Create branch to syn ICI 2.0 with gcc mainline.
[official-gcc.git] / gcc / optabs.c
blob39257f5a6c35656d0f27af2206e750a72eed3f2e
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
58 __extension__ struct optab_d optab_table[OTI_MAX]
59 = { [0 ... OTI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1].insn_code
60 = CODE_FOR_nothing };
61 #else
62 /* init_insn_codes will do runtime initialization otherwise. */
63 struct optab_d optab_table[OTI_MAX];
64 #endif
66 rtx libfunc_table[LTI_MAX];
68 /* Tables of patterns for converting one mode to another. */
69 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
70 __extension__ struct convert_optab_d convert_optab_table[COI_MAX]
71 = { [0 ... COI_MAX - 1].handlers[0 ... NUM_MACHINE_MODES - 1]
72 [0 ... NUM_MACHINE_MODES - 1].insn_code
73 = CODE_FOR_nothing };
74 #else
75 /* init_convert_optab will do runtime initialization otherwise. */
76 struct convert_optab_d convert_optab_table[COI_MAX];
77 #endif
79 /* Contains the optab used for each rtx code. */
80 optab code_to_optab[NUM_RTX_CODE + 1];
82 #ifdef HAVE_conditional_move
83 /* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
88 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89 #endif
91 /* Indexed by the machine mode, gives the insn code for vector conditional
92 operation. */
94 enum insn_code vcond_gen_code[NUM_MACHINE_MODES];
95 enum insn_code vcondu_gen_code[NUM_MACHINE_MODES];
97 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
98 enum machine_mode *);
99 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
101 /* Debug facility for use in GDB. */
102 void debug_optab_libfuncs (void);
104 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
105 #if ENABLE_DECIMAL_BID_FORMAT
106 #define DECIMAL_PREFIX "bid_"
107 #else
108 #define DECIMAL_PREFIX "dpd_"
109 #endif
112 /* Info about libfunc. We use same hashtable for normal optabs and conversion
113 optab. In the first case mode2 is unused. */
114 struct GTY(()) libfunc_entry {
115 size_t optab;
116 enum machine_mode mode1, mode2;
117 rtx libfunc;
120 /* Hash table used to convert declarations into nodes. */
121 static GTY((param_is (struct libfunc_entry))) htab_t libfunc_hash;
123 /* Used for attribute_hash. */
125 static hashval_t
126 hash_libfunc (const void *p)
128 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
130 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
131 ^ e->optab);
134 /* Used for optab_hash. */
136 static int
137 eq_libfunc (const void *p, const void *q)
139 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
140 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
142 return (e1->optab == e2->optab
143 && e1->mode1 == e2->mode1
144 && e1->mode2 == e2->mode2);
147 /* Return libfunc corresponding operation defined by OPTAB converting
148 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
149 if no libfunc is available. */
151 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
152 enum machine_mode mode2)
154 struct libfunc_entry e;
155 struct libfunc_entry **slot;
157 e.optab = (size_t) (optab - &convert_optab_table[0]);
158 e.mode1 = mode1;
159 e.mode2 = mode2;
160 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
161 if (!slot)
163 if (optab->libcall_gen)
165 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
166 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
167 if (slot)
168 return (*slot)->libfunc;
169 else
170 return NULL;
172 return NULL;
174 return (*slot)->libfunc;
177 /* Return libfunc corresponding operation defined by OPTAB in MODE.
178 Trigger lazy initialization if needed, return NULL if no libfunc is
179 available. */
181 optab_libfunc (optab optab, enum machine_mode mode)
183 struct libfunc_entry e;
184 struct libfunc_entry **slot;
186 e.optab = (size_t) (optab - &optab_table[0]);
187 e.mode1 = mode;
188 e.mode2 = VOIDmode;
189 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
190 if (!slot)
192 if (optab->libcall_gen)
194 optab->libcall_gen (optab, optab->libcall_basename,
195 optab->libcall_suffix, mode);
196 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
197 &e, NO_INSERT);
198 if (slot)
199 return (*slot)->libfunc;
200 else
201 return NULL;
203 return NULL;
205 return (*slot)->libfunc;
209 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
210 the result of operation CODE applied to OP0 (and OP1 if it is a binary
211 operation).
213 If the last insn does not set TARGET, don't do anything, but return 1.
215 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
216 don't add the REG_EQUAL note but return 0. Our caller can then try
217 again, ensuring that TARGET is not one of the operands. */
219 static int
220 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
222 rtx last_insn, insn, set;
223 rtx note;
225 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
227 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
228 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
229 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
230 && GET_RTX_CLASS (code) != RTX_COMPARE
231 && GET_RTX_CLASS (code) != RTX_UNARY)
232 return 1;
234 if (GET_CODE (target) == ZERO_EXTRACT)
235 return 1;
237 for (last_insn = insns;
238 NEXT_INSN (last_insn) != NULL_RTX;
239 last_insn = NEXT_INSN (last_insn))
242 set = single_set (last_insn);
243 if (set == NULL_RTX)
244 return 1;
246 if (! rtx_equal_p (SET_DEST (set), target)
247 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
248 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
249 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
250 return 1;
252 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
253 besides the last insn. */
254 if (reg_overlap_mentioned_p (target, op0)
255 || (op1 && reg_overlap_mentioned_p (target, op1)))
257 insn = PREV_INSN (last_insn);
258 while (insn != NULL_RTX)
260 if (reg_set_p (target, insn))
261 return 0;
263 insn = PREV_INSN (insn);
267 if (GET_RTX_CLASS (code) == RTX_UNARY)
268 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
269 else
270 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
272 set_unique_reg_note (last_insn, REG_EQUAL, note);
274 return 1;
277 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
278 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
279 not actually do a sign-extend or zero-extend, but can leave the
280 higher-order bits of the result rtx undefined, for example, in the case
281 of logical operations, but not right shifts. */
283 static rtx
284 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
285 int unsignedp, int no_extend)
287 rtx result;
289 /* If we don't have to extend and this is a constant, return it. */
290 if (no_extend && GET_MODE (op) == VOIDmode)
291 return op;
293 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
294 extend since it will be more efficient to do so unless the signedness of
295 a promoted object differs from our extension. */
296 if (! no_extend
297 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
298 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
299 return convert_modes (mode, oldmode, op, unsignedp);
301 /* If MODE is no wider than a single word, we return a paradoxical
302 SUBREG. */
303 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
304 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
306 /* Otherwise, get an object of MODE, clobber it, and set the low-order
307 part to OP. */
309 result = gen_reg_rtx (mode);
310 emit_clobber (result);
311 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
312 return result;
315 /* Return the optab used for computing the operation given by the tree code,
316 CODE and the tree EXP. This function is not always usable (for example, it
317 cannot give complete results for multiplication or division) but probably
318 ought to be relied on more widely throughout the expander. */
319 optab
320 optab_for_tree_code (enum tree_code code, const_tree type,
321 enum optab_subtype subtype)
323 bool trapv;
324 switch (code)
326 case BIT_AND_EXPR:
327 return and_optab;
329 case BIT_IOR_EXPR:
330 return ior_optab;
332 case BIT_NOT_EXPR:
333 return one_cmpl_optab;
335 case BIT_XOR_EXPR:
336 return xor_optab;
338 case TRUNC_MOD_EXPR:
339 case CEIL_MOD_EXPR:
340 case FLOOR_MOD_EXPR:
341 case ROUND_MOD_EXPR:
342 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
344 case RDIV_EXPR:
345 case TRUNC_DIV_EXPR:
346 case CEIL_DIV_EXPR:
347 case FLOOR_DIV_EXPR:
348 case ROUND_DIV_EXPR:
349 case EXACT_DIV_EXPR:
350 if (TYPE_SATURATING(type))
351 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
352 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
354 case LSHIFT_EXPR:
355 if (VECTOR_MODE_P (TYPE_MODE (type)))
357 if (subtype == optab_vector)
358 return TYPE_SATURATING (type) ? NULL : vashl_optab;
360 gcc_assert (subtype == optab_scalar);
362 if (TYPE_SATURATING(type))
363 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
364 return ashl_optab;
366 case RSHIFT_EXPR:
367 if (VECTOR_MODE_P (TYPE_MODE (type)))
369 if (subtype == optab_vector)
370 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
372 gcc_assert (subtype == optab_scalar);
374 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
376 case LROTATE_EXPR:
377 if (VECTOR_MODE_P (TYPE_MODE (type)))
379 if (subtype == optab_vector)
380 return vrotl_optab;
382 gcc_assert (subtype == optab_scalar);
384 return rotl_optab;
386 case RROTATE_EXPR:
387 if (VECTOR_MODE_P (TYPE_MODE (type)))
389 if (subtype == optab_vector)
390 return vrotr_optab;
392 gcc_assert (subtype == optab_scalar);
394 return rotr_optab;
396 case MAX_EXPR:
397 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
399 case MIN_EXPR:
400 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
402 case REALIGN_LOAD_EXPR:
403 return vec_realign_load_optab;
405 case WIDEN_SUM_EXPR:
406 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
408 case DOT_PROD_EXPR:
409 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
411 case REDUC_MAX_EXPR:
412 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
414 case REDUC_MIN_EXPR:
415 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
417 case REDUC_PLUS_EXPR:
418 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
420 case VEC_LSHIFT_EXPR:
421 return vec_shl_optab;
423 case VEC_RSHIFT_EXPR:
424 return vec_shr_optab;
426 case VEC_WIDEN_MULT_HI_EXPR:
427 return TYPE_UNSIGNED (type) ?
428 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
430 case VEC_WIDEN_MULT_LO_EXPR:
431 return TYPE_UNSIGNED (type) ?
432 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
434 case VEC_UNPACK_HI_EXPR:
435 return TYPE_UNSIGNED (type) ?
436 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
438 case VEC_UNPACK_LO_EXPR:
439 return TYPE_UNSIGNED (type) ?
440 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
442 case VEC_UNPACK_FLOAT_HI_EXPR:
443 /* The signedness is determined from input operand. */
444 return TYPE_UNSIGNED (type) ?
445 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
447 case VEC_UNPACK_FLOAT_LO_EXPR:
448 /* The signedness is determined from input operand. */
449 return TYPE_UNSIGNED (type) ?
450 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
452 case VEC_PACK_TRUNC_EXPR:
453 return vec_pack_trunc_optab;
455 case VEC_PACK_SAT_EXPR:
456 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
458 case VEC_PACK_FIX_TRUNC_EXPR:
459 /* The signedness is determined from output operand. */
460 return TYPE_UNSIGNED (type) ?
461 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
463 default:
464 break;
467 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
468 switch (code)
470 case POINTER_PLUS_EXPR:
471 case PLUS_EXPR:
472 if (TYPE_SATURATING(type))
473 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
474 return trapv ? addv_optab : add_optab;
476 case MINUS_EXPR:
477 if (TYPE_SATURATING(type))
478 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
479 return trapv ? subv_optab : sub_optab;
481 case MULT_EXPR:
482 if (TYPE_SATURATING(type))
483 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
484 return trapv ? smulv_optab : smul_optab;
486 case NEGATE_EXPR:
487 if (TYPE_SATURATING(type))
488 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
489 return trapv ? negv_optab : neg_optab;
491 case ABS_EXPR:
492 return trapv ? absv_optab : abs_optab;
494 case VEC_EXTRACT_EVEN_EXPR:
495 return vec_extract_even_optab;
497 case VEC_EXTRACT_ODD_EXPR:
498 return vec_extract_odd_optab;
500 case VEC_INTERLEAVE_HIGH_EXPR:
501 return vec_interleave_high_optab;
503 case VEC_INTERLEAVE_LOW_EXPR:
504 return vec_interleave_low_optab;
506 default:
507 return NULL;
512 /* Expand vector widening operations.
514 There are two different classes of operations handled here:
515 1) Operations whose result is wider than all the arguments to the operation.
516 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
517 In this case OP0 and optionally OP1 would be initialized,
518 but WIDE_OP wouldn't (not relevant for this case).
519 2) Operations whose result is of the same size as the last argument to the
520 operation, but wider than all the other arguments to the operation.
521 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
522 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
524 E.g, when called to expand the following operations, this is how
525 the arguments will be initialized:
526 nops OP0 OP1 WIDE_OP
527 widening-sum 2 oprnd0 - oprnd1
528 widening-dot-product 3 oprnd0 oprnd1 oprnd2
529 widening-mult 2 oprnd0 oprnd1 -
530 type-promotion (vec-unpack) 1 oprnd0 - - */
533 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
534 rtx target, int unsignedp)
536 tree oprnd0, oprnd1, oprnd2;
537 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
538 optab widen_pattern_optab;
539 int icode;
540 enum machine_mode xmode0, xmode1 = VOIDmode, wxmode = VOIDmode;
541 rtx temp;
542 rtx pat;
543 rtx xop0, xop1, wxop;
544 int nops = TREE_CODE_LENGTH (ops->code);
546 oprnd0 = ops->op0;
547 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
548 widen_pattern_optab =
549 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
550 icode = (int) optab_handler (widen_pattern_optab, tmode0)->insn_code;
551 gcc_assert (icode != CODE_FOR_nothing);
552 xmode0 = insn_data[icode].operand[1].mode;
554 if (nops >= 2)
556 oprnd1 = ops->op1;
557 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
558 xmode1 = insn_data[icode].operand[2].mode;
561 /* The last operand is of a wider mode than the rest of the operands. */
562 if (nops == 2)
564 wmode = tmode1;
565 wxmode = xmode1;
567 else if (nops == 3)
569 gcc_assert (tmode1 == tmode0);
570 gcc_assert (op1);
571 oprnd2 = ops->op2;
572 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
573 wxmode = insn_data[icode].operand[3].mode;
576 if (!wide_op)
577 wmode = wxmode = insn_data[icode].operand[0].mode;
579 if (!target
580 || ! (*insn_data[icode].operand[0].predicate) (target, wmode))
581 temp = gen_reg_rtx (wmode);
582 else
583 temp = target;
585 xop0 = op0;
586 xop1 = op1;
587 wxop = wide_op;
589 /* In case the insn wants input operands in modes different from
590 those of the actual operands, convert the operands. It would
591 seem that we don't need to convert CONST_INTs, but we do, so
592 that they're properly zero-extended, sign-extended or truncated
593 for their mode. */
595 if (GET_MODE (op0) != xmode0 && xmode0 != VOIDmode)
596 xop0 = convert_modes (xmode0,
597 GET_MODE (op0) != VOIDmode
598 ? GET_MODE (op0)
599 : tmode0,
600 xop0, unsignedp);
602 if (op1)
603 if (GET_MODE (op1) != xmode1 && xmode1 != VOIDmode)
604 xop1 = convert_modes (xmode1,
605 GET_MODE (op1) != VOIDmode
606 ? GET_MODE (op1)
607 : tmode1,
608 xop1, unsignedp);
610 if (wide_op)
611 if (GET_MODE (wide_op) != wxmode && wxmode != VOIDmode)
612 wxop = convert_modes (wxmode,
613 GET_MODE (wide_op) != VOIDmode
614 ? GET_MODE (wide_op)
615 : wmode,
616 wxop, unsignedp);
618 /* Now, if insn's predicates don't allow our operands, put them into
619 pseudo regs. */
621 if (! (*insn_data[icode].operand[1].predicate) (xop0, xmode0)
622 && xmode0 != VOIDmode)
623 xop0 = copy_to_mode_reg (xmode0, xop0);
625 if (op1)
627 if (! (*insn_data[icode].operand[2].predicate) (xop1, xmode1)
628 && xmode1 != VOIDmode)
629 xop1 = copy_to_mode_reg (xmode1, xop1);
631 if (wide_op)
633 if (! (*insn_data[icode].operand[3].predicate) (wxop, wxmode)
634 && wxmode != VOIDmode)
635 wxop = copy_to_mode_reg (wxmode, wxop);
637 pat = GEN_FCN (icode) (temp, xop0, xop1, wxop);
639 else
640 pat = GEN_FCN (icode) (temp, xop0, xop1);
642 else
644 if (wide_op)
646 if (! (*insn_data[icode].operand[2].predicate) (wxop, wxmode)
647 && wxmode != VOIDmode)
648 wxop = copy_to_mode_reg (wxmode, wxop);
650 pat = GEN_FCN (icode) (temp, xop0, wxop);
652 else
653 pat = GEN_FCN (icode) (temp, xop0);
656 emit_insn (pat);
657 return temp;
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
675 int icode = (int) optab_handler (ternary_optab, mode)->insn_code;
676 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
677 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
678 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
679 rtx temp;
680 rtx pat;
681 rtx xop0 = op0, xop1 = op1, xop2 = op2;
683 gcc_assert (optab_handler (ternary_optab, mode)->insn_code
684 != CODE_FOR_nothing);
686 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
687 temp = gen_reg_rtx (mode);
688 else
689 temp = target;
691 /* In case the insn wants input operands in modes different from
692 those of the actual operands, convert the operands. It would
693 seem that we don't need to convert CONST_INTs, but we do, so
694 that they're properly zero-extended, sign-extended or truncated
695 for their mode. */
697 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
698 xop0 = convert_modes (mode0,
699 GET_MODE (op0) != VOIDmode
700 ? GET_MODE (op0)
701 : mode,
702 xop0, unsignedp);
704 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
705 xop1 = convert_modes (mode1,
706 GET_MODE (op1) != VOIDmode
707 ? GET_MODE (op1)
708 : mode,
709 xop1, unsignedp);
711 if (GET_MODE (op2) != mode2 && mode2 != VOIDmode)
712 xop2 = convert_modes (mode2,
713 GET_MODE (op2) != VOIDmode
714 ? GET_MODE (op2)
715 : mode,
716 xop2, unsignedp);
718 /* Now, if insn's predicates don't allow our operands, put them into
719 pseudo regs. */
721 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
722 && mode0 != VOIDmode)
723 xop0 = copy_to_mode_reg (mode0, xop0);
725 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
726 && mode1 != VOIDmode)
727 xop1 = copy_to_mode_reg (mode1, xop1);
729 if (!insn_data[icode].operand[3].predicate (xop2, mode2)
730 && mode2 != VOIDmode)
731 xop2 = copy_to_mode_reg (mode2, xop2);
733 pat = GEN_FCN (icode) (temp, xop0, xop1, xop2);
735 emit_insn (pat);
736 return temp;
740 /* Like expand_binop, but return a constant rtx if the result can be
741 calculated at compile time. The arguments and return value are
742 otherwise the same as for expand_binop. */
744 static rtx
745 simplify_expand_binop (enum machine_mode mode, optab binoptab,
746 rtx op0, rtx op1, rtx target, int unsignedp,
747 enum optab_methods methods)
749 if (CONSTANT_P (op0) && CONSTANT_P (op1))
751 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
753 if (x)
754 return x;
757 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
760 /* Like simplify_expand_binop, but always put the result in TARGET.
761 Return true if the expansion succeeded. */
763 bool
764 force_expand_binop (enum machine_mode mode, optab binoptab,
765 rtx op0, rtx op1, rtx target, int unsignedp,
766 enum optab_methods methods)
768 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
769 target, unsignedp, methods);
770 if (x == 0)
771 return false;
772 if (x != target)
773 emit_move_insn (target, x);
774 return true;
777 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
780 expand_vec_shift_expr (sepops ops, rtx target)
782 enum insn_code icode;
783 rtx rtx_op1, rtx_op2;
784 enum machine_mode mode1;
785 enum machine_mode mode2;
786 enum machine_mode mode = TYPE_MODE (ops->type);
787 tree vec_oprnd = ops->op0;
788 tree shift_oprnd = ops->op1;
789 optab shift_optab;
790 rtx pat;
792 switch (ops->code)
794 case VEC_RSHIFT_EXPR:
795 shift_optab = vec_shr_optab;
796 break;
797 case VEC_LSHIFT_EXPR:
798 shift_optab = vec_shl_optab;
799 break;
800 default:
801 gcc_unreachable ();
804 icode = optab_handler (shift_optab, mode)->insn_code;
805 gcc_assert (icode != CODE_FOR_nothing);
807 mode1 = insn_data[icode].operand[1].mode;
808 mode2 = insn_data[icode].operand[2].mode;
810 rtx_op1 = expand_normal (vec_oprnd);
811 if (!(*insn_data[icode].operand[1].predicate) (rtx_op1, mode1)
812 && mode1 != VOIDmode)
813 rtx_op1 = force_reg (mode1, rtx_op1);
815 rtx_op2 = expand_normal (shift_oprnd);
816 if (!(*insn_data[icode].operand[2].predicate) (rtx_op2, mode2)
817 && mode2 != VOIDmode)
818 rtx_op2 = force_reg (mode2, rtx_op2);
820 if (!target
821 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
822 target = gen_reg_rtx (mode);
824 /* Emit instruction */
825 pat = GEN_FCN (icode) (target, rtx_op1, rtx_op2);
826 gcc_assert (pat);
827 emit_insn (pat);
829 return target;
832 /* This subroutine of expand_doubleword_shift handles the cases in which
833 the effective shift value is >= BITS_PER_WORD. The arguments and return
834 value are the same as for the parent routine, except that SUPERWORD_OP1
835 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
836 INTO_TARGET may be null if the caller has decided to calculate it. */
838 static bool
839 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
840 rtx outof_target, rtx into_target,
841 int unsignedp, enum optab_methods methods)
843 if (into_target != 0)
844 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
845 into_target, unsignedp, methods))
846 return false;
848 if (outof_target != 0)
850 /* For a signed right shift, we must fill OUTOF_TARGET with copies
851 of the sign bit, otherwise we must fill it with zeros. */
852 if (binoptab != ashr_optab)
853 emit_move_insn (outof_target, CONST0_RTX (word_mode));
854 else
855 if (!force_expand_binop (word_mode, binoptab,
856 outof_input, GEN_INT (BITS_PER_WORD - 1),
857 outof_target, unsignedp, methods))
858 return false;
860 return true;
863 /* This subroutine of expand_doubleword_shift handles the cases in which
864 the effective shift value is < BITS_PER_WORD. The arguments and return
865 value are the same as for the parent routine. */
867 static bool
868 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
869 rtx outof_input, rtx into_input, rtx op1,
870 rtx outof_target, rtx into_target,
871 int unsignedp, enum optab_methods methods,
872 unsigned HOST_WIDE_INT shift_mask)
874 optab reverse_unsigned_shift, unsigned_shift;
875 rtx tmp, carries;
877 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
878 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
880 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
881 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
882 the opposite direction to BINOPTAB. */
883 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
885 carries = outof_input;
886 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
887 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
888 0, true, methods);
890 else
892 /* We must avoid shifting by BITS_PER_WORD bits since that is either
893 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
894 has unknown behavior. Do a single shift first, then shift by the
895 remainder. It's OK to use ~OP1 as the remainder if shift counts
896 are truncated to the mode size. */
897 carries = expand_binop (word_mode, reverse_unsigned_shift,
898 outof_input, const1_rtx, 0, unsignedp, methods);
899 if (shift_mask == BITS_PER_WORD - 1)
901 tmp = immed_double_const (-1, -1, op1_mode);
902 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
903 0, true, methods);
905 else
907 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
908 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
909 0, true, methods);
912 if (tmp == 0 || carries == 0)
913 return false;
914 carries = expand_binop (word_mode, reverse_unsigned_shift,
915 carries, tmp, 0, unsignedp, methods);
916 if (carries == 0)
917 return false;
919 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
920 so the result can go directly into INTO_TARGET if convenient. */
921 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
922 into_target, unsignedp, methods);
923 if (tmp == 0)
924 return false;
926 /* Now OR in the bits carried over from OUTOF_INPUT. */
927 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
928 into_target, unsignedp, methods))
929 return false;
931 /* Use a standard word_mode shift for the out-of half. */
932 if (outof_target != 0)
933 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
934 outof_target, unsignedp, methods))
935 return false;
937 return true;
941 #ifdef HAVE_conditional_move
942 /* Try implementing expand_doubleword_shift using conditional moves.
943 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
944 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
945 are the shift counts to use in the former and latter case. All other
946 arguments are the same as the parent routine. */
948 static bool
949 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
950 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
951 rtx outof_input, rtx into_input,
952 rtx subword_op1, rtx superword_op1,
953 rtx outof_target, rtx into_target,
954 int unsignedp, enum optab_methods methods,
955 unsigned HOST_WIDE_INT shift_mask)
957 rtx outof_superword, into_superword;
959 /* Put the superword version of the output into OUTOF_SUPERWORD and
960 INTO_SUPERWORD. */
961 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
962 if (outof_target != 0 && subword_op1 == superword_op1)
964 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
965 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
966 into_superword = outof_target;
967 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
968 outof_superword, 0, unsignedp, methods))
969 return false;
971 else
973 into_superword = gen_reg_rtx (word_mode);
974 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
975 outof_superword, into_superword,
976 unsignedp, methods))
977 return false;
980 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
981 if (!expand_subword_shift (op1_mode, binoptab,
982 outof_input, into_input, subword_op1,
983 outof_target, into_target,
984 unsignedp, methods, shift_mask))
985 return false;
987 /* Select between them. Do the INTO half first because INTO_SUPERWORD
988 might be the current value of OUTOF_TARGET. */
989 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
990 into_target, into_superword, word_mode, false))
991 return false;
993 if (outof_target != 0)
994 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
995 outof_target, outof_superword,
996 word_mode, false))
997 return false;
999 return true;
1001 #endif
1003 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1004 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1005 input operand; the shift moves bits in the direction OUTOF_INPUT->
1006 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1007 of the target. OP1 is the shift count and OP1_MODE is its mode.
1008 If OP1 is constant, it will have been truncated as appropriate
1009 and is known to be nonzero.
1011 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1012 shift count is outside the range [0, BITS_PER_WORD). This routine must
1013 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1015 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1016 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1017 fill with zeros or sign bits as appropriate.
1019 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1020 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1021 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1022 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1023 are undefined.
1025 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1026 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1027 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1028 function wants to calculate it itself.
1030 Return true if the shift could be successfully synthesized. */
1032 static bool
1033 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1034 rtx outof_input, rtx into_input, rtx op1,
1035 rtx outof_target, rtx into_target,
1036 int unsignedp, enum optab_methods methods,
1037 unsigned HOST_WIDE_INT shift_mask)
1039 rtx superword_op1, tmp, cmp1, cmp2;
1040 rtx subword_label, done_label;
1041 enum rtx_code cmp_code;
1043 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1044 fill the result with sign or zero bits as appropriate. If so, the value
1045 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1046 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1047 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1049 This isn't worthwhile for constant shifts since the optimizers will
1050 cope better with in-range shift counts. */
1051 if (shift_mask >= BITS_PER_WORD
1052 && outof_target != 0
1053 && !CONSTANT_P (op1))
1055 if (!expand_doubleword_shift (op1_mode, binoptab,
1056 outof_input, into_input, op1,
1057 0, into_target,
1058 unsignedp, methods, shift_mask))
1059 return false;
1060 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1061 outof_target, unsignedp, methods))
1062 return false;
1063 return true;
1066 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1067 is true when the effective shift value is less than BITS_PER_WORD.
1068 Set SUPERWORD_OP1 to the shift count that should be used to shift
1069 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1070 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1071 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1073 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1074 is a subword shift count. */
1075 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1076 0, true, methods);
1077 cmp2 = CONST0_RTX (op1_mode);
1078 cmp_code = EQ;
1079 superword_op1 = op1;
1081 else
1083 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1084 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1085 0, true, methods);
1086 cmp2 = CONST0_RTX (op1_mode);
1087 cmp_code = LT;
1088 superword_op1 = cmp1;
1090 if (cmp1 == 0)
1091 return false;
1093 /* If we can compute the condition at compile time, pick the
1094 appropriate subroutine. */
1095 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1096 if (tmp != 0 && CONST_INT_P (tmp))
1098 if (tmp == const0_rtx)
1099 return expand_superword_shift (binoptab, outof_input, superword_op1,
1100 outof_target, into_target,
1101 unsignedp, methods);
1102 else
1103 return expand_subword_shift (op1_mode, binoptab,
1104 outof_input, into_input, op1,
1105 outof_target, into_target,
1106 unsignedp, methods, shift_mask);
1109 #ifdef HAVE_conditional_move
1110 /* Try using conditional moves to generate straight-line code. */
1112 rtx start = get_last_insn ();
1113 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1114 cmp_code, cmp1, cmp2,
1115 outof_input, into_input,
1116 op1, superword_op1,
1117 outof_target, into_target,
1118 unsignedp, methods, shift_mask))
1119 return true;
1120 delete_insns_since (start);
1122 #endif
1124 /* As a last resort, use branches to select the correct alternative. */
1125 subword_label = gen_label_rtx ();
1126 done_label = gen_label_rtx ();
1128 NO_DEFER_POP;
1129 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1130 0, 0, subword_label);
1131 OK_DEFER_POP;
1133 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1134 outof_target, into_target,
1135 unsignedp, methods))
1136 return false;
1138 emit_jump_insn (gen_jump (done_label));
1139 emit_barrier ();
1140 emit_label (subword_label);
1142 if (!expand_subword_shift (op1_mode, binoptab,
1143 outof_input, into_input, op1,
1144 outof_target, into_target,
1145 unsignedp, methods, shift_mask))
1146 return false;
1148 emit_label (done_label);
1149 return true;
1152 /* Subroutine of expand_binop. Perform a double word multiplication of
1153 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1154 as the target's word_mode. This function return NULL_RTX if anything
1155 goes wrong, in which case it may have already emitted instructions
1156 which need to be deleted.
1158 If we want to multiply two two-word values and have normal and widening
1159 multiplies of single-word values, we can do this with three smaller
1160 multiplications.
1162 The multiplication proceeds as follows:
1163 _______________________
1164 [__op0_high_|__op0_low__]
1165 _______________________
1166 * [__op1_high_|__op1_low__]
1167 _______________________________________________
1168 _______________________
1169 (1) [__op0_low__*__op1_low__]
1170 _______________________
1171 (2a) [__op0_low__*__op1_high_]
1172 _______________________
1173 (2b) [__op0_high_*__op1_low__]
1174 _______________________
1175 (3) [__op0_high_*__op1_high_]
1178 This gives a 4-word result. Since we are only interested in the
1179 lower 2 words, partial result (3) and the upper words of (2a) and
1180 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1181 calculated using non-widening multiplication.
1183 (1), however, needs to be calculated with an unsigned widening
1184 multiplication. If this operation is not directly supported we
1185 try using a signed widening multiplication and adjust the result.
1186 This adjustment works as follows:
1188 If both operands are positive then no adjustment is needed.
1190 If the operands have different signs, for example op0_low < 0 and
1191 op1_low >= 0, the instruction treats the most significant bit of
1192 op0_low as a sign bit instead of a bit with significance
1193 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1194 with 2**BITS_PER_WORD - op0_low, and two's complements the
1195 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1196 the result.
1198 Similarly, if both operands are negative, we need to add
1199 (op0_low + op1_low) * 2**BITS_PER_WORD.
1201 We use a trick to adjust quickly. We logically shift op0_low right
1202 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1203 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1204 logical shift exists, we do an arithmetic right shift and subtract
1205 the 0 or -1. */
1207 static rtx
1208 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1209 bool umulp, enum optab_methods methods)
1211 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1212 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1213 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1214 rtx product, adjust, product_high, temp;
1216 rtx op0_high = operand_subword_force (op0, high, mode);
1217 rtx op0_low = operand_subword_force (op0, low, mode);
1218 rtx op1_high = operand_subword_force (op1, high, mode);
1219 rtx op1_low = operand_subword_force (op1, low, mode);
1221 /* If we're using an unsigned multiply to directly compute the product
1222 of the low-order words of the operands and perform any required
1223 adjustments of the operands, we begin by trying two more multiplications
1224 and then computing the appropriate sum.
1226 We have checked above that the required addition is provided.
1227 Full-word addition will normally always succeed, especially if
1228 it is provided at all, so we don't worry about its failure. The
1229 multiplication may well fail, however, so we do handle that. */
1231 if (!umulp)
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1241 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1249 if (!op0_high)
1250 return NULL_RTX;
1253 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!adjust)
1256 return NULL_RTX;
1258 /* OP0_HIGH should now be dead. */
1260 if (!umulp)
1262 /* ??? This could be done with emit_store_flag where available. */
1263 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1264 NULL_RTX, 1, methods);
1265 if (temp)
1266 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1267 NULL_RTX, 0, OPTAB_DIRECT);
1268 else
1270 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1271 NULL_RTX, 0, methods);
1272 if (!temp)
1273 return NULL_RTX;
1274 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1275 NULL_RTX, 0, OPTAB_DIRECT);
1278 if (!op1_high)
1279 return NULL_RTX;
1282 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1283 NULL_RTX, 0, OPTAB_DIRECT);
1284 if (!temp)
1285 return NULL_RTX;
1287 /* OP1_HIGH should now be dead. */
1289 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1290 adjust, 0, OPTAB_DIRECT);
1292 if (target && !REG_P (target))
1293 target = NULL_RTX;
1295 if (umulp)
1296 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1297 target, 1, OPTAB_DIRECT);
1298 else
1299 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1300 target, 1, OPTAB_DIRECT);
1302 if (!product)
1303 return NULL_RTX;
1305 product_high = operand_subword (product, high, 1, mode);
1306 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1307 REG_P (product_high) ? product_high : adjust,
1308 0, OPTAB_DIRECT);
1309 emit_move_insn (product_high, adjust);
1310 return product;
1313 /* Wrapper around expand_binop which takes an rtx code to specify
1314 the operation to perform, not an optab pointer. All other
1315 arguments are the same. */
1317 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1318 rtx op1, rtx target, int unsignedp,
1319 enum optab_methods methods)
1321 optab binop = code_to_optab[(int) code];
1322 gcc_assert (binop);
1324 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1327 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1328 binop. Order them according to commutative_operand_precedence and, if
1329 possible, try to put TARGET or a pseudo first. */
1330 static bool
1331 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1333 int op0_prec = commutative_operand_precedence (op0);
1334 int op1_prec = commutative_operand_precedence (op1);
1336 if (op0_prec < op1_prec)
1337 return true;
1339 if (op0_prec > op1_prec)
1340 return false;
1342 /* With equal precedence, both orders are ok, but it is better if the
1343 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1344 if (target == 0 || REG_P (target))
1345 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1346 else
1347 return rtx_equal_p (op1, target);
1350 /* Return true if BINOPTAB implements a shift operation. */
1352 static bool
1353 shift_optab_p (optab binoptab)
1355 switch (binoptab->code)
1357 case ASHIFT:
1358 case SS_ASHIFT:
1359 case US_ASHIFT:
1360 case ASHIFTRT:
1361 case LSHIFTRT:
1362 case ROTATE:
1363 case ROTATERT:
1364 return true;
1366 default:
1367 return false;
1371 /* Return true if BINOPTAB implements a commutative binary operation. */
1373 static bool
1374 commutative_optab_p (optab binoptab)
1376 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1377 || binoptab == smul_widen_optab
1378 || binoptab == umul_widen_optab
1379 || binoptab == smul_highpart_optab
1380 || binoptab == umul_highpart_optab);
1383 /* X is to be used in mode MODE as an operand to BINOPTAB. If we're
1384 optimizing, and if the operand is a constant that costs more than
1385 1 instruction, force the constant into a register and return that
1386 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1388 static rtx
1389 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1390 rtx x, bool unsignedp)
1392 if (mode != VOIDmode
1393 && optimize
1394 && CONSTANT_P (x)
1395 && rtx_cost (x, binoptab->code, optimize_insn_for_speed_p ())
1396 > COSTS_N_INSNS (1))
1398 if (CONST_INT_P (x))
1400 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1401 if (intval != INTVAL (x))
1402 x = GEN_INT (intval);
1404 else
1405 x = convert_modes (mode, VOIDmode, x, unsignedp);
1406 x = force_reg (mode, x);
1408 return x;
1411 /* Helper function for expand_binop: handle the case where there
1412 is an insn that directly implements the indicated operation.
1413 Returns null if this is not possible. */
1414 static rtx
1415 expand_binop_directly (enum machine_mode mode, optab binoptab,
1416 rtx op0, rtx op1,
1417 rtx target, int unsignedp, enum optab_methods methods,
1418 rtx last)
1420 int icode = (int) optab_handler (binoptab, mode)->insn_code;
1421 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1422 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1423 enum machine_mode tmp_mode;
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx temp;
1428 rtx swap;
1430 if (target)
1431 temp = target;
1432 else
1433 temp = gen_reg_rtx (mode);
1435 /* If it is a commutative operator and the modes would match
1436 if we would swap the operands, we can save the conversions. */
1437 commutative_p = commutative_optab_p (binoptab);
1438 if (commutative_p
1439 && GET_MODE (xop0) != mode0 && GET_MODE (xop1) != mode1
1440 && GET_MODE (xop0) == mode1 && GET_MODE (xop1) == mode1)
1442 swap = xop0;
1443 xop0 = xop1;
1444 xop1 = swap;
1447 /* If we are optimizing, force expensive constants into a register. */
1448 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
1449 if (!shift_optab_p (binoptab))
1450 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
1452 /* In case the insn wants input operands in modes different from
1453 those of the actual operands, convert the operands. It would
1454 seem that we don't need to convert CONST_INTs, but we do, so
1455 that they're properly zero-extended, sign-extended or truncated
1456 for their mode. */
1458 if (GET_MODE (xop0) != mode0 && mode0 != VOIDmode)
1459 xop0 = convert_modes (mode0,
1460 GET_MODE (xop0) != VOIDmode
1461 ? GET_MODE (xop0)
1462 : mode,
1463 xop0, unsignedp);
1465 if (GET_MODE (xop1) != mode1 && mode1 != VOIDmode)
1466 xop1 = convert_modes (mode1,
1467 GET_MODE (xop1) != VOIDmode
1468 ? GET_MODE (xop1)
1469 : mode,
1470 xop1, unsignedp);
1472 /* If operation is commutative,
1473 try to make the first operand a register.
1474 Even better, try to make it the same as the target.
1475 Also try to make the last operand a constant. */
1476 if (commutative_p
1477 && swap_commutative_operands_with_target (target, xop0, xop1))
1479 swap = xop1;
1480 xop1 = xop0;
1481 xop0 = swap;
1484 /* Now, if insn's predicates don't allow our operands, put them into
1485 pseudo regs. */
1487 if (!insn_data[icode].operand[1].predicate (xop0, mode0)
1488 && mode0 != VOIDmode)
1489 xop0 = copy_to_mode_reg (mode0, xop0);
1491 if (!insn_data[icode].operand[2].predicate (xop1, mode1)
1492 && mode1 != VOIDmode)
1493 xop1 = copy_to_mode_reg (mode1, xop1);
1495 if (binoptab == vec_pack_trunc_optab
1496 || binoptab == vec_pack_usat_optab
1497 || binoptab == vec_pack_ssat_optab
1498 || binoptab == vec_pack_ufix_trunc_optab
1499 || binoptab == vec_pack_sfix_trunc_optab)
1501 /* The mode of the result is different then the mode of the
1502 arguments. */
1503 tmp_mode = insn_data[icode].operand[0].mode;
1504 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1505 return 0;
1507 else
1508 tmp_mode = mode;
1510 if (!insn_data[icode].operand[0].predicate (temp, tmp_mode))
1511 temp = gen_reg_rtx (tmp_mode);
1513 pat = GEN_FCN (icode) (temp, xop0, xop1);
1514 if (pat)
1516 /* If PAT is composed of more than one insn, try to add an appropriate
1517 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1518 operand, call expand_binop again, this time without a target. */
1519 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1520 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
1522 delete_insns_since (last);
1523 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1524 unsignedp, methods);
1527 emit_insn (pat);
1528 return temp;
1531 delete_insns_since (last);
1532 return NULL_RTX;
1535 /* Generate code to perform an operation specified by BINOPTAB
1536 on operands OP0 and OP1, with result having machine-mode MODE.
1538 UNSIGNEDP is for the case where we have to widen the operands
1539 to perform the operation. It says to use zero-extension.
1541 If TARGET is nonzero, the value
1542 is generated there, if it is convenient to do so.
1543 In all cases an rtx is returned for the locus of the value;
1544 this may or may not be TARGET. */
1547 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1548 rtx target, int unsignedp, enum optab_methods methods)
1550 enum optab_methods next_methods
1551 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1552 ? OPTAB_WIDEN : methods);
1553 enum mode_class mclass;
1554 enum machine_mode wider_mode;
1555 rtx libfunc;
1556 rtx temp;
1557 rtx entry_last = get_last_insn ();
1558 rtx last;
1560 mclass = GET_MODE_CLASS (mode);
1562 /* If subtracting an integer constant, convert this into an addition of
1563 the negated constant. */
1565 if (binoptab == sub_optab && CONST_INT_P (op1))
1567 op1 = negate_rtx (mode, op1);
1568 binoptab = add_optab;
1571 /* Record where to delete back to if we backtrack. */
1572 last = get_last_insn ();
1574 /* If we can do it with a three-operand insn, do so. */
1576 if (methods != OPTAB_MUST_WIDEN
1577 && optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
1579 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1580 unsignedp, methods, last);
1581 if (temp)
1582 return temp;
1585 /* If we were trying to rotate, and that didn't work, try rotating
1586 the other direction before falling back to shifts and bitwise-or. */
1587 if (((binoptab == rotl_optab
1588 && optab_handler (rotr_optab, mode)->insn_code != CODE_FOR_nothing)
1589 || (binoptab == rotr_optab
1590 && optab_handler (rotl_optab, mode)->insn_code != CODE_FOR_nothing))
1591 && mclass == MODE_INT)
1593 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1594 rtx newop1;
1595 unsigned int bits = GET_MODE_BITSIZE (mode);
1597 if (CONST_INT_P (op1))
1598 newop1 = GEN_INT (bits - INTVAL (op1));
1599 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1600 newop1 = negate_rtx (GET_MODE (op1), op1);
1601 else
1602 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1603 GEN_INT (bits), op1,
1604 NULL_RTX, unsignedp, OPTAB_DIRECT);
1606 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1607 target, unsignedp, methods, last);
1608 if (temp)
1609 return temp;
1612 /* If this is a multiply, see if we can do a widening operation that
1613 takes operands of this mode and makes a wider mode. */
1615 if (binoptab == smul_optab
1616 && GET_MODE_WIDER_MODE (mode) != VOIDmode
1617 && ((optab_handler ((unsignedp ? umul_widen_optab : smul_widen_optab),
1618 GET_MODE_WIDER_MODE (mode))->insn_code)
1619 != CODE_FOR_nothing))
1621 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
1622 unsignedp ? umul_widen_optab : smul_widen_optab,
1623 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1625 if (temp != 0)
1627 if (GET_MODE_CLASS (mode) == MODE_INT
1628 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1629 GET_MODE_BITSIZE (GET_MODE (temp))))
1630 return gen_lowpart (mode, temp);
1631 else
1632 return convert_to_mode (mode, temp, unsignedp);
1636 /* Look for a wider mode of the same class for which we think we
1637 can open-code the operation. Check for a widening multiply at the
1638 wider mode as well. */
1640 if (CLASS_HAS_WIDER_MODES_P (mclass)
1641 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1642 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1643 wider_mode != VOIDmode;
1644 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1646 if (optab_handler (binoptab, wider_mode)->insn_code != CODE_FOR_nothing
1647 || (binoptab == smul_optab
1648 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1649 && ((optab_handler ((unsignedp ? umul_widen_optab
1650 : smul_widen_optab),
1651 GET_MODE_WIDER_MODE (wider_mode))->insn_code)
1652 != CODE_FOR_nothing)))
1654 rtx xop0 = op0, xop1 = op1;
1655 int no_extend = 0;
1657 /* For certain integer operations, we need not actually extend
1658 the narrow operands, as long as we will truncate
1659 the results to the same narrowness. */
1661 if ((binoptab == ior_optab || binoptab == and_optab
1662 || binoptab == xor_optab
1663 || binoptab == add_optab || binoptab == sub_optab
1664 || binoptab == smul_optab || binoptab == ashl_optab)
1665 && mclass == MODE_INT)
1667 no_extend = 1;
1668 xop0 = avoid_expensive_constant (mode, binoptab,
1669 xop0, unsignedp);
1670 if (binoptab != ashl_optab)
1671 xop1 = avoid_expensive_constant (mode, binoptab,
1672 xop1, unsignedp);
1675 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1677 /* The second operand of a shift must always be extended. */
1678 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1679 no_extend && binoptab != ashl_optab);
1681 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1682 unsignedp, OPTAB_DIRECT);
1683 if (temp)
1685 if (mclass != MODE_INT
1686 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1687 GET_MODE_BITSIZE (wider_mode)))
1689 if (target == 0)
1690 target = gen_reg_rtx (mode);
1691 convert_move (target, temp, 0);
1692 return target;
1694 else
1695 return gen_lowpart (mode, temp);
1697 else
1698 delete_insns_since (last);
1702 /* If operation is commutative,
1703 try to make the first operand a register.
1704 Even better, try to make it the same as the target.
1705 Also try to make the last operand a constant. */
1706 if (commutative_optab_p (binoptab)
1707 && swap_commutative_operands_with_target (target, op0, op1))
1709 temp = op1;
1710 op1 = op0;
1711 op0 = temp;
1714 /* These can be done a word at a time. */
1715 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1716 && mclass == MODE_INT
1717 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1718 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1720 int i;
1721 rtx insns;
1722 rtx equiv_value;
1724 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1725 won't be accurate, so use a new target. */
1726 if (target == 0 || target == op0 || target == op1)
1727 target = gen_reg_rtx (mode);
1729 start_sequence ();
1731 /* Do the actual arithmetic. */
1732 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1734 rtx target_piece = operand_subword (target, i, 1, mode);
1735 rtx x = expand_binop (word_mode, binoptab,
1736 operand_subword_force (op0, i, mode),
1737 operand_subword_force (op1, i, mode),
1738 target_piece, unsignedp, next_methods);
1740 if (x == 0)
1741 break;
1743 if (target_piece != x)
1744 emit_move_insn (target_piece, x);
1747 insns = get_insns ();
1748 end_sequence ();
1750 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1752 if (binoptab->code != UNKNOWN)
1753 equiv_value
1754 = gen_rtx_fmt_ee (binoptab->code, mode,
1755 copy_rtx (op0), copy_rtx (op1));
1756 else
1757 equiv_value = 0;
1759 emit_insn (insns);
1760 return target;
1764 /* Synthesize double word shifts from single word shifts. */
1765 if ((binoptab == lshr_optab || binoptab == ashl_optab
1766 || binoptab == ashr_optab)
1767 && mclass == MODE_INT
1768 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1769 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1770 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing
1771 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1772 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1774 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1775 enum machine_mode op1_mode;
1777 double_shift_mask = targetm.shift_truncation_mask (mode);
1778 shift_mask = targetm.shift_truncation_mask (word_mode);
1779 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1781 /* Apply the truncation to constant shifts. */
1782 if (double_shift_mask > 0 && CONST_INT_P (op1))
1783 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1785 if (op1 == CONST0_RTX (op1_mode))
1786 return op0;
1788 /* Make sure that this is a combination that expand_doubleword_shift
1789 can handle. See the comments there for details. */
1790 if (double_shift_mask == 0
1791 || (shift_mask == BITS_PER_WORD - 1
1792 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1794 rtx insns;
1795 rtx into_target, outof_target;
1796 rtx into_input, outof_input;
1797 int left_shift, outof_word;
1799 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1800 won't be accurate, so use a new target. */
1801 if (target == 0 || target == op0 || target == op1)
1802 target = gen_reg_rtx (mode);
1804 start_sequence ();
1806 /* OUTOF_* is the word we are shifting bits away from, and
1807 INTO_* is the word that we are shifting bits towards, thus
1808 they differ depending on the direction of the shift and
1809 WORDS_BIG_ENDIAN. */
1811 left_shift = binoptab == ashl_optab;
1812 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1814 outof_target = operand_subword (target, outof_word, 1, mode);
1815 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1817 outof_input = operand_subword_force (op0, outof_word, mode);
1818 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1820 if (expand_doubleword_shift (op1_mode, binoptab,
1821 outof_input, into_input, op1,
1822 outof_target, into_target,
1823 unsignedp, next_methods, shift_mask))
1825 insns = get_insns ();
1826 end_sequence ();
1828 emit_insn (insns);
1829 return target;
1831 end_sequence ();
1835 /* Synthesize double word rotates from single word shifts. */
1836 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1837 && mclass == MODE_INT
1838 && CONST_INT_P (op1)
1839 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1840 && optab_handler (ashl_optab, word_mode)->insn_code != CODE_FOR_nothing
1841 && optab_handler (lshr_optab, word_mode)->insn_code != CODE_FOR_nothing)
1843 rtx insns;
1844 rtx into_target, outof_target;
1845 rtx into_input, outof_input;
1846 rtx inter;
1847 int shift_count, left_shift, outof_word;
1849 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1850 won't be accurate, so use a new target. Do this also if target is not
1851 a REG, first because having a register instead may open optimization
1852 opportunities, and second because if target and op0 happen to be MEMs
1853 designating the same location, we would risk clobbering it too early
1854 in the code sequence we generate below. */
1855 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1856 target = gen_reg_rtx (mode);
1858 start_sequence ();
1860 shift_count = INTVAL (op1);
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1876 if (shift_count == BITS_PER_WORD)
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1883 else
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1895 if (shift_count > BITS_PER_WORD)
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1900 else
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1938 insns = get_insns ();
1939 end_sequence ();
1941 if (inter != 0)
1943 emit_insn (insns);
1944 return target;
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode)->insn_code != CODE_FOR_nothing)
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1973 xtarget = gen_reg_rtx (mode);
1975 if (target == 0 || !REG_P (target))
1976 target = xtarget;
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1998 if (i + 1 < nwords)
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2009 if (i > 0)
2011 rtx newx;
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2019 if (i + 1 < nwords)
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2036 emit_move_insn (target_piece, newx);
2038 else
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2044 carry_in = carry_out;
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2049 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2052 rtx temp = emit_move_insn (target, xtarget);
2054 set_unique_reg_note (temp,
2055 REG_EQUAL,
2056 gen_rtx_fmt_ee (binoptab->code, mode,
2057 copy_rtx (xop0),
2058 copy_rtx (xop1)));
2060 else
2061 target = xtarget;
2063 return target;
2066 else
2067 delete_insns_since (last);
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode)->insn_code != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode)->insn_code != CODE_FOR_nothing)
2081 rtx product = NULL_RTX;
2083 if (optab_handler (umul_widen_optab, mode)->insn_code
2084 != CODE_FOR_nothing)
2086 product = expand_doubleword_mult (mode, op0, op1, target,
2087 true, methods);
2088 if (!product)
2089 delete_insns_since (last);
2092 if (product == NULL_RTX
2093 && optab_handler (smul_widen_optab, mode)->insn_code
2094 != CODE_FOR_nothing)
2096 product = expand_doubleword_mult (mode, op0, op1, target,
2097 false, methods);
2098 if (!product)
2099 delete_insns_since (last);
2102 if (product != NULL_RTX)
2104 if (optab_handler (mov_optab, mode)->insn_code != CODE_FOR_nothing)
2106 temp = emit_move_insn (target ? target : product, product);
2107 set_unique_reg_note (temp,
2108 REG_EQUAL,
2109 gen_rtx_fmt_ee (MULT, mode,
2110 copy_rtx (op0),
2111 copy_rtx (op1)));
2113 return product;
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2129 start_sequence ();
2131 if (shift_optab_p (binoptab))
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2149 insns = get_insns ();
2150 end_sequence ();
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block (insns, target, value,
2154 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2156 return target;
2159 delete_insns_since (last);
2161 /* It can't be done in this mode. Can we do it in a wider mode? */
2163 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2164 || methods == OPTAB_MUST_WIDEN))
2166 /* Caller says, don't even try. */
2167 delete_insns_since (entry_last);
2168 return 0;
2171 /* Compute the value of METHODS to pass to recursive calls.
2172 Don't allow widening to be tried recursively. */
2174 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2176 /* Look for a wider mode of the same class for which it appears we can do
2177 the operation. */
2179 if (CLASS_HAS_WIDER_MODES_P (mclass))
2181 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2182 wider_mode != VOIDmode;
2183 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2185 if ((optab_handler (binoptab, wider_mode)->insn_code
2186 != CODE_FOR_nothing)
2187 || (methods == OPTAB_LIB
2188 && optab_libfunc (binoptab, wider_mode)))
2190 rtx xop0 = op0, xop1 = op1;
2191 int no_extend = 0;
2193 /* For certain integer operations, we need not actually extend
2194 the narrow operands, as long as we will truncate
2195 the results to the same narrowness. */
2197 if ((binoptab == ior_optab || binoptab == and_optab
2198 || binoptab == xor_optab
2199 || binoptab == add_optab || binoptab == sub_optab
2200 || binoptab == smul_optab || binoptab == ashl_optab)
2201 && mclass == MODE_INT)
2202 no_extend = 1;
2204 xop0 = widen_operand (xop0, wider_mode, mode,
2205 unsignedp, no_extend);
2207 /* The second operand of a shift must always be extended. */
2208 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2209 no_extend && binoptab != ashl_optab);
2211 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2212 unsignedp, methods);
2213 if (temp)
2215 if (mclass != MODE_INT
2216 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
2217 GET_MODE_BITSIZE (wider_mode)))
2219 if (target == 0)
2220 target = gen_reg_rtx (mode);
2221 convert_move (target, temp, 0);
2222 return target;
2224 else
2225 return gen_lowpart (mode, temp);
2227 else
2228 delete_insns_since (last);
2233 delete_insns_since (entry_last);
2234 return 0;
2237 /* Expand a binary operator which has both signed and unsigned forms.
2238 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2239 signed operations.
2241 If we widen unsigned operands, we may use a signed wider operation instead
2242 of an unsigned wider operation, since the result would be the same. */
2245 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2246 rtx op0, rtx op1, rtx target, int unsignedp,
2247 enum optab_methods methods)
2249 rtx temp;
2250 optab direct_optab = unsignedp ? uoptab : soptab;
2251 struct optab_d wide_soptab;
2253 /* Do it without widening, if possible. */
2254 temp = expand_binop (mode, direct_optab, op0, op1, target,
2255 unsignedp, OPTAB_DIRECT);
2256 if (temp || methods == OPTAB_DIRECT)
2257 return temp;
2259 /* Try widening to a signed int. Make a fake signed optab that
2260 hides any signed insn for direct use. */
2261 wide_soptab = *soptab;
2262 optab_handler (&wide_soptab, mode)->insn_code = CODE_FOR_nothing;
2263 /* We don't want to generate new hash table entries from this fake
2264 optab. */
2265 wide_soptab.libcall_gen = NULL;
2267 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2268 unsignedp, OPTAB_WIDEN);
2270 /* For unsigned operands, try widening to an unsigned int. */
2271 if (temp == 0 && unsignedp)
2272 temp = expand_binop (mode, uoptab, op0, op1, target,
2273 unsignedp, OPTAB_WIDEN);
2274 if (temp || methods == OPTAB_WIDEN)
2275 return temp;
2277 /* Use the right width libcall if that exists. */
2278 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2279 if (temp || methods == OPTAB_LIB)
2280 return temp;
2282 /* Must widen and use a libcall, use either signed or unsigned. */
2283 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2284 unsignedp, methods);
2285 if (temp != 0)
2286 return temp;
2287 if (unsignedp)
2288 return expand_binop (mode, uoptab, op0, op1, target,
2289 unsignedp, methods);
2290 return 0;
2293 /* Generate code to perform an operation specified by UNOPPTAB
2294 on operand OP0, with two results to TARG0 and TARG1.
2295 We assume that the order of the operands for the instruction
2296 is TARG0, TARG1, OP0.
2298 Either TARG0 or TARG1 may be zero, but what that means is that
2299 the result is not actually wanted. We will generate it into
2300 a dummy pseudo-reg and discard it. They may not both be zero.
2302 Returns 1 if this operation can be performed; 0 if not. */
2305 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2306 int unsignedp)
2308 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2309 enum mode_class mclass;
2310 enum machine_mode wider_mode;
2311 rtx entry_last = get_last_insn ();
2312 rtx last;
2314 mclass = GET_MODE_CLASS (mode);
2316 if (!targ0)
2317 targ0 = gen_reg_rtx (mode);
2318 if (!targ1)
2319 targ1 = gen_reg_rtx (mode);
2321 /* Record where to go back to if we fail. */
2322 last = get_last_insn ();
2324 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
2326 int icode = (int) optab_handler (unoptab, mode)->insn_code;
2327 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2328 rtx pat;
2329 rtx xop0 = op0;
2331 if (GET_MODE (xop0) != VOIDmode
2332 && GET_MODE (xop0) != mode0)
2333 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2335 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2336 if (!insn_data[icode].operand[2].predicate (xop0, mode0))
2337 xop0 = copy_to_mode_reg (mode0, xop0);
2339 /* We could handle this, but we should always be called with a pseudo
2340 for our targets and all insns should take them as outputs. */
2341 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2342 gcc_assert (insn_data[icode].operand[1].predicate (targ1, mode));
2344 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2345 if (pat)
2347 emit_insn (pat);
2348 return 1;
2350 else
2351 delete_insns_since (last);
2354 /* It can't be done in this mode. Can we do it in a wider mode? */
2356 if (CLASS_HAS_WIDER_MODES_P (mclass))
2358 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2359 wider_mode != VOIDmode;
2360 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2362 if (optab_handler (unoptab, wider_mode)->insn_code
2363 != CODE_FOR_nothing)
2365 rtx t0 = gen_reg_rtx (wider_mode);
2366 rtx t1 = gen_reg_rtx (wider_mode);
2367 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2369 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2371 convert_move (targ0, t0, unsignedp);
2372 convert_move (targ1, t1, unsignedp);
2373 return 1;
2375 else
2376 delete_insns_since (last);
2381 delete_insns_since (entry_last);
2382 return 0;
2385 /* Generate code to perform an operation specified by BINOPTAB
2386 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2387 We assume that the order of the operands for the instruction
2388 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2389 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2391 Either TARG0 or TARG1 may be zero, but what that means is that
2392 the result is not actually wanted. We will generate it into
2393 a dummy pseudo-reg and discard it. They may not both be zero.
2395 Returns 1 if this operation can be performed; 0 if not. */
2398 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2399 int unsignedp)
2401 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2402 enum mode_class mclass;
2403 enum machine_mode wider_mode;
2404 rtx entry_last = get_last_insn ();
2405 rtx last;
2407 mclass = GET_MODE_CLASS (mode);
2409 if (!targ0)
2410 targ0 = gen_reg_rtx (mode);
2411 if (!targ1)
2412 targ1 = gen_reg_rtx (mode);
2414 /* Record where to go back to if we fail. */
2415 last = get_last_insn ();
2417 if (optab_handler (binoptab, mode)->insn_code != CODE_FOR_nothing)
2419 int icode = (int) optab_handler (binoptab, mode)->insn_code;
2420 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2421 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2422 rtx pat;
2423 rtx xop0 = op0, xop1 = op1;
2425 /* If we are optimizing, force expensive constants into a register. */
2426 xop0 = avoid_expensive_constant (mode0, binoptab, xop0, unsignedp);
2427 xop1 = avoid_expensive_constant (mode1, binoptab, xop1, unsignedp);
2429 /* In case the insn wants input operands in modes different from
2430 those of the actual operands, convert the operands. It would
2431 seem that we don't need to convert CONST_INTs, but we do, so
2432 that they're properly zero-extended, sign-extended or truncated
2433 for their mode. */
2435 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2436 xop0 = convert_modes (mode0,
2437 GET_MODE (op0) != VOIDmode
2438 ? GET_MODE (op0)
2439 : mode,
2440 xop0, unsignedp);
2442 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2443 xop1 = convert_modes (mode1,
2444 GET_MODE (op1) != VOIDmode
2445 ? GET_MODE (op1)
2446 : mode,
2447 xop1, unsignedp);
2449 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2450 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
2451 xop0 = copy_to_mode_reg (mode0, xop0);
2453 if (!insn_data[icode].operand[2].predicate (xop1, mode1))
2454 xop1 = copy_to_mode_reg (mode1, xop1);
2456 /* We could handle this, but we should always be called with a pseudo
2457 for our targets and all insns should take them as outputs. */
2458 gcc_assert (insn_data[icode].operand[0].predicate (targ0, mode));
2459 gcc_assert (insn_data[icode].operand[3].predicate (targ1, mode));
2461 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2462 if (pat)
2464 emit_insn (pat);
2465 return 1;
2467 else
2468 delete_insns_since (last);
2471 /* It can't be done in this mode. Can we do it in a wider mode? */
2473 if (CLASS_HAS_WIDER_MODES_P (mclass))
2475 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2476 wider_mode != VOIDmode;
2477 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2479 if (optab_handler (binoptab, wider_mode)->insn_code
2480 != CODE_FOR_nothing)
2482 rtx t0 = gen_reg_rtx (wider_mode);
2483 rtx t1 = gen_reg_rtx (wider_mode);
2484 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2485 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2487 if (expand_twoval_binop (binoptab, cop0, cop1,
2488 t0, t1, unsignedp))
2490 convert_move (targ0, t0, unsignedp);
2491 convert_move (targ1, t1, unsignedp);
2492 return 1;
2494 else
2495 delete_insns_since (last);
2500 delete_insns_since (entry_last);
2501 return 0;
2504 /* Expand the two-valued library call indicated by BINOPTAB, but
2505 preserve only one of the values. If TARG0 is non-NULL, the first
2506 value is placed into TARG0; otherwise the second value is placed
2507 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2508 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2509 This routine assumes that the value returned by the library call is
2510 as if the return value was of an integral mode twice as wide as the
2511 mode of OP0. Returns 1 if the call was successful. */
2513 bool
2514 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2515 rtx targ0, rtx targ1, enum rtx_code code)
2517 enum machine_mode mode;
2518 enum machine_mode libval_mode;
2519 rtx libval;
2520 rtx insns;
2521 rtx libfunc;
2523 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2524 gcc_assert (!targ0 != !targ1);
2526 mode = GET_MODE (op0);
2527 libfunc = optab_libfunc (binoptab, mode);
2528 if (!libfunc)
2529 return false;
2531 /* The value returned by the library function will have twice as
2532 many bits as the nominal MODE. */
2533 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2534 MODE_INT);
2535 start_sequence ();
2536 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2537 libval_mode, 2,
2538 op0, mode,
2539 op1, mode);
2540 /* Get the part of VAL containing the value that we want. */
2541 libval = simplify_gen_subreg (mode, libval, libval_mode,
2542 targ0 ? 0 : GET_MODE_SIZE (mode));
2543 insns = get_insns ();
2544 end_sequence ();
2545 /* Move the into the desired location. */
2546 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2547 gen_rtx_fmt_ee (code, mode, op0, op1));
2549 return true;
2553 /* Wrapper around expand_unop which takes an rtx code to specify
2554 the operation to perform, not an optab pointer. All other
2555 arguments are the same. */
2557 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2558 rtx target, int unsignedp)
2560 optab unop = code_to_optab[(int) code];
2561 gcc_assert (unop);
2563 return expand_unop (mode, unop, op0, target, unsignedp);
2566 /* Try calculating
2567 (clz:narrow x)
2569 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2570 static rtx
2571 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2573 enum mode_class mclass = GET_MODE_CLASS (mode);
2574 if (CLASS_HAS_WIDER_MODES_P (mclass))
2576 enum machine_mode wider_mode;
2577 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2578 wider_mode != VOIDmode;
2579 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2581 if (optab_handler (clz_optab, wider_mode)->insn_code
2582 != CODE_FOR_nothing)
2584 rtx xop0, temp, last;
2586 last = get_last_insn ();
2588 if (target == 0)
2589 target = gen_reg_rtx (mode);
2590 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2591 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2592 if (temp != 0)
2593 temp = expand_binop (wider_mode, sub_optab, temp,
2594 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2595 - GET_MODE_BITSIZE (mode)),
2596 target, true, OPTAB_DIRECT);
2597 if (temp == 0)
2598 delete_insns_since (last);
2600 return temp;
2604 return 0;
2607 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2608 quantities, choosing which based on whether the high word is nonzero. */
2609 static rtx
2610 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2612 rtx xop0 = force_reg (mode, op0);
2613 rtx subhi = gen_highpart (word_mode, xop0);
2614 rtx sublo = gen_lowpart (word_mode, xop0);
2615 rtx hi0_label = gen_label_rtx ();
2616 rtx after_label = gen_label_rtx ();
2617 rtx seq, temp, result;
2619 /* If we were not given a target, use a word_mode register, not a
2620 'mode' register. The result will fit, and nobody is expecting
2621 anything bigger (the return type of __builtin_clz* is int). */
2622 if (!target)
2623 target = gen_reg_rtx (word_mode);
2625 /* In any case, write to a word_mode scratch in both branches of the
2626 conditional, so we can ensure there is a single move insn setting
2627 'target' to tag a REG_EQUAL note on. */
2628 result = gen_reg_rtx (word_mode);
2630 start_sequence ();
2632 /* If the high word is not equal to zero,
2633 then clz of the full value is clz of the high word. */
2634 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2635 word_mode, true, hi0_label);
2637 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2638 if (!temp)
2639 goto fail;
2641 if (temp != result)
2642 convert_move (result, temp, true);
2644 emit_jump_insn (gen_jump (after_label));
2645 emit_barrier ();
2647 /* Else clz of the full value is clz of the low word plus the number
2648 of bits in the high word. */
2649 emit_label (hi0_label);
2651 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2652 if (!temp)
2653 goto fail;
2654 temp = expand_binop (word_mode, add_optab, temp,
2655 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2656 result, true, OPTAB_DIRECT);
2657 if (!temp)
2658 goto fail;
2659 if (temp != result)
2660 convert_move (result, temp, true);
2662 emit_label (after_label);
2663 convert_move (target, result, true);
2665 seq = get_insns ();
2666 end_sequence ();
2668 add_equal_note (seq, target, CLZ, xop0, 0);
2669 emit_insn (seq);
2670 return target;
2672 fail:
2673 end_sequence ();
2674 return 0;
2677 /* Try calculating
2678 (bswap:narrow x)
2680 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2681 static rtx
2682 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2684 enum mode_class mclass = GET_MODE_CLASS (mode);
2685 enum machine_mode wider_mode;
2686 rtx x, last;
2688 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2689 return NULL_RTX;
2691 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2692 wider_mode != VOIDmode;
2693 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2694 if (optab_handler (bswap_optab, wider_mode)->insn_code != CODE_FOR_nothing)
2695 goto found;
2696 return NULL_RTX;
2698 found:
2699 last = get_last_insn ();
2701 x = widen_operand (op0, wider_mode, mode, true, true);
2702 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2704 if (x != 0)
2705 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2706 size_int (GET_MODE_BITSIZE (wider_mode)
2707 - GET_MODE_BITSIZE (mode)),
2708 NULL_RTX, true);
2710 if (x != 0)
2712 if (target == 0)
2713 target = gen_reg_rtx (mode);
2714 emit_move_insn (target, gen_lowpart (mode, x));
2716 else
2717 delete_insns_since (last);
2719 return target;
2722 /* Try calculating bswap as two bswaps of two word-sized operands. */
2724 static rtx
2725 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2727 rtx t0, t1;
2729 t1 = expand_unop (word_mode, bswap_optab,
2730 operand_subword_force (op, 0, mode), NULL_RTX, true);
2731 t0 = expand_unop (word_mode, bswap_optab,
2732 operand_subword_force (op, 1, mode), NULL_RTX, true);
2734 if (target == 0)
2735 target = gen_reg_rtx (mode);
2736 if (REG_P (target))
2737 emit_clobber (target);
2738 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2739 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2741 return target;
2744 /* Try calculating (parity x) as (and (popcount x) 1), where
2745 popcount can also be done in a wider mode. */
2746 static rtx
2747 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2749 enum mode_class mclass = GET_MODE_CLASS (mode);
2750 if (CLASS_HAS_WIDER_MODES_P (mclass))
2752 enum machine_mode wider_mode;
2753 for (wider_mode = mode; wider_mode != VOIDmode;
2754 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2756 if (optab_handler (popcount_optab, wider_mode)->insn_code
2757 != CODE_FOR_nothing)
2759 rtx xop0, temp, last;
2761 last = get_last_insn ();
2763 if (target == 0)
2764 target = gen_reg_rtx (mode);
2765 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2766 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2767 true);
2768 if (temp != 0)
2769 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2770 target, true, OPTAB_DIRECT);
2771 if (temp == 0)
2772 delete_insns_since (last);
2774 return temp;
2778 return 0;
2781 /* Try calculating ctz(x) as K - clz(x & -x) ,
2782 where K is GET_MODE_BITSIZE(mode) - 1.
2784 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2785 don't have to worry about what the hardware does in that case. (If
2786 the clz instruction produces the usual value at 0, which is K, the
2787 result of this code sequence will be -1; expand_ffs, below, relies
2788 on this. It might be nice to have it be K instead, for consistency
2789 with the (very few) processors that provide a ctz with a defined
2790 value, but that would take one more instruction, and it would be
2791 less convenient for expand_ffs anyway. */
2793 static rtx
2794 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2796 rtx seq, temp;
2798 if (optab_handler (clz_optab, mode)->insn_code == CODE_FOR_nothing)
2799 return 0;
2801 start_sequence ();
2803 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2804 if (temp)
2805 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2806 true, OPTAB_DIRECT);
2807 if (temp)
2808 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2809 if (temp)
2810 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_BITSIZE (mode) - 1),
2811 temp, target,
2812 true, OPTAB_DIRECT);
2813 if (temp == 0)
2815 end_sequence ();
2816 return 0;
2819 seq = get_insns ();
2820 end_sequence ();
2822 add_equal_note (seq, temp, CTZ, op0, 0);
2823 emit_insn (seq);
2824 return temp;
2828 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2829 else with the sequence used by expand_clz.
2831 The ffs builtin promises to return zero for a zero value and ctz/clz
2832 may have an undefined value in that case. If they do not give us a
2833 convenient value, we have to generate a test and branch. */
2834 static rtx
2835 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2837 HOST_WIDE_INT val = 0;
2838 bool defined_at_zero = false;
2839 rtx temp, seq;
2841 if (optab_handler (ctz_optab, mode)->insn_code != CODE_FOR_nothing)
2843 start_sequence ();
2845 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2846 if (!temp)
2847 goto fail;
2849 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2851 else if (optab_handler (clz_optab, mode)->insn_code != CODE_FOR_nothing)
2853 start_sequence ();
2854 temp = expand_ctz (mode, op0, 0);
2855 if (!temp)
2856 goto fail;
2858 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2860 defined_at_zero = true;
2861 val = (GET_MODE_BITSIZE (mode) - 1) - val;
2864 else
2865 return 0;
2867 if (defined_at_zero && val == -1)
2868 /* No correction needed at zero. */;
2869 else
2871 /* We don't try to do anything clever with the situation found
2872 on some processors (eg Alpha) where ctz(0:mode) ==
2873 bitsize(mode). If someone can think of a way to send N to -1
2874 and leave alone all values in the range 0..N-1 (where N is a
2875 power of two), cheaper than this test-and-branch, please add it.
2877 The test-and-branch is done after the operation itself, in case
2878 the operation sets condition codes that can be recycled for this.
2879 (This is true on i386, for instance.) */
2881 rtx nonzero_label = gen_label_rtx ();
2882 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2883 mode, true, nonzero_label);
2885 convert_move (temp, GEN_INT (-1), false);
2886 emit_label (nonzero_label);
2889 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2890 to produce a value in the range 0..bitsize. */
2891 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2892 target, false, OPTAB_DIRECT);
2893 if (!temp)
2894 goto fail;
2896 seq = get_insns ();
2897 end_sequence ();
2899 add_equal_note (seq, temp, FFS, op0, 0);
2900 emit_insn (seq);
2901 return temp;
2903 fail:
2904 end_sequence ();
2905 return 0;
2908 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2909 conditions, VAL may already be a SUBREG against which we cannot generate
2910 a further SUBREG. In this case, we expect forcing the value into a
2911 register will work around the situation. */
2913 static rtx
2914 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2915 enum machine_mode imode)
2917 rtx ret;
2918 ret = lowpart_subreg (omode, val, imode);
2919 if (ret == NULL)
2921 val = force_reg (imode, val);
2922 ret = lowpart_subreg (omode, val, imode);
2923 gcc_assert (ret != NULL);
2925 return ret;
2928 /* Expand a floating point absolute value or negation operation via a
2929 logical operation on the sign bit. */
2931 static rtx
2932 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2933 rtx op0, rtx target)
2935 const struct real_format *fmt;
2936 int bitpos, word, nwords, i;
2937 enum machine_mode imode;
2938 HOST_WIDE_INT hi, lo;
2939 rtx temp, insns;
2941 /* The format has to have a simple sign bit. */
2942 fmt = REAL_MODE_FORMAT (mode);
2943 if (fmt == NULL)
2944 return NULL_RTX;
2946 bitpos = fmt->signbit_rw;
2947 if (bitpos < 0)
2948 return NULL_RTX;
2950 /* Don't create negative zeros if the format doesn't support them. */
2951 if (code == NEG && !fmt->has_signed_zero)
2952 return NULL_RTX;
2954 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2956 imode = int_mode_for_mode (mode);
2957 if (imode == BLKmode)
2958 return NULL_RTX;
2959 word = 0;
2960 nwords = 1;
2962 else
2964 imode = word_mode;
2966 if (FLOAT_WORDS_BIG_ENDIAN)
2967 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2968 else
2969 word = bitpos / BITS_PER_WORD;
2970 bitpos = bitpos % BITS_PER_WORD;
2971 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2974 if (bitpos < HOST_BITS_PER_WIDE_INT)
2976 hi = 0;
2977 lo = (HOST_WIDE_INT) 1 << bitpos;
2979 else
2981 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2982 lo = 0;
2984 if (code == ABS)
2985 lo = ~lo, hi = ~hi;
2987 if (target == 0 || target == op0)
2988 target = gen_reg_rtx (mode);
2990 if (nwords > 1)
2992 start_sequence ();
2994 for (i = 0; i < nwords; ++i)
2996 rtx targ_piece = operand_subword (target, i, 1, mode);
2997 rtx op0_piece = operand_subword_force (op0, i, mode);
2999 if (i == word)
3001 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3002 op0_piece,
3003 immed_double_const (lo, hi, imode),
3004 targ_piece, 1, OPTAB_LIB_WIDEN);
3005 if (temp != targ_piece)
3006 emit_move_insn (targ_piece, temp);
3008 else
3009 emit_move_insn (targ_piece, op0_piece);
3012 insns = get_insns ();
3013 end_sequence ();
3015 emit_insn (insns);
3017 else
3019 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
3020 gen_lowpart (imode, op0),
3021 immed_double_const (lo, hi, imode),
3022 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3023 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3025 set_unique_reg_note (get_last_insn (), REG_EQUAL,
3026 gen_rtx_fmt_e (code, mode, copy_rtx (op0)));
3029 return target;
3032 /* As expand_unop, but will fail rather than attempt the operation in a
3033 different mode or with a libcall. */
3034 static rtx
3035 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3036 int unsignedp)
3038 if (optab_handler (unoptab, mode)->insn_code != CODE_FOR_nothing)
3040 int icode = (int) optab_handler (unoptab, mode)->insn_code;
3041 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3042 rtx xop0 = op0;
3043 rtx last = get_last_insn ();
3044 rtx pat, temp;
3046 if (target)
3047 temp = target;
3048 else
3049 temp = gen_reg_rtx (mode);
3051 if (GET_MODE (xop0) != VOIDmode
3052 && GET_MODE (xop0) != mode0)
3053 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3055 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3057 if (!insn_data[icode].operand[1].predicate (xop0, mode0))
3058 xop0 = copy_to_mode_reg (mode0, xop0);
3060 if (!insn_data[icode].operand[0].predicate (temp, mode))
3061 temp = gen_reg_rtx (mode);
3063 pat = GEN_FCN (icode) (temp, xop0);
3064 if (pat)
3066 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3067 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
3069 delete_insns_since (last);
3070 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3073 emit_insn (pat);
3075 return temp;
3077 else
3078 delete_insns_since (last);
3080 return 0;
3083 /* Generate code to perform an operation specified by UNOPTAB
3084 on operand OP0, with result having machine-mode MODE.
3086 UNSIGNEDP is for the case where we have to widen the operands
3087 to perform the operation. It says to use zero-extension.
3089 If TARGET is nonzero, the value
3090 is generated there, if it is convenient to do so.
3091 In all cases an rtx is returned for the locus of the value;
3092 this may or may not be TARGET. */
3095 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3096 int unsignedp)
3098 enum mode_class mclass = GET_MODE_CLASS (mode);
3099 enum machine_mode wider_mode;
3100 rtx temp;
3101 rtx libfunc;
3103 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3104 if (temp)
3105 return temp;
3107 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3109 /* Widening (or narrowing) clz needs special treatment. */
3110 if (unoptab == clz_optab)
3112 temp = widen_clz (mode, op0, target);
3113 if (temp)
3114 return temp;
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3119 temp = expand_doubleword_clz (mode, op0, target);
3120 if (temp)
3121 return temp;
3124 goto try_libcall;
3127 /* Widening (or narrowing) bswap needs special treatment. */
3128 if (unoptab == bswap_optab)
3130 temp = widen_bswap (mode, op0, target);
3131 if (temp)
3132 return temp;
3134 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3135 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3137 temp = expand_doubleword_bswap (mode, op0, target);
3138 if (temp)
3139 return temp;
3142 goto try_libcall;
3145 if (CLASS_HAS_WIDER_MODES_P (mclass))
3146 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3147 wider_mode != VOIDmode;
3148 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3150 if (optab_handler (unoptab, wider_mode)->insn_code != CODE_FOR_nothing)
3152 rtx xop0 = op0;
3153 rtx last = get_last_insn ();
3155 /* For certain operations, we need not actually extend
3156 the narrow operand, as long as we will truncate the
3157 results to the same narrowness. */
3159 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3160 (unoptab == neg_optab
3161 || unoptab == one_cmpl_optab)
3162 && mclass == MODE_INT);
3164 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3165 unsignedp);
3167 if (temp)
3169 if (mclass != MODE_INT
3170 || !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3171 GET_MODE_BITSIZE (wider_mode)))
3173 if (target == 0)
3174 target = gen_reg_rtx (mode);
3175 convert_move (target, temp, 0);
3176 return target;
3178 else
3179 return gen_lowpart (mode, temp);
3181 else
3182 delete_insns_since (last);
3186 /* These can be done a word at a time. */
3187 if (unoptab == one_cmpl_optab
3188 && mclass == MODE_INT
3189 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3190 && optab_handler (unoptab, word_mode)->insn_code != CODE_FOR_nothing)
3192 int i;
3193 rtx insns;
3195 if (target == 0 || target == op0)
3196 target = gen_reg_rtx (mode);
3198 start_sequence ();
3200 /* Do the actual arithmetic. */
3201 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3203 rtx target_piece = operand_subword (target, i, 1, mode);
3204 rtx x = expand_unop (word_mode, unoptab,
3205 operand_subword_force (op0, i, mode),
3206 target_piece, unsignedp);
3208 if (target_piece != x)
3209 emit_move_insn (target_piece, x);
3212 insns = get_insns ();
3213 end_sequence ();
3215 emit_insn (insns);
3216 return target;
3219 if (unoptab->code == NEG)
3221 /* Try negating floating point values by flipping the sign bit. */
3222 if (SCALAR_FLOAT_MODE_P (mode))
3224 temp = expand_absneg_bit (NEG, mode, op0, target);
3225 if (temp)
3226 return temp;
3229 /* If there is no negation pattern, and we have no negative zero,
3230 try subtracting from zero. */
3231 if (!HONOR_SIGNED_ZEROS (mode))
3233 temp = expand_binop (mode, (unoptab == negv_optab
3234 ? subv_optab : sub_optab),
3235 CONST0_RTX (mode), op0, target,
3236 unsignedp, OPTAB_DIRECT);
3237 if (temp)
3238 return temp;
3242 /* Try calculating parity (x) as popcount (x) % 2. */
3243 if (unoptab == parity_optab)
3245 temp = expand_parity (mode, op0, target);
3246 if (temp)
3247 return temp;
3250 /* Try implementing ffs (x) in terms of clz (x). */
3251 if (unoptab == ffs_optab)
3253 temp = expand_ffs (mode, op0, target);
3254 if (temp)
3255 return temp;
3258 /* Try implementing ctz (x) in terms of clz (x). */
3259 if (unoptab == ctz_optab)
3261 temp = expand_ctz (mode, op0, target);
3262 if (temp)
3263 return temp;
3266 try_libcall:
3267 /* Now try a library call in this mode. */
3268 libfunc = optab_libfunc (unoptab, mode);
3269 if (libfunc)
3271 rtx insns;
3272 rtx value;
3273 rtx eq_value;
3274 enum machine_mode outmode = mode;
3276 /* All of these functions return small values. Thus we choose to
3277 have them return something that isn't a double-word. */
3278 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3279 || unoptab == popcount_optab || unoptab == parity_optab)
3280 outmode
3281 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3282 optab_libfunc (unoptab, mode)));
3284 start_sequence ();
3286 /* Pass 1 for NO_QUEUE so we don't lose any increments
3287 if the libcall is cse'd or moved. */
3288 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3289 1, op0, mode);
3290 insns = get_insns ();
3291 end_sequence ();
3293 target = gen_reg_rtx (outmode);
3294 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3295 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3296 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3297 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3298 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3299 emit_libcall_block (insns, target, value, eq_value);
3301 return target;
3304 /* It can't be done in this mode. Can we do it in a wider mode? */
3306 if (CLASS_HAS_WIDER_MODES_P (mclass))
3308 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3309 wider_mode != VOIDmode;
3310 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3312 if ((optab_handler (unoptab, wider_mode)->insn_code
3313 != CODE_FOR_nothing)
3314 || optab_libfunc (unoptab, wider_mode))
3316 rtx xop0 = op0;
3317 rtx last = get_last_insn ();
3319 /* For certain operations, we need not actually extend
3320 the narrow operand, as long as we will truncate the
3321 results to the same narrowness. */
3323 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3324 (unoptab == neg_optab
3325 || unoptab == one_cmpl_optab)
3326 && mclass == MODE_INT);
3328 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3329 unsignedp);
3331 /* If we are generating clz using wider mode, adjust the
3332 result. */
3333 if (unoptab == clz_optab && temp != 0)
3334 temp = expand_binop (wider_mode, sub_optab, temp,
3335 GEN_INT (GET_MODE_BITSIZE (wider_mode)
3336 - GET_MODE_BITSIZE (mode)),
3337 target, true, OPTAB_DIRECT);
3339 if (temp)
3341 if (mclass != MODE_INT)
3343 if (target == 0)
3344 target = gen_reg_rtx (mode);
3345 convert_move (target, temp, 0);
3346 return target;
3348 else
3349 return gen_lowpart (mode, temp);
3351 else
3352 delete_insns_since (last);
3357 /* One final attempt at implementing negation via subtraction,
3358 this time allowing widening of the operand. */
3359 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3361 rtx temp;
3362 temp = expand_binop (mode,
3363 unoptab == negv_optab ? subv_optab : sub_optab,
3364 CONST0_RTX (mode), op0,
3365 target, unsignedp, OPTAB_LIB_WIDEN);
3366 if (temp)
3367 return temp;
3370 return 0;
3373 /* Emit code to compute the absolute value of OP0, with result to
3374 TARGET if convenient. (TARGET may be 0.) The return value says
3375 where the result actually is to be found.
3377 MODE is the mode of the operand; the mode of the result is
3378 different but can be deduced from MODE.
3383 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3384 int result_unsignedp)
3386 rtx temp;
3388 if (! flag_trapv)
3389 result_unsignedp = 1;
3391 /* First try to do it with a special abs instruction. */
3392 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3393 op0, target, 0);
3394 if (temp != 0)
3395 return temp;
3397 /* For floating point modes, try clearing the sign bit. */
3398 if (SCALAR_FLOAT_MODE_P (mode))
3400 temp = expand_absneg_bit (ABS, mode, op0, target);
3401 if (temp)
3402 return temp;
3405 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3406 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing
3407 && !HONOR_SIGNED_ZEROS (mode))
3409 rtx last = get_last_insn ();
3411 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3412 if (temp != 0)
3413 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3414 OPTAB_WIDEN);
3416 if (temp != 0)
3417 return temp;
3419 delete_insns_since (last);
3422 /* If this machine has expensive jumps, we can do integer absolute
3423 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3424 where W is the width of MODE. */
3426 if (GET_MODE_CLASS (mode) == MODE_INT
3427 && BRANCH_COST (optimize_insn_for_speed_p (),
3428 false) >= 2)
3430 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3431 size_int (GET_MODE_BITSIZE (mode) - 1),
3432 NULL_RTX, 0);
3434 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3435 OPTAB_LIB_WIDEN);
3436 if (temp != 0)
3437 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3438 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3440 if (temp != 0)
3441 return temp;
3444 return NULL_RTX;
3448 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3449 int result_unsignedp, int safe)
3451 rtx temp, op1;
3453 if (! flag_trapv)
3454 result_unsignedp = 1;
3456 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3457 if (temp != 0)
3458 return temp;
3460 /* If that does not win, use conditional jump and negate. */
3462 /* It is safe to use the target if it is the same
3463 as the source if this is also a pseudo register */
3464 if (op0 == target && REG_P (op0)
3465 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3466 safe = 1;
3468 op1 = gen_label_rtx ();
3469 if (target == 0 || ! safe
3470 || GET_MODE (target) != mode
3471 || (MEM_P (target) && MEM_VOLATILE_P (target))
3472 || (REG_P (target)
3473 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3474 target = gen_reg_rtx (mode);
3476 emit_move_insn (target, op0);
3477 NO_DEFER_POP;
3479 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3480 NULL_RTX, NULL_RTX, op1);
3482 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3483 target, target, 0);
3484 if (op0 != target)
3485 emit_move_insn (target, op0);
3486 emit_label (op1);
3487 OK_DEFER_POP;
3488 return target;
3491 /* Emit code to compute the one's complement absolute value of OP0
3492 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3493 (TARGET may be NULL_RTX.) The return value says where the result
3494 actually is to be found.
3496 MODE is the mode of the operand; the mode of the result is
3497 different but can be deduced from MODE. */
3500 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3502 rtx temp;
3504 /* Not applicable for floating point modes. */
3505 if (FLOAT_MODE_P (mode))
3506 return NULL_RTX;
3508 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3509 if (optab_handler (smax_optab, mode)->insn_code != CODE_FOR_nothing)
3511 rtx last = get_last_insn ();
3513 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3514 if (temp != 0)
3515 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3516 OPTAB_WIDEN);
3518 if (temp != 0)
3519 return temp;
3521 delete_insns_since (last);
3524 /* If this machine has expensive jumps, we can do one's complement
3525 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3527 if (GET_MODE_CLASS (mode) == MODE_INT
3528 && BRANCH_COST (optimize_insn_for_speed_p (),
3529 false) >= 2)
3531 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3532 size_int (GET_MODE_BITSIZE (mode) - 1),
3533 NULL_RTX, 0);
3535 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3536 OPTAB_LIB_WIDEN);
3538 if (temp != 0)
3539 return temp;
3542 return NULL_RTX;
3545 /* A subroutine of expand_copysign, perform the copysign operation using the
3546 abs and neg primitives advertised to exist on the target. The assumption
3547 is that we have a split register file, and leaving op0 in fp registers,
3548 and not playing with subregs so much, will help the register allocator. */
3550 static rtx
3551 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3552 int bitpos, bool op0_is_abs)
3554 enum machine_mode imode;
3555 int icode;
3556 rtx sign, label;
3558 if (target == op1)
3559 target = NULL_RTX;
3561 /* Check if the back end provides an insn that handles signbit for the
3562 argument's mode. */
3563 icode = (int) signbit_optab->handlers [(int) mode].insn_code;
3564 if (icode != CODE_FOR_nothing)
3566 imode = insn_data[icode].operand[0].mode;
3567 sign = gen_reg_rtx (imode);
3568 emit_unop_insn (icode, sign, op1, UNKNOWN);
3570 else
3572 HOST_WIDE_INT hi, lo;
3574 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3576 imode = int_mode_for_mode (mode);
3577 if (imode == BLKmode)
3578 return NULL_RTX;
3579 op1 = gen_lowpart (imode, op1);
3581 else
3583 int word;
3585 imode = word_mode;
3586 if (FLOAT_WORDS_BIG_ENDIAN)
3587 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3588 else
3589 word = bitpos / BITS_PER_WORD;
3590 bitpos = bitpos % BITS_PER_WORD;
3591 op1 = operand_subword_force (op1, word, mode);
3594 if (bitpos < HOST_BITS_PER_WIDE_INT)
3596 hi = 0;
3597 lo = (HOST_WIDE_INT) 1 << bitpos;
3599 else
3601 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3602 lo = 0;
3605 sign = gen_reg_rtx (imode);
3606 sign = expand_binop (imode, and_optab, op1,
3607 immed_double_const (lo, hi, imode),
3608 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3611 if (!op0_is_abs)
3613 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3614 if (op0 == NULL)
3615 return NULL_RTX;
3616 target = op0;
3618 else
3620 if (target == NULL_RTX)
3621 target = copy_to_reg (op0);
3622 else
3623 emit_move_insn (target, op0);
3626 label = gen_label_rtx ();
3627 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3629 if (GET_CODE (op0) == CONST_DOUBLE)
3630 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3631 else
3632 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3633 if (op0 != target)
3634 emit_move_insn (target, op0);
3636 emit_label (label);
3638 return target;
3642 /* A subroutine of expand_copysign, perform the entire copysign operation
3643 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3644 is true if op0 is known to have its sign bit clear. */
3646 static rtx
3647 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3648 int bitpos, bool op0_is_abs)
3650 enum machine_mode imode;
3651 HOST_WIDE_INT hi, lo;
3652 int word, nwords, i;
3653 rtx temp, insns;
3655 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3657 imode = int_mode_for_mode (mode);
3658 if (imode == BLKmode)
3659 return NULL_RTX;
3660 word = 0;
3661 nwords = 1;
3663 else
3665 imode = word_mode;
3667 if (FLOAT_WORDS_BIG_ENDIAN)
3668 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3669 else
3670 word = bitpos / BITS_PER_WORD;
3671 bitpos = bitpos % BITS_PER_WORD;
3672 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3675 if (bitpos < HOST_BITS_PER_WIDE_INT)
3677 hi = 0;
3678 lo = (HOST_WIDE_INT) 1 << bitpos;
3680 else
3682 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3683 lo = 0;
3686 if (target == 0 || target == op0 || target == op1)
3687 target = gen_reg_rtx (mode);
3689 if (nwords > 1)
3691 start_sequence ();
3693 for (i = 0; i < nwords; ++i)
3695 rtx targ_piece = operand_subword (target, i, 1, mode);
3696 rtx op0_piece = operand_subword_force (op0, i, mode);
3698 if (i == word)
3700 if (!op0_is_abs)
3701 op0_piece = expand_binop (imode, and_optab, op0_piece,
3702 immed_double_const (~lo, ~hi, imode),
3703 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3705 op1 = expand_binop (imode, and_optab,
3706 operand_subword_force (op1, i, mode),
3707 immed_double_const (lo, hi, imode),
3708 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3710 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3711 targ_piece, 1, OPTAB_LIB_WIDEN);
3712 if (temp != targ_piece)
3713 emit_move_insn (targ_piece, temp);
3715 else
3716 emit_move_insn (targ_piece, op0_piece);
3719 insns = get_insns ();
3720 end_sequence ();
3722 emit_insn (insns);
3724 else
3726 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3727 immed_double_const (lo, hi, imode),
3728 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3730 op0 = gen_lowpart (imode, op0);
3731 if (!op0_is_abs)
3732 op0 = expand_binop (imode, and_optab, op0,
3733 immed_double_const (~lo, ~hi, imode),
3734 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3736 temp = expand_binop (imode, ior_optab, op0, op1,
3737 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3738 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3741 return target;
3744 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3745 scalar floating point mode. Return NULL if we do not know how to
3746 expand the operation inline. */
3749 expand_copysign (rtx op0, rtx op1, rtx target)
3751 enum machine_mode mode = GET_MODE (op0);
3752 const struct real_format *fmt;
3753 bool op0_is_abs;
3754 rtx temp;
3756 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3757 gcc_assert (GET_MODE (op1) == mode);
3759 /* First try to do it with a special instruction. */
3760 temp = expand_binop (mode, copysign_optab, op0, op1,
3761 target, 0, OPTAB_DIRECT);
3762 if (temp)
3763 return temp;
3765 fmt = REAL_MODE_FORMAT (mode);
3766 if (fmt == NULL || !fmt->has_signed_zero)
3767 return NULL_RTX;
3769 op0_is_abs = false;
3770 if (GET_CODE (op0) == CONST_DOUBLE)
3772 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3773 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3774 op0_is_abs = true;
3777 if (fmt->signbit_ro >= 0
3778 && (GET_CODE (op0) == CONST_DOUBLE
3779 || (optab_handler (neg_optab, mode)->insn_code != CODE_FOR_nothing
3780 && optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)))
3782 temp = expand_copysign_absneg (mode, op0, op1, target,
3783 fmt->signbit_ro, op0_is_abs);
3784 if (temp)
3785 return temp;
3788 if (fmt->signbit_rw < 0)
3789 return NULL_RTX;
3790 return expand_copysign_bit (mode, op0, op1, target,
3791 fmt->signbit_rw, op0_is_abs);
3794 /* Generate an instruction whose insn-code is INSN_CODE,
3795 with two operands: an output TARGET and an input OP0.
3796 TARGET *must* be nonzero, and the output is always stored there.
3797 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3798 the value that is stored into TARGET.
3800 Return false if expansion failed. */
3802 bool
3803 maybe_emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3805 rtx temp;
3806 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3807 rtx pat;
3808 rtx last = get_last_insn ();
3810 temp = target;
3812 /* Now, if insn does not accept our operands, put them into pseudos. */
3814 if (!insn_data[icode].operand[1].predicate (op0, mode0))
3815 op0 = copy_to_mode_reg (mode0, op0);
3817 if (!insn_data[icode].operand[0].predicate (temp, GET_MODE (temp)))
3818 temp = gen_reg_rtx (GET_MODE (temp));
3820 pat = GEN_FCN (icode) (temp, op0);
3821 if (!pat)
3823 delete_insns_since (last);
3824 return false;
3827 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3828 add_equal_note (pat, temp, code, op0, NULL_RTX);
3830 emit_insn (pat);
3832 if (temp != target)
3833 emit_move_insn (target, temp);
3834 return true;
3836 /* Generate an instruction whose insn-code is INSN_CODE,
3837 with two operands: an output TARGET and an input OP0.
3838 TARGET *must* be nonzero, and the output is always stored there.
3839 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3840 the value that is stored into TARGET. */
3842 void
3843 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3845 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3846 gcc_assert (ok);
3849 struct no_conflict_data
3851 rtx target, first, insn;
3852 bool must_stay;
3855 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3856 the currently examined clobber / store has to stay in the list of
3857 insns that constitute the actual libcall block. */
3858 static void
3859 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3861 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3863 /* If this inns directly contributes to setting the target, it must stay. */
3864 if (reg_overlap_mentioned_p (p->target, dest))
3865 p->must_stay = true;
3866 /* If we haven't committed to keeping any other insns in the list yet,
3867 there is nothing more to check. */
3868 else if (p->insn == p->first)
3869 return;
3870 /* If this insn sets / clobbers a register that feeds one of the insns
3871 already in the list, this insn has to stay too. */
3872 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3873 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3874 || reg_used_between_p (dest, p->first, p->insn)
3875 /* Likewise if this insn depends on a register set by a previous
3876 insn in the list, or if it sets a result (presumably a hard
3877 register) that is set or clobbered by a previous insn.
3878 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3879 SET_DEST perform the former check on the address, and the latter
3880 check on the MEM. */
3881 || (GET_CODE (set) == SET
3882 && (modified_in_p (SET_SRC (set), p->first)
3883 || modified_in_p (SET_DEST (set), p->first)
3884 || modified_between_p (SET_SRC (set), p->first, p->insn)
3885 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3886 p->must_stay = true;
3890 /* Emit code to make a call to a constant function or a library call.
3892 INSNS is a list containing all insns emitted in the call.
3893 These insns leave the result in RESULT. Our block is to copy RESULT
3894 to TARGET, which is logically equivalent to EQUIV.
3896 We first emit any insns that set a pseudo on the assumption that these are
3897 loading constants into registers; doing so allows them to be safely cse'ed
3898 between blocks. Then we emit all the other insns in the block, followed by
3899 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3900 note with an operand of EQUIV. */
3902 void
3903 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3905 rtx final_dest = target;
3906 rtx prev, next, last, insn;
3908 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3909 into a MEM later. Protect the libcall block from this change. */
3910 if (! REG_P (target) || REG_USERVAR_P (target))
3911 target = gen_reg_rtx (GET_MODE (target));
3913 /* If we're using non-call exceptions, a libcall corresponding to an
3914 operation that may trap may also trap. */
3915 /* ??? See the comment in front of make_reg_eh_region_note. */
3916 if (flag_non_call_exceptions && may_trap_p (equiv))
3918 for (insn = insns; insn; insn = NEXT_INSN (insn))
3919 if (CALL_P (insn))
3921 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3922 if (note)
3924 int lp_nr = INTVAL (XEXP (note, 0));
3925 if (lp_nr == 0 || lp_nr == INT_MIN)
3926 remove_note (insn, note);
3930 else
3932 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3933 reg note to indicate that this call cannot throw or execute a nonlocal
3934 goto (unless there is already a REG_EH_REGION note, in which case
3935 we update it). */
3936 for (insn = insns; insn; insn = NEXT_INSN (insn))
3937 if (CALL_P (insn))
3938 make_reg_eh_region_note_nothrow_nononlocal (insn);
3941 /* First emit all insns that set pseudos. Remove them from the list as
3942 we go. Avoid insns that set pseudos which were referenced in previous
3943 insns. These can be generated by move_by_pieces, for example,
3944 to update an address. Similarly, avoid insns that reference things
3945 set in previous insns. */
3947 for (insn = insns; insn; insn = next)
3949 rtx set = single_set (insn);
3951 next = NEXT_INSN (insn);
3953 if (set != 0 && REG_P (SET_DEST (set))
3954 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3956 struct no_conflict_data data;
3958 data.target = const0_rtx;
3959 data.first = insns;
3960 data.insn = insn;
3961 data.must_stay = 0;
3962 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3963 if (! data.must_stay)
3965 if (PREV_INSN (insn))
3966 NEXT_INSN (PREV_INSN (insn)) = next;
3967 else
3968 insns = next;
3970 if (next)
3971 PREV_INSN (next) = PREV_INSN (insn);
3973 add_insn (insn);
3977 /* Some ports use a loop to copy large arguments onto the stack.
3978 Don't move anything outside such a loop. */
3979 if (LABEL_P (insn))
3980 break;
3983 prev = get_last_insn ();
3985 /* Write the remaining insns followed by the final copy. */
3987 for (insn = insns; insn; insn = next)
3989 next = NEXT_INSN (insn);
3991 add_insn (insn);
3994 last = emit_move_insn (target, result);
3995 if (optab_handler (mov_optab, GET_MODE (target))->insn_code
3996 != CODE_FOR_nothing)
3997 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3999 if (final_dest != target)
4000 emit_move_insn (final_dest, target);
4003 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
4004 PURPOSE describes how this comparison will be used. CODE is the rtx
4005 comparison code we will be using.
4007 ??? Actually, CODE is slightly weaker than that. A target is still
4008 required to implement all of the normal bcc operations, but not
4009 required to implement all (or any) of the unordered bcc operations. */
4012 can_compare_p (enum rtx_code code, enum machine_mode mode,
4013 enum can_compare_purpose purpose)
4015 rtx test;
4016 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
4019 int icode;
4021 if (purpose == ccp_jump
4022 && (icode = optab_handler (cbranch_optab, mode)->insn_code) != CODE_FOR_nothing
4023 && insn_data[icode].operand[0].predicate (test, mode))
4024 return 1;
4025 if (purpose == ccp_store_flag
4026 && (icode = optab_handler (cstore_optab, mode)->insn_code) != CODE_FOR_nothing
4027 && insn_data[icode].operand[1].predicate (test, mode))
4028 return 1;
4029 if (purpose == ccp_cmov
4030 && optab_handler (cmov_optab, mode)->insn_code != CODE_FOR_nothing)
4031 return 1;
4033 mode = GET_MODE_WIDER_MODE (mode);
4034 PUT_MODE (test, mode);
4036 while (mode != VOIDmode);
4038 return 0;
4041 /* This function is called when we are going to emit a compare instruction that
4042 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4044 *PMODE is the mode of the inputs (in case they are const_int).
4045 *PUNSIGNEDP nonzero says that the operands are unsigned;
4046 this matters if they need to be widened (as given by METHODS).
4048 If they have mode BLKmode, then SIZE specifies the size of both operands.
4050 This function performs all the setup necessary so that the caller only has
4051 to emit a single comparison insn. This setup can involve doing a BLKmode
4052 comparison or emitting a library call to perform the comparison if no insn
4053 is available to handle it.
4054 The values which are passed in through pointers can be modified; the caller
4055 should perform the comparison on the modified values. Constant
4056 comparisons must have already been folded. */
4058 static void
4059 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4060 int unsignedp, enum optab_methods methods,
4061 rtx *ptest, enum machine_mode *pmode)
4063 enum machine_mode mode = *pmode;
4064 rtx libfunc, test;
4065 enum machine_mode cmp_mode;
4066 enum mode_class mclass;
4068 /* The other methods are not needed. */
4069 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4070 || methods == OPTAB_LIB_WIDEN);
4072 /* If we are optimizing, force expensive constants into a register. */
4073 if (CONSTANT_P (x) && optimize
4074 && (rtx_cost (x, COMPARE, optimize_insn_for_speed_p ())
4075 > COSTS_N_INSNS (1)))
4076 x = force_reg (mode, x);
4078 if (CONSTANT_P (y) && optimize
4079 && (rtx_cost (y, COMPARE, optimize_insn_for_speed_p ())
4080 > COSTS_N_INSNS (1)))
4081 y = force_reg (mode, y);
4083 #ifdef HAVE_cc0
4084 /* Make sure if we have a canonical comparison. The RTL
4085 documentation states that canonical comparisons are required only
4086 for targets which have cc0. */
4087 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4088 #endif
4090 /* Don't let both operands fail to indicate the mode. */
4091 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4092 x = force_reg (mode, x);
4093 if (mode == VOIDmode)
4094 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4096 /* Handle all BLKmode compares. */
4098 if (mode == BLKmode)
4100 enum machine_mode result_mode;
4101 enum insn_code cmp_code;
4102 tree length_type;
4103 rtx libfunc;
4104 rtx result;
4105 rtx opalign
4106 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4108 gcc_assert (size);
4110 /* Try to use a memory block compare insn - either cmpstr
4111 or cmpmem will do. */
4112 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4113 cmp_mode != VOIDmode;
4114 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4116 cmp_code = cmpmem_optab[cmp_mode];
4117 if (cmp_code == CODE_FOR_nothing)
4118 cmp_code = cmpstr_optab[cmp_mode];
4119 if (cmp_code == CODE_FOR_nothing)
4120 cmp_code = cmpstrn_optab[cmp_mode];
4121 if (cmp_code == CODE_FOR_nothing)
4122 continue;
4124 /* Must make sure the size fits the insn's mode. */
4125 if ((CONST_INT_P (size)
4126 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4127 || (GET_MODE_BITSIZE (GET_MODE (size))
4128 > GET_MODE_BITSIZE (cmp_mode)))
4129 continue;
4131 result_mode = insn_data[cmp_code].operand[0].mode;
4132 result = gen_reg_rtx (result_mode);
4133 size = convert_to_mode (cmp_mode, size, 1);
4134 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4136 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4137 *pmode = result_mode;
4138 return;
4141 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4142 goto fail;
4144 /* Otherwise call a library function, memcmp. */
4145 libfunc = memcmp_libfunc;
4146 length_type = sizetype;
4147 result_mode = TYPE_MODE (integer_type_node);
4148 cmp_mode = TYPE_MODE (length_type);
4149 size = convert_to_mode (TYPE_MODE (length_type), size,
4150 TYPE_UNSIGNED (length_type));
4152 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4153 result_mode, 3,
4154 XEXP (x, 0), Pmode,
4155 XEXP (y, 0), Pmode,
4156 size, cmp_mode);
4158 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4159 *pmode = result_mode;
4160 return;
4163 /* Don't allow operands to the compare to trap, as that can put the
4164 compare and branch in different basic blocks. */
4165 if (flag_non_call_exceptions)
4167 if (may_trap_p (x))
4168 x = force_reg (mode, x);
4169 if (may_trap_p (y))
4170 y = force_reg (mode, y);
4173 if (GET_MODE_CLASS (mode) == MODE_CC)
4175 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4176 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4177 return;
4180 mclass = GET_MODE_CLASS (mode);
4181 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4182 cmp_mode = mode;
4185 enum insn_code icode;
4186 icode = optab_handler (cbranch_optab, cmp_mode)->insn_code;
4187 if (icode != CODE_FOR_nothing
4188 && insn_data[icode].operand[0].predicate (test, VOIDmode))
4190 rtx last = get_last_insn ();
4191 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4192 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4193 if (op0 && op1
4194 && insn_data[icode].operand[1].predicate
4195 (op0, insn_data[icode].operand[1].mode)
4196 && insn_data[icode].operand[2].predicate
4197 (op1, insn_data[icode].operand[2].mode))
4199 XEXP (test, 0) = op0;
4200 XEXP (test, 1) = op1;
4201 *ptest = test;
4202 *pmode = cmp_mode;
4203 return;
4205 delete_insns_since (last);
4208 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4209 break;
4210 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4212 while (cmp_mode != VOIDmode);
4214 if (methods != OPTAB_LIB_WIDEN)
4215 goto fail;
4217 if (!SCALAR_FLOAT_MODE_P (mode))
4219 rtx result;
4221 /* Handle a libcall just for the mode we are using. */
4222 libfunc = optab_libfunc (cmp_optab, mode);
4223 gcc_assert (libfunc);
4225 /* If we want unsigned, and this mode has a distinct unsigned
4226 comparison routine, use that. */
4227 if (unsignedp)
4229 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4230 if (ulibfunc)
4231 libfunc = ulibfunc;
4234 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4235 targetm.libgcc_cmp_return_mode (),
4236 2, x, mode, y, mode);
4238 /* There are two kinds of comparison routines. Biased routines
4239 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4240 of gcc expect that the comparison operation is equivalent
4241 to the modified comparison. For signed comparisons compare the
4242 result against 1 in the biased case, and zero in the unbiased
4243 case. For unsigned comparisons always compare against 1 after
4244 biasing the unbiased result by adding 1. This gives us a way to
4245 represent LTU. */
4246 x = result;
4247 y = const1_rtx;
4249 if (!TARGET_LIB_INT_CMP_BIASED)
4251 if (unsignedp)
4252 x = plus_constant (result, 1);
4253 else
4254 y = const0_rtx;
4257 *pmode = word_mode;
4258 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4259 ptest, pmode);
4261 else
4262 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4264 return;
4266 fail:
4267 *ptest = NULL_RTX;
4270 /* Before emitting an insn with code ICODE, make sure that X, which is going
4271 to be used for operand OPNUM of the insn, is converted from mode MODE to
4272 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4273 that it is accepted by the operand predicate. Return the new value. */
4276 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
4277 enum machine_mode wider_mode, int unsignedp)
4279 if (mode != wider_mode)
4280 x = convert_modes (wider_mode, mode, x, unsignedp);
4282 if (!insn_data[icode].operand[opnum].predicate
4283 (x, insn_data[icode].operand[opnum].mode))
4285 if (reload_completed)
4286 return NULL_RTX;
4287 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
4290 return x;
4293 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4294 we can do the branch. */
4296 static void
4297 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4299 enum machine_mode optab_mode;
4300 enum mode_class mclass;
4301 enum insn_code icode;
4303 mclass = GET_MODE_CLASS (mode);
4304 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4305 icode = optab_handler (cbranch_optab, optab_mode)->insn_code;
4307 gcc_assert (icode != CODE_FOR_nothing);
4308 gcc_assert (insn_data[icode].operand[0].predicate (test, VOIDmode));
4309 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4312 /* Generate code to compare X with Y so that the condition codes are
4313 set and to jump to LABEL if the condition is true. If X is a
4314 constant and Y is not a constant, then the comparison is swapped to
4315 ensure that the comparison RTL has the canonical form.
4317 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4318 need to be widened. UNSIGNEDP is also used to select the proper
4319 branch condition code.
4321 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4323 MODE is the mode of the inputs (in case they are const_int).
4325 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4326 It will be potentially converted into an unsigned variant based on
4327 UNSIGNEDP to select a proper jump instruction. */
4329 void
4330 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4331 enum machine_mode mode, int unsignedp, rtx label)
4333 rtx op0 = x, op1 = y;
4334 rtx test;
4336 /* Swap operands and condition to ensure canonical RTL. */
4337 if (swap_commutative_operands_p (x, y)
4338 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4340 op0 = y, op1 = x;
4341 comparison = swap_condition (comparison);
4344 /* If OP0 is still a constant, then both X and Y must be constants
4345 or the opposite comparison is not supported. Force X into a register
4346 to create canonical RTL. */
4347 if (CONSTANT_P (op0))
4348 op0 = force_reg (mode, op0);
4350 if (unsignedp)
4351 comparison = unsigned_condition (comparison);
4353 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4354 &test, &mode);
4355 emit_cmp_and_jump_insn_1 (test, mode, label);
4359 /* Emit a library call comparison between floating point X and Y.
4360 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4362 static void
4363 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4364 rtx *ptest, enum machine_mode *pmode)
4366 enum rtx_code swapped = swap_condition (comparison);
4367 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4368 enum machine_mode orig_mode = GET_MODE (x);
4369 enum machine_mode mode, cmp_mode;
4370 rtx value, target, insns, equiv;
4371 rtx libfunc = 0;
4372 bool reversed_p = false;
4373 cmp_mode = targetm.libgcc_cmp_return_mode ();
4375 for (mode = orig_mode;
4376 mode != VOIDmode;
4377 mode = GET_MODE_WIDER_MODE (mode))
4379 if (code_to_optab[comparison]
4380 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4381 break;
4383 if (code_to_optab[swapped]
4384 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4386 rtx tmp;
4387 tmp = x; x = y; y = tmp;
4388 comparison = swapped;
4389 break;
4392 if (code_to_optab[reversed]
4393 && (libfunc = optab_libfunc (code_to_optab[reversed], mode))
4394 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4396 comparison = reversed;
4397 reversed_p = true;
4398 break;
4402 gcc_assert (mode != VOIDmode);
4404 if (mode != orig_mode)
4406 x = convert_to_mode (mode, x, 0);
4407 y = convert_to_mode (mode, y, 0);
4410 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4411 the RTL. The allows the RTL optimizers to delete the libcall if the
4412 condition can be determined at compile-time. */
4413 if (comparison == UNORDERED)
4415 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4416 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4417 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4418 temp, const_true_rtx, equiv);
4420 else
4422 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4423 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 rtx true_rtx, false_rtx;
4427 switch (comparison)
4429 case EQ:
4430 true_rtx = const0_rtx;
4431 false_rtx = const_true_rtx;
4432 break;
4434 case NE:
4435 true_rtx = const_true_rtx;
4436 false_rtx = const0_rtx;
4437 break;
4439 case GT:
4440 true_rtx = const1_rtx;
4441 false_rtx = const0_rtx;
4442 break;
4444 case GE:
4445 true_rtx = const0_rtx;
4446 false_rtx = constm1_rtx;
4447 break;
4449 case LT:
4450 true_rtx = constm1_rtx;
4451 false_rtx = const0_rtx;
4452 break;
4454 case LE:
4455 true_rtx = const0_rtx;
4456 false_rtx = const1_rtx;
4457 break;
4459 default:
4460 gcc_unreachable ();
4462 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4463 equiv, true_rtx, false_rtx);
4467 start_sequence ();
4468 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4469 cmp_mode, 2, x, mode, y, mode);
4470 insns = get_insns ();
4471 end_sequence ();
4473 target = gen_reg_rtx (cmp_mode);
4474 emit_libcall_block (insns, target, value, equiv);
4476 if (comparison == UNORDERED
4477 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4478 comparison = reversed_p ? EQ : NE;
4480 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4481 *pmode = cmp_mode;
4484 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4486 void
4487 emit_indirect_jump (rtx loc)
4489 if (!insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate
4490 (loc, Pmode))
4491 loc = copy_to_mode_reg (Pmode, loc);
4493 emit_jump_insn (gen_indirect_jump (loc));
4494 emit_barrier ();
4497 #ifdef HAVE_conditional_move
4499 /* Emit a conditional move instruction if the machine supports one for that
4500 condition and machine mode.
4502 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4503 the mode to use should they be constants. If it is VOIDmode, they cannot
4504 both be constants.
4506 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4507 should be stored there. MODE is the mode to use should they be constants.
4508 If it is VOIDmode, they cannot both be constants.
4510 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4511 is not supported. */
4514 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4515 enum machine_mode cmode, rtx op2, rtx op3,
4516 enum machine_mode mode, int unsignedp)
4518 rtx tem, subtarget, comparison, insn;
4519 enum insn_code icode;
4520 enum rtx_code reversed;
4522 /* If one operand is constant, make it the second one. Only do this
4523 if the other operand is not constant as well. */
4525 if (swap_commutative_operands_p (op0, op1))
4527 tem = op0;
4528 op0 = op1;
4529 op1 = tem;
4530 code = swap_condition (code);
4533 /* get_condition will prefer to generate LT and GT even if the old
4534 comparison was against zero, so undo that canonicalization here since
4535 comparisons against zero are cheaper. */
4536 if (code == LT && op1 == const1_rtx)
4537 code = LE, op1 = const0_rtx;
4538 else if (code == GT && op1 == constm1_rtx)
4539 code = GE, op1 = const0_rtx;
4541 if (cmode == VOIDmode)
4542 cmode = GET_MODE (op0);
4544 if (swap_commutative_operands_p (op2, op3)
4545 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4546 != UNKNOWN))
4548 tem = op2;
4549 op2 = op3;
4550 op3 = tem;
4551 code = reversed;
4554 if (mode == VOIDmode)
4555 mode = GET_MODE (op2);
4557 icode = movcc_gen_code[mode];
4559 if (icode == CODE_FOR_nothing)
4560 return 0;
4562 if (!target)
4563 target = gen_reg_rtx (mode);
4565 subtarget = target;
4567 /* If the insn doesn't accept these operands, put them in pseudos. */
4569 if (!insn_data[icode].operand[0].predicate
4570 (subtarget, insn_data[icode].operand[0].mode))
4571 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4573 if (!insn_data[icode].operand[2].predicate
4574 (op2, insn_data[icode].operand[2].mode))
4575 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4577 if (!insn_data[icode].operand[3].predicate
4578 (op3, insn_data[icode].operand[3].mode))
4579 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4581 /* Everything should now be in the suitable form. */
4583 code = unsignedp ? unsigned_condition (code) : code;
4584 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4586 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4587 return NULL and let the caller figure out how best to deal with this
4588 situation. */
4589 if (!COMPARISON_P (comparison))
4590 return NULL_RTX;
4592 do_pending_stack_adjust ();
4593 start_sequence ();
4594 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4595 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4596 &comparison, &cmode);
4597 if (!comparison)
4598 insn = NULL_RTX;
4599 else
4600 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4602 /* If that failed, then give up. */
4603 if (insn == 0)
4605 end_sequence ();
4606 return 0;
4609 emit_insn (insn);
4610 insn = get_insns ();
4611 end_sequence ();
4612 emit_insn (insn);
4613 if (subtarget != target)
4614 convert_move (target, subtarget, 0);
4616 return target;
4619 /* Return nonzero if a conditional move of mode MODE is supported.
4621 This function is for combine so it can tell whether an insn that looks
4622 like a conditional move is actually supported by the hardware. If we
4623 guess wrong we lose a bit on optimization, but that's it. */
4624 /* ??? sparc64 supports conditionally moving integers values based on fp
4625 comparisons, and vice versa. How do we handle them? */
4628 can_conditionally_move_p (enum machine_mode mode)
4630 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4631 return 1;
4633 return 0;
4636 #endif /* HAVE_conditional_move */
4638 /* Emit a conditional addition instruction if the machine supports one for that
4639 condition and machine mode.
4641 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4642 the mode to use should they be constants. If it is VOIDmode, they cannot
4643 both be constants.
4645 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4646 should be stored there. MODE is the mode to use should they be constants.
4647 If it is VOIDmode, they cannot both be constants.
4649 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4650 is not supported. */
4653 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4654 enum machine_mode cmode, rtx op2, rtx op3,
4655 enum machine_mode mode, int unsignedp)
4657 rtx tem, subtarget, comparison, insn;
4658 enum insn_code icode;
4659 enum rtx_code reversed;
4661 /* If one operand is constant, make it the second one. Only do this
4662 if the other operand is not constant as well. */
4664 if (swap_commutative_operands_p (op0, op1))
4666 tem = op0;
4667 op0 = op1;
4668 op1 = tem;
4669 code = swap_condition (code);
4672 /* get_condition will prefer to generate LT and GT even if the old
4673 comparison was against zero, so undo that canonicalization here since
4674 comparisons against zero are cheaper. */
4675 if (code == LT && op1 == const1_rtx)
4676 code = LE, op1 = const0_rtx;
4677 else if (code == GT && op1 == constm1_rtx)
4678 code = GE, op1 = const0_rtx;
4680 if (cmode == VOIDmode)
4681 cmode = GET_MODE (op0);
4683 if (swap_commutative_operands_p (op2, op3)
4684 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4685 != UNKNOWN))
4687 tem = op2;
4688 op2 = op3;
4689 op3 = tem;
4690 code = reversed;
4693 if (mode == VOIDmode)
4694 mode = GET_MODE (op2);
4696 icode = optab_handler (addcc_optab, mode)->insn_code;
4698 if (icode == CODE_FOR_nothing)
4699 return 0;
4701 if (!target)
4702 target = gen_reg_rtx (mode);
4704 /* If the insn doesn't accept these operands, put them in pseudos. */
4706 if (!insn_data[icode].operand[0].predicate
4707 (target, insn_data[icode].operand[0].mode))
4708 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4709 else
4710 subtarget = target;
4712 if (!insn_data[icode].operand[2].predicate
4713 (op2, insn_data[icode].operand[2].mode))
4714 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4716 if (!insn_data[icode].operand[3].predicate
4717 (op3, insn_data[icode].operand[3].mode))
4718 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4720 /* Everything should now be in the suitable form. */
4722 code = unsignedp ? unsigned_condition (code) : code;
4723 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4725 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4726 return NULL and let the caller figure out how best to deal with this
4727 situation. */
4728 if (!COMPARISON_P (comparison))
4729 return NULL_RTX;
4731 do_pending_stack_adjust ();
4732 start_sequence ();
4733 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4734 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4735 &comparison, &cmode);
4736 if (!comparison)
4737 insn = NULL_RTX;
4738 else
4739 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4741 /* If that failed, then give up. */
4742 if (insn == 0)
4744 end_sequence ();
4745 return 0;
4748 emit_insn (insn);
4749 insn = get_insns ();
4750 end_sequence ();
4751 emit_insn (insn);
4752 if (subtarget != target)
4753 convert_move (target, subtarget, 0);
4755 return target;
4758 /* These functions attempt to generate an insn body, rather than
4759 emitting the insn, but if the gen function already emits them, we
4760 make no attempt to turn them back into naked patterns. */
4762 /* Generate and return an insn body to add Y to X. */
4765 gen_add2_insn (rtx x, rtx y)
4767 int icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4769 gcc_assert (insn_data[icode].operand[0].predicate
4770 (x, insn_data[icode].operand[0].mode));
4771 gcc_assert (insn_data[icode].operand[1].predicate
4772 (x, insn_data[icode].operand[1].mode));
4773 gcc_assert (insn_data[icode].operand[2].predicate
4774 (y, insn_data[icode].operand[2].mode));
4776 return GEN_FCN (icode) (x, x, y);
4779 /* Generate and return an insn body to add r1 and c,
4780 storing the result in r0. */
4783 gen_add3_insn (rtx r0, rtx r1, rtx c)
4785 int icode = (int) optab_handler (add_optab, GET_MODE (r0))->insn_code;
4787 if (icode == CODE_FOR_nothing
4788 || !(insn_data[icode].operand[0].predicate
4789 (r0, insn_data[icode].operand[0].mode))
4790 || !(insn_data[icode].operand[1].predicate
4791 (r1, insn_data[icode].operand[1].mode))
4792 || !(insn_data[icode].operand[2].predicate
4793 (c, insn_data[icode].operand[2].mode)))
4794 return NULL_RTX;
4796 return GEN_FCN (icode) (r0, r1, c);
4800 have_add2_insn (rtx x, rtx y)
4802 int icode;
4804 gcc_assert (GET_MODE (x) != VOIDmode);
4806 icode = (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
4808 if (icode == CODE_FOR_nothing)
4809 return 0;
4811 if (!(insn_data[icode].operand[0].predicate
4812 (x, insn_data[icode].operand[0].mode))
4813 || !(insn_data[icode].operand[1].predicate
4814 (x, insn_data[icode].operand[1].mode))
4815 || !(insn_data[icode].operand[2].predicate
4816 (y, insn_data[icode].operand[2].mode)))
4817 return 0;
4819 return 1;
4822 /* Generate and return an insn body to subtract Y from X. */
4825 gen_sub2_insn (rtx x, rtx y)
4827 int icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4829 gcc_assert (insn_data[icode].operand[0].predicate
4830 (x, insn_data[icode].operand[0].mode));
4831 gcc_assert (insn_data[icode].operand[1].predicate
4832 (x, insn_data[icode].operand[1].mode));
4833 gcc_assert (insn_data[icode].operand[2].predicate
4834 (y, insn_data[icode].operand[2].mode));
4836 return GEN_FCN (icode) (x, x, y);
4839 /* Generate and return an insn body to subtract r1 and c,
4840 storing the result in r0. */
4843 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4845 int icode = (int) optab_handler (sub_optab, GET_MODE (r0))->insn_code;
4847 if (icode == CODE_FOR_nothing
4848 || !(insn_data[icode].operand[0].predicate
4849 (r0, insn_data[icode].operand[0].mode))
4850 || !(insn_data[icode].operand[1].predicate
4851 (r1, insn_data[icode].operand[1].mode))
4852 || !(insn_data[icode].operand[2].predicate
4853 (c, insn_data[icode].operand[2].mode)))
4854 return NULL_RTX;
4856 return GEN_FCN (icode) (r0, r1, c);
4860 have_sub2_insn (rtx x, rtx y)
4862 int icode;
4864 gcc_assert (GET_MODE (x) != VOIDmode);
4866 icode = (int) optab_handler (sub_optab, GET_MODE (x))->insn_code;
4868 if (icode == CODE_FOR_nothing)
4869 return 0;
4871 if (!(insn_data[icode].operand[0].predicate
4872 (x, insn_data[icode].operand[0].mode))
4873 || !(insn_data[icode].operand[1].predicate
4874 (x, insn_data[icode].operand[1].mode))
4875 || !(insn_data[icode].operand[2].predicate
4876 (y, insn_data[icode].operand[2].mode)))
4877 return 0;
4879 return 1;
4882 /* Generate the body of an instruction to copy Y into X.
4883 It may be a list of insns, if one insn isn't enough. */
4886 gen_move_insn (rtx x, rtx y)
4888 rtx seq;
4890 start_sequence ();
4891 emit_move_insn_1 (x, y);
4892 seq = get_insns ();
4893 end_sequence ();
4894 return seq;
4897 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4898 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4899 no such operation exists, CODE_FOR_nothing will be returned. */
4901 enum insn_code
4902 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4903 int unsignedp)
4905 convert_optab tab;
4906 #ifdef HAVE_ptr_extend
4907 if (unsignedp < 0)
4908 return CODE_FOR_ptr_extend;
4909 #endif
4911 tab = unsignedp ? zext_optab : sext_optab;
4912 return convert_optab_handler (tab, to_mode, from_mode)->insn_code;
4915 /* Generate the body of an insn to extend Y (with mode MFROM)
4916 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4919 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4920 enum machine_mode mfrom, int unsignedp)
4922 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4923 return GEN_FCN (icode) (x, y);
4926 /* can_fix_p and can_float_p say whether the target machine
4927 can directly convert a given fixed point type to
4928 a given floating point type, or vice versa.
4929 The returned value is the CODE_FOR_... value to use,
4930 or CODE_FOR_nothing if these modes cannot be directly converted.
4932 *TRUNCP_PTR is set to 1 if it is necessary to output
4933 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4935 static enum insn_code
4936 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4937 int unsignedp, int *truncp_ptr)
4939 convert_optab tab;
4940 enum insn_code icode;
4942 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4943 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4944 if (icode != CODE_FOR_nothing)
4946 *truncp_ptr = 0;
4947 return icode;
4950 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4951 for this to work. We need to rework the fix* and ftrunc* patterns
4952 and documentation. */
4953 tab = unsignedp ? ufix_optab : sfix_optab;
4954 icode = convert_optab_handler (tab, fixmode, fltmode)->insn_code;
4955 if (icode != CODE_FOR_nothing
4956 && optab_handler (ftrunc_optab, fltmode)->insn_code != CODE_FOR_nothing)
4958 *truncp_ptr = 1;
4959 return icode;
4962 *truncp_ptr = 0;
4963 return CODE_FOR_nothing;
4966 static enum insn_code
4967 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4968 int unsignedp)
4970 convert_optab tab;
4972 tab = unsignedp ? ufloat_optab : sfloat_optab;
4973 return convert_optab_handler (tab, fltmode, fixmode)->insn_code;
4976 /* Generate code to convert FROM to floating point
4977 and store in TO. FROM must be fixed point and not VOIDmode.
4978 UNSIGNEDP nonzero means regard FROM as unsigned.
4979 Normally this is done by correcting the final value
4980 if it is negative. */
4982 void
4983 expand_float (rtx to, rtx from, int unsignedp)
4985 enum insn_code icode;
4986 rtx target = to;
4987 enum machine_mode fmode, imode;
4988 bool can_do_signed = false;
4990 /* Crash now, because we won't be able to decide which mode to use. */
4991 gcc_assert (GET_MODE (from) != VOIDmode);
4993 /* Look for an insn to do the conversion. Do it in the specified
4994 modes if possible; otherwise convert either input, output or both to
4995 wider mode. If the integer mode is wider than the mode of FROM,
4996 we can do the conversion signed even if the input is unsigned. */
4998 for (fmode = GET_MODE (to); fmode != VOIDmode;
4999 fmode = GET_MODE_WIDER_MODE (fmode))
5000 for (imode = GET_MODE (from); imode != VOIDmode;
5001 imode = GET_MODE_WIDER_MODE (imode))
5003 int doing_unsigned = unsignedp;
5005 if (fmode != GET_MODE (to)
5006 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
5007 continue;
5009 icode = can_float_p (fmode, imode, unsignedp);
5010 if (icode == CODE_FOR_nothing && unsignedp)
5012 enum insn_code scode = can_float_p (fmode, imode, 0);
5013 if (scode != CODE_FOR_nothing)
5014 can_do_signed = true;
5015 if (imode != GET_MODE (from))
5016 icode = scode, doing_unsigned = 0;
5019 if (icode != CODE_FOR_nothing)
5021 if (imode != GET_MODE (from))
5022 from = convert_to_mode (imode, from, unsignedp);
5024 if (fmode != GET_MODE (to))
5025 target = gen_reg_rtx (fmode);
5027 emit_unop_insn (icode, target, from,
5028 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5030 if (target != to)
5031 convert_move (to, target, 0);
5032 return;
5036 /* Unsigned integer, and no way to convert directly. Convert as signed,
5037 then unconditionally adjust the result. */
5038 if (unsignedp && can_do_signed)
5040 rtx label = gen_label_rtx ();
5041 rtx temp;
5042 REAL_VALUE_TYPE offset;
5044 /* Look for a usable floating mode FMODE wider than the source and at
5045 least as wide as the target. Using FMODE will avoid rounding woes
5046 with unsigned values greater than the signed maximum value. */
5048 for (fmode = GET_MODE (to); fmode != VOIDmode;
5049 fmode = GET_MODE_WIDER_MODE (fmode))
5050 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5051 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5052 break;
5054 if (fmode == VOIDmode)
5056 /* There is no such mode. Pretend the target is wide enough. */
5057 fmode = GET_MODE (to);
5059 /* Avoid double-rounding when TO is narrower than FROM. */
5060 if ((significand_size (fmode) + 1)
5061 < GET_MODE_BITSIZE (GET_MODE (from)))
5063 rtx temp1;
5064 rtx neglabel = gen_label_rtx ();
5066 /* Don't use TARGET if it isn't a register, is a hard register,
5067 or is the wrong mode. */
5068 if (!REG_P (target)
5069 || REGNO (target) < FIRST_PSEUDO_REGISTER
5070 || GET_MODE (target) != fmode)
5071 target = gen_reg_rtx (fmode);
5073 imode = GET_MODE (from);
5074 do_pending_stack_adjust ();
5076 /* Test whether the sign bit is set. */
5077 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5078 0, neglabel);
5080 /* The sign bit is not set. Convert as signed. */
5081 expand_float (target, from, 0);
5082 emit_jump_insn (gen_jump (label));
5083 emit_barrier ();
5085 /* The sign bit is set.
5086 Convert to a usable (positive signed) value by shifting right
5087 one bit, while remembering if a nonzero bit was shifted
5088 out; i.e., compute (from & 1) | (from >> 1). */
5090 emit_label (neglabel);
5091 temp = expand_binop (imode, and_optab, from, const1_rtx,
5092 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5093 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
5094 NULL_RTX, 1);
5095 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5096 OPTAB_LIB_WIDEN);
5097 expand_float (target, temp, 0);
5099 /* Multiply by 2 to undo the shift above. */
5100 temp = expand_binop (fmode, add_optab, target, target,
5101 target, 0, OPTAB_LIB_WIDEN);
5102 if (temp != target)
5103 emit_move_insn (target, temp);
5105 do_pending_stack_adjust ();
5106 emit_label (label);
5107 goto done;
5111 /* If we are about to do some arithmetic to correct for an
5112 unsigned operand, do it in a pseudo-register. */
5114 if (GET_MODE (to) != fmode
5115 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5116 target = gen_reg_rtx (fmode);
5118 /* Convert as signed integer to floating. */
5119 expand_float (target, from, 0);
5121 /* If FROM is negative (and therefore TO is negative),
5122 correct its value by 2**bitwidth. */
5124 do_pending_stack_adjust ();
5125 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5126 0, label);
5129 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)), fmode);
5130 temp = expand_binop (fmode, add_optab, target,
5131 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5132 target, 0, OPTAB_LIB_WIDEN);
5133 if (temp != target)
5134 emit_move_insn (target, temp);
5136 do_pending_stack_adjust ();
5137 emit_label (label);
5138 goto done;
5141 /* No hardware instruction available; call a library routine. */
5143 rtx libfunc;
5144 rtx insns;
5145 rtx value;
5146 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5148 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5149 from = convert_to_mode (SImode, from, unsignedp);
5151 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5152 gcc_assert (libfunc);
5154 start_sequence ();
5156 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5157 GET_MODE (to), 1, from,
5158 GET_MODE (from));
5159 insns = get_insns ();
5160 end_sequence ();
5162 emit_libcall_block (insns, target, value,
5163 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5164 GET_MODE (to), from));
5167 done:
5169 /* Copy result to requested destination
5170 if we have been computing in a temp location. */
5172 if (target != to)
5174 if (GET_MODE (target) == GET_MODE (to))
5175 emit_move_insn (to, target);
5176 else
5177 convert_move (to, target, 0);
5181 /* Generate code to convert FROM to fixed point and store in TO. FROM
5182 must be floating point. */
5184 void
5185 expand_fix (rtx to, rtx from, int unsignedp)
5187 enum insn_code icode;
5188 rtx target = to;
5189 enum machine_mode fmode, imode;
5190 int must_trunc = 0;
5192 /* We first try to find a pair of modes, one real and one integer, at
5193 least as wide as FROM and TO, respectively, in which we can open-code
5194 this conversion. If the integer mode is wider than the mode of TO,
5195 we can do the conversion either signed or unsigned. */
5197 for (fmode = GET_MODE (from); fmode != VOIDmode;
5198 fmode = GET_MODE_WIDER_MODE (fmode))
5199 for (imode = GET_MODE (to); imode != VOIDmode;
5200 imode = GET_MODE_WIDER_MODE (imode))
5202 int doing_unsigned = unsignedp;
5204 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5205 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5206 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5208 if (icode != CODE_FOR_nothing)
5210 rtx last = get_last_insn ();
5211 if (fmode != GET_MODE (from))
5212 from = convert_to_mode (fmode, from, 0);
5214 if (must_trunc)
5216 rtx temp = gen_reg_rtx (GET_MODE (from));
5217 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5218 temp, 0);
5221 if (imode != GET_MODE (to))
5222 target = gen_reg_rtx (imode);
5224 if (maybe_emit_unop_insn (icode, target, from,
5225 doing_unsigned ? UNSIGNED_FIX : FIX))
5227 if (target != to)
5228 convert_move (to, target, unsignedp);
5229 return;
5231 delete_insns_since (last);
5235 /* For an unsigned conversion, there is one more way to do it.
5236 If we have a signed conversion, we generate code that compares
5237 the real value to the largest representable positive number. If if
5238 is smaller, the conversion is done normally. Otherwise, subtract
5239 one plus the highest signed number, convert, and add it back.
5241 We only need to check all real modes, since we know we didn't find
5242 anything with a wider integer mode.
5244 This code used to extend FP value into mode wider than the destination.
5245 This is needed for decimal float modes which cannot accurately
5246 represent one plus the highest signed number of the same size, but
5247 not for binary modes. Consider, for instance conversion from SFmode
5248 into DImode.
5250 The hot path through the code is dealing with inputs smaller than 2^63
5251 and doing just the conversion, so there is no bits to lose.
5253 In the other path we know the value is positive in the range 2^63..2^64-1
5254 inclusive. (as for other input overflow happens and result is undefined)
5255 So we know that the most important bit set in mantissa corresponds to
5256 2^63. The subtraction of 2^63 should not generate any rounding as it
5257 simply clears out that bit. The rest is trivial. */
5259 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5260 for (fmode = GET_MODE (from); fmode != VOIDmode;
5261 fmode = GET_MODE_WIDER_MODE (fmode))
5262 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5263 && (!DECIMAL_FLOAT_MODE_P (fmode)
5264 || GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))))
5266 int bitsize;
5267 REAL_VALUE_TYPE offset;
5268 rtx limit, lab1, lab2, insn;
5270 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5271 real_2expN (&offset, bitsize - 1, fmode);
5272 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5273 lab1 = gen_label_rtx ();
5274 lab2 = gen_label_rtx ();
5276 if (fmode != GET_MODE (from))
5277 from = convert_to_mode (fmode, from, 0);
5279 /* See if we need to do the subtraction. */
5280 do_pending_stack_adjust ();
5281 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5282 0, lab1);
5284 /* If not, do the signed "fix" and branch around fixup code. */
5285 expand_fix (to, from, 0);
5286 emit_jump_insn (gen_jump (lab2));
5287 emit_barrier ();
5289 /* Otherwise, subtract 2**(N-1), convert to signed number,
5290 then add 2**(N-1). Do the addition using XOR since this
5291 will often generate better code. */
5292 emit_label (lab1);
5293 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5294 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5295 expand_fix (to, target, 0);
5296 target = expand_binop (GET_MODE (to), xor_optab, to,
5297 gen_int_mode
5298 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5299 GET_MODE (to)),
5300 to, 1, OPTAB_LIB_WIDEN);
5302 if (target != to)
5303 emit_move_insn (to, target);
5305 emit_label (lab2);
5307 if (optab_handler (mov_optab, GET_MODE (to))->insn_code
5308 != CODE_FOR_nothing)
5310 /* Make a place for a REG_NOTE and add it. */
5311 insn = emit_move_insn (to, to);
5312 set_unique_reg_note (insn,
5313 REG_EQUAL,
5314 gen_rtx_fmt_e (UNSIGNED_FIX,
5315 GET_MODE (to),
5316 copy_rtx (from)));
5319 return;
5322 /* We can't do it with an insn, so use a library call. But first ensure
5323 that the mode of TO is at least as wide as SImode, since those are the
5324 only library calls we know about. */
5326 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5328 target = gen_reg_rtx (SImode);
5330 expand_fix (target, from, unsignedp);
5332 else
5334 rtx insns;
5335 rtx value;
5336 rtx libfunc;
5338 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5339 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5340 gcc_assert (libfunc);
5342 start_sequence ();
5344 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5345 GET_MODE (to), 1, from,
5346 GET_MODE (from));
5347 insns = get_insns ();
5348 end_sequence ();
5350 emit_libcall_block (insns, target, value,
5351 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5352 GET_MODE (to), from));
5355 if (target != to)
5357 if (GET_MODE (to) == GET_MODE (target))
5358 emit_move_insn (to, target);
5359 else
5360 convert_move (to, target, 0);
5364 /* Generate code to convert FROM or TO a fixed-point.
5365 If UINTP is true, either TO or FROM is an unsigned integer.
5366 If SATP is true, we need to saturate the result. */
5368 void
5369 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5371 enum machine_mode to_mode = GET_MODE (to);
5372 enum machine_mode from_mode = GET_MODE (from);
5373 convert_optab tab;
5374 enum rtx_code this_code;
5375 enum insn_code code;
5376 rtx insns, value;
5377 rtx libfunc;
5379 if (to_mode == from_mode)
5381 emit_move_insn (to, from);
5382 return;
5385 if (uintp)
5387 tab = satp ? satfractuns_optab : fractuns_optab;
5388 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5390 else
5392 tab = satp ? satfract_optab : fract_optab;
5393 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5395 code = tab->handlers[to_mode][from_mode].insn_code;
5396 if (code != CODE_FOR_nothing)
5398 emit_unop_insn (code, to, from, this_code);
5399 return;
5402 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5403 gcc_assert (libfunc);
5405 start_sequence ();
5406 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5407 1, from, from_mode);
5408 insns = get_insns ();
5409 end_sequence ();
5411 emit_libcall_block (insns, to, value,
5412 gen_rtx_fmt_e (tab->code, to_mode, from));
5415 /* Generate code to convert FROM to fixed point and store in TO. FROM
5416 must be floating point, TO must be signed. Use the conversion optab
5417 TAB to do the conversion. */
5419 bool
5420 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5422 enum insn_code icode;
5423 rtx target = to;
5424 enum machine_mode fmode, imode;
5426 /* We first try to find a pair of modes, one real and one integer, at
5427 least as wide as FROM and TO, respectively, in which we can open-code
5428 this conversion. If the integer mode is wider than the mode of TO,
5429 we can do the conversion either signed or unsigned. */
5431 for (fmode = GET_MODE (from); fmode != VOIDmode;
5432 fmode = GET_MODE_WIDER_MODE (fmode))
5433 for (imode = GET_MODE (to); imode != VOIDmode;
5434 imode = GET_MODE_WIDER_MODE (imode))
5436 icode = convert_optab_handler (tab, imode, fmode)->insn_code;
5437 if (icode != CODE_FOR_nothing)
5439 rtx last = get_last_insn ();
5440 if (fmode != GET_MODE (from))
5441 from = convert_to_mode (fmode, from, 0);
5443 if (imode != GET_MODE (to))
5444 target = gen_reg_rtx (imode);
5446 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5448 delete_insns_since (last);
5449 continue;
5451 if (target != to)
5452 convert_move (to, target, 0);
5453 return true;
5457 return false;
5460 /* Report whether we have an instruction to perform the operation
5461 specified by CODE on operands of mode MODE. */
5463 have_insn_for (enum rtx_code code, enum machine_mode mode)
5465 return (code_to_optab[(int) code] != 0
5466 && (optab_handler (code_to_optab[(int) code], mode)->insn_code
5467 != CODE_FOR_nothing));
5470 /* Set all insn_code fields to CODE_FOR_nothing. */
5472 static void
5473 init_insn_codes (void)
5475 unsigned int i;
5477 for (i = 0; i < (unsigned int) OTI_MAX; i++)
5479 unsigned int j;
5480 optab op;
5482 op = &optab_table[i];
5483 for (j = 0; j < NUM_MACHINE_MODES; j++)
5484 optab_handler (op, j)->insn_code = CODE_FOR_nothing;
5486 for (i = 0; i < (unsigned int) COI_MAX; i++)
5488 unsigned int j, k;
5489 convert_optab op;
5491 op = &convert_optab_table[i];
5492 for (j = 0; j < NUM_MACHINE_MODES; j++)
5493 for (k = 0; k < NUM_MACHINE_MODES; k++)
5494 convert_optab_handler (op, j, k)->insn_code = CODE_FOR_nothing;
5498 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5499 static inline void
5500 init_optab (optab op, enum rtx_code code)
5502 op->code = code;
5503 code_to_optab[(int) code] = op;
5506 /* Same, but fill in its code as CODE, and do _not_ write it into
5507 the code_to_optab table. */
5508 static inline void
5509 init_optabv (optab op, enum rtx_code code)
5511 op->code = code;
5514 /* Conversion optabs never go in the code_to_optab table. */
5515 static void
5516 init_convert_optab (convert_optab op, enum rtx_code code)
5518 op->code = code;
5521 /* Initialize the libfunc fields of an entire group of entries in some
5522 optab. Each entry is set equal to a string consisting of a leading
5523 pair of underscores followed by a generic operation name followed by
5524 a mode name (downshifted to lowercase) followed by a single character
5525 representing the number of operands for the given operation (which is
5526 usually one of the characters '2', '3', or '4').
5528 OPTABLE is the table in which libfunc fields are to be initialized.
5529 OPNAME is the generic (string) name of the operation.
5530 SUFFIX is the character which specifies the number of operands for
5531 the given generic operation.
5532 MODE is the mode to generate for.
5535 static void
5536 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5538 unsigned opname_len = strlen (opname);
5539 const char *mname = GET_MODE_NAME (mode);
5540 unsigned mname_len = strlen (mname);
5541 char *libfunc_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5542 char *p;
5543 const char *q;
5545 p = libfunc_name;
5546 *p++ = '_';
5547 *p++ = '_';
5548 for (q = opname; *q; )
5549 *p++ = *q++;
5550 for (q = mname; *q; q++)
5551 *p++ = TOLOWER (*q);
5552 *p++ = suffix;
5553 *p = '\0';
5555 set_optab_libfunc (optable, mode,
5556 ggc_alloc_string (libfunc_name, p - libfunc_name));
5559 /* Like gen_libfunc, but verify that integer operation is involved. */
5561 static void
5562 gen_int_libfunc (optab optable, const char *opname, char suffix,
5563 enum machine_mode mode)
5565 int maxsize = 2 * BITS_PER_WORD;
5567 if (GET_MODE_CLASS (mode) != MODE_INT)
5568 return;
5569 if (maxsize < LONG_LONG_TYPE_SIZE)
5570 maxsize = LONG_LONG_TYPE_SIZE;
5571 if (GET_MODE_CLASS (mode) != MODE_INT
5572 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5573 return;
5574 gen_libfunc (optable, opname, suffix, mode);
5577 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5579 static void
5580 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5581 enum machine_mode mode)
5583 char *dec_opname;
5585 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5586 gen_libfunc (optable, opname, suffix, mode);
5587 if (DECIMAL_FLOAT_MODE_P (mode))
5589 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5590 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5591 depending on the low level floating format used. */
5592 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5593 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5594 gen_libfunc (optable, dec_opname, suffix, mode);
5598 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5600 static void
5601 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5602 enum machine_mode mode)
5604 if (!ALL_FIXED_POINT_MODE_P (mode))
5605 return;
5606 gen_libfunc (optable, opname, suffix, mode);
5609 /* Like gen_libfunc, but verify that signed fixed-point operation is
5610 involved. */
5612 static void
5613 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5614 enum machine_mode mode)
5616 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5617 return;
5618 gen_libfunc (optable, opname, suffix, mode);
5621 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5622 involved. */
5624 static void
5625 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5626 enum machine_mode mode)
5628 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5629 return;
5630 gen_libfunc (optable, opname, suffix, mode);
5633 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5635 static void
5636 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5637 enum machine_mode mode)
5639 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5640 gen_fp_libfunc (optable, name, suffix, mode);
5641 if (INTEGRAL_MODE_P (mode))
5642 gen_int_libfunc (optable, name, suffix, mode);
5645 /* Like gen_libfunc, but verify that FP or INT operation is involved
5646 and add 'v' suffix for integer operation. */
5648 static void
5649 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5650 enum machine_mode mode)
5652 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5653 gen_fp_libfunc (optable, name, suffix, mode);
5654 if (GET_MODE_CLASS (mode) == MODE_INT)
5656 int len = strlen (name);
5657 char *v_name = XALLOCAVEC (char, len + 2);
5658 strcpy (v_name, name);
5659 v_name[len] = 'v';
5660 v_name[len + 1] = 0;
5661 gen_int_libfunc (optable, v_name, suffix, mode);
5665 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5666 involved. */
5668 static void
5669 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5670 enum machine_mode mode)
5672 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5673 gen_fp_libfunc (optable, name, suffix, mode);
5674 if (INTEGRAL_MODE_P (mode))
5675 gen_int_libfunc (optable, name, suffix, mode);
5676 if (ALL_FIXED_POINT_MODE_P (mode))
5677 gen_fixed_libfunc (optable, name, suffix, mode);
5680 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5681 involved. */
5683 static void
5684 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5685 enum machine_mode mode)
5687 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5688 gen_fp_libfunc (optable, name, suffix, mode);
5689 if (INTEGRAL_MODE_P (mode))
5690 gen_int_libfunc (optable, name, suffix, mode);
5691 if (SIGNED_FIXED_POINT_MODE_P (mode))
5692 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5695 /* Like gen_libfunc, but verify that INT or FIXED operation is
5696 involved. */
5698 static void
5699 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5700 enum machine_mode mode)
5702 if (INTEGRAL_MODE_P (mode))
5703 gen_int_libfunc (optable, name, suffix, mode);
5704 if (ALL_FIXED_POINT_MODE_P (mode))
5705 gen_fixed_libfunc (optable, name, suffix, mode);
5708 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5709 involved. */
5711 static void
5712 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5713 enum machine_mode mode)
5715 if (INTEGRAL_MODE_P (mode))
5716 gen_int_libfunc (optable, name, suffix, mode);
5717 if (SIGNED_FIXED_POINT_MODE_P (mode))
5718 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5721 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5722 involved. */
5724 static void
5725 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5726 enum machine_mode mode)
5728 if (INTEGRAL_MODE_P (mode))
5729 gen_int_libfunc (optable, name, suffix, mode);
5730 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5731 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5734 /* Initialize the libfunc fields of an entire group of entries of an
5735 inter-mode-class conversion optab. The string formation rules are
5736 similar to the ones for init_libfuncs, above, but instead of having
5737 a mode name and an operand count these functions have two mode names
5738 and no operand count. */
5740 static void
5741 gen_interclass_conv_libfunc (convert_optab tab,
5742 const char *opname,
5743 enum machine_mode tmode,
5744 enum machine_mode fmode)
5746 size_t opname_len = strlen (opname);
5747 size_t mname_len = 0;
5749 const char *fname, *tname;
5750 const char *q;
5751 char *libfunc_name, *suffix;
5752 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5753 char *p;
5755 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5756 depends on which underlying decimal floating point format is used. */
5757 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5759 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5761 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5762 nondec_name[0] = '_';
5763 nondec_name[1] = '_';
5764 memcpy (&nondec_name[2], opname, opname_len);
5765 nondec_suffix = nondec_name + opname_len + 2;
5767 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5768 dec_name[0] = '_';
5769 dec_name[1] = '_';
5770 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5771 memcpy (&dec_name[2+dec_len], opname, opname_len);
5772 dec_suffix = dec_name + dec_len + opname_len + 2;
5774 fname = GET_MODE_NAME (fmode);
5775 tname = GET_MODE_NAME (tmode);
5777 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5779 libfunc_name = dec_name;
5780 suffix = dec_suffix;
5782 else
5784 libfunc_name = nondec_name;
5785 suffix = nondec_suffix;
5788 p = suffix;
5789 for (q = fname; *q; p++, q++)
5790 *p = TOLOWER (*q);
5791 for (q = tname; *q; p++, q++)
5792 *p = TOLOWER (*q);
5794 *p = '\0';
5796 set_conv_libfunc (tab, tmode, fmode,
5797 ggc_alloc_string (libfunc_name, p - libfunc_name));
5800 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5801 int->fp conversion. */
5803 static void
5804 gen_int_to_fp_conv_libfunc (convert_optab tab,
5805 const char *opname,
5806 enum machine_mode tmode,
5807 enum machine_mode fmode)
5809 if (GET_MODE_CLASS (fmode) != MODE_INT)
5810 return;
5811 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5812 return;
5813 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5816 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5817 naming scheme. */
5819 static void
5820 gen_ufloat_conv_libfunc (convert_optab tab,
5821 const char *opname ATTRIBUTE_UNUSED,
5822 enum machine_mode tmode,
5823 enum machine_mode fmode)
5825 if (DECIMAL_FLOAT_MODE_P (tmode))
5826 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5827 else
5828 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5831 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5832 fp->int conversion. */
5834 static void
5835 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5836 const char *opname,
5837 enum machine_mode tmode,
5838 enum machine_mode fmode)
5840 if (GET_MODE_CLASS (fmode) != MODE_INT)
5841 return;
5842 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5843 return;
5844 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5847 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5848 fp->int conversion with no decimal floating point involved. */
5850 static void
5851 gen_fp_to_int_conv_libfunc (convert_optab tab,
5852 const char *opname,
5853 enum machine_mode tmode,
5854 enum machine_mode fmode)
5856 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5857 return;
5858 if (GET_MODE_CLASS (tmode) != MODE_INT)
5859 return;
5860 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5863 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5864 The string formation rules are
5865 similar to the ones for init_libfunc, above. */
5867 static void
5868 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5869 enum machine_mode tmode, enum machine_mode fmode)
5871 size_t opname_len = strlen (opname);
5872 size_t mname_len = 0;
5874 const char *fname, *tname;
5875 const char *q;
5876 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5877 char *libfunc_name, *suffix;
5878 char *p;
5880 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5881 depends on which underlying decimal floating point format is used. */
5882 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5884 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5886 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5887 nondec_name[0] = '_';
5888 nondec_name[1] = '_';
5889 memcpy (&nondec_name[2], opname, opname_len);
5890 nondec_suffix = nondec_name + opname_len + 2;
5892 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5893 dec_name[0] = '_';
5894 dec_name[1] = '_';
5895 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5896 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5897 dec_suffix = dec_name + dec_len + opname_len + 2;
5899 fname = GET_MODE_NAME (fmode);
5900 tname = GET_MODE_NAME (tmode);
5902 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5904 libfunc_name = dec_name;
5905 suffix = dec_suffix;
5907 else
5909 libfunc_name = nondec_name;
5910 suffix = nondec_suffix;
5913 p = suffix;
5914 for (q = fname; *q; p++, q++)
5915 *p = TOLOWER (*q);
5916 for (q = tname; *q; p++, q++)
5917 *p = TOLOWER (*q);
5919 *p++ = '2';
5920 *p = '\0';
5922 set_conv_libfunc (tab, tmode, fmode,
5923 ggc_alloc_string (libfunc_name, p - libfunc_name));
5926 /* Pick proper libcall for trunc_optab. We need to chose if we do
5927 truncation or extension and interclass or intraclass. */
5929 static void
5930 gen_trunc_conv_libfunc (convert_optab tab,
5931 const char *opname,
5932 enum machine_mode tmode,
5933 enum machine_mode fmode)
5935 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5936 return;
5937 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5938 return;
5939 if (tmode == fmode)
5940 return;
5942 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5943 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5944 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5946 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5947 return;
5949 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5950 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5951 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5952 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5955 /* Pick proper libcall for extend_optab. We need to chose if we do
5956 truncation or extension and interclass or intraclass. */
5958 static void
5959 gen_extend_conv_libfunc (convert_optab tab,
5960 const char *opname ATTRIBUTE_UNUSED,
5961 enum machine_mode tmode,
5962 enum machine_mode fmode)
5964 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5965 return;
5966 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5967 return;
5968 if (tmode == fmode)
5969 return;
5971 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5972 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5973 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5975 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5976 return;
5978 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5979 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5980 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5981 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5984 /* Pick proper libcall for fract_optab. We need to chose if we do
5985 interclass or intraclass. */
5987 static void
5988 gen_fract_conv_libfunc (convert_optab tab,
5989 const char *opname,
5990 enum machine_mode tmode,
5991 enum machine_mode fmode)
5993 if (tmode == fmode)
5994 return;
5995 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5996 return;
5998 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5999 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6000 else
6001 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6004 /* Pick proper libcall for fractuns_optab. */
6006 static void
6007 gen_fractuns_conv_libfunc (convert_optab tab,
6008 const char *opname,
6009 enum machine_mode tmode,
6010 enum machine_mode fmode)
6012 if (tmode == fmode)
6013 return;
6014 /* One mode must be a fixed-point mode, and the other must be an integer
6015 mode. */
6016 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6017 || (ALL_FIXED_POINT_MODE_P (fmode)
6018 && GET_MODE_CLASS (tmode) == MODE_INT)))
6019 return;
6021 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6024 /* Pick proper libcall for satfract_optab. We need to chose if we do
6025 interclass or intraclass. */
6027 static void
6028 gen_satfract_conv_libfunc (convert_optab tab,
6029 const char *opname,
6030 enum machine_mode tmode,
6031 enum machine_mode fmode)
6033 if (tmode == fmode)
6034 return;
6035 /* TMODE must be a fixed-point mode. */
6036 if (!ALL_FIXED_POINT_MODE_P (tmode))
6037 return;
6039 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6040 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6041 else
6042 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6045 /* Pick proper libcall for satfractuns_optab. */
6047 static void
6048 gen_satfractuns_conv_libfunc (convert_optab tab,
6049 const char *opname,
6050 enum machine_mode tmode,
6051 enum machine_mode fmode)
6053 if (tmode == fmode)
6054 return;
6055 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6056 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6057 return;
6059 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6062 /* A table of previously-created libfuncs, hashed by name. */
6063 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6065 /* Hashtable callbacks for libfunc_decls. */
6067 static hashval_t
6068 libfunc_decl_hash (const void *entry)
6070 return htab_hash_string (IDENTIFIER_POINTER (DECL_NAME ((const_tree) entry)));
6073 static int
6074 libfunc_decl_eq (const void *entry1, const void *entry2)
6076 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6079 /* Build a decl for a libfunc named NAME. */
6081 tree
6082 build_libfunc_function (const char *name)
6084 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6085 get_identifier (name),
6086 build_function_type (integer_type_node, NULL_TREE));
6087 /* ??? We don't have any type information except for this is
6088 a function. Pretend this is "int foo()". */
6089 DECL_ARTIFICIAL (decl) = 1;
6090 DECL_EXTERNAL (decl) = 1;
6091 TREE_PUBLIC (decl) = 1;
6092 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6094 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6095 are the flags assigned by targetm.encode_section_info. */
6096 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6098 return decl;
6102 init_one_libfunc (const char *name)
6104 tree id, decl;
6105 void **slot;
6106 hashval_t hash;
6108 if (libfunc_decls == NULL)
6109 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6110 libfunc_decl_eq, NULL);
6112 /* See if we have already created a libfunc decl for this function. */
6113 id = get_identifier (name);
6114 hash = htab_hash_string (name);
6115 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6116 decl = (tree) *slot;
6117 if (decl == NULL)
6119 /* Create a new decl, so that it can be passed to
6120 targetm.encode_section_info. */
6121 decl = build_libfunc_function (name);
6122 *slot = decl;
6124 return XEXP (DECL_RTL (decl), 0);
6127 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6130 set_user_assembler_libfunc (const char *name, const char *asmspec)
6132 tree id, decl;
6133 void **slot;
6134 hashval_t hash;
6136 id = get_identifier (name);
6137 hash = htab_hash_string (name);
6138 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6139 gcc_assert (slot);
6140 decl = (tree) *slot;
6141 set_user_assembler_name (decl, asmspec);
6142 return XEXP (DECL_RTL (decl), 0);
6145 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6146 MODE to NAME, which should be either 0 or a string constant. */
6147 void
6148 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6150 rtx val;
6151 struct libfunc_entry e;
6152 struct libfunc_entry **slot;
6153 e.optab = (size_t) (optable - &optab_table[0]);
6154 e.mode1 = mode;
6155 e.mode2 = VOIDmode;
6157 if (name)
6158 val = init_one_libfunc (name);
6159 else
6160 val = 0;
6161 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6162 if (*slot == NULL)
6163 *slot = GGC_NEW (struct libfunc_entry);
6164 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6165 (*slot)->mode1 = mode;
6166 (*slot)->mode2 = VOIDmode;
6167 (*slot)->libfunc = val;
6170 /* Call this to reset the function entry for one conversion optab
6171 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6172 either 0 or a string constant. */
6173 void
6174 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6175 enum machine_mode fmode, const char *name)
6177 rtx val;
6178 struct libfunc_entry e;
6179 struct libfunc_entry **slot;
6180 e.optab = (size_t) (optable - &convert_optab_table[0]);
6181 e.mode1 = tmode;
6182 e.mode2 = fmode;
6184 if (name)
6185 val = init_one_libfunc (name);
6186 else
6187 val = 0;
6188 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6189 if (*slot == NULL)
6190 *slot = GGC_NEW (struct libfunc_entry);
6191 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6192 (*slot)->mode1 = tmode;
6193 (*slot)->mode2 = fmode;
6194 (*slot)->libfunc = val;
6197 /* Call this to initialize the contents of the optabs
6198 appropriately for the current target machine. */
6200 void
6201 init_optabs (void)
6203 unsigned int i;
6204 enum machine_mode int_mode;
6205 static bool reinit;
6207 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6208 /* Start by initializing all tables to contain CODE_FOR_nothing. */
6210 #ifdef HAVE_conditional_move
6211 for (i = 0; i < NUM_MACHINE_MODES; i++)
6212 movcc_gen_code[i] = CODE_FOR_nothing;
6213 #endif
6215 for (i = 0; i < NUM_MACHINE_MODES; i++)
6217 vcond_gen_code[i] = CODE_FOR_nothing;
6218 vcondu_gen_code[i] = CODE_FOR_nothing;
6221 #if GCC_VERSION >= 4000 && HAVE_DESIGNATED_INITIALIZERS
6222 /* We statically initialize the insn_codes with CODE_FOR_nothing. */
6223 if (reinit)
6224 init_insn_codes ();
6225 #else
6226 init_insn_codes ();
6227 #endif
6229 init_optab (add_optab, PLUS);
6230 init_optabv (addv_optab, PLUS);
6231 init_optab (sub_optab, MINUS);
6232 init_optabv (subv_optab, MINUS);
6233 init_optab (ssadd_optab, SS_PLUS);
6234 init_optab (usadd_optab, US_PLUS);
6235 init_optab (sssub_optab, SS_MINUS);
6236 init_optab (ussub_optab, US_MINUS);
6237 init_optab (smul_optab, MULT);
6238 init_optab (ssmul_optab, SS_MULT);
6239 init_optab (usmul_optab, US_MULT);
6240 init_optabv (smulv_optab, MULT);
6241 init_optab (smul_highpart_optab, UNKNOWN);
6242 init_optab (umul_highpart_optab, UNKNOWN);
6243 init_optab (smul_widen_optab, UNKNOWN);
6244 init_optab (umul_widen_optab, UNKNOWN);
6245 init_optab (usmul_widen_optab, UNKNOWN);
6246 init_optab (smadd_widen_optab, UNKNOWN);
6247 init_optab (umadd_widen_optab, UNKNOWN);
6248 init_optab (ssmadd_widen_optab, UNKNOWN);
6249 init_optab (usmadd_widen_optab, UNKNOWN);
6250 init_optab (smsub_widen_optab, UNKNOWN);
6251 init_optab (umsub_widen_optab, UNKNOWN);
6252 init_optab (ssmsub_widen_optab, UNKNOWN);
6253 init_optab (usmsub_widen_optab, UNKNOWN);
6254 init_optab (sdiv_optab, DIV);
6255 init_optab (ssdiv_optab, SS_DIV);
6256 init_optab (usdiv_optab, US_DIV);
6257 init_optabv (sdivv_optab, DIV);
6258 init_optab (sdivmod_optab, UNKNOWN);
6259 init_optab (udiv_optab, UDIV);
6260 init_optab (udivmod_optab, UNKNOWN);
6261 init_optab (smod_optab, MOD);
6262 init_optab (umod_optab, UMOD);
6263 init_optab (fmod_optab, UNKNOWN);
6264 init_optab (remainder_optab, UNKNOWN);
6265 init_optab (ftrunc_optab, UNKNOWN);
6266 init_optab (and_optab, AND);
6267 init_optab (ior_optab, IOR);
6268 init_optab (xor_optab, XOR);
6269 init_optab (ashl_optab, ASHIFT);
6270 init_optab (ssashl_optab, SS_ASHIFT);
6271 init_optab (usashl_optab, US_ASHIFT);
6272 init_optab (ashr_optab, ASHIFTRT);
6273 init_optab (lshr_optab, LSHIFTRT);
6274 init_optab (rotl_optab, ROTATE);
6275 init_optab (rotr_optab, ROTATERT);
6276 init_optab (smin_optab, SMIN);
6277 init_optab (smax_optab, SMAX);
6278 init_optab (umin_optab, UMIN);
6279 init_optab (umax_optab, UMAX);
6280 init_optab (pow_optab, UNKNOWN);
6281 init_optab (atan2_optab, UNKNOWN);
6283 /* These three have codes assigned exclusively for the sake of
6284 have_insn_for. */
6285 init_optab (mov_optab, SET);
6286 init_optab (movstrict_optab, STRICT_LOW_PART);
6287 init_optab (cbranch_optab, COMPARE);
6289 init_optab (cmov_optab, UNKNOWN);
6290 init_optab (cstore_optab, UNKNOWN);
6291 init_optab (ctrap_optab, UNKNOWN);
6293 init_optab (storent_optab, UNKNOWN);
6295 init_optab (cmp_optab, UNKNOWN);
6296 init_optab (ucmp_optab, UNKNOWN);
6298 init_optab (eq_optab, EQ);
6299 init_optab (ne_optab, NE);
6300 init_optab (gt_optab, GT);
6301 init_optab (ge_optab, GE);
6302 init_optab (lt_optab, LT);
6303 init_optab (le_optab, LE);
6304 init_optab (unord_optab, UNORDERED);
6306 init_optab (neg_optab, NEG);
6307 init_optab (ssneg_optab, SS_NEG);
6308 init_optab (usneg_optab, US_NEG);
6309 init_optabv (negv_optab, NEG);
6310 init_optab (abs_optab, ABS);
6311 init_optabv (absv_optab, ABS);
6312 init_optab (addcc_optab, UNKNOWN);
6313 init_optab (one_cmpl_optab, NOT);
6314 init_optab (bswap_optab, BSWAP);
6315 init_optab (ffs_optab, FFS);
6316 init_optab (clz_optab, CLZ);
6317 init_optab (ctz_optab, CTZ);
6318 init_optab (popcount_optab, POPCOUNT);
6319 init_optab (parity_optab, PARITY);
6320 init_optab (sqrt_optab, SQRT);
6321 init_optab (floor_optab, UNKNOWN);
6322 init_optab (ceil_optab, UNKNOWN);
6323 init_optab (round_optab, UNKNOWN);
6324 init_optab (btrunc_optab, UNKNOWN);
6325 init_optab (nearbyint_optab, UNKNOWN);
6326 init_optab (rint_optab, UNKNOWN);
6327 init_optab (sincos_optab, UNKNOWN);
6328 init_optab (sin_optab, UNKNOWN);
6329 init_optab (asin_optab, UNKNOWN);
6330 init_optab (cos_optab, UNKNOWN);
6331 init_optab (acos_optab, UNKNOWN);
6332 init_optab (exp_optab, UNKNOWN);
6333 init_optab (exp10_optab, UNKNOWN);
6334 init_optab (exp2_optab, UNKNOWN);
6335 init_optab (expm1_optab, UNKNOWN);
6336 init_optab (ldexp_optab, UNKNOWN);
6337 init_optab (scalb_optab, UNKNOWN);
6338 init_optab (significand_optab, UNKNOWN);
6339 init_optab (logb_optab, UNKNOWN);
6340 init_optab (ilogb_optab, UNKNOWN);
6341 init_optab (log_optab, UNKNOWN);
6342 init_optab (log10_optab, UNKNOWN);
6343 init_optab (log2_optab, UNKNOWN);
6344 init_optab (log1p_optab, UNKNOWN);
6345 init_optab (tan_optab, UNKNOWN);
6346 init_optab (atan_optab, UNKNOWN);
6347 init_optab (copysign_optab, UNKNOWN);
6348 init_optab (signbit_optab, UNKNOWN);
6350 init_optab (isinf_optab, UNKNOWN);
6352 init_optab (strlen_optab, UNKNOWN);
6353 init_optab (push_optab, UNKNOWN);
6355 init_optab (reduc_smax_optab, UNKNOWN);
6356 init_optab (reduc_umax_optab, UNKNOWN);
6357 init_optab (reduc_smin_optab, UNKNOWN);
6358 init_optab (reduc_umin_optab, UNKNOWN);
6359 init_optab (reduc_splus_optab, UNKNOWN);
6360 init_optab (reduc_uplus_optab, UNKNOWN);
6362 init_optab (ssum_widen_optab, UNKNOWN);
6363 init_optab (usum_widen_optab, UNKNOWN);
6364 init_optab (sdot_prod_optab, UNKNOWN);
6365 init_optab (udot_prod_optab, UNKNOWN);
6367 init_optab (vec_extract_optab, UNKNOWN);
6368 init_optab (vec_extract_even_optab, UNKNOWN);
6369 init_optab (vec_extract_odd_optab, UNKNOWN);
6370 init_optab (vec_interleave_high_optab, UNKNOWN);
6371 init_optab (vec_interleave_low_optab, UNKNOWN);
6372 init_optab (vec_set_optab, UNKNOWN);
6373 init_optab (vec_init_optab, UNKNOWN);
6374 init_optab (vec_shl_optab, UNKNOWN);
6375 init_optab (vec_shr_optab, UNKNOWN);
6376 init_optab (vec_realign_load_optab, UNKNOWN);
6377 init_optab (movmisalign_optab, UNKNOWN);
6378 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6379 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6380 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6381 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6382 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6383 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6384 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6385 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6386 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6387 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6388 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6389 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6390 init_optab (vec_pack_trunc_optab, UNKNOWN);
6391 init_optab (vec_pack_usat_optab, UNKNOWN);
6392 init_optab (vec_pack_ssat_optab, UNKNOWN);
6393 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6394 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6396 init_optab (powi_optab, UNKNOWN);
6398 /* Conversions. */
6399 init_convert_optab (sext_optab, SIGN_EXTEND);
6400 init_convert_optab (zext_optab, ZERO_EXTEND);
6401 init_convert_optab (trunc_optab, TRUNCATE);
6402 init_convert_optab (sfix_optab, FIX);
6403 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6404 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6405 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6406 init_convert_optab (sfloat_optab, FLOAT);
6407 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6408 init_convert_optab (lrint_optab, UNKNOWN);
6409 init_convert_optab (lround_optab, UNKNOWN);
6410 init_convert_optab (lfloor_optab, UNKNOWN);
6411 init_convert_optab (lceil_optab, UNKNOWN);
6413 init_convert_optab (fract_optab, FRACT_CONVERT);
6414 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6415 init_convert_optab (satfract_optab, SAT_FRACT);
6416 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6418 for (i = 0; i < NUM_MACHINE_MODES; i++)
6420 movmem_optab[i] = CODE_FOR_nothing;
6421 cmpstr_optab[i] = CODE_FOR_nothing;
6422 cmpstrn_optab[i] = CODE_FOR_nothing;
6423 cmpmem_optab[i] = CODE_FOR_nothing;
6424 setmem_optab[i] = CODE_FOR_nothing;
6426 sync_add_optab[i] = CODE_FOR_nothing;
6427 sync_sub_optab[i] = CODE_FOR_nothing;
6428 sync_ior_optab[i] = CODE_FOR_nothing;
6429 sync_and_optab[i] = CODE_FOR_nothing;
6430 sync_xor_optab[i] = CODE_FOR_nothing;
6431 sync_nand_optab[i] = CODE_FOR_nothing;
6432 sync_old_add_optab[i] = CODE_FOR_nothing;
6433 sync_old_sub_optab[i] = CODE_FOR_nothing;
6434 sync_old_ior_optab[i] = CODE_FOR_nothing;
6435 sync_old_and_optab[i] = CODE_FOR_nothing;
6436 sync_old_xor_optab[i] = CODE_FOR_nothing;
6437 sync_old_nand_optab[i] = CODE_FOR_nothing;
6438 sync_new_add_optab[i] = CODE_FOR_nothing;
6439 sync_new_sub_optab[i] = CODE_FOR_nothing;
6440 sync_new_ior_optab[i] = CODE_FOR_nothing;
6441 sync_new_and_optab[i] = CODE_FOR_nothing;
6442 sync_new_xor_optab[i] = CODE_FOR_nothing;
6443 sync_new_nand_optab[i] = CODE_FOR_nothing;
6444 sync_compare_and_swap[i] = CODE_FOR_nothing;
6445 sync_lock_test_and_set[i] = CODE_FOR_nothing;
6446 sync_lock_release[i] = CODE_FOR_nothing;
6448 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
6451 /* Fill in the optabs with the insns we support. */
6452 init_all_optabs ();
6454 /* Initialize the optabs with the names of the library functions. */
6455 add_optab->libcall_basename = "add";
6456 add_optab->libcall_suffix = '3';
6457 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6458 addv_optab->libcall_basename = "add";
6459 addv_optab->libcall_suffix = '3';
6460 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6461 ssadd_optab->libcall_basename = "ssadd";
6462 ssadd_optab->libcall_suffix = '3';
6463 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6464 usadd_optab->libcall_basename = "usadd";
6465 usadd_optab->libcall_suffix = '3';
6466 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6467 sub_optab->libcall_basename = "sub";
6468 sub_optab->libcall_suffix = '3';
6469 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6470 subv_optab->libcall_basename = "sub";
6471 subv_optab->libcall_suffix = '3';
6472 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6473 sssub_optab->libcall_basename = "sssub";
6474 sssub_optab->libcall_suffix = '3';
6475 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6476 ussub_optab->libcall_basename = "ussub";
6477 ussub_optab->libcall_suffix = '3';
6478 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6479 smul_optab->libcall_basename = "mul";
6480 smul_optab->libcall_suffix = '3';
6481 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6482 smulv_optab->libcall_basename = "mul";
6483 smulv_optab->libcall_suffix = '3';
6484 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6485 ssmul_optab->libcall_basename = "ssmul";
6486 ssmul_optab->libcall_suffix = '3';
6487 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6488 usmul_optab->libcall_basename = "usmul";
6489 usmul_optab->libcall_suffix = '3';
6490 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6491 sdiv_optab->libcall_basename = "div";
6492 sdiv_optab->libcall_suffix = '3';
6493 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6494 sdivv_optab->libcall_basename = "divv";
6495 sdivv_optab->libcall_suffix = '3';
6496 sdivv_optab->libcall_gen = gen_int_libfunc;
6497 ssdiv_optab->libcall_basename = "ssdiv";
6498 ssdiv_optab->libcall_suffix = '3';
6499 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6500 udiv_optab->libcall_basename = "udiv";
6501 udiv_optab->libcall_suffix = '3';
6502 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6503 usdiv_optab->libcall_basename = "usdiv";
6504 usdiv_optab->libcall_suffix = '3';
6505 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6506 sdivmod_optab->libcall_basename = "divmod";
6507 sdivmod_optab->libcall_suffix = '4';
6508 sdivmod_optab->libcall_gen = gen_int_libfunc;
6509 udivmod_optab->libcall_basename = "udivmod";
6510 udivmod_optab->libcall_suffix = '4';
6511 udivmod_optab->libcall_gen = gen_int_libfunc;
6512 smod_optab->libcall_basename = "mod";
6513 smod_optab->libcall_suffix = '3';
6514 smod_optab->libcall_gen = gen_int_libfunc;
6515 umod_optab->libcall_basename = "umod";
6516 umod_optab->libcall_suffix = '3';
6517 umod_optab->libcall_gen = gen_int_libfunc;
6518 ftrunc_optab->libcall_basename = "ftrunc";
6519 ftrunc_optab->libcall_suffix = '2';
6520 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6521 and_optab->libcall_basename = "and";
6522 and_optab->libcall_suffix = '3';
6523 and_optab->libcall_gen = gen_int_libfunc;
6524 ior_optab->libcall_basename = "ior";
6525 ior_optab->libcall_suffix = '3';
6526 ior_optab->libcall_gen = gen_int_libfunc;
6527 xor_optab->libcall_basename = "xor";
6528 xor_optab->libcall_suffix = '3';
6529 xor_optab->libcall_gen = gen_int_libfunc;
6530 ashl_optab->libcall_basename = "ashl";
6531 ashl_optab->libcall_suffix = '3';
6532 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6533 ssashl_optab->libcall_basename = "ssashl";
6534 ssashl_optab->libcall_suffix = '3';
6535 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6536 usashl_optab->libcall_basename = "usashl";
6537 usashl_optab->libcall_suffix = '3';
6538 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6539 ashr_optab->libcall_basename = "ashr";
6540 ashr_optab->libcall_suffix = '3';
6541 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6542 lshr_optab->libcall_basename = "lshr";
6543 lshr_optab->libcall_suffix = '3';
6544 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6545 smin_optab->libcall_basename = "min";
6546 smin_optab->libcall_suffix = '3';
6547 smin_optab->libcall_gen = gen_int_fp_libfunc;
6548 smax_optab->libcall_basename = "max";
6549 smax_optab->libcall_suffix = '3';
6550 smax_optab->libcall_gen = gen_int_fp_libfunc;
6551 umin_optab->libcall_basename = "umin";
6552 umin_optab->libcall_suffix = '3';
6553 umin_optab->libcall_gen = gen_int_libfunc;
6554 umax_optab->libcall_basename = "umax";
6555 umax_optab->libcall_suffix = '3';
6556 umax_optab->libcall_gen = gen_int_libfunc;
6557 neg_optab->libcall_basename = "neg";
6558 neg_optab->libcall_suffix = '2';
6559 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6560 ssneg_optab->libcall_basename = "ssneg";
6561 ssneg_optab->libcall_suffix = '2';
6562 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6563 usneg_optab->libcall_basename = "usneg";
6564 usneg_optab->libcall_suffix = '2';
6565 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6566 negv_optab->libcall_basename = "neg";
6567 negv_optab->libcall_suffix = '2';
6568 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6569 one_cmpl_optab->libcall_basename = "one_cmpl";
6570 one_cmpl_optab->libcall_suffix = '2';
6571 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6572 ffs_optab->libcall_basename = "ffs";
6573 ffs_optab->libcall_suffix = '2';
6574 ffs_optab->libcall_gen = gen_int_libfunc;
6575 clz_optab->libcall_basename = "clz";
6576 clz_optab->libcall_suffix = '2';
6577 clz_optab->libcall_gen = gen_int_libfunc;
6578 ctz_optab->libcall_basename = "ctz";
6579 ctz_optab->libcall_suffix = '2';
6580 ctz_optab->libcall_gen = gen_int_libfunc;
6581 popcount_optab->libcall_basename = "popcount";
6582 popcount_optab->libcall_suffix = '2';
6583 popcount_optab->libcall_gen = gen_int_libfunc;
6584 parity_optab->libcall_basename = "parity";
6585 parity_optab->libcall_suffix = '2';
6586 parity_optab->libcall_gen = gen_int_libfunc;
6588 /* Comparison libcalls for integers MUST come in pairs,
6589 signed/unsigned. */
6590 cmp_optab->libcall_basename = "cmp";
6591 cmp_optab->libcall_suffix = '2';
6592 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6593 ucmp_optab->libcall_basename = "ucmp";
6594 ucmp_optab->libcall_suffix = '2';
6595 ucmp_optab->libcall_gen = gen_int_libfunc;
6597 /* EQ etc are floating point only. */
6598 eq_optab->libcall_basename = "eq";
6599 eq_optab->libcall_suffix = '2';
6600 eq_optab->libcall_gen = gen_fp_libfunc;
6601 ne_optab->libcall_basename = "ne";
6602 ne_optab->libcall_suffix = '2';
6603 ne_optab->libcall_gen = gen_fp_libfunc;
6604 gt_optab->libcall_basename = "gt";
6605 gt_optab->libcall_suffix = '2';
6606 gt_optab->libcall_gen = gen_fp_libfunc;
6607 ge_optab->libcall_basename = "ge";
6608 ge_optab->libcall_suffix = '2';
6609 ge_optab->libcall_gen = gen_fp_libfunc;
6610 lt_optab->libcall_basename = "lt";
6611 lt_optab->libcall_suffix = '2';
6612 lt_optab->libcall_gen = gen_fp_libfunc;
6613 le_optab->libcall_basename = "le";
6614 le_optab->libcall_suffix = '2';
6615 le_optab->libcall_gen = gen_fp_libfunc;
6616 unord_optab->libcall_basename = "unord";
6617 unord_optab->libcall_suffix = '2';
6618 unord_optab->libcall_gen = gen_fp_libfunc;
6620 powi_optab->libcall_basename = "powi";
6621 powi_optab->libcall_suffix = '2';
6622 powi_optab->libcall_gen = gen_fp_libfunc;
6624 /* Conversions. */
6625 sfloat_optab->libcall_basename = "float";
6626 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6627 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6628 sfix_optab->libcall_basename = "fix";
6629 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6630 ufix_optab->libcall_basename = "fixuns";
6631 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6632 lrint_optab->libcall_basename = "lrint";
6633 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6634 lround_optab->libcall_basename = "lround";
6635 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6636 lfloor_optab->libcall_basename = "lfloor";
6637 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6638 lceil_optab->libcall_basename = "lceil";
6639 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6641 /* trunc_optab is also used for FLOAT_EXTEND. */
6642 sext_optab->libcall_basename = "extend";
6643 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6644 trunc_optab->libcall_basename = "trunc";
6645 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6647 /* Conversions for fixed-point modes and other modes. */
6648 fract_optab->libcall_basename = "fract";
6649 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6650 satfract_optab->libcall_basename = "satfract";
6651 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6652 fractuns_optab->libcall_basename = "fractuns";
6653 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6654 satfractuns_optab->libcall_basename = "satfractuns";
6655 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6657 /* The ffs function operates on `int'. Fall back on it if we do not
6658 have a libgcc2 function for that width. */
6659 if (INT_TYPE_SIZE < BITS_PER_WORD)
6661 int_mode = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
6662 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6663 "ffs");
6666 /* Explicitly initialize the bswap libfuncs since we need them to be
6667 valid for things other than word_mode. */
6668 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6669 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6671 /* Use cabs for double complex abs, since systems generally have cabs.
6672 Don't define any libcall for float complex, so that cabs will be used. */
6673 if (complex_double_type_node)
6674 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6676 abort_libfunc = init_one_libfunc ("abort");
6677 memcpy_libfunc = init_one_libfunc ("memcpy");
6678 memmove_libfunc = init_one_libfunc ("memmove");
6679 memcmp_libfunc = init_one_libfunc ("memcmp");
6680 memset_libfunc = init_one_libfunc ("memset");
6681 setbits_libfunc = init_one_libfunc ("__setbits");
6683 #ifndef DONT_USE_BUILTIN_SETJMP
6684 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6685 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6686 #else
6687 setjmp_libfunc = init_one_libfunc ("setjmp");
6688 longjmp_libfunc = init_one_libfunc ("longjmp");
6689 #endif
6690 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6691 unwind_sjlj_unregister_libfunc
6692 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6694 /* For function entry/exit instrumentation. */
6695 profile_function_entry_libfunc
6696 = init_one_libfunc ("__cyg_profile_func_enter");
6697 profile_function_exit_libfunc
6698 = init_one_libfunc ("__cyg_profile_func_exit");
6700 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6702 /* Allow the target to add more libcalls or rename some, etc. */
6703 targetm.init_libfuncs ();
6705 reinit = true;
6708 /* Print information about the current contents of the optabs on
6709 STDERR. */
6711 void
6712 debug_optab_libfuncs (void)
6714 int i;
6715 int j;
6716 int k;
6718 /* Dump the arithmetic optabs. */
6719 for (i = 0; i != (int) OTI_MAX; i++)
6720 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6722 optab o;
6723 rtx l;
6725 o = &optab_table[i];
6726 l = optab_libfunc (o, (enum machine_mode) j);
6727 if (l)
6729 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6730 fprintf (stderr, "%s\t%s:\t%s\n",
6731 GET_RTX_NAME (o->code),
6732 GET_MODE_NAME (j),
6733 XSTR (l, 0));
6737 /* Dump the conversion optabs. */
6738 for (i = 0; i < (int) COI_MAX; ++i)
6739 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6740 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6742 convert_optab o;
6743 rtx l;
6745 o = &convert_optab_table[i];
6746 l = convert_optab_libfunc (o, (enum machine_mode) j,
6747 (enum machine_mode) k);
6748 if (l)
6750 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6751 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6752 GET_RTX_NAME (o->code),
6753 GET_MODE_NAME (j),
6754 GET_MODE_NAME (k),
6755 XSTR (l, 0));
6761 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6762 CODE. Return 0 on failure. */
6765 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6767 enum machine_mode mode = GET_MODE (op1);
6768 enum insn_code icode;
6769 rtx insn;
6770 rtx trap_rtx;
6772 if (mode == VOIDmode)
6773 return 0;
6775 icode = optab_handler (ctrap_optab, mode)->insn_code;
6776 if (icode == CODE_FOR_nothing)
6777 return 0;
6779 /* Some targets only accept a zero trap code. */
6780 if (insn_data[icode].operand[3].predicate
6781 && !insn_data[icode].operand[3].predicate (tcode, VOIDmode))
6782 return 0;
6784 do_pending_stack_adjust ();
6785 start_sequence ();
6786 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6787 &trap_rtx, &mode);
6788 if (!trap_rtx)
6789 insn = NULL_RTX;
6790 else
6791 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6792 tcode);
6794 /* If that failed, then give up. */
6795 if (insn == 0)
6797 end_sequence ();
6798 return 0;
6801 emit_insn (insn);
6802 insn = get_insns ();
6803 end_sequence ();
6804 return insn;
6807 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6808 or unsigned operation code. */
6810 static enum rtx_code
6811 get_rtx_code (enum tree_code tcode, bool unsignedp)
6813 enum rtx_code code;
6814 switch (tcode)
6816 case EQ_EXPR:
6817 code = EQ;
6818 break;
6819 case NE_EXPR:
6820 code = NE;
6821 break;
6822 case LT_EXPR:
6823 code = unsignedp ? LTU : LT;
6824 break;
6825 case LE_EXPR:
6826 code = unsignedp ? LEU : LE;
6827 break;
6828 case GT_EXPR:
6829 code = unsignedp ? GTU : GT;
6830 break;
6831 case GE_EXPR:
6832 code = unsignedp ? GEU : GE;
6833 break;
6835 case UNORDERED_EXPR:
6836 code = UNORDERED;
6837 break;
6838 case ORDERED_EXPR:
6839 code = ORDERED;
6840 break;
6841 case UNLT_EXPR:
6842 code = UNLT;
6843 break;
6844 case UNLE_EXPR:
6845 code = UNLE;
6846 break;
6847 case UNGT_EXPR:
6848 code = UNGT;
6849 break;
6850 case UNGE_EXPR:
6851 code = UNGE;
6852 break;
6853 case UNEQ_EXPR:
6854 code = UNEQ;
6855 break;
6856 case LTGT_EXPR:
6857 code = LTGT;
6858 break;
6860 default:
6861 gcc_unreachable ();
6863 return code;
6866 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6867 unsigned operators. Do not generate compare instruction. */
6869 static rtx
6870 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6872 enum rtx_code rcode;
6873 tree t_op0, t_op1;
6874 rtx rtx_op0, rtx_op1;
6876 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6877 ensures that condition is a relational operation. */
6878 gcc_assert (COMPARISON_CLASS_P (cond));
6880 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6881 t_op0 = TREE_OPERAND (cond, 0);
6882 t_op1 = TREE_OPERAND (cond, 1);
6884 /* Expand operands. */
6885 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6886 EXPAND_STACK_PARM);
6887 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6888 EXPAND_STACK_PARM);
6890 if (!insn_data[icode].operand[4].predicate (rtx_op0, GET_MODE (rtx_op0))
6891 && GET_MODE (rtx_op0) != VOIDmode)
6892 rtx_op0 = force_reg (GET_MODE (rtx_op0), rtx_op0);
6894 if (!insn_data[icode].operand[5].predicate (rtx_op1, GET_MODE (rtx_op1))
6895 && GET_MODE (rtx_op1) != VOIDmode)
6896 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
6898 return gen_rtx_fmt_ee (rcode, VOIDmode, rtx_op0, rtx_op1);
6901 /* Return insn code for TYPE, the type of a VEC_COND_EXPR. */
6903 static inline enum insn_code
6904 get_vcond_icode (tree type, enum machine_mode mode)
6906 enum insn_code icode = CODE_FOR_nothing;
6908 if (TYPE_UNSIGNED (type))
6909 icode = vcondu_gen_code[mode];
6910 else
6911 icode = vcond_gen_code[mode];
6912 return icode;
6915 /* Return TRUE iff, appropriate vector insns are available
6916 for vector cond expr with type TYPE in VMODE mode. */
6918 bool
6919 expand_vec_cond_expr_p (tree type, enum machine_mode vmode)
6921 if (get_vcond_icode (type, vmode) == CODE_FOR_nothing)
6922 return false;
6923 return true;
6926 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6927 three operands. */
6930 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6931 rtx target)
6933 enum insn_code icode;
6934 rtx comparison, rtx_op1, rtx_op2, cc_op0, cc_op1;
6935 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6936 bool unsignedp = TYPE_UNSIGNED (vec_cond_type);
6938 icode = get_vcond_icode (vec_cond_type, mode);
6939 if (icode == CODE_FOR_nothing)
6940 return 0;
6942 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6943 target = gen_reg_rtx (mode);
6945 /* Get comparison rtx. First expand both cond expr operands. */
6946 comparison = vector_compare_rtx (op0,
6947 unsignedp, icode);
6948 cc_op0 = XEXP (comparison, 0);
6949 cc_op1 = XEXP (comparison, 1);
6950 /* Expand both operands and force them in reg, if required. */
6951 rtx_op1 = expand_normal (op1);
6952 if (!insn_data[icode].operand[1].predicate (rtx_op1, mode)
6953 && mode != VOIDmode)
6954 rtx_op1 = force_reg (mode, rtx_op1);
6956 rtx_op2 = expand_normal (op2);
6957 if (!insn_data[icode].operand[2].predicate (rtx_op2, mode)
6958 && mode != VOIDmode)
6959 rtx_op2 = force_reg (mode, rtx_op2);
6961 /* Emit instruction! */
6962 emit_insn (GEN_FCN (icode) (target, rtx_op1, rtx_op2,
6963 comparison, cc_op0, cc_op1));
6965 return target;
6969 /* This is an internal subroutine of the other compare_and_swap expanders.
6970 MEM, OLD_VAL and NEW_VAL are as you'd expect for a compare-and-swap
6971 operation. TARGET is an optional place to store the value result of
6972 the operation. ICODE is the particular instruction to expand. Return
6973 the result of the operation. */
6975 static rtx
6976 expand_val_compare_and_swap_1 (rtx mem, rtx old_val, rtx new_val,
6977 rtx target, enum insn_code icode)
6979 enum machine_mode mode = GET_MODE (mem);
6980 rtx insn;
6982 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
6983 target = gen_reg_rtx (mode);
6985 if (GET_MODE (old_val) != VOIDmode && GET_MODE (old_val) != mode)
6986 old_val = convert_modes (mode, GET_MODE (old_val), old_val, 1);
6987 if (!insn_data[icode].operand[2].predicate (old_val, mode))
6988 old_val = force_reg (mode, old_val);
6990 if (GET_MODE (new_val) != VOIDmode && GET_MODE (new_val) != mode)
6991 new_val = convert_modes (mode, GET_MODE (new_val), new_val, 1);
6992 if (!insn_data[icode].operand[3].predicate (new_val, mode))
6993 new_val = force_reg (mode, new_val);
6995 insn = GEN_FCN (icode) (target, mem, old_val, new_val);
6996 if (insn == NULL_RTX)
6997 return NULL_RTX;
6998 emit_insn (insn);
7000 return target;
7003 /* Expand a compare-and-swap operation and return its value. */
7006 expand_val_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
7008 enum machine_mode mode = GET_MODE (mem);
7009 enum insn_code icode = sync_compare_and_swap[mode];
7011 if (icode == CODE_FOR_nothing)
7012 return NULL_RTX;
7014 return expand_val_compare_and_swap_1 (mem, old_val, new_val, target, icode);
7017 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7018 pattern. */
7020 static void
7021 find_cc_set (rtx x, const_rtx pat, void *data)
7023 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7024 && GET_CODE (pat) == SET)
7026 rtx *p_cc_reg = (rtx *) data;
7027 gcc_assert (!*p_cc_reg);
7028 *p_cc_reg = x;
7032 /* Expand a compare-and-swap operation and store true into the result if
7033 the operation was successful and false otherwise. Return the result.
7034 Unlike other routines, TARGET is not optional. */
7037 expand_bool_compare_and_swap (rtx mem, rtx old_val, rtx new_val, rtx target)
7039 enum machine_mode mode = GET_MODE (mem);
7040 enum insn_code icode;
7041 rtx subtarget, seq, cc_reg;
7043 /* If the target supports a compare-and-swap pattern that simultaneously
7044 sets some flag for success, then use it. Otherwise use the regular
7045 compare-and-swap and follow that immediately with a compare insn. */
7046 icode = sync_compare_and_swap[mode];
7047 if (icode == CODE_FOR_nothing)
7048 return NULL_RTX;
7052 start_sequence ();
7053 subtarget = expand_val_compare_and_swap_1 (mem, old_val, new_val,
7054 NULL_RTX, icode);
7055 cc_reg = NULL_RTX;
7056 if (subtarget == NULL_RTX)
7058 end_sequence ();
7059 return NULL_RTX;
7062 if (have_insn_for (COMPARE, CCmode))
7063 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7064 seq = get_insns ();
7065 end_sequence ();
7067 /* We might be comparing against an old value. Try again. :-( */
7068 if (!cc_reg && MEM_P (old_val))
7070 seq = NULL_RTX;
7071 old_val = force_reg (mode, old_val);
7074 while (!seq);
7076 emit_insn (seq);
7077 if (cc_reg)
7078 return emit_store_flag_force (target, EQ, cc_reg, const0_rtx, VOIDmode, 0, 1);
7079 else
7080 return emit_store_flag_force (target, EQ, subtarget, old_val, VOIDmode, 1, 1);
7083 /* This is a helper function for the other atomic operations. This function
7084 emits a loop that contains SEQ that iterates until a compare-and-swap
7085 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7086 a set of instructions that takes a value from OLD_REG as an input and
7087 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7088 set to the current contents of MEM. After SEQ, a compare-and-swap will
7089 attempt to update MEM with NEW_REG. The function returns true when the
7090 loop was generated successfully. */
7092 static bool
7093 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7095 enum machine_mode mode = GET_MODE (mem);
7096 enum insn_code icode;
7097 rtx label, cmp_reg, subtarget, cc_reg;
7099 /* The loop we want to generate looks like
7101 cmp_reg = mem;
7102 label:
7103 old_reg = cmp_reg;
7104 seq;
7105 cmp_reg = compare-and-swap(mem, old_reg, new_reg)
7106 if (cmp_reg != old_reg)
7107 goto label;
7109 Note that we only do the plain load from memory once. Subsequent
7110 iterations use the value loaded by the compare-and-swap pattern. */
7112 label = gen_label_rtx ();
7113 cmp_reg = gen_reg_rtx (mode);
7115 emit_move_insn (cmp_reg, mem);
7116 emit_label (label);
7117 emit_move_insn (old_reg, cmp_reg);
7118 if (seq)
7119 emit_insn (seq);
7121 /* If the target supports a compare-and-swap pattern that simultaneously
7122 sets some flag for success, then use it. Otherwise use the regular
7123 compare-and-swap and follow that immediately with a compare insn. */
7124 icode = sync_compare_and_swap[mode];
7125 if (icode == CODE_FOR_nothing)
7126 return false;
7128 subtarget = expand_val_compare_and_swap_1 (mem, old_reg, new_reg,
7129 cmp_reg, icode);
7130 if (subtarget == NULL_RTX)
7131 return false;
7133 cc_reg = NULL_RTX;
7134 if (have_insn_for (COMPARE, CCmode))
7135 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7136 if (cc_reg)
7138 cmp_reg = cc_reg;
7139 old_reg = const0_rtx;
7141 else
7143 if (subtarget != cmp_reg)
7144 emit_move_insn (cmp_reg, subtarget);
7147 /* ??? Mark this jump predicted not taken? */
7148 emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, const0_rtx, GET_MODE (cmp_reg), 1,
7149 label);
7150 return true;
7153 /* This function generates the atomic operation MEM CODE= VAL. In this
7154 case, we do not care about any resulting value. Returns NULL if we
7155 cannot generate the operation. */
7158 expand_sync_operation (rtx mem, rtx val, enum rtx_code code)
7160 enum machine_mode mode = GET_MODE (mem);
7161 enum insn_code icode;
7162 rtx insn;
7164 /* Look to see if the target supports the operation directly. */
7165 switch (code)
7167 case PLUS:
7168 icode = sync_add_optab[mode];
7169 break;
7170 case IOR:
7171 icode = sync_ior_optab[mode];
7172 break;
7173 case XOR:
7174 icode = sync_xor_optab[mode];
7175 break;
7176 case AND:
7177 icode = sync_and_optab[mode];
7178 break;
7179 case NOT:
7180 icode = sync_nand_optab[mode];
7181 break;
7183 case MINUS:
7184 icode = sync_sub_optab[mode];
7185 if (icode == CODE_FOR_nothing || CONST_INT_P (val))
7187 icode = sync_add_optab[mode];
7188 if (icode != CODE_FOR_nothing)
7190 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7191 code = PLUS;
7194 break;
7196 default:
7197 gcc_unreachable ();
7200 /* Generate the direct operation, if present. */
7201 if (icode != CODE_FOR_nothing)
7203 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7204 val = convert_modes (mode, GET_MODE (val), val, 1);
7205 if (!insn_data[icode].operand[1].predicate (val, mode))
7206 val = force_reg (mode, val);
7208 insn = GEN_FCN (icode) (mem, val);
7209 if (insn)
7211 emit_insn (insn);
7212 return const0_rtx;
7216 /* Failing that, generate a compare-and-swap loop in which we perform the
7217 operation with normal arithmetic instructions. */
7218 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7220 rtx t0 = gen_reg_rtx (mode), t1;
7222 start_sequence ();
7224 t1 = t0;
7225 if (code == NOT)
7227 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7228 true, OPTAB_LIB_WIDEN);
7229 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7231 else
7232 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7233 true, OPTAB_LIB_WIDEN);
7234 insn = get_insns ();
7235 end_sequence ();
7237 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7238 return const0_rtx;
7241 return NULL_RTX;
7244 /* This function generates the atomic operation MEM CODE= VAL. In this
7245 case, we do care about the resulting value: if AFTER is true then
7246 return the value MEM holds after the operation, if AFTER is false
7247 then return the value MEM holds before the operation. TARGET is an
7248 optional place for the result value to be stored. */
7251 expand_sync_fetch_operation (rtx mem, rtx val, enum rtx_code code,
7252 bool after, rtx target)
7254 enum machine_mode mode = GET_MODE (mem);
7255 enum insn_code old_code, new_code, icode;
7256 bool compensate;
7257 rtx insn;
7259 /* Look to see if the target supports the operation directly. */
7260 switch (code)
7262 case PLUS:
7263 old_code = sync_old_add_optab[mode];
7264 new_code = sync_new_add_optab[mode];
7265 break;
7266 case IOR:
7267 old_code = sync_old_ior_optab[mode];
7268 new_code = sync_new_ior_optab[mode];
7269 break;
7270 case XOR:
7271 old_code = sync_old_xor_optab[mode];
7272 new_code = sync_new_xor_optab[mode];
7273 break;
7274 case AND:
7275 old_code = sync_old_and_optab[mode];
7276 new_code = sync_new_and_optab[mode];
7277 break;
7278 case NOT:
7279 old_code = sync_old_nand_optab[mode];
7280 new_code = sync_new_nand_optab[mode];
7281 break;
7283 case MINUS:
7284 old_code = sync_old_sub_optab[mode];
7285 new_code = sync_new_sub_optab[mode];
7286 if ((old_code == CODE_FOR_nothing && new_code == CODE_FOR_nothing)
7287 || CONST_INT_P (val))
7289 old_code = sync_old_add_optab[mode];
7290 new_code = sync_new_add_optab[mode];
7291 if (old_code != CODE_FOR_nothing || new_code != CODE_FOR_nothing)
7293 val = expand_simple_unop (mode, NEG, val, NULL_RTX, 1);
7294 code = PLUS;
7297 break;
7299 default:
7300 gcc_unreachable ();
7303 /* If the target does supports the proper new/old operation, great. But
7304 if we only support the opposite old/new operation, check to see if we
7305 can compensate. In the case in which the old value is supported, then
7306 we can always perform the operation again with normal arithmetic. In
7307 the case in which the new value is supported, then we can only handle
7308 this in the case the operation is reversible. */
7309 compensate = false;
7310 if (after)
7312 icode = new_code;
7313 if (icode == CODE_FOR_nothing)
7315 icode = old_code;
7316 if (icode != CODE_FOR_nothing)
7317 compensate = true;
7320 else
7322 icode = old_code;
7323 if (icode == CODE_FOR_nothing
7324 && (code == PLUS || code == MINUS || code == XOR))
7326 icode = new_code;
7327 if (icode != CODE_FOR_nothing)
7328 compensate = true;
7332 /* If we found something supported, great. */
7333 if (icode != CODE_FOR_nothing)
7335 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7336 target = gen_reg_rtx (mode);
7338 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7339 val = convert_modes (mode, GET_MODE (val), val, 1);
7340 if (!insn_data[icode].operand[2].predicate (val, mode))
7341 val = force_reg (mode, val);
7343 insn = GEN_FCN (icode) (target, mem, val);
7344 if (insn)
7346 emit_insn (insn);
7348 /* If we need to compensate for using an operation with the
7349 wrong return value, do so now. */
7350 if (compensate)
7352 if (!after)
7354 if (code == PLUS)
7355 code = MINUS;
7356 else if (code == MINUS)
7357 code = PLUS;
7360 if (code == NOT)
7362 target = expand_simple_binop (mode, AND, target, val,
7363 NULL_RTX, true,
7364 OPTAB_LIB_WIDEN);
7365 target = expand_simple_unop (mode, code, target,
7366 NULL_RTX, true);
7368 else
7369 target = expand_simple_binop (mode, code, target, val,
7370 NULL_RTX, true,
7371 OPTAB_LIB_WIDEN);
7374 return target;
7378 /* Failing that, generate a compare-and-swap loop in which we perform the
7379 operation with normal arithmetic instructions. */
7380 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7382 rtx t0 = gen_reg_rtx (mode), t1;
7384 if (!target || !register_operand (target, mode))
7385 target = gen_reg_rtx (mode);
7387 start_sequence ();
7389 if (!after)
7390 emit_move_insn (target, t0);
7391 t1 = t0;
7392 if (code == NOT)
7394 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7395 true, OPTAB_LIB_WIDEN);
7396 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7398 else
7399 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX,
7400 true, OPTAB_LIB_WIDEN);
7401 if (after)
7402 emit_move_insn (target, t1);
7404 insn = get_insns ();
7405 end_sequence ();
7407 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7408 return target;
7411 return NULL_RTX;
7414 /* This function expands a test-and-set operation. Ideally we atomically
7415 store VAL in MEM and return the previous value in MEM. Some targets
7416 may not support this operation and only support VAL with the constant 1;
7417 in this case while the return value will be 0/1, but the exact value
7418 stored in MEM is target defined. TARGET is an option place to stick
7419 the return value. */
7422 expand_sync_lock_test_and_set (rtx mem, rtx val, rtx target)
7424 enum machine_mode mode = GET_MODE (mem);
7425 enum insn_code icode;
7426 rtx insn;
7428 /* If the target supports the test-and-set directly, great. */
7429 icode = sync_lock_test_and_set[mode];
7430 if (icode != CODE_FOR_nothing)
7432 if (!target || !insn_data[icode].operand[0].predicate (target, mode))
7433 target = gen_reg_rtx (mode);
7435 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7436 val = convert_modes (mode, GET_MODE (val), val, 1);
7437 if (!insn_data[icode].operand[2].predicate (val, mode))
7438 val = force_reg (mode, val);
7440 insn = GEN_FCN (icode) (target, mem, val);
7441 if (insn)
7443 emit_insn (insn);
7444 return target;
7448 /* Otherwise, use a compare-and-swap loop for the exchange. */
7449 if (sync_compare_and_swap[mode] != CODE_FOR_nothing)
7451 if (!target || !register_operand (target, mode))
7452 target = gen_reg_rtx (mode);
7453 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7454 val = convert_modes (mode, GET_MODE (val), val, 1);
7455 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7456 return target;
7459 return NULL_RTX;
7462 #include "gt-optabs.h"