Merge trunk version 206243 into gupc branch.
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob21e52a193ffaa43b3cbd54012905a1ec0d3365fd
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "stor-layout.h"
73 #include "stringpool.h"
74 #include "print-tree.h"
75 #include "tree-inline.h"
76 #include "langhooks.h"
77 #include "flags.h"
78 #include "diagnostic.h"
79 #include "gimple-pretty-print.h"
80 #include "params.h"
81 #include "tree-pass.h"
82 #include "coverage.h"
83 #include "basic-block.h"
84 #include "tree-ssa-alias.h"
85 #include "internal-fn.h"
86 #include "gimple-expr.h"
87 #include "is-a.h"
88 #include "gimple.h"
89 #include "gimple-iterator.h"
90 #include "gimple-ssa.h"
91 #include "tree-cfg.h"
92 #include "tree-phinodes.h"
93 #include "ssa-iterators.h"
94 #include "tree-ssanames.h"
95 #include "tree-ssa-loop-niter.h"
96 #include "tree-ssa-loop.h"
97 #include "ipa-prop.h"
98 #include "lto-streamer.h"
99 #include "data-streamer.h"
100 #include "tree-streamer.h"
101 #include "ipa-inline.h"
102 #include "alloc-pool.h"
103 #include "cfgloop.h"
104 #include "tree-scalar-evolution.h"
105 #include "ipa-utils.h"
106 #include "cilk.h"
107 #include "cfgexpand.h"
109 /* Estimate runtime of function can easilly run into huge numbers with many
110 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
111 integer. For anything larger we use gcov_type. */
112 #define MAX_TIME 500000
114 /* Number of bits in integer, but we really want to be stable across different
115 hosts. */
116 #define NUM_CONDITIONS 32
118 enum predicate_conditions
120 predicate_false_condition = 0,
121 predicate_not_inlined_condition = 1,
122 predicate_first_dynamic_condition = 2
125 /* Special condition code we use to represent test that operand is compile time
126 constant. */
127 #define IS_NOT_CONSTANT ERROR_MARK
128 /* Special condition code we use to represent test that operand is not changed
129 across invocation of the function. When operand IS_NOT_CONSTANT it is always
130 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
131 of executions even when they are not compile time constants. */
132 #define CHANGED IDENTIFIER_NODE
134 /* Holders of ipa cgraph hooks: */
135 static struct cgraph_node_hook_list *function_insertion_hook_holder;
136 static struct cgraph_node_hook_list *node_removal_hook_holder;
137 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
138 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
139 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
140 static void inline_node_removal_hook (struct cgraph_node *, void *);
141 static void inline_node_duplication_hook (struct cgraph_node *,
142 struct cgraph_node *, void *);
143 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
144 static void inline_edge_duplication_hook (struct cgraph_edge *,
145 struct cgraph_edge *, void *);
147 /* VECtor holding inline summaries.
148 In GGC memory because conditions might point to constant trees. */
149 vec<inline_summary_t, va_gc> *inline_summary_vec;
150 vec<inline_edge_summary_t> inline_edge_summary_vec;
152 /* Cached node/edge growths. */
153 vec<int> node_growth_cache;
154 vec<edge_growth_cache_entry> edge_growth_cache;
156 /* Edge predicates goes here. */
157 static alloc_pool edge_predicate_pool;
159 /* Return true predicate (tautology).
160 We represent it by empty list of clauses. */
162 static inline struct predicate
163 true_predicate (void)
165 struct predicate p;
166 p.clause[0] = 0;
167 return p;
171 /* Return predicate testing single condition number COND. */
173 static inline struct predicate
174 single_cond_predicate (int cond)
176 struct predicate p;
177 p.clause[0] = 1 << cond;
178 p.clause[1] = 0;
179 return p;
183 /* Return false predicate. First clause require false condition. */
185 static inline struct predicate
186 false_predicate (void)
188 return single_cond_predicate (predicate_false_condition);
192 /* Return true if P is (false). */
194 static inline bool
195 true_predicate_p (struct predicate *p)
197 return !p->clause[0];
201 /* Return true if P is (false). */
203 static inline bool
204 false_predicate_p (struct predicate *p)
206 if (p->clause[0] == (1 << predicate_false_condition))
208 gcc_checking_assert (!p->clause[1]
209 && p->clause[0] == 1 << predicate_false_condition);
210 return true;
212 return false;
216 /* Return predicate that is set true when function is not inlined. */
218 static inline struct predicate
219 not_inlined_predicate (void)
221 return single_cond_predicate (predicate_not_inlined_condition);
224 /* Simple description of whether a memory load or a condition refers to a load
225 from an aggregate and if so, how and where from in the aggregate.
226 Individual fields have the same meaning like fields with the same name in
227 struct condition. */
229 struct agg_position_info
231 HOST_WIDE_INT offset;
232 bool agg_contents;
233 bool by_ref;
236 /* Add condition to condition list CONDS. AGGPOS describes whether the used
237 oprand is loaded from an aggregate and where in the aggregate it is. It can
238 be NULL, which means this not a load from an aggregate. */
240 static struct predicate
241 add_condition (struct inline_summary *summary, int operand_num,
242 struct agg_position_info *aggpos,
243 enum tree_code code, tree val)
245 int i;
246 struct condition *c;
247 struct condition new_cond;
248 HOST_WIDE_INT offset;
249 bool agg_contents, by_ref;
251 if (aggpos)
253 offset = aggpos->offset;
254 agg_contents = aggpos->agg_contents;
255 by_ref = aggpos->by_ref;
257 else
259 offset = 0;
260 agg_contents = false;
261 by_ref = false;
264 gcc_checking_assert (operand_num >= 0);
265 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
267 if (c->operand_num == operand_num
268 && c->code == code
269 && c->val == val
270 && c->agg_contents == agg_contents
271 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
272 return single_cond_predicate (i + predicate_first_dynamic_condition);
274 /* Too many conditions. Give up and return constant true. */
275 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
276 return true_predicate ();
278 new_cond.operand_num = operand_num;
279 new_cond.code = code;
280 new_cond.val = val;
281 new_cond.agg_contents = agg_contents;
282 new_cond.by_ref = by_ref;
283 new_cond.offset = offset;
284 vec_safe_push (summary->conds, new_cond);
285 return single_cond_predicate (i + predicate_first_dynamic_condition);
289 /* Add clause CLAUSE into the predicate P. */
291 static inline void
292 add_clause (conditions conditions, struct predicate *p, clause_t clause)
294 int i;
295 int i2;
296 int insert_here = -1;
297 int c1, c2;
299 /* True clause. */
300 if (!clause)
301 return;
303 /* False clause makes the whole predicate false. Kill the other variants. */
304 if (clause == (1 << predicate_false_condition))
306 p->clause[0] = (1 << predicate_false_condition);
307 p->clause[1] = 0;
308 return;
310 if (false_predicate_p (p))
311 return;
313 /* No one should be sily enough to add false into nontrivial clauses. */
314 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
316 /* Look where to insert the clause. At the same time prune out
317 clauses of P that are implied by the new clause and thus
318 redundant. */
319 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
321 p->clause[i2] = p->clause[i];
323 if (!p->clause[i])
324 break;
326 /* If p->clause[i] implies clause, there is nothing to add. */
327 if ((p->clause[i] & clause) == p->clause[i])
329 /* We had nothing to add, none of clauses should've become
330 redundant. */
331 gcc_checking_assert (i == i2);
332 return;
335 if (p->clause[i] < clause && insert_here < 0)
336 insert_here = i2;
338 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
339 Otherwise the p->clause[i] has to stay. */
340 if ((p->clause[i] & clause) != clause)
341 i2++;
344 /* Look for clauses that are obviously true. I.e.
345 op0 == 5 || op0 != 5. */
346 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
348 condition *cc1;
349 if (!(clause & (1 << c1)))
350 continue;
351 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
352 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
353 and thus there is no point for looking for them. */
354 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
355 continue;
356 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
357 if (clause & (1 << c2))
359 condition *cc1 =
360 &(*conditions)[c1 - predicate_first_dynamic_condition];
361 condition *cc2 =
362 &(*conditions)[c2 - predicate_first_dynamic_condition];
363 if (cc1->operand_num == cc2->operand_num
364 && cc1->val == cc2->val
365 && cc2->code != IS_NOT_CONSTANT
366 && cc2->code != CHANGED
367 && cc1->code == invert_tree_comparison
368 (cc2->code,
369 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
370 return;
375 /* We run out of variants. Be conservative in positive direction. */
376 if (i2 == MAX_CLAUSES)
377 return;
378 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
379 p->clause[i2 + 1] = 0;
380 if (insert_here >= 0)
381 for (; i2 > insert_here; i2--)
382 p->clause[i2] = p->clause[i2 - 1];
383 else
384 insert_here = i2;
385 p->clause[insert_here] = clause;
389 /* Return P & P2. */
391 static struct predicate
392 and_predicates (conditions conditions,
393 struct predicate *p, struct predicate *p2)
395 struct predicate out = *p;
396 int i;
398 /* Avoid busy work. */
399 if (false_predicate_p (p2) || true_predicate_p (p))
400 return *p2;
401 if (false_predicate_p (p) || true_predicate_p (p2))
402 return *p;
404 /* See how far predicates match. */
405 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
407 gcc_checking_assert (i < MAX_CLAUSES);
410 /* Combine the predicates rest. */
411 for (; p2->clause[i]; i++)
413 gcc_checking_assert (i < MAX_CLAUSES);
414 add_clause (conditions, &out, p2->clause[i]);
416 return out;
420 /* Return true if predicates are obviously equal. */
422 static inline bool
423 predicates_equal_p (struct predicate *p, struct predicate *p2)
425 int i;
426 for (i = 0; p->clause[i]; i++)
428 gcc_checking_assert (i < MAX_CLAUSES);
429 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
430 gcc_checking_assert (!p2->clause[i]
431 || p2->clause[i] > p2->clause[i + 1]);
432 if (p->clause[i] != p2->clause[i])
433 return false;
435 return !p2->clause[i];
439 /* Return P | P2. */
441 static struct predicate
442 or_predicates (conditions conditions,
443 struct predicate *p, struct predicate *p2)
445 struct predicate out = true_predicate ();
446 int i, j;
448 /* Avoid busy work. */
449 if (false_predicate_p (p2) || true_predicate_p (p))
450 return *p;
451 if (false_predicate_p (p) || true_predicate_p (p2))
452 return *p2;
453 if (predicates_equal_p (p, p2))
454 return *p;
456 /* OK, combine the predicates. */
457 for (i = 0; p->clause[i]; i++)
458 for (j = 0; p2->clause[j]; j++)
460 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
461 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
463 return out;
467 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
468 if predicate P is known to be false. */
470 static bool
471 evaluate_predicate (struct predicate *p, clause_t possible_truths)
473 int i;
475 /* True remains true. */
476 if (true_predicate_p (p))
477 return true;
479 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
481 /* See if we can find clause we can disprove. */
482 for (i = 0; p->clause[i]; i++)
484 gcc_checking_assert (i < MAX_CLAUSES);
485 if (!(p->clause[i] & possible_truths))
486 return false;
488 return true;
491 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
492 instruction will be recomputed per invocation of the inlined call. */
494 static int
495 predicate_probability (conditions conds,
496 struct predicate *p, clause_t possible_truths,
497 vec<inline_param_summary> inline_param_summary)
499 int i;
500 int combined_prob = REG_BR_PROB_BASE;
502 /* True remains true. */
503 if (true_predicate_p (p))
504 return REG_BR_PROB_BASE;
506 if (false_predicate_p (p))
507 return 0;
509 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
511 /* See if we can find clause we can disprove. */
512 for (i = 0; p->clause[i]; i++)
514 gcc_checking_assert (i < MAX_CLAUSES);
515 if (!(p->clause[i] & possible_truths))
516 return 0;
517 else
519 int this_prob = 0;
520 int i2;
521 if (!inline_param_summary.exists ())
522 return REG_BR_PROB_BASE;
523 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
524 if ((p->clause[i] & possible_truths) & (1 << i2))
526 if (i2 >= predicate_first_dynamic_condition)
528 condition *c =
529 &(*conds)[i2 - predicate_first_dynamic_condition];
530 if (c->code == CHANGED
531 && (c->operand_num <
532 (int) inline_param_summary.length ()))
534 int iprob =
535 inline_param_summary[c->operand_num].change_prob;
536 this_prob = MAX (this_prob, iprob);
538 else
539 this_prob = REG_BR_PROB_BASE;
541 else
542 this_prob = REG_BR_PROB_BASE;
544 combined_prob = MIN (this_prob, combined_prob);
545 if (!combined_prob)
546 return 0;
549 return combined_prob;
553 /* Dump conditional COND. */
555 static void
556 dump_condition (FILE *f, conditions conditions, int cond)
558 condition *c;
559 if (cond == predicate_false_condition)
560 fprintf (f, "false");
561 else if (cond == predicate_not_inlined_condition)
562 fprintf (f, "not inlined");
563 else
565 c = &(*conditions)[cond - predicate_first_dynamic_condition];
566 fprintf (f, "op%i", c->operand_num);
567 if (c->agg_contents)
568 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
569 c->by_ref ? "ref " : "", c->offset);
570 if (c->code == IS_NOT_CONSTANT)
572 fprintf (f, " not constant");
573 return;
575 if (c->code == CHANGED)
577 fprintf (f, " changed");
578 return;
580 fprintf (f, " %s ", op_symbol_code (c->code));
581 print_generic_expr (f, c->val, 1);
586 /* Dump clause CLAUSE. */
588 static void
589 dump_clause (FILE *f, conditions conds, clause_t clause)
591 int i;
592 bool found = false;
593 fprintf (f, "(");
594 if (!clause)
595 fprintf (f, "true");
596 for (i = 0; i < NUM_CONDITIONS; i++)
597 if (clause & (1 << i))
599 if (found)
600 fprintf (f, " || ");
601 found = true;
602 dump_condition (f, conds, i);
604 fprintf (f, ")");
608 /* Dump predicate PREDICATE. */
610 static void
611 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
613 int i;
614 if (true_predicate_p (pred))
615 dump_clause (f, conds, 0);
616 else
617 for (i = 0; pred->clause[i]; i++)
619 if (i)
620 fprintf (f, " && ");
621 dump_clause (f, conds, pred->clause[i]);
623 fprintf (f, "\n");
627 /* Dump inline hints. */
628 void
629 dump_inline_hints (FILE *f, inline_hints hints)
631 if (!hints)
632 return;
633 fprintf (f, "inline hints:");
634 if (hints & INLINE_HINT_indirect_call)
636 hints &= ~INLINE_HINT_indirect_call;
637 fprintf (f, " indirect_call");
639 if (hints & INLINE_HINT_loop_iterations)
641 hints &= ~INLINE_HINT_loop_iterations;
642 fprintf (f, " loop_iterations");
644 if (hints & INLINE_HINT_loop_stride)
646 hints &= ~INLINE_HINT_loop_stride;
647 fprintf (f, " loop_stride");
649 if (hints & INLINE_HINT_same_scc)
651 hints &= ~INLINE_HINT_same_scc;
652 fprintf (f, " same_scc");
654 if (hints & INLINE_HINT_in_scc)
656 hints &= ~INLINE_HINT_in_scc;
657 fprintf (f, " in_scc");
659 if (hints & INLINE_HINT_cross_module)
661 hints &= ~INLINE_HINT_cross_module;
662 fprintf (f, " cross_module");
664 if (hints & INLINE_HINT_declared_inline)
666 hints &= ~INLINE_HINT_declared_inline;
667 fprintf (f, " declared_inline");
669 if (hints & INLINE_HINT_array_index)
671 hints &= ~INLINE_HINT_array_index;
672 fprintf (f, " array_index");
674 gcc_assert (!hints);
678 /* Record SIZE and TIME under condition PRED into the inline summary. */
680 static void
681 account_size_time (struct inline_summary *summary, int size, int time,
682 struct predicate *pred)
684 size_time_entry *e;
685 bool found = false;
686 int i;
688 if (false_predicate_p (pred))
689 return;
691 /* We need to create initial empty unconitional clause, but otherwie
692 we don't need to account empty times and sizes. */
693 if (!size && !time && summary->entry)
694 return;
696 /* Watch overflow that might result from insane profiles. */
697 if (time > MAX_TIME * INLINE_TIME_SCALE)
698 time = MAX_TIME * INLINE_TIME_SCALE;
699 gcc_assert (time >= 0);
701 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
702 if (predicates_equal_p (&e->predicate, pred))
704 found = true;
705 break;
707 if (i == 256)
709 i = 0;
710 found = true;
711 e = &(*summary->entry)[0];
712 gcc_assert (!e->predicate.clause[0]);
713 if (dump_file && (dump_flags & TDF_DETAILS))
714 fprintf (dump_file,
715 "\t\tReached limit on number of entries, "
716 "ignoring the predicate.");
718 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
720 fprintf (dump_file,
721 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
722 ((double) size) / INLINE_SIZE_SCALE,
723 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
724 dump_predicate (dump_file, summary->conds, pred);
726 if (!found)
728 struct size_time_entry new_entry;
729 new_entry.size = size;
730 new_entry.time = time;
731 new_entry.predicate = *pred;
732 vec_safe_push (summary->entry, new_entry);
734 else
736 e->size += size;
737 e->time += time;
738 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
739 e->time = MAX_TIME * INLINE_TIME_SCALE;
743 /* Set predicate for edge E. */
745 static void
746 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
748 struct inline_edge_summary *es = inline_edge_summary (e);
749 if (predicate && !true_predicate_p (predicate))
751 if (!es->predicate)
752 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
753 *es->predicate = *predicate;
755 else
757 if (es->predicate)
758 pool_free (edge_predicate_pool, es->predicate);
759 es->predicate = NULL;
763 /* Set predicate for hint *P. */
765 static void
766 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
768 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
770 if (*p)
771 pool_free (edge_predicate_pool, *p);
772 *p = NULL;
774 else
776 if (!*p)
777 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
778 **p = new_predicate;
783 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
784 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
785 Return clause of possible truths. When INLINE_P is true, assume that we are
786 inlining.
788 ERROR_MARK means compile time invariant. */
790 static clause_t
791 evaluate_conditions_for_known_args (struct cgraph_node *node,
792 bool inline_p,
793 vec<tree> known_vals,
794 vec<ipa_agg_jump_function_p>
795 known_aggs)
797 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
798 struct inline_summary *info = inline_summary (node);
799 int i;
800 struct condition *c;
802 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
804 tree val;
805 tree res;
807 /* We allow call stmt to have fewer arguments than the callee function
808 (especially for K&R style programs). So bound check here (we assume
809 known_aggs vector, if non-NULL, has the same length as
810 known_vals). */
811 gcc_checking_assert (!known_aggs.exists ()
812 || (known_vals.length () == known_aggs.length ()));
813 if (c->operand_num >= (int) known_vals.length ())
815 clause |= 1 << (i + predicate_first_dynamic_condition);
816 continue;
819 if (c->agg_contents)
821 struct ipa_agg_jump_function *agg;
823 if (c->code == CHANGED
824 && !c->by_ref
825 && (known_vals[c->operand_num] == error_mark_node))
826 continue;
828 if (known_aggs.exists ())
830 agg = known_aggs[c->operand_num];
831 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
833 else
834 val = NULL_TREE;
836 else
838 val = known_vals[c->operand_num];
839 if (val == error_mark_node && c->code != CHANGED)
840 val = NULL_TREE;
843 if (!val)
845 clause |= 1 << (i + predicate_first_dynamic_condition);
846 continue;
848 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
849 continue;
850 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
851 if (res && integer_zerop (res))
852 continue;
853 clause |= 1 << (i + predicate_first_dynamic_condition);
855 return clause;
859 /* Work out what conditions might be true at invocation of E. */
861 static void
862 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
863 clause_t *clause_ptr,
864 vec<tree> *known_vals_ptr,
865 vec<tree> *known_binfos_ptr,
866 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
868 struct cgraph_node *callee =
869 cgraph_function_or_thunk_node (e->callee, NULL);
870 struct inline_summary *info = inline_summary (callee);
871 vec<tree> known_vals = vNULL;
872 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
874 if (clause_ptr)
875 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
876 if (known_vals_ptr)
877 known_vals_ptr->create (0);
878 if (known_binfos_ptr)
879 known_binfos_ptr->create (0);
881 if (ipa_node_params_vector.exists ()
882 && !e->call_stmt_cannot_inline_p
883 && ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
885 struct ipa_node_params *parms_info;
886 struct ipa_edge_args *args = IPA_EDGE_REF (e);
887 struct inline_edge_summary *es = inline_edge_summary (e);
888 int i, count = ipa_get_cs_argument_count (args);
890 if (e->caller->global.inlined_to)
891 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
892 else
893 parms_info = IPA_NODE_REF (e->caller);
895 if (count && (info->conds || known_vals_ptr))
896 known_vals.safe_grow_cleared (count);
897 if (count && (info->conds || known_aggs_ptr))
898 known_aggs.safe_grow_cleared (count);
899 if (count && known_binfos_ptr)
900 known_binfos_ptr->safe_grow_cleared (count);
902 for (i = 0; i < count; i++)
904 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
905 tree cst = ipa_value_from_jfunc (parms_info, jf);
906 if (cst)
908 if (known_vals.exists () && TREE_CODE (cst) != TREE_BINFO)
909 known_vals[i] = cst;
910 else if (known_binfos_ptr != NULL
911 && TREE_CODE (cst) == TREE_BINFO)
912 (*known_binfos_ptr)[i] = cst;
914 else if (inline_p && !es->param[i].change_prob)
915 known_vals[i] = error_mark_node;
916 /* TODO: When IPA-CP starts propagating and merging aggregate jump
917 functions, use its knowledge of the caller too, just like the
918 scalar case above. */
919 known_aggs[i] = &jf->agg;
923 if (clause_ptr)
924 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
925 known_vals, known_aggs);
927 if (known_vals_ptr)
928 *known_vals_ptr = known_vals;
929 else
930 known_vals.release ();
932 if (known_aggs_ptr)
933 *known_aggs_ptr = known_aggs;
934 else
935 known_aggs.release ();
939 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
941 static void
942 inline_summary_alloc (void)
944 if (!node_removal_hook_holder)
945 node_removal_hook_holder =
946 cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
947 if (!edge_removal_hook_holder)
948 edge_removal_hook_holder =
949 cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
950 if (!node_duplication_hook_holder)
951 node_duplication_hook_holder =
952 cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
953 if (!edge_duplication_hook_holder)
954 edge_duplication_hook_holder =
955 cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
957 if (vec_safe_length (inline_summary_vec) <= (unsigned) cgraph_max_uid)
958 vec_safe_grow_cleared (inline_summary_vec, cgraph_max_uid + 1);
959 if (inline_edge_summary_vec.length () <= (unsigned) cgraph_edge_max_uid)
960 inline_edge_summary_vec.safe_grow_cleared (cgraph_edge_max_uid + 1);
961 if (!edge_predicate_pool)
962 edge_predicate_pool = create_alloc_pool ("edge predicates",
963 sizeof (struct predicate), 10);
966 /* We are called multiple time for given function; clear
967 data from previous run so they are not cumulated. */
969 static void
970 reset_inline_edge_summary (struct cgraph_edge *e)
972 if (e->uid < (int) inline_edge_summary_vec.length ())
974 struct inline_edge_summary *es = inline_edge_summary (e);
976 es->call_stmt_size = es->call_stmt_time = 0;
977 if (es->predicate)
978 pool_free (edge_predicate_pool, es->predicate);
979 es->predicate = NULL;
980 es->param.release ();
984 /* We are called multiple time for given function; clear
985 data from previous run so they are not cumulated. */
987 static void
988 reset_inline_summary (struct cgraph_node *node)
990 struct inline_summary *info = inline_summary (node);
991 struct cgraph_edge *e;
993 info->self_size = info->self_time = 0;
994 info->estimated_stack_size = 0;
995 info->estimated_self_stack_size = 0;
996 info->stack_frame_offset = 0;
997 info->size = 0;
998 info->time = 0;
999 info->growth = 0;
1000 info->scc_no = 0;
1001 if (info->loop_iterations)
1003 pool_free (edge_predicate_pool, info->loop_iterations);
1004 info->loop_iterations = NULL;
1006 if (info->loop_stride)
1008 pool_free (edge_predicate_pool, info->loop_stride);
1009 info->loop_stride = NULL;
1011 if (info->array_index)
1013 pool_free (edge_predicate_pool, info->array_index);
1014 info->array_index = NULL;
1016 vec_free (info->conds);
1017 vec_free (info->entry);
1018 for (e = node->callees; e; e = e->next_callee)
1019 reset_inline_edge_summary (e);
1020 for (e = node->indirect_calls; e; e = e->next_callee)
1021 reset_inline_edge_summary (e);
1024 /* Hook that is called by cgraph.c when a node is removed. */
1026 static void
1027 inline_node_removal_hook (struct cgraph_node *node,
1028 void *data ATTRIBUTE_UNUSED)
1030 struct inline_summary *info;
1031 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1032 return;
1033 info = inline_summary (node);
1034 reset_inline_summary (node);
1035 memset (info, 0, sizeof (inline_summary_t));
1038 /* Remap predicate P of former function to be predicate of duplicated functoin.
1039 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1040 INFO is inline summary of the duplicated node. */
1042 static struct predicate
1043 remap_predicate_after_duplication (struct predicate *p,
1044 clause_t possible_truths,
1045 struct inline_summary *info)
1047 struct predicate new_predicate = true_predicate ();
1048 int j;
1049 for (j = 0; p->clause[j]; j++)
1050 if (!(possible_truths & p->clause[j]))
1052 new_predicate = false_predicate ();
1053 break;
1055 else
1056 add_clause (info->conds, &new_predicate,
1057 possible_truths & p->clause[j]);
1058 return new_predicate;
1061 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1062 Additionally care about allocating new memory slot for updated predicate
1063 and set it to NULL when it becomes true or false (and thus uninteresting).
1066 static void
1067 remap_hint_predicate_after_duplication (struct predicate **p,
1068 clause_t possible_truths,
1069 struct inline_summary *info)
1071 struct predicate new_predicate;
1073 if (!*p)
1074 return;
1076 new_predicate = remap_predicate_after_duplication (*p,
1077 possible_truths, info);
1078 /* We do not want to free previous predicate; it is used by node origin. */
1079 *p = NULL;
1080 set_hint_predicate (p, new_predicate);
1084 /* Hook that is called by cgraph.c when a node is duplicated. */
1086 static void
1087 inline_node_duplication_hook (struct cgraph_node *src,
1088 struct cgraph_node *dst,
1089 ATTRIBUTE_UNUSED void *data)
1091 struct inline_summary *info;
1092 inline_summary_alloc ();
1093 info = inline_summary (dst);
1094 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1095 /* TODO: as an optimization, we may avoid copying conditions
1096 that are known to be false or true. */
1097 info->conds = vec_safe_copy (info->conds);
1099 /* When there are any replacements in the function body, see if we can figure
1100 out that something was optimized out. */
1101 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1103 vec<size_time_entry, va_gc> *entry = info->entry;
1104 /* Use SRC parm info since it may not be copied yet. */
1105 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1106 vec<tree> known_vals = vNULL;
1107 int count = ipa_get_param_count (parms_info);
1108 int i, j;
1109 clause_t possible_truths;
1110 struct predicate true_pred = true_predicate ();
1111 size_time_entry *e;
1112 int optimized_out_size = 0;
1113 bool inlined_to_p = false;
1114 struct cgraph_edge *edge;
1116 info->entry = 0;
1117 known_vals.safe_grow_cleared (count);
1118 for (i = 0; i < count; i++)
1120 struct ipa_replace_map *r;
1122 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1124 if (((!r->old_tree && r->parm_num == i)
1125 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1126 && r->replace_p && !r->ref_p)
1128 known_vals[i] = r->new_tree;
1129 break;
1133 possible_truths = evaluate_conditions_for_known_args (dst, false,
1134 known_vals,
1135 vNULL);
1136 known_vals.release ();
1138 account_size_time (info, 0, 0, &true_pred);
1140 /* Remap size_time vectors.
1141 Simplify the predicate by prunning out alternatives that are known
1142 to be false.
1143 TODO: as on optimization, we can also eliminate conditions known
1144 to be true. */
1145 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1147 struct predicate new_predicate;
1148 new_predicate = remap_predicate_after_duplication (&e->predicate,
1149 possible_truths,
1150 info);
1151 if (false_predicate_p (&new_predicate))
1152 optimized_out_size += e->size;
1153 else
1154 account_size_time (info, e->size, e->time, &new_predicate);
1157 /* Remap edge predicates with the same simplification as above.
1158 Also copy constantness arrays. */
1159 for (edge = dst->callees; edge; edge = edge->next_callee)
1161 struct predicate new_predicate;
1162 struct inline_edge_summary *es = inline_edge_summary (edge);
1164 if (!edge->inline_failed)
1165 inlined_to_p = true;
1166 if (!es->predicate)
1167 continue;
1168 new_predicate = remap_predicate_after_duplication (es->predicate,
1169 possible_truths,
1170 info);
1171 if (false_predicate_p (&new_predicate)
1172 && !false_predicate_p (es->predicate))
1174 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1175 edge->frequency = 0;
1177 edge_set_predicate (edge, &new_predicate);
1180 /* Remap indirect edge predicates with the same simplificaiton as above.
1181 Also copy constantness arrays. */
1182 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1184 struct predicate new_predicate;
1185 struct inline_edge_summary *es = inline_edge_summary (edge);
1187 gcc_checking_assert (edge->inline_failed);
1188 if (!es->predicate)
1189 continue;
1190 new_predicate = remap_predicate_after_duplication (es->predicate,
1191 possible_truths,
1192 info);
1193 if (false_predicate_p (&new_predicate)
1194 && !false_predicate_p (es->predicate))
1196 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1197 edge->frequency = 0;
1199 edge_set_predicate (edge, &new_predicate);
1201 remap_hint_predicate_after_duplication (&info->loop_iterations,
1202 possible_truths, info);
1203 remap_hint_predicate_after_duplication (&info->loop_stride,
1204 possible_truths, info);
1205 remap_hint_predicate_after_duplication (&info->array_index,
1206 possible_truths, info);
1208 /* If inliner or someone after inliner will ever start producing
1209 non-trivial clones, we will get trouble with lack of information
1210 about updating self sizes, because size vectors already contains
1211 sizes of the calees. */
1212 gcc_assert (!inlined_to_p || !optimized_out_size);
1214 else
1216 info->entry = vec_safe_copy (info->entry);
1217 if (info->loop_iterations)
1219 predicate p = *info->loop_iterations;
1220 info->loop_iterations = NULL;
1221 set_hint_predicate (&info->loop_iterations, p);
1223 if (info->loop_stride)
1225 predicate p = *info->loop_stride;
1226 info->loop_stride = NULL;
1227 set_hint_predicate (&info->loop_stride, p);
1229 if (info->array_index)
1231 predicate p = *info->array_index;
1232 info->array_index = NULL;
1233 set_hint_predicate (&info->array_index, p);
1236 inline_update_overall_summary (dst);
1240 /* Hook that is called by cgraph.c when a node is duplicated. */
1242 static void
1243 inline_edge_duplication_hook (struct cgraph_edge *src,
1244 struct cgraph_edge *dst,
1245 ATTRIBUTE_UNUSED void *data)
1247 struct inline_edge_summary *info;
1248 struct inline_edge_summary *srcinfo;
1249 inline_summary_alloc ();
1250 info = inline_edge_summary (dst);
1251 srcinfo = inline_edge_summary (src);
1252 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1253 info->predicate = NULL;
1254 edge_set_predicate (dst, srcinfo->predicate);
1255 info->param = srcinfo->param.copy ();
1259 /* Keep edge cache consistent across edge removal. */
1261 static void
1262 inline_edge_removal_hook (struct cgraph_edge *edge,
1263 void *data ATTRIBUTE_UNUSED)
1265 if (edge_growth_cache.exists ())
1266 reset_edge_growth_cache (edge);
1267 reset_inline_edge_summary (edge);
1271 /* Initialize growth caches. */
1273 void
1274 initialize_growth_caches (void)
1276 if (cgraph_edge_max_uid)
1277 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
1278 if (cgraph_max_uid)
1279 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
1283 /* Free growth caches. */
1285 void
1286 free_growth_caches (void)
1288 edge_growth_cache.release ();
1289 node_growth_cache.release ();
1293 /* Dump edge summaries associated to NODE and recursively to all clones.
1294 Indent by INDENT. */
1296 static void
1297 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1298 struct inline_summary *info)
1300 struct cgraph_edge *edge;
1301 for (edge = node->callees; edge; edge = edge->next_callee)
1303 struct inline_edge_summary *es = inline_edge_summary (edge);
1304 struct cgraph_node *callee =
1305 cgraph_function_or_thunk_node (edge->callee, NULL);
1306 int i;
1308 fprintf (f,
1309 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1310 " time: %2i callee size:%2i stack:%2i",
1311 indent, "", callee->name (), callee->order,
1312 !edge->inline_failed
1313 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1314 indent, "", es->loop_depth, edge->frequency,
1315 es->call_stmt_size, es->call_stmt_time,
1316 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1317 (int) inline_summary (callee)->estimated_stack_size);
1319 if (es->predicate)
1321 fprintf (f, " predicate: ");
1322 dump_predicate (f, info->conds, es->predicate);
1324 else
1325 fprintf (f, "\n");
1326 if (es->param.exists ())
1327 for (i = 0; i < (int) es->param.length (); i++)
1329 int prob = es->param[i].change_prob;
1331 if (!prob)
1332 fprintf (f, "%*s op%i is compile time invariant\n",
1333 indent + 2, "", i);
1334 else if (prob != REG_BR_PROB_BASE)
1335 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1336 prob * 100.0 / REG_BR_PROB_BASE);
1338 if (!edge->inline_failed)
1340 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1341 " callee size %i\n",
1342 indent + 2, "",
1343 (int) inline_summary (callee)->stack_frame_offset,
1344 (int) inline_summary (callee)->estimated_self_stack_size,
1345 (int) inline_summary (callee)->estimated_stack_size);
1346 dump_inline_edge_summary (f, indent + 2, callee, info);
1349 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1351 struct inline_edge_summary *es = inline_edge_summary (edge);
1352 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1353 " time: %2i",
1354 indent, "",
1355 es->loop_depth,
1356 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1357 if (es->predicate)
1359 fprintf (f, "predicate: ");
1360 dump_predicate (f, info->conds, es->predicate);
1362 else
1363 fprintf (f, "\n");
1368 void
1369 dump_inline_summary (FILE *f, struct cgraph_node *node)
1371 if (node->definition)
1373 struct inline_summary *s = inline_summary (node);
1374 size_time_entry *e;
1375 int i;
1376 fprintf (f, "Inline summary for %s/%i", node->name (),
1377 node->order);
1378 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1379 fprintf (f, " always_inline");
1380 if (s->inlinable)
1381 fprintf (f, " inlinable");
1382 fprintf (f, "\n self time: %i\n", s->self_time);
1383 fprintf (f, " global time: %i\n", s->time);
1384 fprintf (f, " self size: %i\n", s->self_size);
1385 fprintf (f, " global size: %i\n", s->size);
1386 fprintf (f, " self stack: %i\n",
1387 (int) s->estimated_self_stack_size);
1388 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1389 if (s->growth)
1390 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1391 if (s->scc_no)
1392 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1393 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1395 fprintf (f, " size:%f, time:%f, predicate:",
1396 (double) e->size / INLINE_SIZE_SCALE,
1397 (double) e->time / INLINE_TIME_SCALE);
1398 dump_predicate (f, s->conds, &e->predicate);
1400 if (s->loop_iterations)
1402 fprintf (f, " loop iterations:");
1403 dump_predicate (f, s->conds, s->loop_iterations);
1405 if (s->loop_stride)
1407 fprintf (f, " loop stride:");
1408 dump_predicate (f, s->conds, s->loop_stride);
1410 if (s->array_index)
1412 fprintf (f, " array index:");
1413 dump_predicate (f, s->conds, s->array_index);
1415 fprintf (f, " calls:\n");
1416 dump_inline_edge_summary (f, 4, node, s);
1417 fprintf (f, "\n");
1421 DEBUG_FUNCTION void
1422 debug_inline_summary (struct cgraph_node *node)
1424 dump_inline_summary (stderr, node);
1427 void
1428 dump_inline_summaries (FILE *f)
1430 struct cgraph_node *node;
1432 FOR_EACH_DEFINED_FUNCTION (node)
1433 if (!node->global.inlined_to)
1434 dump_inline_summary (f, node);
1437 /* Give initial reasons why inlining would fail on EDGE. This gets either
1438 nullified or usually overwritten by more precise reasons later. */
1440 void
1441 initialize_inline_failed (struct cgraph_edge *e)
1443 struct cgraph_node *callee = e->callee;
1445 if (e->indirect_unknown_callee)
1446 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1447 else if (!callee->definition)
1448 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1449 else if (callee->local.redefined_extern_inline)
1450 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1451 else if (e->call_stmt_cannot_inline_p)
1452 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1453 else if (cfun && fn_contains_cilk_spawn_p (cfun))
1454 /* We can't inline if the function is spawing a function. */
1455 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
1456 else
1457 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1460 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1461 boolean variable pointed to by DATA. */
1463 static bool
1464 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1465 void *data)
1467 bool *b = (bool *) data;
1468 *b = true;
1469 return true;
1472 /* If OP refers to value of function parameter, return the corresponding
1473 parameter. */
1475 static tree
1476 unmodified_parm_1 (gimple stmt, tree op)
1478 /* SSA_NAME referring to parm default def? */
1479 if (TREE_CODE (op) == SSA_NAME
1480 && SSA_NAME_IS_DEFAULT_DEF (op)
1481 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1482 return SSA_NAME_VAR (op);
1483 /* Non-SSA parm reference? */
1484 if (TREE_CODE (op) == PARM_DECL)
1486 bool modified = false;
1488 ao_ref refd;
1489 ao_ref_init (&refd, op);
1490 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1491 NULL);
1492 if (!modified)
1493 return op;
1495 return NULL_TREE;
1498 /* If OP refers to value of function parameter, return the corresponding
1499 parameter. Also traverse chains of SSA register assignments. */
1501 static tree
1502 unmodified_parm (gimple stmt, tree op)
1504 tree res = unmodified_parm_1 (stmt, op);
1505 if (res)
1506 return res;
1508 if (TREE_CODE (op) == SSA_NAME
1509 && !SSA_NAME_IS_DEFAULT_DEF (op)
1510 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1511 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1512 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1513 return NULL_TREE;
1516 /* If OP refers to a value of a function parameter or value loaded from an
1517 aggregate passed to a parameter (either by value or reference), return TRUE
1518 and store the number of the parameter to *INDEX_P and information whether
1519 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1520 the function parameters, STMT is the statement in which OP is used or
1521 loaded. */
1523 static bool
1524 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1525 gimple stmt, tree op, int *index_p,
1526 struct agg_position_info *aggpos)
1528 tree res = unmodified_parm_1 (stmt, op);
1530 gcc_checking_assert (aggpos);
1531 if (res)
1533 *index_p = ipa_get_param_decl_index (info, res);
1534 if (*index_p < 0)
1535 return false;
1536 aggpos->agg_contents = false;
1537 aggpos->by_ref = false;
1538 return true;
1541 if (TREE_CODE (op) == SSA_NAME)
1543 if (SSA_NAME_IS_DEFAULT_DEF (op)
1544 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1545 return false;
1546 stmt = SSA_NAME_DEF_STMT (op);
1547 op = gimple_assign_rhs1 (stmt);
1548 if (!REFERENCE_CLASS_P (op))
1549 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1550 aggpos);
1553 aggpos->agg_contents = true;
1554 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1555 &aggpos->by_ref);
1558 /* See if statement might disappear after inlining.
1559 0 - means not eliminated
1560 1 - half of statements goes away
1561 2 - for sure it is eliminated.
1562 We are not terribly sophisticated, basically looking for simple abstraction
1563 penalty wrappers. */
1565 static int
1566 eliminated_by_inlining_prob (gimple stmt)
1568 enum gimple_code code = gimple_code (stmt);
1569 enum tree_code rhs_code;
1571 if (!optimize)
1572 return 0;
1574 switch (code)
1576 case GIMPLE_RETURN:
1577 return 2;
1578 case GIMPLE_ASSIGN:
1579 if (gimple_num_ops (stmt) != 2)
1580 return 0;
1582 rhs_code = gimple_assign_rhs_code (stmt);
1584 /* Casts of parameters, loads from parameters passed by reference
1585 and stores to return value or parameters are often free after
1586 inlining dua to SRA and further combining.
1587 Assume that half of statements goes away. */
1588 if (rhs_code == CONVERT_EXPR
1589 || rhs_code == NOP_EXPR
1590 || rhs_code == VIEW_CONVERT_EXPR
1591 || rhs_code == ADDR_EXPR
1592 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1594 tree rhs = gimple_assign_rhs1 (stmt);
1595 tree lhs = gimple_assign_lhs (stmt);
1596 tree inner_rhs = get_base_address (rhs);
1597 tree inner_lhs = get_base_address (lhs);
1598 bool rhs_free = false;
1599 bool lhs_free = false;
1601 if (!inner_rhs)
1602 inner_rhs = rhs;
1603 if (!inner_lhs)
1604 inner_lhs = lhs;
1606 /* Reads of parameter are expected to be free. */
1607 if (unmodified_parm (stmt, inner_rhs))
1608 rhs_free = true;
1609 /* Match expressions of form &this->field. Those will most likely
1610 combine with something upstream after inlining. */
1611 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1613 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1614 if (TREE_CODE (op) == PARM_DECL)
1615 rhs_free = true;
1616 else if (TREE_CODE (op) == MEM_REF
1617 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1618 rhs_free = true;
1621 /* When parameter is not SSA register because its address is taken
1622 and it is just copied into one, the statement will be completely
1623 free after inlining (we will copy propagate backward). */
1624 if (rhs_free && is_gimple_reg (lhs))
1625 return 2;
1627 /* Reads of parameters passed by reference
1628 expected to be free (i.e. optimized out after inlining). */
1629 if (TREE_CODE (inner_rhs) == MEM_REF
1630 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1631 rhs_free = true;
1633 /* Copying parameter passed by reference into gimple register is
1634 probably also going to copy propagate, but we can't be quite
1635 sure. */
1636 if (rhs_free && is_gimple_reg (lhs))
1637 lhs_free = true;
1639 /* Writes to parameters, parameters passed by value and return value
1640 (either dirrectly or passed via invisible reference) are free.
1642 TODO: We ought to handle testcase like
1643 struct a {int a,b;};
1644 struct a
1645 retrurnsturct (void)
1647 struct a a ={1,2};
1648 return a;
1651 This translate into:
1653 retrurnsturct ()
1655 int a$b;
1656 int a$a;
1657 struct a a;
1658 struct a D.2739;
1660 <bb 2>:
1661 D.2739.a = 1;
1662 D.2739.b = 2;
1663 return D.2739;
1666 For that we either need to copy ipa-split logic detecting writes
1667 to return value. */
1668 if (TREE_CODE (inner_lhs) == PARM_DECL
1669 || TREE_CODE (inner_lhs) == RESULT_DECL
1670 || (TREE_CODE (inner_lhs) == MEM_REF
1671 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1672 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1673 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1674 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1675 (inner_lhs,
1676 0))) == RESULT_DECL))))
1677 lhs_free = true;
1678 if (lhs_free
1679 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1680 rhs_free = true;
1681 if (lhs_free && rhs_free)
1682 return 1;
1684 return 0;
1685 default:
1686 return 0;
1691 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1692 predicates to the CFG edges. */
1694 static void
1695 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1696 struct inline_summary *summary,
1697 basic_block bb)
1699 gimple last;
1700 tree op;
1701 int index;
1702 struct agg_position_info aggpos;
1703 enum tree_code code, inverted_code;
1704 edge e;
1705 edge_iterator ei;
1706 gimple set_stmt;
1707 tree op2;
1709 last = last_stmt (bb);
1710 if (!last || gimple_code (last) != GIMPLE_COND)
1711 return;
1712 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1713 return;
1714 op = gimple_cond_lhs (last);
1715 /* TODO: handle conditionals like
1716 var = op0 < 4;
1717 if (var != 0). */
1718 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1720 code = gimple_cond_code (last);
1721 inverted_code
1722 = invert_tree_comparison (code,
1723 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1725 FOR_EACH_EDGE (e, ei, bb->succs)
1727 struct predicate p = add_condition (summary, index, &aggpos,
1728 e->flags & EDGE_TRUE_VALUE
1729 ? code : inverted_code,
1730 gimple_cond_rhs (last));
1731 e->aux = pool_alloc (edge_predicate_pool);
1732 *(struct predicate *) e->aux = p;
1736 if (TREE_CODE (op) != SSA_NAME)
1737 return;
1738 /* Special case
1739 if (builtin_constant_p (op))
1740 constant_code
1741 else
1742 nonconstant_code.
1743 Here we can predicate nonconstant_code. We can't
1744 really handle constant_code since we have no predicate
1745 for this and also the constant code is not known to be
1746 optimized away when inliner doen't see operand is constant.
1747 Other optimizers might think otherwise. */
1748 if (gimple_cond_code (last) != NE_EXPR
1749 || !integer_zerop (gimple_cond_rhs (last)))
1750 return;
1751 set_stmt = SSA_NAME_DEF_STMT (op);
1752 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1753 || gimple_call_num_args (set_stmt) != 1)
1754 return;
1755 op2 = gimple_call_arg (set_stmt, 0);
1756 if (!unmodified_parm_or_parm_agg_item
1757 (info, set_stmt, op2, &index, &aggpos))
1758 return;
1759 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1761 struct predicate p = add_condition (summary, index, &aggpos,
1762 IS_NOT_CONSTANT, NULL_TREE);
1763 e->aux = pool_alloc (edge_predicate_pool);
1764 *(struct predicate *) e->aux = p;
1769 /* If BB ends by a switch we can turn into predicates, attach corresponding
1770 predicates to the CFG edges. */
1772 static void
1773 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1774 struct inline_summary *summary,
1775 basic_block bb)
1777 gimple last;
1778 tree op;
1779 int index;
1780 struct agg_position_info aggpos;
1781 edge e;
1782 edge_iterator ei;
1783 size_t n;
1784 size_t case_idx;
1786 last = last_stmt (bb);
1787 if (!last || gimple_code (last) != GIMPLE_SWITCH)
1788 return;
1789 op = gimple_switch_index (last);
1790 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1791 return;
1793 FOR_EACH_EDGE (e, ei, bb->succs)
1795 e->aux = pool_alloc (edge_predicate_pool);
1796 *(struct predicate *) e->aux = false_predicate ();
1798 n = gimple_switch_num_labels (last);
1799 for (case_idx = 0; case_idx < n; ++case_idx)
1801 tree cl = gimple_switch_label (last, case_idx);
1802 tree min, max;
1803 struct predicate p;
1805 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1806 min = CASE_LOW (cl);
1807 max = CASE_HIGH (cl);
1809 /* For default we might want to construct predicate that none
1810 of cases is met, but it is bit hard to do not having negations
1811 of conditionals handy. */
1812 if (!min && !max)
1813 p = true_predicate ();
1814 else if (!max)
1815 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1816 else
1818 struct predicate p1, p2;
1819 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1820 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1821 p = and_predicates (summary->conds, &p1, &p2);
1823 *(struct predicate *) e->aux
1824 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1829 /* For each BB in NODE attach to its AUX pointer predicate under
1830 which it is executable. */
1832 static void
1833 compute_bb_predicates (struct cgraph_node *node,
1834 struct ipa_node_params *parms_info,
1835 struct inline_summary *summary)
1837 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1838 bool done = false;
1839 basic_block bb;
1841 FOR_EACH_BB_FN (bb, my_function)
1843 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1844 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1847 /* Entry block is always executable. */
1848 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1849 = pool_alloc (edge_predicate_pool);
1850 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1851 = true_predicate ();
1853 /* A simple dataflow propagation of predicates forward in the CFG.
1854 TODO: work in reverse postorder. */
1855 while (!done)
1857 done = true;
1858 FOR_EACH_BB_FN (bb, my_function)
1860 struct predicate p = false_predicate ();
1861 edge e;
1862 edge_iterator ei;
1863 FOR_EACH_EDGE (e, ei, bb->preds)
1865 if (e->src->aux)
1867 struct predicate this_bb_predicate
1868 = *(struct predicate *) e->src->aux;
1869 if (e->aux)
1870 this_bb_predicate
1871 = and_predicates (summary->conds, &this_bb_predicate,
1872 (struct predicate *) e->aux);
1873 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1874 if (true_predicate_p (&p))
1875 break;
1878 if (false_predicate_p (&p))
1879 gcc_assert (!bb->aux);
1880 else
1882 if (!bb->aux)
1884 done = false;
1885 bb->aux = pool_alloc (edge_predicate_pool);
1886 *((struct predicate *) bb->aux) = p;
1888 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1890 done = false;
1891 *((struct predicate *) bb->aux) = p;
1899 /* We keep info about constantness of SSA names. */
1901 typedef struct predicate predicate_t;
1902 /* Return predicate specifying when the STMT might have result that is not
1903 a compile time constant. */
1905 static struct predicate
1906 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1907 struct inline_summary *summary,
1908 tree expr,
1909 vec<predicate_t> nonconstant_names)
1911 tree parm;
1912 int index;
1914 while (UNARY_CLASS_P (expr))
1915 expr = TREE_OPERAND (expr, 0);
1917 parm = unmodified_parm (NULL, expr);
1918 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1919 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1920 if (is_gimple_min_invariant (expr))
1921 return false_predicate ();
1922 if (TREE_CODE (expr) == SSA_NAME)
1923 return nonconstant_names[SSA_NAME_VERSION (expr)];
1924 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1926 struct predicate p1 = will_be_nonconstant_expr_predicate
1927 (info, summary, TREE_OPERAND (expr, 0),
1928 nonconstant_names);
1929 struct predicate p2;
1930 if (true_predicate_p (&p1))
1931 return p1;
1932 p2 = will_be_nonconstant_expr_predicate (info, summary,
1933 TREE_OPERAND (expr, 1),
1934 nonconstant_names);
1935 return or_predicates (summary->conds, &p1, &p2);
1937 else if (TREE_CODE (expr) == COND_EXPR)
1939 struct predicate p1 = will_be_nonconstant_expr_predicate
1940 (info, summary, TREE_OPERAND (expr, 0),
1941 nonconstant_names);
1942 struct predicate p2;
1943 if (true_predicate_p (&p1))
1944 return p1;
1945 p2 = will_be_nonconstant_expr_predicate (info, summary,
1946 TREE_OPERAND (expr, 1),
1947 nonconstant_names);
1948 if (true_predicate_p (&p2))
1949 return p2;
1950 p1 = or_predicates (summary->conds, &p1, &p2);
1951 p2 = will_be_nonconstant_expr_predicate (info, summary,
1952 TREE_OPERAND (expr, 2),
1953 nonconstant_names);
1954 return or_predicates (summary->conds, &p1, &p2);
1956 else
1958 debug_tree (expr);
1959 gcc_unreachable ();
1961 return false_predicate ();
1965 /* Return predicate specifying when the STMT might have result that is not
1966 a compile time constant. */
1968 static struct predicate
1969 will_be_nonconstant_predicate (struct ipa_node_params *info,
1970 struct inline_summary *summary,
1971 gimple stmt,
1972 vec<predicate_t> nonconstant_names)
1974 struct predicate p = true_predicate ();
1975 ssa_op_iter iter;
1976 tree use;
1977 struct predicate op_non_const;
1978 bool is_load;
1979 int base_index;
1980 struct agg_position_info aggpos;
1982 /* What statments might be optimized away
1983 when their arguments are constant
1984 TODO: also trivial builtins.
1985 builtin_constant_p is already handled later. */
1986 if (gimple_code (stmt) != GIMPLE_ASSIGN
1987 && gimple_code (stmt) != GIMPLE_COND
1988 && gimple_code (stmt) != GIMPLE_SWITCH)
1989 return p;
1991 /* Stores will stay anyway. */
1992 if (gimple_store_p (stmt))
1993 return p;
1995 is_load = gimple_assign_load_p (stmt);
1997 /* Loads can be optimized when the value is known. */
1998 if (is_load)
2000 tree op;
2001 gcc_assert (gimple_assign_single_p (stmt));
2002 op = gimple_assign_rhs1 (stmt);
2003 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
2004 &aggpos))
2005 return p;
2007 else
2008 base_index = -1;
2010 /* See if we understand all operands before we start
2011 adding conditionals. */
2012 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2014 tree parm = unmodified_parm (stmt, use);
2015 /* For arguments we can build a condition. */
2016 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
2017 continue;
2018 if (TREE_CODE (use) != SSA_NAME)
2019 return p;
2020 /* If we know when operand is constant,
2021 we still can say something useful. */
2022 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2023 continue;
2024 return p;
2027 if (is_load)
2028 op_non_const =
2029 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2030 else
2031 op_non_const = false_predicate ();
2032 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2034 tree parm = unmodified_parm (stmt, use);
2035 int index;
2037 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2039 if (index != base_index)
2040 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2041 else
2042 continue;
2044 else
2045 p = nonconstant_names[SSA_NAME_VERSION (use)];
2046 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2048 if (gimple_code (stmt) == GIMPLE_ASSIGN
2049 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2050 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2051 = op_non_const;
2052 return op_non_const;
2055 struct record_modified_bb_info
2057 bitmap bb_set;
2058 gimple stmt;
2061 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2062 set except for info->stmt. */
2064 static bool
2065 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2067 struct record_modified_bb_info *info =
2068 (struct record_modified_bb_info *) data;
2069 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2070 return false;
2071 bitmap_set_bit (info->bb_set,
2072 SSA_NAME_IS_DEFAULT_DEF (vdef)
2073 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2074 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2075 return false;
2078 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2079 will change since last invocation of STMT.
2081 Value 0 is reserved for compile time invariants.
2082 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2083 ought to be REG_BR_PROB_BASE / estimated_iters. */
2085 static int
2086 param_change_prob (gimple stmt, int i)
2088 tree op = gimple_call_arg (stmt, i);
2089 basic_block bb = gimple_bb (stmt);
2090 tree base;
2092 /* Global invariants neve change. */
2093 if (is_gimple_min_invariant (op))
2094 return 0;
2095 /* We would have to do non-trivial analysis to really work out what
2096 is the probability of value to change (i.e. when init statement
2097 is in a sibling loop of the call).
2099 We do an conservative estimate: when call is executed N times more often
2100 than the statement defining value, we take the frequency 1/N. */
2101 if (TREE_CODE (op) == SSA_NAME)
2103 int init_freq;
2105 if (!bb->frequency)
2106 return REG_BR_PROB_BASE;
2108 if (SSA_NAME_IS_DEFAULT_DEF (op))
2109 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2110 else
2111 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2113 if (!init_freq)
2114 init_freq = 1;
2115 if (init_freq < bb->frequency)
2116 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2117 else
2118 return REG_BR_PROB_BASE;
2121 base = get_base_address (op);
2122 if (base)
2124 ao_ref refd;
2125 int max;
2126 struct record_modified_bb_info info;
2127 bitmap_iterator bi;
2128 unsigned index;
2129 tree init = ctor_for_folding (base);
2131 if (init != error_mark_node)
2132 return 0;
2133 if (!bb->frequency)
2134 return REG_BR_PROB_BASE;
2135 ao_ref_init (&refd, op);
2136 info.stmt = stmt;
2137 info.bb_set = BITMAP_ALLOC (NULL);
2138 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2139 NULL);
2140 if (bitmap_bit_p (info.bb_set, bb->index))
2142 BITMAP_FREE (info.bb_set);
2143 return REG_BR_PROB_BASE;
2146 /* Assume that every memory is initialized at entry.
2147 TODO: Can we easilly determine if value is always defined
2148 and thus we may skip entry block? */
2149 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2150 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2151 else
2152 max = 1;
2154 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2155 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2157 BITMAP_FREE (info.bb_set);
2158 if (max < bb->frequency)
2159 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2160 else
2161 return REG_BR_PROB_BASE;
2163 return REG_BR_PROB_BASE;
2166 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2167 sub-graph and if the predicate the condition depends on is known. If so,
2168 return true and store the pointer the predicate in *P. */
2170 static bool
2171 phi_result_unknown_predicate (struct ipa_node_params *info,
2172 struct inline_summary *summary, basic_block bb,
2173 struct predicate *p,
2174 vec<predicate_t> nonconstant_names)
2176 edge e;
2177 edge_iterator ei;
2178 basic_block first_bb = NULL;
2179 gimple stmt;
2181 if (single_pred_p (bb))
2183 *p = false_predicate ();
2184 return true;
2187 FOR_EACH_EDGE (e, ei, bb->preds)
2189 if (single_succ_p (e->src))
2191 if (!single_pred_p (e->src))
2192 return false;
2193 if (!first_bb)
2194 first_bb = single_pred (e->src);
2195 else if (single_pred (e->src) != first_bb)
2196 return false;
2198 else
2200 if (!first_bb)
2201 first_bb = e->src;
2202 else if (e->src != first_bb)
2203 return false;
2207 if (!first_bb)
2208 return false;
2210 stmt = last_stmt (first_bb);
2211 if (!stmt
2212 || gimple_code (stmt) != GIMPLE_COND
2213 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2214 return false;
2216 *p = will_be_nonconstant_expr_predicate (info, summary,
2217 gimple_cond_lhs (stmt),
2218 nonconstant_names);
2219 if (true_predicate_p (p))
2220 return false;
2221 else
2222 return true;
2225 /* Given a PHI statement in a function described by inline properties SUMMARY
2226 and *P being the predicate describing whether the selected PHI argument is
2227 known, store a predicate for the result of the PHI statement into
2228 NONCONSTANT_NAMES, if possible. */
2230 static void
2231 predicate_for_phi_result (struct inline_summary *summary, gimple phi,
2232 struct predicate *p,
2233 vec<predicate_t> nonconstant_names)
2235 unsigned i;
2237 for (i = 0; i < gimple_phi_num_args (phi); i++)
2239 tree arg = gimple_phi_arg (phi, i)->def;
2240 if (!is_gimple_min_invariant (arg))
2242 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2243 *p = or_predicates (summary->conds, p,
2244 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2245 if (true_predicate_p (p))
2246 return;
2250 if (dump_file && (dump_flags & TDF_DETAILS))
2252 fprintf (dump_file, "\t\tphi predicate: ");
2253 dump_predicate (dump_file, summary->conds, p);
2255 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2258 /* Return predicate specifying when array index in access OP becomes non-constant. */
2260 static struct predicate
2261 array_index_predicate (struct inline_summary *info,
2262 vec< predicate_t> nonconstant_names, tree op)
2264 struct predicate p = false_predicate ();
2265 while (handled_component_p (op))
2267 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2269 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2270 p = or_predicates (info->conds, &p,
2271 &nonconstant_names[SSA_NAME_VERSION
2272 (TREE_OPERAND (op, 1))]);
2274 op = TREE_OPERAND (op, 0);
2276 return p;
2279 /* For a typical usage of __builtin_expect (a<b, 1), we
2280 may introduce an extra relation stmt:
2281 With the builtin, we have
2282 t1 = a <= b;
2283 t2 = (long int) t1;
2284 t3 = __builtin_expect (t2, 1);
2285 if (t3 != 0)
2286 goto ...
2287 Without the builtin, we have
2288 if (a<=b)
2289 goto...
2290 This affects the size/time estimation and may have
2291 an impact on the earlier inlining.
2292 Here find this pattern and fix it up later. */
2294 static gimple
2295 find_foldable_builtin_expect (basic_block bb)
2297 gimple_stmt_iterator bsi;
2299 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2301 gimple stmt = gsi_stmt (bsi);
2302 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT))
2304 tree var = gimple_call_lhs (stmt);
2305 tree arg = gimple_call_arg (stmt, 0);
2306 use_operand_p use_p;
2307 gimple use_stmt;
2308 bool match = false;
2309 bool done = false;
2311 if (!var || !arg)
2312 continue;
2313 gcc_assert (TREE_CODE (var) == SSA_NAME);
2315 while (TREE_CODE (arg) == SSA_NAME)
2317 gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
2318 if (!is_gimple_assign (stmt_tmp))
2319 break;
2320 switch (gimple_assign_rhs_code (stmt_tmp))
2322 case LT_EXPR:
2323 case LE_EXPR:
2324 case GT_EXPR:
2325 case GE_EXPR:
2326 case EQ_EXPR:
2327 case NE_EXPR:
2328 match = true;
2329 done = true;
2330 break;
2331 case NOP_EXPR:
2332 break;
2333 default:
2334 done = true;
2335 break;
2337 if (done)
2338 break;
2339 arg = gimple_assign_rhs1 (stmt_tmp);
2342 if (match && single_imm_use (var, &use_p, &use_stmt)
2343 && gimple_code (use_stmt) == GIMPLE_COND)
2344 return use_stmt;
2347 return NULL;
2350 /* Compute function body size parameters for NODE.
2351 When EARLY is true, we compute only simple summaries without
2352 non-trivial predicates to drive the early inliner. */
2354 static void
2355 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2357 gcov_type time = 0;
2358 /* Estimate static overhead for function prologue/epilogue and alignment. */
2359 int size = 2;
2360 /* Benefits are scaled by probability of elimination that is in range
2361 <0,2>. */
2362 basic_block bb;
2363 gimple_stmt_iterator bsi;
2364 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2365 int freq;
2366 struct inline_summary *info = inline_summary (node);
2367 struct predicate bb_predicate;
2368 struct ipa_node_params *parms_info = NULL;
2369 vec<predicate_t> nonconstant_names = vNULL;
2370 int nblocks, n;
2371 int *order;
2372 predicate array_index = true_predicate ();
2373 gimple fix_builtin_expect_stmt;
2375 info->conds = NULL;
2376 info->entry = NULL;
2378 if (optimize && !early)
2380 calculate_dominance_info (CDI_DOMINATORS);
2381 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2383 if (ipa_node_params_vector.exists ())
2385 parms_info = IPA_NODE_REF (node);
2386 nonconstant_names.safe_grow_cleared
2387 (SSANAMES (my_function)->length ());
2391 if (dump_file)
2392 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2393 node->name ());
2395 /* When we run into maximal number of entries, we assign everything to the
2396 constant truth case. Be sure to have it in list. */
2397 bb_predicate = true_predicate ();
2398 account_size_time (info, 0, 0, &bb_predicate);
2400 bb_predicate = not_inlined_predicate ();
2401 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2403 gcc_assert (my_function && my_function->cfg);
2404 if (parms_info)
2405 compute_bb_predicates (node, parms_info, info);
2406 gcc_assert (cfun == my_function);
2407 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2408 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2409 for (n = 0; n < nblocks; n++)
2411 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2412 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2414 /* TODO: Obviously predicates can be propagated down across CFG. */
2415 if (parms_info)
2417 if (bb->aux)
2418 bb_predicate = *(struct predicate *) bb->aux;
2419 else
2420 bb_predicate = false_predicate ();
2422 else
2423 bb_predicate = true_predicate ();
2425 if (dump_file && (dump_flags & TDF_DETAILS))
2427 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2428 dump_predicate (dump_file, info->conds, &bb_predicate);
2431 if (parms_info && nonconstant_names.exists ())
2433 struct predicate phi_predicate;
2434 bool first_phi = true;
2436 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2438 if (first_phi
2439 && !phi_result_unknown_predicate (parms_info, info, bb,
2440 &phi_predicate,
2441 nonconstant_names))
2442 break;
2443 first_phi = false;
2444 if (dump_file && (dump_flags & TDF_DETAILS))
2446 fprintf (dump_file, " ");
2447 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2449 predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
2450 nonconstant_names);
2454 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2456 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2458 gimple stmt = gsi_stmt (bsi);
2459 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2460 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2461 int prob;
2462 struct predicate will_be_nonconstant;
2464 /* This relation stmt should be folded after we remove
2465 buildin_expect call. Adjust the cost here. */
2466 if (stmt == fix_builtin_expect_stmt)
2468 this_size--;
2469 this_time--;
2472 if (dump_file && (dump_flags & TDF_DETAILS))
2474 fprintf (dump_file, " ");
2475 print_gimple_stmt (dump_file, stmt, 0, 0);
2476 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2477 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2478 this_time);
2481 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2483 struct predicate this_array_index;
2484 this_array_index =
2485 array_index_predicate (info, nonconstant_names,
2486 gimple_assign_rhs1 (stmt));
2487 if (!false_predicate_p (&this_array_index))
2488 array_index =
2489 and_predicates (info->conds, &array_index,
2490 &this_array_index);
2492 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2494 struct predicate this_array_index;
2495 this_array_index =
2496 array_index_predicate (info, nonconstant_names,
2497 gimple_get_lhs (stmt));
2498 if (!false_predicate_p (&this_array_index))
2499 array_index =
2500 and_predicates (info->conds, &array_index,
2501 &this_array_index);
2505 if (is_gimple_call (stmt)
2506 && !gimple_call_internal_p (stmt))
2508 struct cgraph_edge *edge = cgraph_edge (node, stmt);
2509 struct inline_edge_summary *es = inline_edge_summary (edge);
2511 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2512 resolved as constant. We however don't want to optimize
2513 out the cgraph edges. */
2514 if (nonconstant_names.exists ()
2515 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2516 && gimple_call_lhs (stmt)
2517 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2519 struct predicate false_p = false_predicate ();
2520 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2521 = false_p;
2523 if (ipa_node_params_vector.exists ())
2525 int count = gimple_call_num_args (stmt);
2526 int i;
2528 if (count)
2529 es->param.safe_grow_cleared (count);
2530 for (i = 0; i < count; i++)
2532 int prob = param_change_prob (stmt, i);
2533 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2534 es->param[i].change_prob = prob;
2538 es->call_stmt_size = this_size;
2539 es->call_stmt_time = this_time;
2540 es->loop_depth = bb_loop_depth (bb);
2541 edge_set_predicate (edge, &bb_predicate);
2544 /* TODO: When conditional jump or swithc is known to be constant, but
2545 we did not translate it into the predicates, we really can account
2546 just maximum of the possible paths. */
2547 if (parms_info)
2548 will_be_nonconstant
2549 = will_be_nonconstant_predicate (parms_info, info,
2550 stmt, nonconstant_names);
2551 if (this_time || this_size)
2553 struct predicate p;
2555 this_time *= freq;
2557 prob = eliminated_by_inlining_prob (stmt);
2558 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2559 fprintf (dump_file,
2560 "\t\t50%% will be eliminated by inlining\n");
2561 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2562 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2564 if (parms_info)
2565 p = and_predicates (info->conds, &bb_predicate,
2566 &will_be_nonconstant);
2567 else
2568 p = true_predicate ();
2570 if (!false_predicate_p (&p))
2572 time += this_time;
2573 size += this_size;
2574 if (time > MAX_TIME * INLINE_TIME_SCALE)
2575 time = MAX_TIME * INLINE_TIME_SCALE;
2578 /* We account everything but the calls. Calls have their own
2579 size/time info attached to cgraph edges. This is necessary
2580 in order to make the cost disappear after inlining. */
2581 if (!is_gimple_call (stmt))
2583 if (prob)
2585 struct predicate ip = not_inlined_predicate ();
2586 ip = and_predicates (info->conds, &ip, &p);
2587 account_size_time (info, this_size * prob,
2588 this_time * prob, &ip);
2590 if (prob != 2)
2591 account_size_time (info, this_size * (2 - prob),
2592 this_time * (2 - prob), &p);
2595 gcc_assert (time >= 0);
2596 gcc_assert (size >= 0);
2600 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2601 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2602 if (time > MAX_TIME)
2603 time = MAX_TIME;
2604 free (order);
2606 if (!early && nonconstant_names.exists ())
2608 struct loop *loop;
2609 predicate loop_iterations = true_predicate ();
2610 predicate loop_stride = true_predicate ();
2612 if (dump_file && (dump_flags & TDF_DETAILS))
2613 flow_loops_dump (dump_file, NULL, 0);
2614 scev_initialize ();
2615 FOR_EACH_LOOP (loop, 0)
2617 vec<edge> exits;
2618 edge ex;
2619 unsigned int j, i;
2620 struct tree_niter_desc niter_desc;
2621 basic_block *body = get_loop_body (loop);
2622 bb_predicate = *(struct predicate *) loop->header->aux;
2624 exits = get_loop_exit_edges (loop);
2625 FOR_EACH_VEC_ELT (exits, j, ex)
2626 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2627 && !is_gimple_min_invariant (niter_desc.niter))
2629 predicate will_be_nonconstant
2630 = will_be_nonconstant_expr_predicate (parms_info, info,
2631 niter_desc.niter,
2632 nonconstant_names);
2633 if (!true_predicate_p (&will_be_nonconstant))
2634 will_be_nonconstant = and_predicates (info->conds,
2635 &bb_predicate,
2636 &will_be_nonconstant);
2637 if (!true_predicate_p (&will_be_nonconstant)
2638 && !false_predicate_p (&will_be_nonconstant))
2639 /* This is slightly inprecise. We may want to represent each
2640 loop with independent predicate. */
2641 loop_iterations =
2642 and_predicates (info->conds, &loop_iterations,
2643 &will_be_nonconstant);
2645 exits.release ();
2647 for (i = 0; i < loop->num_nodes; i++)
2649 gimple_stmt_iterator gsi;
2650 bb_predicate = *(struct predicate *) body[i]->aux;
2651 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2652 gsi_next (&gsi))
2654 gimple stmt = gsi_stmt (gsi);
2655 affine_iv iv;
2656 ssa_op_iter iter;
2657 tree use;
2659 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2661 predicate will_be_nonconstant;
2663 if (!simple_iv
2664 (loop, loop_containing_stmt (stmt), use, &iv, true)
2665 || is_gimple_min_invariant (iv.step))
2666 continue;
2667 will_be_nonconstant
2668 = will_be_nonconstant_expr_predicate (parms_info, info,
2669 iv.step,
2670 nonconstant_names);
2671 if (!true_predicate_p (&will_be_nonconstant))
2672 will_be_nonconstant
2673 = and_predicates (info->conds,
2674 &bb_predicate,
2675 &will_be_nonconstant);
2676 if (!true_predicate_p (&will_be_nonconstant)
2677 && !false_predicate_p (&will_be_nonconstant))
2678 /* This is slightly inprecise. We may want to represent
2679 each loop with independent predicate. */
2680 loop_stride =
2681 and_predicates (info->conds, &loop_stride,
2682 &will_be_nonconstant);
2686 free (body);
2688 set_hint_predicate (&inline_summary (node)->loop_iterations,
2689 loop_iterations);
2690 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2691 scev_finalize ();
2693 FOR_ALL_BB_FN (bb, my_function)
2695 edge e;
2696 edge_iterator ei;
2698 if (bb->aux)
2699 pool_free (edge_predicate_pool, bb->aux);
2700 bb->aux = NULL;
2701 FOR_EACH_EDGE (e, ei, bb->succs)
2703 if (e->aux)
2704 pool_free (edge_predicate_pool, e->aux);
2705 e->aux = NULL;
2708 inline_summary (node)->self_time = time;
2709 inline_summary (node)->self_size = size;
2710 nonconstant_names.release ();
2711 if (optimize && !early)
2713 loop_optimizer_finalize ();
2714 free_dominance_info (CDI_DOMINATORS);
2716 if (dump_file)
2718 fprintf (dump_file, "\n");
2719 dump_inline_summary (dump_file, node);
2724 /* Compute parameters of functions used by inliner.
2725 EARLY is true when we compute parameters for the early inliner */
2727 void
2728 compute_inline_parameters (struct cgraph_node *node, bool early)
2730 HOST_WIDE_INT self_stack_size;
2731 struct cgraph_edge *e;
2732 struct inline_summary *info;
2734 gcc_assert (!node->global.inlined_to);
2736 inline_summary_alloc ();
2738 info = inline_summary (node);
2739 reset_inline_summary (node);
2741 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2742 Once this happen, we will need to more curefully predict call
2743 statement size. */
2744 if (node->thunk.thunk_p)
2746 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2747 struct predicate t = true_predicate ();
2749 info->inlinable = 0;
2750 node->callees->call_stmt_cannot_inline_p = true;
2751 node->local.can_change_signature = false;
2752 es->call_stmt_time = 1;
2753 es->call_stmt_size = 1;
2754 account_size_time (info, 0, 0, &t);
2755 return;
2758 /* Even is_gimple_min_invariant rely on current_function_decl. */
2759 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2761 /* Estimate the stack size for the function if we're optimizing. */
2762 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2763 info->estimated_self_stack_size = self_stack_size;
2764 info->estimated_stack_size = self_stack_size;
2765 info->stack_frame_offset = 0;
2767 /* Can this function be inlined at all? */
2768 if (!optimize && !lookup_attribute ("always_inline",
2769 DECL_ATTRIBUTES (node->decl)))
2770 info->inlinable = false;
2771 else
2772 info->inlinable = tree_inlinable_function_p (node->decl);
2774 /* Type attributes can use parameter indices to describe them. */
2775 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
2776 node->local.can_change_signature = false;
2777 else
2779 /* Otherwise, inlinable functions always can change signature. */
2780 if (info->inlinable)
2781 node->local.can_change_signature = true;
2782 else
2784 /* Functions calling builtin_apply can not change signature. */
2785 for (e = node->callees; e; e = e->next_callee)
2787 tree cdecl = e->callee->decl;
2788 if (DECL_BUILT_IN (cdecl)
2789 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2790 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2791 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2792 break;
2794 node->local.can_change_signature = !e;
2797 estimate_function_body_sizes (node, early);
2799 for (e = node->callees; e; e = e->next_callee)
2800 if (symtab_comdat_local_p (e->callee))
2801 break;
2802 node->calls_comdat_local = (e != NULL);
2804 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2805 info->time = info->self_time;
2806 info->size = info->self_size;
2807 info->stack_frame_offset = 0;
2808 info->estimated_stack_size = info->estimated_self_stack_size;
2809 #ifdef ENABLE_CHECKING
2810 inline_update_overall_summary (node);
2811 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2812 #endif
2814 pop_cfun ();
2818 /* Compute parameters of functions used by inliner using
2819 current_function_decl. */
2821 static unsigned int
2822 compute_inline_parameters_for_current (void)
2824 compute_inline_parameters (cgraph_get_node (current_function_decl), true);
2825 return 0;
2828 namespace {
2830 const pass_data pass_data_inline_parameters =
2832 GIMPLE_PASS, /* type */
2833 "inline_param", /* name */
2834 OPTGROUP_INLINE, /* optinfo_flags */
2835 false, /* has_gate */
2836 true, /* has_execute */
2837 TV_INLINE_PARAMETERS, /* tv_id */
2838 0, /* properties_required */
2839 0, /* properties_provided */
2840 0, /* properties_destroyed */
2841 0, /* todo_flags_start */
2842 0, /* todo_flags_finish */
2845 class pass_inline_parameters : public gimple_opt_pass
2847 public:
2848 pass_inline_parameters (gcc::context *ctxt)
2849 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
2852 /* opt_pass methods: */
2853 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
2854 unsigned int execute () {
2855 return compute_inline_parameters_for_current ();
2858 }; // class pass_inline_parameters
2860 } // anon namespace
2862 gimple_opt_pass *
2863 make_pass_inline_parameters (gcc::context *ctxt)
2865 return new pass_inline_parameters (ctxt);
2869 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
2870 KNOWN_BINFOS. */
2872 static bool
2873 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2874 int *size, int *time,
2875 vec<tree> known_vals,
2876 vec<tree> known_binfos,
2877 vec<ipa_agg_jump_function_p> known_aggs)
2879 tree target;
2880 struct cgraph_node *callee;
2881 struct inline_summary *isummary;
2883 if (!known_vals.exists () && !known_binfos.exists ())
2884 return false;
2885 if (!flag_indirect_inlining)
2886 return false;
2888 target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos,
2889 known_aggs);
2890 if (!target)
2891 return false;
2893 /* Account for difference in cost between indirect and direct calls. */
2894 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2895 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
2896 gcc_checking_assert (*time >= 0);
2897 gcc_checking_assert (*size >= 0);
2899 callee = cgraph_get_node (target);
2900 if (!callee || !callee->definition)
2901 return false;
2902 isummary = inline_summary (callee);
2903 return isummary->inlinable;
2906 /* Increase SIZE and TIME for size and time needed to handle edge E. */
2908 static inline void
2909 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
2910 int prob,
2911 vec<tree> known_vals,
2912 vec<tree> known_binfos,
2913 vec<ipa_agg_jump_function_p> known_aggs,
2914 inline_hints *hints)
2916 struct inline_edge_summary *es = inline_edge_summary (e);
2917 int call_size = es->call_stmt_size;
2918 int call_time = es->call_stmt_time;
2919 if (!e->callee
2920 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
2921 known_vals, known_binfos, known_aggs)
2922 && hints && cgraph_maybe_hot_edge_p (e))
2923 *hints |= INLINE_HINT_indirect_call;
2924 *size += call_size * INLINE_SIZE_SCALE;
2925 *time += apply_probability ((gcov_type) call_time, prob)
2926 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
2927 if (*time > MAX_TIME * INLINE_TIME_SCALE)
2928 *time = MAX_TIME * INLINE_TIME_SCALE;
2933 /* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
2934 POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
2935 site. */
2937 static void
2938 estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
2939 inline_hints *hints,
2940 clause_t possible_truths,
2941 vec<tree> known_vals,
2942 vec<tree> known_binfos,
2943 vec<ipa_agg_jump_function_p> known_aggs)
2945 struct cgraph_edge *e;
2946 for (e = node->callees; e; e = e->next_callee)
2948 struct inline_edge_summary *es = inline_edge_summary (e);
2949 if (!es->predicate
2950 || evaluate_predicate (es->predicate, possible_truths))
2952 if (e->inline_failed)
2954 /* Predicates of calls shall not use NOT_CHANGED codes,
2955 sowe do not need to compute probabilities. */
2956 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2957 known_vals, known_binfos,
2958 known_aggs, hints);
2960 else
2961 estimate_calls_size_and_time (e->callee, size, time, hints,
2962 possible_truths,
2963 known_vals, known_binfos,
2964 known_aggs);
2967 for (e = node->indirect_calls; e; e = e->next_callee)
2969 struct inline_edge_summary *es = inline_edge_summary (e);
2970 if (!es->predicate
2971 || evaluate_predicate (es->predicate, possible_truths))
2972 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2973 known_vals, known_binfos, known_aggs,
2974 hints);
2979 /* Estimate size and time needed to execute NODE assuming
2980 POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
2981 about NODE's arguments. */
2983 static void
2984 estimate_node_size_and_time (struct cgraph_node *node,
2985 clause_t possible_truths,
2986 vec<tree> known_vals,
2987 vec<tree> known_binfos,
2988 vec<ipa_agg_jump_function_p> known_aggs,
2989 int *ret_size, int *ret_time,
2990 inline_hints *ret_hints,
2991 vec<inline_param_summary>
2992 inline_param_summary)
2994 struct inline_summary *info = inline_summary (node);
2995 size_time_entry *e;
2996 int size = 0;
2997 int time = 0;
2998 inline_hints hints = 0;
2999 int i;
3001 if (dump_file && (dump_flags & TDF_DETAILS))
3003 bool found = false;
3004 fprintf (dump_file, " Estimating body: %s/%i\n"
3005 " Known to be false: ", node->name (),
3006 node->order);
3008 for (i = predicate_not_inlined_condition;
3009 i < (predicate_first_dynamic_condition
3010 + (int) vec_safe_length (info->conds)); i++)
3011 if (!(possible_truths & (1 << i)))
3013 if (found)
3014 fprintf (dump_file, ", ");
3015 found = true;
3016 dump_condition (dump_file, info->conds, i);
3020 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3021 if (evaluate_predicate (&e->predicate, possible_truths))
3023 size += e->size;
3024 gcc_checking_assert (e->time >= 0);
3025 gcc_checking_assert (time >= 0);
3026 if (!inline_param_summary.exists ())
3027 time += e->time;
3028 else
3030 int prob = predicate_probability (info->conds,
3031 &e->predicate,
3032 possible_truths,
3033 inline_param_summary);
3034 gcc_checking_assert (prob >= 0);
3035 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3036 time += apply_probability ((gcov_type) e->time, prob);
3038 if (time > MAX_TIME * INLINE_TIME_SCALE)
3039 time = MAX_TIME * INLINE_TIME_SCALE;
3040 gcc_checking_assert (time >= 0);
3043 gcc_checking_assert (size >= 0);
3044 gcc_checking_assert (time >= 0);
3046 if (info->loop_iterations
3047 && !evaluate_predicate (info->loop_iterations, possible_truths))
3048 hints |= INLINE_HINT_loop_iterations;
3049 if (info->loop_stride
3050 && !evaluate_predicate (info->loop_stride, possible_truths))
3051 hints |= INLINE_HINT_loop_stride;
3052 if (info->array_index
3053 && !evaluate_predicate (info->array_index, possible_truths))
3054 hints |= INLINE_HINT_array_index;
3055 if (info->scc_no)
3056 hints |= INLINE_HINT_in_scc;
3057 if (DECL_DECLARED_INLINE_P (node->decl))
3058 hints |= INLINE_HINT_declared_inline;
3060 estimate_calls_size_and_time (node, &size, &time, &hints, possible_truths,
3061 known_vals, known_binfos, known_aggs);
3062 gcc_checking_assert (size >= 0);
3063 gcc_checking_assert (time >= 0);
3064 time = RDIV (time, INLINE_TIME_SCALE);
3065 size = RDIV (size, INLINE_SIZE_SCALE);
3067 if (dump_file && (dump_flags & TDF_DETAILS))
3068 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3069 if (ret_time)
3070 *ret_time = time;
3071 if (ret_size)
3072 *ret_size = size;
3073 if (ret_hints)
3074 *ret_hints = hints;
3075 return;
3079 /* Estimate size and time needed to execute callee of EDGE assuming that
3080 parameters known to be constant at caller of EDGE are propagated.
3081 KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
3082 and types for parameters. */
3084 void
3085 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3086 vec<tree> known_vals,
3087 vec<tree> known_binfos,
3088 vec<ipa_agg_jump_function_p> known_aggs,
3089 int *ret_size, int *ret_time,
3090 inline_hints *hints)
3092 clause_t clause;
3094 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3095 known_aggs);
3096 estimate_node_size_and_time (node, clause, known_vals, known_binfos,
3097 known_aggs, ret_size, ret_time, hints, vNULL);
3100 /* Translate all conditions from callee representation into caller
3101 representation and symbolically evaluate predicate P into new predicate.
3103 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3104 is summary of function predicate P is from. OPERAND_MAP is array giving
3105 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3106 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3107 predicate under which callee is executed. OFFSET_MAP is an array of of
3108 offsets that need to be added to conditions, negative offset means that
3109 conditions relying on values passed by reference have to be discarded
3110 because they might not be preserved (and should be considered offset zero
3111 for other purposes). */
3113 static struct predicate
3114 remap_predicate (struct inline_summary *info,
3115 struct inline_summary *callee_info,
3116 struct predicate *p,
3117 vec<int> operand_map,
3118 vec<int> offset_map,
3119 clause_t possible_truths, struct predicate *toplev_predicate)
3121 int i;
3122 struct predicate out = true_predicate ();
3124 /* True predicate is easy. */
3125 if (true_predicate_p (p))
3126 return *toplev_predicate;
3127 for (i = 0; p->clause[i]; i++)
3129 clause_t clause = p->clause[i];
3130 int cond;
3131 struct predicate clause_predicate = false_predicate ();
3133 gcc_assert (i < MAX_CLAUSES);
3135 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3136 /* Do we have condition we can't disprove? */
3137 if (clause & possible_truths & (1 << cond))
3139 struct predicate cond_predicate;
3140 /* Work out if the condition can translate to predicate in the
3141 inlined function. */
3142 if (cond >= predicate_first_dynamic_condition)
3144 struct condition *c;
3146 c = &(*callee_info->conds)[cond
3148 predicate_first_dynamic_condition];
3149 /* See if we can remap condition operand to caller's operand.
3150 Otherwise give up. */
3151 if (!operand_map.exists ()
3152 || (int) operand_map.length () <= c->operand_num
3153 || operand_map[c->operand_num] == -1
3154 /* TODO: For non-aggregate conditions, adding an offset is
3155 basically an arithmetic jump function processing which
3156 we should support in future. */
3157 || ((!c->agg_contents || !c->by_ref)
3158 && offset_map[c->operand_num] > 0)
3159 || (c->agg_contents && c->by_ref
3160 && offset_map[c->operand_num] < 0))
3161 cond_predicate = true_predicate ();
3162 else
3164 struct agg_position_info ap;
3165 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3166 if (offset_delta < 0)
3168 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3169 offset_delta = 0;
3171 gcc_assert (!c->agg_contents
3172 || c->by_ref || offset_delta == 0);
3173 ap.offset = c->offset + offset_delta;
3174 ap.agg_contents = c->agg_contents;
3175 ap.by_ref = c->by_ref;
3176 cond_predicate = add_condition (info,
3177 operand_map[c->operand_num],
3178 &ap, c->code, c->val);
3181 /* Fixed conditions remains same, construct single
3182 condition predicate. */
3183 else
3185 cond_predicate.clause[0] = 1 << cond;
3186 cond_predicate.clause[1] = 0;
3188 clause_predicate = or_predicates (info->conds, &clause_predicate,
3189 &cond_predicate);
3191 out = and_predicates (info->conds, &out, &clause_predicate);
3193 return and_predicates (info->conds, &out, toplev_predicate);
3197 /* Update summary information of inline clones after inlining.
3198 Compute peak stack usage. */
3200 static void
3201 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3203 struct cgraph_edge *e;
3204 struct inline_summary *callee_info = inline_summary (node);
3205 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3206 HOST_WIDE_INT peak;
3208 callee_info->stack_frame_offset
3209 = caller_info->stack_frame_offset
3210 + caller_info->estimated_self_stack_size;
3211 peak = callee_info->stack_frame_offset
3212 + callee_info->estimated_self_stack_size;
3213 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3214 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3215 ipa_propagate_frequency (node);
3216 for (e = node->callees; e; e = e->next_callee)
3218 if (!e->inline_failed)
3219 inline_update_callee_summaries (e->callee, depth);
3220 inline_edge_summary (e)->loop_depth += depth;
3222 for (e = node->indirect_calls; e; e = e->next_callee)
3223 inline_edge_summary (e)->loop_depth += depth;
3226 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3227 When functoin A is inlined in B and A calls C with parameter that
3228 changes with probability PROB1 and C is known to be passthroug
3229 of argument if B that change with probability PROB2, the probability
3230 of change is now PROB1*PROB2. */
3232 static void
3233 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3234 struct cgraph_edge *edge)
3236 if (ipa_node_params_vector.exists ())
3238 int i;
3239 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3240 struct inline_edge_summary *es = inline_edge_summary (edge);
3241 struct inline_edge_summary *inlined_es
3242 = inline_edge_summary (inlined_edge);
3244 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3246 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3247 if (jfunc->type == IPA_JF_PASS_THROUGH
3248 && (ipa_get_jf_pass_through_formal_id (jfunc)
3249 < (int) inlined_es->param.length ()))
3251 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3252 int prob1 = es->param[i].change_prob;
3253 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3254 int prob = combine_probabilities (prob1, prob2);
3256 if (prob1 && prob2 && !prob)
3257 prob = 1;
3259 es->param[i].change_prob = prob;
3265 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3267 Remap predicates of callees of NODE. Rest of arguments match
3268 remap_predicate.
3270 Also update change probabilities. */
3272 static void
3273 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3274 struct cgraph_node *node,
3275 struct inline_summary *info,
3276 struct inline_summary *callee_info,
3277 vec<int> operand_map,
3278 vec<int> offset_map,
3279 clause_t possible_truths,
3280 struct predicate *toplev_predicate)
3282 struct cgraph_edge *e;
3283 for (e = node->callees; e; e = e->next_callee)
3285 struct inline_edge_summary *es = inline_edge_summary (e);
3286 struct predicate p;
3288 if (e->inline_failed)
3290 remap_edge_change_prob (inlined_edge, e);
3292 if (es->predicate)
3294 p = remap_predicate (info, callee_info,
3295 es->predicate, operand_map, offset_map,
3296 possible_truths, toplev_predicate);
3297 edge_set_predicate (e, &p);
3298 /* TODO: We should remove the edge for code that will be
3299 optimized out, but we need to keep verifiers and tree-inline
3300 happy. Make it cold for now. */
3301 if (false_predicate_p (&p))
3303 e->count = 0;
3304 e->frequency = 0;
3307 else
3308 edge_set_predicate (e, toplev_predicate);
3310 else
3311 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3312 operand_map, offset_map, possible_truths,
3313 toplev_predicate);
3315 for (e = node->indirect_calls; e; e = e->next_callee)
3317 struct inline_edge_summary *es = inline_edge_summary (e);
3318 struct predicate p;
3320 remap_edge_change_prob (inlined_edge, e);
3321 if (es->predicate)
3323 p = remap_predicate (info, callee_info,
3324 es->predicate, operand_map, offset_map,
3325 possible_truths, toplev_predicate);
3326 edge_set_predicate (e, &p);
3327 /* TODO: We should remove the edge for code that will be optimized
3328 out, but we need to keep verifiers and tree-inline happy.
3329 Make it cold for now. */
3330 if (false_predicate_p (&p))
3332 e->count = 0;
3333 e->frequency = 0;
3336 else
3337 edge_set_predicate (e, toplev_predicate);
3341 /* Same as remap_predicate, but set result into hint *HINT. */
3343 static void
3344 remap_hint_predicate (struct inline_summary *info,
3345 struct inline_summary *callee_info,
3346 struct predicate **hint,
3347 vec<int> operand_map,
3348 vec<int> offset_map,
3349 clause_t possible_truths,
3350 struct predicate *toplev_predicate)
3352 predicate p;
3354 if (!*hint)
3355 return;
3356 p = remap_predicate (info, callee_info,
3357 *hint,
3358 operand_map, offset_map,
3359 possible_truths, toplev_predicate);
3360 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3362 if (!*hint)
3363 set_hint_predicate (hint, p);
3364 else
3365 **hint = and_predicates (info->conds, *hint, &p);
3369 /* We inlined EDGE. Update summary of the function we inlined into. */
3371 void
3372 inline_merge_summary (struct cgraph_edge *edge)
3374 struct inline_summary *callee_info = inline_summary (edge->callee);
3375 struct cgraph_node *to = (edge->caller->global.inlined_to
3376 ? edge->caller->global.inlined_to : edge->caller);
3377 struct inline_summary *info = inline_summary (to);
3378 clause_t clause = 0; /* not_inline is known to be false. */
3379 size_time_entry *e;
3380 vec<int> operand_map = vNULL;
3381 vec<int> offset_map = vNULL;
3382 int i;
3383 struct predicate toplev_predicate;
3384 struct predicate true_p = true_predicate ();
3385 struct inline_edge_summary *es = inline_edge_summary (edge);
3387 if (es->predicate)
3388 toplev_predicate = *es->predicate;
3389 else
3390 toplev_predicate = true_predicate ();
3392 if (ipa_node_params_vector.exists () && callee_info->conds)
3394 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3395 int count = ipa_get_cs_argument_count (args);
3396 int i;
3398 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3399 if (count)
3401 operand_map.safe_grow_cleared (count);
3402 offset_map.safe_grow_cleared (count);
3404 for (i = 0; i < count; i++)
3406 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3407 int map = -1;
3409 /* TODO: handle non-NOPs when merging. */
3410 if (jfunc->type == IPA_JF_PASS_THROUGH)
3412 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3413 map = ipa_get_jf_pass_through_formal_id (jfunc);
3414 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3415 offset_map[i] = -1;
3417 else if (jfunc->type == IPA_JF_ANCESTOR)
3419 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3420 if (offset >= 0 && offset < INT_MAX)
3422 map = ipa_get_jf_ancestor_formal_id (jfunc);
3423 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3424 offset = -1;
3425 offset_map[i] = offset;
3428 operand_map[i] = map;
3429 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3432 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3434 struct predicate p = remap_predicate (info, callee_info,
3435 &e->predicate, operand_map,
3436 offset_map, clause,
3437 &toplev_predicate);
3438 if (!false_predicate_p (&p))
3440 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3441 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3442 int prob = predicate_probability (callee_info->conds,
3443 &e->predicate,
3444 clause, es->param);
3445 add_time = apply_probability ((gcov_type) add_time, prob);
3446 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3447 add_time = MAX_TIME * INLINE_TIME_SCALE;
3448 if (prob != REG_BR_PROB_BASE
3449 && dump_file && (dump_flags & TDF_DETAILS))
3451 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3452 (double) prob / REG_BR_PROB_BASE);
3454 account_size_time (info, e->size, add_time, &p);
3457 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3458 offset_map, clause, &toplev_predicate);
3459 remap_hint_predicate (info, callee_info,
3460 &callee_info->loop_iterations,
3461 operand_map, offset_map, clause, &toplev_predicate);
3462 remap_hint_predicate (info, callee_info,
3463 &callee_info->loop_stride,
3464 operand_map, offset_map, clause, &toplev_predicate);
3465 remap_hint_predicate (info, callee_info,
3466 &callee_info->array_index,
3467 operand_map, offset_map, clause, &toplev_predicate);
3469 inline_update_callee_summaries (edge->callee,
3470 inline_edge_summary (edge)->loop_depth);
3472 /* We do not maintain predicates of inlined edges, free it. */
3473 edge_set_predicate (edge, &true_p);
3474 /* Similarly remove param summaries. */
3475 es->param.release ();
3476 operand_map.release ();
3477 offset_map.release ();
3480 /* For performance reasons inline_merge_summary is not updating overall size
3481 and time. Recompute it. */
3483 void
3484 inline_update_overall_summary (struct cgraph_node *node)
3486 struct inline_summary *info = inline_summary (node);
3487 size_time_entry *e;
3488 int i;
3490 info->size = 0;
3491 info->time = 0;
3492 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3494 info->size += e->size, info->time += e->time;
3495 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3496 info->time = MAX_TIME * INLINE_TIME_SCALE;
3498 estimate_calls_size_and_time (node, &info->size, &info->time, NULL,
3499 ~(clause_t) (1 << predicate_false_condition),
3500 vNULL, vNULL, vNULL);
3501 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3502 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3505 /* Return hints derrived from EDGE. */
3507 simple_edge_hints (struct cgraph_edge *edge)
3509 int hints = 0;
3510 struct cgraph_node *to = (edge->caller->global.inlined_to
3511 ? edge->caller->global.inlined_to : edge->caller);
3512 if (inline_summary (to)->scc_no
3513 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3514 && !cgraph_edge_recursive_p (edge))
3515 hints |= INLINE_HINT_same_scc;
3517 if (to->lto_file_data && edge->callee->lto_file_data
3518 && to->lto_file_data != edge->callee->lto_file_data)
3519 hints |= INLINE_HINT_cross_module;
3521 return hints;
3524 /* Estimate the time cost for the caller when inlining EDGE.
3525 Only to be called via estimate_edge_time, that handles the
3526 caching mechanism.
3528 When caching, also update the cache entry. Compute both time and
3529 size, since we always need both metrics eventually. */
3532 do_estimate_edge_time (struct cgraph_edge *edge)
3534 int time;
3535 int size;
3536 inline_hints hints;
3537 struct cgraph_node *callee;
3538 clause_t clause;
3539 vec<tree> known_vals;
3540 vec<tree> known_binfos;
3541 vec<ipa_agg_jump_function_p> known_aggs;
3542 struct inline_edge_summary *es = inline_edge_summary (edge);
3544 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3546 gcc_checking_assert (edge->inline_failed);
3547 evaluate_properties_for_edge (edge, true,
3548 &clause, &known_vals, &known_binfos,
3549 &known_aggs);
3550 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3551 known_aggs, &size, &time, &hints, es->param);
3552 known_vals.release ();
3553 known_binfos.release ();
3554 known_aggs.release ();
3555 gcc_checking_assert (size >= 0);
3556 gcc_checking_assert (time >= 0);
3558 /* When caching, update the cache entry. */
3559 if (edge_growth_cache.exists ())
3561 if ((int) edge_growth_cache.length () <= edge->uid)
3562 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
3563 edge_growth_cache[edge->uid].time = time + (time >= 0);
3565 edge_growth_cache[edge->uid].size = size + (size >= 0);
3566 hints |= simple_edge_hints (edge);
3567 edge_growth_cache[edge->uid].hints = hints + 1;
3569 return time;
3573 /* Return estimated callee growth after inlining EDGE.
3574 Only to be called via estimate_edge_size. */
3577 do_estimate_edge_size (struct cgraph_edge *edge)
3579 int size;
3580 struct cgraph_node *callee;
3581 clause_t clause;
3582 vec<tree> known_vals;
3583 vec<tree> known_binfos;
3584 vec<ipa_agg_jump_function_p> known_aggs;
3586 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3588 if (edge_growth_cache.exists ())
3590 do_estimate_edge_time (edge);
3591 size = edge_growth_cache[edge->uid].size;
3592 gcc_checking_assert (size);
3593 return size - (size > 0);
3596 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3598 /* Early inliner runs without caching, go ahead and do the dirty work. */
3599 gcc_checking_assert (edge->inline_failed);
3600 evaluate_properties_for_edge (edge, true,
3601 &clause, &known_vals, &known_binfos,
3602 &known_aggs);
3603 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3604 known_aggs, &size, NULL, NULL, vNULL);
3605 known_vals.release ();
3606 known_binfos.release ();
3607 known_aggs.release ();
3608 return size;
3612 /* Estimate the growth of the caller when inlining EDGE.
3613 Only to be called via estimate_edge_size. */
3615 inline_hints
3616 do_estimate_edge_hints (struct cgraph_edge *edge)
3618 inline_hints hints;
3619 struct cgraph_node *callee;
3620 clause_t clause;
3621 vec<tree> known_vals;
3622 vec<tree> known_binfos;
3623 vec<ipa_agg_jump_function_p> known_aggs;
3625 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3627 if (edge_growth_cache.exists ())
3629 do_estimate_edge_time (edge);
3630 hints = edge_growth_cache[edge->uid].hints;
3631 gcc_checking_assert (hints);
3632 return hints - 1;
3635 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3637 /* Early inliner runs without caching, go ahead and do the dirty work. */
3638 gcc_checking_assert (edge->inline_failed);
3639 evaluate_properties_for_edge (edge, true,
3640 &clause, &known_vals, &known_binfos,
3641 &known_aggs);
3642 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3643 known_aggs, NULL, NULL, &hints, vNULL);
3644 known_vals.release ();
3645 known_binfos.release ();
3646 known_aggs.release ();
3647 hints |= simple_edge_hints (edge);
3648 return hints;
3652 /* Estimate self time of the function NODE after inlining EDGE. */
3655 estimate_time_after_inlining (struct cgraph_node *node,
3656 struct cgraph_edge *edge)
3658 struct inline_edge_summary *es = inline_edge_summary (edge);
3659 if (!es->predicate || !false_predicate_p (es->predicate))
3661 gcov_type time =
3662 inline_summary (node)->time + estimate_edge_time (edge);
3663 if (time < 0)
3664 time = 0;
3665 if (time > MAX_TIME)
3666 time = MAX_TIME;
3667 return time;
3669 return inline_summary (node)->time;
3673 /* Estimate the size of NODE after inlining EDGE which should be an
3674 edge to either NODE or a call inlined into NODE. */
3677 estimate_size_after_inlining (struct cgraph_node *node,
3678 struct cgraph_edge *edge)
3680 struct inline_edge_summary *es = inline_edge_summary (edge);
3681 if (!es->predicate || !false_predicate_p (es->predicate))
3683 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3684 gcc_assert (size >= 0);
3685 return size;
3687 return inline_summary (node)->size;
3691 struct growth_data
3693 struct cgraph_node *node;
3694 bool self_recursive;
3695 int growth;
3699 /* Worker for do_estimate_growth. Collect growth for all callers. */
3701 static bool
3702 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3704 struct cgraph_edge *e;
3705 struct growth_data *d = (struct growth_data *) data;
3707 for (e = node->callers; e; e = e->next_caller)
3709 gcc_checking_assert (e->inline_failed);
3711 if (e->caller == d->node
3712 || (e->caller->global.inlined_to
3713 && e->caller->global.inlined_to == d->node))
3714 d->self_recursive = true;
3715 d->growth += estimate_edge_growth (e);
3717 return false;
3721 /* Estimate the growth caused by inlining NODE into all callees. */
3724 do_estimate_growth (struct cgraph_node *node)
3726 struct growth_data d = { node, 0, false };
3727 struct inline_summary *info = inline_summary (node);
3729 cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
3731 /* For self recursive functions the growth estimation really should be
3732 infinity. We don't want to return very large values because the growth
3733 plays various roles in badness computation fractions. Be sure to not
3734 return zero or negative growths. */
3735 if (d.self_recursive)
3736 d.growth = d.growth < info->size ? info->size : d.growth;
3737 else if (DECL_EXTERNAL (node->decl))
3739 else
3741 if (cgraph_will_be_removed_from_program_if_no_direct_calls (node))
3742 d.growth -= info->size;
3743 /* COMDAT functions are very often not shared across multiple units
3744 since they come from various template instantiations.
3745 Take this into account. */
3746 else if (DECL_COMDAT (node->decl)
3747 && cgraph_can_remove_if_no_direct_calls_p (node))
3748 d.growth -= (info->size
3749 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3750 + 50) / 100;
3753 if (node_growth_cache.exists ())
3755 if ((int) node_growth_cache.length () <= node->uid)
3756 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
3757 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3759 return d.growth;
3763 /* This function performs intraprocedural analysis in NODE that is required to
3764 inline indirect calls. */
3766 static void
3767 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3769 ipa_analyze_node (node);
3770 if (dump_file && (dump_flags & TDF_DETAILS))
3772 ipa_print_node_params (dump_file, node);
3773 ipa_print_node_jump_functions (dump_file, node);
3778 /* Note function body size. */
3780 static void
3781 inline_analyze_function (struct cgraph_node *node)
3783 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3785 if (dump_file)
3786 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3787 node->name (), node->order);
3788 if (optimize && !node->thunk.thunk_p)
3789 inline_indirect_intraprocedural_analysis (node);
3790 compute_inline_parameters (node, false);
3791 if (!optimize)
3793 struct cgraph_edge *e;
3794 for (e = node->callees; e; e = e->next_callee)
3796 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3797 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3798 e->call_stmt_cannot_inline_p = true;
3800 for (e = node->indirect_calls; e; e = e->next_callee)
3802 if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
3803 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3804 e->call_stmt_cannot_inline_p = true;
3808 pop_cfun ();
3812 /* Called when new function is inserted to callgraph late. */
3814 static void
3815 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3817 inline_analyze_function (node);
3821 /* Note function body size. */
3823 void
3824 inline_generate_summary (void)
3826 struct cgraph_node *node;
3828 /* When not optimizing, do not bother to analyze. Inlining is still done
3829 because edge redirection needs to happen there. */
3830 if (!optimize && !flag_lto && !flag_wpa)
3831 return;
3833 function_insertion_hook_holder =
3834 cgraph_add_function_insertion_hook (&add_new_function, NULL);
3836 ipa_register_cgraph_hooks ();
3837 inline_free_summary ();
3839 FOR_EACH_DEFINED_FUNCTION (node)
3840 if (!node->alias)
3841 inline_analyze_function (node);
3845 /* Read predicate from IB. */
3847 static struct predicate
3848 read_predicate (struct lto_input_block *ib)
3850 struct predicate out;
3851 clause_t clause;
3852 int k = 0;
3856 gcc_assert (k <= MAX_CLAUSES);
3857 clause = out.clause[k++] = streamer_read_uhwi (ib);
3859 while (clause);
3861 /* Zero-initialize the remaining clauses in OUT. */
3862 while (k <= MAX_CLAUSES)
3863 out.clause[k++] = 0;
3865 return out;
3869 /* Write inline summary for edge E to OB. */
3871 static void
3872 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
3874 struct inline_edge_summary *es = inline_edge_summary (e);
3875 struct predicate p;
3876 int length, i;
3878 es->call_stmt_size = streamer_read_uhwi (ib);
3879 es->call_stmt_time = streamer_read_uhwi (ib);
3880 es->loop_depth = streamer_read_uhwi (ib);
3881 p = read_predicate (ib);
3882 edge_set_predicate (e, &p);
3883 length = streamer_read_uhwi (ib);
3884 if (length)
3886 es->param.safe_grow_cleared (length);
3887 for (i = 0; i < length; i++)
3888 es->param[i].change_prob = streamer_read_uhwi (ib);
3893 /* Stream in inline summaries from the section. */
3895 static void
3896 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
3897 size_t len)
3899 const struct lto_function_header *header =
3900 (const struct lto_function_header *) data;
3901 const int cfg_offset = sizeof (struct lto_function_header);
3902 const int main_offset = cfg_offset + header->cfg_size;
3903 const int string_offset = main_offset + header->main_size;
3904 struct data_in *data_in;
3905 struct lto_input_block ib;
3906 unsigned int i, count2, j;
3907 unsigned int f_count;
3909 LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
3910 header->main_size);
3912 data_in =
3913 lto_data_in_create (file_data, (const char *) data + string_offset,
3914 header->string_size, vNULL);
3915 f_count = streamer_read_uhwi (&ib);
3916 for (i = 0; i < f_count; i++)
3918 unsigned int index;
3919 struct cgraph_node *node;
3920 struct inline_summary *info;
3921 lto_symtab_encoder_t encoder;
3922 struct bitpack_d bp;
3923 struct cgraph_edge *e;
3924 predicate p;
3926 index = streamer_read_uhwi (&ib);
3927 encoder = file_data->symtab_node_encoder;
3928 node = cgraph (lto_symtab_encoder_deref (encoder, index));
3929 info = inline_summary (node);
3931 info->estimated_stack_size
3932 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
3933 info->size = info->self_size = streamer_read_uhwi (&ib);
3934 info->time = info->self_time = streamer_read_uhwi (&ib);
3936 bp = streamer_read_bitpack (&ib);
3937 info->inlinable = bp_unpack_value (&bp, 1);
3939 count2 = streamer_read_uhwi (&ib);
3940 gcc_assert (!info->conds);
3941 for (j = 0; j < count2; j++)
3943 struct condition c;
3944 c.operand_num = streamer_read_uhwi (&ib);
3945 c.code = (enum tree_code) streamer_read_uhwi (&ib);
3946 c.val = stream_read_tree (&ib, data_in);
3947 bp = streamer_read_bitpack (&ib);
3948 c.agg_contents = bp_unpack_value (&bp, 1);
3949 c.by_ref = bp_unpack_value (&bp, 1);
3950 if (c.agg_contents)
3951 c.offset = streamer_read_uhwi (&ib);
3952 vec_safe_push (info->conds, c);
3954 count2 = streamer_read_uhwi (&ib);
3955 gcc_assert (!info->entry);
3956 for (j = 0; j < count2; j++)
3958 struct size_time_entry e;
3960 e.size = streamer_read_uhwi (&ib);
3961 e.time = streamer_read_uhwi (&ib);
3962 e.predicate = read_predicate (&ib);
3964 vec_safe_push (info->entry, e);
3967 p = read_predicate (&ib);
3968 set_hint_predicate (&info->loop_iterations, p);
3969 p = read_predicate (&ib);
3970 set_hint_predicate (&info->loop_stride, p);
3971 p = read_predicate (&ib);
3972 set_hint_predicate (&info->array_index, p);
3973 for (e = node->callees; e; e = e->next_callee)
3974 read_inline_edge_summary (&ib, e);
3975 for (e = node->indirect_calls; e; e = e->next_callee)
3976 read_inline_edge_summary (&ib, e);
3979 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
3980 len);
3981 lto_data_in_delete (data_in);
3985 /* Read inline summary. Jump functions are shared among ipa-cp
3986 and inliner, so when ipa-cp is active, we don't need to write them
3987 twice. */
3989 void
3990 inline_read_summary (void)
3992 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3993 struct lto_file_decl_data *file_data;
3994 unsigned int j = 0;
3996 inline_summary_alloc ();
3998 while ((file_data = file_data_vec[j++]))
4000 size_t len;
4001 const char *data = lto_get_section_data (file_data,
4002 LTO_section_inline_summary,
4003 NULL, &len);
4004 if (data)
4005 inline_read_section (file_data, data, len);
4006 else
4007 /* Fatal error here. We do not want to support compiling ltrans units
4008 with different version of compiler or different flags than the WPA
4009 unit, so this should never happen. */
4010 fatal_error ("ipa inline summary is missing in input file");
4012 if (optimize)
4014 ipa_register_cgraph_hooks ();
4015 if (!flag_ipa_cp)
4016 ipa_prop_read_jump_functions ();
4018 function_insertion_hook_holder =
4019 cgraph_add_function_insertion_hook (&add_new_function, NULL);
4023 /* Write predicate P to OB. */
4025 static void
4026 write_predicate (struct output_block *ob, struct predicate *p)
4028 int j;
4029 if (p)
4030 for (j = 0; p->clause[j]; j++)
4032 gcc_assert (j < MAX_CLAUSES);
4033 streamer_write_uhwi (ob, p->clause[j]);
4035 streamer_write_uhwi (ob, 0);
4039 /* Write inline summary for edge E to OB. */
4041 static void
4042 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4044 struct inline_edge_summary *es = inline_edge_summary (e);
4045 int i;
4047 streamer_write_uhwi (ob, es->call_stmt_size);
4048 streamer_write_uhwi (ob, es->call_stmt_time);
4049 streamer_write_uhwi (ob, es->loop_depth);
4050 write_predicate (ob, es->predicate);
4051 streamer_write_uhwi (ob, es->param.length ());
4052 for (i = 0; i < (int) es->param.length (); i++)
4053 streamer_write_uhwi (ob, es->param[i].change_prob);
4057 /* Write inline summary for node in SET.
4058 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4059 active, we don't need to write them twice. */
4061 void
4062 inline_write_summary (void)
4064 struct cgraph_node *node;
4065 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4066 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4067 unsigned int count = 0;
4068 int i;
4070 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4072 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4073 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
4074 if (cnode && cnode->definition && !cnode->alias)
4075 count++;
4077 streamer_write_uhwi (ob, count);
4079 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4081 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4082 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
4083 if (cnode && (node = cnode)->definition && !node->alias)
4085 struct inline_summary *info = inline_summary (node);
4086 struct bitpack_d bp;
4087 struct cgraph_edge *edge;
4088 int i;
4089 size_time_entry *e;
4090 struct condition *c;
4092 streamer_write_uhwi (ob,
4093 lto_symtab_encoder_encode (encoder,
4095 node));
4096 streamer_write_hwi (ob, info->estimated_self_stack_size);
4097 streamer_write_hwi (ob, info->self_size);
4098 streamer_write_hwi (ob, info->self_time);
4099 bp = bitpack_create (ob->main_stream);
4100 bp_pack_value (&bp, info->inlinable, 1);
4101 streamer_write_bitpack (&bp);
4102 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4103 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4105 streamer_write_uhwi (ob, c->operand_num);
4106 streamer_write_uhwi (ob, c->code);
4107 stream_write_tree (ob, c->val, true);
4108 bp = bitpack_create (ob->main_stream);
4109 bp_pack_value (&bp, c->agg_contents, 1);
4110 bp_pack_value (&bp, c->by_ref, 1);
4111 streamer_write_bitpack (&bp);
4112 if (c->agg_contents)
4113 streamer_write_uhwi (ob, c->offset);
4115 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4116 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4118 streamer_write_uhwi (ob, e->size);
4119 streamer_write_uhwi (ob, e->time);
4120 write_predicate (ob, &e->predicate);
4122 write_predicate (ob, info->loop_iterations);
4123 write_predicate (ob, info->loop_stride);
4124 write_predicate (ob, info->array_index);
4125 for (edge = node->callees; edge; edge = edge->next_callee)
4126 write_inline_edge_summary (ob, edge);
4127 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
4128 write_inline_edge_summary (ob, edge);
4131 streamer_write_char_stream (ob->main_stream, 0);
4132 produce_asm (ob, NULL);
4133 destroy_output_block (ob);
4135 if (optimize && !flag_ipa_cp)
4136 ipa_prop_write_jump_functions ();
4140 /* Release inline summary. */
4142 void
4143 inline_free_summary (void)
4145 struct cgraph_node *node;
4146 if (!inline_edge_summary_vec.exists ())
4147 return;
4148 FOR_EACH_DEFINED_FUNCTION (node)
4149 reset_inline_summary (node);
4150 if (function_insertion_hook_holder)
4151 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
4152 function_insertion_hook_holder = NULL;
4153 if (node_removal_hook_holder)
4154 cgraph_remove_node_removal_hook (node_removal_hook_holder);
4155 node_removal_hook_holder = NULL;
4156 if (edge_removal_hook_holder)
4157 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
4158 edge_removal_hook_holder = NULL;
4159 if (node_duplication_hook_holder)
4160 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
4161 node_duplication_hook_holder = NULL;
4162 if (edge_duplication_hook_holder)
4163 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
4164 edge_duplication_hook_holder = NULL;
4165 vec_free (inline_summary_vec);
4166 inline_edge_summary_vec.release ();
4167 if (edge_predicate_pool)
4168 free_alloc_pool (edge_predicate_pool);
4169 edge_predicate_pool = 0;