1 /* SCC value numbering for trees
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dan@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-inline.h"
31 #include "tree-flow.h"
33 #include "tree-dump.h"
37 #include "tree-iterator.h"
39 #include "alloc-pool.h"
40 #include "tree-pass.h"
43 #include "langhooks.h"
46 #include "tree-ssa-propagate.h"
47 #include "tree-ssa-sccvn.h"
49 /* This algorithm is based on the SCC algorithm presented by Keith
50 Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
51 (http://citeseer.ist.psu.edu/41805.html). In
52 straight line code, it is equivalent to a regular hash based value
53 numbering that is performed in reverse postorder.
55 For code with cycles, there are two alternatives, both of which
56 require keeping the hashtables separate from the actual list of
57 value numbers for SSA names.
59 1. Iterate value numbering in an RPO walk of the blocks, removing
60 all the entries from the hashtable after each iteration (but
61 keeping the SSA name->value number mapping between iterations).
62 Iterate until it does not change.
64 2. Perform value numbering as part of an SCC walk on the SSA graph,
65 iterating only the cycles in the SSA graph until they do not change
66 (using a separate, optimistic hashtable for value numbering the SCC
69 The second is not just faster in practice (because most SSA graph
70 cycles do not involve all the variables in the graph), it also has
73 One of these nice properties is that when we pop an SCC off the
74 stack, we are guaranteed to have processed all the operands coming from
75 *outside of that SCC*, so we do not need to do anything special to
76 ensure they have value numbers.
78 Another nice property is that the SCC walk is done as part of a DFS
79 of the SSA graph, which makes it easy to perform combining and
80 simplifying operations at the same time.
82 The code below is deliberately written in a way that makes it easy
83 to separate the SCC walk from the other work it does.
85 In order to propagate constants through the code, we track which
86 expressions contain constants, and use those while folding. In
87 theory, we could also track expressions whose value numbers are
88 replaced, in case we end up folding based on expression
91 In order to value number memory, we assign value numbers to vuses.
92 This enables us to note that, for example, stores to the same
93 address of the same value from the same starting memory states are
97 1. We can iterate only the changing portions of the SCC's, but
98 I have not seen an SCC big enough for this to be a win.
99 2. If you differentiate between phi nodes for loops and phi nodes
100 for if-then-else, you can properly consider phi nodes in different
101 blocks for equivalence.
102 3. We could value number vuses in more cases, particularly, whole
106 /* The set of hashtables and alloc_pool's for their items. */
108 typedef struct vn_tables_s
113 struct obstack nary_obstack
;
114 alloc_pool phis_pool
;
115 alloc_pool references_pool
;
118 static htab_t constant_to_value_id
;
119 static bitmap constant_value_ids
;
122 /* Valid hashtables storing information we have proven to be
125 static vn_tables_t valid_info
;
127 /* Optimistic hashtables storing information we are making assumptions about
128 during iterations. */
130 static vn_tables_t optimistic_info
;
132 /* Pointer to the set of hashtables that is currently being used.
133 Should always point to either the optimistic_info, or the
136 static vn_tables_t current_info
;
139 /* Reverse post order index for each basic block. */
141 static int *rpo_numbers
;
143 #define SSA_VAL(x) (VN_INFO ((x))->valnum)
145 /* This represents the top of the VN lattice, which is the universal
150 /* Unique counter for our value ids. */
152 static unsigned int next_value_id
;
154 /* Next DFS number and the stack for strongly connected component
157 static unsigned int next_dfs_num
;
158 static VEC (tree
, heap
) *sccstack
;
160 static bool may_insert
;
163 DEF_VEC_P(vn_ssa_aux_t
);
164 DEF_VEC_ALLOC_P(vn_ssa_aux_t
, heap
);
166 /* Table of vn_ssa_aux_t's, one per ssa_name. The vn_ssa_aux_t objects
167 are allocated on an obstack for locality reasons, and to free them
168 without looping over the VEC. */
170 static VEC (vn_ssa_aux_t
, heap
) *vn_ssa_aux_table
;
171 static struct obstack vn_ssa_aux_obstack
;
173 /* Return the value numbering information for a given SSA name. */
178 vn_ssa_aux_t res
= VEC_index (vn_ssa_aux_t
, vn_ssa_aux_table
,
179 SSA_NAME_VERSION (name
));
184 /* Set the value numbering info for a given SSA name to a given
188 VN_INFO_SET (tree name
, vn_ssa_aux_t value
)
190 VEC_replace (vn_ssa_aux_t
, vn_ssa_aux_table
,
191 SSA_NAME_VERSION (name
), value
);
194 /* Initialize the value numbering info for a given SSA name.
195 This should be called just once for every SSA name. */
198 VN_INFO_GET (tree name
)
200 vn_ssa_aux_t newinfo
;
202 newinfo
= XOBNEW (&vn_ssa_aux_obstack
, struct vn_ssa_aux
);
203 memset (newinfo
, 0, sizeof (struct vn_ssa_aux
));
204 if (SSA_NAME_VERSION (name
) >= VEC_length (vn_ssa_aux_t
, vn_ssa_aux_table
))
205 VEC_safe_grow (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
,
206 SSA_NAME_VERSION (name
) + 1);
207 VEC_replace (vn_ssa_aux_t
, vn_ssa_aux_table
,
208 SSA_NAME_VERSION (name
), newinfo
);
213 /* Get the representative expression for the SSA_NAME NAME. Returns
214 the representative SSA_NAME if there is no expression associated with it. */
217 vn_get_expr_for (tree name
)
219 vn_ssa_aux_t vn
= VN_INFO (name
);
221 tree expr
= NULL_TREE
;
223 if (vn
->valnum
== VN_TOP
)
226 /* If the value-number is a constant it is the representative
228 if (TREE_CODE (vn
->valnum
) != SSA_NAME
)
231 /* Get to the information of the value of this SSA_NAME. */
232 vn
= VN_INFO (vn
->valnum
);
234 /* If the value-number is a constant it is the representative
236 if (TREE_CODE (vn
->valnum
) != SSA_NAME
)
239 /* Else if we have an expression, return it. */
240 if (vn
->expr
!= NULL_TREE
)
243 /* Otherwise use the defining statement to build the expression. */
244 def_stmt
= SSA_NAME_DEF_STMT (vn
->valnum
);
246 /* If the value number is a default-definition or a PHI result
248 if (gimple_nop_p (def_stmt
)
249 || gimple_code (def_stmt
) == GIMPLE_PHI
)
252 if (!is_gimple_assign (def_stmt
))
255 /* FIXME tuples. This is incomplete and likely will miss some
257 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)))
260 if ((gimple_assign_rhs_code (def_stmt
) == VIEW_CONVERT_EXPR
261 || gimple_assign_rhs_code (def_stmt
) == REALPART_EXPR
262 || gimple_assign_rhs_code (def_stmt
) == IMAGPART_EXPR
)
263 && TREE_CODE (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
)
264 expr
= fold_build1 (gimple_assign_rhs_code (def_stmt
),
265 gimple_expr_type (def_stmt
),
266 TREE_OPERAND (gimple_assign_rhs1 (def_stmt
), 0));
270 expr
= fold_build1 (gimple_assign_rhs_code (def_stmt
),
271 gimple_expr_type (def_stmt
),
272 gimple_assign_rhs1 (def_stmt
));
276 expr
= fold_build2 (gimple_assign_rhs_code (def_stmt
),
277 gimple_expr_type (def_stmt
),
278 gimple_assign_rhs1 (def_stmt
),
279 gimple_assign_rhs2 (def_stmt
));
284 if (expr
== NULL_TREE
)
287 /* Cache the expression. */
294 /* Free a phi operation structure VP. */
299 vn_phi_t phi
= (vn_phi_t
) vp
;
300 VEC_free (tree
, heap
, phi
->phiargs
);
303 /* Free a reference operation structure VP. */
306 free_reference (void *vp
)
308 vn_reference_t vr
= (vn_reference_t
) vp
;
309 VEC_free (vn_reference_op_s
, heap
, vr
->operands
);
312 /* Hash table equality function for vn_constant_t. */
315 vn_constant_eq (const void *p1
, const void *p2
)
317 const struct vn_constant_s
*vc1
= (const struct vn_constant_s
*) p1
;
318 const struct vn_constant_s
*vc2
= (const struct vn_constant_s
*) p2
;
320 if (vc1
->hashcode
!= vc2
->hashcode
)
323 return vn_constant_eq_with_type (vc1
->constant
, vc2
->constant
);
326 /* Hash table hash function for vn_constant_t. */
329 vn_constant_hash (const void *p1
)
331 const struct vn_constant_s
*vc1
= (const struct vn_constant_s
*) p1
;
332 return vc1
->hashcode
;
335 /* Lookup a value id for CONSTANT and return it. If it does not
339 get_constant_value_id (tree constant
)
342 struct vn_constant_s vc
;
344 vc
.hashcode
= vn_hash_constant_with_type (constant
);
345 vc
.constant
= constant
;
346 slot
= htab_find_slot_with_hash (constant_to_value_id
, &vc
,
347 vc
.hashcode
, NO_INSERT
);
349 return ((vn_constant_t
)*slot
)->value_id
;
353 /* Lookup a value id for CONSTANT, and if it does not exist, create a
354 new one and return it. If it does exist, return it. */
357 get_or_alloc_constant_value_id (tree constant
)
360 vn_constant_t vc
= XNEW (struct vn_constant_s
);
362 vc
->hashcode
= vn_hash_constant_with_type (constant
);
363 vc
->constant
= constant
;
364 slot
= htab_find_slot_with_hash (constant_to_value_id
, vc
,
365 vc
->hashcode
, INSERT
);
369 return ((vn_constant_t
)*slot
)->value_id
;
371 vc
->value_id
= get_next_value_id ();
373 bitmap_set_bit (constant_value_ids
, vc
->value_id
);
377 /* Return true if V is a value id for a constant. */
380 value_id_constant_p (unsigned int v
)
382 return bitmap_bit_p (constant_value_ids
, v
);
385 /* Compare two reference operands P1 and P2 for equality. Return true if
386 they are equal, and false otherwise. */
389 vn_reference_op_eq (const void *p1
, const void *p2
)
391 const_vn_reference_op_t
const vro1
= (const_vn_reference_op_t
) p1
;
392 const_vn_reference_op_t
const vro2
= (const_vn_reference_op_t
) p2
;
394 return vro1
->opcode
== vro2
->opcode
395 && types_compatible_p (vro1
->type
, vro2
->type
)
396 && expressions_equal_p (vro1
->op0
, vro2
->op0
)
397 && expressions_equal_p (vro1
->op1
, vro2
->op1
)
398 && expressions_equal_p (vro1
->op2
, vro2
->op2
);
401 /* Compute the hash for a reference operand VRO1. */
404 vn_reference_op_compute_hash (const vn_reference_op_t vro1
)
406 hashval_t result
= 0;
408 result
+= iterative_hash_expr (vro1
->op0
, vro1
->opcode
);
410 result
+= iterative_hash_expr (vro1
->op1
, vro1
->opcode
);
412 result
+= iterative_hash_expr (vro1
->op2
, vro1
->opcode
);
416 /* Return the hashcode for a given reference operation P1. */
419 vn_reference_hash (const void *p1
)
421 const_vn_reference_t
const vr1
= (const_vn_reference_t
) p1
;
422 return vr1
->hashcode
;
425 /* Compute a hash for the reference operation VR1 and return it. */
428 vn_reference_compute_hash (const vn_reference_t vr1
)
432 vn_reference_op_t vro
;
434 result
= iterative_hash_expr (vr1
->vuse
, 0);
435 for (i
= 0; VEC_iterate (vn_reference_op_s
, vr1
->operands
, i
, vro
); i
++)
436 result
+= vn_reference_op_compute_hash (vro
);
441 /* Return true if reference operations P1 and P2 are equivalent. This
442 means they have the same set of operands and vuses. */
445 vn_reference_eq (const void *p1
, const void *p2
)
448 vn_reference_op_t vro
;
450 const_vn_reference_t
const vr1
= (const_vn_reference_t
) p1
;
451 const_vn_reference_t
const vr2
= (const_vn_reference_t
) p2
;
452 if (vr1
->hashcode
!= vr2
->hashcode
)
455 /* Early out if this is not a hash collision. */
456 if (vr1
->hashcode
!= vr2
->hashcode
)
459 /* The VOP needs to be the same. */
460 if (vr1
->vuse
!= vr2
->vuse
)
463 /* If the operands are the same we are done. */
464 if (vr1
->operands
== vr2
->operands
)
467 /* We require that address operands be canonicalized in a way that
468 two memory references will have the same operands if they are
470 if (VEC_length (vn_reference_op_s
, vr1
->operands
)
471 != VEC_length (vn_reference_op_s
, vr2
->operands
))
474 for (i
= 0; VEC_iterate (vn_reference_op_s
, vr1
->operands
, i
, vro
); i
++)
475 if (!vn_reference_op_eq (VEC_index (vn_reference_op_s
, vr2
->operands
, i
),
482 /* Copy the operations present in load/store REF into RESULT, a vector of
483 vn_reference_op_s's. */
486 copy_reference_ops_from_ref (tree ref
, VEC(vn_reference_op_s
, heap
) **result
)
488 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
490 vn_reference_op_s temp
;
493 base
= TMR_SYMBOL (ref
) ? TMR_SYMBOL (ref
) : TMR_BASE (ref
);
495 base
= build_int_cst (ptr_type_node
, 0);
497 memset (&temp
, 0, sizeof (temp
));
498 /* We do not care for spurious type qualifications. */
499 temp
.type
= TYPE_MAIN_VARIANT (TREE_TYPE (ref
));
500 temp
.opcode
= TREE_CODE (ref
);
501 temp
.op0
= TMR_INDEX (ref
);
502 temp
.op1
= TMR_STEP (ref
);
503 temp
.op2
= TMR_OFFSET (ref
);
504 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
506 memset (&temp
, 0, sizeof (temp
));
507 temp
.type
= NULL_TREE
;
508 temp
.opcode
= TREE_CODE (base
);
510 temp
.op1
= TMR_ORIGINAL (ref
);
511 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
515 /* For non-calls, store the information that makes up the address. */
519 vn_reference_op_s temp
;
521 memset (&temp
, 0, sizeof (temp
));
522 /* We do not care for spurious type qualifications. */
523 temp
.type
= TYPE_MAIN_VARIANT (TREE_TYPE (ref
));
524 temp
.opcode
= TREE_CODE (ref
);
528 case ALIGN_INDIRECT_REF
:
530 /* The only operand is the address, which gets its own
531 vn_reference_op_s structure. */
533 case MISALIGNED_INDIRECT_REF
:
534 temp
.op0
= TREE_OPERAND (ref
, 1);
537 /* Record bits and position. */
538 temp
.op0
= TREE_OPERAND (ref
, 1);
539 temp
.op1
= TREE_OPERAND (ref
, 2);
542 /* The field decl is enough to unambiguously specify the field,
543 a matching type is not necessary and a mismatching type
544 is always a spurious difference. */
545 temp
.type
= NULL_TREE
;
546 temp
.op0
= TREE_OPERAND (ref
, 1);
547 temp
.op1
= TREE_OPERAND (ref
, 2);
548 /* If this is a reference to a union member, record the union
549 member size as operand. Do so only if we are doing
550 expression insertion (during FRE), as PRE currently gets
551 confused with this. */
553 && temp
.op1
== NULL_TREE
554 && TREE_CODE (DECL_CONTEXT (temp
.op0
)) == UNION_TYPE
555 && integer_zerop (DECL_FIELD_OFFSET (temp
.op0
))
556 && integer_zerop (DECL_FIELD_BIT_OFFSET (temp
.op0
))
557 && host_integerp (DECL_SIZE (temp
.op0
), 0))
558 temp
.op0
= DECL_SIZE (temp
.op0
);
560 case ARRAY_RANGE_REF
:
562 /* Record index as operand. */
563 temp
.op0
= TREE_OPERAND (ref
, 1);
564 /* Always record lower bounds and element size. */
565 temp
.op1
= array_ref_low_bound (ref
);
566 temp
.op2
= array_ref_element_size (ref
);
582 if (is_gimple_min_invariant (ref
))
588 /* These are only interesting for their operands, their
589 existence, and their type. They will never be the last
590 ref in the chain of references (IE they require an
591 operand), so we don't have to put anything
592 for op* as it will be handled by the iteration */
595 case VIEW_CONVERT_EXPR
:
600 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
602 if (REFERENCE_CLASS_P (ref
)
603 || (TREE_CODE (ref
) == ADDR_EXPR
604 && !is_gimple_min_invariant (ref
)))
605 ref
= TREE_OPERAND (ref
, 0);
611 /* Build a alias-oracle reference abstraction in *REF from the vn_reference
612 operands in *OPS, the reference alias set SET and the reference type TYPE.
613 Return true if something useful was produced. */
616 ao_ref_init_from_vn_reference (ao_ref
*ref
,
617 alias_set_type set
, tree type
,
618 VEC (vn_reference_op_s
, heap
) *ops
)
620 vn_reference_op_t op
;
622 tree base
= NULL_TREE
;
624 HOST_WIDE_INT offset
= 0;
625 HOST_WIDE_INT max_size
;
626 HOST_WIDE_INT size
= -1;
627 tree size_tree
= NULL_TREE
;
629 /* First get the final access size from just the outermost expression. */
630 op
= VEC_index (vn_reference_op_s
, ops
, 0);
631 if (op
->opcode
== COMPONENT_REF
)
633 if (TREE_CODE (op
->op0
) == INTEGER_CST
)
636 size_tree
= DECL_SIZE (op
->op0
);
638 else if (op
->opcode
== BIT_FIELD_REF
)
642 enum machine_mode mode
= TYPE_MODE (type
);
644 size_tree
= TYPE_SIZE (type
);
646 size
= GET_MODE_BITSIZE (mode
);
648 if (size_tree
!= NULL_TREE
)
650 if (!host_integerp (size_tree
, 1))
653 size
= TREE_INT_CST_LOW (size_tree
);
656 /* Initially, maxsize is the same as the accessed element size.
657 In the following it will only grow (or become -1). */
660 /* Compute cumulative bit-offset for nested component-refs and array-refs,
661 and find the ultimate containing object. */
662 for (i
= 0; VEC_iterate (vn_reference_op_s
, ops
, i
, op
); ++i
)
666 /* These may be in the reference ops, but we cannot do anything
667 sensible with them here. */
672 /* Record the base objects. */
673 case ALIGN_INDIRECT_REF
:
675 *op0_p
= build1 (op
->opcode
, op
->type
, NULL_TREE
);
676 op0_p
= &TREE_OPERAND (*op0_p
, 0);
679 case MISALIGNED_INDIRECT_REF
:
680 *op0_p
= build2 (MISALIGNED_INDIRECT_REF
, op
->type
,
682 op0_p
= &TREE_OPERAND (*op0_p
, 0);
692 /* And now the usual component-reference style ops. */
694 offset
+= tree_low_cst (op
->op1
, 0);
699 tree field
= op
->op0
;
700 /* We do not have a complete COMPONENT_REF tree here so we
701 cannot use component_ref_field_offset. Do the interesting
704 /* Our union trick, done for offset zero only. */
705 if (TREE_CODE (field
) == INTEGER_CST
)
708 || !host_integerp (DECL_FIELD_OFFSET (field
), 1))
712 offset
+= (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field
))
714 offset
+= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field
));
719 case ARRAY_RANGE_REF
:
721 /* We recorded the lower bound and the element size. */
722 if (!host_integerp (op
->op0
, 0)
723 || !host_integerp (op
->op1
, 0)
724 || !host_integerp (op
->op2
, 0))
728 HOST_WIDE_INT hindex
= TREE_INT_CST_LOW (op
->op0
);
729 hindex
-= TREE_INT_CST_LOW (op
->op1
);
730 hindex
*= TREE_INT_CST_LOW (op
->op2
);
731 hindex
*= BITS_PER_UNIT
;
743 case VIEW_CONVERT_EXPR
:
760 if (base
== NULL_TREE
)
763 ref
->ref
= NULL_TREE
;
765 ref
->offset
= offset
;
767 ref
->max_size
= max_size
;
768 ref
->ref_alias_set
= set
;
769 ref
->base_alias_set
= -1;
774 /* Copy the operations present in load/store/call REF into RESULT, a vector of
775 vn_reference_op_s's. */
778 copy_reference_ops_from_call (gimple call
,
779 VEC(vn_reference_op_s
, heap
) **result
)
781 vn_reference_op_s temp
;
784 /* Copy the type, opcode, function being called and static chain. */
785 memset (&temp
, 0, sizeof (temp
));
786 temp
.type
= gimple_call_return_type (call
);
787 temp
.opcode
= CALL_EXPR
;
788 temp
.op0
= gimple_call_fn (call
);
789 temp
.op1
= gimple_call_chain (call
);
790 VEC_safe_push (vn_reference_op_s
, heap
, *result
, &temp
);
792 /* Copy the call arguments. As they can be references as well,
793 just chain them together. */
794 for (i
= 0; i
< gimple_call_num_args (call
); ++i
)
796 tree callarg
= gimple_call_arg (call
, i
);
797 copy_reference_ops_from_ref (callarg
, result
);
801 /* Create a vector of vn_reference_op_s structures from REF, a
802 REFERENCE_CLASS_P tree. The vector is not shared. */
804 static VEC(vn_reference_op_s
, heap
) *
805 create_reference_ops_from_ref (tree ref
)
807 VEC (vn_reference_op_s
, heap
) *result
= NULL
;
809 copy_reference_ops_from_ref (ref
, &result
);
813 /* Create a vector of vn_reference_op_s structures from CALL, a
814 call statement. The vector is not shared. */
816 static VEC(vn_reference_op_s
, heap
) *
817 create_reference_ops_from_call (gimple call
)
819 VEC (vn_reference_op_s
, heap
) *result
= NULL
;
821 copy_reference_ops_from_call (call
, &result
);
825 /* Fold *& at position *I_P in a vn_reference_op_s vector *OPS. Updates
826 *I_P to point to the last element of the replacement. */
828 vn_reference_fold_indirect (VEC (vn_reference_op_s
, heap
) **ops
,
831 VEC(vn_reference_op_s
, heap
) *mem
= NULL
;
832 vn_reference_op_t op
;
833 unsigned int i
= *i_p
;
836 /* Get ops for the addressed object. */
837 op
= VEC_index (vn_reference_op_s
, *ops
, i
);
838 /* ??? If this is our usual typeof &ARRAY vs. &ARRAY[0] problem, work
839 around it to avoid later ICEs. */
840 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op
->op0
, 0))) == ARRAY_TYPE
841 && TREE_CODE (TREE_TYPE (TREE_TYPE (op
->op0
))) != ARRAY_TYPE
)
843 vn_reference_op_s aref
;
845 aref
.type
= TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (op
->op0
)));
846 aref
.opcode
= ARRAY_REF
;
847 aref
.op0
= integer_zero_node
;
848 if ((dom
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (op
->op0
, 0))))
849 && TYPE_MIN_VALUE (dom
))
850 aref
.op0
= TYPE_MIN_VALUE (dom
);
852 aref
.op2
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op
->op0
)));
853 VEC_safe_push (vn_reference_op_s
, heap
, mem
, &aref
);
855 copy_reference_ops_from_ref (TREE_OPERAND (op
->op0
, 0), &mem
);
857 /* Do the replacement - we should have at least one op in mem now. */
858 if (VEC_length (vn_reference_op_s
, mem
) == 1)
860 VEC_replace (vn_reference_op_s
, *ops
, i
- 1,
861 VEC_index (vn_reference_op_s
, mem
, 0));
862 VEC_ordered_remove (vn_reference_op_s
, *ops
, i
);
865 else if (VEC_length (vn_reference_op_s
, mem
) == 2)
867 VEC_replace (vn_reference_op_s
, *ops
, i
- 1,
868 VEC_index (vn_reference_op_s
, mem
, 0));
869 VEC_replace (vn_reference_op_s
, *ops
, i
,
870 VEC_index (vn_reference_op_s
, mem
, 1));
872 else if (VEC_length (vn_reference_op_s
, mem
) > 2)
874 VEC_replace (vn_reference_op_s
, *ops
, i
- 1,
875 VEC_index (vn_reference_op_s
, mem
, 0));
876 VEC_replace (vn_reference_op_s
, *ops
, i
,
877 VEC_index (vn_reference_op_s
, mem
, 1));
878 /* ??? There is no VEC_splice. */
879 for (j
= 2; VEC_iterate (vn_reference_op_s
, mem
, j
, op
); j
++)
880 VEC_safe_insert (vn_reference_op_s
, heap
, *ops
, ++i
, op
);
885 VEC_free (vn_reference_op_s
, heap
, mem
);
889 /* Transform any SSA_NAME's in a vector of vn_reference_op_s
890 structures into their value numbers. This is done in-place, and
891 the vector passed in is returned. */
893 static VEC (vn_reference_op_s
, heap
) *
894 valueize_refs (VEC (vn_reference_op_s
, heap
) *orig
)
896 vn_reference_op_t vro
;
899 for (i
= 0; VEC_iterate (vn_reference_op_s
, orig
, i
, vro
); i
++)
901 if (vro
->opcode
== SSA_NAME
902 || (vro
->op0
&& TREE_CODE (vro
->op0
) == SSA_NAME
))
904 vro
->op0
= SSA_VAL (vro
->op0
);
905 /* If it transforms from an SSA_NAME to a constant, update
907 if (TREE_CODE (vro
->op0
) != SSA_NAME
&& vro
->opcode
== SSA_NAME
)
908 vro
->opcode
= TREE_CODE (vro
->op0
);
909 /* If it transforms from an SSA_NAME to an address, fold with
910 a preceding indirect reference. */
911 if (i
> 0 && TREE_CODE (vro
->op0
) == ADDR_EXPR
912 && VEC_index (vn_reference_op_s
,
913 orig
, i
- 1)->opcode
== INDIRECT_REF
)
915 vn_reference_fold_indirect (&orig
, &i
);
919 if (vro
->op1
&& TREE_CODE (vro
->op1
) == SSA_NAME
)
920 vro
->op1
= SSA_VAL (vro
->op1
);
921 if (vro
->op2
&& TREE_CODE (vro
->op2
) == SSA_NAME
)
922 vro
->op2
= SSA_VAL (vro
->op2
);
928 static VEC(vn_reference_op_s
, heap
) *shared_lookup_references
;
930 /* Create a vector of vn_reference_op_s structures from REF, a
931 REFERENCE_CLASS_P tree. The vector is shared among all callers of
934 static VEC(vn_reference_op_s
, heap
) *
935 valueize_shared_reference_ops_from_ref (tree ref
)
939 VEC_truncate (vn_reference_op_s
, shared_lookup_references
, 0);
940 copy_reference_ops_from_ref (ref
, &shared_lookup_references
);
941 shared_lookup_references
= valueize_refs (shared_lookup_references
);
942 return shared_lookup_references
;
945 /* Create a vector of vn_reference_op_s structures from CALL, a
946 call statement. The vector is shared among all callers of
949 static VEC(vn_reference_op_s
, heap
) *
950 valueize_shared_reference_ops_from_call (gimple call
)
954 VEC_truncate (vn_reference_op_s
, shared_lookup_references
, 0);
955 copy_reference_ops_from_call (call
, &shared_lookup_references
);
956 shared_lookup_references
= valueize_refs (shared_lookup_references
);
957 return shared_lookup_references
;
960 /* Lookup a SCCVN reference operation VR in the current hash table.
961 Returns the resulting value number if it exists in the hash table,
962 NULL_TREE otherwise. VNRESULT will be filled in with the actual
963 vn_reference_t stored in the hashtable if something is found. */
966 vn_reference_lookup_1 (vn_reference_t vr
, vn_reference_t
*vnresult
)
972 slot
= htab_find_slot_with_hash (current_info
->references
, vr
,
974 if (!slot
&& current_info
== optimistic_info
)
975 slot
= htab_find_slot_with_hash (valid_info
->references
, vr
,
980 *vnresult
= (vn_reference_t
)*slot
;
981 return ((vn_reference_t
)*slot
)->result
;
987 /* Callback for walk_non_aliased_vuses. Adjusts the vn_reference_t VR_
988 with the current VUSE and performs the expression lookup. */
991 vn_reference_lookup_2 (ao_ref
*op ATTRIBUTE_UNUSED
, tree vuse
, void *vr_
)
993 vn_reference_t vr
= (vn_reference_t
)vr_
;
997 /* Fixup vuse and hash. */
998 vr
->hashcode
= vr
->hashcode
- iterative_hash_expr (vr
->vuse
, 0);
999 vr
->vuse
= SSA_VAL (vuse
);
1000 vr
->hashcode
= vr
->hashcode
+ iterative_hash_expr (vr
->vuse
, 0);
1002 hash
= vr
->hashcode
;
1003 slot
= htab_find_slot_with_hash (current_info
->references
, vr
,
1005 if (!slot
&& current_info
== optimistic_info
)
1006 slot
= htab_find_slot_with_hash (valid_info
->references
, vr
,
1014 /* Callback for walk_non_aliased_vuses. Tries to perform a lookup
1015 from the statement defining VUSE and if not successful tries to
1016 translate *REFP and VR_ through an aggregate copy at the defintion
1020 vn_reference_lookup_3 (ao_ref
*ref
, tree vuse
, void *vr_
)
1022 vn_reference_t vr
= (vn_reference_t
)vr_
;
1023 gimple def_stmt
= SSA_NAME_DEF_STMT (vuse
);
1026 HOST_WIDE_INT offset
, size
, maxsize
;
1028 base
= ao_ref_base (ref
);
1029 offset
= ref
->offset
;
1031 maxsize
= ref
->max_size
;
1033 /* If we cannot constrain the size of the reference we cannot
1034 test if anything kills it. */
1038 /* def_stmt may-defs *ref. See if we can derive a value for *ref
1039 from that defintion.
1041 if (is_gimple_reg_type (vr
->type
)
1042 && is_gimple_call (def_stmt
)
1043 && (fndecl
= gimple_call_fndecl (def_stmt
))
1044 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
1045 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_MEMSET
1046 && integer_zerop (gimple_call_arg (def_stmt
, 1))
1047 && host_integerp (gimple_call_arg (def_stmt
, 2), 1)
1048 && TREE_CODE (gimple_call_arg (def_stmt
, 0)) == ADDR_EXPR
)
1050 tree ref2
= TREE_OPERAND (gimple_call_arg (def_stmt
, 0), 0);
1052 HOST_WIDE_INT offset2
, size2
, maxsize2
;
1053 base2
= get_ref_base_and_extent (ref2
, &offset2
, &size2
, &maxsize2
);
1054 size2
= TREE_INT_CST_LOW (gimple_call_arg (def_stmt
, 2)) * 8;
1055 if ((unsigned HOST_WIDE_INT
)size2
/ 8
1056 == TREE_INT_CST_LOW (gimple_call_arg (def_stmt
, 2))
1057 && operand_equal_p (base
, base2
, 0)
1058 && offset2
<= offset
1059 && offset2
+ size2
>= offset
+ maxsize
)
1061 tree val
= fold_convert (vr
->type
, integer_zero_node
);
1062 unsigned int value_id
= get_or_alloc_constant_value_id (val
);
1063 return vn_reference_insert_pieces (vuse
, vr
->set
, vr
->type
,
1064 VEC_copy (vn_reference_op_s
,
1065 heap
, vr
->operands
),
1070 /* 2) Assignment from an empty CONSTRUCTOR. */
1071 else if (is_gimple_reg_type (vr
->type
)
1072 && gimple_assign_single_p (def_stmt
)
1073 && gimple_assign_rhs_code (def_stmt
) == CONSTRUCTOR
1074 && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (def_stmt
)) == 0)
1077 HOST_WIDE_INT offset2
, size2
, maxsize2
;
1078 base2
= get_ref_base_and_extent (gimple_assign_lhs (def_stmt
),
1079 &offset2
, &size2
, &maxsize2
);
1080 if (operand_equal_p (base
, base2
, 0)
1081 && offset2
<= offset
1082 && offset2
+ size2
>= offset
+ maxsize
)
1084 tree val
= fold_convert (vr
->type
, integer_zero_node
);
1085 unsigned int value_id
= get_or_alloc_constant_value_id (val
);
1086 return vn_reference_insert_pieces (vuse
, vr
->set
, vr
->type
,
1087 VEC_copy (vn_reference_op_s
,
1088 heap
, vr
->operands
),
1093 /* For aggregate copies translate the reference through them if
1094 the copy kills ref. */
1095 else if (gimple_assign_single_p (def_stmt
)
1096 && (DECL_P (gimple_assign_rhs1 (def_stmt
))
1097 || INDIRECT_REF_P (gimple_assign_rhs1 (def_stmt
))
1098 || handled_component_p (gimple_assign_rhs1 (def_stmt
))))
1101 HOST_WIDE_INT offset2
, size2
, maxsize2
;
1103 VEC (vn_reference_op_s
, heap
) *lhs
= NULL
, *rhs
= NULL
;
1104 vn_reference_op_t vro
;
1107 /* See if the assignment kills REF. */
1108 base2
= get_ref_base_and_extent (gimple_assign_lhs (def_stmt
),
1109 &offset2
, &size2
, &maxsize2
);
1110 if (!operand_equal_p (base
, base2
, 0)
1112 || offset2
+ size2
< offset
+ maxsize
)
1115 /* Find the common base of ref and the lhs. */
1116 copy_reference_ops_from_ref (gimple_assign_lhs (def_stmt
), &lhs
);
1117 i
= VEC_length (vn_reference_op_s
, vr
->operands
) - 1;
1118 j
= VEC_length (vn_reference_op_s
, lhs
) - 1;
1119 while (j
>= 0 && i
>= 0
1120 && vn_reference_op_eq (VEC_index (vn_reference_op_s
,
1122 VEC_index (vn_reference_op_s
, lhs
, j
)))
1128 VEC_free (vn_reference_op_s
, heap
, lhs
);
1129 /* i now points to the first additional op.
1130 ??? LHS may not be completely contained in VR, one or more
1131 VIEW_CONVERT_EXPRs could be in its way. We could at least
1132 try handling outermost VIEW_CONVERT_EXPRs. */
1136 /* Now re-write REF to be based on the rhs of the assignment. */
1137 copy_reference_ops_from_ref (gimple_assign_rhs1 (def_stmt
), &rhs
);
1138 /* We need to pre-pend vr->operands[0..i] to rhs. */
1139 if (i
+ 1 + VEC_length (vn_reference_op_s
, rhs
)
1140 > VEC_length (vn_reference_op_s
, vr
->operands
))
1142 VEC (vn_reference_op_s
, heap
) *old
= vr
->operands
;
1143 VEC_safe_grow (vn_reference_op_s
, heap
, vr
->operands
,
1144 i
+ 1 + VEC_length (vn_reference_op_s
, rhs
));
1145 if (old
== shared_lookup_references
1146 && vr
->operands
!= old
)
1147 shared_lookup_references
= NULL
;
1150 VEC_truncate (vn_reference_op_s
, vr
->operands
,
1151 i
+ 1 + VEC_length (vn_reference_op_s
, rhs
));
1152 for (j
= 0; VEC_iterate (vn_reference_op_s
, rhs
, j
, vro
); ++j
)
1153 VEC_replace (vn_reference_op_s
, vr
->operands
, i
+ 1 + j
, vro
);
1154 VEC_free (vn_reference_op_s
, heap
, rhs
);
1155 vr
->hashcode
= vn_reference_compute_hash (vr
);
1157 /* Adjust *ref from the new operands. */
1158 if (!ao_ref_init_from_vn_reference (&r
, vr
->set
, vr
->type
, vr
->operands
))
1160 /* This can happen with bitfields. */
1161 if (ref
->size
!= r
.size
)
1165 /* Keep looking for the adjusted *REF / VR pair. */
1169 /* Bail out and stop walking. */
1173 /* Lookup a reference operation by it's parts, in the current hash table.
1174 Returns the resulting value number if it exists in the hash table,
1175 NULL_TREE otherwise. VNRESULT will be filled in with the actual
1176 vn_reference_t stored in the hashtable if something is found. */
1179 vn_reference_lookup_pieces (tree vuse
, alias_set_type set
, tree type
,
1180 VEC (vn_reference_op_s
, heap
) *operands
,
1181 vn_reference_t
*vnresult
, bool maywalk
)
1183 struct vn_reference_s vr1
;
1190 vr1
.vuse
= vuse
? SSA_VAL (vuse
) : NULL_TREE
;
1191 VEC_truncate (vn_reference_op_s
, shared_lookup_references
, 0);
1192 VEC_safe_grow (vn_reference_op_s
, heap
, shared_lookup_references
,
1193 VEC_length (vn_reference_op_s
, operands
));
1194 memcpy (VEC_address (vn_reference_op_s
, shared_lookup_references
),
1195 VEC_address (vn_reference_op_s
, operands
),
1196 sizeof (vn_reference_op_s
)
1197 * VEC_length (vn_reference_op_s
, operands
));
1198 vr1
.operands
= operands
= shared_lookup_references
1199 = valueize_refs (shared_lookup_references
);
1202 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1203 vn_reference_lookup_1 (&vr1
, vnresult
);
1210 if (ao_ref_init_from_vn_reference (&r
, set
, type
, vr1
.operands
))
1212 (vn_reference_t
)walk_non_aliased_vuses (&r
, vr1
.vuse
,
1213 vn_reference_lookup_2
,
1214 vn_reference_lookup_3
, &vr1
);
1215 if (vr1
.operands
!= operands
)
1216 VEC_free (vn_reference_op_s
, heap
, vr1
.operands
);
1220 return (*vnresult
)->result
;
1225 /* Lookup OP in the current hash table, and return the resulting value
1226 number if it exists in the hash table. Return NULL_TREE if it does
1227 not exist in the hash table or if the result field of the structure
1228 was NULL.. VNRESULT will be filled in with the vn_reference_t
1229 stored in the hashtable if one exists. */
1232 vn_reference_lookup (tree op
, tree vuse
, bool maywalk
,
1233 vn_reference_t
*vnresult
)
1235 VEC (vn_reference_op_s
, heap
) *operands
;
1236 struct vn_reference_s vr1
;
1241 vr1
.vuse
= vuse
? SSA_VAL (vuse
) : NULL_TREE
;
1242 vr1
.operands
= operands
= valueize_shared_reference_ops_from_ref (op
);
1243 vr1
.type
= TREE_TYPE (op
);
1244 vr1
.set
= get_alias_set (op
);
1245 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1250 vn_reference_t wvnresult
;
1252 ao_ref_init (&r
, op
);
1254 (vn_reference_t
)walk_non_aliased_vuses (&r
, vr1
.vuse
,
1255 vn_reference_lookup_2
,
1256 vn_reference_lookup_3
, &vr1
);
1257 if (vr1
.operands
!= operands
)
1258 VEC_free (vn_reference_op_s
, heap
, vr1
.operands
);
1262 *vnresult
= wvnresult
;
1263 return wvnresult
->result
;
1269 return vn_reference_lookup_1 (&vr1
, vnresult
);
1273 /* Insert OP into the current hash table with a value number of
1274 RESULT, and return the resulting reference structure we created. */
1277 vn_reference_insert (tree op
, tree result
, tree vuse
)
1282 vr1
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1283 if (TREE_CODE (result
) == SSA_NAME
)
1284 vr1
->value_id
= VN_INFO (result
)->value_id
;
1286 vr1
->value_id
= get_or_alloc_constant_value_id (result
);
1287 vr1
->vuse
= vuse
? SSA_VAL (vuse
) : NULL_TREE
;
1288 vr1
->operands
= valueize_refs (create_reference_ops_from_ref (op
));
1289 vr1
->type
= TREE_TYPE (op
);
1290 vr1
->set
= get_alias_set (op
);
1291 vr1
->hashcode
= vn_reference_compute_hash (vr1
);
1292 vr1
->result
= TREE_CODE (result
) == SSA_NAME
? SSA_VAL (result
) : result
;
1294 slot
= htab_find_slot_with_hash (current_info
->references
, vr1
, vr1
->hashcode
,
1297 /* Because we lookup stores using vuses, and value number failures
1298 using the vdefs (see visit_reference_op_store for how and why),
1299 it's possible that on failure we may try to insert an already
1300 inserted store. This is not wrong, there is no ssa name for a
1301 store that we could use as a differentiator anyway. Thus, unlike
1302 the other lookup functions, you cannot gcc_assert (!*slot)
1305 /* But free the old slot in case of a collision. */
1307 free_reference (*slot
);
1313 /* Insert a reference by it's pieces into the current hash table with
1314 a value number of RESULT. Return the resulting reference
1315 structure we created. */
1318 vn_reference_insert_pieces (tree vuse
, alias_set_type set
, tree type
,
1319 VEC (vn_reference_op_s
, heap
) *operands
,
1320 tree result
, unsigned int value_id
)
1326 vr1
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1327 vr1
->value_id
= value_id
;
1328 vr1
->vuse
= vuse
? SSA_VAL (vuse
) : NULL_TREE
;
1329 vr1
->operands
= valueize_refs (operands
);
1332 vr1
->hashcode
= vn_reference_compute_hash (vr1
);
1333 if (result
&& TREE_CODE (result
) == SSA_NAME
)
1334 result
= SSA_VAL (result
);
1335 vr1
->result
= result
;
1337 slot
= htab_find_slot_with_hash (current_info
->references
, vr1
, vr1
->hashcode
,
1340 /* At this point we should have all the things inserted that we have
1341 seen before, and we should never try inserting something that
1343 gcc_assert (!*slot
);
1345 free_reference (*slot
);
1351 /* Compute and return the hash value for nary operation VBO1. */
1354 vn_nary_op_compute_hash (const vn_nary_op_t vno1
)
1359 for (i
= 0; i
< vno1
->length
; ++i
)
1360 if (TREE_CODE (vno1
->op
[i
]) == SSA_NAME
)
1361 vno1
->op
[i
] = SSA_VAL (vno1
->op
[i
]);
1363 if (vno1
->length
== 2
1364 && commutative_tree_code (vno1
->opcode
)
1365 && tree_swap_operands_p (vno1
->op
[0], vno1
->op
[1], false))
1367 tree temp
= vno1
->op
[0];
1368 vno1
->op
[0] = vno1
->op
[1];
1372 for (i
= 0; i
< vno1
->length
; ++i
)
1373 hash
+= iterative_hash_expr (vno1
->op
[i
], vno1
->opcode
);
1378 /* Return the computed hashcode for nary operation P1. */
1381 vn_nary_op_hash (const void *p1
)
1383 const_vn_nary_op_t
const vno1
= (const_vn_nary_op_t
) p1
;
1384 return vno1
->hashcode
;
1387 /* Compare nary operations P1 and P2 and return true if they are
1391 vn_nary_op_eq (const void *p1
, const void *p2
)
1393 const_vn_nary_op_t
const vno1
= (const_vn_nary_op_t
) p1
;
1394 const_vn_nary_op_t
const vno2
= (const_vn_nary_op_t
) p2
;
1397 if (vno1
->hashcode
!= vno2
->hashcode
)
1400 if (vno1
->opcode
!= vno2
->opcode
1401 || !types_compatible_p (vno1
->type
, vno2
->type
))
1404 for (i
= 0; i
< vno1
->length
; ++i
)
1405 if (!expressions_equal_p (vno1
->op
[i
], vno2
->op
[i
]))
1411 /* Lookup a n-ary operation by its pieces and return the resulting value
1412 number if it exists in the hash table. Return NULL_TREE if it does
1413 not exist in the hash table or if the result field of the operation
1414 is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
1418 vn_nary_op_lookup_pieces (unsigned int length
, enum tree_code code
,
1419 tree type
, tree op0
, tree op1
, tree op2
,
1420 tree op3
, vn_nary_op_t
*vnresult
)
1423 struct vn_nary_op_s vno1
;
1427 vno1
.length
= length
;
1433 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1434 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1436 if (!slot
&& current_info
== optimistic_info
)
1437 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1442 *vnresult
= (vn_nary_op_t
)*slot
;
1443 return ((vn_nary_op_t
)*slot
)->result
;
1446 /* Lookup OP in the current hash table, and return the resulting value
1447 number if it exists in the hash table. Return NULL_TREE if it does
1448 not exist in the hash table or if the result field of the operation
1449 is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
1453 vn_nary_op_lookup (tree op
, vn_nary_op_t
*vnresult
)
1456 struct vn_nary_op_s vno1
;
1461 vno1
.opcode
= TREE_CODE (op
);
1462 vno1
.length
= TREE_CODE_LENGTH (TREE_CODE (op
));
1463 vno1
.type
= TREE_TYPE (op
);
1464 for (i
= 0; i
< vno1
.length
; ++i
)
1465 vno1
.op
[i
] = TREE_OPERAND (op
, i
);
1466 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1467 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1469 if (!slot
&& current_info
== optimistic_info
)
1470 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1475 *vnresult
= (vn_nary_op_t
)*slot
;
1476 return ((vn_nary_op_t
)*slot
)->result
;
1479 /* Lookup the rhs of STMT in the current hash table, and return the resulting
1480 value number if it exists in the hash table. Return NULL_TREE if
1481 it does not exist in the hash table. VNRESULT will contain the
1482 vn_nary_op_t from the hashtable if it exists. */
1485 vn_nary_op_lookup_stmt (gimple stmt
, vn_nary_op_t
*vnresult
)
1488 struct vn_nary_op_s vno1
;
1493 vno1
.opcode
= gimple_assign_rhs_code (stmt
);
1494 vno1
.length
= gimple_num_ops (stmt
) - 1;
1495 vno1
.type
= gimple_expr_type (stmt
);
1496 for (i
= 0; i
< vno1
.length
; ++i
)
1497 vno1
.op
[i
] = gimple_op (stmt
, i
+ 1);
1498 if (vno1
.opcode
== REALPART_EXPR
1499 || vno1
.opcode
== IMAGPART_EXPR
1500 || vno1
.opcode
== VIEW_CONVERT_EXPR
)
1501 vno1
.op
[0] = TREE_OPERAND (vno1
.op
[0], 0);
1502 vno1
.hashcode
= vn_nary_op_compute_hash (&vno1
);
1503 slot
= htab_find_slot_with_hash (current_info
->nary
, &vno1
, vno1
.hashcode
,
1505 if (!slot
&& current_info
== optimistic_info
)
1506 slot
= htab_find_slot_with_hash (valid_info
->nary
, &vno1
, vno1
.hashcode
,
1511 *vnresult
= (vn_nary_op_t
)*slot
;
1512 return ((vn_nary_op_t
)*slot
)->result
;
1515 /* Insert a n-ary operation into the current hash table using it's
1516 pieces. Return the vn_nary_op_t structure we created and put in
1520 vn_nary_op_insert_pieces (unsigned int length
, enum tree_code code
,
1521 tree type
, tree op0
,
1522 tree op1
, tree op2
, tree op3
,
1524 unsigned int value_id
)
1529 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1530 (sizeof (struct vn_nary_op_s
)
1531 - sizeof (tree
) * (4 - length
)));
1532 vno1
->value_id
= value_id
;
1533 vno1
->opcode
= code
;
1534 vno1
->length
= length
;
1544 vno1
->result
= result
;
1545 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1546 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1548 gcc_assert (!*slot
);
1555 /* Insert OP into the current hash table with a value number of
1556 RESULT. Return the vn_nary_op_t structure we created and put in
1560 vn_nary_op_insert (tree op
, tree result
)
1562 unsigned length
= TREE_CODE_LENGTH (TREE_CODE (op
));
1567 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1568 (sizeof (struct vn_nary_op_s
)
1569 - sizeof (tree
) * (4 - length
)));
1570 vno1
->value_id
= VN_INFO (result
)->value_id
;
1571 vno1
->opcode
= TREE_CODE (op
);
1572 vno1
->length
= length
;
1573 vno1
->type
= TREE_TYPE (op
);
1574 for (i
= 0; i
< vno1
->length
; ++i
)
1575 vno1
->op
[i
] = TREE_OPERAND (op
, i
);
1576 vno1
->result
= result
;
1577 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1578 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1580 gcc_assert (!*slot
);
1586 /* Insert the rhs of STMT into the current hash table with a value number of
1590 vn_nary_op_insert_stmt (gimple stmt
, tree result
)
1592 unsigned length
= gimple_num_ops (stmt
) - 1;
1597 vno1
= (vn_nary_op_t
) obstack_alloc (¤t_info
->nary_obstack
,
1598 (sizeof (struct vn_nary_op_s
)
1599 - sizeof (tree
) * (4 - length
)));
1600 vno1
->value_id
= VN_INFO (result
)->value_id
;
1601 vno1
->opcode
= gimple_assign_rhs_code (stmt
);
1602 vno1
->length
= length
;
1603 vno1
->type
= gimple_expr_type (stmt
);
1604 for (i
= 0; i
< vno1
->length
; ++i
)
1605 vno1
->op
[i
] = gimple_op (stmt
, i
+ 1);
1606 if (vno1
->opcode
== REALPART_EXPR
1607 || vno1
->opcode
== IMAGPART_EXPR
1608 || vno1
->opcode
== VIEW_CONVERT_EXPR
)
1609 vno1
->op
[0] = TREE_OPERAND (vno1
->op
[0], 0);
1610 vno1
->result
= result
;
1611 vno1
->hashcode
= vn_nary_op_compute_hash (vno1
);
1612 slot
= htab_find_slot_with_hash (current_info
->nary
, vno1
, vno1
->hashcode
,
1614 gcc_assert (!*slot
);
1620 /* Compute a hashcode for PHI operation VP1 and return it. */
1622 static inline hashval_t
1623 vn_phi_compute_hash (vn_phi_t vp1
)
1625 hashval_t result
= 0;
1630 result
= vp1
->block
->index
;
1632 /* If all PHI arguments are constants we need to distinguish
1633 the PHI node via its type. */
1634 type
= TREE_TYPE (VEC_index (tree
, vp1
->phiargs
, 0));
1635 result
+= (INTEGRAL_TYPE_P (type
)
1636 + (INTEGRAL_TYPE_P (type
)
1637 ? TYPE_PRECISION (type
) + TYPE_UNSIGNED (type
) : 0));
1639 for (i
= 0; VEC_iterate (tree
, vp1
->phiargs
, i
, phi1op
); i
++)
1641 if (phi1op
== VN_TOP
)
1643 result
+= iterative_hash_expr (phi1op
, result
);
1649 /* Return the computed hashcode for phi operation P1. */
1652 vn_phi_hash (const void *p1
)
1654 const_vn_phi_t
const vp1
= (const_vn_phi_t
) p1
;
1655 return vp1
->hashcode
;
1658 /* Compare two phi entries for equality, ignoring VN_TOP arguments. */
1661 vn_phi_eq (const void *p1
, const void *p2
)
1663 const_vn_phi_t
const vp1
= (const_vn_phi_t
) p1
;
1664 const_vn_phi_t
const vp2
= (const_vn_phi_t
) p2
;
1666 if (vp1
->hashcode
!= vp2
->hashcode
)
1669 if (vp1
->block
== vp2
->block
)
1674 /* If the PHI nodes do not have compatible types
1675 they are not the same. */
1676 if (!types_compatible_p (TREE_TYPE (VEC_index (tree
, vp1
->phiargs
, 0)),
1677 TREE_TYPE (VEC_index (tree
, vp2
->phiargs
, 0))))
1680 /* Any phi in the same block will have it's arguments in the
1681 same edge order, because of how we store phi nodes. */
1682 for (i
= 0; VEC_iterate (tree
, vp1
->phiargs
, i
, phi1op
); i
++)
1684 tree phi2op
= VEC_index (tree
, vp2
->phiargs
, i
);
1685 if (phi1op
== VN_TOP
|| phi2op
== VN_TOP
)
1687 if (!expressions_equal_p (phi1op
, phi2op
))
1695 static VEC(tree
, heap
) *shared_lookup_phiargs
;
1697 /* Lookup PHI in the current hash table, and return the resulting
1698 value number if it exists in the hash table. Return NULL_TREE if
1699 it does not exist in the hash table. */
1702 vn_phi_lookup (gimple phi
)
1705 struct vn_phi_s vp1
;
1708 VEC_truncate (tree
, shared_lookup_phiargs
, 0);
1710 /* Canonicalize the SSA_NAME's to their value number. */
1711 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1713 tree def
= PHI_ARG_DEF (phi
, i
);
1714 def
= TREE_CODE (def
) == SSA_NAME
? SSA_VAL (def
) : def
;
1715 VEC_safe_push (tree
, heap
, shared_lookup_phiargs
, def
);
1717 vp1
.phiargs
= shared_lookup_phiargs
;
1718 vp1
.block
= gimple_bb (phi
);
1719 vp1
.hashcode
= vn_phi_compute_hash (&vp1
);
1720 slot
= htab_find_slot_with_hash (current_info
->phis
, &vp1
, vp1
.hashcode
,
1722 if (!slot
&& current_info
== optimistic_info
)
1723 slot
= htab_find_slot_with_hash (valid_info
->phis
, &vp1
, vp1
.hashcode
,
1727 return ((vn_phi_t
)*slot
)->result
;
1730 /* Insert PHI into the current hash table with a value number of
1734 vn_phi_insert (gimple phi
, tree result
)
1737 vn_phi_t vp1
= (vn_phi_t
) pool_alloc (current_info
->phis_pool
);
1739 VEC (tree
, heap
) *args
= NULL
;
1741 /* Canonicalize the SSA_NAME's to their value number. */
1742 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1744 tree def
= PHI_ARG_DEF (phi
, i
);
1745 def
= TREE_CODE (def
) == SSA_NAME
? SSA_VAL (def
) : def
;
1746 VEC_safe_push (tree
, heap
, args
, def
);
1748 vp1
->value_id
= VN_INFO (result
)->value_id
;
1749 vp1
->phiargs
= args
;
1750 vp1
->block
= gimple_bb (phi
);
1751 vp1
->result
= result
;
1752 vp1
->hashcode
= vn_phi_compute_hash (vp1
);
1754 slot
= htab_find_slot_with_hash (current_info
->phis
, vp1
, vp1
->hashcode
,
1757 /* Because we iterate over phi operations more than once, it's
1758 possible the slot might already exist here, hence no assert.*/
1764 /* Print set of components in strongly connected component SCC to OUT. */
1767 print_scc (FILE *out
, VEC (tree
, heap
) *scc
)
1772 fprintf (out
, "SCC consists of: ");
1773 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
1775 print_generic_expr (out
, var
, 0);
1778 fprintf (out
, "\n");
1781 /* Set the value number of FROM to TO, return true if it has changed
1785 set_ssa_val_to (tree from
, tree to
)
1790 && TREE_CODE (to
) == SSA_NAME
1791 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to
))
1794 /* The only thing we allow as value numbers are VN_TOP, ssa_names
1795 and invariants. So assert that here. */
1796 gcc_assert (to
!= NULL_TREE
1798 || TREE_CODE (to
) == SSA_NAME
1799 || is_gimple_min_invariant (to
)));
1801 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1803 fprintf (dump_file
, "Setting value number of ");
1804 print_generic_expr (dump_file
, from
, 0);
1805 fprintf (dump_file
, " to ");
1806 print_generic_expr (dump_file
, to
, 0);
1809 currval
= SSA_VAL (from
);
1811 if (currval
!= to
&& !operand_equal_p (currval
, to
, OEP_PURE_SAME
))
1813 VN_INFO (from
)->valnum
= to
;
1814 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1815 fprintf (dump_file
, " (changed)\n");
1818 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1819 fprintf (dump_file
, "\n");
1823 /* Set all definitions in STMT to value number to themselves.
1824 Return true if a value number changed. */
1827 defs_to_varying (gimple stmt
)
1829 bool changed
= false;
1833 FOR_EACH_SSA_DEF_OPERAND (defp
, stmt
, iter
, SSA_OP_ALL_DEFS
)
1835 tree def
= DEF_FROM_PTR (defp
);
1837 VN_INFO (def
)->use_processed
= true;
1838 changed
|= set_ssa_val_to (def
, def
);
1843 static bool expr_has_constants (tree expr
);
1844 static tree
valueize_expr (tree expr
);
1846 /* Visit a copy between LHS and RHS, return true if the value number
1850 visit_copy (tree lhs
, tree rhs
)
1852 /* Follow chains of copies to their destination. */
1853 while (TREE_CODE (rhs
) == SSA_NAME
1854 && SSA_VAL (rhs
) != rhs
)
1855 rhs
= SSA_VAL (rhs
);
1857 /* The copy may have a more interesting constant filled expression
1858 (we don't, since we know our RHS is just an SSA name). */
1859 if (TREE_CODE (rhs
) == SSA_NAME
)
1861 VN_INFO (lhs
)->has_constants
= VN_INFO (rhs
)->has_constants
;
1862 VN_INFO (lhs
)->expr
= VN_INFO (rhs
)->expr
;
1865 return set_ssa_val_to (lhs
, rhs
);
1868 /* Visit a unary operator RHS, value number it, and return true if the
1869 value number of LHS has changed as a result. */
1872 visit_unary_op (tree lhs
, gimple stmt
)
1874 bool changed
= false;
1875 tree result
= vn_nary_op_lookup_stmt (stmt
, NULL
);
1879 changed
= set_ssa_val_to (lhs
, result
);
1883 changed
= set_ssa_val_to (lhs
, lhs
);
1884 vn_nary_op_insert_stmt (stmt
, lhs
);
1890 /* Visit a binary operator RHS, value number it, and return true if the
1891 value number of LHS has changed as a result. */
1894 visit_binary_op (tree lhs
, gimple stmt
)
1896 bool changed
= false;
1897 tree result
= vn_nary_op_lookup_stmt (stmt
, NULL
);
1901 changed
= set_ssa_val_to (lhs
, result
);
1905 changed
= set_ssa_val_to (lhs
, lhs
);
1906 vn_nary_op_insert_stmt (stmt
, lhs
);
1912 /* Visit a call STMT storing into LHS. Return true if the value number
1913 of the LHS has changed as a result. */
1916 visit_reference_op_call (tree lhs
, gimple stmt
)
1918 bool changed
= false;
1919 struct vn_reference_s vr1
;
1921 tree vuse
= gimple_vuse (stmt
);
1923 vr1
.vuse
= vuse
? SSA_VAL (vuse
) : NULL_TREE
;
1924 vr1
.operands
= valueize_shared_reference_ops_from_call (stmt
);
1925 vr1
.type
= gimple_expr_type (stmt
);
1927 vr1
.hashcode
= vn_reference_compute_hash (&vr1
);
1928 result
= vn_reference_lookup_1 (&vr1
, NULL
);
1931 changed
= set_ssa_val_to (lhs
, result
);
1932 if (TREE_CODE (result
) == SSA_NAME
1933 && VN_INFO (result
)->has_constants
)
1934 VN_INFO (lhs
)->has_constants
= true;
1940 changed
= set_ssa_val_to (lhs
, lhs
);
1941 vr2
= (vn_reference_t
) pool_alloc (current_info
->references_pool
);
1942 vr2
->vuse
= vr1
.vuse
;
1943 vr2
->operands
= valueize_refs (create_reference_ops_from_call (stmt
));
1944 vr2
->type
= vr1
.type
;
1946 vr2
->hashcode
= vr1
.hashcode
;
1948 slot
= htab_find_slot_with_hash (current_info
->references
,
1949 vr2
, vr2
->hashcode
, INSERT
);
1951 free_reference (*slot
);
1958 /* Visit a load from a reference operator RHS, part of STMT, value number it,
1959 and return true if the value number of the LHS has changed as a result. */
1962 visit_reference_op_load (tree lhs
, tree op
, gimple stmt
)
1964 bool changed
= false;
1965 tree result
= vn_reference_lookup (op
, gimple_vuse (stmt
), true, NULL
);
1967 /* If we have a VCE, try looking up its operand as it might be stored in
1968 a different type. */
1969 if (!result
&& TREE_CODE (op
) == VIEW_CONVERT_EXPR
)
1970 result
= vn_reference_lookup (TREE_OPERAND (op
, 0), gimple_vuse (stmt
),
1973 /* We handle type-punning through unions by value-numbering based
1974 on offset and size of the access. Be prepared to handle a
1975 type-mismatch here via creating a VIEW_CONVERT_EXPR. */
1977 && !useless_type_conversion_p (TREE_TYPE (result
), TREE_TYPE (op
)))
1979 /* We will be setting the value number of lhs to the value number
1980 of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
1981 So first simplify and lookup this expression to see if it
1982 is already available. */
1983 tree val
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (op
), result
);
1984 if ((CONVERT_EXPR_P (val
)
1985 || TREE_CODE (val
) == VIEW_CONVERT_EXPR
)
1986 && TREE_CODE (TREE_OPERAND (val
, 0)) == SSA_NAME
)
1988 tree tem
= valueize_expr (vn_get_expr_for (TREE_OPERAND (val
, 0)));
1989 if ((CONVERT_EXPR_P (tem
)
1990 || TREE_CODE (tem
) == VIEW_CONVERT_EXPR
)
1991 && (tem
= fold_unary_ignore_overflow (TREE_CODE (val
),
1992 TREE_TYPE (val
), tem
)))
1996 if (!is_gimple_min_invariant (val
)
1997 && TREE_CODE (val
) != SSA_NAME
)
1998 result
= vn_nary_op_lookup (val
, NULL
);
1999 /* If the expression is not yet available, value-number lhs to
2000 a new SSA_NAME we create. */
2001 if (!result
&& may_insert
)
2003 result
= make_ssa_name (SSA_NAME_VAR (lhs
), NULL
);
2004 /* Initialize value-number information properly. */
2005 VN_INFO_GET (result
)->valnum
= result
;
2006 VN_INFO (result
)->value_id
= get_next_value_id ();
2007 VN_INFO (result
)->expr
= val
;
2008 VN_INFO (result
)->has_constants
= expr_has_constants (val
);
2009 VN_INFO (result
)->needs_insertion
= true;
2010 /* As all "inserted" statements are singleton SCCs, insert
2011 to the valid table. This is strictly needed to
2012 avoid re-generating new value SSA_NAMEs for the same
2013 expression during SCC iteration over and over (the
2014 optimistic table gets cleared after each iteration).
2015 We do not need to insert into the optimistic table, as
2016 lookups there will fall back to the valid table. */
2017 if (current_info
== optimistic_info
)
2019 current_info
= valid_info
;
2020 vn_nary_op_insert (val
, result
);
2021 current_info
= optimistic_info
;
2024 vn_nary_op_insert (val
, result
);
2025 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2027 fprintf (dump_file
, "Inserting name ");
2028 print_generic_expr (dump_file
, result
, 0);
2029 fprintf (dump_file
, " for expression ");
2030 print_generic_expr (dump_file
, val
, 0);
2031 fprintf (dump_file
, "\n");
2038 changed
= set_ssa_val_to (lhs
, result
);
2039 if (TREE_CODE (result
) == SSA_NAME
2040 && VN_INFO (result
)->has_constants
)
2042 VN_INFO (lhs
)->expr
= VN_INFO (result
)->expr
;
2043 VN_INFO (lhs
)->has_constants
= true;
2048 changed
= set_ssa_val_to (lhs
, lhs
);
2049 vn_reference_insert (op
, lhs
, gimple_vuse (stmt
));
2056 /* Visit a store to a reference operator LHS, part of STMT, value number it,
2057 and return true if the value number of the LHS has changed as a result. */
2060 visit_reference_op_store (tree lhs
, tree op
, gimple stmt
)
2062 bool changed
= false;
2064 bool resultsame
= false;
2066 /* First we want to lookup using the *vuses* from the store and see
2067 if there the last store to this location with the same address
2070 The vuses represent the memory state before the store. If the
2071 memory state, address, and value of the store is the same as the
2072 last store to this location, then this store will produce the
2073 same memory state as that store.
2075 In this case the vdef versions for this store are value numbered to those
2076 vuse versions, since they represent the same memory state after
2079 Otherwise, the vdefs for the store are used when inserting into
2080 the table, since the store generates a new memory state. */
2082 result
= vn_reference_lookup (lhs
, gimple_vuse (stmt
), false, NULL
);
2086 if (TREE_CODE (result
) == SSA_NAME
)
2087 result
= SSA_VAL (result
);
2088 if (TREE_CODE (op
) == SSA_NAME
)
2090 resultsame
= expressions_equal_p (result
, op
);
2093 if (!result
|| !resultsame
)
2097 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2099 fprintf (dump_file
, "No store match\n");
2100 fprintf (dump_file
, "Value numbering store ");
2101 print_generic_expr (dump_file
, lhs
, 0);
2102 fprintf (dump_file
, " to ");
2103 print_generic_expr (dump_file
, op
, 0);
2104 fprintf (dump_file
, "\n");
2106 /* Have to set value numbers before insert, since insert is
2107 going to valueize the references in-place. */
2108 if ((vdef
= gimple_vdef (stmt
)))
2110 VN_INFO (vdef
)->use_processed
= true;
2111 changed
|= set_ssa_val_to (vdef
, vdef
);
2114 /* Do not insert structure copies into the tables. */
2115 if (is_gimple_min_invariant (op
)
2116 || is_gimple_reg (op
))
2117 vn_reference_insert (lhs
, op
, vdef
);
2121 /* We had a match, so value number the vdef to have the value
2122 number of the vuse it came from. */
2125 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2126 fprintf (dump_file
, "Store matched earlier value,"
2127 "value numbering store vdefs to matching vuses.\n");
2129 def
= gimple_vdef (stmt
);
2130 use
= gimple_vuse (stmt
);
2132 VN_INFO (def
)->use_processed
= true;
2133 changed
|= set_ssa_val_to (def
, SSA_VAL (use
));
2139 /* Visit and value number PHI, return true if the value number
2143 visit_phi (gimple phi
)
2145 bool changed
= false;
2147 tree sameval
= VN_TOP
;
2148 bool allsame
= true;
2151 /* TODO: We could check for this in init_sccvn, and replace this
2152 with a gcc_assert. */
2153 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
2154 return set_ssa_val_to (PHI_RESULT (phi
), PHI_RESULT (phi
));
2156 /* See if all non-TOP arguments have the same value. TOP is
2157 equivalent to everything, so we can ignore it. */
2158 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2160 tree def
= PHI_ARG_DEF (phi
, i
);
2162 if (TREE_CODE (def
) == SSA_NAME
)
2163 def
= SSA_VAL (def
);
2166 if (sameval
== VN_TOP
)
2172 if (!expressions_equal_p (def
, sameval
))
2180 /* If all value numbered to the same value, the phi node has that
2184 if (is_gimple_min_invariant (sameval
))
2186 VN_INFO (PHI_RESULT (phi
))->has_constants
= true;
2187 VN_INFO (PHI_RESULT (phi
))->expr
= sameval
;
2191 VN_INFO (PHI_RESULT (phi
))->has_constants
= false;
2192 VN_INFO (PHI_RESULT (phi
))->expr
= sameval
;
2195 if (TREE_CODE (sameval
) == SSA_NAME
)
2196 return visit_copy (PHI_RESULT (phi
), sameval
);
2198 return set_ssa_val_to (PHI_RESULT (phi
), sameval
);
2201 /* Otherwise, see if it is equivalent to a phi node in this block. */
2202 result
= vn_phi_lookup (phi
);
2205 if (TREE_CODE (result
) == SSA_NAME
)
2206 changed
= visit_copy (PHI_RESULT (phi
), result
);
2208 changed
= set_ssa_val_to (PHI_RESULT (phi
), result
);
2212 vn_phi_insert (phi
, PHI_RESULT (phi
));
2213 VN_INFO (PHI_RESULT (phi
))->has_constants
= false;
2214 VN_INFO (PHI_RESULT (phi
))->expr
= PHI_RESULT (phi
);
2215 changed
= set_ssa_val_to (PHI_RESULT (phi
), PHI_RESULT (phi
));
2221 /* Return true if EXPR contains constants. */
2224 expr_has_constants (tree expr
)
2226 switch (TREE_CODE_CLASS (TREE_CODE (expr
)))
2229 return is_gimple_min_invariant (TREE_OPERAND (expr
, 0));
2232 return is_gimple_min_invariant (TREE_OPERAND (expr
, 0))
2233 || is_gimple_min_invariant (TREE_OPERAND (expr
, 1));
2234 /* Constants inside reference ops are rarely interesting, but
2235 it can take a lot of looking to find them. */
2237 case tcc_declaration
:
2240 return is_gimple_min_invariant (expr
);
2245 /* Return true if STMT contains constants. */
2248 stmt_has_constants (gimple stmt
)
2250 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2253 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
2255 case GIMPLE_UNARY_RHS
:
2256 return is_gimple_min_invariant (gimple_assign_rhs1 (stmt
));
2258 case GIMPLE_BINARY_RHS
:
2259 return (is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))
2260 || is_gimple_min_invariant (gimple_assign_rhs2 (stmt
)));
2261 case GIMPLE_SINGLE_RHS
:
2262 /* Constants inside reference ops are rarely interesting, but
2263 it can take a lot of looking to find them. */
2264 return is_gimple_min_invariant (gimple_assign_rhs1 (stmt
));
2271 /* Replace SSA_NAMES in expr with their value numbers, and return the
2273 This is performed in place. */
2276 valueize_expr (tree expr
)
2278 switch (TREE_CODE_CLASS (TREE_CODE (expr
)))
2281 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
2282 && SSA_VAL (TREE_OPERAND (expr
, 0)) != VN_TOP
)
2283 TREE_OPERAND (expr
, 0) = SSA_VAL (TREE_OPERAND (expr
, 0));
2286 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
2287 && SSA_VAL (TREE_OPERAND (expr
, 0)) != VN_TOP
)
2288 TREE_OPERAND (expr
, 0) = SSA_VAL (TREE_OPERAND (expr
, 0));
2289 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == SSA_NAME
2290 && SSA_VAL (TREE_OPERAND (expr
, 1)) != VN_TOP
)
2291 TREE_OPERAND (expr
, 1) = SSA_VAL (TREE_OPERAND (expr
, 1));
2299 /* Simplify the binary expression RHS, and return the result if
2303 simplify_binary_expression (gimple stmt
)
2305 tree result
= NULL_TREE
;
2306 tree op0
= gimple_assign_rhs1 (stmt
);
2307 tree op1
= gimple_assign_rhs2 (stmt
);
2309 /* This will not catch every single case we could combine, but will
2310 catch those with constants. The goal here is to simultaneously
2311 combine constants between expressions, but avoid infinite
2312 expansion of expressions during simplification. */
2313 if (TREE_CODE (op0
) == SSA_NAME
)
2315 if (VN_INFO (op0
)->has_constants
2316 || TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
2317 op0
= valueize_expr (vn_get_expr_for (op0
));
2318 else if (SSA_VAL (op0
) != VN_TOP
&& SSA_VAL (op0
) != op0
)
2319 op0
= SSA_VAL (op0
);
2322 if (TREE_CODE (op1
) == SSA_NAME
)
2324 if (VN_INFO (op1
)->has_constants
)
2325 op1
= valueize_expr (vn_get_expr_for (op1
));
2326 else if (SSA_VAL (op1
) != VN_TOP
&& SSA_VAL (op1
) != op1
)
2327 op1
= SSA_VAL (op1
);
2330 /* Avoid folding if nothing changed. */
2331 if (op0
== gimple_assign_rhs1 (stmt
)
2332 && op1
== gimple_assign_rhs2 (stmt
))
2335 fold_defer_overflow_warnings ();
2337 result
= fold_binary (gimple_assign_rhs_code (stmt
),
2338 gimple_expr_type (stmt
), op0
, op1
);
2340 STRIP_USELESS_TYPE_CONVERSION (result
);
2342 fold_undefer_overflow_warnings (result
&& valid_gimple_rhs_p (result
),
2345 /* Make sure result is not a complex expression consisting
2346 of operators of operators (IE (a + b) + (a + c))
2347 Otherwise, we will end up with unbounded expressions if
2348 fold does anything at all. */
2349 if (result
&& valid_gimple_rhs_p (result
))
2355 /* Simplify the unary expression RHS, and return the result if
2359 simplify_unary_expression (gimple stmt
)
2361 tree result
= NULL_TREE
;
2362 tree orig_op0
, op0
= gimple_assign_rhs1 (stmt
);
2364 /* We handle some tcc_reference codes here that are all
2365 GIMPLE_ASSIGN_SINGLE codes. */
2366 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2367 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2368 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2369 op0
= TREE_OPERAND (op0
, 0);
2371 if (TREE_CODE (op0
) != SSA_NAME
)
2375 if (VN_INFO (op0
)->has_constants
)
2376 op0
= valueize_expr (vn_get_expr_for (op0
));
2377 else if (gimple_assign_cast_p (stmt
)
2378 || gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2379 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2380 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2382 /* We want to do tree-combining on conversion-like expressions.
2383 Make sure we feed only SSA_NAMEs or constants to fold though. */
2384 tree tem
= valueize_expr (vn_get_expr_for (op0
));
2385 if (UNARY_CLASS_P (tem
)
2386 || BINARY_CLASS_P (tem
)
2387 || TREE_CODE (tem
) == VIEW_CONVERT_EXPR
2388 || TREE_CODE (tem
) == SSA_NAME
2389 || is_gimple_min_invariant (tem
))
2393 /* Avoid folding if nothing changed, but remember the expression. */
2394 if (op0
== orig_op0
)
2397 result
= fold_unary_ignore_overflow (gimple_assign_rhs_code (stmt
),
2398 gimple_expr_type (stmt
), op0
);
2401 STRIP_USELESS_TYPE_CONVERSION (result
);
2402 if (valid_gimple_rhs_p (result
))
2409 /* Try to simplify RHS using equivalences and constant folding. */
2412 try_to_simplify (gimple stmt
)
2416 /* For stores we can end up simplifying a SSA_NAME rhs. Just return
2417 in this case, there is no point in doing extra work. */
2418 if (gimple_assign_copy_p (stmt
)
2419 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2422 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)))
2424 case tcc_declaration
:
2425 tem
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
));
2431 /* Do not do full-blown reference lookup here, but simplify
2432 reads from constant aggregates. */
2433 tem
= fold_const_aggregate_ref (gimple_assign_rhs1 (stmt
));
2437 /* Fallthrough for some codes that can operate on registers. */
2438 if (!(TREE_CODE (gimple_assign_rhs1 (stmt
)) == REALPART_EXPR
2439 || TREE_CODE (gimple_assign_rhs1 (stmt
)) == IMAGPART_EXPR
2440 || TREE_CODE (gimple_assign_rhs1 (stmt
)) == VIEW_CONVERT_EXPR
))
2442 /* We could do a little more with unary ops, if they expand
2443 into binary ops, but it's debatable whether it is worth it. */
2445 return simplify_unary_expression (stmt
);
2447 case tcc_comparison
:
2449 return simplify_binary_expression (stmt
);
2458 /* Visit and value number USE, return true if the value number
2462 visit_use (tree use
)
2464 bool changed
= false;
2465 gimple stmt
= SSA_NAME_DEF_STMT (use
);
2467 VN_INFO (use
)->use_processed
= true;
2469 gcc_assert (!SSA_NAME_IN_FREE_LIST (use
));
2470 if (dump_file
&& (dump_flags
& TDF_DETAILS
)
2471 && !SSA_NAME_IS_DEFAULT_DEF (use
))
2473 fprintf (dump_file
, "Value numbering ");
2474 print_generic_expr (dump_file
, use
, 0);
2475 fprintf (dump_file
, " stmt = ");
2476 print_gimple_stmt (dump_file
, stmt
, 0, 0);
2479 /* Handle uninitialized uses. */
2480 if (SSA_NAME_IS_DEFAULT_DEF (use
))
2481 changed
= set_ssa_val_to (use
, use
);
2484 if (gimple_code (stmt
) == GIMPLE_PHI
)
2485 changed
= visit_phi (stmt
);
2486 else if (!gimple_has_lhs (stmt
)
2487 || gimple_has_volatile_ops (stmt
)
2488 || stmt_could_throw_p (stmt
))
2489 changed
= defs_to_varying (stmt
);
2490 else if (is_gimple_assign (stmt
))
2492 tree lhs
= gimple_assign_lhs (stmt
);
2495 /* Shortcut for copies. Simplifying copies is pointless,
2496 since we copy the expression and value they represent. */
2497 if (gimple_assign_copy_p (stmt
)
2498 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2499 && TREE_CODE (lhs
) == SSA_NAME
)
2501 changed
= visit_copy (lhs
, gimple_assign_rhs1 (stmt
));
2504 simplified
= try_to_simplify (stmt
);
2507 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2509 fprintf (dump_file
, "RHS ");
2510 print_gimple_expr (dump_file
, stmt
, 0, 0);
2511 fprintf (dump_file
, " simplified to ");
2512 print_generic_expr (dump_file
, simplified
, 0);
2513 if (TREE_CODE (lhs
) == SSA_NAME
)
2514 fprintf (dump_file
, " has constants %d\n",
2515 expr_has_constants (simplified
));
2517 fprintf (dump_file
, "\n");
2520 /* Setting value numbers to constants will occasionally
2521 screw up phi congruence because constants are not
2522 uniquely associated with a single ssa name that can be
2525 && is_gimple_min_invariant (simplified
)
2526 && TREE_CODE (lhs
) == SSA_NAME
)
2528 VN_INFO (lhs
)->expr
= simplified
;
2529 VN_INFO (lhs
)->has_constants
= true;
2530 changed
= set_ssa_val_to (lhs
, simplified
);
2534 && TREE_CODE (simplified
) == SSA_NAME
2535 && TREE_CODE (lhs
) == SSA_NAME
)
2537 changed
= visit_copy (lhs
, simplified
);
2540 else if (simplified
)
2542 if (TREE_CODE (lhs
) == SSA_NAME
)
2544 VN_INFO (lhs
)->has_constants
= expr_has_constants (simplified
);
2545 /* We have to unshare the expression or else
2546 valuizing may change the IL stream. */
2547 VN_INFO (lhs
)->expr
= unshare_expr (simplified
);
2550 else if (stmt_has_constants (stmt
)
2551 && TREE_CODE (lhs
) == SSA_NAME
)
2552 VN_INFO (lhs
)->has_constants
= true;
2553 else if (TREE_CODE (lhs
) == SSA_NAME
)
2555 /* We reset expr and constantness here because we may
2556 have been value numbering optimistically, and
2557 iterating. They may become non-constant in this case,
2558 even if they were optimistically constant. */
2560 VN_INFO (lhs
)->has_constants
= false;
2561 VN_INFO (lhs
)->expr
= NULL_TREE
;
2564 if ((TREE_CODE (lhs
) == SSA_NAME
2565 /* We can substitute SSA_NAMEs that are live over
2566 abnormal edges with their constant value. */
2567 && !(gimple_assign_copy_p (stmt
)
2568 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2570 && is_gimple_min_invariant (simplified
))
2571 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
2572 /* Stores or copies from SSA_NAMEs that are live over
2573 abnormal edges are a problem. */
2574 || (gimple_assign_single_p (stmt
)
2575 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
2576 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt
))))
2577 changed
= defs_to_varying (stmt
);
2578 else if (REFERENCE_CLASS_P (lhs
) || DECL_P (lhs
))
2580 changed
= visit_reference_op_store (lhs
, gimple_assign_rhs1 (stmt
), stmt
);
2582 else if (TREE_CODE (lhs
) == SSA_NAME
)
2584 if ((gimple_assign_copy_p (stmt
)
2585 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
2587 && is_gimple_min_invariant (simplified
)))
2589 VN_INFO (lhs
)->has_constants
= true;
2591 changed
= set_ssa_val_to (lhs
, simplified
);
2593 changed
= set_ssa_val_to (lhs
, gimple_assign_rhs1 (stmt
));
2597 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
2599 case GIMPLE_UNARY_RHS
:
2600 changed
= visit_unary_op (lhs
, stmt
);
2602 case GIMPLE_BINARY_RHS
:
2603 changed
= visit_binary_op (lhs
, stmt
);
2605 case GIMPLE_SINGLE_RHS
:
2606 switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)))
2609 /* VOP-less references can go through unary case. */
2610 if ((gimple_assign_rhs_code (stmt
) == REALPART_EXPR
2611 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
2612 || gimple_assign_rhs_code (stmt
) == VIEW_CONVERT_EXPR
)
2613 && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0)) == SSA_NAME
)
2615 changed
= visit_unary_op (lhs
, stmt
);
2619 case tcc_declaration
:
2620 changed
= visit_reference_op_load
2621 (lhs
, gimple_assign_rhs1 (stmt
), stmt
);
2623 case tcc_expression
:
2624 if (gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
2626 changed
= visit_unary_op (lhs
, stmt
);
2631 changed
= defs_to_varying (stmt
);
2635 changed
= defs_to_varying (stmt
);
2641 changed
= defs_to_varying (stmt
);
2643 else if (is_gimple_call (stmt
))
2645 tree lhs
= gimple_call_lhs (stmt
);
2647 /* ??? We could try to simplify calls. */
2649 if (stmt_has_constants (stmt
)
2650 && TREE_CODE (lhs
) == SSA_NAME
)
2651 VN_INFO (lhs
)->has_constants
= true;
2652 else if (TREE_CODE (lhs
) == SSA_NAME
)
2654 /* We reset expr and constantness here because we may
2655 have been value numbering optimistically, and
2656 iterating. They may become non-constant in this case,
2657 even if they were optimistically constant. */
2658 VN_INFO (lhs
)->has_constants
= false;
2659 VN_INFO (lhs
)->expr
= NULL_TREE
;
2662 if (TREE_CODE (lhs
) == SSA_NAME
2663 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
2664 changed
= defs_to_varying (stmt
);
2665 /* ??? We should handle stores from calls. */
2666 else if (TREE_CODE (lhs
) == SSA_NAME
)
2668 if (gimple_call_flags (stmt
) & (ECF_PURE
| ECF_CONST
))
2669 changed
= visit_reference_op_call (lhs
, stmt
);
2671 changed
= defs_to_varying (stmt
);
2674 changed
= defs_to_varying (stmt
);
2681 /* Compare two operands by reverse postorder index */
2684 compare_ops (const void *pa
, const void *pb
)
2686 const tree opa
= *((const tree
*)pa
);
2687 const tree opb
= *((const tree
*)pb
);
2688 gimple opstmta
= SSA_NAME_DEF_STMT (opa
);
2689 gimple opstmtb
= SSA_NAME_DEF_STMT (opb
);
2693 if (gimple_nop_p (opstmta
) && gimple_nop_p (opstmtb
))
2694 return SSA_NAME_VERSION (opa
) - SSA_NAME_VERSION (opb
);
2695 else if (gimple_nop_p (opstmta
))
2697 else if (gimple_nop_p (opstmtb
))
2700 bba
= gimple_bb (opstmta
);
2701 bbb
= gimple_bb (opstmtb
);
2704 return SSA_NAME_VERSION (opa
) - SSA_NAME_VERSION (opb
);
2712 if (gimple_code (opstmta
) == GIMPLE_PHI
2713 && gimple_code (opstmtb
) == GIMPLE_PHI
)
2714 return SSA_NAME_VERSION (opa
) - SSA_NAME_VERSION (opb
);
2715 else if (gimple_code (opstmta
) == GIMPLE_PHI
)
2717 else if (gimple_code (opstmtb
) == GIMPLE_PHI
)
2719 else if (gimple_uid (opstmta
) != gimple_uid (opstmtb
))
2720 return gimple_uid (opstmta
) - gimple_uid (opstmtb
);
2722 return SSA_NAME_VERSION (opa
) - SSA_NAME_VERSION (opb
);
2724 return rpo_numbers
[bba
->index
] - rpo_numbers
[bbb
->index
];
2727 /* Sort an array containing members of a strongly connected component
2728 SCC so that the members are ordered by RPO number.
2729 This means that when the sort is complete, iterating through the
2730 array will give you the members in RPO order. */
2733 sort_scc (VEC (tree
, heap
) *scc
)
2735 qsort (VEC_address (tree
, scc
),
2736 VEC_length (tree
, scc
),
2741 /* Process a strongly connected component in the SSA graph. */
2744 process_scc (VEC (tree
, heap
) *scc
)
2746 /* If the SCC has a single member, just visit it. */
2748 if (VEC_length (tree
, scc
) == 1)
2750 tree use
= VEC_index (tree
, scc
, 0);
2751 if (!VN_INFO (use
)->use_processed
)
2758 unsigned int iterations
= 0;
2759 bool changed
= true;
2761 /* Iterate over the SCC with the optimistic table until it stops
2763 current_info
= optimistic_info
;
2768 /* As we are value-numbering optimistically we have to
2769 clear the expression tables and the simplified expressions
2770 in each iteration until we converge. */
2771 htab_empty (optimistic_info
->nary
);
2772 htab_empty (optimistic_info
->phis
);
2773 htab_empty (optimistic_info
->references
);
2774 obstack_free (&optimistic_info
->nary_obstack
, NULL
);
2775 gcc_obstack_init (&optimistic_info
->nary_obstack
);
2776 empty_alloc_pool (optimistic_info
->phis_pool
);
2777 empty_alloc_pool (optimistic_info
->references_pool
);
2778 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2779 VN_INFO (var
)->expr
= NULL_TREE
;
2780 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2781 changed
|= visit_use (var
);
2784 statistics_histogram_event (cfun
, "SCC iterations", iterations
);
2786 /* Finally, visit the SCC once using the valid table. */
2787 current_info
= valid_info
;
2788 for (i
= 0; VEC_iterate (tree
, scc
, i
, var
); i
++)
2793 DEF_VEC_O(ssa_op_iter
);
2794 DEF_VEC_ALLOC_O(ssa_op_iter
,heap
);
2796 /* Pop the components of the found SCC for NAME off the SCC stack
2797 and process them. Returns true if all went well, false if
2798 we run into resource limits. */
2801 extract_and_process_scc_for_name (tree name
)
2803 VEC (tree
, heap
) *scc
= NULL
;
2806 /* Found an SCC, pop the components off the SCC stack and
2810 x
= VEC_pop (tree
, sccstack
);
2812 VN_INFO (x
)->on_sccstack
= false;
2813 VEC_safe_push (tree
, heap
, scc
, x
);
2814 } while (x
!= name
);
2816 /* Bail out of SCCVN in case a SCC turns out to be incredibly large. */
2817 if (VEC_length (tree
, scc
)
2818 > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE
))
2821 fprintf (dump_file
, "WARNING: Giving up with SCCVN due to "
2822 "SCC size %u exceeding %u\n", VEC_length (tree
, scc
),
2823 (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE
));
2827 if (VEC_length (tree
, scc
) > 1)
2830 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2831 print_scc (dump_file
, scc
);
2835 VEC_free (tree
, heap
, scc
);
2840 /* Depth first search on NAME to discover and process SCC's in the SSA
2842 Execution of this algorithm relies on the fact that the SCC's are
2843 popped off the stack in topological order.
2844 Returns true if successful, false if we stopped processing SCC's due
2845 to resource constraints. */
2850 VEC(ssa_op_iter
, heap
) *itervec
= NULL
;
2851 VEC(tree
, heap
) *namevec
= NULL
;
2852 use_operand_p usep
= NULL
;
2859 VN_INFO (name
)->dfsnum
= next_dfs_num
++;
2860 VN_INFO (name
)->visited
= true;
2861 VN_INFO (name
)->low
= VN_INFO (name
)->dfsnum
;
2863 VEC_safe_push (tree
, heap
, sccstack
, name
);
2864 VN_INFO (name
)->on_sccstack
= true;
2865 defstmt
= SSA_NAME_DEF_STMT (name
);
2867 /* Recursively DFS on our operands, looking for SCC's. */
2868 if (!gimple_nop_p (defstmt
))
2870 /* Push a new iterator. */
2871 if (gimple_code (defstmt
) == GIMPLE_PHI
)
2872 usep
= op_iter_init_phiuse (&iter
, defstmt
, SSA_OP_ALL_USES
);
2874 usep
= op_iter_init_use (&iter
, defstmt
, SSA_OP_ALL_USES
);
2877 clear_and_done_ssa_iter (&iter
);
2881 /* If we are done processing uses of a name, go up the stack
2882 of iterators and process SCCs as we found them. */
2883 if (op_iter_done (&iter
))
2885 /* See if we found an SCC. */
2886 if (VN_INFO (name
)->low
== VN_INFO (name
)->dfsnum
)
2887 if (!extract_and_process_scc_for_name (name
))
2889 VEC_free (tree
, heap
, namevec
);
2890 VEC_free (ssa_op_iter
, heap
, itervec
);
2894 /* Check if we are done. */
2895 if (VEC_empty (tree
, namevec
))
2897 VEC_free (tree
, heap
, namevec
);
2898 VEC_free (ssa_op_iter
, heap
, itervec
);
2902 /* Restore the last use walker and continue walking there. */
2904 name
= VEC_pop (tree
, namevec
);
2905 memcpy (&iter
, VEC_last (ssa_op_iter
, itervec
),
2906 sizeof (ssa_op_iter
));
2907 VEC_pop (ssa_op_iter
, itervec
);
2908 goto continue_walking
;
2911 use
= USE_FROM_PTR (usep
);
2913 /* Since we handle phi nodes, we will sometimes get
2914 invariants in the use expression. */
2915 if (TREE_CODE (use
) == SSA_NAME
)
2917 if (! (VN_INFO (use
)->visited
))
2919 /* Recurse by pushing the current use walking state on
2920 the stack and starting over. */
2921 VEC_safe_push(ssa_op_iter
, heap
, itervec
, &iter
);
2922 VEC_safe_push(tree
, heap
, namevec
, name
);
2927 VN_INFO (name
)->low
= MIN (VN_INFO (name
)->low
,
2928 VN_INFO (use
)->low
);
2930 if (VN_INFO (use
)->dfsnum
< VN_INFO (name
)->dfsnum
2931 && VN_INFO (use
)->on_sccstack
)
2933 VN_INFO (name
)->low
= MIN (VN_INFO (use
)->dfsnum
,
2934 VN_INFO (name
)->low
);
2938 usep
= op_iter_next_use (&iter
);
2942 /* Allocate a value number table. */
2945 allocate_vn_table (vn_tables_t table
)
2947 table
->phis
= htab_create (23, vn_phi_hash
, vn_phi_eq
, free_phi
);
2948 table
->nary
= htab_create (23, vn_nary_op_hash
, vn_nary_op_eq
, NULL
);
2949 table
->references
= htab_create (23, vn_reference_hash
, vn_reference_eq
,
2952 gcc_obstack_init (&table
->nary_obstack
);
2953 table
->phis_pool
= create_alloc_pool ("VN phis",
2954 sizeof (struct vn_phi_s
),
2956 table
->references_pool
= create_alloc_pool ("VN references",
2957 sizeof (struct vn_reference_s
),
2961 /* Free a value number table. */
2964 free_vn_table (vn_tables_t table
)
2966 htab_delete (table
->phis
);
2967 htab_delete (table
->nary
);
2968 htab_delete (table
->references
);
2969 obstack_free (&table
->nary_obstack
, NULL
);
2970 free_alloc_pool (table
->phis_pool
);
2971 free_alloc_pool (table
->references_pool
);
2979 int *rpo_numbers_temp
;
2981 calculate_dominance_info (CDI_DOMINATORS
);
2983 constant_to_value_id
= htab_create (23, vn_constant_hash
, vn_constant_eq
,
2986 constant_value_ids
= BITMAP_ALLOC (NULL
);
2991 vn_ssa_aux_table
= VEC_alloc (vn_ssa_aux_t
, heap
, num_ssa_names
+ 1);
2992 /* VEC_alloc doesn't actually grow it to the right size, it just
2993 preallocates the space to do so. */
2994 VEC_safe_grow_cleared (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
, num_ssa_names
+ 1);
2995 gcc_obstack_init (&vn_ssa_aux_obstack
);
2997 shared_lookup_phiargs
= NULL
;
2998 shared_lookup_references
= NULL
;
2999 rpo_numbers
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
3000 rpo_numbers_temp
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
3001 pre_and_rev_post_order_compute (NULL
, rpo_numbers_temp
, false);
3003 /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
3004 the i'th block in RPO order is bb. We want to map bb's to RPO
3005 numbers, so we need to rearrange this array. */
3006 for (j
= 0; j
< n_basic_blocks
- NUM_FIXED_BLOCKS
; j
++)
3007 rpo_numbers
[rpo_numbers_temp
[j
]] = j
;
3009 XDELETE (rpo_numbers_temp
);
3011 VN_TOP
= create_tmp_var_raw (void_type_node
, "vn_top");
3013 /* Create the VN_INFO structures, and initialize value numbers to
3015 for (i
= 0; i
< num_ssa_names
; i
++)
3017 tree name
= ssa_name (i
);
3020 VN_INFO_GET (name
)->valnum
= VN_TOP
;
3021 VN_INFO (name
)->expr
= NULL_TREE
;
3022 VN_INFO (name
)->value_id
= 0;
3026 renumber_gimple_stmt_uids ();
3028 /* Create the valid and optimistic value numbering tables. */
3029 valid_info
= XCNEW (struct vn_tables_s
);
3030 allocate_vn_table (valid_info
);
3031 optimistic_info
= XCNEW (struct vn_tables_s
);
3032 allocate_vn_table (optimistic_info
);
3040 htab_delete (constant_to_value_id
);
3041 BITMAP_FREE (constant_value_ids
);
3042 VEC_free (tree
, heap
, shared_lookup_phiargs
);
3043 VEC_free (vn_reference_op_s
, heap
, shared_lookup_references
);
3044 XDELETEVEC (rpo_numbers
);
3046 for (i
= 0; i
< num_ssa_names
; i
++)
3048 tree name
= ssa_name (i
);
3050 && VN_INFO (name
)->needs_insertion
)
3051 release_ssa_name (name
);
3053 obstack_free (&vn_ssa_aux_obstack
, NULL
);
3054 VEC_free (vn_ssa_aux_t
, heap
, vn_ssa_aux_table
);
3056 VEC_free (tree
, heap
, sccstack
);
3057 free_vn_table (valid_info
);
3058 XDELETE (valid_info
);
3059 free_vn_table (optimistic_info
);
3060 XDELETE (optimistic_info
);
3063 /* Set the value ids in the valid hash tables. */
3066 set_hashtable_value_ids (void)
3073 /* Now set the value ids of the things we had put in the hash
3076 FOR_EACH_HTAB_ELEMENT (valid_info
->nary
,
3077 vno
, vn_nary_op_t
, hi
)
3081 if (TREE_CODE (vno
->result
) == SSA_NAME
)
3082 vno
->value_id
= VN_INFO (vno
->result
)->value_id
;
3083 else if (is_gimple_min_invariant (vno
->result
))
3084 vno
->value_id
= get_or_alloc_constant_value_id (vno
->result
);
3088 FOR_EACH_HTAB_ELEMENT (valid_info
->phis
,
3093 if (TREE_CODE (vp
->result
) == SSA_NAME
)
3094 vp
->value_id
= VN_INFO (vp
->result
)->value_id
;
3095 else if (is_gimple_min_invariant (vp
->result
))
3096 vp
->value_id
= get_or_alloc_constant_value_id (vp
->result
);
3100 FOR_EACH_HTAB_ELEMENT (valid_info
->references
,
3101 vr
, vn_reference_t
, hi
)
3105 if (TREE_CODE (vr
->result
) == SSA_NAME
)
3106 vr
->value_id
= VN_INFO (vr
->result
)->value_id
;
3107 else if (is_gimple_min_invariant (vr
->result
))
3108 vr
->value_id
= get_or_alloc_constant_value_id (vr
->result
);
3113 /* Do SCCVN. Returns true if it finished, false if we bailed out
3114 due to resource constraints. */
3117 run_scc_vn (bool may_insert_arg
)
3121 bool changed
= true;
3123 may_insert
= may_insert_arg
;
3126 current_info
= valid_info
;
3128 for (param
= DECL_ARGUMENTS (current_function_decl
);
3130 param
= TREE_CHAIN (param
))
3132 if (gimple_default_def (cfun
, param
) != NULL
)
3134 tree def
= gimple_default_def (cfun
, param
);
3135 VN_INFO (def
)->valnum
= def
;
3139 for (i
= 1; i
< num_ssa_names
; ++i
)
3141 tree name
= ssa_name (i
);
3143 && VN_INFO (name
)->visited
== false
3144 && !has_zero_uses (name
))
3153 /* Initialize the value ids. */
3155 for (i
= 1; i
< num_ssa_names
; ++i
)
3157 tree name
= ssa_name (i
);
3161 info
= VN_INFO (name
);
3162 if (info
->valnum
== name
3163 || info
->valnum
== VN_TOP
)
3164 info
->value_id
= get_next_value_id ();
3165 else if (is_gimple_min_invariant (info
->valnum
))
3166 info
->value_id
= get_or_alloc_constant_value_id (info
->valnum
);
3169 /* Propagate until they stop changing. */
3173 for (i
= 1; i
< num_ssa_names
; ++i
)
3175 tree name
= ssa_name (i
);
3179 info
= VN_INFO (name
);
3180 if (TREE_CODE (info
->valnum
) == SSA_NAME
3181 && info
->valnum
!= name
3182 && info
->value_id
!= VN_INFO (info
->valnum
)->value_id
)
3185 info
->value_id
= VN_INFO (info
->valnum
)->value_id
;
3190 set_hashtable_value_ids ();
3192 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3194 fprintf (dump_file
, "Value numbers:\n");
3195 for (i
= 0; i
< num_ssa_names
; i
++)
3197 tree name
= ssa_name (i
);
3199 && VN_INFO (name
)->visited
3200 && SSA_VAL (name
) != name
)
3202 print_generic_expr (dump_file
, name
, 0);
3203 fprintf (dump_file
, " = ");
3204 print_generic_expr (dump_file
, SSA_VAL (name
), 0);
3205 fprintf (dump_file
, "\n");
3214 /* Return the maximum value id we have ever seen. */
3217 get_max_value_id (void)
3219 return next_value_id
;
3222 /* Return the next unique value id. */
3225 get_next_value_id (void)
3227 return next_value_id
++;
3231 /* Compare two expressions E1 and E2 and return true if they are equal. */
3234 expressions_equal_p (tree e1
, tree e2
)
3236 /* The obvious case. */
3240 /* If only one of them is null, they cannot be equal. */
3244 /* Recurse on elements of lists. */
3245 if (TREE_CODE (e1
) == TREE_LIST
&& TREE_CODE (e2
) == TREE_LIST
)
3249 for (lop1
= e1
, lop2
= e2
;
3251 lop1
= TREE_CHAIN (lop1
), lop2
= TREE_CHAIN (lop2
))
3255 if (!expressions_equal_p (TREE_VALUE (lop1
), TREE_VALUE (lop2
)))
3261 /* Now perform the actual comparison. */
3262 if (TREE_CODE (e1
) == TREE_CODE (e2
)
3263 && operand_equal_p (e1
, e2
, OEP_PURE_SAME
))
3270 /* Return true if the nary operation NARY may trap. This is a copy
3271 of stmt_could_throw_1_p adjusted to the SCCVN IL. */
3274 vn_nary_may_trap (vn_nary_op_t nary
)
3278 bool honor_nans
= false;
3279 bool honor_snans
= false;
3280 bool fp_operation
= false;
3281 bool honor_trapv
= false;
3285 if (TREE_CODE_CLASS (nary
->opcode
) == tcc_comparison
3286 || TREE_CODE_CLASS (nary
->opcode
) == tcc_unary
3287 || TREE_CODE_CLASS (nary
->opcode
) == tcc_binary
)
3290 fp_operation
= FLOAT_TYPE_P (type
);
3293 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
3294 honor_snans
= flag_signaling_nans
!= 0;
3296 else if (INTEGRAL_TYPE_P (type
)
3297 && TYPE_OVERFLOW_TRAPS (type
))
3301 ret
= operation_could_trap_helper_p (nary
->opcode
, fp_operation
,
3303 honor_nans
, honor_snans
, rhs2
,
3309 for (i
= 0; i
< nary
->length
; ++i
)
3310 if (tree_could_trap_p (nary
->op
[i
]))