 maximum unsigned value is VAL | ~CST2. */
3061 maxv = valv | ~cst2v;
3062 valid_p = true;
3063 break;
3065 case NE_EXPR:
3066 tem = valv | ~cst2v;
3067 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3068 if (valv == 0)
3070 cst2n = false;
3071 sgnbit = wi::zero (nprec);
3072 goto gt_expr;
3074 /* If (VAL | ~CST2) is all ones, handle it as
3075 (X & CST2) < VAL. */
3076 if (tem == -1)
3078 cst2n = false;
3079 valn = false;
3080 sgnbit = wi::zero (nprec);
3081 goto lt_expr;
3083 if (!cst2n && wi::neg_p (cst2v))
3084 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3085 if (sgnbit != 0)
3087 if (valv == sgnbit)
3089 cst2n = true;
3090 valn = true;
3091 goto gt_expr;
3093 if (tem == wi::mask (nprec - 1, false, nprec))
3095 cst2n = true;
3096 goto lt_expr;
3098 if (!cst2n)
3099 sgnbit = wi::zero (nprec);
3101 break;
3103 case GE_EXPR:
3104 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3105 is VAL and maximum unsigned value is ~0. For signed
3106 comparison, if CST2 doesn't have most significant bit
3107 set, handle it similarly. If CST2 has MSB set,
3108 the minimum is the same, and maximum is ~0U/2. */
3109 if (minv != valv)
3111 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3112 VAL. */
3113 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3114 if (minv == valv)
3115 break;
3117 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3118 valid_p = true;
3119 break;
3121 case GT_EXPR:
3122 gt_expr:
3123 /* Find out smallest MINV where MINV > VAL
3124 && (MINV & CST2) == MINV, if any. If VAL is signed and
3125 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3126 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3127 if (minv == valv)
3128 break;
3129 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3130 valid_p = true;
3131 break;
3133 case LE_EXPR:
3134 /* Minimum unsigned value for <= is 0 and maximum
3135 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3136 Otherwise, find smallest VAL2 where VAL2 > VAL
3137 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3138 as maximum.
3139 For signed comparison, if CST2 doesn't have most
3140 significant bit set, handle it similarly. If CST2 has
3141 MSB set, the maximum is the same and minimum is INT_MIN. */
3142 if (minv == valv)
3143 maxv = valv;
3144 else
3146 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3147 if (maxv == valv)
3148 break;
3149 maxv -= 1;
3151 maxv |= ~cst2v;
3152 minv = sgnbit;
3153 valid_p = true;
3154 break;
3156 case LT_EXPR:
3157 lt_expr:
3158 /* Minimum unsigned value for < is 0 and maximum
3159 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3160 Otherwise, find smallest VAL2 where VAL2 > VAL
3161 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3162 as maximum.
3163 For signed comparison, if CST2 doesn't have most
3164 significant bit set, handle it similarly. If CST2 has
3165 MSB set, the maximum is the same and minimum is INT_MIN. */
3166 if (minv == valv)
3168 if (valv == sgnbit)
3169 break;
3170 maxv = valv;
3172 else
3174 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3175 if (maxv == valv)
3176 break;
3178 maxv -= 1;
3179 maxv |= ~cst2v;
3180 minv = sgnbit;
3181 valid_p = true;
3182 break;
3184 default:
3185 break;
3187 if (valid_p
3188 && (maxv - minv) != -1)
3190 tree tmp, new_val, type;
3191 int i;
3193 for (i = 0; i < 2; i++)
3194 if (names[i])
3196 wide_int maxv2 = maxv;
3197 tmp = names[i];
3198 type = TREE_TYPE (names[i]);
3199 if (!TYPE_UNSIGNED (type))
3201 type = build_nonstandard_integer_type (nprec, 1);
3202 tmp = build1 (NOP_EXPR, type, names[i]);
3204 if (minv != 0)
3206 tmp = build2 (PLUS_EXPR, type, tmp,
3207 wide_int_to_tree (type, -minv));
3208 maxv2 = maxv - minv;
3210 new_val = wide_int_to_tree (type, maxv2);
3211 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3218 /* OP is an operand of a truth value expression which is known to have
3219 a particular value. Register any asserts for OP and for any
3220 operands in OP's defining statement.
3222 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3223 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3225 static void
3226 register_edge_assert_for_1 (tree op, enum tree_code code,
3227 edge e, vec<assert_info> &asserts)
3229 gimple *op_def;
3230 tree val;
3231 enum tree_code rhs_code;
3233 /* We only care about SSA_NAMEs. */
3234 if (TREE_CODE (op) != SSA_NAME)
3235 return;
3237 /* We know that OP will have a zero or nonzero value. */
3238 val = build_int_cst (TREE_TYPE (op), 0);
3239 add_assert_info (asserts, op, op, code, val);
3241 /* Now look at how OP is set. If it's set from a comparison,
3242 a truth operation or some bit operations, then we may be able
3243 to register information about the operands of that assignment. */
3244 op_def = SSA_NAME_DEF_STMT (op);
3245 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3246 return;
3248 rhs_code = gimple_assign_rhs_code (op_def);
3250 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3252 bool invert = (code == EQ_EXPR ? true : false);
3253 tree op0 = gimple_assign_rhs1 (op_def);
3254 tree op1 = gimple_assign_rhs2 (op_def);
3256 if (TREE_CODE (op0) == SSA_NAME)
3257 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3258 if (TREE_CODE (op1) == SSA_NAME)
3259 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3261 else if ((code == NE_EXPR
3262 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3263 || (code == EQ_EXPR
3264 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3266 /* Recurse on each operand. */
3267 tree op0 = gimple_assign_rhs1 (op_def);
3268 tree op1 = gimple_assign_rhs2 (op_def);
3269 if (TREE_CODE (op0) == SSA_NAME
3270 && has_single_use (op0))
3271 register_edge_assert_for_1 (op0, code, e, asserts);
3272 if (TREE_CODE (op1) == SSA_NAME
3273 && has_single_use (op1))
3274 register_edge_assert_for_1 (op1, code, e, asserts);
3276 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3277 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3279 /* Recurse, flipping CODE. */
3280 code = invert_tree_comparison (code, false);
3281 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3283 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3285 /* Recurse through the copy. */
3286 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3288 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3290 /* Recurse through the type conversion, unless it is a narrowing
3291 conversion or conversion from non-integral type. */
3292 tree rhs = gimple_assign_rhs1 (op_def);
3293 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3294 && (TYPE_PRECISION (TREE_TYPE (rhs))
3295 <= TYPE_PRECISION (TREE_TYPE (op))))
3296 register_edge_assert_for_1 (rhs, code, e, asserts);
3300 /* Check if comparison
3301 NAME COND_OP INTEGER_CST
3302 has a form of
3303 (X & 11...100..0) COND_OP XX...X00...0
3304 Such comparison can yield assertions like
3305 X >= XX...X00...0
3306 X <= XX...X11...1
3307 in case of COND_OP being EQ_EXPR or
3308 X < XX...X00...0
3309 X > XX...X11...1
3310 in case of NE_EXPR. */
3312 static bool
3313 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3314 tree *new_name, tree *low, enum tree_code *low_code,
3315 tree *high, enum tree_code *high_code)
3317 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3319 if (!is_gimple_assign (def_stmt)
3320 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3321 return false;
3323 tree t = gimple_assign_rhs1 (def_stmt);
3324 tree maskt = gimple_assign_rhs2 (def_stmt);
3325 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3326 return false;
3328 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3329 wide_int inv_mask = ~mask;
3330 /* Must have been removed by now so don't bother optimizing. */
3331 if (mask == 0 || inv_mask == 0)
3332 return false;
3334 /* Assume VALT is INTEGER_CST. */
3335 wi::tree_to_wide_ref val = wi::to_wide (valt);
3337 if ((inv_mask & (inv_mask + 1)) != 0
3338 || (val & mask) != val)
3339 return false;
3341 bool is_range = cond_code == EQ_EXPR;
3343 tree type = TREE_TYPE (t);
3344 wide_int min = wi::min_value (type),
3345 max = wi::max_value (type);
3347 if (is_range)
3349 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3350 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3352 else
3354 /* We can still generate assertion if one of alternatives
3355 is known to always be false. */
3356 if (val == min)
3358 *low_code = (enum tree_code) 0;
3359 *high_code = GT_EXPR;
3361 else if ((val | inv_mask) == max)
3363 *low_code = LT_EXPR;
3364 *high_code = (enum tree_code) 0;
3366 else
3367 return false;
3370 *new_name = t;
3371 *low = wide_int_to_tree (type, val);
3372 *high = wide_int_to_tree (type, val | inv_mask);
3374 return true;
3377 /* Try to register an edge assertion for SSA name NAME on edge E for
3378 the condition COND contributing to the conditional jump pointed to by
3379 SI. */
3381 void
3382 register_edge_assert_for (tree name, edge e,
3383 enum tree_code cond_code, tree cond_op0,
3384 tree cond_op1, vec<assert_info> &asserts)
3386 tree val;
3387 enum tree_code comp_code;
3388 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3390 /* Do not attempt to infer anything in names that flow through
3391 abnormal edges. */
3392 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3393 return;
3395 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3396 cond_op0, cond_op1,
3397 is_else_edge,
3398 &comp_code, &val))
3399 return;
3401 /* Register ASSERT_EXPRs for name. */
3402 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3403 cond_op1, is_else_edge, asserts);
3406 /* If COND is effectively an equality test of an SSA_NAME against
3407 the value zero or one, then we may be able to assert values
3408 for SSA_NAMEs which flow into COND. */
3410 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3411 statement of NAME we can assert both operands of the BIT_AND_EXPR
3412 have nonzero value. */
3413 if (((comp_code == EQ_EXPR && integer_onep (val))
3414 || (comp_code == NE_EXPR && integer_zerop (val))))
3416 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3418 if (is_gimple_assign (def_stmt)
3419 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3421 tree op0 = gimple_assign_rhs1 (def_stmt);
3422 tree op1 = gimple_assign_rhs2 (def_stmt);
3423 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3424 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3428 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3429 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3430 have zero value. */
3431 if (((comp_code == EQ_EXPR && integer_zerop (val))
3432 || (comp_code == NE_EXPR && integer_onep (val))))
3434 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3436 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3437 necessarily zero value, or if type-precision is one. */
3438 if (is_gimple_assign (def_stmt)
3439 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3440 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3441 || comp_code == EQ_EXPR)))
3443 tree op0 = gimple_assign_rhs1 (def_stmt);
3444 tree op1 = gimple_assign_rhs2 (def_stmt);
3445 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3446 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3450 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3451 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3452 && TREE_CODE (val) == INTEGER_CST)
3454 enum tree_code low_code, high_code;
3455 tree low, high;
3456 if (is_masked_range_test (name, val, comp_code, &name, &low,
3457 &low_code, &high, &high_code))
3459 if (low_code != ERROR_MARK)
3460 register_edge_assert_for_2 (name, e, low_code, name,
3461 low, /*invert*/false, asserts);
3462 if (high_code != ERROR_MARK)
3463 register_edge_assert_for_2 (name, e, high_code, name,
3464 high, /*invert*/false, asserts);
3469 /* Finish found ASSERTS for E and register them at GSI. */
3471 static void
3472 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3473 vec<assert_info> &asserts)
3475 for (unsigned i = 0; i < asserts.length (); ++i)
3476 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3477 reachable from E. */
3478 if (live_on_edge (e, asserts[i].name))
3479 register_new_assert_for (asserts[i].name, asserts[i].expr,
3480 asserts[i].comp_code, asserts[i].val,
3481 NULL, e, gsi);
3486 /* Determine whether the outgoing edges of BB should receive an
3487 ASSERT_EXPR for each of the operands of BB's LAST statement.
3488 The last statement of BB must be a COND_EXPR.
3490 If any of the sub-graphs rooted at BB have an interesting use of
3491 the predicate operands, an assert location node is added to the
3492 list of assertions for the corresponding operands. */
3494 static void
3495 find_conditional_asserts (basic_block bb, gcond *last)
3497 gimple_stmt_iterator bsi;
3498 tree op;
3499 edge_iterator ei;
3500 edge e;
3501 ssa_op_iter iter;
3503 bsi = gsi_for_stmt (last);
3505 /* Look for uses of the operands in each of the sub-graphs
3506 rooted at BB. We need to check each of the outgoing edges
3507 separately, so that we know what kind of ASSERT_EXPR to
3508 insert. */
3509 FOR_EACH_EDGE (e, ei, bb->succs)
3511 if (e->dest == bb)
3512 continue;
3514 /* Register the necessary assertions for each operand in the
3515 conditional predicate. */
3516 auto_vec<assert_info, 8> asserts;
3517 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3518 register_edge_assert_for (op, e,
3519 gimple_cond_code (last),
3520 gimple_cond_lhs (last),
3521 gimple_cond_rhs (last), asserts);
3522 finish_register_edge_assert_for (e, bsi, asserts);
3526 struct case_info
3528 tree expr;
3529 basic_block bb;
3532 /* Compare two case labels sorting first by the destination bb index
3533 and then by the case value. */
3535 static int
3536 compare_case_labels (const void *p1, const void *p2)
3538 const struct case_info *ci1 = (const struct case_info *) p1;
3539 const struct case_info *ci2 = (const struct case_info *) p2;
3540 int idx1 = ci1->bb->index;
3541 int idx2 = ci2->bb->index;
3543 if (idx1 < idx2)
3544 return -1;
3545 else if (idx1 == idx2)
3547 /* Make sure the default label is first in a group. */
3548 if (!CASE_LOW (ci1->expr))
3549 return -1;
3550 else if (!CASE_LOW (ci2->expr))
3551 return 1;
3552 else
3553 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3554 CASE_LOW (ci2->expr));
3556 else
3557 return 1;
3560 /* Determine whether the outgoing edges of BB should receive an
3561 ASSERT_EXPR for each of the operands of BB's LAST statement.
3562 The last statement of BB must be a SWITCH_EXPR.
3564 If any of the sub-graphs rooted at BB have an interesting use of
3565 the predicate operands, an assert location node is added to the
3566 list of assertions for the corresponding operands. */
3568 static void
3569 find_switch_asserts (basic_block bb, gswitch *last)
3571 gimple_stmt_iterator bsi;
3572 tree op;
3573 edge e;
3574 struct case_info *ci;
3575 size_t n = gimple_switch_num_labels (last);
3576 #if GCC_VERSION >= 4000
3577 unsigned int idx;
3578 #else
3579 /* Work around GCC 3.4 bug (PR 37086). */
3580 volatile unsigned int idx;
3581 #endif
3583 bsi = gsi_for_stmt (last);
3584 op = gimple_switch_index (last);
3585 if (TREE_CODE (op) != SSA_NAME)
3586 return;
3588 /* Build a vector of case labels sorted by destination label. */
3589 ci = XNEWVEC (struct case_info, n);
3590 for (idx = 0; idx < n; ++idx)
3592 ci[idx].expr = gimple_switch_label (last, idx);
3593 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3595 edge default_edge = find_edge (bb, ci[0].bb);
3596 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3598 for (idx = 0; idx < n; ++idx)
3600 tree min, max;
3601 tree cl = ci[idx].expr;
3602 basic_block cbb = ci[idx].bb;
3604 min = CASE_LOW (cl);
3605 max = CASE_HIGH (cl);
3607 /* If there are multiple case labels with the same destination
3608 we need to combine them to a single value range for the edge. */
3609 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3611 /* Skip labels until the last of the group. */
3612 do {
3613 ++idx;
3614 } while (idx < n && cbb == ci[idx].bb);
3615 --idx;
3617 /* Pick up the maximum of the case label range. */
3618 if (CASE_HIGH (ci[idx].expr))
3619 max = CASE_HIGH (ci[idx].expr);
3620 else
3621 max = CASE_LOW (ci[idx].expr);
3624 /* Can't extract a useful assertion out of a range that includes the
3625 default label. */
3626 if (min == NULL_TREE)
3627 continue;
3629 /* Find the edge to register the assert expr on. */
3630 e = find_edge (bb, cbb);
3632 /* Register the necessary assertions for the operand in the
3633 SWITCH_EXPR. */
3634 auto_vec<assert_info, 8> asserts;
3635 register_edge_assert_for (op, e,
3636 max ? GE_EXPR : EQ_EXPR,
3637 op, fold_convert (TREE_TYPE (op), min),
3638 asserts);
3639 if (max)
3640 register_edge_assert_for (op, e, LE_EXPR, op,
3641 fold_convert (TREE_TYPE (op), max),
3642 asserts);
3643 finish_register_edge_assert_for (e, bsi, asserts);
3646 XDELETEVEC (ci);
3648 if (!live_on_edge (default_edge, op))
3649 return;
3651 /* Now register along the default label assertions that correspond to the
3652 anti-range of each label. */
3653 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3654 if (insertion_limit == 0)
3655 return;
3657 /* We can't do this if the default case shares a label with another case. */
3658 tree default_cl = gimple_switch_default_label (last);
3659 for (idx = 1; idx < n; idx++)
3661 tree min, max;
3662 tree cl = gimple_switch_label (last, idx);
3663 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3664 continue;
3666 min = CASE_LOW (cl);
3667 max = CASE_HIGH (cl);
3669 /* Combine contiguous case ranges to reduce the number of assertions
3670 to insert. */
3671 for (idx = idx + 1; idx < n; idx++)
3673 tree next_min, next_max;
3674 tree next_cl = gimple_switch_label (last, idx);
3675 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3676 break;
3678 next_min = CASE_LOW (next_cl);
3679 next_max = CASE_HIGH (next_cl);
3681 wide_int difference = (wi::to_wide (next_min)
3682 - wi::to_wide (max ? max : min));
3683 if (wi::eq_p (difference, 1))
3684 max = next_max ? next_max : next_min;
3685 else
3686 break;
3688 idx--;
3690 if (max == NULL_TREE)
3692 /* Register the assertion OP != MIN. */
3693 auto_vec<assert_info, 8> asserts;
3694 min = fold_convert (TREE_TYPE (op), min);
3695 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3696 asserts);
3697 finish_register_edge_assert_for (default_edge, bsi, asserts);
3699 else
3701 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3702 which will give OP the anti-range ~[MIN,MAX]. */
3703 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3704 min = fold_convert (TREE_TYPE (uop), min);
3705 max = fold_convert (TREE_TYPE (uop), max);
3707 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3708 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3709 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3710 NULL, default_edge, bsi);
3713 if (--insertion_limit == 0)
3714 break;
3719 /* Traverse all the statements in block BB looking for statements that
3720 may generate useful assertions for the SSA names in their operand.
3721 If a statement produces a useful assertion A for name N_i, then the
3722 list of assertions already generated for N_i is scanned to
3723 determine if A is actually needed.
3725 If N_i already had the assertion A at a location dominating the
3726 current location, then nothing needs to be done. Otherwise, the
3727 new location for A is recorded instead.
3729 1- For every statement S in BB, all the variables used by S are
3730 added to bitmap FOUND_IN_SUBGRAPH.
3732 2- If statement S uses an operand N in a way that exposes a known
3733 value range for N, then if N was not already generated by an
3734 ASSERT_EXPR, create a new assert location for N. For instance,
3735 if N is a pointer and the statement dereferences it, we can
3736 assume that N is not NULL.
3738 3- COND_EXPRs are a special case of #2. We can derive range
3739 information from the predicate but need to insert different
3740 ASSERT_EXPRs for each of the sub-graphs rooted at the
3741 conditional block. If the last statement of BB is a conditional
3742 expression of the form 'X op Y', then
3744 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3746 b) If the conditional is the only entry point to the sub-graph
3747 corresponding to the THEN_CLAUSE, recurse into it. On
3748 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3749 an ASSERT_EXPR is added for the corresponding variable.
3751 c) Repeat step (b) on the ELSE_CLAUSE.
3753 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3755 For instance,
3757 if (a == 9)
3758 b = a;
3759 else
3760 b = c + 1;
3762 In this case, an assertion on the THEN clause is useful to
3763 determine that 'a' is always 9 on that edge. However, an assertion
3764 on the ELSE clause would be unnecessary.
3766 4- If BB does not end in a conditional expression, then we recurse
3767 into BB's dominator children.
3769 At the end of the recursive traversal, every SSA name will have a
3770 list of locations where ASSERT_EXPRs should be added. When a new
3771 location for name N is found, it is registered by calling
3772 register_new_assert_for. That function keeps track of all the
3773 registered assertions to prevent adding unnecessary assertions.
3774 For instance, if a pointer P_4 is dereferenced more than once in a
3775 dominator tree, only the location dominating all the dereference of
3776 P_4 will receive an ASSERT_EXPR. */
3778 static void
3779 find_assert_locations_1 (basic_block bb, sbitmap live)
3781 gimple *last;
3783 last = last_stmt (bb);
3785 /* If BB's last statement is a conditional statement involving integer
3786 operands, determine if we need to add ASSERT_EXPRs. */
3787 if (last
3788 && gimple_code (last) == GIMPLE_COND
3789 && !fp_predicate (last)
3790 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3791 find_conditional_asserts (bb, as_a <gcond *> (last));
3793 /* If BB's last statement is a switch statement involving integer
3794 operands, determine if we need to add ASSERT_EXPRs. */
3795 if (last
3796 && gimple_code (last) == GIMPLE_SWITCH
3797 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3798 find_switch_asserts (bb, as_a <gswitch *> (last));
3800 /* Traverse all the statements in BB marking used names and looking
3801 for statements that may infer assertions for their used operands. */
3802 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3803 gsi_prev (&si))
3805 gimple *stmt;
3806 tree op;
3807 ssa_op_iter i;
3809 stmt = gsi_stmt (si);
3811 if (is_gimple_debug (stmt))
3812 continue;
3814 /* See if we can derive an assertion for any of STMT's operands. */
3815 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3817 tree value;
3818 enum tree_code comp_code;
3820 /* If op is not live beyond this stmt, do not bother to insert
3821 asserts for it. */
3822 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3823 continue;
3825 /* If OP is used in such a way that we can infer a value
3826 range for it, and we don't find a previous assertion for
3827 it, create a new assertion location node for OP. */
3828 if (infer_value_range (stmt, op, &comp_code, &value))
3830 /* If we are able to infer a nonzero value range for OP,
3831 then walk backwards through the use-def chain to see if OP
3832 was set via a typecast.
3834 If so, then we can also infer a nonzero value range
3835 for the operand of the NOP_EXPR. */
3836 if (comp_code == NE_EXPR && integer_zerop (value))
3838 tree t = op;
3839 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3841 while (is_gimple_assign (def_stmt)
3842 && CONVERT_EXPR_CODE_P
3843 (gimple_assign_rhs_code (def_stmt))
3844 && TREE_CODE
3845 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3846 && POINTER_TYPE_P
3847 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3849 t = gimple_assign_rhs1 (def_stmt);
3850 def_stmt = SSA_NAME_DEF_STMT (t);
3852 /* Note we want to register the assert for the
3853 operand of the NOP_EXPR after SI, not after the
3854 conversion. */
3855 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3856 register_new_assert_for (t, t, comp_code, value,
3857 bb, NULL, si);
3861 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3865 /* Update live. */
3866 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3867 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3868 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3869 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3872 /* Traverse all PHI nodes in BB, updating live. */
3873 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3874 gsi_next (&si))
3876 use_operand_p arg_p;
3877 ssa_op_iter i;
3878 gphi *phi = si.phi ();
3879 tree res = gimple_phi_result (phi);
3881 if (virtual_operand_p (res))
3882 continue;
3884 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3886 tree arg = USE_FROM_PTR (arg_p);
3887 if (TREE_CODE (arg) == SSA_NAME)
3888 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3891 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3895 /* Do an RPO walk over the function computing SSA name liveness
3896 on-the-fly and deciding on assert expressions to insert. */
3898 static void
3899 find_assert_locations (void)
3901 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3902 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3903 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3904 int rpo_cnt, i;
3906 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3907 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3908 for (i = 0; i < rpo_cnt; ++i)
3909 bb_rpo[rpo[i]] = i;
3911 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3912 the order we compute liveness and insert asserts we otherwise
3913 fail to insert asserts into the loop latch. */
3914 loop_p loop;
3915 FOR_EACH_LOOP (loop, 0)
3917 i = loop->latch->index;
3918 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3919 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3920 !gsi_end_p (gsi); gsi_next (&gsi))
3922 gphi *phi = gsi.phi ();
3923 if (virtual_operand_p (gimple_phi_result (phi)))
3924 continue;
3925 tree arg = gimple_phi_arg_def (phi, j);
3926 if (TREE_CODE (arg) == SSA_NAME)
3928 if (live[i] == NULL)
3930 live[i] = sbitmap_alloc (num_ssa_names);
3931 bitmap_clear (live[i]);
3933 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3938 for (i = rpo_cnt - 1; i >= 0; --i)
3940 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3941 edge e;
3942 edge_iterator ei;
3944 if (!live[rpo[i]])
3946 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3947 bitmap_clear (live[rpo[i]]);
3950 /* Process BB and update the live information with uses in
3951 this block. */
3952 find_assert_locations_1 (bb, live[rpo[i]]);
3954 /* Merge liveness into the predecessor blocks and free it. */
3955 if (!bitmap_empty_p (live[rpo[i]]))
3957 int pred_rpo = i;
3958 FOR_EACH_EDGE (e, ei, bb->preds)
3960 int pred = e->src->index;
3961 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
3962 continue;
3964 if (!live[pred])
3966 live[pred] = sbitmap_alloc (num_ssa_names);
3967 bitmap_clear (live[pred]);
3969 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
3971 if (bb_rpo[pred] < pred_rpo)
3972 pred_rpo = bb_rpo[pred];
3975 /* Record the RPO number of the last visited block that needs
3976 live information from this block. */
3977 last_rpo[rpo[i]] = pred_rpo;
3979 else
3981 sbitmap_free (live[rpo[i]]);
3982 live[rpo[i]] = NULL;
3985 /* We can free all successors live bitmaps if all their
3986 predecessors have been visited already. */
3987 FOR_EACH_EDGE (e, ei, bb->succs)
3988 if (last_rpo[e->dest->index] == i
3989 && live[e->dest->index])
3991 sbitmap_free (live[e->dest->index]);
3992 live[e->dest->index] = NULL;
3996 XDELETEVEC (rpo);
3997 XDELETEVEC (bb_rpo);
3998 XDELETEVEC (last_rpo);
3999 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
4000 if (live[i])
4001 sbitmap_free (live[i]);
4002 XDELETEVEC (live);
4005 /* Create an ASSERT_EXPR for NAME and insert it in the location
4006 indicated by LOC. Return true if we made any edge insertions. */
4008 static bool
4009 process_assert_insertions_for (tree name, assert_locus *loc)
4011 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4012 gimple *stmt;
4013 tree cond;
4014 gimple *assert_stmt;
4015 edge_iterator ei;
4016 edge e;
4018 /* If we have X <=> X do not insert an assert expr for that. */
4019 if (loc->expr == loc->val)
4020 return false;
4022 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4023 assert_stmt = build_assert_expr_for (cond, name);
4024 if (loc->e)
4026 /* We have been asked to insert the assertion on an edge. This
4027 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4028 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4029 || (gimple_code (gsi_stmt (loc->si))
4030 == GIMPLE_SWITCH));
4032 gsi_insert_on_edge (loc->e, assert_stmt);
4033 return true;
4036 /* If the stmt iterator points at the end then this is an insertion
4037 at the beginning of a block. */
4038 if (gsi_end_p (loc->si))
4040 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
4041 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
4042 return false;
4045 /* Otherwise, we can insert right after LOC->SI iff the
4046 statement must not be the last statement in the block. */
4047 stmt = gsi_stmt (loc->si);
4048 if (!stmt_ends_bb_p (stmt))
4050 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4051 return false;
4054 /* If STMT must be the last statement in BB, we can only insert new
4055 assertions on the non-abnormal edge out of BB. Note that since
4056 STMT is not control flow, there may only be one non-abnormal/eh edge
4057 out of BB. */
4058 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4059 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4061 gsi_insert_on_edge (e, assert_stmt);
4062 return true;
4065 gcc_unreachable ();
4068 /* Qsort helper for sorting assert locations. If stable is true, don't
4069 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4070 on the other side some pointers might be NULL. */
4072 template <bool stable>
4073 static int
4074 compare_assert_loc (const void *pa, const void *pb)
4076 assert_locus * const a = *(assert_locus * const *)pa;
4077 assert_locus * const b = *(assert_locus * const *)pb;
4079 /* If stable, some asserts might be optimized away already, sort
4080 them last. */
4081 if (stable)
4083 if (a == NULL)
4084 return b != NULL;
4085 else if (b == NULL)
4086 return -1;
4089 if (a->e == NULL && b->e != NULL)
4090 return 1;
4091 else if (a->e != NULL && b->e == NULL)
4092 return -1;
4094 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4095 no need to test both a->e and b->e. */
4097 /* Sort after destination index. */
4098 if (a->e == NULL)
4100 else if (a->e->dest->index > b->e->dest->index)
4101 return 1;
4102 else if (a->e->dest->index < b->e->dest->index)
4103 return -1;
4105 /* Sort after comp_code. */
4106 if (a->comp_code > b->comp_code)
4107 return 1;
4108 else if (a->comp_code < b->comp_code)
4109 return -1;
4111 hashval_t ha, hb;
4113 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4114 uses DECL_UID of the VAR_DECL, so sorting might differ between
4115 -g and -g0. When doing the removal of redundant assert exprs
4116 and commonization to successors, this does not matter, but for
4117 the final sort needs to be stable. */
4118 if (stable)
4120 ha = 0;
4121 hb = 0;
4123 else
4125 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4126 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4129 /* Break the tie using hashing and source/bb index. */
4130 if (ha == hb)
4131 return (a->e != NULL
4132 ? a->e->src->index - b->e->src->index
4133 : a->bb->index - b->bb->index);
4134 return ha > hb ? 1 : -1;
4137 /* Process all the insertions registered for every name N_i registered
4138 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4139 found in ASSERTS_FOR[i]. */
4141 static void
4142 process_assert_insertions (void)
4144 unsigned i;
4145 bitmap_iterator bi;
4146 bool update_edges_p = false;
4147 int num_asserts = 0;
4149 if (dump_file && (dump_flags & TDF_DETAILS))
4150 dump_all_asserts (dump_file);
4152 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4154 assert_locus *loc = asserts_for[i];
4155 gcc_assert (loc);
4157 auto_vec<assert_locus *, 16> asserts;
4158 for (; loc; loc = loc->next)
4159 asserts.safe_push (loc);
4160 asserts.qsort (compare_assert_loc<false>);
4162 /* Push down common asserts to successors and remove redundant ones. */
4163 unsigned ecnt = 0;
4164 assert_locus *common = NULL;
4165 unsigned commonj = 0;
4166 for (unsigned j = 0; j < asserts.length (); ++j)
4168 loc = asserts[j];
4169 if (! loc->e)
4170 common = NULL;
4171 else if (! common
4172 || loc->e->dest != common->e->dest
4173 || loc->comp_code != common->comp_code
4174 || ! operand_equal_p (loc->val, common->val, 0)
4175 || ! operand_equal_p (loc->expr, common->expr, 0))
4177 commonj = j;
4178 common = loc;
4179 ecnt = 1;
4181 else if (loc->e == asserts[j-1]->e)
4183 /* Remove duplicate asserts. */
4184 if (commonj == j - 1)
4186 commonj = j;
4187 common = loc;
4189 free (asserts[j-1]);
4190 asserts[j-1] = NULL;
4192 else
4194 ecnt++;
4195 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4197 /* We have the same assertion on all incoming edges of a BB.
4198 Insert it at the beginning of that block. */
4199 loc->bb = loc->e->dest;
4200 loc->e = NULL;
4201 loc->si = gsi_none ();
4202 common = NULL;
4203 /* Clear asserts commoned. */
4204 for (; commonj != j; ++commonj)
4205 if (asserts[commonj])
4207 free (asserts[commonj]);
4208 asserts[commonj] = NULL;
4214 /* The asserts vector sorting above might be unstable for
4215 -fcompare-debug, sort again to ensure a stable sort. */
4216 asserts.qsort (compare_assert_loc<true>);
4217 for (unsigned j = 0; j < asserts.length (); ++j)
4219 loc = asserts[j];
4220 if (! loc)
4221 break;
4222 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4223 num_asserts++;
4224 free (loc);
4228 if (update_edges_p)
4229 gsi_commit_edge_inserts ();
4231 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4232 num_asserts);
4236 /* Traverse the flowgraph looking for conditional jumps to insert range
4237 expressions. These range expressions are meant to provide information
4238 to optimizations that need to reason in terms of value ranges. They
4239 will not be expanded into RTL. For instance, given:
4241 x = ...
4242 y = ...
4243 if (x < y)
4244 y = x - 2;
4245 else
4246 x = y + 3;
4248 this pass will transform the code into:
4250 x = ...
4251 y = ...
4252 if (x < y)
4254 x = ASSERT_EXPR <x, x < y>
4255 y = x - 2
4257 else
4259 y = ASSERT_EXPR <y, x >= y>
4260 x = y + 3
4263 The idea is that once copy and constant propagation have run, other
4264 optimizations will be able to determine what ranges of values can 'x'
4265 take in different paths of the code, simply by checking the reaching
4266 definition of 'x'. */
4268 static void
4269 insert_range_assertions (void)
4271 need_assert_for = BITMAP_ALLOC (NULL);
4272 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4274 calculate_dominance_info (CDI_DOMINATORS);
4276 find_assert_locations ();
4277 if (!bitmap_empty_p (need_assert_for))
4279 process_assert_insertions ();
4280 update_ssa (TODO_update_ssa_no_phi);
4283 if (dump_file && (dump_flags & TDF_DETAILS))
4285 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4286 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4289 free (asserts_for);
4290 BITMAP_FREE (need_assert_for);
4293 class vrp_prop : public ssa_propagation_engine
4295 public:
4296 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4297 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4299 void vrp_initialize (void);
4300 void vrp_finalize (bool);
4301 void check_all_array_refs (void);
4302 void check_array_ref (location_t, tree, bool);
4303 void check_mem_ref (location_t, tree, bool);
4304 void search_for_addr_array (tree, location_t);
4306 class vr_values vr_values;
4307 /* Temporary delegator to minimize code churn. */
4308 value_range *get_value_range (const_tree op)
4309 { return vr_values.get_value_range (op); }
4310 void set_defs_to_varying (gimple *stmt)
4311 { return vr_values.set_defs_to_varying (stmt); }
4312 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4313 tree *output_p, value_range *vr)
4314 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4315 bool update_value_range (const_tree op, value_range *vr)
4316 { return vr_values.update_value_range (op, vr); }
4317 void extract_range_basic (value_range *vr, gimple *stmt)
4318 { vr_values.extract_range_basic (vr, stmt); }
4319 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4320 { vr_values.extract_range_from_phi_node (phi, vr); }
4322 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4323 and "struct" hacks. If VRP can determine that the
4324 array subscript is a constant, check if it is outside valid
4325 range. If the array subscript is a RANGE, warn if it is
4326 non-overlapping with valid range.
4327 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4329 void
4330 vrp_prop::check_array_ref (location_t location, tree ref,
4331 bool ignore_off_by_one)
4333 const value_range *vr = NULL;
4334 tree low_sub, up_sub;
4335 tree low_bound, up_bound, up_bound_p1;
4337 if (TREE_NO_WARNING (ref))
4338 return;
4340 low_sub = up_sub = TREE_OPERAND (ref, 1);
4341 up_bound = array_ref_up_bound (ref);
4343 if (!up_bound
4344 || TREE_CODE (up_bound) != INTEGER_CST
4345 || (warn_array_bounds < 2
4346 && array_at_struct_end_p (ref)))
4348 /* Accesses to trailing arrays via pointers may access storage
4349 beyond the types array bounds. For such arrays, or for flexible
4350 array members, as well as for other arrays of an unknown size,
4351 replace the upper bound with a more permissive one that assumes
4352 the size of the largest object is PTRDIFF_MAX. */
4353 tree eltsize = array_ref_element_size (ref);
4355 if (TREE_CODE (eltsize) != INTEGER_CST
4356 || integer_zerop (eltsize))
4358 up_bound = NULL_TREE;
4359 up_bound_p1 = NULL_TREE;
4361 else
4363 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4364 tree arg = TREE_OPERAND (ref, 0);
4365 poly_int64 off;
4367 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4368 maxbound = wide_int_to_tree (sizetype,
4369 wi::sub (wi::to_wide (maxbound),
4370 off));
4371 else
4372 maxbound = fold_convert (sizetype, maxbound);
4374 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4376 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4377 build_int_cst (ptrdiff_type_node, 1));
4380 else
4381 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4382 build_int_cst (TREE_TYPE (up_bound), 1));
4384 low_bound = array_ref_low_bound (ref);
4386 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4388 bool warned = false;
4390 /* Empty array. */
4391 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4392 warned = warning_at (location, OPT_Warray_bounds,
4393 "array subscript %E is above array bounds of %qT",
4394 low_bound, artype);
4396 if (TREE_CODE (low_sub) == SSA_NAME)
4398 vr = get_value_range (low_sub);
4399 if (!vr->undefined_p () && !vr->varying_p ())
4401 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4402 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4406 if (vr && vr->kind () == VR_ANTI_RANGE)
4408 if (up_bound
4409 && TREE_CODE (up_sub) == INTEGER_CST
4410 && (ignore_off_by_one
4411 ? tree_int_cst_lt (up_bound, up_sub)
4412 : tree_int_cst_le (up_bound, up_sub))
4413 && TREE_CODE (low_sub) == INTEGER_CST
4414 && tree_int_cst_le (low_sub, low_bound))
4415 warned = warning_at (location, OPT_Warray_bounds,
4416 "array subscript [%E, %E] is outside "
4417 "array bounds of %qT",
4418 low_sub, up_sub, artype);
4420 else if (up_bound
4421 && TREE_CODE (up_sub) == INTEGER_CST
4422 && (ignore_off_by_one
4423 ? !tree_int_cst_le (up_sub, up_bound_p1)
4424 : !tree_int_cst_le (up_sub, up_bound)))
4426 if (dump_file && (dump_flags & TDF_DETAILS))
4428 fprintf (dump_file, "Array bound warning for ");
4429 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4430 fprintf (dump_file, "\n");
4432 warned = warning_at (location, OPT_Warray_bounds,
4433 "array subscript %E is above array bounds of %qT",
4434 up_sub, artype);
4436 else if (TREE_CODE (low_sub) == INTEGER_CST
4437 && tree_int_cst_lt (low_sub, low_bound))
4439 if (dump_file && (dump_flags & TDF_DETAILS))
4441 fprintf (dump_file, "Array bound warning for ");
4442 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4443 fprintf (dump_file, "\n");
4445 warned = warning_at (location, OPT_Warray_bounds,
4446 "array subscript %E is below array bounds of %qT",
4447 low_sub, artype);
4450 if (warned)
4452 ref = TREE_OPERAND (ref, 0);
4454 if (DECL_P (ref))
4455 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4457 TREE_NO_WARNING (ref) = 1;
4461 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4462 references to string constants. If VRP can determine that the array
4463 subscript is a constant, check if it is outside valid range.
4464 If the array subscript is a RANGE, warn if it is non-overlapping
4465 with valid range.
4466 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4467 (used to allow one-past-the-end indices for code that takes
4468 the address of the just-past-the-end element of an array). */
4470 void
4471 vrp_prop::check_mem_ref (location_t location, tree ref,
4472 bool ignore_off_by_one)
4474 if (TREE_NO_WARNING (ref))
4475 return;
4477 tree arg = TREE_OPERAND (ref, 0);
4478 /* The constant and variable offset of the reference. */
4479 tree cstoff = TREE_OPERAND (ref, 1);
4480 tree varoff = NULL_TREE;
4482 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4484 /* The array or string constant bounds in bytes. Initially set
4485 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4486 determined. */
4487 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4489 /* The minimum and maximum intermediate offset. For a reference
4490 to be valid, not only does the final offset/subscript must be
4491 in bounds but all intermediate offsets should be as well.
4492 GCC may be able to deal gracefully with such out-of-bounds
4493 offsets so the checking is only enbaled at -Warray-bounds=2
4494 where it may help detect bugs in uses of the intermediate
4495 offsets that could otherwise not be detectable. */
4496 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4497 offset_int extrema[2] = { 0, wi::abs (ioff) };
4499 /* The range of the byte offset into the reference. */
4500 offset_int offrange[2] = { 0, 0 };
4502 const value_range *vr = NULL;
4504 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4505 The loop computes the the range of the final offset for expressions
4506 such as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs
4507 in some range. */
4508 while (TREE_CODE (arg) == SSA_NAME)
4510 gimple *def = SSA_NAME_DEF_STMT (arg);
4511 if (!is_gimple_assign (def))
4512 break;
4514 tree_code code = gimple_assign_rhs_code (def);
4515 if (code == POINTER_PLUS_EXPR)
4517 arg = gimple_assign_rhs1 (def);
4518 varoff = gimple_assign_rhs2 (def);
4520 else if (code == ASSERT_EXPR)
4522 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4523 continue;
4525 else
4526 return;
4528 /* VAROFF should always be a SSA_NAME here (and not even
4529 INTEGER_CST) but there's no point in taking chances. */
4530 if (TREE_CODE (varoff) != SSA_NAME)
4531 break;
4533 vr = get_value_range (varoff);
4534 if (!vr || vr->undefined_p () || vr->varying_p ())
4535 break;
4537 if (!vr->constant_p ())
4538 break;
4540 if (vr->kind () == VR_RANGE)
4542 if (tree_int_cst_lt (vr->min (), vr->max ()))
4544 offset_int min
4545 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4546 offset_int max
4547 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4548 if (min < max)
4550 offrange[0] += min;
4551 offrange[1] += max;
4553 else
4555 offrange[0] += max;
4556 offrange[1] += min;
4559 else
4561 /* Conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4562 to OFFRANGE. */
4563 offrange[0] += arrbounds[0];
4564 offrange[1] += arrbounds[1];
4567 else
4569 /* For an anti-range, analogously to the above, conservatively
4570 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4571 offrange[0] += arrbounds[0];
4572 offrange[1] += arrbounds[1];
4575 /* Keep track of the minimum and maximum offset. */
4576 if (offrange[1] < 0 && offrange[1] < extrema[0])
4577 extrema[0] = offrange[1];
4578 if (offrange[0] > 0 && offrange[0] > extrema[1])
4579 extrema[1] = offrange[0];
4581 if (offrange[0] < arrbounds[0])
4582 offrange[0] = arrbounds[0];
4584 if (offrange[1] > arrbounds[1])
4585 offrange[1] = arrbounds[1];
4588 if (TREE_CODE (arg) == ADDR_EXPR)
4590 arg = TREE_OPERAND (arg, 0);
4591 if (TREE_CODE (arg) != STRING_CST
4592 && TREE_CODE (arg) != VAR_DECL)
4593 return;
4595 else
4596 return;
4598 /* The type of the object being referred to. It can be an array,
4599 string literal, or a non-array type when the MEM_REF represents
4600 a reference/subscript via a pointer to an object that is not
4601 an element of an array. References to members of structs and
4602 unions are excluded because MEM_REF doesn't make it possible
4603 to identify the member where the reference originated.
4604 Incomplete types are excluded as well because their size is
4605 not known. */
4606 tree reftype = TREE_TYPE (arg);
4607 if (POINTER_TYPE_P (reftype)
4608 || !COMPLETE_TYPE_P (reftype)
4609 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4610 || RECORD_OR_UNION_TYPE_P (reftype))
4611 return;
4613 offset_int eltsize;
4614 if (TREE_CODE (reftype) == ARRAY_TYPE)
4616 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4618 if (tree dom = TYPE_DOMAIN (reftype))
4620 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4621 if (array_at_struct_end_p (arg)
4622 || !bnds[0] || !bnds[1])
4624 arrbounds[0] = 0;
4625 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4627 else
4629 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4630 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4633 else
4635 arrbounds[0] = 0;
4636 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4639 if (TREE_CODE (ref) == MEM_REF)
4641 /* For MEM_REF determine a tighter bound of the non-array
4642 element type. */
4643 tree eltype = TREE_TYPE (reftype);
4644 while (TREE_CODE (eltype) == ARRAY_TYPE)
4645 eltype = TREE_TYPE (eltype);
4646 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4649 else
4651 eltsize = 1;
4652 arrbounds[0] = 0;
4653 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4656 offrange[0] += ioff;
4657 offrange[1] += ioff;
4659 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4660 is set (when taking the address of the one-past-last element
4661 of an array) but always use the stricter bound in diagnostics. */
4662 offset_int ubound = arrbounds[1];
4663 if (ignore_off_by_one)
4664 ubound += 1;
4666 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4668 /* Treat a reference to a non-array object as one to an array
4669 of a single element. */
4670 if (TREE_CODE (reftype) != ARRAY_TYPE)
4671 reftype = build_array_type_nelts (reftype, 1);
4673 if (TREE_CODE (ref) == MEM_REF)
4675 /* Extract the element type out of MEM_REF and use its size
4676 to compute the index to print in the diagnostic; arrays
4677 in MEM_REF don't mean anything. */
4678 tree type = TREE_TYPE (ref);
4679 while (TREE_CODE (type) == ARRAY_TYPE)
4680 type = TREE_TYPE (type);
4681 tree size = TYPE_SIZE_UNIT (type);
4682 offrange[0] = offrange[0] / wi::to_offset (size);
4683 offrange[1] = offrange[1] / wi::to_offset (size);
4685 else
4687 /* For anything other than MEM_REF, compute the index to
4688 print in the diagnostic as the offset over element size. */
4689 offrange[0] = offrange[0] / eltsize;
4690 offrange[1] = offrange[1] / eltsize;
4693 bool warned;
4694 if (offrange[0] == offrange[1])
4695 warned = warning_at (location, OPT_Warray_bounds,
4696 "array subscript %wi is outside array bounds "
4697 "of %qT",
4698 offrange[0].to_shwi (), reftype);
4699 else
4700 warned = warning_at (location, OPT_Warray_bounds,
4701 "array subscript [%wi, %wi] is outside "
4702 "array bounds of %qT",
4703 offrange[0].to_shwi (),
4704 offrange[1].to_shwi (), reftype);
4705 if (warned && DECL_P (arg))
4706 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4708 TREE_NO_WARNING (ref) = 1;
4709 return;
4712 if (warn_array_bounds < 2)
4713 return;
4715 /* At level 2 check also intermediate offsets. */
4716 int i = 0;
4717 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4719 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4721 warning_at (location, OPT_Warray_bounds,
4722 "intermediate array offset %wi is outside array bounds "
4723 "of %qT",
4724 tmpidx, reftype);
4725 TREE_NO_WARNING (ref) = 1;
4729 /* Searches if the expr T, located at LOCATION computes
4730 address of an ARRAY_REF, and call check_array_ref on it. */
4732 void
4733 vrp_prop::search_for_addr_array (tree t, location_t location)
4735 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4738 if (TREE_CODE (t) == ARRAY_REF)
4739 check_array_ref (location, t, true /*ignore_off_by_one*/);
4740 else if (TREE_CODE (t) == MEM_REF)
4741 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4743 t = TREE_OPERAND (t, 0);
4745 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4747 if (TREE_CODE (t) != MEM_REF
4748 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4749 || TREE_NO_WARNING (t))
4750 return;
4752 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4753 tree low_bound, up_bound, el_sz;
4754 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4755 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4756 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4757 return;
4759 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4760 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4761 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4762 if (!low_bound
4763 || TREE_CODE (low_bound) != INTEGER_CST
4764 || !up_bound
4765 || TREE_CODE (up_bound) != INTEGER_CST
4766 || !el_sz
4767 || TREE_CODE (el_sz) != INTEGER_CST)
4768 return;
4770 offset_int idx;
4771 if (!mem_ref_offset (t).is_constant (&idx))
4772 return;
4774 bool warned = false;
4775 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4776 if (idx < 0)
4778 if (dump_file && (dump_flags & TDF_DETAILS))
4780 fprintf (dump_file, "Array bound warning for ");
4781 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4782 fprintf (dump_file, "\n");
4784 warned = warning_at (location, OPT_Warray_bounds,
4785 "array subscript %wi is below "
4786 "array bounds of %qT",
4787 idx.to_shwi (), TREE_TYPE (tem));
4789 else if (idx > (wi::to_offset (up_bound)
4790 - wi::to_offset (low_bound) + 1))
4792 if (dump_file && (dump_flags & TDF_DETAILS))
4794 fprintf (dump_file, "Array bound warning for ");
4795 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4796 fprintf (dump_file, "\n");
4798 warned = warning_at (location, OPT_Warray_bounds,
4799 "array subscript %wu is above "
4800 "array bounds of %qT",
4801 idx.to_uhwi (), TREE_TYPE (tem));
4804 if (warned)
4806 if (DECL_P (t))
4807 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4809 TREE_NO_WARNING (t) = 1;
4813 /* walk_tree() callback that checks if *TP is
4814 an ARRAY_REF inside an ADDR_EXPR (in which an array
4815 subscript one outside the valid range is allowed). Call
4816 check_array_ref for each ARRAY_REF found. The location is
4817 passed in DATA. */
4819 static tree
4820 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4822 tree t = *tp;
4823 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4824 location_t location;
4826 if (EXPR_HAS_LOCATION (t))
4827 location = EXPR_LOCATION (t);
4828 else
4829 location = gimple_location (wi->stmt);
4831 *walk_subtree = TRUE;
4833 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4834 if (TREE_CODE (t) == ARRAY_REF)
4835 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4836 else if (TREE_CODE (t) == MEM_REF)
4837 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4838 else if (TREE_CODE (t) == ADDR_EXPR)
4840 vrp_prop->search_for_addr_array (t, location);
4841 *walk_subtree = FALSE;
4844 return NULL_TREE;
4847 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4848 to walk over all statements of all reachable BBs and call
4849 check_array_bounds on them. */
4851 class check_array_bounds_dom_walker : public dom_walker
4853 public:
4854 check_array_bounds_dom_walker (vrp_prop *prop)
4855 : dom_walker (CDI_DOMINATORS,
4856 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4857 flags, so that we can merge in information on
4858 non-executable edges from vrp_folder . */
4859 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4860 m_prop (prop) {}
4861 ~check_array_bounds_dom_walker () {}
4863 edge before_dom_children (basic_block) FINAL OVERRIDE;
4865 private:
4866 vrp_prop *m_prop;
4869 /* Implementation of dom_walker::before_dom_children.
4871 Walk over all statements of BB and call check_array_bounds on them,
4872 and determine if there's a unique successor edge. */
4874 edge
4875 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4877 gimple_stmt_iterator si;
4878 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4880 gimple *stmt = gsi_stmt (si);
4881 struct walk_stmt_info wi;
4882 if (!gimple_has_location (stmt)
4883 || is_gimple_debug (stmt))
4884 continue;
4886 memset (&wi, 0, sizeof (wi));
4888 wi.info = m_prop;
4890 walk_gimple_op (stmt, check_array_bounds, &wi);
4893 /* Determine if there's a unique successor edge, and if so, return
4894 that back to dom_walker, ensuring that we don't visit blocks that
4895 became unreachable during the VRP propagation
4896 (PR tree-optimization/83312). */
4897 return find_taken_edge (bb, NULL_TREE);
4900 /* Walk over all statements of all reachable BBs and call check_array_bounds
4901 on them. */
4903 void
4904 vrp_prop::check_all_array_refs ()
4906 check_array_bounds_dom_walker w (this);
4907 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4910 /* Return true if all imm uses of VAR are either in STMT, or
4911 feed (optionally through a chain of single imm uses) GIMPLE_COND
4912 in basic block COND_BB. */
4914 static bool
4915 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4917 use_operand_p use_p, use2_p;
4918 imm_use_iterator iter;
4920 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4921 if (USE_STMT (use_p) != stmt)
4923 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4924 if (is_gimple_debug (use_stmt))
4925 continue;
4926 while (is_gimple_assign (use_stmt)
4927 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4928 && single_imm_use (gimple_assign_lhs (use_stmt),
4929 &use2_p, &use_stmt2))
4930 use_stmt = use_stmt2;
4931 if (gimple_code (use_stmt) != GIMPLE_COND
4932 || gimple_bb (use_stmt) != cond_bb)
4933 return false;
4935 return true;
4938 /* Handle
4939 _4 = x_3 & 31;
4940 if (_4 != 0)
4941 goto <bb 6>;
4942 else
4943 goto <bb 7>;
4944 <bb 6>:
4945 __builtin_unreachable ();
4946 <bb 7>:
4947 x_5 = ASSERT_EXPR <x_3, ...>;
4948 If x_3 has no other immediate uses (checked by caller),
4949 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4950 from the non-zero bitmask. */
4952 void
4953 maybe_set_nonzero_bits (edge e, tree var)
4955 basic_block cond_bb = e->src;
4956 gimple *stmt = last_stmt (cond_bb);
4957 tree cst;
4959 if (stmt == NULL
4960 || gimple_code (stmt) != GIMPLE_COND
4961 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
4962 ? EQ_EXPR : NE_EXPR)
4963 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
4964 || !integer_zerop (gimple_cond_rhs (stmt)))
4965 return;
4967 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
4968 if (!is_gimple_assign (stmt)
4969 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
4970 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
4971 return;
4972 if (gimple_assign_rhs1 (stmt) != var)
4974 gimple *stmt2;
4976 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
4977 return;
4978 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
4979 if (!gimple_assign_cast_p (stmt2)
4980 || gimple_assign_rhs1 (stmt2) != var
4981 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
4982 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
4983 != TYPE_PRECISION (TREE_TYPE (var))))
4984 return;
4986 cst = gimple_assign_rhs2 (stmt);
4987 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
4988 wi::to_wide (cst)));
4991 /* Convert range assertion expressions into the implied copies and
4992 copy propagate away the copies. Doing the trivial copy propagation
4993 here avoids the need to run the full copy propagation pass after
4994 VRP.
4996 FIXME, this will eventually lead to copy propagation removing the
4997 names that had useful range information attached to them. For
4998 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4999 then N_i will have the range [3, +INF].
5001 However, by converting the assertion into the implied copy
5002 operation N_i = N_j, we will then copy-propagate N_j into the uses
5003 of N_i and lose the range information. We may want to hold on to
5004 ASSERT_EXPRs a little while longer as the ranges could be used in
5005 things like jump threading.
5007 The problem with keeping ASSERT_EXPRs around is that passes after
5008 VRP need to handle them appropriately.
5010 Another approach would be to make the range information a first
5011 class property of the SSA_NAME so that it can be queried from
5012 any pass. This is made somewhat more complex by the need for
5013 multiple ranges to be associated with one SSA_NAME. */
5015 static void
5016 remove_range_assertions (void)
5018 basic_block bb;
5019 gimple_stmt_iterator si;
5020 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
5021 a basic block preceeded by GIMPLE_COND branching to it and
5022 __builtin_trap, -1 if not yet checked, 0 otherwise. */
5023 int is_unreachable;
5025 /* Note that the BSI iterator bump happens at the bottom of the
5026 loop and no bump is necessary if we're removing the statement
5027 referenced by the current BSI. */
5028 FOR_EACH_BB_FN (bb, cfun)
5029 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
5031 gimple *stmt = gsi_stmt (si);
5033 if (is_gimple_assign (stmt)
5034 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5036 tree lhs = gimple_assign_lhs (stmt);
5037 tree rhs = gimple_assign_rhs1 (stmt);
5038 tree var;
5040 var = ASSERT_EXPR_VAR (rhs);
5042 if (TREE_CODE (var) == SSA_NAME
5043 && !POINTER_TYPE_P (TREE_TYPE (lhs))
5044 && SSA_NAME_RANGE_INFO (lhs))
5046 if (is_unreachable == -1)
5048 is_unreachable = 0;
5049 if (single_pred_p (bb)
5050 && assert_unreachable_fallthru_edge_p
5051 (single_pred_edge (bb)))
5052 is_unreachable = 1;
5054 /* Handle
5055 if (x_7 >= 10 && x_7 < 20)
5056 __builtin_unreachable ();
5057 x_8 = ASSERT_EXPR <x_7, ...>;
5058 if the only uses of x_7 are in the ASSERT_EXPR and
5059 in the condition. In that case, we can copy the
5060 range info from x_8 computed in this pass also
5061 for x_7. */
5062 if (is_unreachable
5063 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
5064 single_pred (bb)))
5066 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
5067 SSA_NAME_RANGE_INFO (lhs)->get_min (),
5068 SSA_NAME_RANGE_INFO (lhs)->get_max ());
5069 maybe_set_nonzero_bits (single_pred_edge (bb), var);
5073 /* Propagate the RHS into every use of the LHS. For SSA names
5074 also propagate abnormals as it merely restores the original
5075 IL in this case (an replace_uses_by would assert). */
5076 if (TREE_CODE (var) == SSA_NAME)
5078 imm_use_iterator iter;
5079 use_operand_p use_p;
5080 gimple *use_stmt;
5081 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5082 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5083 SET_USE (use_p, var);
5085 else
5086 replace_uses_by (lhs, var);
5088 /* And finally, remove the copy, it is not needed. */
5089 gsi_remove (&si, true);
5090 release_defs (stmt);
5092 else
5094 if (!is_gimple_debug (gsi_stmt (si)))
5095 is_unreachable = 0;
5096 gsi_next (&si);
5101 /* Return true if STMT is interesting for VRP. */
5103 bool
5104 stmt_interesting_for_vrp (gimple *stmt)
5106 if (gimple_code (stmt) == GIMPLE_PHI)
5108 tree res = gimple_phi_result (stmt);
5109 return (!virtual_operand_p (res)
5110 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5111 || POINTER_TYPE_P (TREE_TYPE (res))));
5113 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5115 tree lhs = gimple_get_lhs (stmt);
5117 /* In general, assignments with virtual operands are not useful
5118 for deriving ranges, with the obvious exception of calls to
5119 builtin functions. */
5120 if (lhs && TREE_CODE (lhs) == SSA_NAME
5121 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5122 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5123 && (is_gimple_call (stmt)
5124 || !gimple_vuse (stmt)))
5125 return true;
5126 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5127 switch (gimple_call_internal_fn (stmt))
5129 case IFN_ADD_OVERFLOW:
5130 case IFN_SUB_OVERFLOW:
5131 case IFN_MUL_OVERFLOW:
5132 case IFN_ATOMIC_COMPARE_EXCHANGE:
5133 /* These internal calls return _Complex integer type,
5134 but are interesting to VRP nevertheless. */
5135 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5136 return true;
5137 break;
5138 default:
5139 break;
5142 else if (gimple_code (stmt) == GIMPLE_COND
5143 || gimple_code (stmt) == GIMPLE_SWITCH)
5144 return true;
5146 return false;
5149 /* Initialization required by ssa_propagate engine. */
5151 void
5152 vrp_prop::vrp_initialize ()
5154 basic_block bb;
5156 FOR_EACH_BB_FN (bb, cfun)
5158 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5159 gsi_next (&si))
5161 gphi *phi = si.phi ();
5162 if (!stmt_interesting_for_vrp (phi))
5164 tree lhs = PHI_RESULT (phi);
5165 get_value_range (lhs)->set_varying ();
5166 prop_set_simulate_again (phi, false);
5168 else
5169 prop_set_simulate_again (phi, true);
5172 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5173 gsi_next (&si))
5175 gimple *stmt = gsi_stmt (si);
5177 /* If the statement is a control insn, then we do not
5178 want to avoid simulating the statement once. Failure
5179 to do so means that those edges will never get added. */
5180 if (stmt_ends_bb_p (stmt))
5181 prop_set_simulate_again (stmt, true);
5182 else if (!stmt_interesting_for_vrp (stmt))
5184 set_defs_to_varying (stmt);
5185 prop_set_simulate_again (stmt, false);
5187 else
5188 prop_set_simulate_again (stmt, true);
5193 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5194 that includes the value VAL. The search is restricted to the range
5195 [START_IDX, n - 1] where n is the size of VEC.
5197 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5198 returned.
5200 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5201 it is placed in IDX and false is returned.
5203 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5204 returned. */
5206 bool
5207 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5209 size_t n = gimple_switch_num_labels (stmt);
5210 size_t low, high;
5212 /* Find case label for minimum of the value range or the next one.
5213 At each iteration we are searching in [low, high - 1]. */
5215 for (low = start_idx, high = n; high != low; )
5217 tree t;
5218 int cmp;
5219 /* Note that i != high, so we never ask for n. */
5220 size_t i = (high + low) / 2;
5221 t = gimple_switch_label (stmt, i);
5223 /* Cache the result of comparing CASE_LOW and val. */
5224 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5226 if (cmp == 0)
5228 /* Ranges cannot be empty. */
5229 *idx = i;
5230 return true;
5232 else if (cmp > 0)
5233 high = i;
5234 else
5236 low = i + 1;
5237 if (CASE_HIGH (t) != NULL
5238 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5240 *idx = i;
5241 return true;
5246 *idx = high;
5247 return false;
5250 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5251 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5252 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5253 then MAX_IDX < MIN_IDX.
5254 Returns true if the default label is not needed. */
5256 bool
5257 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5258 size_t *max_idx)
5260 size_t i, j;
5261 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5262 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5264 if (i == j
5265 && min_take_default
5266 && max_take_default)
5268 /* Only the default case label reached.
5269 Return an empty range. */
5270 *min_idx = 1;
5271 *max_idx = 0;
5272 return false;
5274 else
5276 bool take_default = min_take_default || max_take_default;
5277 tree low, high;
5278 size_t k;
5280 if (max_take_default)
5281 j--;
5283 /* If the case label range is continuous, we do not need
5284 the default case label. Verify that. */
5285 high = CASE_LOW (gimple_switch_label (stmt, i));
5286 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5287 high = CASE_HIGH (gimple_switch_label (stmt, i));
5288 for (k = i + 1; k <= j; ++k)
5290 low = CASE_LOW (gimple_switch_label (stmt, k));
5291 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5293 take_default = true;
5294 break;
5296 high = low;
5297 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5298 high = CASE_HIGH (gimple_switch_label (stmt, k));
5301 *min_idx = i;
5302 *max_idx = j;
5303 return !take_default;
5307 /* Evaluate statement STMT. If the statement produces a useful range,
5308 return SSA_PROP_INTERESTING and record the SSA name with the
5309 interesting range into *OUTPUT_P.
5311 If STMT is a conditional branch and we can determine its truth
5312 value, the taken edge is recorded in *TAKEN_EDGE_P.
5314 If STMT produces a varying value, return SSA_PROP_VARYING. */
5316 enum ssa_prop_result
5317 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5319 tree lhs = gimple_get_lhs (stmt);
5320 value_range vr;
5321 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5323 if (*output_p)
5325 if (update_value_range (*output_p, &vr))
5327 if (dump_file && (dump_flags & TDF_DETAILS))
5329 fprintf (dump_file, "Found new range for ");
5330 print_generic_expr (dump_file, *output_p);
5331 fprintf (dump_file, ": ");
5332 dump_value_range (dump_file, &vr);
5333 fprintf (dump_file, "\n");
5336 if (vr.varying_p ())
5337 return SSA_PROP_VARYING;
5339 return SSA_PROP_INTERESTING;
5341 return SSA_PROP_NOT_INTERESTING;
5344 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5345 switch (gimple_call_internal_fn (stmt))
5347 case IFN_ADD_OVERFLOW:
5348 case IFN_SUB_OVERFLOW:
5349 case IFN_MUL_OVERFLOW:
5350 case IFN_ATOMIC_COMPARE_EXCHANGE:
5351 /* These internal calls return _Complex integer type,
5352 which VRP does not track, but the immediate uses
5353 thereof might be interesting. */
5354 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5356 imm_use_iterator iter;
5357 use_operand_p use_p;
5358 enum ssa_prop_result res = SSA_PROP_VARYING;
5360 get_value_range (lhs)->set_varying ();
5362 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5364 gimple *use_stmt = USE_STMT (use_p);
5365 if (!is_gimple_assign (use_stmt))
5366 continue;
5367 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5368 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5369 continue;
5370 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5371 tree use_lhs = gimple_assign_lhs (use_stmt);
5372 if (TREE_CODE (rhs1) != rhs_code
5373 || TREE_OPERAND (rhs1, 0) != lhs
5374 || TREE_CODE (use_lhs) != SSA_NAME
5375 || !stmt_interesting_for_vrp (use_stmt)
5376 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5377 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5378 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5379 continue;
5381 /* If there is a change in the value range for any of the
5382 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5383 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5384 or IMAGPART_EXPR immediate uses, but none of them have
5385 a change in their value ranges, return
5386 SSA_PROP_NOT_INTERESTING. If there are no
5387 {REAL,IMAG}PART_EXPR uses at all,
5388 return SSA_PROP_VARYING. */
5389 value_range new_vr;
5390 extract_range_basic (&new_vr, use_stmt);
5391 const value_range *old_vr = get_value_range (use_lhs);
5392 if (!old_vr->equal_p (new_vr, /*ignore_equivs=*/false))
5393 res = SSA_PROP_INTERESTING;
5394 else
5395 res = SSA_PROP_NOT_INTERESTING;
5396 new_vr.equiv_clear ();
5397 if (res == SSA_PROP_INTERESTING)
5399 *output_p = lhs;
5400 return res;
5404 return res;
5406 break;
5407 default:
5408 break;
5411 /* All other statements produce nothing of interest for VRP, so mark
5412 their outputs varying and prevent further simulation. */
5413 set_defs_to_varying (stmt);
5415 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5418 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5419 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5420 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5421 possible such range. The resulting range is not canonicalized. */
5423 static void
5424 union_ranges (enum value_range_kind *vr0type,
5425 tree *vr0min, tree *vr0max,
5426 enum value_range_kind vr1type,
5427 tree vr1min, tree vr1max)
5429 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5430 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5432 /* [] is vr0, () is vr1 in the following classification comments. */
5433 if (mineq && maxeq)
5435 /* [( )] */
5436 if (*vr0type == vr1type)
5437 /* Nothing to do for equal ranges. */
5439 else if ((*vr0type == VR_RANGE
5440 && vr1type == VR_ANTI_RANGE)
5441 || (*vr0type == VR_ANTI_RANGE
5442 && vr1type == VR_RANGE))
5444 /* For anti-range with range union the result is varying. */
5445 goto give_up;
5447 else
5448 gcc_unreachable ();
5450 else if (operand_less_p (*vr0max, vr1min) == 1
5451 || operand_less_p (vr1max, *vr0min) == 1)
5453 /* [ ] ( ) or ( ) [ ]
5454 If the ranges have an empty intersection, result of the union
5455 operation is the anti-range or if both are anti-ranges
5456 it covers all. */
5457 if (*vr0type == VR_ANTI_RANGE
5458 && vr1type == VR_ANTI_RANGE)
5459 goto give_up;
5460 else if (*vr0type == VR_ANTI_RANGE
5461 && vr1type == VR_RANGE)
5463 else if (*vr0type == VR_RANGE
5464 && vr1type == VR_ANTI_RANGE)
5466 *vr0type = vr1type;
5467 *vr0min = vr1min;
5468 *vr0max = vr1max;
5470 else if (*vr0type == VR_RANGE
5471 && vr1type == VR_RANGE)
5473 /* The result is the convex hull of both ranges. */
5474 if (operand_less_p (*vr0max, vr1min) == 1)
5476 /* If the result can be an anti-range, create one. */
5477 if (TREE_CODE (*vr0max) == INTEGER_CST
5478 && TREE_CODE (vr1min) == INTEGER_CST
5479 && vrp_val_is_min (*vr0min)
5480 && vrp_val_is_max (vr1max))
5482 tree min = int_const_binop (PLUS_EXPR,
5483 *vr0max,
5484 build_int_cst (TREE_TYPE (*vr0max), 1));
5485 tree max = int_const_binop (MINUS_EXPR,
5486 vr1min,
5487 build_int_cst (TREE_TYPE (vr1min), 1));
5488 if (!operand_less_p (max, min))
5490 *vr0type = VR_ANTI_RANGE;
5491 *vr0min = min;
5492 *vr0max = max;
5494 else
5495 *vr0max = vr1max;
5497 else
5498 *vr0max = vr1max;
5500 else
5502 /* If the result can be an anti-range, create one. */
5503 if (TREE_CODE (vr1max) == INTEGER_CST
5504 && TREE_CODE (*vr0min) == INTEGER_CST
5505 && vrp_val_is_min (vr1min)
5506 && vrp_val_is_max (*vr0max))
5508 tree min = int_const_binop (PLUS_EXPR,
5509 vr1max,
5510 build_int_cst (TREE_TYPE (vr1max), 1));
5511 tree max = int_const_binop (MINUS_EXPR,
5512 *vr0min,
5513 build_int_cst (TREE_TYPE (*vr0min), 1));
5514 if (!operand_less_p (max, min))
5516 *vr0type = VR_ANTI_RANGE;
5517 *vr0min = min;
5518 *vr0max = max;
5520 else
5521 *vr0min = vr1min;
5523 else
5524 *vr0min = vr1min;
5527 else
5528 gcc_unreachable ();
5530 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5531 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5533 /* [ ( ) ] or [( ) ] or [ ( )] */
5534 if (*vr0type == VR_RANGE
5535 && vr1type == VR_RANGE)
5537 else if (*vr0type == VR_ANTI_RANGE
5538 && vr1type == VR_ANTI_RANGE)
5540 *vr0type = vr1type;
5541 *vr0min = vr1min;
5542 *vr0max = vr1max;
5544 else if (*vr0type == VR_ANTI_RANGE
5545 && vr1type == VR_RANGE)
5547 /* Arbitrarily choose the right or left gap. */
5548 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5549 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5550 build_int_cst (TREE_TYPE (vr1min), 1));
5551 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5552 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5553 build_int_cst (TREE_TYPE (vr1max), 1));
5554 else
5555 goto give_up;
5557 else if (*vr0type == VR_RANGE
5558 && vr1type == VR_ANTI_RANGE)
5559 /* The result covers everything. */
5560 goto give_up;
5561 else
5562 gcc_unreachable ();
5564 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5565 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5567 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5568 if (*vr0type == VR_RANGE
5569 && vr1type == VR_RANGE)
5571 *vr0type = vr1type;
5572 *vr0min = vr1min;
5573 *vr0max = vr1max;
5575 else if (*vr0type == VR_ANTI_RANGE
5576 && vr1type == VR_ANTI_RANGE)
5578 else if (*vr0type == VR_RANGE
5579 && vr1type == VR_ANTI_RANGE)
5581 *vr0type = VR_ANTI_RANGE;
5582 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5584 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5585 build_int_cst (TREE_TYPE (*vr0min), 1));
5586 *vr0min = vr1min;
5588 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5590 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5591 build_int_cst (TREE_TYPE (*vr0max), 1));
5592 *vr0max = vr1max;
5594 else
5595 goto give_up;
5597 else if (*vr0type == VR_ANTI_RANGE
5598 && vr1type == VR_RANGE)
5599 /* The result covers everything. */
5600 goto give_up;
5601 else
5602 gcc_unreachable ();
5604 else if ((operand_less_p (vr1min, *vr0max) == 1
5605 || operand_equal_p (vr1min, *vr0max, 0))
5606 && operand_less_p (*vr0min, vr1min) == 1
5607 && operand_less_p (*vr0max, vr1max) == 1)
5609 /* [ ( ] ) or [ ]( ) */
5610 if (*vr0type == VR_RANGE
5611 && vr1type == VR_RANGE)
5612 *vr0max = vr1max;
5613 else if (*vr0type == VR_ANTI_RANGE
5614 && vr1type == VR_ANTI_RANGE)
5615 *vr0min = vr1min;
5616 else if (*vr0type == VR_ANTI_RANGE
5617 && vr1type == VR_RANGE)
5619 if (TREE_CODE (vr1min) == INTEGER_CST)
5620 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5621 build_int_cst (TREE_TYPE (vr1min), 1));
5622 else
5623 goto give_up;
5625 else if (*vr0type == VR_RANGE
5626 && vr1type == VR_ANTI_RANGE)
5628 if (TREE_CODE (*vr0max) == INTEGER_CST)
5630 *vr0type = vr1type;
5631 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5632 build_int_cst (TREE_TYPE (*vr0max), 1));
5633 *vr0max = vr1max;
5635 else
5636 goto give_up;
5638 else
5639 gcc_unreachable ();
5641 else if ((operand_less_p (*vr0min, vr1max) == 1
5642 || operand_equal_p (*vr0min, vr1max, 0))
5643 && operand_less_p (vr1min, *vr0min) == 1
5644 && operand_less_p (vr1max, *vr0max) == 1)
5646 /* ( [ ) ] or ( )[ ] */
5647 if (*vr0type == VR_RANGE
5648 && vr1type == VR_RANGE)
5649 *vr0min = vr1min;
5650 else if (*vr0type == VR_ANTI_RANGE
5651 && vr1type == VR_ANTI_RANGE)
5652 *vr0max = vr1max;
5653 else if (*vr0type == VR_ANTI_RANGE
5654 && vr1type == VR_RANGE)
5656 if (TREE_CODE (vr1max) == INTEGER_CST)
5657 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5658 build_int_cst (TREE_TYPE (vr1max), 1));
5659 else
5660 goto give_up;
5662 else if (*vr0type == VR_RANGE
5663 && vr1type == VR_ANTI_RANGE)
5665 if (TREE_CODE (*vr0min) == INTEGER_CST)
5667 *vr0type = vr1type;
5668 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5669 build_int_cst (TREE_TYPE (*vr0min), 1));
5670 *vr0min = vr1min;
5672 else
5673 goto give_up;
5675 else
5676 gcc_unreachable ();
5678 else
5679 goto give_up;
5681 return;
5683 give_up:
5684 *vr0type = VR_VARYING;
5685 *vr0min = NULL_TREE;
5686 *vr0max = NULL_TREE;
5689 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5690 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5691 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5692 possible such range. The resulting range is not canonicalized. */
5694 static void
5695 intersect_ranges (enum value_range_kind *vr0type,
5696 tree *vr0min, tree *vr0max,
5697 enum value_range_kind vr1type,
5698 tree vr1min, tree vr1max)
5700 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5701 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5703 /* [] is vr0, () is vr1 in the following classification comments. */
5704 if (mineq && maxeq)
5706 /* [( )] */
5707 if (*vr0type == vr1type)
5708 /* Nothing to do for equal ranges. */
5710 else if ((*vr0type == VR_RANGE
5711 && vr1type == VR_ANTI_RANGE)
5712 || (*vr0type == VR_ANTI_RANGE
5713 && vr1type == VR_RANGE))
5715 /* For anti-range with range intersection the result is empty. */
5716 *vr0type = VR_UNDEFINED;
5717 *vr0min = NULL_TREE;
5718 *vr0max = NULL_TREE;
5720 else
5721 gcc_unreachable ();
5723 else if (operand_less_p (*vr0max, vr1min) == 1
5724 || operand_less_p (vr1max, *vr0min) == 1)
5726 /* [ ] ( ) or ( ) [ ]
5727 If the ranges have an empty intersection, the result of the
5728 intersect operation is the range for intersecting an
5729 anti-range with a range or empty when intersecting two ranges. */
5730 if (*vr0type == VR_RANGE
5731 && vr1type == VR_ANTI_RANGE)
5733 else if (*vr0type == VR_ANTI_RANGE
5734 && vr1type == VR_RANGE)
5736 *vr0type = vr1type;
5737 *vr0min = vr1min;
5738 *vr0max = vr1max;
5740 else if (*vr0type == VR_RANGE
5741 && vr1type == VR_RANGE)
5743 *vr0type = VR_UNDEFINED;
5744 *vr0min = NULL_TREE;
5745 *vr0max = NULL_TREE;
5747 else if (*vr0type == VR_ANTI_RANGE
5748 && vr1type == VR_ANTI_RANGE)
5750 /* If the anti-ranges are adjacent to each other merge them. */
5751 if (TREE_CODE (*vr0max) == INTEGER_CST
5752 && TREE_CODE (vr1min) == INTEGER_CST
5753 && operand_less_p (*vr0max, vr1min) == 1
5754 && integer_onep (int_const_binop (MINUS_EXPR,
5755 vr1min, *vr0max)))
5756 *vr0max = vr1max;
5757 else if (TREE_CODE (vr1max) == INTEGER_CST
5758 && TREE_CODE (*vr0min) == INTEGER_CST
5759 && operand_less_p (vr1max, *vr0min) == 1
5760 && integer_onep (int_const_binop (MINUS_EXPR,
5761 *vr0min, vr1max)))
5762 *vr0min = vr1min;
5763 /* Else arbitrarily take VR0. */
5766 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5767 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5769 /* [ ( ) ] or [( ) ] or [ ( )] */
5770 if (*vr0type == VR_RANGE
5771 && vr1type == VR_RANGE)
5773 /* If both are ranges the result is the inner one. */
5774 *vr0type = vr1type;
5775 *vr0min = vr1min;
5776 *vr0max = vr1max;
5778 else if (*vr0type == VR_RANGE
5779 && vr1type == VR_ANTI_RANGE)
5781 /* Choose the right gap if the left one is empty. */
5782 if (mineq)
5784 if (TREE_CODE (vr1max) != INTEGER_CST)
5785 *vr0min = vr1max;
5786 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5787 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5788 *vr0min
5789 = int_const_binop (MINUS_EXPR, vr1max,
5790 build_int_cst (TREE_TYPE (vr1max), -1));
5791 else
5792 *vr0min
5793 = int_const_binop (PLUS_EXPR, vr1max,
5794 build_int_cst (TREE_TYPE (vr1max), 1));
5796 /* Choose the left gap if the right one is empty. */
5797 else if (maxeq)
5799 if (TREE_CODE (vr1min) != INTEGER_CST)
5800 *vr0max = vr1min;
5801 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5802 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5803 *vr0max
5804 = int_const_binop (PLUS_EXPR, vr1min,
5805 build_int_cst (TREE_TYPE (vr1min), -1));
5806 else
5807 *vr0max
5808 = int_const_binop (MINUS_EXPR, vr1min,
5809 build_int_cst (TREE_TYPE (vr1min), 1));
5811 /* Choose the anti-range if the range is effectively varying. */
5812 else if (vrp_val_is_min (*vr0min)
5813 && vrp_val_is_max (*vr0max))
5815 *vr0type = vr1type;
5816 *vr0min = vr1min;
5817 *vr0max = vr1max;
5819 /* Else choose the range. */
5821 else if (*vr0type == VR_ANTI_RANGE
5822 && vr1type == VR_ANTI_RANGE)
5823 /* If both are anti-ranges the result is the outer one. */
5825 else if (*vr0type == VR_ANTI_RANGE
5826 && vr1type == VR_RANGE)
5828 /* The intersection is empty. */
5829 *vr0type = VR_UNDEFINED;
5830 *vr0min = NULL_TREE;
5831 *vr0max = NULL_TREE;
5833 else
5834 gcc_unreachable ();
5836 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5837 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5839 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5840 if (*vr0type == VR_RANGE
5841 && vr1type == VR_RANGE)
5842 /* Choose the inner range. */
5844 else if (*vr0type == VR_ANTI_RANGE
5845 && vr1type == VR_RANGE)
5847 /* Choose the right gap if the left is empty. */
5848 if (mineq)
5850 *vr0type = VR_RANGE;
5851 if (TREE_CODE (*vr0max) != INTEGER_CST)
5852 *vr0min = *vr0max;
5853 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5854 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5855 *vr0min
5856 = int_const_binop (MINUS_EXPR, *vr0max,
5857 build_int_cst (TREE_TYPE (*vr0max), -1));
5858 else
5859 *vr0min
5860 = int_const_binop (PLUS_EXPR, *vr0max,
5861 build_int_cst (TREE_TYPE (*vr0max), 1));
5862 *vr0max = vr1max;
5864 /* Choose the left gap if the right is empty. */
5865 else if (maxeq)
5867 *vr0type = VR_RANGE;
5868 if (TREE_CODE (*vr0min) != INTEGER_CST)
5869 *vr0max = *vr0min;
5870 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5871 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5872 *vr0max
5873 = int_const_binop (PLUS_EXPR, *vr0min,
5874 build_int_cst (TREE_TYPE (*vr0min), -1));
5875 else
5876 *vr0max
5877 = int_const_binop (MINUS_EXPR, *vr0min,
5878 build_int_cst (TREE_TYPE (*vr0min), 1));
5879 *vr0min = vr1min;
5881 /* Choose the anti-range if the range is effectively varying. */
5882 else if (vrp_val_is_min (vr1min)
5883 && vrp_val_is_max (vr1max))
5885 /* Choose the anti-range if it is ~[0,0], that range is special
5886 enough to special case when vr1's range is relatively wide.
5887 At least for types bigger than int - this covers pointers
5888 and arguments to functions like ctz. */
5889 else if (*vr0min == *vr0max
5890 && integer_zerop (*vr0min)
5891 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5892 >= TYPE_PRECISION (integer_type_node))
5893 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5894 && TREE_CODE (vr1max) == INTEGER_CST
5895 && TREE_CODE (vr1min) == INTEGER_CST
5896 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5897 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5899 /* Else choose the range. */
5900 else
5902 *vr0type = vr1type;
5903 *vr0min = vr1min;
5904 *vr0max = vr1max;
5907 else if (*vr0type == VR_ANTI_RANGE
5908 && vr1type == VR_ANTI_RANGE)
5910 /* If both are anti-ranges the result is the outer one. */
5911 *vr0type = vr1type;
5912 *vr0min = vr1min;
5913 *vr0max = vr1max;
5915 else if (vr1type == VR_ANTI_RANGE
5916 && *vr0type == VR_RANGE)
5918 /* The intersection is empty. */
5919 *vr0type = VR_UNDEFINED;
5920 *vr0min = NULL_TREE;
5921 *vr0max = NULL_TREE;
5923 else
5924 gcc_unreachable ();
5926 else if ((operand_less_p (vr1min, *vr0max) == 1
5927 || operand_equal_p (vr1min, *vr0max, 0))
5928 && operand_less_p (*vr0min, vr1min) == 1)
5930 /* [ ( ] ) or [ ]( ) */
5931 if (*vr0type == VR_ANTI_RANGE
5932 && vr1type == VR_ANTI_RANGE)
5933 *vr0max = vr1max;
5934 else if (*vr0type == VR_RANGE
5935 && vr1type == VR_RANGE)
5936 *vr0min = vr1min;
5937 else if (*vr0type == VR_RANGE
5938 && vr1type == VR_ANTI_RANGE)
5940 if (TREE_CODE (vr1min) == INTEGER_CST)
5941 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5942 build_int_cst (TREE_TYPE (vr1min), 1));
5943 else
5944 *vr0max = vr1min;
5946 else if (*vr0type == VR_ANTI_RANGE
5947 && vr1type == VR_RANGE)
5949 *vr0type = VR_RANGE;
5950 if (TREE_CODE (*vr0max) == INTEGER_CST)
5951 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5952 build_int_cst (TREE_TYPE (*vr0max), 1));
5953 else
5954 *vr0min = *vr0max;
5955 *vr0max = vr1max;
5957 else
5958 gcc_unreachable ();
5960 else if ((operand_less_p (*vr0min, vr1max) == 1
5961 || operand_equal_p (*vr0min, vr1max, 0))
5962 && operand_less_p (vr1min, *vr0min) == 1)
5964 /* ( [ ) ] or ( )[ ] */
5965 if (*vr0type == VR_ANTI_RANGE
5966 && vr1type == VR_ANTI_RANGE)
5967 *vr0min = vr1min;
5968 else if (*vr0type == VR_RANGE
5969 && vr1type == VR_RANGE)
5970 *vr0max = vr1max;
5971 else if (*vr0type == VR_RANGE
5972 && vr1type == VR_ANTI_RANGE)
5974 if (TREE_CODE (vr1max) == INTEGER_CST)
5975 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5976 build_int_cst (TREE_TYPE (vr1max), 1));
5977 else
5978 *vr0min = vr1max;
5980 else if (*vr0type == VR_ANTI_RANGE
5981 && vr1type == VR_RANGE)
5983 *vr0type = VR_RANGE;
5984 if (TREE_CODE (*vr0min) == INTEGER_CST)
5985 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5986 build_int_cst (TREE_TYPE (*vr0min), 1));
5987 else
5988 *vr0max = *vr0min;
5989 *vr0min = vr1min;
5991 else
5992 gcc_unreachable ();
5995 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
5996 result for the intersection. That's always a conservative
5997 correct estimate unless VR1 is a constant singleton range
5998 in which case we choose that. */
5999 if (vr1type == VR_RANGE
6000 && is_gimple_min_invariant (vr1min)
6001 && vrp_operand_equal_p (vr1min, vr1max))
6003 *vr0type = vr1type;
6004 *vr0min = vr1min;
6005 *vr0max = vr1max;
6010 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
6011 in *VR0. This may not be the smallest possible such range. */
6013 void
6014 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
6016 /* If either range is VR_VARYING the other one wins. */
6017 if (vr1->varying_p ())
6018 return;
6019 if (vr0->varying_p ())
6021 vr0->deep_copy (vr1);
6022 return;
6025 /* When either range is VR_UNDEFINED the resulting range is
6026 VR_UNDEFINED, too. */
6027 if (vr0->undefined_p ())
6028 return;
6029 if (vr1->undefined_p ())
6031 vr0->set_undefined ();
6032 return;
6035 value_range_kind vr0type = vr0->kind ();
6036 tree vr0min = vr0->min ();
6037 tree vr0max = vr0->max ();
6038 intersect_ranges (&vr0type, &vr0min, &vr0max,
6039 vr1->kind (), vr1->min (), vr1->max ());
6040 /* Make sure to canonicalize the result though as the inversion of a
6041 VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
6042 fall back to vr0 when this turns things to varying. */
6043 value_range tem;
6044 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6045 /* If that failed, use the saved original VR0. */
6046 if (tem.varying_p ())
6047 return;
6048 vr0->update (tem.kind (), tem.min (), tem.max ());
6050 /* If the result is VR_UNDEFINED there is no need to mess with
6051 the equivalencies. */
6052 if (vr0->undefined_p ())
6053 return;
6055 /* The resulting set of equivalences for range intersection is the union of
6056 the two sets. */
6057 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6058 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
6059 else if (vr1->m_equiv && !vr0->m_equiv)
6061 /* All equivalence bitmaps are allocated from the same obstack. So
6062 we can use the obstack associated with VR to allocate vr0->equiv. */
6063 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
6064 bitmap_copy (m_equiv, vr1->m_equiv);
6068 void
6069 value_range::intersect (const value_range *other)
6071 if (dump_file && (dump_flags & TDF_DETAILS))
6073 fprintf (dump_file, "Intersecting\n ");
6074 dump_value_range (dump_file, this);
6075 fprintf (dump_file, "\nand\n ");
6076 dump_value_range (dump_file, other);
6077 fprintf (dump_file, "\n");
6079 intersect_helper (this, other);
6080 if (dump_file && (dump_flags & TDF_DETAILS))
6082 fprintf (dump_file, "to\n ");
6083 dump_value_range (dump_file, this);
6084 fprintf (dump_file, "\n");
6088 /* Helper for meet operation for value ranges. Given two value ranges VR0 and
6089 VR1, return a range that contains both VR0 and VR1. This may not be the
6090 smallest possible such range. */
6092 value_range_base
6093 value_range_base::union_helper (const value_range_base *vr0,
6094 const value_range_base *vr1)
6096 /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
6097 if (vr1->undefined_p ()
6098 || vr0->varying_p ())
6099 return *vr0;
6101 /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
6102 if (vr0->undefined_p ()
6103 || vr1->varying_p ())
6104 return *vr1;
6106 value_range_kind vr0type = vr0->kind ();
6107 tree vr0min = vr0->min ();
6108 tree vr0max = vr0->max ();
6109 union_ranges (&vr0type, &vr0min, &vr0max,
6110 vr1->kind (), vr1->min (), vr1->max ());
6112 /* Work on a temporary so we can still use vr0 when union returns varying. */
6113 value_range tem;
6114 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6116 /* Failed to find an efficient meet. Before giving up and setting
6117 the result to VARYING, see if we can at least derive a useful
6118 anti-range. */
6119 if (tem.varying_p ()
6120 && range_includes_zero_p (vr0) == 0
6121 && range_includes_zero_p (vr1) == 0)
6123 tem.set_nonnull (vr0->type ());
6124 return tem;
6127 return tem;
6131 /* Meet operation for value ranges. Given two value ranges VR0 and
6132 VR1, store in VR0 a range that contains both VR0 and VR1. This
6133 may not be the smallest possible such range. */
6135 void
6136 value_range_base::union_ (const value_range_base *other)
6138 if (dump_file && (dump_flags & TDF_DETAILS))
6140 fprintf (dump_file, "Meeting\n ");
6141 dump_value_range (dump_file, this);
6142 fprintf (dump_file, "\nand\n ");
6143 dump_value_range (dump_file, other);
6144 fprintf (dump_file, "\n");
6147 *this = union_helper (this, other);
6149 if (dump_file && (dump_flags & TDF_DETAILS))
6151 fprintf (dump_file, "to\n ");
6152 dump_value_range (dump_file, this);
6153 fprintf (dump_file, "\n");
6157 void
6158 value_range::union_ (const value_range *other)
6160 if (dump_file && (dump_flags & TDF_DETAILS))
6162 fprintf (dump_file, "Meeting\n ");
6163 dump_value_range (dump_file, this);
6164 fprintf (dump_file, "\nand\n ");
6165 dump_value_range (dump_file, other);
6166 fprintf (dump_file, "\n");
6169 /* If THIS is undefined we want to pick up equivalences from OTHER.
6170 Just special-case this here rather than trying to fixup after the fact. */
6171 if (this->undefined_p ())
6172 this->deep_copy (other);
6173 else
6175 value_range_base tem = union_helper (this, other);
6176 this->update (tem.kind (), tem.min (), tem.max ());
6178 /* The resulting set of equivalences is always the intersection of
6179 the two sets. */
6180 if (this->m_equiv && other->m_equiv && this->m_equiv != other->m_equiv)
6181 bitmap_and_into (this->m_equiv, other->m_equiv);
6182 else if (this->m_equiv && !other->m_equiv)
6183 bitmap_clear (this->m_equiv);
6186 if (dump_file && (dump_flags & TDF_DETAILS))
6188 fprintf (dump_file, "to\n ");
6189 dump_value_range (dump_file, this);
6190 fprintf (dump_file, "\n");
6194 /* Visit all arguments for PHI node PHI that flow through executable
6195 edges. If a valid value range can be derived from all the incoming
6196 value ranges, set a new range for the LHS of PHI. */
6198 enum ssa_prop_result
6199 vrp_prop::visit_phi (gphi *phi)
6201 tree lhs = PHI_RESULT (phi);
6202 value_range vr_result;
6203 extract_range_from_phi_node (phi, &vr_result);
6204 if (update_value_range (lhs, &vr_result))
6206 if (dump_file && (dump_flags & TDF_DETAILS))
6208 fprintf (dump_file, "Found new range for ");
6209 print_generic_expr (dump_file, lhs);
6210 fprintf (dump_file, ": ");
6211 dump_value_range (dump_file, &vr_result);
6212 fprintf (dump_file, "\n");
6215 if (vr_result.varying_p ())
6216 return SSA_PROP_VARYING;
6218 return SSA_PROP_INTERESTING;
6221 /* Nothing changed, don't add outgoing edges. */
6222 return SSA_PROP_NOT_INTERESTING;
6225 class vrp_folder : public substitute_and_fold_engine
6227 public:
6228 tree get_value (tree) FINAL OVERRIDE;
6229 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6230 bool fold_predicate_in (gimple_stmt_iterator *);
6232 class vr_values *vr_values;
6234 /* Delegators. */
6235 tree vrp_evaluate_conditional (tree_code code, tree op0,
6236 tree op1, gimple *stmt)
6237 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6238 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6239 { return vr_values->simplify_stmt_using_ranges (gsi); }
6240 tree op_with_constant_singleton_value_range (tree op)
6241 { return vr_values->op_with_constant_singleton_value_range (op); }
6244 /* If the statement pointed by SI has a predicate whose value can be
6245 computed using the value range information computed by VRP, compute
6246 its value and return true. Otherwise, return false. */
6248 bool
6249 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6251 bool assignment_p = false;
6252 tree val;
6253 gimple *stmt = gsi_stmt (*si);
6255 if (is_gimple_assign (stmt)
6256 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6258 assignment_p = true;
6259 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6260 gimple_assign_rhs1 (stmt),
6261 gimple_assign_rhs2 (stmt),
6262 stmt);
6264 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6265 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6266 gimple_cond_lhs (cond_stmt),
6267 gimple_cond_rhs (cond_stmt),
6268 stmt);
6269 else
6270 return false;
6272 if (val)
6274 if (assignment_p)
6275 val = fold_convert (gimple_expr_type (stmt), val);
6277 if (dump_file)
6279 fprintf (dump_file, "Folding predicate ");
6280 print_gimple_expr (dump_file, stmt, 0);
6281 fprintf (dump_file, " to ");
6282 print_generic_expr (dump_file, val);
6283 fprintf (dump_file, "\n");
6286 if (is_gimple_assign (stmt))
6287 gimple_assign_set_rhs_from_tree (si, val);
6288 else
6290 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6291 gcond *cond_stmt = as_a <gcond *> (stmt);
6292 if (integer_zerop (val))
6293 gimple_cond_make_false (cond_stmt);
6294 else if (integer_onep (val))
6295 gimple_cond_make_true (cond_stmt);
6296 else
6297 gcc_unreachable ();
6300 return true;
6303 return false;
6306 /* Callback for substitute_and_fold folding the stmt at *SI. */
6308 bool
6309 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6311 if (fold_predicate_in (si))
6312 return true;
6314 return simplify_stmt_using_ranges (si);
6317 /* If OP has a value range with a single constant value return that,
6318 otherwise return NULL_TREE. This returns OP itself if OP is a
6319 constant.
6321 Implemented as a pure wrapper right now, but this will change. */
6323 tree
6324 vrp_folder::get_value (tree op)
6326 return op_with_constant_singleton_value_range (op);
6329 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6330 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6331 BB. If no such ASSERT_EXPR is found, return OP. */
6333 static tree
6334 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6336 imm_use_iterator imm_iter;
6337 gimple *use_stmt;
6338 use_operand_p use_p;
6340 if (TREE_CODE (op) == SSA_NAME)
6342 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6344 use_stmt = USE_STMT (use_p);
6345 if (use_stmt != stmt
6346 && gimple_assign_single_p (use_stmt)
6347 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6348 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6349 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6350 return gimple_assign_lhs (use_stmt);
6353 return op;
6356 /* A hack. */
6357 static class vr_values *x_vr_values;
6359 /* A trivial wrapper so that we can present the generic jump threading
6360 code with a simple API for simplifying statements. STMT is the
6361 statement we want to simplify, WITHIN_STMT provides the location
6362 for any overflow warnings. */
6364 static tree
6365 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6366 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6367 basic_block bb)
6369 /* First see if the conditional is in the hash table. */
6370 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6371 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6372 return cached_lhs;
6374 vr_values *vr_values = x_vr_values;
6375 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6377 tree op0 = gimple_cond_lhs (cond_stmt);
6378 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6380 tree op1 = gimple_cond_rhs (cond_stmt);
6381 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6383 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6384 op0, op1, within_stmt);
6387 /* We simplify a switch statement by trying to determine which case label
6388 will be taken. If we are successful then we return the corresponding
6389 CASE_LABEL_EXPR. */
6390 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6392 tree op = gimple_switch_index (switch_stmt);
6393 if (TREE_CODE (op) != SSA_NAME)
6394 return NULL_TREE;
6396 op = lhs_of_dominating_assert (op, bb, stmt);
6398 const value_range *vr = vr_values->get_value_range (op);
6399 if (vr->undefined_p ()
6400 || vr->varying_p ()
6401 || vr->symbolic_p ())
6402 return NULL_TREE;
6404 if (vr->kind () == VR_RANGE)
6406 size_t i, j;
6407 /* Get the range of labels that contain a part of the operand's
6408 value range. */
6409 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6411 /* Is there only one such label? */
6412 if (i == j)
6414 tree label = gimple_switch_label (switch_stmt, i);
6416 /* The i'th label will be taken only if the value range of the
6417 operand is entirely within the bounds of this label. */
6418 if (CASE_HIGH (label) != NULL_TREE
6419 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6420 && tree_int_cst_compare (CASE_HIGH (label),
6421 vr->max ()) >= 0)
6422 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6423 && tree_int_cst_equal (vr->min (), vr->max ())))
6424 return label;
6427 /* If there are no such labels then the default label will be
6428 taken. */
6429 if (i > j)
6430 return gimple_switch_label (switch_stmt, 0);
6433 if (vr->kind () == VR_ANTI_RANGE)
6435 unsigned n = gimple_switch_num_labels (switch_stmt);
6436 tree min_label = gimple_switch_label (switch_stmt, 1);
6437 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6439 /* The default label will be taken only if the anti-range of the
6440 operand is entirely outside the bounds of all the (non-default)
6441 case labels. */
6442 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6443 && (CASE_HIGH (max_label) != NULL_TREE
6444 ? tree_int_cst_compare (vr->max (),
6445 CASE_HIGH (max_label)) >= 0
6446 : tree_int_cst_compare (vr->max (),
6447 CASE_LOW (max_label)) >= 0))
6448 return gimple_switch_label (switch_stmt, 0);
6451 return NULL_TREE;
6454 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6456 tree lhs = gimple_assign_lhs (assign_stmt);
6457 if (TREE_CODE (lhs) == SSA_NAME
6458 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6459 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6460 && stmt_interesting_for_vrp (stmt))
6462 edge dummy_e;
6463 tree dummy_tree;
6464 value_range new_vr;
6465 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6466 &dummy_tree, &new_vr);
6467 tree singleton;
6468 if (new_vr.singleton_p (&singleton))
6469 return singleton;
6473 return NULL_TREE;
6476 class vrp_dom_walker : public dom_walker
6478 public:
6479 vrp_dom_walker (cdi_direction direction,
6480 class const_and_copies *const_and_copies,
6481 class avail_exprs_stack *avail_exprs_stack)
6482 : dom_walker (direction, REACHABLE_BLOCKS),
6483 m_const_and_copies (const_and_copies),
6484 m_avail_exprs_stack (avail_exprs_stack),
6485 m_dummy_cond (NULL) {}
6487 virtual edge before_dom_children (basic_block);
6488 virtual void after_dom_children (basic_block);
6490 class vr_values *vr_values;
6492 private:
6493 class const_and_copies *m_const_and_copies;
6494 class avail_exprs_stack *m_avail_exprs_stack;
6496 gcond *m_dummy_cond;
6500 /* Called before processing dominator children of BB. We want to look
6501 at ASSERT_EXPRs and record information from them in the appropriate
6502 tables.
6504 We could look at other statements here. It's not seen as likely
6505 to significantly increase the jump threads we discover. */
6507 edge
6508 vrp_dom_walker::before_dom_children (basic_block bb)
6510 gimple_stmt_iterator gsi;
6512 m_avail_exprs_stack->push_marker ();
6513 m_const_and_copies->push_marker ();
6514 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6516 gimple *stmt = gsi_stmt (gsi);
6517 if (gimple_assign_single_p (stmt)
6518 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6520 tree rhs1 = gimple_assign_rhs1 (stmt);
6521 tree cond = TREE_OPERAND (rhs1, 1);
6522 tree inverted = invert_truthvalue (cond);
6523 vec<cond_equivalence> p;
6524 p.create (3);
6525 record_conditions (&p, cond, inverted);
6526 for (unsigned int i = 0; i < p.length (); i++)
6527 m_avail_exprs_stack->record_cond (&p[i]);
6529 tree lhs = gimple_assign_lhs (stmt);
6530 m_const_and_copies->record_const_or_copy (lhs,
6531 TREE_OPERAND (rhs1, 0));
6532 p.release ();
6533 continue;
6535 break;
6537 return NULL;
6540 /* Called after processing dominator children of BB. This is where we
6541 actually call into the threader. */
6542 void
6543 vrp_dom_walker::after_dom_children (basic_block bb)
6545 if (!m_dummy_cond)
6546 m_dummy_cond = gimple_build_cond (NE_EXPR,
6547 integer_zero_node, integer_zero_node,
6548 NULL, NULL);
6550 x_vr_values = vr_values;
6551 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6552 m_avail_exprs_stack, NULL,
6553 simplify_stmt_for_jump_threading);
6554 x_vr_values = NULL;
6556 m_avail_exprs_stack->pop_to_marker ();
6557 m_const_and_copies->pop_to_marker ();
6560 /* Blocks which have more than one predecessor and more than
6561 one successor present jump threading opportunities, i.e.,
6562 when the block is reached from a specific predecessor, we
6563 may be able to determine which of the outgoing edges will
6564 be traversed. When this optimization applies, we are able
6565 to avoid conditionals at runtime and we may expose secondary
6566 optimization opportunities.
6568 This routine is effectively a driver for the generic jump
6569 threading code. It basically just presents the generic code
6570 with edges that may be suitable for jump threading.
6572 Unlike DOM, we do not iterate VRP if jump threading was successful.
6573 While iterating may expose new opportunities for VRP, it is expected
6574 those opportunities would be very limited and the compile time cost
6575 to expose those opportunities would be significant.
6577 As jump threading opportunities are discovered, they are registered
6578 for later realization. */
6580 static void
6581 identify_jump_threads (class vr_values *vr_values)
6583 /* Ugh. When substituting values earlier in this pass we can
6584 wipe the dominance information. So rebuild the dominator
6585 information as we need it within the jump threading code. */
6586 calculate_dominance_info (CDI_DOMINATORS);
6588 /* We do not allow VRP information to be used for jump threading
6589 across a back edge in the CFG. Otherwise it becomes too
6590 difficult to avoid eliminating loop exit tests. Of course
6591 EDGE_DFS_BACK is not accurate at this time so we have to
6592 recompute it. */
6593 mark_dfs_back_edges ();
6595 /* Allocate our unwinder stack to unwind any temporary equivalences
6596 that might be recorded. */
6597 const_and_copies *equiv_stack = new const_and_copies ();
6599 hash_table<expr_elt_hasher> *avail_exprs
6600 = new hash_table<expr_elt_hasher> (1024);
6601 avail_exprs_stack *avail_exprs_stack
6602 = new class avail_exprs_stack (avail_exprs);
6604 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6605 walker.vr_values = vr_values;
6606 walker.walk (cfun->cfg->x_entry_block_ptr);
6608 /* We do not actually update the CFG or SSA graphs at this point as
6609 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6610 handle ASSERT_EXPRs gracefully. */
6611 delete equiv_stack;
6612 delete avail_exprs;
6613 delete avail_exprs_stack;
6616 /* Traverse all the blocks folding conditionals with known ranges. */
6618 void
6619 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6621 size_t i;
6623 /* We have completed propagating through the lattice. */
6624 vr_values.set_lattice_propagation_complete ();
6626 if (dump_file)
6628 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6629 vr_values.dump_all_value_ranges (dump_file);
6630 fprintf (dump_file, "\n");
6633 /* Set value range to non pointer SSA_NAMEs. */
6634 for (i = 0; i < num_ssa_names; i++)
6636 tree name = ssa_name (i);
6637 if (!name)
6638 continue;
6640 const value_range *vr = get_value_range (name);
6641 if (!name || !vr->constant_p ())
6642 continue;
6644 if (POINTER_TYPE_P (TREE_TYPE (name))
6645 && range_includes_zero_p (vr) == 0)
6646 set_ptr_nonnull (name);
6647 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6648 set_range_info (name, *vr);
6651 /* If we're checking array refs, we want to merge information on
6652 the executability of each edge between vrp_folder and the
6653 check_array_bounds_dom_walker: each can clear the
6654 EDGE_EXECUTABLE flag on edges, in different ways.
6656 Hence, if we're going to call check_all_array_refs, set
6657 the flag on every edge now, rather than in
6658 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6659 it from some edges. */
6660 if (warn_array_bounds && warn_array_bounds_p)
6661 set_all_edges_as_executable (cfun);
6663 class vrp_folder vrp_folder;
6664 vrp_folder.vr_values = &vr_values;
6665 vrp_folder.substitute_and_fold ();
6667 if (warn_array_bounds && warn_array_bounds_p)
6668 check_all_array_refs ();
6671 /* Main entry point to VRP (Value Range Propagation). This pass is
6672 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6673 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6674 Programming Language Design and Implementation, pp. 67-78, 1995.
6675 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6677 This is essentially an SSA-CCP pass modified to deal with ranges
6678 instead of constants.
6680 While propagating ranges, we may find that two or more SSA name
6681 have equivalent, though distinct ranges. For instance,
6683 1 x_9 = p_3->a;
6684 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6685 3 if (p_4 == q_2)
6686 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6687 5 endif
6688 6 if (q_2)
6690 In the code above, pointer p_5 has range [q_2, q_2], but from the
6691 code we can also determine that p_5 cannot be NULL and, if q_2 had
6692 a non-varying range, p_5's range should also be compatible with it.
6694 These equivalences are created by two expressions: ASSERT_EXPR and
6695 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6696 result of another assertion, then we can use the fact that p_5 and
6697 p_4 are equivalent when evaluating p_5's range.
6699 Together with value ranges, we also propagate these equivalences
6700 between names so that we can take advantage of information from
6701 multiple ranges when doing final replacement. Note that this
6702 equivalency relation is transitive but not symmetric.
6704 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6705 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6706 in contexts where that assertion does not hold (e.g., in line 6).
6708 TODO, the main difference between this pass and Patterson's is that
6709 we do not propagate edge probabilities. We only compute whether
6710 edges can be taken or not. That is, instead of having a spectrum
6711 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6712 DON'T KNOW. In the future, it may be worthwhile to propagate
6713 probabilities to aid branch prediction. */
6715 static unsigned int
6716 execute_vrp (bool warn_array_bounds_p)
6719 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6720 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6721 scev_initialize ();
6723 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6724 Inserting assertions may split edges which will invalidate
6725 EDGE_DFS_BACK. */
6726 insert_range_assertions ();
6728 threadedge_initialize_values ();
6730 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6731 mark_dfs_back_edges ();
6733 class vrp_prop vrp_prop;
6734 vrp_prop.vrp_initialize ();
6735 vrp_prop.ssa_propagate ();
6736 vrp_prop.vrp_finalize (warn_array_bounds_p);
6738 /* We must identify jump threading opportunities before we release
6739 the datastructures built by VRP. */
6740 identify_jump_threads (&vrp_prop.vr_values);
6742 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6743 was set by a type conversion can often be rewritten to use the
6744 RHS of the type conversion.
6746 However, doing so inhibits jump threading through the comparison.
6747 So that transformation is not performed until after jump threading
6748 is complete. */
6749 basic_block bb;
6750 FOR_EACH_BB_FN (bb, cfun)
6752 gimple *last = last_stmt (bb);
6753 if (last && gimple_code (last) == GIMPLE_COND)
6754 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6757 free_numbers_of_iterations_estimates (cfun);
6759 /* ASSERT_EXPRs must be removed before finalizing jump threads
6760 as finalizing jump threads calls the CFG cleanup code which
6761 does not properly handle ASSERT_EXPRs. */
6762 remove_range_assertions ();
6764 /* If we exposed any new variables, go ahead and put them into
6765 SSA form now, before we handle jump threading. This simplifies
6766 interactions between rewriting of _DECL nodes into SSA form
6767 and rewriting SSA_NAME nodes into SSA form after block
6768 duplication and CFG manipulation. */
6769 update_ssa (TODO_update_ssa);
6771 /* We identified all the jump threading opportunities earlier, but could
6772 not transform the CFG at that time. This routine transforms the
6773 CFG and arranges for the dominator tree to be rebuilt if necessary.
6775 Note the SSA graph update will occur during the normal TODO
6776 processing by the pass manager. */
6777 thread_through_all_blocks (false);
6779 vrp_prop.vr_values.cleanup_edges_and_switches ();
6780 threadedge_finalize_values ();
6782 scev_finalize ();
6783 loop_optimizer_finalize ();
6784 return 0;
6787 namespace {
6789 const pass_data pass_data_vrp =
6791 GIMPLE_PASS, /* type */
6792 "vrp", /* name */
6793 OPTGROUP_NONE, /* optinfo_flags */
6794 TV_TREE_VRP, /* tv_id */
6795 PROP_ssa, /* properties_required */
6796 0, /* properties_provided */
6797 0, /* properties_destroyed */
6798 0, /* todo_flags_start */
6799 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6802 class pass_vrp : public gimple_opt_pass
6804 public:
6805 pass_vrp (gcc::context *ctxt)
6806 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6809 /* opt_pass methods: */
6810 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6811 void set_pass_param (unsigned int n, bool param)
6813 gcc_assert (n == 0);
6814 warn_array_bounds_p = param;
6816 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6817 virtual unsigned int execute (function *)
6818 { return execute_vrp (warn_array_bounds_p); }
6820 private:
6821 bool warn_array_bounds_p;
6822 }; // class pass_vrp
6824 } // anon namespace
6826 gimple_opt_pass *
6827 make_pass_vrp (gcc::context *ctxt)
6829 return new pass_vrp (ctxt);
6833 /* Worker for determine_value_range. */
6835 static void
6836 determine_value_range_1 (value_range_base *vr, tree expr)
6838 if (BINARY_CLASS_P (expr))
6840 value_range_base vr0, vr1;
6841 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6842 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6843 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6844 &vr0, &vr1);
6846 else if (UNARY_CLASS_P (expr))
6848 value_range_base vr0;
6849 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6850 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6851 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6853 else if (TREE_CODE (expr) == INTEGER_CST)
6854 vr->set (expr);
6855 else
6857 value_range_kind kind;
6858 wide_int min, max;
6859 /* For SSA names try to extract range info computed by VRP. Otherwise
6860 fall back to varying. */
6861 if (TREE_CODE (expr) == SSA_NAME
6862 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6863 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6864 vr->set (kind, wide_int_to_tree (TREE_TYPE (expr), min),
6865 wide_int_to_tree (TREE_TYPE (expr), max));
6866 else
6867 vr->set_varying ();
6871 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6872 the determined range type. */
6874 value_range_kind
6875 determine_value_range (tree expr, wide_int *min, wide_int *max)
6877 value_range_base vr;
6878 determine_value_range_1 (&vr, expr);
6879 if (vr.constant_p ())
6881 *min = wi::to_wide (vr.min ());
6882 *max = wi::to_wide (vr.max ());
6883 return vr.kind ();
6886 return VR_VARYING;