Create branch to syn ICI 2.0 with gcc mainline.
[official-gcc.git] / gcc / expr.c
blobe62b530211484d1be209f5c1c674b47dfe6a2a5b
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57 #include "ssaexpand.h"
59 /* Decide whether a function's arguments should be processed
60 from first to last or from last to first.
62 They should if the stack and args grow in opposite directions, but
63 only if we have push insns. */
65 #ifdef PUSH_ROUNDING
67 #ifndef PUSH_ARGS_REVERSED
68 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
69 #define PUSH_ARGS_REVERSED /* If it's last to first. */
70 #endif
71 #endif
73 #endif
75 #ifndef STACK_PUSH_CODE
76 #ifdef STACK_GROWS_DOWNWARD
77 #define STACK_PUSH_CODE PRE_DEC
78 #else
79 #define STACK_PUSH_CODE PRE_INC
80 #endif
81 #endif
84 /* If this is nonzero, we do not bother generating VOLATILE
85 around volatile memory references, and we are willing to
86 output indirect addresses. If cse is to follow, we reject
87 indirect addresses so a useful potential cse is generated;
88 if it is used only once, instruction combination will produce
89 the same indirect address eventually. */
90 int cse_not_expected;
92 /* This structure is used by move_by_pieces to describe the move to
93 be performed. */
94 struct move_by_pieces_d
96 rtx to;
97 rtx to_addr;
98 int autinc_to;
99 int explicit_inc_to;
100 rtx from;
101 rtx from_addr;
102 int autinc_from;
103 int explicit_inc_from;
104 unsigned HOST_WIDE_INT len;
105 HOST_WIDE_INT offset;
106 int reverse;
109 /* This structure is used by store_by_pieces to describe the clear to
110 be performed. */
112 struct store_by_pieces_d
114 rtx to;
115 rtx to_addr;
116 int autinc_to;
117 int explicit_inc_to;
118 unsigned HOST_WIDE_INT len;
119 HOST_WIDE_INT offset;
120 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
121 void *constfundata;
122 int reverse;
125 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
126 unsigned int,
127 unsigned int);
128 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
129 struct move_by_pieces_d *);
130 static bool block_move_libcall_safe_for_call_parm (void);
131 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
132 static tree emit_block_move_libcall_fn (int);
133 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
134 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
135 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
136 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
137 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
138 struct store_by_pieces_d *);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, alias_set_type);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, alias_set_type, bool);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
151 static int is_aligning_offset (const_tree, const_tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (sepops, rtx, enum machine_mode);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero. */
192 #ifndef SET_BY_PIECES_P
193 #define SET_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
196 #endif
198 /* This macro is used to determine whether store_by_pieces should be
199 called to "memcpy" storage when the source is a constant string. */
200 #ifndef STORE_BY_PIECES_P
201 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
202 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
203 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
204 #endif
206 /* This array records the insn_code of insns to perform block moves. */
207 enum insn_code movmem_optab[NUM_MACHINE_MODES];
209 /* This array records the insn_code of insns to perform block sets. */
210 enum insn_code setmem_optab[NUM_MACHINE_MODES];
212 /* These arrays record the insn_code of three different kinds of insns
213 to perform block compares. */
214 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
216 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
218 /* Synchronization primitives. */
219 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
251 void
252 init_expr_target (void)
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
277 int regno;
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
295 SET_REGNO (reg, regno);
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
328 enum insn_code ic;
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
334 PUT_MODE (mem, srcmode);
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
342 /* This is run at the start of compiling a function. */
344 void
345 init_expr (void)
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
395 emit_move_insn (to, from);
396 return;
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
408 emit_move_insn (to, from);
409 return;
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
419 if (to_real)
421 rtx value, insns;
422 convert_optab tab;
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
437 /* Try converting directly if the insn is supported. */
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
491 if (to_mode == full_mode)
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
592 LT, lowfrom, const0_rtx,
593 VOIDmode, 0, -1);
595 /* Fill the remaining words. */
596 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
598 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
599 rtx subword = operand_subword (to, index, 1, to_mode);
601 gcc_assert (subword);
603 if (fill_value != subword)
604 emit_move_insn (subword, fill_value);
607 insns = get_insns ();
608 end_sequence ();
610 emit_insn (insns);
611 return;
614 /* Truncating multi-word to a word or less. */
615 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
616 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
618 if (!((MEM_P (from)
619 && ! MEM_VOLATILE_P (from)
620 && direct_load[(int) to_mode]
621 && ! mode_dependent_address_p (XEXP (from, 0)))
622 || REG_P (from)
623 || GET_CODE (from) == SUBREG))
624 from = force_reg (from_mode, from);
625 convert_move (to, gen_lowpart (word_mode, from), 0);
626 return;
629 /* Now follow all the conversions between integers
630 no more than a word long. */
632 /* For truncation, usually we can just refer to FROM in a narrower mode. */
633 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
634 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
635 GET_MODE_BITSIZE (from_mode)))
637 if (!((MEM_P (from)
638 && ! MEM_VOLATILE_P (from)
639 && direct_load[(int) to_mode]
640 && ! mode_dependent_address_p (XEXP (from, 0)))
641 || REG_P (from)
642 || GET_CODE (from) == SUBREG))
643 from = force_reg (from_mode, from);
644 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
645 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
646 from = copy_to_reg (from);
647 emit_move_insn (to, gen_lowpart (to_mode, from));
648 return;
651 /* Handle extension. */
652 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
654 /* Convert directly if that works. */
655 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
656 != CODE_FOR_nothing)
658 emit_unop_insn (code, to, from, equiv_code);
659 return;
661 else
663 enum machine_mode intermediate;
664 rtx tmp;
665 tree shift_amount;
667 /* Search for a mode to convert via. */
668 for (intermediate = from_mode; intermediate != VOIDmode;
669 intermediate = GET_MODE_WIDER_MODE (intermediate))
670 if (((can_extend_p (to_mode, intermediate, unsignedp)
671 != CODE_FOR_nothing)
672 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
673 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
674 GET_MODE_BITSIZE (intermediate))))
675 && (can_extend_p (intermediate, from_mode, unsignedp)
676 != CODE_FOR_nothing))
678 convert_move (to, convert_to_mode (intermediate, from,
679 unsignedp), unsignedp);
680 return;
683 /* No suitable intermediate mode.
684 Generate what we need with shifts. */
685 shift_amount = build_int_cst (NULL_TREE,
686 GET_MODE_BITSIZE (to_mode)
687 - GET_MODE_BITSIZE (from_mode));
688 from = gen_lowpart (to_mode, force_reg (from_mode, from));
689 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
690 to, unsignedp);
691 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
692 to, unsignedp);
693 if (tmp != to)
694 emit_move_insn (to, tmp);
695 return;
699 /* Support special truncate insns for certain modes. */
700 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
702 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
703 to, from, UNKNOWN);
704 return;
707 /* Handle truncation of volatile memrefs, and so on;
708 the things that couldn't be truncated directly,
709 and for which there was no special instruction.
711 ??? Code above formerly short-circuited this, for most integer
712 mode pairs, with a force_reg in from_mode followed by a recursive
713 call to this routine. Appears always to have been wrong. */
714 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
716 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
717 emit_move_insn (to, temp);
718 return;
721 /* Mode combination is not recognized. */
722 gcc_unreachable ();
725 /* Return an rtx for a value that would result
726 from converting X to mode MODE.
727 Both X and MODE may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
729 This can be done by referring to a part of X in place
730 or by copying to a new temporary with conversion. */
733 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
735 return convert_modes (mode, VOIDmode, x, unsignedp);
738 /* Return an rtx for a value that would result
739 from converting X from mode OLDMODE to mode MODE.
740 Both modes may be floating, or both integer.
741 UNSIGNEDP is nonzero if X is an unsigned value.
743 This can be done by referring to a part of X in place
744 or by copying to a new temporary with conversion.
746 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
749 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
751 rtx temp;
753 /* If FROM is a SUBREG that indicates that we have already done at least
754 the required extension, strip it. */
756 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
757 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
758 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
759 x = gen_lowpart (mode, x);
761 if (GET_MODE (x) != VOIDmode)
762 oldmode = GET_MODE (x);
764 if (mode == oldmode)
765 return x;
767 /* There is one case that we must handle specially: If we are converting
768 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
769 we are to interpret the constant as unsigned, gen_lowpart will do
770 the wrong if the constant appears negative. What we want to do is
771 make the high-order word of the constant zero, not all ones. */
773 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
774 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
775 && CONST_INT_P (x) && INTVAL (x) < 0)
777 HOST_WIDE_INT val = INTVAL (x);
779 if (oldmode != VOIDmode
780 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
782 int width = GET_MODE_BITSIZE (oldmode);
784 /* We need to zero extend VAL. */
785 val &= ((HOST_WIDE_INT) 1 << width) - 1;
788 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
791 /* We can do this with a gen_lowpart if both desired and current modes
792 are integer, and this is either a constant integer, a register, or a
793 non-volatile MEM. Except for the constant case where MODE is no
794 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
796 if ((CONST_INT_P (x)
797 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
798 || (GET_MODE_CLASS (mode) == MODE_INT
799 && GET_MODE_CLASS (oldmode) == MODE_INT
800 && (GET_CODE (x) == CONST_DOUBLE
801 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
802 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
803 && direct_load[(int) mode])
804 || (REG_P (x)
805 && (! HARD_REGISTER_P (x)
806 || HARD_REGNO_MODE_OK (REGNO (x), mode))
807 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
808 GET_MODE_BITSIZE (GET_MODE (x)))))))))
810 /* ?? If we don't know OLDMODE, we have to assume here that
811 X does not need sign- or zero-extension. This may not be
812 the case, but it's the best we can do. */
813 if (CONST_INT_P (x) && oldmode != VOIDmode
814 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
816 HOST_WIDE_INT val = INTVAL (x);
817 int width = GET_MODE_BITSIZE (oldmode);
819 /* We must sign or zero-extend in this case. Start by
820 zero-extending, then sign extend if we need to. */
821 val &= ((HOST_WIDE_INT) 1 << width) - 1;
822 if (! unsignedp
823 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
824 val |= (HOST_WIDE_INT) (-1) << width;
826 return gen_int_mode (val, mode);
829 return gen_lowpart (mode, x);
832 /* Converting from integer constant into mode is always equivalent to an
833 subreg operation. */
834 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
836 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
837 return simplify_gen_subreg (mode, x, oldmode, 0);
840 temp = gen_reg_rtx (mode);
841 convert_move (temp, x, unsignedp);
842 return temp;
845 /* STORE_MAX_PIECES is the number of bytes at a time that we can
846 store efficiently. Due to internal GCC limitations, this is
847 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
848 for an immediate constant. */
850 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
852 /* Determine whether the LEN bytes can be moved by using several move
853 instructions. Return nonzero if a call to move_by_pieces should
854 succeed. */
857 can_move_by_pieces (unsigned HOST_WIDE_INT len,
858 unsigned int align ATTRIBUTE_UNUSED)
860 return MOVE_BY_PIECES_P (len, align);
863 /* Generate several move instructions to copy LEN bytes from block FROM to
864 block TO. (These are MEM rtx's with BLKmode).
866 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
867 used to push FROM to the stack.
869 ALIGN is maximum stack alignment we can assume.
871 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
872 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
873 stpcpy. */
876 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
877 unsigned int align, int endp)
879 struct move_by_pieces_d data;
880 enum machine_mode to_addr_mode, from_addr_mode
881 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
882 rtx to_addr, from_addr = XEXP (from, 0);
883 unsigned int max_size = MOVE_MAX_PIECES + 1;
884 enum machine_mode mode = VOIDmode, tmode;
885 enum insn_code icode;
887 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
889 data.offset = 0;
890 data.from_addr = from_addr;
891 if (to)
893 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
894 to_addr = XEXP (to, 0);
895 data.to = to;
896 data.autinc_to
897 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
898 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
899 data.reverse
900 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
902 else
904 to_addr_mode = VOIDmode;
905 to_addr = NULL_RTX;
906 data.to = NULL_RTX;
907 data.autinc_to = 1;
908 #ifdef STACK_GROWS_DOWNWARD
909 data.reverse = 1;
910 #else
911 data.reverse = 0;
912 #endif
914 data.to_addr = to_addr;
915 data.from = from;
916 data.autinc_from
917 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
918 || GET_CODE (from_addr) == POST_INC
919 || GET_CODE (from_addr) == POST_DEC);
921 data.explicit_inc_from = 0;
922 data.explicit_inc_to = 0;
923 if (data.reverse) data.offset = len;
924 data.len = len;
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data.autinc_from && data.autinc_to)
930 && move_by_pieces_ninsns (len, align, max_size) > 2)
932 /* Find the mode of the largest move... */
933 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
934 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
935 if (GET_MODE_SIZE (tmode) < max_size)
936 mode = tmode;
938 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode,
941 plus_constant (from_addr, len));
942 data.autinc_from = 1;
943 data.explicit_inc_from = -1;
945 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
947 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
948 data.autinc_from = 1;
949 data.explicit_inc_from = 1;
951 if (!data.autinc_from && CONSTANT_P (from_addr))
952 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
953 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode,
956 plus_constant (to_addr, len));
957 data.autinc_to = 1;
958 data.explicit_inc_to = -1;
960 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
962 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 data.autinc_to = 1;
964 data.explicit_inc_to = 1;
966 if (!data.autinc_to && CONSTANT_P (to_addr))
967 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
970 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
971 if (align >= GET_MODE_ALIGNMENT (tmode))
972 align = GET_MODE_ALIGNMENT (tmode);
973 else
975 enum machine_mode xmode;
977 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
978 tmode != VOIDmode;
979 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
980 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
981 || SLOW_UNALIGNED_ACCESS (tmode, align))
982 break;
984 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
987 /* First move what we can in the largest integer mode, then go to
988 successively smaller modes. */
990 while (max_size > 1)
992 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
993 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
994 if (GET_MODE_SIZE (tmode) < max_size)
995 mode = tmode;
997 if (mode == VOIDmode)
998 break;
1000 icode = optab_handler (mov_optab, mode)->insn_code;
1001 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1002 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1004 max_size = GET_MODE_SIZE (mode);
1007 /* The code above should have handled everything. */
1008 gcc_assert (!data.len);
1010 if (endp)
1012 rtx to1;
1014 gcc_assert (!data.reverse);
1015 if (data.autinc_to)
1017 if (endp == 2)
1019 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1020 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1021 else
1022 data.to_addr = copy_to_mode_reg (to_addr_mode,
1023 plus_constant (data.to_addr,
1024 -1));
1026 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1027 data.offset);
1029 else
1031 if (endp == 2)
1032 --data.offset;
1033 to1 = adjust_address (data.to, QImode, data.offset);
1035 return to1;
1037 else
1038 return data.to;
1041 /* Return number of insns required to move L bytes by pieces.
1042 ALIGN (in bits) is maximum alignment we can assume. */
1044 static unsigned HOST_WIDE_INT
1045 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1046 unsigned int max_size)
1048 unsigned HOST_WIDE_INT n_insns = 0;
1049 enum machine_mode tmode;
1051 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1052 if (align >= GET_MODE_ALIGNMENT (tmode))
1053 align = GET_MODE_ALIGNMENT (tmode);
1054 else
1056 enum machine_mode tmode, xmode;
1058 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1059 tmode != VOIDmode;
1060 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1062 || SLOW_UNALIGNED_ACCESS (tmode, align))
1063 break;
1065 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1068 while (max_size > 1)
1070 enum machine_mode mode = VOIDmode;
1071 enum insn_code icode;
1073 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1074 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1075 if (GET_MODE_SIZE (tmode) < max_size)
1076 mode = tmode;
1078 if (mode == VOIDmode)
1079 break;
1081 icode = optab_handler (mov_optab, mode)->insn_code;
1082 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1083 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1085 max_size = GET_MODE_SIZE (mode);
1088 gcc_assert (!l);
1089 return n_insns;
1092 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1093 with move instructions for mode MODE. GENFUN is the gen_... function
1094 to make a move insn for that mode. DATA has all the other info. */
1096 static void
1097 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1098 struct move_by_pieces_d *data)
1100 unsigned int size = GET_MODE_SIZE (mode);
1101 rtx to1 = NULL_RTX, from1;
1103 while (data->len >= size)
1105 if (data->reverse)
1106 data->offset -= size;
1108 if (data->to)
1110 if (data->autinc_to)
1111 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1112 data->offset);
1113 else
1114 to1 = adjust_address (data->to, mode, data->offset);
1117 if (data->autinc_from)
1118 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1119 data->offset);
1120 else
1121 from1 = adjust_address (data->from, mode, data->offset);
1123 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1124 emit_insn (gen_add2_insn (data->to_addr,
1125 GEN_INT (-(HOST_WIDE_INT)size)));
1126 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1127 emit_insn (gen_add2_insn (data->from_addr,
1128 GEN_INT (-(HOST_WIDE_INT)size)));
1130 if (data->to)
1131 emit_insn ((*genfun) (to1, from1));
1132 else
1134 #ifdef PUSH_ROUNDING
1135 emit_single_push_insn (mode, from1, NULL);
1136 #else
1137 gcc_unreachable ();
1138 #endif
1141 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1142 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1143 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1144 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1146 if (! data->reverse)
1147 data->offset += size;
1149 data->len -= size;
1153 /* Emit code to move a block Y to a block X. This may be done with
1154 string-move instructions, with multiple scalar move instructions,
1155 or with a library call.
1157 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1158 SIZE is an rtx that says how long they are.
1159 ALIGN is the maximum alignment we can assume they have.
1160 METHOD describes what kind of copy this is, and what mechanisms may be used.
1162 Return the address of the new block, if memcpy is called and returns it,
1163 0 otherwise. */
1166 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1167 unsigned int expected_align, HOST_WIDE_INT expected_size)
1169 bool may_use_call;
1170 rtx retval = 0;
1171 unsigned int align;
1173 switch (method)
1175 case BLOCK_OP_NORMAL:
1176 case BLOCK_OP_TAILCALL:
1177 may_use_call = true;
1178 break;
1180 case BLOCK_OP_CALL_PARM:
1181 may_use_call = block_move_libcall_safe_for_call_parm ();
1183 /* Make inhibit_defer_pop nonzero around the library call
1184 to force it to pop the arguments right away. */
1185 NO_DEFER_POP;
1186 break;
1188 case BLOCK_OP_NO_LIBCALL:
1189 may_use_call = false;
1190 break;
1192 default:
1193 gcc_unreachable ();
1196 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1198 gcc_assert (MEM_P (x));
1199 gcc_assert (MEM_P (y));
1200 gcc_assert (size);
1202 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1203 block copy is more efficient for other large modes, e.g. DCmode. */
1204 x = adjust_address (x, BLKmode, 0);
1205 y = adjust_address (y, BLKmode, 0);
1207 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1208 can be incorrect is coming from __builtin_memcpy. */
1209 if (CONST_INT_P (size))
1211 if (INTVAL (size) == 0)
1212 return 0;
1214 x = shallow_copy_rtx (x);
1215 y = shallow_copy_rtx (y);
1216 set_mem_size (x, size);
1217 set_mem_size (y, size);
1220 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1221 move_by_pieces (x, y, INTVAL (size), align, 0);
1222 else if (emit_block_move_via_movmem (x, y, size, align,
1223 expected_align, expected_size))
1225 else if (may_use_call
1226 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1227 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1228 retval = emit_block_move_via_libcall (x, y, size,
1229 method == BLOCK_OP_TAILCALL);
1230 else
1231 emit_block_move_via_loop (x, y, size, align);
1233 if (method == BLOCK_OP_CALL_PARM)
1234 OK_DEFER_POP;
1236 return retval;
1240 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1242 return emit_block_move_hints (x, y, size, method, 0, -1);
1245 /* A subroutine of emit_block_move. Returns true if calling the
1246 block move libcall will not clobber any parameters which may have
1247 already been placed on the stack. */
1249 static bool
1250 block_move_libcall_safe_for_call_parm (void)
1252 #if defined (REG_PARM_STACK_SPACE)
1253 tree fn;
1254 #endif
1256 /* If arguments are pushed on the stack, then they're safe. */
1257 if (PUSH_ARGS)
1258 return true;
1260 /* If registers go on the stack anyway, any argument is sure to clobber
1261 an outgoing argument. */
1262 #if defined (REG_PARM_STACK_SPACE)
1263 fn = emit_block_move_libcall_fn (false);
1264 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1265 && REG_PARM_STACK_SPACE (fn) != 0)
1266 return false;
1267 #endif
1269 /* If any argument goes in memory, then it might clobber an outgoing
1270 argument. */
1272 CUMULATIVE_ARGS args_so_far;
1273 tree fn, arg;
1275 fn = emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1278 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1279 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1281 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1282 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1283 if (!tmp || !REG_P (tmp))
1284 return false;
1285 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1286 return false;
1287 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1290 return true;
1293 /* A subroutine of emit_block_move. Expand a movmem pattern;
1294 return true if successful. */
1296 static bool
1297 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1298 unsigned int expected_align, HOST_WIDE_INT expected_size)
1300 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1301 int save_volatile_ok = volatile_ok;
1302 enum machine_mode mode;
1304 if (expected_align < align)
1305 expected_align = align;
1307 /* Since this is a move insn, we don't care about volatility. */
1308 volatile_ok = 1;
1310 /* Try the most limited insn first, because there's no point
1311 including more than one in the machine description unless
1312 the more limited one has some advantage. */
1314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1315 mode = GET_MODE_WIDER_MODE (mode))
1317 enum insn_code code = movmem_optab[(int) mode];
1318 insn_operand_predicate_fn pred;
1320 if (code != CODE_FOR_nothing
1321 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1322 here because if SIZE is less than the mode mask, as it is
1323 returned by the macro, it will definitely be less than the
1324 actual mode mask. */
1325 && ((CONST_INT_P (size)
1326 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1327 <= (GET_MODE_MASK (mode) >> 1)))
1328 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1329 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1330 || (*pred) (x, BLKmode))
1331 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1332 || (*pred) (y, BLKmode))
1333 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1334 || (*pred) (opalign, VOIDmode)))
1336 rtx op2;
1337 rtx last = get_last_insn ();
1338 rtx pat;
1340 op2 = convert_to_mode (mode, size, 1);
1341 pred = insn_data[(int) code].operand[2].predicate;
1342 if (pred != 0 && ! (*pred) (op2, mode))
1343 op2 = copy_to_mode_reg (mode, op2);
1345 /* ??? When called via emit_block_move_for_call, it'd be
1346 nice if there were some way to inform the backend, so
1347 that it doesn't fail the expansion because it thinks
1348 emitting the libcall would be more efficient. */
1350 if (insn_data[(int) code].n_operands == 4)
1351 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1352 else
1353 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1354 GEN_INT (expected_align
1355 / BITS_PER_UNIT),
1356 GEN_INT (expected_size));
1357 if (pat)
1359 emit_insn (pat);
1360 volatile_ok = save_volatile_ok;
1361 return true;
1363 else
1364 delete_insns_since (last);
1368 volatile_ok = save_volatile_ok;
1369 return false;
1372 /* A subroutine of emit_block_move. Expand a call to memcpy.
1373 Return the return value from memcpy, 0 otherwise. */
1376 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1378 rtx dst_addr, src_addr;
1379 tree call_expr, fn, src_tree, dst_tree, size_tree;
1380 enum machine_mode size_mode;
1381 rtx retval;
1383 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1384 pseudos. We can then place those new pseudos into a VAR_DECL and
1385 use them later. */
1387 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1388 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1390 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1391 src_addr = convert_memory_address (ptr_mode, src_addr);
1393 dst_tree = make_tree (ptr_type_node, dst_addr);
1394 src_tree = make_tree (ptr_type_node, src_addr);
1396 size_mode = TYPE_MODE (sizetype);
1398 size = convert_to_mode (size_mode, size, 1);
1399 size = copy_to_mode_reg (size_mode, size);
1401 /* It is incorrect to use the libcall calling conventions to call
1402 memcpy in this context. This could be a user call to memcpy and
1403 the user may wish to examine the return value from memcpy. For
1404 targets where libcalls and normal calls have different conventions
1405 for returning pointers, we could end up generating incorrect code. */
1407 size_tree = make_tree (sizetype, size);
1409 fn = emit_block_move_libcall_fn (true);
1410 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1411 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1413 retval = expand_normal (call_expr);
1415 return retval;
1418 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1419 for the function we use for block copies. The first time FOR_CALL
1420 is true, we call assemble_external. */
1422 static GTY(()) tree block_move_fn;
1424 void
1425 init_block_move_fn (const char *asmspec)
1427 if (!block_move_fn)
1429 tree args, fn;
1431 fn = get_identifier ("memcpy");
1432 args = build_function_type_list (ptr_type_node, ptr_type_node,
1433 const_ptr_type_node, sizetype,
1434 NULL_TREE);
1436 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1437 DECL_EXTERNAL (fn) = 1;
1438 TREE_PUBLIC (fn) = 1;
1439 DECL_ARTIFICIAL (fn) = 1;
1440 TREE_NOTHROW (fn) = 1;
1441 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1442 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1444 block_move_fn = fn;
1447 if (asmspec)
1448 set_user_assembler_name (block_move_fn, asmspec);
1451 static tree
1452 emit_block_move_libcall_fn (int for_call)
1454 static bool emitted_extern;
1456 if (!block_move_fn)
1457 init_block_move_fn (NULL);
1459 if (for_call && !emitted_extern)
1461 emitted_extern = true;
1462 make_decl_rtl (block_move_fn);
1463 assemble_external (block_move_fn);
1466 return block_move_fn;
1469 /* A subroutine of emit_block_move. Copy the data via an explicit
1470 loop. This is used only when libcalls are forbidden. */
1471 /* ??? It'd be nice to copy in hunks larger than QImode. */
1473 static void
1474 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1475 unsigned int align ATTRIBUTE_UNUSED)
1477 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1478 enum machine_mode x_addr_mode
1479 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1480 enum machine_mode y_addr_mode
1481 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1482 enum machine_mode iter_mode;
1484 iter_mode = GET_MODE (size);
1485 if (iter_mode == VOIDmode)
1486 iter_mode = word_mode;
1488 top_label = gen_label_rtx ();
1489 cmp_label = gen_label_rtx ();
1490 iter = gen_reg_rtx (iter_mode);
1492 emit_move_insn (iter, const0_rtx);
1494 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1495 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1496 do_pending_stack_adjust ();
1498 emit_jump (cmp_label);
1499 emit_label (top_label);
1501 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1502 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1504 if (x_addr_mode != y_addr_mode)
1505 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1506 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1508 x = change_address (x, QImode, x_addr);
1509 y = change_address (y, QImode, y_addr);
1511 emit_move_insn (x, y);
1513 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1514 true, OPTAB_LIB_WIDEN);
1515 if (tmp != iter)
1516 emit_move_insn (iter, tmp);
1518 emit_label (cmp_label);
1520 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1521 true, top_label);
1524 /* Copy all or part of a value X into registers starting at REGNO.
1525 The number of registers to be filled is NREGS. */
1527 void
1528 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1530 int i;
1531 #ifdef HAVE_load_multiple
1532 rtx pat;
1533 rtx last;
1534 #endif
1536 if (nregs == 0)
1537 return;
1539 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1540 x = validize_mem (force_const_mem (mode, x));
1542 /* See if the machine can do this with a load multiple insn. */
1543 #ifdef HAVE_load_multiple
1544 if (HAVE_load_multiple)
1546 last = get_last_insn ();
1547 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1548 GEN_INT (nregs));
1549 if (pat)
1551 emit_insn (pat);
1552 return;
1554 else
1555 delete_insns_since (last);
1557 #endif
1559 for (i = 0; i < nregs; i++)
1560 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1561 operand_subword_force (x, i, mode));
1564 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1565 The number of registers to be filled is NREGS. */
1567 void
1568 move_block_from_reg (int regno, rtx x, int nregs)
1570 int i;
1572 if (nregs == 0)
1573 return;
1575 /* See if the machine can do this with a store multiple insn. */
1576 #ifdef HAVE_store_multiple
1577 if (HAVE_store_multiple)
1579 rtx last = get_last_insn ();
1580 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1581 GEN_INT (nregs));
1582 if (pat)
1584 emit_insn (pat);
1585 return;
1587 else
1588 delete_insns_since (last);
1590 #endif
1592 for (i = 0; i < nregs; i++)
1594 rtx tem = operand_subword (x, i, 1, BLKmode);
1596 gcc_assert (tem);
1598 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1602 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1603 ORIG, where ORIG is a non-consecutive group of registers represented by
1604 a PARALLEL. The clone is identical to the original except in that the
1605 original set of registers is replaced by a new set of pseudo registers.
1606 The new set has the same modes as the original set. */
1609 gen_group_rtx (rtx orig)
1611 int i, length;
1612 rtx *tmps;
1614 gcc_assert (GET_CODE (orig) == PARALLEL);
1616 length = XVECLEN (orig, 0);
1617 tmps = XALLOCAVEC (rtx, length);
1619 /* Skip a NULL entry in first slot. */
1620 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1622 if (i)
1623 tmps[0] = 0;
1625 for (; i < length; i++)
1627 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1628 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1630 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1633 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1636 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1637 except that values are placed in TMPS[i], and must later be moved
1638 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1640 static void
1641 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1643 rtx src;
1644 int start, i;
1645 enum machine_mode m = GET_MODE (orig_src);
1647 gcc_assert (GET_CODE (dst) == PARALLEL);
1649 if (m != VOIDmode
1650 && !SCALAR_INT_MODE_P (m)
1651 && !MEM_P (orig_src)
1652 && GET_CODE (orig_src) != CONCAT)
1654 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1655 if (imode == BLKmode)
1656 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1657 else
1658 src = gen_reg_rtx (imode);
1659 if (imode != BLKmode)
1660 src = gen_lowpart (GET_MODE (orig_src), src);
1661 emit_move_insn (src, orig_src);
1662 /* ...and back again. */
1663 if (imode != BLKmode)
1664 src = gen_lowpart (imode, src);
1665 emit_group_load_1 (tmps, dst, src, type, ssize);
1666 return;
1669 /* Check for a NULL entry, used to indicate that the parameter goes
1670 both on the stack and in registers. */
1671 if (XEXP (XVECEXP (dst, 0, 0), 0))
1672 start = 0;
1673 else
1674 start = 1;
1676 /* Process the pieces. */
1677 for (i = start; i < XVECLEN (dst, 0); i++)
1679 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1680 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1681 unsigned int bytelen = GET_MODE_SIZE (mode);
1682 int shift = 0;
1684 /* Handle trailing fragments that run over the size of the struct. */
1685 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1687 /* Arrange to shift the fragment to where it belongs.
1688 extract_bit_field loads to the lsb of the reg. */
1689 if (
1690 #ifdef BLOCK_REG_PADDING
1691 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1692 == (BYTES_BIG_ENDIAN ? upward : downward)
1693 #else
1694 BYTES_BIG_ENDIAN
1695 #endif
1697 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1698 bytelen = ssize - bytepos;
1699 gcc_assert (bytelen > 0);
1702 /* If we won't be loading directly from memory, protect the real source
1703 from strange tricks we might play; but make sure that the source can
1704 be loaded directly into the destination. */
1705 src = orig_src;
1706 if (!MEM_P (orig_src)
1707 && (!CONSTANT_P (orig_src)
1708 || (GET_MODE (orig_src) != mode
1709 && GET_MODE (orig_src) != VOIDmode)))
1711 if (GET_MODE (orig_src) == VOIDmode)
1712 src = gen_reg_rtx (mode);
1713 else
1714 src = gen_reg_rtx (GET_MODE (orig_src));
1716 emit_move_insn (src, orig_src);
1719 /* Optimize the access just a bit. */
1720 if (MEM_P (src)
1721 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1722 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1723 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1724 && bytelen == GET_MODE_SIZE (mode))
1726 tmps[i] = gen_reg_rtx (mode);
1727 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1729 else if (COMPLEX_MODE_P (mode)
1730 && GET_MODE (src) == mode
1731 && bytelen == GET_MODE_SIZE (mode))
1732 /* Let emit_move_complex do the bulk of the work. */
1733 tmps[i] = src;
1734 else if (GET_CODE (src) == CONCAT)
1736 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1737 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1739 if ((bytepos == 0 && bytelen == slen0)
1740 || (bytepos != 0 && bytepos + bytelen <= slen))
1742 /* The following assumes that the concatenated objects all
1743 have the same size. In this case, a simple calculation
1744 can be used to determine the object and the bit field
1745 to be extracted. */
1746 tmps[i] = XEXP (src, bytepos / slen0);
1747 if (! CONSTANT_P (tmps[i])
1748 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1749 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1750 (bytepos % slen0) * BITS_PER_UNIT,
1751 1, NULL_RTX, mode, mode);
1753 else
1755 rtx mem;
1757 gcc_assert (!bytepos);
1758 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1759 emit_move_insn (mem, src);
1760 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1761 0, 1, NULL_RTX, mode, mode);
1764 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1765 SIMD register, which is currently broken. While we get GCC
1766 to emit proper RTL for these cases, let's dump to memory. */
1767 else if (VECTOR_MODE_P (GET_MODE (dst))
1768 && REG_P (src))
1770 int slen = GET_MODE_SIZE (GET_MODE (src));
1771 rtx mem;
1773 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1774 emit_move_insn (mem, src);
1775 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1777 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1778 && XVECLEN (dst, 0) > 1)
1779 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1780 else if (CONSTANT_P (src))
1782 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1784 if (len == ssize)
1785 tmps[i] = src;
1786 else
1788 rtx first, second;
1790 gcc_assert (2 * len == ssize);
1791 split_double (src, &first, &second);
1792 if (i)
1793 tmps[i] = second;
1794 else
1795 tmps[i] = first;
1798 else if (REG_P (src) && GET_MODE (src) == mode)
1799 tmps[i] = src;
1800 else
1801 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1802 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1803 mode, mode);
1805 if (shift)
1806 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1807 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1811 /* Emit code to move a block SRC of type TYPE to a block DST,
1812 where DST is non-consecutive registers represented by a PARALLEL.
1813 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1814 if not known. */
1816 void
1817 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1819 rtx *tmps;
1820 int i;
1822 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1823 emit_group_load_1 (tmps, dst, src, type, ssize);
1825 /* Copy the extracted pieces into the proper (probable) hard regs. */
1826 for (i = 0; i < XVECLEN (dst, 0); i++)
1828 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1829 if (d == NULL)
1830 continue;
1831 emit_move_insn (d, tmps[i]);
1835 /* Similar, but load SRC into new pseudos in a format that looks like
1836 PARALLEL. This can later be fed to emit_group_move to get things
1837 in the right place. */
1840 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1842 rtvec vec;
1843 int i;
1845 vec = rtvec_alloc (XVECLEN (parallel, 0));
1846 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1848 /* Convert the vector to look just like the original PARALLEL, except
1849 with the computed values. */
1850 for (i = 0; i < XVECLEN (parallel, 0); i++)
1852 rtx e = XVECEXP (parallel, 0, i);
1853 rtx d = XEXP (e, 0);
1855 if (d)
1857 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1858 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1860 RTVEC_ELT (vec, i) = e;
1863 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1866 /* Emit code to move a block SRC to block DST, where SRC and DST are
1867 non-consecutive groups of registers, each represented by a PARALLEL. */
1869 void
1870 emit_group_move (rtx dst, rtx src)
1872 int i;
1874 gcc_assert (GET_CODE (src) == PARALLEL
1875 && GET_CODE (dst) == PARALLEL
1876 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1878 /* Skip first entry if NULL. */
1879 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1880 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1881 XEXP (XVECEXP (src, 0, i), 0));
1884 /* Move a group of registers represented by a PARALLEL into pseudos. */
1887 emit_group_move_into_temps (rtx src)
1889 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1890 int i;
1892 for (i = 0; i < XVECLEN (src, 0); i++)
1894 rtx e = XVECEXP (src, 0, i);
1895 rtx d = XEXP (e, 0);
1897 if (d)
1898 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1899 RTVEC_ELT (vec, i) = e;
1902 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1905 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1906 where SRC is non-consecutive registers represented by a PARALLEL.
1907 SSIZE represents the total size of block ORIG_DST, or -1 if not
1908 known. */
1910 void
1911 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1913 rtx *tmps, dst;
1914 int start, finish, i;
1915 enum machine_mode m = GET_MODE (orig_dst);
1917 gcc_assert (GET_CODE (src) == PARALLEL);
1919 if (!SCALAR_INT_MODE_P (m)
1920 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1922 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1923 if (imode == BLKmode)
1924 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1925 else
1926 dst = gen_reg_rtx (imode);
1927 emit_group_store (dst, src, type, ssize);
1928 if (imode != BLKmode)
1929 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1930 emit_move_insn (orig_dst, dst);
1931 return;
1934 /* Check for a NULL entry, used to indicate that the parameter goes
1935 both on the stack and in registers. */
1936 if (XEXP (XVECEXP (src, 0, 0), 0))
1937 start = 0;
1938 else
1939 start = 1;
1940 finish = XVECLEN (src, 0);
1942 tmps = XALLOCAVEC (rtx, finish);
1944 /* Copy the (probable) hard regs into pseudos. */
1945 for (i = start; i < finish; i++)
1947 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1948 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1950 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1951 emit_move_insn (tmps[i], reg);
1953 else
1954 tmps[i] = reg;
1957 /* If we won't be storing directly into memory, protect the real destination
1958 from strange tricks we might play. */
1959 dst = orig_dst;
1960 if (GET_CODE (dst) == PARALLEL)
1962 rtx temp;
1964 /* We can get a PARALLEL dst if there is a conditional expression in
1965 a return statement. In that case, the dst and src are the same,
1966 so no action is necessary. */
1967 if (rtx_equal_p (dst, src))
1968 return;
1970 /* It is unclear if we can ever reach here, but we may as well handle
1971 it. Allocate a temporary, and split this into a store/load to/from
1972 the temporary. */
1974 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1975 emit_group_store (temp, src, type, ssize);
1976 emit_group_load (dst, temp, type, ssize);
1977 return;
1979 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1981 enum machine_mode outer = GET_MODE (dst);
1982 enum machine_mode inner;
1983 HOST_WIDE_INT bytepos;
1984 bool done = false;
1985 rtx temp;
1987 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1988 dst = gen_reg_rtx (outer);
1990 /* Make life a bit easier for combine. */
1991 /* If the first element of the vector is the low part
1992 of the destination mode, use a paradoxical subreg to
1993 initialize the destination. */
1994 if (start < finish)
1996 inner = GET_MODE (tmps[start]);
1997 bytepos = subreg_lowpart_offset (inner, outer);
1998 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2000 temp = simplify_gen_subreg (outer, tmps[start],
2001 inner, 0);
2002 if (temp)
2004 emit_move_insn (dst, temp);
2005 done = true;
2006 start++;
2011 /* If the first element wasn't the low part, try the last. */
2012 if (!done
2013 && start < finish - 1)
2015 inner = GET_MODE (tmps[finish - 1]);
2016 bytepos = subreg_lowpart_offset (inner, outer);
2017 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2019 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2020 inner, 0);
2021 if (temp)
2023 emit_move_insn (dst, temp);
2024 done = true;
2025 finish--;
2030 /* Otherwise, simply initialize the result to zero. */
2031 if (!done)
2032 emit_move_insn (dst, CONST0_RTX (outer));
2035 /* Process the pieces. */
2036 for (i = start; i < finish; i++)
2038 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2039 enum machine_mode mode = GET_MODE (tmps[i]);
2040 unsigned int bytelen = GET_MODE_SIZE (mode);
2041 unsigned int adj_bytelen = bytelen;
2042 rtx dest = dst;
2044 /* Handle trailing fragments that run over the size of the struct. */
2045 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2046 adj_bytelen = ssize - bytepos;
2048 if (GET_CODE (dst) == CONCAT)
2050 if (bytepos + adj_bytelen
2051 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2052 dest = XEXP (dst, 0);
2053 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2055 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2056 dest = XEXP (dst, 1);
2058 else
2060 enum machine_mode dest_mode = GET_MODE (dest);
2061 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2063 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2065 if (GET_MODE_ALIGNMENT (dest_mode)
2066 >= GET_MODE_ALIGNMENT (tmp_mode))
2068 dest = assign_stack_temp (dest_mode,
2069 GET_MODE_SIZE (dest_mode),
2071 emit_move_insn (adjust_address (dest,
2072 tmp_mode,
2073 bytepos),
2074 tmps[i]);
2075 dst = dest;
2077 else
2079 dest = assign_stack_temp (tmp_mode,
2080 GET_MODE_SIZE (tmp_mode),
2082 emit_move_insn (dest, tmps[i]);
2083 dst = adjust_address (dest, dest_mode, bytepos);
2085 break;
2089 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2091 /* store_bit_field always takes its value from the lsb.
2092 Move the fragment to the lsb if it's not already there. */
2093 if (
2094 #ifdef BLOCK_REG_PADDING
2095 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2096 == (BYTES_BIG_ENDIAN ? upward : downward)
2097 #else
2098 BYTES_BIG_ENDIAN
2099 #endif
2102 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2103 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2104 build_int_cst (NULL_TREE, shift),
2105 tmps[i], 0);
2107 bytelen = adj_bytelen;
2110 /* Optimize the access just a bit. */
2111 if (MEM_P (dest)
2112 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2113 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2114 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2115 && bytelen == GET_MODE_SIZE (mode))
2116 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2117 else
2118 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2119 mode, tmps[i]);
2122 /* Copy from the pseudo into the (probable) hard reg. */
2123 if (orig_dst != dst)
2124 emit_move_insn (orig_dst, dst);
2127 /* Generate code to copy a BLKmode object of TYPE out of a
2128 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2129 is null, a stack temporary is created. TGTBLK is returned.
2131 The purpose of this routine is to handle functions that return
2132 BLKmode structures in registers. Some machines (the PA for example)
2133 want to return all small structures in registers regardless of the
2134 structure's alignment. */
2137 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2139 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2140 rtx src = NULL, dst = NULL;
2141 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2142 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2143 enum machine_mode copy_mode;
2145 if (tgtblk == 0)
2147 tgtblk = assign_temp (build_qualified_type (type,
2148 (TYPE_QUALS (type)
2149 | TYPE_QUAL_CONST)),
2150 0, 1, 1);
2151 preserve_temp_slots (tgtblk);
2154 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2155 into a new pseudo which is a full word. */
2157 if (GET_MODE (srcreg) != BLKmode
2158 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2159 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2161 /* If the structure doesn't take up a whole number of words, see whether
2162 SRCREG is padded on the left or on the right. If it's on the left,
2163 set PADDING_CORRECTION to the number of bits to skip.
2165 In most ABIs, the structure will be returned at the least end of
2166 the register, which translates to right padding on little-endian
2167 targets and left padding on big-endian targets. The opposite
2168 holds if the structure is returned at the most significant
2169 end of the register. */
2170 if (bytes % UNITS_PER_WORD != 0
2171 && (targetm.calls.return_in_msb (type)
2172 ? !BYTES_BIG_ENDIAN
2173 : BYTES_BIG_ENDIAN))
2174 padding_correction
2175 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2177 /* Copy the structure BITSIZE bits at a time. If the target lives in
2178 memory, take care of not reading/writing past its end by selecting
2179 a copy mode suited to BITSIZE. This should always be possible given
2180 how it is computed.
2182 We could probably emit more efficient code for machines which do not use
2183 strict alignment, but it doesn't seem worth the effort at the current
2184 time. */
2186 copy_mode = word_mode;
2187 if (MEM_P (tgtblk))
2189 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2190 if (mem_mode != BLKmode)
2191 copy_mode = mem_mode;
2194 for (bitpos = 0, xbitpos = padding_correction;
2195 bitpos < bytes * BITS_PER_UNIT;
2196 bitpos += bitsize, xbitpos += bitsize)
2198 /* We need a new source operand each time xbitpos is on a
2199 word boundary and when xbitpos == padding_correction
2200 (the first time through). */
2201 if (xbitpos % BITS_PER_WORD == 0
2202 || xbitpos == padding_correction)
2203 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2204 GET_MODE (srcreg));
2206 /* We need a new destination operand each time bitpos is on
2207 a word boundary. */
2208 if (bitpos % BITS_PER_WORD == 0)
2209 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2211 /* Use xbitpos for the source extraction (right justified) and
2212 bitpos for the destination store (left justified). */
2213 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2214 extract_bit_field (src, bitsize,
2215 xbitpos % BITS_PER_WORD, 1,
2216 NULL_RTX, copy_mode, copy_mode));
2219 return tgtblk;
2222 /* Add a USE expression for REG to the (possibly empty) list pointed
2223 to by CALL_FUSAGE. REG must denote a hard register. */
2225 void
2226 use_reg (rtx *call_fusage, rtx reg)
2228 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2230 *call_fusage
2231 = gen_rtx_EXPR_LIST (VOIDmode,
2232 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2235 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2236 starting at REGNO. All of these registers must be hard registers. */
2238 void
2239 use_regs (rtx *call_fusage, int regno, int nregs)
2241 int i;
2243 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2245 for (i = 0; i < nregs; i++)
2246 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2249 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2250 PARALLEL REGS. This is for calls that pass values in multiple
2251 non-contiguous locations. The Irix 6 ABI has examples of this. */
2253 void
2254 use_group_regs (rtx *call_fusage, rtx regs)
2256 int i;
2258 for (i = 0; i < XVECLEN (regs, 0); i++)
2260 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2262 /* A NULL entry means the parameter goes both on the stack and in
2263 registers. This can also be a MEM for targets that pass values
2264 partially on the stack and partially in registers. */
2265 if (reg != 0 && REG_P (reg))
2266 use_reg (call_fusage, reg);
2270 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2271 assigment and the code of the expresion on the RHS is CODE. Return
2272 NULL otherwise. */
2274 static gimple
2275 get_def_for_expr (tree name, enum tree_code code)
2277 gimple def_stmt;
2279 if (TREE_CODE (name) != SSA_NAME)
2280 return NULL;
2282 def_stmt = get_gimple_for_ssa_name (name);
2283 if (!def_stmt
2284 || gimple_assign_rhs_code (def_stmt) != code)
2285 return NULL;
2287 return def_stmt;
2291 /* Determine whether the LEN bytes generated by CONSTFUN can be
2292 stored to memory using several move instructions. CONSTFUNDATA is
2293 a pointer which will be passed as argument in every CONSTFUN call.
2294 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2295 a memset operation and false if it's a copy of a constant string.
2296 Return nonzero if a call to store_by_pieces should succeed. */
2299 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2300 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2301 void *constfundata, unsigned int align, bool memsetp)
2303 unsigned HOST_WIDE_INT l;
2304 unsigned int max_size;
2305 HOST_WIDE_INT offset = 0;
2306 enum machine_mode mode, tmode;
2307 enum insn_code icode;
2308 int reverse;
2309 rtx cst;
2311 if (len == 0)
2312 return 1;
2314 if (! (memsetp
2315 ? SET_BY_PIECES_P (len, align)
2316 : STORE_BY_PIECES_P (len, align)))
2317 return 0;
2319 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2320 if (align >= GET_MODE_ALIGNMENT (tmode))
2321 align = GET_MODE_ALIGNMENT (tmode);
2322 else
2324 enum machine_mode xmode;
2326 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2327 tmode != VOIDmode;
2328 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2329 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2330 || SLOW_UNALIGNED_ACCESS (tmode, align))
2331 break;
2333 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2336 /* We would first store what we can in the largest integer mode, then go to
2337 successively smaller modes. */
2339 for (reverse = 0;
2340 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2341 reverse++)
2343 l = len;
2344 mode = VOIDmode;
2345 max_size = STORE_MAX_PIECES + 1;
2346 while (max_size > 1)
2348 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2349 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2350 if (GET_MODE_SIZE (tmode) < max_size)
2351 mode = tmode;
2353 if (mode == VOIDmode)
2354 break;
2356 icode = optab_handler (mov_optab, mode)->insn_code;
2357 if (icode != CODE_FOR_nothing
2358 && align >= GET_MODE_ALIGNMENT (mode))
2360 unsigned int size = GET_MODE_SIZE (mode);
2362 while (l >= size)
2364 if (reverse)
2365 offset -= size;
2367 cst = (*constfun) (constfundata, offset, mode);
2368 if (!LEGITIMATE_CONSTANT_P (cst))
2369 return 0;
2371 if (!reverse)
2372 offset += size;
2374 l -= size;
2378 max_size = GET_MODE_SIZE (mode);
2381 /* The code above should have handled everything. */
2382 gcc_assert (!l);
2385 return 1;
2388 /* Generate several move instructions to store LEN bytes generated by
2389 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2390 pointer which will be passed as argument in every CONSTFUN call.
2391 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2392 a memset operation and false if it's a copy of a constant string.
2393 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2394 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2395 stpcpy. */
2398 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2399 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2400 void *constfundata, unsigned int align, bool memsetp, int endp)
2402 enum machine_mode to_addr_mode
2403 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2404 struct store_by_pieces_d data;
2406 if (len == 0)
2408 gcc_assert (endp != 2);
2409 return to;
2412 gcc_assert (memsetp
2413 ? SET_BY_PIECES_P (len, align)
2414 : STORE_BY_PIECES_P (len, align));
2415 data.constfun = constfun;
2416 data.constfundata = constfundata;
2417 data.len = len;
2418 data.to = to;
2419 store_by_pieces_1 (&data, align);
2420 if (endp)
2422 rtx to1;
2424 gcc_assert (!data.reverse);
2425 if (data.autinc_to)
2427 if (endp == 2)
2429 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2430 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2431 else
2432 data.to_addr = copy_to_mode_reg (to_addr_mode,
2433 plus_constant (data.to_addr,
2434 -1));
2436 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2437 data.offset);
2439 else
2441 if (endp == 2)
2442 --data.offset;
2443 to1 = adjust_address (data.to, QImode, data.offset);
2445 return to1;
2447 else
2448 return data.to;
2451 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2452 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2454 static void
2455 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2457 struct store_by_pieces_d data;
2459 if (len == 0)
2460 return;
2462 data.constfun = clear_by_pieces_1;
2463 data.constfundata = NULL;
2464 data.len = len;
2465 data.to = to;
2466 store_by_pieces_1 (&data, align);
2469 /* Callback routine for clear_by_pieces.
2470 Return const0_rtx unconditionally. */
2472 static rtx
2473 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2474 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2475 enum machine_mode mode ATTRIBUTE_UNUSED)
2477 return const0_rtx;
2480 /* Subroutine of clear_by_pieces and store_by_pieces.
2481 Generate several move instructions to store LEN bytes of block TO. (A MEM
2482 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2484 static void
2485 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2486 unsigned int align ATTRIBUTE_UNUSED)
2488 enum machine_mode to_addr_mode
2489 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2490 rtx to_addr = XEXP (data->to, 0);
2491 unsigned int max_size = STORE_MAX_PIECES + 1;
2492 enum machine_mode mode = VOIDmode, tmode;
2493 enum insn_code icode;
2495 data->offset = 0;
2496 data->to_addr = to_addr;
2497 data->autinc_to
2498 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2499 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2501 data->explicit_inc_to = 0;
2502 data->reverse
2503 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2504 if (data->reverse)
2505 data->offset = data->len;
2507 /* If storing requires more than two move insns,
2508 copy addresses to registers (to make displacements shorter)
2509 and use post-increment if available. */
2510 if (!data->autinc_to
2511 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2513 /* Determine the main mode we'll be using. */
2514 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2515 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2516 if (GET_MODE_SIZE (tmode) < max_size)
2517 mode = tmode;
2519 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2521 data->to_addr = copy_to_mode_reg (to_addr_mode,
2522 plus_constant (to_addr, data->len));
2523 data->autinc_to = 1;
2524 data->explicit_inc_to = -1;
2527 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2528 && ! data->autinc_to)
2530 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2531 data->autinc_to = 1;
2532 data->explicit_inc_to = 1;
2535 if ( !data->autinc_to && CONSTANT_P (to_addr))
2536 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2539 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2540 if (align >= GET_MODE_ALIGNMENT (tmode))
2541 align = GET_MODE_ALIGNMENT (tmode);
2542 else
2544 enum machine_mode xmode;
2546 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2547 tmode != VOIDmode;
2548 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2549 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2550 || SLOW_UNALIGNED_ACCESS (tmode, align))
2551 break;
2553 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2556 /* First store what we can in the largest integer mode, then go to
2557 successively smaller modes. */
2559 while (max_size > 1)
2561 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2562 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2563 if (GET_MODE_SIZE (tmode) < max_size)
2564 mode = tmode;
2566 if (mode == VOIDmode)
2567 break;
2569 icode = optab_handler (mov_optab, mode)->insn_code;
2570 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2571 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2573 max_size = GET_MODE_SIZE (mode);
2576 /* The code above should have handled everything. */
2577 gcc_assert (!data->len);
2580 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2581 with move instructions for mode MODE. GENFUN is the gen_... function
2582 to make a move insn for that mode. DATA has all the other info. */
2584 static void
2585 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2586 struct store_by_pieces_d *data)
2588 unsigned int size = GET_MODE_SIZE (mode);
2589 rtx to1, cst;
2591 while (data->len >= size)
2593 if (data->reverse)
2594 data->offset -= size;
2596 if (data->autinc_to)
2597 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2598 data->offset);
2599 else
2600 to1 = adjust_address (data->to, mode, data->offset);
2602 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2603 emit_insn (gen_add2_insn (data->to_addr,
2604 GEN_INT (-(HOST_WIDE_INT) size)));
2606 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2607 emit_insn ((*genfun) (to1, cst));
2609 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2610 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2612 if (! data->reverse)
2613 data->offset += size;
2615 data->len -= size;
2619 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2620 its length in bytes. */
2623 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2624 unsigned int expected_align, HOST_WIDE_INT expected_size)
2626 enum machine_mode mode = GET_MODE (object);
2627 unsigned int align;
2629 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2631 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2632 just move a zero. Otherwise, do this a piece at a time. */
2633 if (mode != BLKmode
2634 && CONST_INT_P (size)
2635 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2637 rtx zero = CONST0_RTX (mode);
2638 if (zero != NULL)
2640 emit_move_insn (object, zero);
2641 return NULL;
2644 if (COMPLEX_MODE_P (mode))
2646 zero = CONST0_RTX (GET_MODE_INNER (mode));
2647 if (zero != NULL)
2649 write_complex_part (object, zero, 0);
2650 write_complex_part (object, zero, 1);
2651 return NULL;
2656 if (size == const0_rtx)
2657 return NULL;
2659 align = MEM_ALIGN (object);
2661 if (CONST_INT_P (size)
2662 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2663 clear_by_pieces (object, INTVAL (size), align);
2664 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2665 expected_align, expected_size))
2667 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2668 return set_storage_via_libcall (object, size, const0_rtx,
2669 method == BLOCK_OP_TAILCALL);
2670 else
2671 gcc_unreachable ();
2673 return NULL;
2677 clear_storage (rtx object, rtx size, enum block_op_methods method)
2679 return clear_storage_hints (object, size, method, 0, -1);
2683 /* A subroutine of clear_storage. Expand a call to memset.
2684 Return the return value of memset, 0 otherwise. */
2687 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2689 tree call_expr, fn, object_tree, size_tree, val_tree;
2690 enum machine_mode size_mode;
2691 rtx retval;
2693 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2694 place those into new pseudos into a VAR_DECL and use them later. */
2696 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2698 size_mode = TYPE_MODE (sizetype);
2699 size = convert_to_mode (size_mode, size, 1);
2700 size = copy_to_mode_reg (size_mode, size);
2702 /* It is incorrect to use the libcall calling conventions to call
2703 memset in this context. This could be a user call to memset and
2704 the user may wish to examine the return value from memset. For
2705 targets where libcalls and normal calls have different conventions
2706 for returning pointers, we could end up generating incorrect code. */
2708 object_tree = make_tree (ptr_type_node, object);
2709 if (!CONST_INT_P (val))
2710 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2711 size_tree = make_tree (sizetype, size);
2712 val_tree = make_tree (integer_type_node, val);
2714 fn = clear_storage_libcall_fn (true);
2715 call_expr = build_call_expr (fn, 3,
2716 object_tree, integer_zero_node, size_tree);
2717 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2719 retval = expand_normal (call_expr);
2721 return retval;
2724 /* A subroutine of set_storage_via_libcall. Create the tree node
2725 for the function we use for block clears. The first time FOR_CALL
2726 is true, we call assemble_external. */
2728 tree block_clear_fn;
2730 void
2731 init_block_clear_fn (const char *asmspec)
2733 if (!block_clear_fn)
2735 tree fn, args;
2737 fn = get_identifier ("memset");
2738 args = build_function_type_list (ptr_type_node, ptr_type_node,
2739 integer_type_node, sizetype,
2740 NULL_TREE);
2742 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2743 DECL_EXTERNAL (fn) = 1;
2744 TREE_PUBLIC (fn) = 1;
2745 DECL_ARTIFICIAL (fn) = 1;
2746 TREE_NOTHROW (fn) = 1;
2747 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2748 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2750 block_clear_fn = fn;
2753 if (asmspec)
2754 set_user_assembler_name (block_clear_fn, asmspec);
2757 static tree
2758 clear_storage_libcall_fn (int for_call)
2760 static bool emitted_extern;
2762 if (!block_clear_fn)
2763 init_block_clear_fn (NULL);
2765 if (for_call && !emitted_extern)
2767 emitted_extern = true;
2768 make_decl_rtl (block_clear_fn);
2769 assemble_external (block_clear_fn);
2772 return block_clear_fn;
2775 /* Expand a setmem pattern; return true if successful. */
2777 bool
2778 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2779 unsigned int expected_align, HOST_WIDE_INT expected_size)
2781 /* Try the most limited insn first, because there's no point
2782 including more than one in the machine description unless
2783 the more limited one has some advantage. */
2785 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2786 enum machine_mode mode;
2788 if (expected_align < align)
2789 expected_align = align;
2791 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2792 mode = GET_MODE_WIDER_MODE (mode))
2794 enum insn_code code = setmem_optab[(int) mode];
2795 insn_operand_predicate_fn pred;
2797 if (code != CODE_FOR_nothing
2798 /* We don't need MODE to be narrower than
2799 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2800 the mode mask, as it is returned by the macro, it will
2801 definitely be less than the actual mode mask. */
2802 && ((CONST_INT_P (size)
2803 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2804 <= (GET_MODE_MASK (mode) >> 1)))
2805 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2806 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2807 || (*pred) (object, BLKmode))
2808 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2809 || (*pred) (opalign, VOIDmode)))
2811 rtx opsize, opchar;
2812 enum machine_mode char_mode;
2813 rtx last = get_last_insn ();
2814 rtx pat;
2816 opsize = convert_to_mode (mode, size, 1);
2817 pred = insn_data[(int) code].operand[1].predicate;
2818 if (pred != 0 && ! (*pred) (opsize, mode))
2819 opsize = copy_to_mode_reg (mode, opsize);
2821 opchar = val;
2822 char_mode = insn_data[(int) code].operand[2].mode;
2823 if (char_mode != VOIDmode)
2825 opchar = convert_to_mode (char_mode, opchar, 1);
2826 pred = insn_data[(int) code].operand[2].predicate;
2827 if (pred != 0 && ! (*pred) (opchar, char_mode))
2828 opchar = copy_to_mode_reg (char_mode, opchar);
2831 if (insn_data[(int) code].n_operands == 4)
2832 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2833 else
2834 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2835 GEN_INT (expected_align
2836 / BITS_PER_UNIT),
2837 GEN_INT (expected_size));
2838 if (pat)
2840 emit_insn (pat);
2841 return true;
2843 else
2844 delete_insns_since (last);
2848 return false;
2852 /* Write to one of the components of the complex value CPLX. Write VAL to
2853 the real part if IMAG_P is false, and the imaginary part if its true. */
2855 static void
2856 write_complex_part (rtx cplx, rtx val, bool imag_p)
2858 enum machine_mode cmode;
2859 enum machine_mode imode;
2860 unsigned ibitsize;
2862 if (GET_CODE (cplx) == CONCAT)
2864 emit_move_insn (XEXP (cplx, imag_p), val);
2865 return;
2868 cmode = GET_MODE (cplx);
2869 imode = GET_MODE_INNER (cmode);
2870 ibitsize = GET_MODE_BITSIZE (imode);
2872 /* For MEMs simplify_gen_subreg may generate an invalid new address
2873 because, e.g., the original address is considered mode-dependent
2874 by the target, which restricts simplify_subreg from invoking
2875 adjust_address_nv. Instead of preparing fallback support for an
2876 invalid address, we call adjust_address_nv directly. */
2877 if (MEM_P (cplx))
2879 emit_move_insn (adjust_address_nv (cplx, imode,
2880 imag_p ? GET_MODE_SIZE (imode) : 0),
2881 val);
2882 return;
2885 /* If the sub-object is at least word sized, then we know that subregging
2886 will work. This special case is important, since store_bit_field
2887 wants to operate on integer modes, and there's rarely an OImode to
2888 correspond to TCmode. */
2889 if (ibitsize >= BITS_PER_WORD
2890 /* For hard regs we have exact predicates. Assume we can split
2891 the original object if it spans an even number of hard regs.
2892 This special case is important for SCmode on 64-bit platforms
2893 where the natural size of floating-point regs is 32-bit. */
2894 || (REG_P (cplx)
2895 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2896 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2898 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2899 imag_p ? GET_MODE_SIZE (imode) : 0);
2900 if (part)
2902 emit_move_insn (part, val);
2903 return;
2905 else
2906 /* simplify_gen_subreg may fail for sub-word MEMs. */
2907 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2910 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2913 /* Extract one of the components of the complex value CPLX. Extract the
2914 real part if IMAG_P is false, and the imaginary part if it's true. */
2916 static rtx
2917 read_complex_part (rtx cplx, bool imag_p)
2919 enum machine_mode cmode, imode;
2920 unsigned ibitsize;
2922 if (GET_CODE (cplx) == CONCAT)
2923 return XEXP (cplx, imag_p);
2925 cmode = GET_MODE (cplx);
2926 imode = GET_MODE_INNER (cmode);
2927 ibitsize = GET_MODE_BITSIZE (imode);
2929 /* Special case reads from complex constants that got spilled to memory. */
2930 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2932 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2933 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2935 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2936 if (CONSTANT_CLASS_P (part))
2937 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2941 /* For MEMs simplify_gen_subreg may generate an invalid new address
2942 because, e.g., the original address is considered mode-dependent
2943 by the target, which restricts simplify_subreg from invoking
2944 adjust_address_nv. Instead of preparing fallback support for an
2945 invalid address, we call adjust_address_nv directly. */
2946 if (MEM_P (cplx))
2947 return adjust_address_nv (cplx, imode,
2948 imag_p ? GET_MODE_SIZE (imode) : 0);
2950 /* If the sub-object is at least word sized, then we know that subregging
2951 will work. This special case is important, since extract_bit_field
2952 wants to operate on integer modes, and there's rarely an OImode to
2953 correspond to TCmode. */
2954 if (ibitsize >= BITS_PER_WORD
2955 /* For hard regs we have exact predicates. Assume we can split
2956 the original object if it spans an even number of hard regs.
2957 This special case is important for SCmode on 64-bit platforms
2958 where the natural size of floating-point regs is 32-bit. */
2959 || (REG_P (cplx)
2960 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2961 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2963 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2964 imag_p ? GET_MODE_SIZE (imode) : 0);
2965 if (ret)
2966 return ret;
2967 else
2968 /* simplify_gen_subreg may fail for sub-word MEMs. */
2969 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2972 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2973 true, NULL_RTX, imode, imode);
2976 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2977 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2978 represented in NEW_MODE. If FORCE is true, this will never happen, as
2979 we'll force-create a SUBREG if needed. */
2981 static rtx
2982 emit_move_change_mode (enum machine_mode new_mode,
2983 enum machine_mode old_mode, rtx x, bool force)
2985 rtx ret;
2987 if (push_operand (x, GET_MODE (x)))
2989 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2990 MEM_COPY_ATTRIBUTES (ret, x);
2992 else if (MEM_P (x))
2994 /* We don't have to worry about changing the address since the
2995 size in bytes is supposed to be the same. */
2996 if (reload_in_progress)
2998 /* Copy the MEM to change the mode and move any
2999 substitutions from the old MEM to the new one. */
3000 ret = adjust_address_nv (x, new_mode, 0);
3001 copy_replacements (x, ret);
3003 else
3004 ret = adjust_address (x, new_mode, 0);
3006 else
3008 /* Note that we do want simplify_subreg's behavior of validating
3009 that the new mode is ok for a hard register. If we were to use
3010 simplify_gen_subreg, we would create the subreg, but would
3011 probably run into the target not being able to implement it. */
3012 /* Except, of course, when FORCE is true, when this is exactly what
3013 we want. Which is needed for CCmodes on some targets. */
3014 if (force)
3015 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3016 else
3017 ret = simplify_subreg (new_mode, x, old_mode, 0);
3020 return ret;
3023 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3024 an integer mode of the same size as MODE. Returns the instruction
3025 emitted, or NULL if such a move could not be generated. */
3027 static rtx
3028 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3030 enum machine_mode imode;
3031 enum insn_code code;
3033 /* There must exist a mode of the exact size we require. */
3034 imode = int_mode_for_mode (mode);
3035 if (imode == BLKmode)
3036 return NULL_RTX;
3038 /* The target must support moves in this mode. */
3039 code = optab_handler (mov_optab, imode)->insn_code;
3040 if (code == CODE_FOR_nothing)
3041 return NULL_RTX;
3043 x = emit_move_change_mode (imode, mode, x, force);
3044 if (x == NULL_RTX)
3045 return NULL_RTX;
3046 y = emit_move_change_mode (imode, mode, y, force);
3047 if (y == NULL_RTX)
3048 return NULL_RTX;
3049 return emit_insn (GEN_FCN (code) (x, y));
3052 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3053 Return an equivalent MEM that does not use an auto-increment. */
3055 static rtx
3056 emit_move_resolve_push (enum machine_mode mode, rtx x)
3058 enum rtx_code code = GET_CODE (XEXP (x, 0));
3059 HOST_WIDE_INT adjust;
3060 rtx temp;
3062 adjust = GET_MODE_SIZE (mode);
3063 #ifdef PUSH_ROUNDING
3064 adjust = PUSH_ROUNDING (adjust);
3065 #endif
3066 if (code == PRE_DEC || code == POST_DEC)
3067 adjust = -adjust;
3068 else if (code == PRE_MODIFY || code == POST_MODIFY)
3070 rtx expr = XEXP (XEXP (x, 0), 1);
3071 HOST_WIDE_INT val;
3073 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3074 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3075 val = INTVAL (XEXP (expr, 1));
3076 if (GET_CODE (expr) == MINUS)
3077 val = -val;
3078 gcc_assert (adjust == val || adjust == -val);
3079 adjust = val;
3082 /* Do not use anti_adjust_stack, since we don't want to update
3083 stack_pointer_delta. */
3084 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3085 GEN_INT (adjust), stack_pointer_rtx,
3086 0, OPTAB_LIB_WIDEN);
3087 if (temp != stack_pointer_rtx)
3088 emit_move_insn (stack_pointer_rtx, temp);
3090 switch (code)
3092 case PRE_INC:
3093 case PRE_DEC:
3094 case PRE_MODIFY:
3095 temp = stack_pointer_rtx;
3096 break;
3097 case POST_INC:
3098 case POST_DEC:
3099 case POST_MODIFY:
3100 temp = plus_constant (stack_pointer_rtx, -adjust);
3101 break;
3102 default:
3103 gcc_unreachable ();
3106 return replace_equiv_address (x, temp);
3109 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3110 X is known to satisfy push_operand, and MODE is known to be complex.
3111 Returns the last instruction emitted. */
3114 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3116 enum machine_mode submode = GET_MODE_INNER (mode);
3117 bool imag_first;
3119 #ifdef PUSH_ROUNDING
3120 unsigned int submodesize = GET_MODE_SIZE (submode);
3122 /* In case we output to the stack, but the size is smaller than the
3123 machine can push exactly, we need to use move instructions. */
3124 if (PUSH_ROUNDING (submodesize) != submodesize)
3126 x = emit_move_resolve_push (mode, x);
3127 return emit_move_insn (x, y);
3129 #endif
3131 /* Note that the real part always precedes the imag part in memory
3132 regardless of machine's endianness. */
3133 switch (GET_CODE (XEXP (x, 0)))
3135 case PRE_DEC:
3136 case POST_DEC:
3137 imag_first = true;
3138 break;
3139 case PRE_INC:
3140 case POST_INC:
3141 imag_first = false;
3142 break;
3143 default:
3144 gcc_unreachable ();
3147 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3148 read_complex_part (y, imag_first));
3149 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3150 read_complex_part (y, !imag_first));
3153 /* A subroutine of emit_move_complex. Perform the move from Y to X
3154 via two moves of the parts. Returns the last instruction emitted. */
3157 emit_move_complex_parts (rtx x, rtx y)
3159 /* Show the output dies here. This is necessary for SUBREGs
3160 of pseudos since we cannot track their lifetimes correctly;
3161 hard regs shouldn't appear here except as return values. */
3162 if (!reload_completed && !reload_in_progress
3163 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3164 emit_clobber (x);
3166 write_complex_part (x, read_complex_part (y, false), false);
3167 write_complex_part (x, read_complex_part (y, true), true);
3169 return get_last_insn ();
3172 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3173 MODE is known to be complex. Returns the last instruction emitted. */
3175 static rtx
3176 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3178 bool try_int;
3180 /* Need to take special care for pushes, to maintain proper ordering
3181 of the data, and possibly extra padding. */
3182 if (push_operand (x, mode))
3183 return emit_move_complex_push (mode, x, y);
3185 /* See if we can coerce the target into moving both values at once. */
3187 /* Move floating point as parts. */
3188 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3189 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3190 try_int = false;
3191 /* Not possible if the values are inherently not adjacent. */
3192 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3193 try_int = false;
3194 /* Is possible if both are registers (or subregs of registers). */
3195 else if (register_operand (x, mode) && register_operand (y, mode))
3196 try_int = true;
3197 /* If one of the operands is a memory, and alignment constraints
3198 are friendly enough, we may be able to do combined memory operations.
3199 We do not attempt this if Y is a constant because that combination is
3200 usually better with the by-parts thing below. */
3201 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3202 && (!STRICT_ALIGNMENT
3203 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3204 try_int = true;
3205 else
3206 try_int = false;
3208 if (try_int)
3210 rtx ret;
3212 /* For memory to memory moves, optimal behavior can be had with the
3213 existing block move logic. */
3214 if (MEM_P (x) && MEM_P (y))
3216 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3217 BLOCK_OP_NO_LIBCALL);
3218 return get_last_insn ();
3221 ret = emit_move_via_integer (mode, x, y, true);
3222 if (ret)
3223 return ret;
3226 return emit_move_complex_parts (x, y);
3229 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3230 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3232 static rtx
3233 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3235 rtx ret;
3237 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3238 if (mode != CCmode)
3240 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3241 if (code != CODE_FOR_nothing)
3243 x = emit_move_change_mode (CCmode, mode, x, true);
3244 y = emit_move_change_mode (CCmode, mode, y, true);
3245 return emit_insn (GEN_FCN (code) (x, y));
3249 /* Otherwise, find the MODE_INT mode of the same width. */
3250 ret = emit_move_via_integer (mode, x, y, false);
3251 gcc_assert (ret != NULL);
3252 return ret;
3255 /* Return true if word I of OP lies entirely in the
3256 undefined bits of a paradoxical subreg. */
3258 static bool
3259 undefined_operand_subword_p (const_rtx op, int i)
3261 enum machine_mode innermode, innermostmode;
3262 int offset;
3263 if (GET_CODE (op) != SUBREG)
3264 return false;
3265 innermode = GET_MODE (op);
3266 innermostmode = GET_MODE (SUBREG_REG (op));
3267 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3268 /* The SUBREG_BYTE represents offset, as if the value were stored in
3269 memory, except for a paradoxical subreg where we define
3270 SUBREG_BYTE to be 0; undo this exception as in
3271 simplify_subreg. */
3272 if (SUBREG_BYTE (op) == 0
3273 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3275 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3276 if (WORDS_BIG_ENDIAN)
3277 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3278 if (BYTES_BIG_ENDIAN)
3279 offset += difference % UNITS_PER_WORD;
3281 if (offset >= GET_MODE_SIZE (innermostmode)
3282 || offset <= -GET_MODE_SIZE (word_mode))
3283 return true;
3284 return false;
3287 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3288 MODE is any multi-word or full-word mode that lacks a move_insn
3289 pattern. Note that you will get better code if you define such
3290 patterns, even if they must turn into multiple assembler instructions. */
3292 static rtx
3293 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3295 rtx last_insn = 0;
3296 rtx seq, inner;
3297 bool need_clobber;
3298 int i;
3300 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3302 /* If X is a push on the stack, do the push now and replace
3303 X with a reference to the stack pointer. */
3304 if (push_operand (x, mode))
3305 x = emit_move_resolve_push (mode, x);
3307 /* If we are in reload, see if either operand is a MEM whose address
3308 is scheduled for replacement. */
3309 if (reload_in_progress && MEM_P (x)
3310 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3311 x = replace_equiv_address_nv (x, inner);
3312 if (reload_in_progress && MEM_P (y)
3313 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3314 y = replace_equiv_address_nv (y, inner);
3316 start_sequence ();
3318 need_clobber = false;
3319 for (i = 0;
3320 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3321 i++)
3323 rtx xpart = operand_subword (x, i, 1, mode);
3324 rtx ypart;
3326 /* Do not generate code for a move if it would come entirely
3327 from the undefined bits of a paradoxical subreg. */
3328 if (undefined_operand_subword_p (y, i))
3329 continue;
3331 ypart = operand_subword (y, i, 1, mode);
3333 /* If we can't get a part of Y, put Y into memory if it is a
3334 constant. Otherwise, force it into a register. Then we must
3335 be able to get a part of Y. */
3336 if (ypart == 0 && CONSTANT_P (y))
3338 y = use_anchored_address (force_const_mem (mode, y));
3339 ypart = operand_subword (y, i, 1, mode);
3341 else if (ypart == 0)
3342 ypart = operand_subword_force (y, i, mode);
3344 gcc_assert (xpart && ypart);
3346 need_clobber |= (GET_CODE (xpart) == SUBREG);
3348 last_insn = emit_move_insn (xpart, ypart);
3351 seq = get_insns ();
3352 end_sequence ();
3354 /* Show the output dies here. This is necessary for SUBREGs
3355 of pseudos since we cannot track their lifetimes correctly;
3356 hard regs shouldn't appear here except as return values.
3357 We never want to emit such a clobber after reload. */
3358 if (x != y
3359 && ! (reload_in_progress || reload_completed)
3360 && need_clobber != 0)
3361 emit_clobber (x);
3363 emit_insn (seq);
3365 return last_insn;
3368 /* Low level part of emit_move_insn.
3369 Called just like emit_move_insn, but assumes X and Y
3370 are basically valid. */
3373 emit_move_insn_1 (rtx x, rtx y)
3375 enum machine_mode mode = GET_MODE (x);
3376 enum insn_code code;
3378 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3380 code = optab_handler (mov_optab, mode)->insn_code;
3381 if (code != CODE_FOR_nothing)
3382 return emit_insn (GEN_FCN (code) (x, y));
3384 /* Expand complex moves by moving real part and imag part. */
3385 if (COMPLEX_MODE_P (mode))
3386 return emit_move_complex (mode, x, y);
3388 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3389 || ALL_FIXED_POINT_MODE_P (mode))
3391 rtx result = emit_move_via_integer (mode, x, y, true);
3393 /* If we can't find an integer mode, use multi words. */
3394 if (result)
3395 return result;
3396 else
3397 return emit_move_multi_word (mode, x, y);
3400 if (GET_MODE_CLASS (mode) == MODE_CC)
3401 return emit_move_ccmode (mode, x, y);
3403 /* Try using a move pattern for the corresponding integer mode. This is
3404 only safe when simplify_subreg can convert MODE constants into integer
3405 constants. At present, it can only do this reliably if the value
3406 fits within a HOST_WIDE_INT. */
3407 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3409 rtx ret = emit_move_via_integer (mode, x, y, false);
3410 if (ret)
3411 return ret;
3414 return emit_move_multi_word (mode, x, y);
3417 /* Generate code to copy Y into X.
3418 Both Y and X must have the same mode, except that
3419 Y can be a constant with VOIDmode.
3420 This mode cannot be BLKmode; use emit_block_move for that.
3422 Return the last instruction emitted. */
3425 emit_move_insn (rtx x, rtx y)
3427 enum machine_mode mode = GET_MODE (x);
3428 rtx y_cst = NULL_RTX;
3429 rtx last_insn, set;
3431 gcc_assert (mode != BLKmode
3432 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3434 if (CONSTANT_P (y))
3436 if (optimize
3437 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3438 && (last_insn = compress_float_constant (x, y)))
3439 return last_insn;
3441 y_cst = y;
3443 if (!LEGITIMATE_CONSTANT_P (y))
3445 y = force_const_mem (mode, y);
3447 /* If the target's cannot_force_const_mem prevented the spill,
3448 assume that the target's move expanders will also take care
3449 of the non-legitimate constant. */
3450 if (!y)
3451 y = y_cst;
3452 else
3453 y = use_anchored_address (y);
3457 /* If X or Y are memory references, verify that their addresses are valid
3458 for the machine. */
3459 if (MEM_P (x)
3460 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3461 MEM_ADDR_SPACE (x))
3462 && ! push_operand (x, GET_MODE (x))))
3463 x = validize_mem (x);
3465 if (MEM_P (y)
3466 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3467 MEM_ADDR_SPACE (y)))
3468 y = validize_mem (y);
3470 gcc_assert (mode != BLKmode);
3472 last_insn = emit_move_insn_1 (x, y);
3474 if (y_cst && REG_P (x)
3475 && (set = single_set (last_insn)) != NULL_RTX
3476 && SET_DEST (set) == x
3477 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3478 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3480 return last_insn;
3483 /* If Y is representable exactly in a narrower mode, and the target can
3484 perform the extension directly from constant or memory, then emit the
3485 move as an extension. */
3487 static rtx
3488 compress_float_constant (rtx x, rtx y)
3490 enum machine_mode dstmode = GET_MODE (x);
3491 enum machine_mode orig_srcmode = GET_MODE (y);
3492 enum machine_mode srcmode;
3493 REAL_VALUE_TYPE r;
3494 int oldcost, newcost;
3495 bool speed = optimize_insn_for_speed_p ();
3497 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3499 if (LEGITIMATE_CONSTANT_P (y))
3500 oldcost = rtx_cost (y, SET, speed);
3501 else
3502 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3504 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3505 srcmode != orig_srcmode;
3506 srcmode = GET_MODE_WIDER_MODE (srcmode))
3508 enum insn_code ic;
3509 rtx trunc_y, last_insn;
3511 /* Skip if the target can't extend this way. */
3512 ic = can_extend_p (dstmode, srcmode, 0);
3513 if (ic == CODE_FOR_nothing)
3514 continue;
3516 /* Skip if the narrowed value isn't exact. */
3517 if (! exact_real_truncate (srcmode, &r))
3518 continue;
3520 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3522 if (LEGITIMATE_CONSTANT_P (trunc_y))
3524 /* Skip if the target needs extra instructions to perform
3525 the extension. */
3526 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3527 continue;
3528 /* This is valid, but may not be cheaper than the original. */
3529 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3530 if (oldcost < newcost)
3531 continue;
3533 else if (float_extend_from_mem[dstmode][srcmode])
3535 trunc_y = force_const_mem (srcmode, trunc_y);
3536 /* This is valid, but may not be cheaper than the original. */
3537 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3538 if (oldcost < newcost)
3539 continue;
3540 trunc_y = validize_mem (trunc_y);
3542 else
3543 continue;
3545 /* For CSE's benefit, force the compressed constant pool entry
3546 into a new pseudo. This constant may be used in different modes,
3547 and if not, combine will put things back together for us. */
3548 trunc_y = force_reg (srcmode, trunc_y);
3549 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3550 last_insn = get_last_insn ();
3552 if (REG_P (x))
3553 set_unique_reg_note (last_insn, REG_EQUAL, y);
3555 return last_insn;
3558 return NULL_RTX;
3561 /* Pushing data onto the stack. */
3563 /* Push a block of length SIZE (perhaps variable)
3564 and return an rtx to address the beginning of the block.
3565 The value may be virtual_outgoing_args_rtx.
3567 EXTRA is the number of bytes of padding to push in addition to SIZE.
3568 BELOW nonzero means this padding comes at low addresses;
3569 otherwise, the padding comes at high addresses. */
3572 push_block (rtx size, int extra, int below)
3574 rtx temp;
3576 size = convert_modes (Pmode, ptr_mode, size, 1);
3577 if (CONSTANT_P (size))
3578 anti_adjust_stack (plus_constant (size, extra));
3579 else if (REG_P (size) && extra == 0)
3580 anti_adjust_stack (size);
3581 else
3583 temp = copy_to_mode_reg (Pmode, size);
3584 if (extra != 0)
3585 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3586 temp, 0, OPTAB_LIB_WIDEN);
3587 anti_adjust_stack (temp);
3590 #ifndef STACK_GROWS_DOWNWARD
3591 if (0)
3592 #else
3593 if (1)
3594 #endif
3596 temp = virtual_outgoing_args_rtx;
3597 if (extra != 0 && below)
3598 temp = plus_constant (temp, extra);
3600 else
3602 if (CONST_INT_P (size))
3603 temp = plus_constant (virtual_outgoing_args_rtx,
3604 -INTVAL (size) - (below ? 0 : extra));
3605 else if (extra != 0 && !below)
3606 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3607 negate_rtx (Pmode, plus_constant (size, extra)));
3608 else
3609 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3610 negate_rtx (Pmode, size));
3613 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3616 #ifdef PUSH_ROUNDING
3618 /* Emit single push insn. */
3620 static void
3621 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3623 rtx dest_addr;
3624 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3625 rtx dest;
3626 enum insn_code icode;
3627 insn_operand_predicate_fn pred;
3629 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3630 /* If there is push pattern, use it. Otherwise try old way of throwing
3631 MEM representing push operation to move expander. */
3632 icode = optab_handler (push_optab, mode)->insn_code;
3633 if (icode != CODE_FOR_nothing)
3635 if (((pred = insn_data[(int) icode].operand[0].predicate)
3636 && !((*pred) (x, mode))))
3637 x = force_reg (mode, x);
3638 emit_insn (GEN_FCN (icode) (x));
3639 return;
3641 if (GET_MODE_SIZE (mode) == rounded_size)
3642 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3643 /* If we are to pad downward, adjust the stack pointer first and
3644 then store X into the stack location using an offset. This is
3645 because emit_move_insn does not know how to pad; it does not have
3646 access to type. */
3647 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3649 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3650 HOST_WIDE_INT offset;
3652 emit_move_insn (stack_pointer_rtx,
3653 expand_binop (Pmode,
3654 #ifdef STACK_GROWS_DOWNWARD
3655 sub_optab,
3656 #else
3657 add_optab,
3658 #endif
3659 stack_pointer_rtx,
3660 GEN_INT (rounded_size),
3661 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3663 offset = (HOST_WIDE_INT) padding_size;
3664 #ifdef STACK_GROWS_DOWNWARD
3665 if (STACK_PUSH_CODE == POST_DEC)
3666 /* We have already decremented the stack pointer, so get the
3667 previous value. */
3668 offset += (HOST_WIDE_INT) rounded_size;
3669 #else
3670 if (STACK_PUSH_CODE == POST_INC)
3671 /* We have already incremented the stack pointer, so get the
3672 previous value. */
3673 offset -= (HOST_WIDE_INT) rounded_size;
3674 #endif
3675 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3677 else
3679 #ifdef STACK_GROWS_DOWNWARD
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3683 #else
3684 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3685 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3686 GEN_INT (rounded_size));
3687 #endif
3688 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3691 dest = gen_rtx_MEM (mode, dest_addr);
3693 if (type != 0)
3695 set_mem_attributes (dest, type, 1);
3697 if (flag_optimize_sibling_calls)
3698 /* Function incoming arguments may overlap with sibling call
3699 outgoing arguments and we cannot allow reordering of reads
3700 from function arguments with stores to outgoing arguments
3701 of sibling calls. */
3702 set_mem_alias_set (dest, 0);
3704 emit_move_insn (dest, x);
3706 #endif
3708 /* Generate code to push X onto the stack, assuming it has mode MODE and
3709 type TYPE.
3710 MODE is redundant except when X is a CONST_INT (since they don't
3711 carry mode info).
3712 SIZE is an rtx for the size of data to be copied (in bytes),
3713 needed only if X is BLKmode.
3715 ALIGN (in bits) is maximum alignment we can assume.
3717 If PARTIAL and REG are both nonzero, then copy that many of the first
3718 bytes of X into registers starting with REG, and push the rest of X.
3719 The amount of space pushed is decreased by PARTIAL bytes.
3720 REG must be a hard register in this case.
3721 If REG is zero but PARTIAL is not, take any all others actions for an
3722 argument partially in registers, but do not actually load any
3723 registers.
3725 EXTRA is the amount in bytes of extra space to leave next to this arg.
3726 This is ignored if an argument block has already been allocated.
3728 On a machine that lacks real push insns, ARGS_ADDR is the address of
3729 the bottom of the argument block for this call. We use indexing off there
3730 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3731 argument block has not been preallocated.
3733 ARGS_SO_FAR is the size of args previously pushed for this call.
3735 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3736 for arguments passed in registers. If nonzero, it will be the number
3737 of bytes required. */
3739 void
3740 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3741 unsigned int align, int partial, rtx reg, int extra,
3742 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3743 rtx alignment_pad)
3745 rtx xinner;
3746 enum direction stack_direction
3747 #ifdef STACK_GROWS_DOWNWARD
3748 = downward;
3749 #else
3750 = upward;
3751 #endif
3753 /* Decide where to pad the argument: `downward' for below,
3754 `upward' for above, or `none' for don't pad it.
3755 Default is below for small data on big-endian machines; else above. */
3756 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3758 /* Invert direction if stack is post-decrement.
3759 FIXME: why? */
3760 if (STACK_PUSH_CODE == POST_DEC)
3761 if (where_pad != none)
3762 where_pad = (where_pad == downward ? upward : downward);
3764 xinner = x;
3766 if (mode == BLKmode
3767 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3769 /* Copy a block into the stack, entirely or partially. */
3771 rtx temp;
3772 int used;
3773 int offset;
3774 int skip;
3776 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3777 used = partial - offset;
3779 if (mode != BLKmode)
3781 /* A value is to be stored in an insufficiently aligned
3782 stack slot; copy via a suitably aligned slot if
3783 necessary. */
3784 size = GEN_INT (GET_MODE_SIZE (mode));
3785 if (!MEM_P (xinner))
3787 temp = assign_temp (type, 0, 1, 1);
3788 emit_move_insn (temp, xinner);
3789 xinner = temp;
3793 gcc_assert (size);
3795 /* USED is now the # of bytes we need not copy to the stack
3796 because registers will take care of them. */
3798 if (partial != 0)
3799 xinner = adjust_address (xinner, BLKmode, used);
3801 /* If the partial register-part of the arg counts in its stack size,
3802 skip the part of stack space corresponding to the registers.
3803 Otherwise, start copying to the beginning of the stack space,
3804 by setting SKIP to 0. */
3805 skip = (reg_parm_stack_space == 0) ? 0 : used;
3807 #ifdef PUSH_ROUNDING
3808 /* Do it with several push insns if that doesn't take lots of insns
3809 and if there is no difficulty with push insns that skip bytes
3810 on the stack for alignment purposes. */
3811 if (args_addr == 0
3812 && PUSH_ARGS
3813 && CONST_INT_P (size)
3814 && skip == 0
3815 && MEM_ALIGN (xinner) >= align
3816 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3817 /* Here we avoid the case of a structure whose weak alignment
3818 forces many pushes of a small amount of data,
3819 and such small pushes do rounding that causes trouble. */
3820 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3821 || align >= BIGGEST_ALIGNMENT
3822 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3823 == (align / BITS_PER_UNIT)))
3824 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3826 /* Push padding now if padding above and stack grows down,
3827 or if padding below and stack grows up.
3828 But if space already allocated, this has already been done. */
3829 if (extra && args_addr == 0
3830 && where_pad != none && where_pad != stack_direction)
3831 anti_adjust_stack (GEN_INT (extra));
3833 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3835 else
3836 #endif /* PUSH_ROUNDING */
3838 rtx target;
3840 /* Otherwise make space on the stack and copy the data
3841 to the address of that space. */
3843 /* Deduct words put into registers from the size we must copy. */
3844 if (partial != 0)
3846 if (CONST_INT_P (size))
3847 size = GEN_INT (INTVAL (size) - used);
3848 else
3849 size = expand_binop (GET_MODE (size), sub_optab, size,
3850 GEN_INT (used), NULL_RTX, 0,
3851 OPTAB_LIB_WIDEN);
3854 /* Get the address of the stack space.
3855 In this case, we do not deal with EXTRA separately.
3856 A single stack adjust will do. */
3857 if (! args_addr)
3859 temp = push_block (size, extra, where_pad == downward);
3860 extra = 0;
3862 else if (CONST_INT_P (args_so_far))
3863 temp = memory_address (BLKmode,
3864 plus_constant (args_addr,
3865 skip + INTVAL (args_so_far)));
3866 else
3867 temp = memory_address (BLKmode,
3868 plus_constant (gen_rtx_PLUS (Pmode,
3869 args_addr,
3870 args_so_far),
3871 skip));
3873 if (!ACCUMULATE_OUTGOING_ARGS)
3875 /* If the source is referenced relative to the stack pointer,
3876 copy it to another register to stabilize it. We do not need
3877 to do this if we know that we won't be changing sp. */
3879 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3880 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3881 temp = copy_to_reg (temp);
3884 target = gen_rtx_MEM (BLKmode, temp);
3886 /* We do *not* set_mem_attributes here, because incoming arguments
3887 may overlap with sibling call outgoing arguments and we cannot
3888 allow reordering of reads from function arguments with stores
3889 to outgoing arguments of sibling calls. We do, however, want
3890 to record the alignment of the stack slot. */
3891 /* ALIGN may well be better aligned than TYPE, e.g. due to
3892 PARM_BOUNDARY. Assume the caller isn't lying. */
3893 set_mem_align (target, align);
3895 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3898 else if (partial > 0)
3900 /* Scalar partly in registers. */
3902 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3903 int i;
3904 int not_stack;
3905 /* # bytes of start of argument
3906 that we must make space for but need not store. */
3907 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3908 int args_offset = INTVAL (args_so_far);
3909 int skip;
3911 /* Push padding now if padding above and stack grows down,
3912 or if padding below and stack grows up.
3913 But if space already allocated, this has already been done. */
3914 if (extra && args_addr == 0
3915 && where_pad != none && where_pad != stack_direction)
3916 anti_adjust_stack (GEN_INT (extra));
3918 /* If we make space by pushing it, we might as well push
3919 the real data. Otherwise, we can leave OFFSET nonzero
3920 and leave the space uninitialized. */
3921 if (args_addr == 0)
3922 offset = 0;
3924 /* Now NOT_STACK gets the number of words that we don't need to
3925 allocate on the stack. Convert OFFSET to words too. */
3926 not_stack = (partial - offset) / UNITS_PER_WORD;
3927 offset /= UNITS_PER_WORD;
3929 /* If the partial register-part of the arg counts in its stack size,
3930 skip the part of stack space corresponding to the registers.
3931 Otherwise, start copying to the beginning of the stack space,
3932 by setting SKIP to 0. */
3933 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3935 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3936 x = validize_mem (force_const_mem (mode, x));
3938 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3939 SUBREGs of such registers are not allowed. */
3940 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3941 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3942 x = copy_to_reg (x);
3944 /* Loop over all the words allocated on the stack for this arg. */
3945 /* We can do it by words, because any scalar bigger than a word
3946 has a size a multiple of a word. */
3947 #ifndef PUSH_ARGS_REVERSED
3948 for (i = not_stack; i < size; i++)
3949 #else
3950 for (i = size - 1; i >= not_stack; i--)
3951 #endif
3952 if (i >= not_stack + offset)
3953 emit_push_insn (operand_subword_force (x, i, mode),
3954 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3955 0, args_addr,
3956 GEN_INT (args_offset + ((i - not_stack + skip)
3957 * UNITS_PER_WORD)),
3958 reg_parm_stack_space, alignment_pad);
3960 else
3962 rtx addr;
3963 rtx dest;
3965 /* Push padding now if padding above and stack grows down,
3966 or if padding below and stack grows up.
3967 But if space already allocated, this has already been done. */
3968 if (extra && args_addr == 0
3969 && where_pad != none && where_pad != stack_direction)
3970 anti_adjust_stack (GEN_INT (extra));
3972 #ifdef PUSH_ROUNDING
3973 if (args_addr == 0 && PUSH_ARGS)
3974 emit_single_push_insn (mode, x, type);
3975 else
3976 #endif
3978 if (CONST_INT_P (args_so_far))
3979 addr
3980 = memory_address (mode,
3981 plus_constant (args_addr,
3982 INTVAL (args_so_far)));
3983 else
3984 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3985 args_so_far));
3986 dest = gen_rtx_MEM (mode, addr);
3988 /* We do *not* set_mem_attributes here, because incoming arguments
3989 may overlap with sibling call outgoing arguments and we cannot
3990 allow reordering of reads from function arguments with stores
3991 to outgoing arguments of sibling calls. We do, however, want
3992 to record the alignment of the stack slot. */
3993 /* ALIGN may well be better aligned than TYPE, e.g. due to
3994 PARM_BOUNDARY. Assume the caller isn't lying. */
3995 set_mem_align (dest, align);
3997 emit_move_insn (dest, x);
4001 /* If part should go in registers, copy that part
4002 into the appropriate registers. Do this now, at the end,
4003 since mem-to-mem copies above may do function calls. */
4004 if (partial > 0 && reg != 0)
4006 /* Handle calls that pass values in multiple non-contiguous locations.
4007 The Irix 6 ABI has examples of this. */
4008 if (GET_CODE (reg) == PARALLEL)
4009 emit_group_load (reg, x, type, -1);
4010 else
4012 gcc_assert (partial % UNITS_PER_WORD == 0);
4013 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4017 if (extra && args_addr == 0 && where_pad == stack_direction)
4018 anti_adjust_stack (GEN_INT (extra));
4020 if (alignment_pad && args_addr == 0)
4021 anti_adjust_stack (alignment_pad);
4024 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4025 operations. */
4027 static rtx
4028 get_subtarget (rtx x)
4030 return (optimize
4031 || x == 0
4032 /* Only registers can be subtargets. */
4033 || !REG_P (x)
4034 /* Don't use hard regs to avoid extending their life. */
4035 || REGNO (x) < FIRST_PSEUDO_REGISTER
4036 ? 0 : x);
4039 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4040 FIELD is a bitfield. Returns true if the optimization was successful,
4041 and there's nothing else to do. */
4043 static bool
4044 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4045 unsigned HOST_WIDE_INT bitpos,
4046 enum machine_mode mode1, rtx str_rtx,
4047 tree to, tree src)
4049 enum machine_mode str_mode = GET_MODE (str_rtx);
4050 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4051 tree op0, op1;
4052 rtx value, result;
4053 optab binop;
4055 if (mode1 != VOIDmode
4056 || bitsize >= BITS_PER_WORD
4057 || str_bitsize > BITS_PER_WORD
4058 || TREE_SIDE_EFFECTS (to)
4059 || TREE_THIS_VOLATILE (to))
4060 return false;
4062 STRIP_NOPS (src);
4063 if (!BINARY_CLASS_P (src)
4064 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4065 return false;
4067 op0 = TREE_OPERAND (src, 0);
4068 op1 = TREE_OPERAND (src, 1);
4069 STRIP_NOPS (op0);
4071 if (!operand_equal_p (to, op0, 0))
4072 return false;
4074 if (MEM_P (str_rtx))
4076 unsigned HOST_WIDE_INT offset1;
4078 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4079 str_mode = word_mode;
4080 str_mode = get_best_mode (bitsize, bitpos,
4081 MEM_ALIGN (str_rtx), str_mode, 0);
4082 if (str_mode == VOIDmode)
4083 return false;
4084 str_bitsize = GET_MODE_BITSIZE (str_mode);
4086 offset1 = bitpos;
4087 bitpos %= str_bitsize;
4088 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4089 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4091 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4092 return false;
4094 /* If the bit field covers the whole REG/MEM, store_field
4095 will likely generate better code. */
4096 if (bitsize >= str_bitsize)
4097 return false;
4099 /* We can't handle fields split across multiple entities. */
4100 if (bitpos + bitsize > str_bitsize)
4101 return false;
4103 if (BYTES_BIG_ENDIAN)
4104 bitpos = str_bitsize - bitpos - bitsize;
4106 switch (TREE_CODE (src))
4108 case PLUS_EXPR:
4109 case MINUS_EXPR:
4110 /* For now, just optimize the case of the topmost bitfield
4111 where we don't need to do any masking and also
4112 1 bit bitfields where xor can be used.
4113 We might win by one instruction for the other bitfields
4114 too if insv/extv instructions aren't used, so that
4115 can be added later. */
4116 if (bitpos + bitsize != str_bitsize
4117 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4118 break;
4120 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4121 value = convert_modes (str_mode,
4122 TYPE_MODE (TREE_TYPE (op1)), value,
4123 TYPE_UNSIGNED (TREE_TYPE (op1)));
4125 /* We may be accessing data outside the field, which means
4126 we can alias adjacent data. */
4127 if (MEM_P (str_rtx))
4129 str_rtx = shallow_copy_rtx (str_rtx);
4130 set_mem_alias_set (str_rtx, 0);
4131 set_mem_expr (str_rtx, 0);
4134 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4135 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4137 value = expand_and (str_mode, value, const1_rtx, NULL);
4138 binop = xor_optab;
4140 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4141 build_int_cst (NULL_TREE, bitpos),
4142 NULL_RTX, 1);
4143 result = expand_binop (str_mode, binop, str_rtx,
4144 value, str_rtx, 1, OPTAB_WIDEN);
4145 if (result != str_rtx)
4146 emit_move_insn (str_rtx, result);
4147 return true;
4149 case BIT_IOR_EXPR:
4150 case BIT_XOR_EXPR:
4151 if (TREE_CODE (op1) != INTEGER_CST)
4152 break;
4153 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4154 value = convert_modes (GET_MODE (str_rtx),
4155 TYPE_MODE (TREE_TYPE (op1)), value,
4156 TYPE_UNSIGNED (TREE_TYPE (op1)));
4158 /* We may be accessing data outside the field, which means
4159 we can alias adjacent data. */
4160 if (MEM_P (str_rtx))
4162 str_rtx = shallow_copy_rtx (str_rtx);
4163 set_mem_alias_set (str_rtx, 0);
4164 set_mem_expr (str_rtx, 0);
4167 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4168 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4170 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4171 - 1);
4172 value = expand_and (GET_MODE (str_rtx), value, mask,
4173 NULL_RTX);
4175 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4176 build_int_cst (NULL_TREE, bitpos),
4177 NULL_RTX, 1);
4178 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4179 value, str_rtx, 1, OPTAB_WIDEN);
4180 if (result != str_rtx)
4181 emit_move_insn (str_rtx, result);
4182 return true;
4184 default:
4185 break;
4188 return false;
4192 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4193 is true, try generating a nontemporal store. */
4195 void
4196 expand_assignment (tree to, tree from, bool nontemporal)
4198 rtx to_rtx = 0;
4199 rtx result;
4201 /* Don't crash if the lhs of the assignment was erroneous. */
4202 if (TREE_CODE (to) == ERROR_MARK)
4204 result = expand_normal (from);
4205 return;
4208 /* Optimize away no-op moves without side-effects. */
4209 if (operand_equal_p (to, from, 0))
4210 return;
4212 /* Assignment of a structure component needs special treatment
4213 if the structure component's rtx is not simply a MEM.
4214 Assignment of an array element at a constant index, and assignment of
4215 an array element in an unaligned packed structure field, has the same
4216 problem. */
4217 if (handled_component_p (to)
4218 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4220 enum machine_mode mode1;
4221 HOST_WIDE_INT bitsize, bitpos;
4222 tree offset;
4223 int unsignedp;
4224 int volatilep = 0;
4225 tree tem;
4227 push_temp_slots ();
4228 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4229 &unsignedp, &volatilep, true);
4231 /* If we are going to use store_bit_field and extract_bit_field,
4232 make sure to_rtx will be safe for multiple use. */
4234 to_rtx = expand_normal (tem);
4236 if (offset != 0)
4238 enum machine_mode address_mode;
4239 rtx offset_rtx;
4241 if (!MEM_P (to_rtx))
4243 /* We can get constant negative offsets into arrays with broken
4244 user code. Translate this to a trap instead of ICEing. */
4245 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4246 expand_builtin_trap ();
4247 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4250 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4251 address_mode
4252 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4253 if (GET_MODE (offset_rtx) != address_mode)
4254 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4256 /* A constant address in TO_RTX can have VOIDmode, we must not try
4257 to call force_reg for that case. Avoid that case. */
4258 if (MEM_P (to_rtx)
4259 && GET_MODE (to_rtx) == BLKmode
4260 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4261 && bitsize > 0
4262 && (bitpos % bitsize) == 0
4263 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4264 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4266 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4267 bitpos = 0;
4270 to_rtx = offset_address (to_rtx, offset_rtx,
4271 highest_pow2_factor_for_target (to,
4272 offset));
4275 /* Handle expand_expr of a complex value returning a CONCAT. */
4276 if (GET_CODE (to_rtx) == CONCAT)
4278 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4280 gcc_assert (bitpos == 0);
4281 result = store_expr (from, to_rtx, false, nontemporal);
4283 else
4285 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4286 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4287 nontemporal);
4290 else
4292 if (MEM_P (to_rtx))
4294 /* If the field is at offset zero, we could have been given the
4295 DECL_RTX of the parent struct. Don't munge it. */
4296 to_rtx = shallow_copy_rtx (to_rtx);
4298 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4300 /* Deal with volatile and readonly fields. The former is only
4301 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4302 if (volatilep)
4303 MEM_VOLATILE_P (to_rtx) = 1;
4304 if (component_uses_parent_alias_set (to))
4305 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4308 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4309 to_rtx, to, from))
4310 result = NULL;
4311 else
4312 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4313 TREE_TYPE (tem), get_alias_set (to),
4314 nontemporal);
4317 if (result)
4318 preserve_temp_slots (result);
4319 free_temp_slots ();
4320 pop_temp_slots ();
4321 return;
4324 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4326 addr_space_t as = ADDR_SPACE_GENERIC;
4327 enum machine_mode mode, op_mode1;
4328 enum insn_code icode;
4329 rtx reg, addr, mem, insn;
4331 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4332 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4334 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4335 reg = force_not_mem (reg);
4337 mode = TYPE_MODE (TREE_TYPE (to));
4338 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4339 EXPAND_SUM);
4340 addr = memory_address_addr_space (mode, addr, as);
4341 mem = gen_rtx_MEM (mode, addr);
4343 set_mem_attributes (mem, to, 0);
4344 set_mem_addr_space (mem, as);
4346 icode = movmisalign_optab->handlers[mode].insn_code;
4347 gcc_assert (icode != CODE_FOR_nothing);
4349 op_mode1 = insn_data[icode].operand[1].mode;
4350 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4351 && op_mode1 != VOIDmode)
4352 reg = copy_to_mode_reg (op_mode1, reg);
4354 insn = GEN_FCN (icode) (mem, reg);
4355 emit_insn (insn);
4356 return;
4359 /* If the rhs is a function call and its value is not an aggregate,
4360 call the function before we start to compute the lhs.
4361 This is needed for correct code for cases such as
4362 val = setjmp (buf) on machines where reference to val
4363 requires loading up part of an address in a separate insn.
4365 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4366 since it might be a promoted variable where the zero- or sign- extension
4367 needs to be done. Handling this in the normal way is safe because no
4368 computation is done before the call. The same is true for SSA names. */
4369 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4370 && COMPLETE_TYPE_P (TREE_TYPE (from))
4371 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4372 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4373 && REG_P (DECL_RTL (to)))
4374 || TREE_CODE (to) == SSA_NAME))
4376 rtx value;
4378 push_temp_slots ();
4379 value = expand_normal (from);
4380 if (to_rtx == 0)
4381 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4383 /* Handle calls that return values in multiple non-contiguous locations.
4384 The Irix 6 ABI has examples of this. */
4385 if (GET_CODE (to_rtx) == PARALLEL)
4386 emit_group_load (to_rtx, value, TREE_TYPE (from),
4387 int_size_in_bytes (TREE_TYPE (from)));
4388 else if (GET_MODE (to_rtx) == BLKmode)
4389 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4390 else
4392 if (POINTER_TYPE_P (TREE_TYPE (to)))
4393 value = convert_memory_address_addr_space
4394 (GET_MODE (to_rtx), value,
4395 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4397 emit_move_insn (to_rtx, value);
4399 preserve_temp_slots (to_rtx);
4400 free_temp_slots ();
4401 pop_temp_slots ();
4402 return;
4405 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4406 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4408 if (to_rtx == 0)
4409 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4411 /* Don't move directly into a return register. */
4412 if (TREE_CODE (to) == RESULT_DECL
4413 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4415 rtx temp;
4417 push_temp_slots ();
4418 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4420 if (GET_CODE (to_rtx) == PARALLEL)
4421 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4422 int_size_in_bytes (TREE_TYPE (from)));
4423 else
4424 emit_move_insn (to_rtx, temp);
4426 preserve_temp_slots (to_rtx);
4427 free_temp_slots ();
4428 pop_temp_slots ();
4429 return;
4432 /* In case we are returning the contents of an object which overlaps
4433 the place the value is being stored, use a safe function when copying
4434 a value through a pointer into a structure value return block. */
4435 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4436 && ADDR_SPACE_GENERIC_P
4437 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4438 && cfun->returns_struct
4439 && !cfun->returns_pcc_struct)
4441 rtx from_rtx, size;
4443 push_temp_slots ();
4444 size = expr_size (from);
4445 from_rtx = expand_normal (from);
4447 emit_library_call (memmove_libfunc, LCT_NORMAL,
4448 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4449 XEXP (from_rtx, 0), Pmode,
4450 convert_to_mode (TYPE_MODE (sizetype),
4451 size, TYPE_UNSIGNED (sizetype)),
4452 TYPE_MODE (sizetype));
4454 preserve_temp_slots (to_rtx);
4455 free_temp_slots ();
4456 pop_temp_slots ();
4457 return;
4460 /* Compute FROM and store the value in the rtx we got. */
4462 push_temp_slots ();
4463 result = store_expr (from, to_rtx, 0, nontemporal);
4464 preserve_temp_slots (result);
4465 free_temp_slots ();
4466 pop_temp_slots ();
4467 return;
4470 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4471 succeeded, false otherwise. */
4473 bool
4474 emit_storent_insn (rtx to, rtx from)
4476 enum machine_mode mode = GET_MODE (to), imode;
4477 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4478 rtx pattern;
4480 if (code == CODE_FOR_nothing)
4481 return false;
4483 imode = insn_data[code].operand[0].mode;
4484 if (!insn_data[code].operand[0].predicate (to, imode))
4485 return false;
4487 imode = insn_data[code].operand[1].mode;
4488 if (!insn_data[code].operand[1].predicate (from, imode))
4490 from = copy_to_mode_reg (imode, from);
4491 if (!insn_data[code].operand[1].predicate (from, imode))
4492 return false;
4495 pattern = GEN_FCN (code) (to, from);
4496 if (pattern == NULL_RTX)
4497 return false;
4499 emit_insn (pattern);
4500 return true;
4503 /* Generate code for computing expression EXP,
4504 and storing the value into TARGET.
4506 If the mode is BLKmode then we may return TARGET itself.
4507 It turns out that in BLKmode it doesn't cause a problem.
4508 because C has no operators that could combine two different
4509 assignments into the same BLKmode object with different values
4510 with no sequence point. Will other languages need this to
4511 be more thorough?
4513 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4514 stack, and block moves may need to be treated specially.
4516 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4519 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4521 rtx temp;
4522 rtx alt_rtl = NULL_RTX;
4523 location_t loc = EXPR_LOCATION (exp);
4525 if (VOID_TYPE_P (TREE_TYPE (exp)))
4527 /* C++ can generate ?: expressions with a throw expression in one
4528 branch and an rvalue in the other. Here, we resolve attempts to
4529 store the throw expression's nonexistent result. */
4530 gcc_assert (!call_param_p);
4531 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4532 return NULL_RTX;
4534 if (TREE_CODE (exp) == COMPOUND_EXPR)
4536 /* Perform first part of compound expression, then assign from second
4537 part. */
4538 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4539 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4540 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4541 nontemporal);
4543 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4545 /* For conditional expression, get safe form of the target. Then
4546 test the condition, doing the appropriate assignment on either
4547 side. This avoids the creation of unnecessary temporaries.
4548 For non-BLKmode, it is more efficient not to do this. */
4550 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4552 do_pending_stack_adjust ();
4553 NO_DEFER_POP;
4554 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4555 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4556 nontemporal);
4557 emit_jump_insn (gen_jump (lab2));
4558 emit_barrier ();
4559 emit_label (lab1);
4560 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4561 nontemporal);
4562 emit_label (lab2);
4563 OK_DEFER_POP;
4565 return NULL_RTX;
4567 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4568 /* If this is a scalar in a register that is stored in a wider mode
4569 than the declared mode, compute the result into its declared mode
4570 and then convert to the wider mode. Our value is the computed
4571 expression. */
4573 rtx inner_target = 0;
4575 /* We can do the conversion inside EXP, which will often result
4576 in some optimizations. Do the conversion in two steps: first
4577 change the signedness, if needed, then the extend. But don't
4578 do this if the type of EXP is a subtype of something else
4579 since then the conversion might involve more than just
4580 converting modes. */
4581 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4582 && TREE_TYPE (TREE_TYPE (exp)) == 0
4583 && GET_MODE_PRECISION (GET_MODE (target))
4584 == TYPE_PRECISION (TREE_TYPE (exp)))
4586 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4587 != SUBREG_PROMOTED_UNSIGNED_P (target))
4589 /* Some types, e.g. Fortran's logical*4, won't have a signed
4590 version, so use the mode instead. */
4591 tree ntype
4592 = (signed_or_unsigned_type_for
4593 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4594 if (ntype == NULL)
4595 ntype = lang_hooks.types.type_for_mode
4596 (TYPE_MODE (TREE_TYPE (exp)),
4597 SUBREG_PROMOTED_UNSIGNED_P (target));
4599 exp = fold_convert_loc (loc, ntype, exp);
4602 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4603 (GET_MODE (SUBREG_REG (target)),
4604 SUBREG_PROMOTED_UNSIGNED_P (target)),
4605 exp);
4607 inner_target = SUBREG_REG (target);
4610 temp = expand_expr (exp, inner_target, VOIDmode,
4611 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4613 /* If TEMP is a VOIDmode constant, use convert_modes to make
4614 sure that we properly convert it. */
4615 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4617 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4618 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4619 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4620 GET_MODE (target), temp,
4621 SUBREG_PROMOTED_UNSIGNED_P (target));
4624 convert_move (SUBREG_REG (target), temp,
4625 SUBREG_PROMOTED_UNSIGNED_P (target));
4627 return NULL_RTX;
4629 else if (TREE_CODE (exp) == STRING_CST
4630 && !nontemporal && !call_param_p
4631 && TREE_STRING_LENGTH (exp) > 0
4632 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4634 /* Optimize initialization of an array with a STRING_CST. */
4635 HOST_WIDE_INT exp_len, str_copy_len;
4636 rtx dest_mem;
4638 exp_len = int_expr_size (exp);
4639 if (exp_len <= 0)
4640 goto normal_expr;
4642 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4643 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4644 goto normal_expr;
4646 str_copy_len = TREE_STRING_LENGTH (exp);
4647 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4649 str_copy_len += STORE_MAX_PIECES - 1;
4650 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4652 str_copy_len = MIN (str_copy_len, exp_len);
4653 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4654 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4655 MEM_ALIGN (target), false))
4656 goto normal_expr;
4658 dest_mem = target;
4660 dest_mem = store_by_pieces (dest_mem,
4661 str_copy_len, builtin_strncpy_read_str,
4662 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4663 MEM_ALIGN (target), false,
4664 exp_len > str_copy_len ? 1 : 0);
4665 if (exp_len > str_copy_len)
4666 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4667 GEN_INT (exp_len - str_copy_len),
4668 BLOCK_OP_NORMAL);
4669 return NULL_RTX;
4671 else
4673 rtx tmp_target;
4675 normal_expr:
4676 /* If we want to use a nontemporal store, force the value to
4677 register first. */
4678 tmp_target = nontemporal ? NULL_RTX : target;
4679 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4680 (call_param_p
4681 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4682 &alt_rtl);
4685 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4686 the same as that of TARGET, adjust the constant. This is needed, for
4687 example, in case it is a CONST_DOUBLE and we want only a word-sized
4688 value. */
4689 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4690 && TREE_CODE (exp) != ERROR_MARK
4691 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4692 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4693 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4695 /* If value was not generated in the target, store it there.
4696 Convert the value to TARGET's type first if necessary and emit the
4697 pending incrementations that have been queued when expanding EXP.
4698 Note that we cannot emit the whole queue blindly because this will
4699 effectively disable the POST_INC optimization later.
4701 If TEMP and TARGET compare equal according to rtx_equal_p, but
4702 one or both of them are volatile memory refs, we have to distinguish
4703 two cases:
4704 - expand_expr has used TARGET. In this case, we must not generate
4705 another copy. This can be detected by TARGET being equal according
4706 to == .
4707 - expand_expr has not used TARGET - that means that the source just
4708 happens to have the same RTX form. Since temp will have been created
4709 by expand_expr, it will compare unequal according to == .
4710 We must generate a copy in this case, to reach the correct number
4711 of volatile memory references. */
4713 if ((! rtx_equal_p (temp, target)
4714 || (temp != target && (side_effects_p (temp)
4715 || side_effects_p (target))))
4716 && TREE_CODE (exp) != ERROR_MARK
4717 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4718 but TARGET is not valid memory reference, TEMP will differ
4719 from TARGET although it is really the same location. */
4720 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4721 /* If there's nothing to copy, don't bother. Don't call
4722 expr_size unless necessary, because some front-ends (C++)
4723 expr_size-hook must not be given objects that are not
4724 supposed to be bit-copied or bit-initialized. */
4725 && expr_size (exp) != const0_rtx)
4727 if (GET_MODE (temp) != GET_MODE (target)
4728 && GET_MODE (temp) != VOIDmode)
4730 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4731 if (GET_MODE (target) == BLKmode
4732 || GET_MODE (temp) == BLKmode)
4733 emit_block_move (target, temp, expr_size (exp),
4734 (call_param_p
4735 ? BLOCK_OP_CALL_PARM
4736 : BLOCK_OP_NORMAL));
4737 else
4738 convert_move (target, temp, unsignedp);
4741 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4743 /* Handle copying a string constant into an array. The string
4744 constant may be shorter than the array. So copy just the string's
4745 actual length, and clear the rest. First get the size of the data
4746 type of the string, which is actually the size of the target. */
4747 rtx size = expr_size (exp);
4749 if (CONST_INT_P (size)
4750 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4751 emit_block_move (target, temp, size,
4752 (call_param_p
4753 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4754 else
4756 enum machine_mode pointer_mode
4757 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4758 enum machine_mode address_mode
4759 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4761 /* Compute the size of the data to copy from the string. */
4762 tree copy_size
4763 = size_binop_loc (loc, MIN_EXPR,
4764 make_tree (sizetype, size),
4765 size_int (TREE_STRING_LENGTH (exp)));
4766 rtx copy_size_rtx
4767 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4768 (call_param_p
4769 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4770 rtx label = 0;
4772 /* Copy that much. */
4773 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4774 TYPE_UNSIGNED (sizetype));
4775 emit_block_move (target, temp, copy_size_rtx,
4776 (call_param_p
4777 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4779 /* Figure out how much is left in TARGET that we have to clear.
4780 Do all calculations in pointer_mode. */
4781 if (CONST_INT_P (copy_size_rtx))
4783 size = plus_constant (size, -INTVAL (copy_size_rtx));
4784 target = adjust_address (target, BLKmode,
4785 INTVAL (copy_size_rtx));
4787 else
4789 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4790 copy_size_rtx, NULL_RTX, 0,
4791 OPTAB_LIB_WIDEN);
4793 if (GET_MODE (copy_size_rtx) != address_mode)
4794 copy_size_rtx = convert_to_mode (address_mode,
4795 copy_size_rtx,
4796 TYPE_UNSIGNED (sizetype));
4798 target = offset_address (target, copy_size_rtx,
4799 highest_pow2_factor (copy_size));
4800 label = gen_label_rtx ();
4801 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4802 GET_MODE (size), 0, label);
4805 if (size != const0_rtx)
4806 clear_storage (target, size, BLOCK_OP_NORMAL);
4808 if (label)
4809 emit_label (label);
4812 /* Handle calls that return values in multiple non-contiguous locations.
4813 The Irix 6 ABI has examples of this. */
4814 else if (GET_CODE (target) == PARALLEL)
4815 emit_group_load (target, temp, TREE_TYPE (exp),
4816 int_size_in_bytes (TREE_TYPE (exp)));
4817 else if (GET_MODE (temp) == BLKmode)
4818 emit_block_move (target, temp, expr_size (exp),
4819 (call_param_p
4820 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4821 else if (nontemporal
4822 && emit_storent_insn (target, temp))
4823 /* If we managed to emit a nontemporal store, there is nothing else to
4824 do. */
4826 else
4828 temp = force_operand (temp, target);
4829 if (temp != target)
4830 emit_move_insn (target, temp);
4834 return NULL_RTX;
4837 /* Helper for categorize_ctor_elements. Identical interface. */
4839 static bool
4840 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4841 HOST_WIDE_INT *p_elt_count,
4842 bool *p_must_clear)
4844 unsigned HOST_WIDE_INT idx;
4845 HOST_WIDE_INT nz_elts, elt_count;
4846 tree value, purpose;
4848 /* Whether CTOR is a valid constant initializer, in accordance with what
4849 initializer_constant_valid_p does. If inferred from the constructor
4850 elements, true until proven otherwise. */
4851 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4852 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4854 nz_elts = 0;
4855 elt_count = 0;
4857 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4859 HOST_WIDE_INT mult;
4861 mult = 1;
4862 if (TREE_CODE (purpose) == RANGE_EXPR)
4864 tree lo_index = TREE_OPERAND (purpose, 0);
4865 tree hi_index = TREE_OPERAND (purpose, 1);
4867 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4868 mult = (tree_low_cst (hi_index, 1)
4869 - tree_low_cst (lo_index, 1) + 1);
4872 switch (TREE_CODE (value))
4874 case CONSTRUCTOR:
4876 HOST_WIDE_INT nz = 0, ic = 0;
4878 bool const_elt_p
4879 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4881 nz_elts += mult * nz;
4882 elt_count += mult * ic;
4884 if (const_from_elts_p && const_p)
4885 const_p = const_elt_p;
4887 break;
4889 case INTEGER_CST:
4890 case REAL_CST:
4891 case FIXED_CST:
4892 if (!initializer_zerop (value))
4893 nz_elts += mult;
4894 elt_count += mult;
4895 break;
4897 case STRING_CST:
4898 nz_elts += mult * TREE_STRING_LENGTH (value);
4899 elt_count += mult * TREE_STRING_LENGTH (value);
4900 break;
4902 case COMPLEX_CST:
4903 if (!initializer_zerop (TREE_REALPART (value)))
4904 nz_elts += mult;
4905 if (!initializer_zerop (TREE_IMAGPART (value)))
4906 nz_elts += mult;
4907 elt_count += mult;
4908 break;
4910 case VECTOR_CST:
4912 tree v;
4913 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4915 if (!initializer_zerop (TREE_VALUE (v)))
4916 nz_elts += mult;
4917 elt_count += mult;
4920 break;
4922 default:
4923 nz_elts += mult;
4924 elt_count += mult;
4926 if (const_from_elts_p && const_p)
4927 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4928 != NULL_TREE;
4929 break;
4933 if (!*p_must_clear
4934 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4935 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4937 tree init_sub_type;
4938 bool clear_this = true;
4940 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4942 /* We don't expect more than one element of the union to be
4943 initialized. Not sure what we should do otherwise... */
4944 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4945 == 1);
4947 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4948 CONSTRUCTOR_ELTS (ctor),
4949 0)->value);
4951 /* ??? We could look at each element of the union, and find the
4952 largest element. Which would avoid comparing the size of the
4953 initialized element against any tail padding in the union.
4954 Doesn't seem worth the effort... */
4955 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4956 TYPE_SIZE (init_sub_type)) == 1)
4958 /* And now we have to find out if the element itself is fully
4959 constructed. E.g. for union { struct { int a, b; } s; } u
4960 = { .s = { .a = 1 } }. */
4961 if (elt_count == count_type_elements (init_sub_type, false))
4962 clear_this = false;
4966 *p_must_clear = clear_this;
4969 *p_nz_elts += nz_elts;
4970 *p_elt_count += elt_count;
4972 return const_p;
4975 /* Examine CTOR to discover:
4976 * how many scalar fields are set to nonzero values,
4977 and place it in *P_NZ_ELTS;
4978 * how many scalar fields in total are in CTOR,
4979 and place it in *P_ELT_COUNT.
4980 * if a type is a union, and the initializer from the constructor
4981 is not the largest element in the union, then set *p_must_clear.
4983 Return whether or not CTOR is a valid static constant initializer, the same
4984 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4986 bool
4987 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4988 HOST_WIDE_INT *p_elt_count,
4989 bool *p_must_clear)
4991 *p_nz_elts = 0;
4992 *p_elt_count = 0;
4993 *p_must_clear = false;
4995 return
4996 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4999 /* Count the number of scalars in TYPE. Return -1 on overflow or
5000 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5001 array member at the end of the structure. */
5003 HOST_WIDE_INT
5004 count_type_elements (const_tree type, bool allow_flexarr)
5006 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5007 switch (TREE_CODE (type))
5009 case ARRAY_TYPE:
5011 tree telts = array_type_nelts (type);
5012 if (telts && host_integerp (telts, 1))
5014 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5015 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5016 if (n == 0)
5017 return 0;
5018 else if (max / n > m)
5019 return n * m;
5021 return -1;
5024 case RECORD_TYPE:
5026 HOST_WIDE_INT n = 0, t;
5027 tree f;
5029 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5030 if (TREE_CODE (f) == FIELD_DECL)
5032 t = count_type_elements (TREE_TYPE (f), false);
5033 if (t < 0)
5035 /* Check for structures with flexible array member. */
5036 tree tf = TREE_TYPE (f);
5037 if (allow_flexarr
5038 && TREE_CHAIN (f) == NULL
5039 && TREE_CODE (tf) == ARRAY_TYPE
5040 && TYPE_DOMAIN (tf)
5041 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5042 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5043 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5044 && int_size_in_bytes (type) >= 0)
5045 break;
5047 return -1;
5049 n += t;
5052 return n;
5055 case UNION_TYPE:
5056 case QUAL_UNION_TYPE:
5057 return -1;
5059 case COMPLEX_TYPE:
5060 return 2;
5062 case VECTOR_TYPE:
5063 return TYPE_VECTOR_SUBPARTS (type);
5065 case INTEGER_TYPE:
5066 case REAL_TYPE:
5067 case FIXED_POINT_TYPE:
5068 case ENUMERAL_TYPE:
5069 case BOOLEAN_TYPE:
5070 case POINTER_TYPE:
5071 case OFFSET_TYPE:
5072 case REFERENCE_TYPE:
5073 return 1;
5075 case ERROR_MARK:
5076 return 0;
5078 case VOID_TYPE:
5079 case METHOD_TYPE:
5080 case FUNCTION_TYPE:
5081 case LANG_TYPE:
5082 default:
5083 gcc_unreachable ();
5087 /* Return 1 if EXP contains mostly (3/4) zeros. */
5089 static int
5090 mostly_zeros_p (const_tree exp)
5092 if (TREE_CODE (exp) == CONSTRUCTOR)
5095 HOST_WIDE_INT nz_elts, count, elts;
5096 bool must_clear;
5098 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5099 if (must_clear)
5100 return 1;
5102 elts = count_type_elements (TREE_TYPE (exp), false);
5104 return nz_elts < elts / 4;
5107 return initializer_zerop (exp);
5110 /* Return 1 if EXP contains all zeros. */
5112 static int
5113 all_zeros_p (const_tree exp)
5115 if (TREE_CODE (exp) == CONSTRUCTOR)
5118 HOST_WIDE_INT nz_elts, count;
5119 bool must_clear;
5121 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5122 return nz_elts == 0;
5125 return initializer_zerop (exp);
5128 /* Helper function for store_constructor.
5129 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5130 TYPE is the type of the CONSTRUCTOR, not the element type.
5131 CLEARED is as for store_constructor.
5132 ALIAS_SET is the alias set to use for any stores.
5134 This provides a recursive shortcut back to store_constructor when it isn't
5135 necessary to go through store_field. This is so that we can pass through
5136 the cleared field to let store_constructor know that we may not have to
5137 clear a substructure if the outer structure has already been cleared. */
5139 static void
5140 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5141 HOST_WIDE_INT bitpos, enum machine_mode mode,
5142 tree exp, tree type, int cleared,
5143 alias_set_type alias_set)
5145 if (TREE_CODE (exp) == CONSTRUCTOR
5146 /* We can only call store_constructor recursively if the size and
5147 bit position are on a byte boundary. */
5148 && bitpos % BITS_PER_UNIT == 0
5149 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5150 /* If we have a nonzero bitpos for a register target, then we just
5151 let store_field do the bitfield handling. This is unlikely to
5152 generate unnecessary clear instructions anyways. */
5153 && (bitpos == 0 || MEM_P (target)))
5155 if (MEM_P (target))
5156 target
5157 = adjust_address (target,
5158 GET_MODE (target) == BLKmode
5159 || 0 != (bitpos
5160 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5161 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5164 /* Update the alias set, if required. */
5165 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5166 && MEM_ALIAS_SET (target) != 0)
5168 target = copy_rtx (target);
5169 set_mem_alias_set (target, alias_set);
5172 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5174 else
5175 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5178 /* Store the value of constructor EXP into the rtx TARGET.
5179 TARGET is either a REG or a MEM; we know it cannot conflict, since
5180 safe_from_p has been called.
5181 CLEARED is true if TARGET is known to have been zero'd.
5182 SIZE is the number of bytes of TARGET we are allowed to modify: this
5183 may not be the same as the size of EXP if we are assigning to a field
5184 which has been packed to exclude padding bits. */
5186 static void
5187 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5189 tree type = TREE_TYPE (exp);
5190 #ifdef WORD_REGISTER_OPERATIONS
5191 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5192 #endif
5194 switch (TREE_CODE (type))
5196 case RECORD_TYPE:
5197 case UNION_TYPE:
5198 case QUAL_UNION_TYPE:
5200 unsigned HOST_WIDE_INT idx;
5201 tree field, value;
5203 /* If size is zero or the target is already cleared, do nothing. */
5204 if (size == 0 || cleared)
5205 cleared = 1;
5206 /* We either clear the aggregate or indicate the value is dead. */
5207 else if ((TREE_CODE (type) == UNION_TYPE
5208 || TREE_CODE (type) == QUAL_UNION_TYPE)
5209 && ! CONSTRUCTOR_ELTS (exp))
5210 /* If the constructor is empty, clear the union. */
5212 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5213 cleared = 1;
5216 /* If we are building a static constructor into a register,
5217 set the initial value as zero so we can fold the value into
5218 a constant. But if more than one register is involved,
5219 this probably loses. */
5220 else if (REG_P (target) && TREE_STATIC (exp)
5221 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5223 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5224 cleared = 1;
5227 /* If the constructor has fewer fields than the structure or
5228 if we are initializing the structure to mostly zeros, clear
5229 the whole structure first. Don't do this if TARGET is a
5230 register whose mode size isn't equal to SIZE since
5231 clear_storage can't handle this case. */
5232 else if (size > 0
5233 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5234 != fields_length (type))
5235 || mostly_zeros_p (exp))
5236 && (!REG_P (target)
5237 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5238 == size)))
5240 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5241 cleared = 1;
5244 if (REG_P (target) && !cleared)
5245 emit_clobber (target);
5247 /* Store each element of the constructor into the
5248 corresponding field of TARGET. */
5249 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5251 enum machine_mode mode;
5252 HOST_WIDE_INT bitsize;
5253 HOST_WIDE_INT bitpos = 0;
5254 tree offset;
5255 rtx to_rtx = target;
5257 /* Just ignore missing fields. We cleared the whole
5258 structure, above, if any fields are missing. */
5259 if (field == 0)
5260 continue;
5262 if (cleared && initializer_zerop (value))
5263 continue;
5265 if (host_integerp (DECL_SIZE (field), 1))
5266 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5267 else
5268 bitsize = -1;
5270 mode = DECL_MODE (field);
5271 if (DECL_BIT_FIELD (field))
5272 mode = VOIDmode;
5274 offset = DECL_FIELD_OFFSET (field);
5275 if (host_integerp (offset, 0)
5276 && host_integerp (bit_position (field), 0))
5278 bitpos = int_bit_position (field);
5279 offset = 0;
5281 else
5282 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5284 if (offset)
5286 enum machine_mode address_mode;
5287 rtx offset_rtx;
5289 offset
5290 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5291 make_tree (TREE_TYPE (exp),
5292 target));
5294 offset_rtx = expand_normal (offset);
5295 gcc_assert (MEM_P (to_rtx));
5297 address_mode
5298 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5299 if (GET_MODE (offset_rtx) != address_mode)
5300 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5302 to_rtx = offset_address (to_rtx, offset_rtx,
5303 highest_pow2_factor (offset));
5306 #ifdef WORD_REGISTER_OPERATIONS
5307 /* If this initializes a field that is smaller than a
5308 word, at the start of a word, try to widen it to a full
5309 word. This special case allows us to output C++ member
5310 function initializations in a form that the optimizers
5311 can understand. */
5312 if (REG_P (target)
5313 && bitsize < BITS_PER_WORD
5314 && bitpos % BITS_PER_WORD == 0
5315 && GET_MODE_CLASS (mode) == MODE_INT
5316 && TREE_CODE (value) == INTEGER_CST
5317 && exp_size >= 0
5318 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5320 tree type = TREE_TYPE (value);
5322 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5324 type = lang_hooks.types.type_for_size
5325 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5326 value = fold_convert (type, value);
5329 if (BYTES_BIG_ENDIAN)
5330 value
5331 = fold_build2 (LSHIFT_EXPR, type, value,
5332 build_int_cst (type,
5333 BITS_PER_WORD - bitsize));
5334 bitsize = BITS_PER_WORD;
5335 mode = word_mode;
5337 #endif
5339 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5340 && DECL_NONADDRESSABLE_P (field))
5342 to_rtx = copy_rtx (to_rtx);
5343 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5346 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5347 value, type, cleared,
5348 get_alias_set (TREE_TYPE (field)));
5350 break;
5352 case ARRAY_TYPE:
5354 tree value, index;
5355 unsigned HOST_WIDE_INT i;
5356 int need_to_clear;
5357 tree domain;
5358 tree elttype = TREE_TYPE (type);
5359 int const_bounds_p;
5360 HOST_WIDE_INT minelt = 0;
5361 HOST_WIDE_INT maxelt = 0;
5363 domain = TYPE_DOMAIN (type);
5364 const_bounds_p = (TYPE_MIN_VALUE (domain)
5365 && TYPE_MAX_VALUE (domain)
5366 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5367 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5369 /* If we have constant bounds for the range of the type, get them. */
5370 if (const_bounds_p)
5372 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5373 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5376 /* If the constructor has fewer elements than the array, clear
5377 the whole array first. Similarly if this is static
5378 constructor of a non-BLKmode object. */
5379 if (cleared)
5380 need_to_clear = 0;
5381 else if (REG_P (target) && TREE_STATIC (exp))
5382 need_to_clear = 1;
5383 else
5385 unsigned HOST_WIDE_INT idx;
5386 tree index, value;
5387 HOST_WIDE_INT count = 0, zero_count = 0;
5388 need_to_clear = ! const_bounds_p;
5390 /* This loop is a more accurate version of the loop in
5391 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5392 is also needed to check for missing elements. */
5393 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5395 HOST_WIDE_INT this_node_count;
5397 if (need_to_clear)
5398 break;
5400 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5402 tree lo_index = TREE_OPERAND (index, 0);
5403 tree hi_index = TREE_OPERAND (index, 1);
5405 if (! host_integerp (lo_index, 1)
5406 || ! host_integerp (hi_index, 1))
5408 need_to_clear = 1;
5409 break;
5412 this_node_count = (tree_low_cst (hi_index, 1)
5413 - tree_low_cst (lo_index, 1) + 1);
5415 else
5416 this_node_count = 1;
5418 count += this_node_count;
5419 if (mostly_zeros_p (value))
5420 zero_count += this_node_count;
5423 /* Clear the entire array first if there are any missing
5424 elements, or if the incidence of zero elements is >=
5425 75%. */
5426 if (! need_to_clear
5427 && (count < maxelt - minelt + 1
5428 || 4 * zero_count >= 3 * count))
5429 need_to_clear = 1;
5432 if (need_to_clear && size > 0)
5434 if (REG_P (target))
5435 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5436 else
5437 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5438 cleared = 1;
5441 if (!cleared && REG_P (target))
5442 /* Inform later passes that the old value is dead. */
5443 emit_clobber (target);
5445 /* Store each element of the constructor into the
5446 corresponding element of TARGET, determined by counting the
5447 elements. */
5448 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5450 enum machine_mode mode;
5451 HOST_WIDE_INT bitsize;
5452 HOST_WIDE_INT bitpos;
5453 rtx xtarget = target;
5455 if (cleared && initializer_zerop (value))
5456 continue;
5458 mode = TYPE_MODE (elttype);
5459 if (mode == BLKmode)
5460 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5461 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5462 : -1);
5463 else
5464 bitsize = GET_MODE_BITSIZE (mode);
5466 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5468 tree lo_index = TREE_OPERAND (index, 0);
5469 tree hi_index = TREE_OPERAND (index, 1);
5470 rtx index_r, pos_rtx;
5471 HOST_WIDE_INT lo, hi, count;
5472 tree position;
5474 /* If the range is constant and "small", unroll the loop. */
5475 if (const_bounds_p
5476 && host_integerp (lo_index, 0)
5477 && host_integerp (hi_index, 0)
5478 && (lo = tree_low_cst (lo_index, 0),
5479 hi = tree_low_cst (hi_index, 0),
5480 count = hi - lo + 1,
5481 (!MEM_P (target)
5482 || count <= 2
5483 || (host_integerp (TYPE_SIZE (elttype), 1)
5484 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5485 <= 40 * 8)))))
5487 lo -= minelt; hi -= minelt;
5488 for (; lo <= hi; lo++)
5490 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5492 if (MEM_P (target)
5493 && !MEM_KEEP_ALIAS_SET_P (target)
5494 && TREE_CODE (type) == ARRAY_TYPE
5495 && TYPE_NONALIASED_COMPONENT (type))
5497 target = copy_rtx (target);
5498 MEM_KEEP_ALIAS_SET_P (target) = 1;
5501 store_constructor_field
5502 (target, bitsize, bitpos, mode, value, type, cleared,
5503 get_alias_set (elttype));
5506 else
5508 rtx loop_start = gen_label_rtx ();
5509 rtx loop_end = gen_label_rtx ();
5510 tree exit_cond;
5512 expand_normal (hi_index);
5514 index = build_decl (EXPR_LOCATION (exp),
5515 VAR_DECL, NULL_TREE, domain);
5516 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5517 SET_DECL_RTL (index, index_r);
5518 store_expr (lo_index, index_r, 0, false);
5520 /* Build the head of the loop. */
5521 do_pending_stack_adjust ();
5522 emit_label (loop_start);
5524 /* Assign value to element index. */
5525 position =
5526 fold_convert (ssizetype,
5527 fold_build2 (MINUS_EXPR,
5528 TREE_TYPE (index),
5529 index,
5530 TYPE_MIN_VALUE (domain)));
5532 position =
5533 size_binop (MULT_EXPR, position,
5534 fold_convert (ssizetype,
5535 TYPE_SIZE_UNIT (elttype)));
5537 pos_rtx = expand_normal (position);
5538 xtarget = offset_address (target, pos_rtx,
5539 highest_pow2_factor (position));
5540 xtarget = adjust_address (xtarget, mode, 0);
5541 if (TREE_CODE (value) == CONSTRUCTOR)
5542 store_constructor (value, xtarget, cleared,
5543 bitsize / BITS_PER_UNIT);
5544 else
5545 store_expr (value, xtarget, 0, false);
5547 /* Generate a conditional jump to exit the loop. */
5548 exit_cond = build2 (LT_EXPR, integer_type_node,
5549 index, hi_index);
5550 jumpif (exit_cond, loop_end);
5552 /* Update the loop counter, and jump to the head of
5553 the loop. */
5554 expand_assignment (index,
5555 build2 (PLUS_EXPR, TREE_TYPE (index),
5556 index, integer_one_node),
5557 false);
5559 emit_jump (loop_start);
5561 /* Build the end of the loop. */
5562 emit_label (loop_end);
5565 else if ((index != 0 && ! host_integerp (index, 0))
5566 || ! host_integerp (TYPE_SIZE (elttype), 1))
5568 tree position;
5570 if (index == 0)
5571 index = ssize_int (1);
5573 if (minelt)
5574 index = fold_convert (ssizetype,
5575 fold_build2 (MINUS_EXPR,
5576 TREE_TYPE (index),
5577 index,
5578 TYPE_MIN_VALUE (domain)));
5580 position =
5581 size_binop (MULT_EXPR, index,
5582 fold_convert (ssizetype,
5583 TYPE_SIZE_UNIT (elttype)));
5584 xtarget = offset_address (target,
5585 expand_normal (position),
5586 highest_pow2_factor (position));
5587 xtarget = adjust_address (xtarget, mode, 0);
5588 store_expr (value, xtarget, 0, false);
5590 else
5592 if (index != 0)
5593 bitpos = ((tree_low_cst (index, 0) - minelt)
5594 * tree_low_cst (TYPE_SIZE (elttype), 1));
5595 else
5596 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5598 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5599 && TREE_CODE (type) == ARRAY_TYPE
5600 && TYPE_NONALIASED_COMPONENT (type))
5602 target = copy_rtx (target);
5603 MEM_KEEP_ALIAS_SET_P (target) = 1;
5605 store_constructor_field (target, bitsize, bitpos, mode, value,
5606 type, cleared, get_alias_set (elttype));
5609 break;
5612 case VECTOR_TYPE:
5614 unsigned HOST_WIDE_INT idx;
5615 constructor_elt *ce;
5616 int i;
5617 int need_to_clear;
5618 int icode = 0;
5619 tree elttype = TREE_TYPE (type);
5620 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5621 enum machine_mode eltmode = TYPE_MODE (elttype);
5622 HOST_WIDE_INT bitsize;
5623 HOST_WIDE_INT bitpos;
5624 rtvec vector = NULL;
5625 unsigned n_elts;
5626 alias_set_type alias;
5628 gcc_assert (eltmode != BLKmode);
5630 n_elts = TYPE_VECTOR_SUBPARTS (type);
5631 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5633 enum machine_mode mode = GET_MODE (target);
5635 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5636 if (icode != CODE_FOR_nothing)
5638 unsigned int i;
5640 vector = rtvec_alloc (n_elts);
5641 for (i = 0; i < n_elts; i++)
5642 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5646 /* If the constructor has fewer elements than the vector,
5647 clear the whole array first. Similarly if this is static
5648 constructor of a non-BLKmode object. */
5649 if (cleared)
5650 need_to_clear = 0;
5651 else if (REG_P (target) && TREE_STATIC (exp))
5652 need_to_clear = 1;
5653 else
5655 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5656 tree value;
5658 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5660 int n_elts_here = tree_low_cst
5661 (int_const_binop (TRUNC_DIV_EXPR,
5662 TYPE_SIZE (TREE_TYPE (value)),
5663 TYPE_SIZE (elttype), 0), 1);
5665 count += n_elts_here;
5666 if (mostly_zeros_p (value))
5667 zero_count += n_elts_here;
5670 /* Clear the entire vector first if there are any missing elements,
5671 or if the incidence of zero elements is >= 75%. */
5672 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5675 if (need_to_clear && size > 0 && !vector)
5677 if (REG_P (target))
5678 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5679 else
5680 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5681 cleared = 1;
5684 /* Inform later passes that the old value is dead. */
5685 if (!cleared && !vector && REG_P (target))
5686 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5688 if (MEM_P (target))
5689 alias = MEM_ALIAS_SET (target);
5690 else
5691 alias = get_alias_set (elttype);
5693 /* Store each element of the constructor into the corresponding
5694 element of TARGET, determined by counting the elements. */
5695 for (idx = 0, i = 0;
5696 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5697 idx++, i += bitsize / elt_size)
5699 HOST_WIDE_INT eltpos;
5700 tree value = ce->value;
5702 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5703 if (cleared && initializer_zerop (value))
5704 continue;
5706 if (ce->index)
5707 eltpos = tree_low_cst (ce->index, 1);
5708 else
5709 eltpos = i;
5711 if (vector)
5713 /* Vector CONSTRUCTORs should only be built from smaller
5714 vectors in the case of BLKmode vectors. */
5715 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5716 RTVEC_ELT (vector, eltpos)
5717 = expand_normal (value);
5719 else
5721 enum machine_mode value_mode =
5722 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5723 ? TYPE_MODE (TREE_TYPE (value))
5724 : eltmode;
5725 bitpos = eltpos * elt_size;
5726 store_constructor_field (target, bitsize, bitpos,
5727 value_mode, value, type,
5728 cleared, alias);
5732 if (vector)
5733 emit_insn (GEN_FCN (icode)
5734 (target,
5735 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5736 break;
5739 default:
5740 gcc_unreachable ();
5744 /* Store the value of EXP (an expression tree)
5745 into a subfield of TARGET which has mode MODE and occupies
5746 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5747 If MODE is VOIDmode, it means that we are storing into a bit-field.
5749 Always return const0_rtx unless we have something particular to
5750 return.
5752 TYPE is the type of the underlying object,
5754 ALIAS_SET is the alias set for the destination. This value will
5755 (in general) be different from that for TARGET, since TARGET is a
5756 reference to the containing structure.
5758 If NONTEMPORAL is true, try generating a nontemporal store. */
5760 static rtx
5761 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5762 enum machine_mode mode, tree exp, tree type,
5763 alias_set_type alias_set, bool nontemporal)
5765 HOST_WIDE_INT width_mask = 0;
5767 if (TREE_CODE (exp) == ERROR_MARK)
5768 return const0_rtx;
5770 /* If we have nothing to store, do nothing unless the expression has
5771 side-effects. */
5772 if (bitsize == 0)
5773 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5774 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5775 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5777 /* If we are storing into an unaligned field of an aligned union that is
5778 in a register, we may have the mode of TARGET being an integer mode but
5779 MODE == BLKmode. In that case, get an aligned object whose size and
5780 alignment are the same as TARGET and store TARGET into it (we can avoid
5781 the store if the field being stored is the entire width of TARGET). Then
5782 call ourselves recursively to store the field into a BLKmode version of
5783 that object. Finally, load from the object into TARGET. This is not
5784 very efficient in general, but should only be slightly more expensive
5785 than the otherwise-required unaligned accesses. Perhaps this can be
5786 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5787 twice, once with emit_move_insn and once via store_field. */
5789 if (mode == BLKmode
5790 && (REG_P (target) || GET_CODE (target) == SUBREG))
5792 rtx object = assign_temp (type, 0, 1, 1);
5793 rtx blk_object = adjust_address (object, BLKmode, 0);
5795 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5796 emit_move_insn (object, target);
5798 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5799 nontemporal);
5801 emit_move_insn (target, object);
5803 /* We want to return the BLKmode version of the data. */
5804 return blk_object;
5807 if (GET_CODE (target) == CONCAT)
5809 /* We're storing into a struct containing a single __complex. */
5811 gcc_assert (!bitpos);
5812 return store_expr (exp, target, 0, nontemporal);
5815 /* If the structure is in a register or if the component
5816 is a bit field, we cannot use addressing to access it.
5817 Use bit-field techniques or SUBREG to store in it. */
5819 if (mode == VOIDmode
5820 || (mode != BLKmode && ! direct_store[(int) mode]
5821 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5822 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5823 || REG_P (target)
5824 || GET_CODE (target) == SUBREG
5825 /* If the field isn't aligned enough to store as an ordinary memref,
5826 store it as a bit field. */
5827 || (mode != BLKmode
5828 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5829 || bitpos % GET_MODE_ALIGNMENT (mode))
5830 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5831 || (bitpos % BITS_PER_UNIT != 0)))
5832 /* If the RHS and field are a constant size and the size of the
5833 RHS isn't the same size as the bitfield, we must use bitfield
5834 operations. */
5835 || (bitsize >= 0
5836 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5837 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5839 rtx temp;
5840 gimple nop_def;
5842 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5843 implies a mask operation. If the precision is the same size as
5844 the field we're storing into, that mask is redundant. This is
5845 particularly common with bit field assignments generated by the
5846 C front end. */
5847 nop_def = get_def_for_expr (exp, NOP_EXPR);
5848 if (nop_def)
5850 tree type = TREE_TYPE (exp);
5851 if (INTEGRAL_TYPE_P (type)
5852 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5853 && bitsize == TYPE_PRECISION (type))
5855 tree op = gimple_assign_rhs1 (nop_def);
5856 type = TREE_TYPE (op);
5857 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5858 exp = op;
5862 temp = expand_normal (exp);
5864 /* If BITSIZE is narrower than the size of the type of EXP
5865 we will be narrowing TEMP. Normally, what's wanted are the
5866 low-order bits. However, if EXP's type is a record and this is
5867 big-endian machine, we want the upper BITSIZE bits. */
5868 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5869 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5870 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5871 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5872 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5873 - bitsize),
5874 NULL_RTX, 1);
5876 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5877 MODE. */
5878 if (mode != VOIDmode && mode != BLKmode
5879 && mode != TYPE_MODE (TREE_TYPE (exp)))
5880 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5882 /* If the modes of TEMP and TARGET are both BLKmode, both
5883 must be in memory and BITPOS must be aligned on a byte
5884 boundary. If so, we simply do a block copy. Likewise
5885 for a BLKmode-like TARGET. */
5886 if (GET_MODE (temp) == BLKmode
5887 && (GET_MODE (target) == BLKmode
5888 || (MEM_P (target)
5889 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5890 && (bitpos % BITS_PER_UNIT) == 0
5891 && (bitsize % BITS_PER_UNIT) == 0)))
5893 gcc_assert (MEM_P (target) && MEM_P (temp)
5894 && (bitpos % BITS_PER_UNIT) == 0);
5896 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5897 emit_block_move (target, temp,
5898 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5899 / BITS_PER_UNIT),
5900 BLOCK_OP_NORMAL);
5902 return const0_rtx;
5905 /* Store the value in the bitfield. */
5906 store_bit_field (target, bitsize, bitpos, mode, temp);
5908 return const0_rtx;
5910 else
5912 /* Now build a reference to just the desired component. */
5913 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5915 if (to_rtx == target)
5916 to_rtx = copy_rtx (to_rtx);
5918 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5919 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5920 set_mem_alias_set (to_rtx, alias_set);
5922 return store_expr (exp, to_rtx, 0, nontemporal);
5926 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5927 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5928 codes and find the ultimate containing object, which we return.
5930 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5931 bit position, and *PUNSIGNEDP to the signedness of the field.
5932 If the position of the field is variable, we store a tree
5933 giving the variable offset (in units) in *POFFSET.
5934 This offset is in addition to the bit position.
5935 If the position is not variable, we store 0 in *POFFSET.
5937 If any of the extraction expressions is volatile,
5938 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5940 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5941 Otherwise, it is a mode that can be used to access the field.
5943 If the field describes a variable-sized object, *PMODE is set to
5944 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5945 this case, but the address of the object can be found.
5947 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5948 look through nodes that serve as markers of a greater alignment than
5949 the one that can be deduced from the expression. These nodes make it
5950 possible for front-ends to prevent temporaries from being created by
5951 the middle-end on alignment considerations. For that purpose, the
5952 normal operating mode at high-level is to always pass FALSE so that
5953 the ultimate containing object is really returned; moreover, the
5954 associated predicate handled_component_p will always return TRUE
5955 on these nodes, thus indicating that they are essentially handled
5956 by get_inner_reference. TRUE should only be passed when the caller
5957 is scanning the expression in order to build another representation
5958 and specifically knows how to handle these nodes; as such, this is
5959 the normal operating mode in the RTL expanders. */
5961 tree
5962 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5963 HOST_WIDE_INT *pbitpos, tree *poffset,
5964 enum machine_mode *pmode, int *punsignedp,
5965 int *pvolatilep, bool keep_aligning)
5967 tree size_tree = 0;
5968 enum machine_mode mode = VOIDmode;
5969 bool blkmode_bitfield = false;
5970 tree offset = size_zero_node;
5971 tree bit_offset = bitsize_zero_node;
5973 /* First get the mode, signedness, and size. We do this from just the
5974 outermost expression. */
5975 if (TREE_CODE (exp) == COMPONENT_REF)
5977 tree field = TREE_OPERAND (exp, 1);
5978 size_tree = DECL_SIZE (field);
5979 if (!DECL_BIT_FIELD (field))
5980 mode = DECL_MODE (field);
5981 else if (DECL_MODE (field) == BLKmode)
5982 blkmode_bitfield = true;
5984 *punsignedp = DECL_UNSIGNED (field);
5986 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5988 size_tree = TREE_OPERAND (exp, 1);
5989 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5990 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5992 /* For vector types, with the correct size of access, use the mode of
5993 inner type. */
5994 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5995 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5996 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5997 mode = TYPE_MODE (TREE_TYPE (exp));
5999 else
6001 mode = TYPE_MODE (TREE_TYPE (exp));
6002 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6004 if (mode == BLKmode)
6005 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6006 else
6007 *pbitsize = GET_MODE_BITSIZE (mode);
6010 if (size_tree != 0)
6012 if (! host_integerp (size_tree, 1))
6013 mode = BLKmode, *pbitsize = -1;
6014 else
6015 *pbitsize = tree_low_cst (size_tree, 1);
6018 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6019 and find the ultimate containing object. */
6020 while (1)
6022 switch (TREE_CODE (exp))
6024 case BIT_FIELD_REF:
6025 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6026 TREE_OPERAND (exp, 2));
6027 break;
6029 case COMPONENT_REF:
6031 tree field = TREE_OPERAND (exp, 1);
6032 tree this_offset = component_ref_field_offset (exp);
6034 /* If this field hasn't been filled in yet, don't go past it.
6035 This should only happen when folding expressions made during
6036 type construction. */
6037 if (this_offset == 0)
6038 break;
6040 offset = size_binop (PLUS_EXPR, offset, this_offset);
6041 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6042 DECL_FIELD_BIT_OFFSET (field));
6044 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6046 break;
6048 case ARRAY_REF:
6049 case ARRAY_RANGE_REF:
6051 tree index = TREE_OPERAND (exp, 1);
6052 tree low_bound = array_ref_low_bound (exp);
6053 tree unit_size = array_ref_element_size (exp);
6055 /* We assume all arrays have sizes that are a multiple of a byte.
6056 First subtract the lower bound, if any, in the type of the
6057 index, then convert to sizetype and multiply by the size of
6058 the array element. */
6059 if (! integer_zerop (low_bound))
6060 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6061 index, low_bound);
6063 offset = size_binop (PLUS_EXPR, offset,
6064 size_binop (MULT_EXPR,
6065 fold_convert (sizetype, index),
6066 unit_size));
6068 break;
6070 case REALPART_EXPR:
6071 break;
6073 case IMAGPART_EXPR:
6074 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6075 bitsize_int (*pbitsize));
6076 break;
6078 case VIEW_CONVERT_EXPR:
6079 if (keep_aligning && STRICT_ALIGNMENT
6080 && (TYPE_ALIGN (TREE_TYPE (exp))
6081 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6082 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6083 < BIGGEST_ALIGNMENT)
6084 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6085 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6086 goto done;
6087 break;
6089 default:
6090 goto done;
6093 /* If any reference in the chain is volatile, the effect is volatile. */
6094 if (TREE_THIS_VOLATILE (exp))
6095 *pvolatilep = 1;
6097 exp = TREE_OPERAND (exp, 0);
6099 done:
6101 /* If OFFSET is constant, see if we can return the whole thing as a
6102 constant bit position. Make sure to handle overflow during
6103 this conversion. */
6104 if (host_integerp (offset, 0))
6106 double_int tem = double_int_mul (tree_to_double_int (offset),
6107 uhwi_to_double_int (BITS_PER_UNIT));
6108 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6109 if (double_int_fits_in_shwi_p (tem))
6111 *pbitpos = double_int_to_shwi (tem);
6112 *poffset = offset = NULL_TREE;
6116 /* Otherwise, split it up. */
6117 if (offset)
6119 *pbitpos = tree_low_cst (bit_offset, 0);
6120 *poffset = offset;
6123 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6124 if (mode == VOIDmode
6125 && blkmode_bitfield
6126 && (*pbitpos % BITS_PER_UNIT) == 0
6127 && (*pbitsize % BITS_PER_UNIT) == 0)
6128 *pmode = BLKmode;
6129 else
6130 *pmode = mode;
6132 return exp;
6135 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6136 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6137 EXP is marked as PACKED. */
6139 bool
6140 contains_packed_reference (const_tree exp)
6142 bool packed_p = false;
6144 while (1)
6146 switch (TREE_CODE (exp))
6148 case COMPONENT_REF:
6150 tree field = TREE_OPERAND (exp, 1);
6151 packed_p = DECL_PACKED (field)
6152 || TYPE_PACKED (TREE_TYPE (field))
6153 || TYPE_PACKED (TREE_TYPE (exp));
6154 if (packed_p)
6155 goto done;
6157 break;
6159 case BIT_FIELD_REF:
6160 case ARRAY_REF:
6161 case ARRAY_RANGE_REF:
6162 case REALPART_EXPR:
6163 case IMAGPART_EXPR:
6164 case VIEW_CONVERT_EXPR:
6165 break;
6167 default:
6168 goto done;
6170 exp = TREE_OPERAND (exp, 0);
6172 done:
6173 return packed_p;
6176 /* Return a tree of sizetype representing the size, in bytes, of the element
6177 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6179 tree
6180 array_ref_element_size (tree exp)
6182 tree aligned_size = TREE_OPERAND (exp, 3);
6183 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6184 location_t loc = EXPR_LOCATION (exp);
6186 /* If a size was specified in the ARRAY_REF, it's the size measured
6187 in alignment units of the element type. So multiply by that value. */
6188 if (aligned_size)
6190 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6191 sizetype from another type of the same width and signedness. */
6192 if (TREE_TYPE (aligned_size) != sizetype)
6193 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6194 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6195 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6198 /* Otherwise, take the size from that of the element type. Substitute
6199 any PLACEHOLDER_EXPR that we have. */
6200 else
6201 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6204 /* Return a tree representing the lower bound of the array mentioned in
6205 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6207 tree
6208 array_ref_low_bound (tree exp)
6210 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6212 /* If a lower bound is specified in EXP, use it. */
6213 if (TREE_OPERAND (exp, 2))
6214 return TREE_OPERAND (exp, 2);
6216 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6217 substituting for a PLACEHOLDER_EXPR as needed. */
6218 if (domain_type && TYPE_MIN_VALUE (domain_type))
6219 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6221 /* Otherwise, return a zero of the appropriate type. */
6222 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6225 /* Return a tree representing the upper bound of the array mentioned in
6226 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6228 tree
6229 array_ref_up_bound (tree exp)
6231 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6233 /* If there is a domain type and it has an upper bound, use it, substituting
6234 for a PLACEHOLDER_EXPR as needed. */
6235 if (domain_type && TYPE_MAX_VALUE (domain_type))
6236 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6238 /* Otherwise fail. */
6239 return NULL_TREE;
6242 /* Return a tree representing the offset, in bytes, of the field referenced
6243 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6245 tree
6246 component_ref_field_offset (tree exp)
6248 tree aligned_offset = TREE_OPERAND (exp, 2);
6249 tree field = TREE_OPERAND (exp, 1);
6250 location_t loc = EXPR_LOCATION (exp);
6252 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6253 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6254 value. */
6255 if (aligned_offset)
6257 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6258 sizetype from another type of the same width and signedness. */
6259 if (TREE_TYPE (aligned_offset) != sizetype)
6260 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6261 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6262 size_int (DECL_OFFSET_ALIGN (field)
6263 / BITS_PER_UNIT));
6266 /* Otherwise, take the offset from that of the field. Substitute
6267 any PLACEHOLDER_EXPR that we have. */
6268 else
6269 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6272 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6274 static unsigned HOST_WIDE_INT
6275 target_align (const_tree target)
6277 /* We might have a chain of nested references with intermediate misaligning
6278 bitfields components, so need to recurse to find out. */
6280 unsigned HOST_WIDE_INT this_align, outer_align;
6282 switch (TREE_CODE (target))
6284 case BIT_FIELD_REF:
6285 return 1;
6287 case COMPONENT_REF:
6288 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6289 outer_align = target_align (TREE_OPERAND (target, 0));
6290 return MIN (this_align, outer_align);
6292 case ARRAY_REF:
6293 case ARRAY_RANGE_REF:
6294 this_align = TYPE_ALIGN (TREE_TYPE (target));
6295 outer_align = target_align (TREE_OPERAND (target, 0));
6296 return MIN (this_align, outer_align);
6298 CASE_CONVERT:
6299 case NON_LVALUE_EXPR:
6300 case VIEW_CONVERT_EXPR:
6301 this_align = TYPE_ALIGN (TREE_TYPE (target));
6302 outer_align = target_align (TREE_OPERAND (target, 0));
6303 return MAX (this_align, outer_align);
6305 default:
6306 return TYPE_ALIGN (TREE_TYPE (target));
6311 /* Given an rtx VALUE that may contain additions and multiplications, return
6312 an equivalent value that just refers to a register, memory, or constant.
6313 This is done by generating instructions to perform the arithmetic and
6314 returning a pseudo-register containing the value.
6316 The returned value may be a REG, SUBREG, MEM or constant. */
6319 force_operand (rtx value, rtx target)
6321 rtx op1, op2;
6322 /* Use subtarget as the target for operand 0 of a binary operation. */
6323 rtx subtarget = get_subtarget (target);
6324 enum rtx_code code = GET_CODE (value);
6326 /* Check for subreg applied to an expression produced by loop optimizer. */
6327 if (code == SUBREG
6328 && !REG_P (SUBREG_REG (value))
6329 && !MEM_P (SUBREG_REG (value)))
6331 value
6332 = simplify_gen_subreg (GET_MODE (value),
6333 force_reg (GET_MODE (SUBREG_REG (value)),
6334 force_operand (SUBREG_REG (value),
6335 NULL_RTX)),
6336 GET_MODE (SUBREG_REG (value)),
6337 SUBREG_BYTE (value));
6338 code = GET_CODE (value);
6341 /* Check for a PIC address load. */
6342 if ((code == PLUS || code == MINUS)
6343 && XEXP (value, 0) == pic_offset_table_rtx
6344 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6345 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6346 || GET_CODE (XEXP (value, 1)) == CONST))
6348 if (!subtarget)
6349 subtarget = gen_reg_rtx (GET_MODE (value));
6350 emit_move_insn (subtarget, value);
6351 return subtarget;
6354 if (ARITHMETIC_P (value))
6356 op2 = XEXP (value, 1);
6357 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6358 subtarget = 0;
6359 if (code == MINUS && CONST_INT_P (op2))
6361 code = PLUS;
6362 op2 = negate_rtx (GET_MODE (value), op2);
6365 /* Check for an addition with OP2 a constant integer and our first
6366 operand a PLUS of a virtual register and something else. In that
6367 case, we want to emit the sum of the virtual register and the
6368 constant first and then add the other value. This allows virtual
6369 register instantiation to simply modify the constant rather than
6370 creating another one around this addition. */
6371 if (code == PLUS && CONST_INT_P (op2)
6372 && GET_CODE (XEXP (value, 0)) == PLUS
6373 && REG_P (XEXP (XEXP (value, 0), 0))
6374 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6375 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6377 rtx temp = expand_simple_binop (GET_MODE (value), code,
6378 XEXP (XEXP (value, 0), 0), op2,
6379 subtarget, 0, OPTAB_LIB_WIDEN);
6380 return expand_simple_binop (GET_MODE (value), code, temp,
6381 force_operand (XEXP (XEXP (value,
6382 0), 1), 0),
6383 target, 0, OPTAB_LIB_WIDEN);
6386 op1 = force_operand (XEXP (value, 0), subtarget);
6387 op2 = force_operand (op2, NULL_RTX);
6388 switch (code)
6390 case MULT:
6391 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6392 case DIV:
6393 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6394 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6395 target, 1, OPTAB_LIB_WIDEN);
6396 else
6397 return expand_divmod (0,
6398 FLOAT_MODE_P (GET_MODE (value))
6399 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6400 GET_MODE (value), op1, op2, target, 0);
6401 case MOD:
6402 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6403 target, 0);
6404 case UDIV:
6405 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6406 target, 1);
6407 case UMOD:
6408 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6409 target, 1);
6410 case ASHIFTRT:
6411 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6412 target, 0, OPTAB_LIB_WIDEN);
6413 default:
6414 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6415 target, 1, OPTAB_LIB_WIDEN);
6418 if (UNARY_P (value))
6420 if (!target)
6421 target = gen_reg_rtx (GET_MODE (value));
6422 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6423 switch (code)
6425 case ZERO_EXTEND:
6426 case SIGN_EXTEND:
6427 case TRUNCATE:
6428 case FLOAT_EXTEND:
6429 case FLOAT_TRUNCATE:
6430 convert_move (target, op1, code == ZERO_EXTEND);
6431 return target;
6433 case FIX:
6434 case UNSIGNED_FIX:
6435 expand_fix (target, op1, code == UNSIGNED_FIX);
6436 return target;
6438 case FLOAT:
6439 case UNSIGNED_FLOAT:
6440 expand_float (target, op1, code == UNSIGNED_FLOAT);
6441 return target;
6443 default:
6444 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6448 #ifdef INSN_SCHEDULING
6449 /* On machines that have insn scheduling, we want all memory reference to be
6450 explicit, so we need to deal with such paradoxical SUBREGs. */
6451 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6452 && (GET_MODE_SIZE (GET_MODE (value))
6453 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6454 value
6455 = simplify_gen_subreg (GET_MODE (value),
6456 force_reg (GET_MODE (SUBREG_REG (value)),
6457 force_operand (SUBREG_REG (value),
6458 NULL_RTX)),
6459 GET_MODE (SUBREG_REG (value)),
6460 SUBREG_BYTE (value));
6461 #endif
6463 return value;
6466 /* Subroutine of expand_expr: return nonzero iff there is no way that
6467 EXP can reference X, which is being modified. TOP_P is nonzero if this
6468 call is going to be used to determine whether we need a temporary
6469 for EXP, as opposed to a recursive call to this function.
6471 It is always safe for this routine to return zero since it merely
6472 searches for optimization opportunities. */
6475 safe_from_p (const_rtx x, tree exp, int top_p)
6477 rtx exp_rtl = 0;
6478 int i, nops;
6480 if (x == 0
6481 /* If EXP has varying size, we MUST use a target since we currently
6482 have no way of allocating temporaries of variable size
6483 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6484 So we assume here that something at a higher level has prevented a
6485 clash. This is somewhat bogus, but the best we can do. Only
6486 do this when X is BLKmode and when we are at the top level. */
6487 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6488 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6489 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6490 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6491 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6492 != INTEGER_CST)
6493 && GET_MODE (x) == BLKmode)
6494 /* If X is in the outgoing argument area, it is always safe. */
6495 || (MEM_P (x)
6496 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6497 || (GET_CODE (XEXP (x, 0)) == PLUS
6498 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6499 return 1;
6501 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6502 find the underlying pseudo. */
6503 if (GET_CODE (x) == SUBREG)
6505 x = SUBREG_REG (x);
6506 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6507 return 0;
6510 /* Now look at our tree code and possibly recurse. */
6511 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6513 case tcc_declaration:
6514 exp_rtl = DECL_RTL_IF_SET (exp);
6515 break;
6517 case tcc_constant:
6518 return 1;
6520 case tcc_exceptional:
6521 if (TREE_CODE (exp) == TREE_LIST)
6523 while (1)
6525 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6526 return 0;
6527 exp = TREE_CHAIN (exp);
6528 if (!exp)
6529 return 1;
6530 if (TREE_CODE (exp) != TREE_LIST)
6531 return safe_from_p (x, exp, 0);
6534 else if (TREE_CODE (exp) == CONSTRUCTOR)
6536 constructor_elt *ce;
6537 unsigned HOST_WIDE_INT idx;
6539 for (idx = 0;
6540 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6541 idx++)
6542 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6543 || !safe_from_p (x, ce->value, 0))
6544 return 0;
6545 return 1;
6547 else if (TREE_CODE (exp) == ERROR_MARK)
6548 return 1; /* An already-visited SAVE_EXPR? */
6549 else
6550 return 0;
6552 case tcc_statement:
6553 /* The only case we look at here is the DECL_INITIAL inside a
6554 DECL_EXPR. */
6555 return (TREE_CODE (exp) != DECL_EXPR
6556 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6557 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6558 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6560 case tcc_binary:
6561 case tcc_comparison:
6562 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6563 return 0;
6564 /* Fall through. */
6566 case tcc_unary:
6567 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6569 case tcc_expression:
6570 case tcc_reference:
6571 case tcc_vl_exp:
6572 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6573 the expression. If it is set, we conflict iff we are that rtx or
6574 both are in memory. Otherwise, we check all operands of the
6575 expression recursively. */
6577 switch (TREE_CODE (exp))
6579 case ADDR_EXPR:
6580 /* If the operand is static or we are static, we can't conflict.
6581 Likewise if we don't conflict with the operand at all. */
6582 if (staticp (TREE_OPERAND (exp, 0))
6583 || TREE_STATIC (exp)
6584 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6585 return 1;
6587 /* Otherwise, the only way this can conflict is if we are taking
6588 the address of a DECL a that address if part of X, which is
6589 very rare. */
6590 exp = TREE_OPERAND (exp, 0);
6591 if (DECL_P (exp))
6593 if (!DECL_RTL_SET_P (exp)
6594 || !MEM_P (DECL_RTL (exp)))
6595 return 0;
6596 else
6597 exp_rtl = XEXP (DECL_RTL (exp), 0);
6599 break;
6601 case MISALIGNED_INDIRECT_REF:
6602 case ALIGN_INDIRECT_REF:
6603 case INDIRECT_REF:
6604 if (MEM_P (x)
6605 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6606 get_alias_set (exp)))
6607 return 0;
6608 break;
6610 case CALL_EXPR:
6611 /* Assume that the call will clobber all hard registers and
6612 all of memory. */
6613 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6614 || MEM_P (x))
6615 return 0;
6616 break;
6618 case WITH_CLEANUP_EXPR:
6619 case CLEANUP_POINT_EXPR:
6620 /* Lowered by gimplify.c. */
6621 gcc_unreachable ();
6623 case SAVE_EXPR:
6624 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6626 default:
6627 break;
6630 /* If we have an rtx, we do not need to scan our operands. */
6631 if (exp_rtl)
6632 break;
6634 nops = TREE_OPERAND_LENGTH (exp);
6635 for (i = 0; i < nops; i++)
6636 if (TREE_OPERAND (exp, i) != 0
6637 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6638 return 0;
6640 break;
6642 case tcc_type:
6643 /* Should never get a type here. */
6644 gcc_unreachable ();
6647 /* If we have an rtl, find any enclosed object. Then see if we conflict
6648 with it. */
6649 if (exp_rtl)
6651 if (GET_CODE (exp_rtl) == SUBREG)
6653 exp_rtl = SUBREG_REG (exp_rtl);
6654 if (REG_P (exp_rtl)
6655 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6656 return 0;
6659 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6660 are memory and they conflict. */
6661 return ! (rtx_equal_p (x, exp_rtl)
6662 || (MEM_P (x) && MEM_P (exp_rtl)
6663 && true_dependence (exp_rtl, VOIDmode, x,
6664 rtx_addr_varies_p)));
6667 /* If we reach here, it is safe. */
6668 return 1;
6672 /* Return the highest power of two that EXP is known to be a multiple of.
6673 This is used in updating alignment of MEMs in array references. */
6675 unsigned HOST_WIDE_INT
6676 highest_pow2_factor (const_tree exp)
6678 unsigned HOST_WIDE_INT c0, c1;
6680 switch (TREE_CODE (exp))
6682 case INTEGER_CST:
6683 /* We can find the lowest bit that's a one. If the low
6684 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6685 We need to handle this case since we can find it in a COND_EXPR,
6686 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6687 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6688 later ICE. */
6689 if (TREE_OVERFLOW (exp))
6690 return BIGGEST_ALIGNMENT;
6691 else
6693 /* Note: tree_low_cst is intentionally not used here,
6694 we don't care about the upper bits. */
6695 c0 = TREE_INT_CST_LOW (exp);
6696 c0 &= -c0;
6697 return c0 ? c0 : BIGGEST_ALIGNMENT;
6699 break;
6701 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6702 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6703 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6704 return MIN (c0, c1);
6706 case MULT_EXPR:
6707 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6708 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6709 return c0 * c1;
6711 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6712 case CEIL_DIV_EXPR:
6713 if (integer_pow2p (TREE_OPERAND (exp, 1))
6714 && host_integerp (TREE_OPERAND (exp, 1), 1))
6716 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6717 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6718 return MAX (1, c0 / c1);
6720 break;
6722 case BIT_AND_EXPR:
6723 /* The highest power of two of a bit-and expression is the maximum of
6724 that of its operands. We typically get here for a complex LHS and
6725 a constant negative power of two on the RHS to force an explicit
6726 alignment, so don't bother looking at the LHS. */
6727 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6729 CASE_CONVERT:
6730 case SAVE_EXPR:
6731 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6733 case COMPOUND_EXPR:
6734 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6736 case COND_EXPR:
6737 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6738 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6739 return MIN (c0, c1);
6741 default:
6742 break;
6745 return 1;
6748 /* Similar, except that the alignment requirements of TARGET are
6749 taken into account. Assume it is at least as aligned as its
6750 type, unless it is a COMPONENT_REF in which case the layout of
6751 the structure gives the alignment. */
6753 static unsigned HOST_WIDE_INT
6754 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6756 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6757 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6759 return MAX (factor, talign);
6762 /* Return &VAR expression for emulated thread local VAR. */
6764 static tree
6765 emutls_var_address (tree var)
6767 tree emuvar = emutls_decl (var);
6768 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6769 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6770 tree arglist = build_tree_list (NULL_TREE, arg);
6771 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6772 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6776 /* Subroutine of expand_expr. Expand the two operands of a binary
6777 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6778 The value may be stored in TARGET if TARGET is nonzero. The
6779 MODIFIER argument is as documented by expand_expr. */
6781 static void
6782 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6783 enum expand_modifier modifier)
6785 if (! safe_from_p (target, exp1, 1))
6786 target = 0;
6787 if (operand_equal_p (exp0, exp1, 0))
6789 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6790 *op1 = copy_rtx (*op0);
6792 else
6794 /* If we need to preserve evaluation order, copy exp0 into its own
6795 temporary variable so that it can't be clobbered by exp1. */
6796 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6797 exp0 = save_expr (exp0);
6798 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6799 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6804 /* Return a MEM that contains constant EXP. DEFER is as for
6805 output_constant_def and MODIFIER is as for expand_expr. */
6807 static rtx
6808 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6810 rtx mem;
6812 mem = output_constant_def (exp, defer);
6813 if (modifier != EXPAND_INITIALIZER)
6814 mem = use_anchored_address (mem);
6815 return mem;
6818 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6819 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6821 static rtx
6822 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6823 enum expand_modifier modifier, addr_space_t as)
6825 rtx result, subtarget;
6826 tree inner, offset;
6827 HOST_WIDE_INT bitsize, bitpos;
6828 int volatilep, unsignedp;
6829 enum machine_mode mode1;
6831 /* If we are taking the address of a constant and are at the top level,
6832 we have to use output_constant_def since we can't call force_const_mem
6833 at top level. */
6834 /* ??? This should be considered a front-end bug. We should not be
6835 generating ADDR_EXPR of something that isn't an LVALUE. The only
6836 exception here is STRING_CST. */
6837 if (CONSTANT_CLASS_P (exp))
6838 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6840 /* Everything must be something allowed by is_gimple_addressable. */
6841 switch (TREE_CODE (exp))
6843 case INDIRECT_REF:
6844 /* This case will happen via recursion for &a->b. */
6845 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6847 case CONST_DECL:
6848 /* Recurse and make the output_constant_def clause above handle this. */
6849 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6850 tmode, modifier, as);
6852 case REALPART_EXPR:
6853 /* The real part of the complex number is always first, therefore
6854 the address is the same as the address of the parent object. */
6855 offset = 0;
6856 bitpos = 0;
6857 inner = TREE_OPERAND (exp, 0);
6858 break;
6860 case IMAGPART_EXPR:
6861 /* The imaginary part of the complex number is always second.
6862 The expression is therefore always offset by the size of the
6863 scalar type. */
6864 offset = 0;
6865 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6866 inner = TREE_OPERAND (exp, 0);
6867 break;
6869 case VAR_DECL:
6870 /* TLS emulation hook - replace __thread VAR's &VAR with
6871 __emutls_get_address (&_emutls.VAR). */
6872 if (! targetm.have_tls
6873 && TREE_CODE (exp) == VAR_DECL
6874 && DECL_THREAD_LOCAL_P (exp))
6876 exp = emutls_var_address (exp);
6877 return expand_expr (exp, target, tmode, modifier);
6879 /* Fall through. */
6881 default:
6882 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6883 expand_expr, as that can have various side effects; LABEL_DECLs for
6884 example, may not have their DECL_RTL set yet. Expand the rtl of
6885 CONSTRUCTORs too, which should yield a memory reference for the
6886 constructor's contents. Assume language specific tree nodes can
6887 be expanded in some interesting way. */
6888 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6889 if (DECL_P (exp)
6890 || TREE_CODE (exp) == CONSTRUCTOR
6891 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6893 result = expand_expr (exp, target, tmode,
6894 modifier == EXPAND_INITIALIZER
6895 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6897 /* If the DECL isn't in memory, then the DECL wasn't properly
6898 marked TREE_ADDRESSABLE, which will be either a front-end
6899 or a tree optimizer bug. */
6900 gcc_assert (MEM_P (result));
6901 result = XEXP (result, 0);
6903 /* ??? Is this needed anymore? */
6904 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6906 assemble_external (exp);
6907 TREE_USED (exp) = 1;
6910 if (modifier != EXPAND_INITIALIZER
6911 && modifier != EXPAND_CONST_ADDRESS)
6912 result = force_operand (result, target);
6913 return result;
6916 /* Pass FALSE as the last argument to get_inner_reference although
6917 we are expanding to RTL. The rationale is that we know how to
6918 handle "aligning nodes" here: we can just bypass them because
6919 they won't change the final object whose address will be returned
6920 (they actually exist only for that purpose). */
6921 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6922 &mode1, &unsignedp, &volatilep, false);
6923 break;
6926 /* We must have made progress. */
6927 gcc_assert (inner != exp);
6929 subtarget = offset || bitpos ? NULL_RTX : target;
6930 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6931 inner alignment, force the inner to be sufficiently aligned. */
6932 if (CONSTANT_CLASS_P (inner)
6933 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6935 inner = copy_node (inner);
6936 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6937 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6938 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6940 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6942 if (offset)
6944 rtx tmp;
6946 if (modifier != EXPAND_NORMAL)
6947 result = force_operand (result, NULL);
6948 tmp = expand_expr (offset, NULL_RTX, tmode,
6949 modifier == EXPAND_INITIALIZER
6950 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6952 result = convert_memory_address_addr_space (tmode, result, as);
6953 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6955 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6956 result = gen_rtx_PLUS (tmode, result, tmp);
6957 else
6959 subtarget = bitpos ? NULL_RTX : target;
6960 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6961 1, OPTAB_LIB_WIDEN);
6965 if (bitpos)
6967 /* Someone beforehand should have rejected taking the address
6968 of such an object. */
6969 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6971 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6972 if (modifier < EXPAND_SUM)
6973 result = force_operand (result, target);
6976 return result;
6979 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6980 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6982 static rtx
6983 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6984 enum expand_modifier modifier)
6986 addr_space_t as = ADDR_SPACE_GENERIC;
6987 enum machine_mode address_mode = Pmode;
6988 enum machine_mode pointer_mode = ptr_mode;
6989 enum machine_mode rmode;
6990 rtx result;
6992 /* Target mode of VOIDmode says "whatever's natural". */
6993 if (tmode == VOIDmode)
6994 tmode = TYPE_MODE (TREE_TYPE (exp));
6996 if (POINTER_TYPE_P (TREE_TYPE (exp)))
6998 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
6999 address_mode = targetm.addr_space.address_mode (as);
7000 pointer_mode = targetm.addr_space.pointer_mode (as);
7003 /* We can get called with some Weird Things if the user does silliness
7004 like "(short) &a". In that case, convert_memory_address won't do
7005 the right thing, so ignore the given target mode. */
7006 if (tmode != address_mode && tmode != pointer_mode)
7007 tmode = address_mode;
7009 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7010 tmode, modifier, as);
7012 /* Despite expand_expr claims concerning ignoring TMODE when not
7013 strictly convenient, stuff breaks if we don't honor it. Note
7014 that combined with the above, we only do this for pointer modes. */
7015 rmode = GET_MODE (result);
7016 if (rmode == VOIDmode)
7017 rmode = tmode;
7018 if (rmode != tmode)
7019 result = convert_memory_address_addr_space (tmode, result, as);
7021 return result;
7024 /* Generate code for computing CONSTRUCTOR EXP.
7025 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7026 is TRUE, instead of creating a temporary variable in memory
7027 NULL is returned and the caller needs to handle it differently. */
7029 static rtx
7030 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7031 bool avoid_temp_mem)
7033 tree type = TREE_TYPE (exp);
7034 enum machine_mode mode = TYPE_MODE (type);
7036 /* Try to avoid creating a temporary at all. This is possible
7037 if all of the initializer is zero.
7038 FIXME: try to handle all [0..255] initializers we can handle
7039 with memset. */
7040 if (TREE_STATIC (exp)
7041 && !TREE_ADDRESSABLE (exp)
7042 && target != 0 && mode == BLKmode
7043 && all_zeros_p (exp))
7045 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7046 return target;
7049 /* All elts simple constants => refer to a constant in memory. But
7050 if this is a non-BLKmode mode, let it store a field at a time
7051 since that should make a CONST_INT or CONST_DOUBLE when we
7052 fold. Likewise, if we have a target we can use, it is best to
7053 store directly into the target unless the type is large enough
7054 that memcpy will be used. If we are making an initializer and
7055 all operands are constant, put it in memory as well.
7057 FIXME: Avoid trying to fill vector constructors piece-meal.
7058 Output them with output_constant_def below unless we're sure
7059 they're zeros. This should go away when vector initializers
7060 are treated like VECTOR_CST instead of arrays. */
7061 if ((TREE_STATIC (exp)
7062 && ((mode == BLKmode
7063 && ! (target != 0 && safe_from_p (target, exp, 1)))
7064 || TREE_ADDRESSABLE (exp)
7065 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7066 && (! MOVE_BY_PIECES_P
7067 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7068 TYPE_ALIGN (type)))
7069 && ! mostly_zeros_p (exp))))
7070 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7071 && TREE_CONSTANT (exp)))
7073 rtx constructor;
7075 if (avoid_temp_mem)
7076 return NULL_RTX;
7078 constructor = expand_expr_constant (exp, 1, modifier);
7080 if (modifier != EXPAND_CONST_ADDRESS
7081 && modifier != EXPAND_INITIALIZER
7082 && modifier != EXPAND_SUM)
7083 constructor = validize_mem (constructor);
7085 return constructor;
7088 /* Handle calls that pass values in multiple non-contiguous
7089 locations. The Irix 6 ABI has examples of this. */
7090 if (target == 0 || ! safe_from_p (target, exp, 1)
7091 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7093 if (avoid_temp_mem)
7094 return NULL_RTX;
7096 target
7097 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7098 | (TREE_READONLY (exp)
7099 * TYPE_QUAL_CONST))),
7100 0, TREE_ADDRESSABLE (exp), 1);
7103 store_constructor (exp, target, 0, int_expr_size (exp));
7104 return target;
7108 /* expand_expr: generate code for computing expression EXP.
7109 An rtx for the computed value is returned. The value is never null.
7110 In the case of a void EXP, const0_rtx is returned.
7112 The value may be stored in TARGET if TARGET is nonzero.
7113 TARGET is just a suggestion; callers must assume that
7114 the rtx returned may not be the same as TARGET.
7116 If TARGET is CONST0_RTX, it means that the value will be ignored.
7118 If TMODE is not VOIDmode, it suggests generating the
7119 result in mode TMODE. But this is done only when convenient.
7120 Otherwise, TMODE is ignored and the value generated in its natural mode.
7121 TMODE is just a suggestion; callers must assume that
7122 the rtx returned may not have mode TMODE.
7124 Note that TARGET may have neither TMODE nor MODE. In that case, it
7125 probably will not be used.
7127 If MODIFIER is EXPAND_SUM then when EXP is an addition
7128 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7129 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7130 products as above, or REG or MEM, or constant.
7131 Ordinarily in such cases we would output mul or add instructions
7132 and then return a pseudo reg containing the sum.
7134 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7135 it also marks a label as absolutely required (it can't be dead).
7136 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7137 This is used for outputting expressions used in initializers.
7139 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7140 with a constant address even if that address is not normally legitimate.
7141 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7143 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7144 a call parameter. Such targets require special care as we haven't yet
7145 marked TARGET so that it's safe from being trashed by libcalls. We
7146 don't want to use TARGET for anything but the final result;
7147 Intermediate values must go elsewhere. Additionally, calls to
7148 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7150 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7151 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7152 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7153 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7154 recursively. */
7157 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7158 enum expand_modifier modifier, rtx *alt_rtl)
7160 int lp_nr = 0;
7161 rtx ret, last = NULL;
7163 /* Handle ERROR_MARK before anybody tries to access its type. */
7164 if (TREE_CODE (exp) == ERROR_MARK
7165 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7167 ret = CONST0_RTX (tmode);
7168 return ret ? ret : const0_rtx;
7171 if (flag_non_call_exceptions)
7173 lp_nr = lookup_expr_eh_lp (exp);
7174 if (lp_nr)
7175 last = get_last_insn ();
7178 /* If this is an expression of some kind and it has an associated line
7179 number, then emit the line number before expanding the expression.
7181 We need to save and restore the file and line information so that
7182 errors discovered during expansion are emitted with the right
7183 information. It would be better of the diagnostic routines
7184 used the file/line information embedded in the tree nodes rather
7185 than globals. */
7186 if (cfun && EXPR_HAS_LOCATION (exp))
7188 location_t saved_location = input_location;
7189 input_location = EXPR_LOCATION (exp);
7190 set_curr_insn_source_location (input_location);
7192 /* Record where the insns produced belong. */
7193 set_curr_insn_block (TREE_BLOCK (exp));
7195 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7197 input_location = saved_location;
7199 else
7201 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7204 /* If using non-call exceptions, mark all insns that may trap.
7205 expand_call() will mark CALL_INSNs before we get to this code,
7206 but it doesn't handle libcalls, and these may trap. */
7207 if (lp_nr)
7209 rtx insn;
7210 for (insn = next_real_insn (last); insn;
7211 insn = next_real_insn (insn))
7213 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7214 /* If we want exceptions for non-call insns, any
7215 may_trap_p instruction may throw. */
7216 && GET_CODE (PATTERN (insn)) != CLOBBER
7217 && GET_CODE (PATTERN (insn)) != USE
7218 && insn_could_throw_p (insn))
7219 make_reg_eh_region_note (insn, 0, lp_nr);
7223 return ret;
7227 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7228 enum expand_modifier modifier)
7230 rtx op0, op1, op2, temp;
7231 tree type;
7232 int unsignedp;
7233 enum machine_mode mode;
7234 enum tree_code code = ops->code;
7235 optab this_optab;
7236 rtx subtarget, original_target;
7237 int ignore;
7238 tree subexp0, subexp1;
7239 bool reduce_bit_field;
7240 gimple subexp0_def, subexp1_def;
7241 tree top0, top1;
7242 location_t loc = ops->location;
7243 tree treeop0, treeop1, treeop2;
7244 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7245 ? reduce_to_bit_field_precision ((expr), \
7246 target, \
7247 type) \
7248 : (expr))
7250 type = ops->type;
7251 mode = TYPE_MODE (type);
7252 unsignedp = TYPE_UNSIGNED (type);
7254 treeop0 = ops->op0;
7255 treeop1 = ops->op1;
7256 treeop2 = ops->op2;
7258 /* We should be called only on simple (binary or unary) expressions,
7259 exactly those that are valid in gimple expressions that aren't
7260 GIMPLE_SINGLE_RHS (or invalid). */
7261 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7262 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7264 ignore = (target == const0_rtx
7265 || ((CONVERT_EXPR_CODE_P (code)
7266 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7267 && TREE_CODE (type) == VOID_TYPE));
7269 /* We should be called only if we need the result. */
7270 gcc_assert (!ignore);
7272 /* An operation in what may be a bit-field type needs the
7273 result to be reduced to the precision of the bit-field type,
7274 which is narrower than that of the type's mode. */
7275 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7276 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7278 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7279 target = 0;
7281 /* Use subtarget as the target for operand 0 of a binary operation. */
7282 subtarget = get_subtarget (target);
7283 original_target = target;
7285 switch (code)
7287 case NON_LVALUE_EXPR:
7288 case PAREN_EXPR:
7289 CASE_CONVERT:
7290 if (treeop0 == error_mark_node)
7291 return const0_rtx;
7293 if (TREE_CODE (type) == UNION_TYPE)
7295 tree valtype = TREE_TYPE (treeop0);
7297 /* If both input and output are BLKmode, this conversion isn't doing
7298 anything except possibly changing memory attribute. */
7299 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7301 rtx result = expand_expr (treeop0, target, tmode,
7302 modifier);
7304 result = copy_rtx (result);
7305 set_mem_attributes (result, type, 0);
7306 return result;
7309 if (target == 0)
7311 if (TYPE_MODE (type) != BLKmode)
7312 target = gen_reg_rtx (TYPE_MODE (type));
7313 else
7314 target = assign_temp (type, 0, 1, 1);
7317 if (MEM_P (target))
7318 /* Store data into beginning of memory target. */
7319 store_expr (treeop0,
7320 adjust_address (target, TYPE_MODE (valtype), 0),
7321 modifier == EXPAND_STACK_PARM,
7322 false);
7324 else
7326 gcc_assert (REG_P (target));
7328 /* Store this field into a union of the proper type. */
7329 store_field (target,
7330 MIN ((int_size_in_bytes (TREE_TYPE
7331 (treeop0))
7332 * BITS_PER_UNIT),
7333 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7334 0, TYPE_MODE (valtype), treeop0,
7335 type, 0, false);
7338 /* Return the entire union. */
7339 return target;
7342 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7344 op0 = expand_expr (treeop0, target, VOIDmode,
7345 modifier);
7347 /* If the signedness of the conversion differs and OP0 is
7348 a promoted SUBREG, clear that indication since we now
7349 have to do the proper extension. */
7350 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7351 && GET_CODE (op0) == SUBREG)
7352 SUBREG_PROMOTED_VAR_P (op0) = 0;
7354 return REDUCE_BIT_FIELD (op0);
7357 op0 = expand_expr (treeop0, NULL_RTX, mode,
7358 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7359 if (GET_MODE (op0) == mode)
7362 /* If OP0 is a constant, just convert it into the proper mode. */
7363 else if (CONSTANT_P (op0))
7365 tree inner_type = TREE_TYPE (treeop0);
7366 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7368 if (modifier == EXPAND_INITIALIZER)
7369 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7370 subreg_lowpart_offset (mode,
7371 inner_mode));
7372 else
7373 op0= convert_modes (mode, inner_mode, op0,
7374 TYPE_UNSIGNED (inner_type));
7377 else if (modifier == EXPAND_INITIALIZER)
7378 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7380 else if (target == 0)
7381 op0 = convert_to_mode (mode, op0,
7382 TYPE_UNSIGNED (TREE_TYPE
7383 (treeop0)));
7384 else
7386 convert_move (target, op0,
7387 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7388 op0 = target;
7391 return REDUCE_BIT_FIELD (op0);
7393 case ADDR_SPACE_CONVERT_EXPR:
7395 tree treeop0_type = TREE_TYPE (treeop0);
7396 addr_space_t as_to;
7397 addr_space_t as_from;
7399 gcc_assert (POINTER_TYPE_P (type));
7400 gcc_assert (POINTER_TYPE_P (treeop0_type));
7402 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7403 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7405 /* Conversions between pointers to the same address space should
7406 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7407 gcc_assert (as_to != as_from);
7409 /* Ask target code to handle conversion between pointers
7410 to overlapping address spaces. */
7411 if (targetm.addr_space.subset_p (as_to, as_from)
7412 || targetm.addr_space.subset_p (as_from, as_to))
7414 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7415 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7416 gcc_assert (op0);
7417 return op0;
7420 /* For disjoint address spaces, converting anything but
7421 a null pointer invokes undefined behaviour. We simply
7422 always return a null pointer here. */
7423 return CONST0_RTX (mode);
7426 case POINTER_PLUS_EXPR:
7427 /* Even though the sizetype mode and the pointer's mode can be different
7428 expand is able to handle this correctly and get the correct result out
7429 of the PLUS_EXPR code. */
7430 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7431 if sizetype precision is smaller than pointer precision. */
7432 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7433 treeop1 = fold_convert_loc (loc, type,
7434 fold_convert_loc (loc, ssizetype,
7435 treeop1));
7436 case PLUS_EXPR:
7438 /* Check if this is a case for multiplication and addition. */
7439 if ((TREE_CODE (type) == INTEGER_TYPE
7440 || TREE_CODE (type) == FIXED_POINT_TYPE)
7441 && (subexp0_def = get_def_for_expr (treeop0,
7442 MULT_EXPR)))
7444 tree subsubexp0, subsubexp1;
7445 gimple subsubexp0_def, subsubexp1_def;
7446 enum tree_code this_code;
7448 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7449 : FIXED_CONVERT_EXPR;
7450 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7451 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7452 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7453 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7454 if (subsubexp0_def && subsubexp1_def
7455 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7456 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7457 && (TYPE_PRECISION (TREE_TYPE (top0))
7458 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7459 && (TYPE_PRECISION (TREE_TYPE (top0))
7460 == TYPE_PRECISION (TREE_TYPE (top1)))
7461 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7462 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7464 tree op0type = TREE_TYPE (top0);
7465 enum machine_mode innermode = TYPE_MODE (op0type);
7466 bool zextend_p = TYPE_UNSIGNED (op0type);
7467 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7468 if (sat_p == 0)
7469 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7470 else
7471 this_optab = zextend_p ? usmadd_widen_optab
7472 : ssmadd_widen_optab;
7473 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7474 && (optab_handler (this_optab, mode)->insn_code
7475 != CODE_FOR_nothing))
7477 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7478 EXPAND_NORMAL);
7479 op2 = expand_expr (treeop1, subtarget,
7480 VOIDmode, EXPAND_NORMAL);
7481 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7482 target, unsignedp);
7483 gcc_assert (temp);
7484 return REDUCE_BIT_FIELD (temp);
7489 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7490 something else, make sure we add the register to the constant and
7491 then to the other thing. This case can occur during strength
7492 reduction and doing it this way will produce better code if the
7493 frame pointer or argument pointer is eliminated.
7495 fold-const.c will ensure that the constant is always in the inner
7496 PLUS_EXPR, so the only case we need to do anything about is if
7497 sp, ap, or fp is our second argument, in which case we must swap
7498 the innermost first argument and our second argument. */
7500 if (TREE_CODE (treeop0) == PLUS_EXPR
7501 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7502 && TREE_CODE (treeop1) == VAR_DECL
7503 && (DECL_RTL (treeop1) == frame_pointer_rtx
7504 || DECL_RTL (treeop1) == stack_pointer_rtx
7505 || DECL_RTL (treeop1) == arg_pointer_rtx))
7507 tree t = treeop1;
7509 treeop1 = TREE_OPERAND (treeop0, 0);
7510 TREE_OPERAND (treeop0, 0) = t;
7513 /* If the result is to be ptr_mode and we are adding an integer to
7514 something, we might be forming a constant. So try to use
7515 plus_constant. If it produces a sum and we can't accept it,
7516 use force_operand. This allows P = &ARR[const] to generate
7517 efficient code on machines where a SYMBOL_REF is not a valid
7518 address.
7520 If this is an EXPAND_SUM call, always return the sum. */
7521 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7522 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7524 if (modifier == EXPAND_STACK_PARM)
7525 target = 0;
7526 if (TREE_CODE (treeop0) == INTEGER_CST
7527 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7528 && TREE_CONSTANT (treeop1))
7530 rtx constant_part;
7532 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7533 EXPAND_SUM);
7534 /* Use immed_double_const to ensure that the constant is
7535 truncated according to the mode of OP1, then sign extended
7536 to a HOST_WIDE_INT. Using the constant directly can result
7537 in non-canonical RTL in a 64x32 cross compile. */
7538 constant_part
7539 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7540 (HOST_WIDE_INT) 0,
7541 TYPE_MODE (TREE_TYPE (treeop1)));
7542 op1 = plus_constant (op1, INTVAL (constant_part));
7543 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7544 op1 = force_operand (op1, target);
7545 return REDUCE_BIT_FIELD (op1);
7548 else if (TREE_CODE (treeop1) == INTEGER_CST
7549 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7550 && TREE_CONSTANT (treeop0))
7552 rtx constant_part;
7554 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7555 (modifier == EXPAND_INITIALIZER
7556 ? EXPAND_INITIALIZER : EXPAND_SUM));
7557 if (! CONSTANT_P (op0))
7559 op1 = expand_expr (treeop1, NULL_RTX,
7560 VOIDmode, modifier);
7561 /* Return a PLUS if modifier says it's OK. */
7562 if (modifier == EXPAND_SUM
7563 || modifier == EXPAND_INITIALIZER)
7564 return simplify_gen_binary (PLUS, mode, op0, op1);
7565 goto binop2;
7567 /* Use immed_double_const to ensure that the constant is
7568 truncated according to the mode of OP1, then sign extended
7569 to a HOST_WIDE_INT. Using the constant directly can result
7570 in non-canonical RTL in a 64x32 cross compile. */
7571 constant_part
7572 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7573 (HOST_WIDE_INT) 0,
7574 TYPE_MODE (TREE_TYPE (treeop0)));
7575 op0 = plus_constant (op0, INTVAL (constant_part));
7576 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7577 op0 = force_operand (op0, target);
7578 return REDUCE_BIT_FIELD (op0);
7582 /* No sense saving up arithmetic to be done
7583 if it's all in the wrong mode to form part of an address.
7584 And force_operand won't know whether to sign-extend or
7585 zero-extend. */
7586 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7587 || mode != ptr_mode)
7589 expand_operands (treeop0, treeop1,
7590 subtarget, &op0, &op1, EXPAND_NORMAL);
7591 if (op0 == const0_rtx)
7592 return op1;
7593 if (op1 == const0_rtx)
7594 return op0;
7595 goto binop2;
7598 expand_operands (treeop0, treeop1,
7599 subtarget, &op0, &op1, modifier);
7600 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7602 case MINUS_EXPR:
7603 /* Check if this is a case for multiplication and subtraction. */
7604 if ((TREE_CODE (type) == INTEGER_TYPE
7605 || TREE_CODE (type) == FIXED_POINT_TYPE)
7606 && (subexp1_def = get_def_for_expr (treeop1,
7607 MULT_EXPR)))
7609 tree subsubexp0, subsubexp1;
7610 gimple subsubexp0_def, subsubexp1_def;
7611 enum tree_code this_code;
7613 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7614 : FIXED_CONVERT_EXPR;
7615 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7616 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7617 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7618 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7619 if (subsubexp0_def && subsubexp1_def
7620 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7621 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7622 && (TYPE_PRECISION (TREE_TYPE (top0))
7623 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7624 && (TYPE_PRECISION (TREE_TYPE (top0))
7625 == TYPE_PRECISION (TREE_TYPE (top1)))
7626 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7627 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7629 tree op0type = TREE_TYPE (top0);
7630 enum machine_mode innermode = TYPE_MODE (op0type);
7631 bool zextend_p = TYPE_UNSIGNED (op0type);
7632 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7633 if (sat_p == 0)
7634 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7635 else
7636 this_optab = zextend_p ? usmsub_widen_optab
7637 : ssmsub_widen_optab;
7638 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7639 && (optab_handler (this_optab, mode)->insn_code
7640 != CODE_FOR_nothing))
7642 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7643 EXPAND_NORMAL);
7644 op2 = expand_expr (treeop0, subtarget,
7645 VOIDmode, EXPAND_NORMAL);
7646 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7647 target, unsignedp);
7648 gcc_assert (temp);
7649 return REDUCE_BIT_FIELD (temp);
7654 /* For initializers, we are allowed to return a MINUS of two
7655 symbolic constants. Here we handle all cases when both operands
7656 are constant. */
7657 /* Handle difference of two symbolic constants,
7658 for the sake of an initializer. */
7659 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7660 && really_constant_p (treeop0)
7661 && really_constant_p (treeop1))
7663 expand_operands (treeop0, treeop1,
7664 NULL_RTX, &op0, &op1, modifier);
7666 /* If the last operand is a CONST_INT, use plus_constant of
7667 the negated constant. Else make the MINUS. */
7668 if (CONST_INT_P (op1))
7669 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7670 else
7671 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7674 /* No sense saving up arithmetic to be done
7675 if it's all in the wrong mode to form part of an address.
7676 And force_operand won't know whether to sign-extend or
7677 zero-extend. */
7678 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7679 || mode != ptr_mode)
7680 goto binop;
7682 expand_operands (treeop0, treeop1,
7683 subtarget, &op0, &op1, modifier);
7685 /* Convert A - const to A + (-const). */
7686 if (CONST_INT_P (op1))
7688 op1 = negate_rtx (mode, op1);
7689 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7692 goto binop2;
7694 case MULT_EXPR:
7695 /* If this is a fixed-point operation, then we cannot use the code
7696 below because "expand_mult" doesn't support sat/no-sat fixed-point
7697 multiplications. */
7698 if (ALL_FIXED_POINT_MODE_P (mode))
7699 goto binop;
7701 /* If first operand is constant, swap them.
7702 Thus the following special case checks need only
7703 check the second operand. */
7704 if (TREE_CODE (treeop0) == INTEGER_CST)
7706 tree t1 = treeop0;
7707 treeop0 = treeop1;
7708 treeop1 = t1;
7711 /* Attempt to return something suitable for generating an
7712 indexed address, for machines that support that. */
7714 if (modifier == EXPAND_SUM && mode == ptr_mode
7715 && host_integerp (treeop1, 0))
7717 tree exp1 = treeop1;
7719 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7720 EXPAND_SUM);
7722 if (!REG_P (op0))
7723 op0 = force_operand (op0, NULL_RTX);
7724 if (!REG_P (op0))
7725 op0 = copy_to_mode_reg (mode, op0);
7727 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7728 gen_int_mode (tree_low_cst (exp1, 0),
7729 TYPE_MODE (TREE_TYPE (exp1)))));
7732 if (modifier == EXPAND_STACK_PARM)
7733 target = 0;
7735 /* Check for multiplying things that have been extended
7736 from a narrower type. If this machine supports multiplying
7737 in that narrower type with a result in the desired type,
7738 do it that way, and avoid the explicit type-conversion. */
7740 subexp0 = treeop0;
7741 subexp1 = treeop1;
7742 subexp0_def = get_def_for_expr (subexp0, NOP_EXPR);
7743 subexp1_def = get_def_for_expr (subexp1, NOP_EXPR);
7744 top0 = top1 = NULL_TREE;
7746 /* First, check if we have a multiplication of one signed and one
7747 unsigned operand. */
7748 if (subexp0_def
7749 && (top0 = gimple_assign_rhs1 (subexp0_def))
7750 && subexp1_def
7751 && (top1 = gimple_assign_rhs1 (subexp1_def))
7752 && TREE_CODE (type) == INTEGER_TYPE
7753 && (TYPE_PRECISION (TREE_TYPE (top0))
7754 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7755 && (TYPE_PRECISION (TREE_TYPE (top0))
7756 == TYPE_PRECISION (TREE_TYPE (top1)))
7757 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7758 != TYPE_UNSIGNED (TREE_TYPE (top1))))
7760 enum machine_mode innermode
7761 = TYPE_MODE (TREE_TYPE (top0));
7762 this_optab = usmul_widen_optab;
7763 if (mode == GET_MODE_WIDER_MODE (innermode))
7765 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7767 if (TYPE_UNSIGNED (TREE_TYPE (top0)))
7768 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7769 EXPAND_NORMAL);
7770 else
7771 expand_operands (top0, top1, NULL_RTX, &op1, &op0,
7772 EXPAND_NORMAL);
7774 goto binop3;
7778 /* Check for a multiplication with matching signedness. If
7779 valid, TOP0 and TOP1 were set in the previous if
7780 condition. */
7781 else if (top0
7782 && TREE_CODE (type) == INTEGER_TYPE
7783 && (TYPE_PRECISION (TREE_TYPE (top0))
7784 < TYPE_PRECISION (TREE_TYPE (subexp0)))
7785 && ((TREE_CODE (subexp1) == INTEGER_CST
7786 && int_fits_type_p (subexp1, TREE_TYPE (top0))
7787 /* Don't use a widening multiply if a shift will do. */
7788 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (subexp1)))
7789 > HOST_BITS_PER_WIDE_INT)
7790 || exact_log2 (TREE_INT_CST_LOW (subexp1)) < 0))
7792 (top1
7793 && (TYPE_PRECISION (TREE_TYPE (top1))
7794 == TYPE_PRECISION (TREE_TYPE (top0))
7795 /* If both operands are extended, they must either both
7796 be zero-extended or both be sign-extended. */
7797 && (TYPE_UNSIGNED (TREE_TYPE (top1))
7798 == TYPE_UNSIGNED (TREE_TYPE (top0)))))))
7800 tree op0type = TREE_TYPE (top0);
7801 enum machine_mode innermode = TYPE_MODE (op0type);
7802 bool zextend_p = TYPE_UNSIGNED (op0type);
7803 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7804 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7806 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7808 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7810 if (TREE_CODE (subexp1) == INTEGER_CST)
7811 expand_operands (top0, subexp1, NULL_RTX, &op0, &op1,
7812 EXPAND_NORMAL);
7813 else
7814 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7815 EXPAND_NORMAL);
7816 goto binop3;
7818 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7819 && innermode == word_mode)
7821 rtx htem, hipart;
7822 op0 = expand_normal (top0);
7823 if (TREE_CODE (subexp1) == INTEGER_CST)
7824 op1 = convert_modes (innermode, mode,
7825 expand_normal (subexp1), unsignedp);
7826 else
7827 op1 = expand_normal (top1);
7828 temp = expand_binop (mode, other_optab, op0, op1, target,
7829 unsignedp, OPTAB_LIB_WIDEN);
7830 hipart = gen_highpart (innermode, temp);
7831 htem = expand_mult_highpart_adjust (innermode, hipart,
7832 op0, op1, hipart,
7833 zextend_p);
7834 if (htem != hipart)
7835 emit_move_insn (hipart, htem);
7836 return REDUCE_BIT_FIELD (temp);
7840 expand_operands (subexp0, subexp1, subtarget, &op0, &op1, EXPAND_NORMAL);
7841 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7843 case TRUNC_DIV_EXPR:
7844 case FLOOR_DIV_EXPR:
7845 case CEIL_DIV_EXPR:
7846 case ROUND_DIV_EXPR:
7847 case EXACT_DIV_EXPR:
7848 /* If this is a fixed-point operation, then we cannot use the code
7849 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7850 divisions. */
7851 if (ALL_FIXED_POINT_MODE_P (mode))
7852 goto binop;
7854 if (modifier == EXPAND_STACK_PARM)
7855 target = 0;
7856 /* Possible optimization: compute the dividend with EXPAND_SUM
7857 then if the divisor is constant can optimize the case
7858 where some terms of the dividend have coeffs divisible by it. */
7859 expand_operands (treeop0, treeop1,
7860 subtarget, &op0, &op1, EXPAND_NORMAL);
7861 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7863 case RDIV_EXPR:
7864 goto binop;
7866 case TRUNC_MOD_EXPR:
7867 case FLOOR_MOD_EXPR:
7868 case CEIL_MOD_EXPR:
7869 case ROUND_MOD_EXPR:
7870 if (modifier == EXPAND_STACK_PARM)
7871 target = 0;
7872 expand_operands (treeop0, treeop1,
7873 subtarget, &op0, &op1, EXPAND_NORMAL);
7874 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7876 case FIXED_CONVERT_EXPR:
7877 op0 = expand_normal (treeop0);
7878 if (target == 0 || modifier == EXPAND_STACK_PARM)
7879 target = gen_reg_rtx (mode);
7881 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7882 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7883 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7884 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7885 else
7886 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7887 return target;
7889 case FIX_TRUNC_EXPR:
7890 op0 = expand_normal (treeop0);
7891 if (target == 0 || modifier == EXPAND_STACK_PARM)
7892 target = gen_reg_rtx (mode);
7893 expand_fix (target, op0, unsignedp);
7894 return target;
7896 case FLOAT_EXPR:
7897 op0 = expand_normal (treeop0);
7898 if (target == 0 || modifier == EXPAND_STACK_PARM)
7899 target = gen_reg_rtx (mode);
7900 /* expand_float can't figure out what to do if FROM has VOIDmode.
7901 So give it the correct mode. With -O, cse will optimize this. */
7902 if (GET_MODE (op0) == VOIDmode)
7903 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7904 op0);
7905 expand_float (target, op0,
7906 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7907 return target;
7909 case NEGATE_EXPR:
7910 op0 = expand_expr (treeop0, subtarget,
7911 VOIDmode, EXPAND_NORMAL);
7912 if (modifier == EXPAND_STACK_PARM)
7913 target = 0;
7914 temp = expand_unop (mode,
7915 optab_for_tree_code (NEGATE_EXPR, type,
7916 optab_default),
7917 op0, target, 0);
7918 gcc_assert (temp);
7919 return REDUCE_BIT_FIELD (temp);
7921 case ABS_EXPR:
7922 op0 = expand_expr (treeop0, subtarget,
7923 VOIDmode, EXPAND_NORMAL);
7924 if (modifier == EXPAND_STACK_PARM)
7925 target = 0;
7927 /* ABS_EXPR is not valid for complex arguments. */
7928 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7929 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7931 /* Unsigned abs is simply the operand. Testing here means we don't
7932 risk generating incorrect code below. */
7933 if (TYPE_UNSIGNED (type))
7934 return op0;
7936 return expand_abs (mode, op0, target, unsignedp,
7937 safe_from_p (target, treeop0, 1));
7939 case MAX_EXPR:
7940 case MIN_EXPR:
7941 target = original_target;
7942 if (target == 0
7943 || modifier == EXPAND_STACK_PARM
7944 || (MEM_P (target) && MEM_VOLATILE_P (target))
7945 || GET_MODE (target) != mode
7946 || (REG_P (target)
7947 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7948 target = gen_reg_rtx (mode);
7949 expand_operands (treeop0, treeop1,
7950 target, &op0, &op1, EXPAND_NORMAL);
7952 /* First try to do it with a special MIN or MAX instruction.
7953 If that does not win, use a conditional jump to select the proper
7954 value. */
7955 this_optab = optab_for_tree_code (code, type, optab_default);
7956 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7957 OPTAB_WIDEN);
7958 if (temp != 0)
7959 return temp;
7961 /* At this point, a MEM target is no longer useful; we will get better
7962 code without it. */
7964 if (! REG_P (target))
7965 target = gen_reg_rtx (mode);
7967 /* If op1 was placed in target, swap op0 and op1. */
7968 if (target != op0 && target == op1)
7970 temp = op0;
7971 op0 = op1;
7972 op1 = temp;
7975 /* We generate better code and avoid problems with op1 mentioning
7976 target by forcing op1 into a pseudo if it isn't a constant. */
7977 if (! CONSTANT_P (op1))
7978 op1 = force_reg (mode, op1);
7981 enum rtx_code comparison_code;
7982 rtx cmpop1 = op1;
7984 if (code == MAX_EXPR)
7985 comparison_code = unsignedp ? GEU : GE;
7986 else
7987 comparison_code = unsignedp ? LEU : LE;
7989 /* Canonicalize to comparisons against 0. */
7990 if (op1 == const1_rtx)
7992 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7993 or (a != 0 ? a : 1) for unsigned.
7994 For MIN we are safe converting (a <= 1 ? a : 1)
7995 into (a <= 0 ? a : 1) */
7996 cmpop1 = const0_rtx;
7997 if (code == MAX_EXPR)
7998 comparison_code = unsignedp ? NE : GT;
8000 if (op1 == constm1_rtx && !unsignedp)
8002 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8003 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8004 cmpop1 = const0_rtx;
8005 if (code == MIN_EXPR)
8006 comparison_code = LT;
8008 #ifdef HAVE_conditional_move
8009 /* Use a conditional move if possible. */
8010 if (can_conditionally_move_p (mode))
8012 rtx insn;
8014 /* ??? Same problem as in expmed.c: emit_conditional_move
8015 forces a stack adjustment via compare_from_rtx, and we
8016 lose the stack adjustment if the sequence we are about
8017 to create is discarded. */
8018 do_pending_stack_adjust ();
8020 start_sequence ();
8022 /* Try to emit the conditional move. */
8023 insn = emit_conditional_move (target, comparison_code,
8024 op0, cmpop1, mode,
8025 op0, op1, mode,
8026 unsignedp);
8028 /* If we could do the conditional move, emit the sequence,
8029 and return. */
8030 if (insn)
8032 rtx seq = get_insns ();
8033 end_sequence ();
8034 emit_insn (seq);
8035 return target;
8038 /* Otherwise discard the sequence and fall back to code with
8039 branches. */
8040 end_sequence ();
8042 #endif
8043 if (target != op0)
8044 emit_move_insn (target, op0);
8046 temp = gen_label_rtx ();
8047 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8048 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8050 emit_move_insn (target, op1);
8051 emit_label (temp);
8052 return target;
8054 case BIT_NOT_EXPR:
8055 op0 = expand_expr (treeop0, subtarget,
8056 VOIDmode, EXPAND_NORMAL);
8057 if (modifier == EXPAND_STACK_PARM)
8058 target = 0;
8059 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8060 gcc_assert (temp);
8061 return temp;
8063 /* ??? Can optimize bitwise operations with one arg constant.
8064 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8065 and (a bitwise1 b) bitwise2 b (etc)
8066 but that is probably not worth while. */
8068 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8069 boolean values when we want in all cases to compute both of them. In
8070 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8071 as actual zero-or-1 values and then bitwise anding. In cases where
8072 there cannot be any side effects, better code would be made by
8073 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8074 how to recognize those cases. */
8076 case TRUTH_AND_EXPR:
8077 code = BIT_AND_EXPR;
8078 case BIT_AND_EXPR:
8079 goto binop;
8081 case TRUTH_OR_EXPR:
8082 code = BIT_IOR_EXPR;
8083 case BIT_IOR_EXPR:
8084 goto binop;
8086 case TRUTH_XOR_EXPR:
8087 code = BIT_XOR_EXPR;
8088 case BIT_XOR_EXPR:
8089 goto binop;
8091 case LROTATE_EXPR:
8092 case RROTATE_EXPR:
8093 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8094 || (GET_MODE_PRECISION (TYPE_MODE (type))
8095 == TYPE_PRECISION (type)));
8096 /* fall through */
8098 case LSHIFT_EXPR:
8099 case RSHIFT_EXPR:
8100 /* If this is a fixed-point operation, then we cannot use the code
8101 below because "expand_shift" doesn't support sat/no-sat fixed-point
8102 shifts. */
8103 if (ALL_FIXED_POINT_MODE_P (mode))
8104 goto binop;
8106 if (! safe_from_p (subtarget, treeop1, 1))
8107 subtarget = 0;
8108 if (modifier == EXPAND_STACK_PARM)
8109 target = 0;
8110 op0 = expand_expr (treeop0, subtarget,
8111 VOIDmode, EXPAND_NORMAL);
8112 temp = expand_shift (code, mode, op0, treeop1, target,
8113 unsignedp);
8114 if (code == LSHIFT_EXPR)
8115 temp = REDUCE_BIT_FIELD (temp);
8116 return temp;
8118 /* Could determine the answer when only additive constants differ. Also,
8119 the addition of one can be handled by changing the condition. */
8120 case LT_EXPR:
8121 case LE_EXPR:
8122 case GT_EXPR:
8123 case GE_EXPR:
8124 case EQ_EXPR:
8125 case NE_EXPR:
8126 case UNORDERED_EXPR:
8127 case ORDERED_EXPR:
8128 case UNLT_EXPR:
8129 case UNLE_EXPR:
8130 case UNGT_EXPR:
8131 case UNGE_EXPR:
8132 case UNEQ_EXPR:
8133 case LTGT_EXPR:
8134 temp = do_store_flag (ops,
8135 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8136 tmode != VOIDmode ? tmode : mode);
8137 if (temp)
8138 return temp;
8140 /* Use a compare and a jump for BLKmode comparisons, or for function
8141 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8143 if ((target == 0
8144 || modifier == EXPAND_STACK_PARM
8145 || ! safe_from_p (target, treeop0, 1)
8146 || ! safe_from_p (target, treeop1, 1)
8147 /* Make sure we don't have a hard reg (such as function's return
8148 value) live across basic blocks, if not optimizing. */
8149 || (!optimize && REG_P (target)
8150 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8151 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8153 emit_move_insn (target, const0_rtx);
8155 op1 = gen_label_rtx ();
8156 jumpifnot_1 (code, treeop0, treeop1, op1);
8158 emit_move_insn (target, const1_rtx);
8160 emit_label (op1);
8161 return target;
8163 case TRUTH_NOT_EXPR:
8164 if (modifier == EXPAND_STACK_PARM)
8165 target = 0;
8166 op0 = expand_expr (treeop0, target,
8167 VOIDmode, EXPAND_NORMAL);
8168 /* The parser is careful to generate TRUTH_NOT_EXPR
8169 only with operands that are always zero or one. */
8170 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8171 target, 1, OPTAB_LIB_WIDEN);
8172 gcc_assert (temp);
8173 return temp;
8175 case COMPLEX_EXPR:
8176 /* Get the rtx code of the operands. */
8177 op0 = expand_normal (treeop0);
8178 op1 = expand_normal (treeop1);
8180 if (!target)
8181 target = gen_reg_rtx (TYPE_MODE (type));
8183 /* Move the real (op0) and imaginary (op1) parts to their location. */
8184 write_complex_part (target, op0, false);
8185 write_complex_part (target, op1, true);
8187 return target;
8189 case WIDEN_SUM_EXPR:
8191 tree oprnd0 = treeop0;
8192 tree oprnd1 = treeop1;
8194 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8195 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8196 target, unsignedp);
8197 return target;
8200 case REDUC_MAX_EXPR:
8201 case REDUC_MIN_EXPR:
8202 case REDUC_PLUS_EXPR:
8204 op0 = expand_normal (treeop0);
8205 this_optab = optab_for_tree_code (code, type, optab_default);
8206 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8207 gcc_assert (temp);
8208 return temp;
8211 case VEC_EXTRACT_EVEN_EXPR:
8212 case VEC_EXTRACT_ODD_EXPR:
8214 expand_operands (treeop0, treeop1,
8215 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8216 this_optab = optab_for_tree_code (code, type, optab_default);
8217 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8218 OPTAB_WIDEN);
8219 gcc_assert (temp);
8220 return temp;
8223 case VEC_INTERLEAVE_HIGH_EXPR:
8224 case VEC_INTERLEAVE_LOW_EXPR:
8226 expand_operands (treeop0, treeop1,
8227 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8228 this_optab = optab_for_tree_code (code, type, optab_default);
8229 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8230 OPTAB_WIDEN);
8231 gcc_assert (temp);
8232 return temp;
8235 case VEC_LSHIFT_EXPR:
8236 case VEC_RSHIFT_EXPR:
8238 target = expand_vec_shift_expr (ops, target);
8239 return target;
8242 case VEC_UNPACK_HI_EXPR:
8243 case VEC_UNPACK_LO_EXPR:
8245 op0 = expand_normal (treeop0);
8246 this_optab = optab_for_tree_code (code, type, optab_default);
8247 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8248 target, unsignedp);
8249 gcc_assert (temp);
8250 return temp;
8253 case VEC_UNPACK_FLOAT_HI_EXPR:
8254 case VEC_UNPACK_FLOAT_LO_EXPR:
8256 op0 = expand_normal (treeop0);
8257 /* The signedness is determined from input operand. */
8258 this_optab = optab_for_tree_code (code,
8259 TREE_TYPE (treeop0),
8260 optab_default);
8261 temp = expand_widen_pattern_expr
8262 (ops, op0, NULL_RTX, NULL_RTX,
8263 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8265 gcc_assert (temp);
8266 return temp;
8269 case VEC_WIDEN_MULT_HI_EXPR:
8270 case VEC_WIDEN_MULT_LO_EXPR:
8272 tree oprnd0 = treeop0;
8273 tree oprnd1 = treeop1;
8275 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8276 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8277 target, unsignedp);
8278 gcc_assert (target);
8279 return target;
8282 case VEC_PACK_TRUNC_EXPR:
8283 case VEC_PACK_SAT_EXPR:
8284 case VEC_PACK_FIX_TRUNC_EXPR:
8285 mode = TYPE_MODE (TREE_TYPE (treeop0));
8286 goto binop;
8288 default:
8289 gcc_unreachable ();
8292 /* Here to do an ordinary binary operator. */
8293 binop:
8294 expand_operands (treeop0, treeop1,
8295 subtarget, &op0, &op1, EXPAND_NORMAL);
8296 binop2:
8297 this_optab = optab_for_tree_code (code, type, optab_default);
8298 binop3:
8299 if (modifier == EXPAND_STACK_PARM)
8300 target = 0;
8301 temp = expand_binop (mode, this_optab, op0, op1, target,
8302 unsignedp, OPTAB_LIB_WIDEN);
8303 gcc_assert (temp);
8304 return REDUCE_BIT_FIELD (temp);
8306 #undef REDUCE_BIT_FIELD
8309 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8310 enum expand_modifier modifier, rtx *alt_rtl)
8312 rtx op0, op1, temp, decl_rtl;
8313 tree type;
8314 int unsignedp;
8315 enum machine_mode mode;
8316 enum tree_code code = TREE_CODE (exp);
8317 optab this_optab;
8318 rtx subtarget, original_target;
8319 int ignore;
8320 tree context;
8321 bool reduce_bit_field;
8322 location_t loc = EXPR_LOCATION (exp);
8323 struct separate_ops ops;
8324 tree treeop0, treeop1, treeop2;
8326 type = TREE_TYPE (exp);
8327 mode = TYPE_MODE (type);
8328 unsignedp = TYPE_UNSIGNED (type);
8330 treeop0 = treeop1 = treeop2 = NULL_TREE;
8331 if (!VL_EXP_CLASS_P (exp))
8332 switch (TREE_CODE_LENGTH (code))
8334 default:
8335 case 3: treeop2 = TREE_OPERAND (exp, 2);
8336 case 2: treeop1 = TREE_OPERAND (exp, 1);
8337 case 1: treeop0 = TREE_OPERAND (exp, 0);
8338 case 0: break;
8340 ops.code = code;
8341 ops.type = type;
8342 ops.op0 = treeop0;
8343 ops.op1 = treeop1;
8344 ops.op2 = treeop2;
8345 ops.location = loc;
8347 ignore = (target == const0_rtx
8348 || ((CONVERT_EXPR_CODE_P (code)
8349 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8350 && TREE_CODE (type) == VOID_TYPE));
8352 /* An operation in what may be a bit-field type needs the
8353 result to be reduced to the precision of the bit-field type,
8354 which is narrower than that of the type's mode. */
8355 reduce_bit_field = (!ignore
8356 && TREE_CODE (type) == INTEGER_TYPE
8357 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8359 /* If we are going to ignore this result, we need only do something
8360 if there is a side-effect somewhere in the expression. If there
8361 is, short-circuit the most common cases here. Note that we must
8362 not call expand_expr with anything but const0_rtx in case this
8363 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8365 if (ignore)
8367 if (! TREE_SIDE_EFFECTS (exp))
8368 return const0_rtx;
8370 /* Ensure we reference a volatile object even if value is ignored, but
8371 don't do this if all we are doing is taking its address. */
8372 if (TREE_THIS_VOLATILE (exp)
8373 && TREE_CODE (exp) != FUNCTION_DECL
8374 && mode != VOIDmode && mode != BLKmode
8375 && modifier != EXPAND_CONST_ADDRESS)
8377 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8378 if (MEM_P (temp))
8379 temp = copy_to_reg (temp);
8380 return const0_rtx;
8383 if (TREE_CODE_CLASS (code) == tcc_unary
8384 || code == COMPONENT_REF || code == INDIRECT_REF)
8385 return expand_expr (treeop0, const0_rtx, VOIDmode,
8386 modifier);
8388 else if (TREE_CODE_CLASS (code) == tcc_binary
8389 || TREE_CODE_CLASS (code) == tcc_comparison
8390 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8392 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8393 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8394 return const0_rtx;
8396 else if (code == BIT_FIELD_REF)
8398 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8399 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8400 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8401 return const0_rtx;
8404 target = 0;
8407 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8408 target = 0;
8410 /* Use subtarget as the target for operand 0 of a binary operation. */
8411 subtarget = get_subtarget (target);
8412 original_target = target;
8414 switch (code)
8416 case LABEL_DECL:
8418 tree function = decl_function_context (exp);
8420 temp = label_rtx (exp);
8421 temp = gen_rtx_LABEL_REF (Pmode, temp);
8423 if (function != current_function_decl
8424 && function != 0)
8425 LABEL_REF_NONLOCAL_P (temp) = 1;
8427 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8428 return temp;
8431 case SSA_NAME:
8432 /* ??? ivopts calls expander, without any preparation from
8433 out-of-ssa. So fake instructions as if this was an access to the
8434 base variable. This unnecessarily allocates a pseudo, see how we can
8435 reuse it, if partition base vars have it set already. */
8436 if (!currently_expanding_to_rtl)
8437 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
8439 gimple g = get_gimple_for_ssa_name (exp);
8440 if (g)
8441 return expand_expr_real_1 (gimple_assign_rhs_to_tree (g), target,
8442 tmode, modifier, NULL);
8444 decl_rtl = get_rtx_for_ssa_name (exp);
8445 exp = SSA_NAME_VAR (exp);
8446 goto expand_decl_rtl;
8448 case PARM_DECL:
8449 case VAR_DECL:
8450 /* If a static var's type was incomplete when the decl was written,
8451 but the type is complete now, lay out the decl now. */
8452 if (DECL_SIZE (exp) == 0
8453 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8454 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8455 layout_decl (exp, 0);
8457 /* TLS emulation hook - replace __thread vars with
8458 *__emutls_get_address (&_emutls.var). */
8459 if (! targetm.have_tls
8460 && TREE_CODE (exp) == VAR_DECL
8461 && DECL_THREAD_LOCAL_P (exp))
8463 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8464 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8467 /* ... fall through ... */
8469 case FUNCTION_DECL:
8470 case RESULT_DECL:
8471 decl_rtl = DECL_RTL (exp);
8472 expand_decl_rtl:
8473 gcc_assert (decl_rtl);
8474 decl_rtl = copy_rtx (decl_rtl);
8476 /* Ensure variable marked as used even if it doesn't go through
8477 a parser. If it hasn't be used yet, write out an external
8478 definition. */
8479 if (! TREE_USED (exp))
8481 assemble_external (exp);
8482 TREE_USED (exp) = 1;
8485 /* Show we haven't gotten RTL for this yet. */
8486 temp = 0;
8488 /* Variables inherited from containing functions should have
8489 been lowered by this point. */
8490 context = decl_function_context (exp);
8491 gcc_assert (!context
8492 || context == current_function_decl
8493 || TREE_STATIC (exp)
8494 /* ??? C++ creates functions that are not TREE_STATIC. */
8495 || TREE_CODE (exp) == FUNCTION_DECL);
8497 /* This is the case of an array whose size is to be determined
8498 from its initializer, while the initializer is still being parsed.
8499 See expand_decl. */
8501 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8502 temp = validize_mem (decl_rtl);
8504 /* If DECL_RTL is memory, we are in the normal case and the
8505 address is not valid, get the address into a register. */
8507 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8509 if (alt_rtl)
8510 *alt_rtl = decl_rtl;
8511 decl_rtl = use_anchored_address (decl_rtl);
8512 if (modifier != EXPAND_CONST_ADDRESS
8513 && modifier != EXPAND_SUM
8514 && !memory_address_addr_space_p (DECL_MODE (exp),
8515 XEXP (decl_rtl, 0),
8516 MEM_ADDR_SPACE (decl_rtl)))
8517 temp = replace_equiv_address (decl_rtl,
8518 copy_rtx (XEXP (decl_rtl, 0)));
8521 /* If we got something, return it. But first, set the alignment
8522 if the address is a register. */
8523 if (temp != 0)
8525 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8526 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8528 return temp;
8531 /* If the mode of DECL_RTL does not match that of the decl, it
8532 must be a promoted value. We return a SUBREG of the wanted mode,
8533 but mark it so that we know that it was already extended. */
8535 if (REG_P (decl_rtl)
8536 && GET_MODE (decl_rtl) != DECL_MODE (exp))
8538 enum machine_mode pmode;
8540 /* Get the signedness used for this variable. Ensure we get the
8541 same mode we got when the variable was declared. */
8542 pmode = promote_decl_mode (exp, &unsignedp);
8543 gcc_assert (GET_MODE (decl_rtl) == pmode);
8545 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8546 SUBREG_PROMOTED_VAR_P (temp) = 1;
8547 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8548 return temp;
8551 return decl_rtl;
8553 case INTEGER_CST:
8554 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8555 TREE_INT_CST_HIGH (exp), mode);
8557 return temp;
8559 case VECTOR_CST:
8561 tree tmp = NULL_TREE;
8562 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8563 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8564 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8565 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8566 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8567 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8568 return const_vector_from_tree (exp);
8569 if (GET_MODE_CLASS (mode) == MODE_INT)
8571 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8572 if (type_for_mode)
8573 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8575 if (!tmp)
8576 tmp = build_constructor_from_list (type,
8577 TREE_VECTOR_CST_ELTS (exp));
8578 return expand_expr (tmp, ignore ? const0_rtx : target,
8579 tmode, modifier);
8582 case CONST_DECL:
8583 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8585 case REAL_CST:
8586 /* If optimized, generate immediate CONST_DOUBLE
8587 which will be turned into memory by reload if necessary.
8589 We used to force a register so that loop.c could see it. But
8590 this does not allow gen_* patterns to perform optimizations with
8591 the constants. It also produces two insns in cases like "x = 1.0;".
8592 On most machines, floating-point constants are not permitted in
8593 many insns, so we'd end up copying it to a register in any case.
8595 Now, we do the copying in expand_binop, if appropriate. */
8596 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8597 TYPE_MODE (TREE_TYPE (exp)));
8599 case FIXED_CST:
8600 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8601 TYPE_MODE (TREE_TYPE (exp)));
8603 case COMPLEX_CST:
8604 /* Handle evaluating a complex constant in a CONCAT target. */
8605 if (original_target && GET_CODE (original_target) == CONCAT)
8607 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8608 rtx rtarg, itarg;
8610 rtarg = XEXP (original_target, 0);
8611 itarg = XEXP (original_target, 1);
8613 /* Move the real and imaginary parts separately. */
8614 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8615 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8617 if (op0 != rtarg)
8618 emit_move_insn (rtarg, op0);
8619 if (op1 != itarg)
8620 emit_move_insn (itarg, op1);
8622 return original_target;
8625 /* ... fall through ... */
8627 case STRING_CST:
8628 temp = expand_expr_constant (exp, 1, modifier);
8630 /* temp contains a constant address.
8631 On RISC machines where a constant address isn't valid,
8632 make some insns to get that address into a register. */
8633 if (modifier != EXPAND_CONST_ADDRESS
8634 && modifier != EXPAND_INITIALIZER
8635 && modifier != EXPAND_SUM
8636 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8637 MEM_ADDR_SPACE (temp)))
8638 return replace_equiv_address (temp,
8639 copy_rtx (XEXP (temp, 0)));
8640 return temp;
8642 case SAVE_EXPR:
8644 tree val = treeop0;
8645 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8647 if (!SAVE_EXPR_RESOLVED_P (exp))
8649 /* We can indeed still hit this case, typically via builtin
8650 expanders calling save_expr immediately before expanding
8651 something. Assume this means that we only have to deal
8652 with non-BLKmode values. */
8653 gcc_assert (GET_MODE (ret) != BLKmode);
8655 val = build_decl (EXPR_LOCATION (exp),
8656 VAR_DECL, NULL, TREE_TYPE (exp));
8657 DECL_ARTIFICIAL (val) = 1;
8658 DECL_IGNORED_P (val) = 1;
8659 treeop0 = val;
8660 TREE_OPERAND (exp, 0) = treeop0;
8661 SAVE_EXPR_RESOLVED_P (exp) = 1;
8663 if (!CONSTANT_P (ret))
8664 ret = copy_to_reg (ret);
8665 SET_DECL_RTL (val, ret);
8668 return ret;
8672 case CONSTRUCTOR:
8673 /* If we don't need the result, just ensure we evaluate any
8674 subexpressions. */
8675 if (ignore)
8677 unsigned HOST_WIDE_INT idx;
8678 tree value;
8680 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8681 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8683 return const0_rtx;
8686 return expand_constructor (exp, target, modifier, false);
8688 case MISALIGNED_INDIRECT_REF:
8689 case ALIGN_INDIRECT_REF:
8690 case INDIRECT_REF:
8692 tree exp1 = treeop0;
8693 addr_space_t as = ADDR_SPACE_GENERIC;
8694 enum machine_mode address_mode = Pmode;
8696 if (modifier != EXPAND_WRITE)
8698 tree t;
8700 t = fold_read_from_constant_string (exp);
8701 if (t)
8702 return expand_expr (t, target, tmode, modifier);
8705 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8707 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8708 address_mode = targetm.addr_space.address_mode (as);
8711 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8712 op0 = memory_address_addr_space (mode, op0, as);
8714 if (code == ALIGN_INDIRECT_REF)
8716 int align = TYPE_ALIGN_UNIT (type);
8717 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8718 op0 = memory_address_addr_space (mode, op0, as);
8721 temp = gen_rtx_MEM (mode, op0);
8723 set_mem_attributes (temp, exp, 0);
8724 set_mem_addr_space (temp, as);
8726 /* Resolve the misalignment now, so that we don't have to remember
8727 to resolve it later. Of course, this only works for reads. */
8728 if (code == MISALIGNED_INDIRECT_REF)
8730 int icode;
8731 rtx reg, insn;
8733 gcc_assert (modifier == EXPAND_NORMAL
8734 || modifier == EXPAND_STACK_PARM);
8736 /* The vectorizer should have already checked the mode. */
8737 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8738 gcc_assert (icode != CODE_FOR_nothing);
8740 /* We've already validated the memory, and we're creating a
8741 new pseudo destination. The predicates really can't fail. */
8742 reg = gen_reg_rtx (mode);
8744 /* Nor can the insn generator. */
8745 insn = GEN_FCN (icode) (reg, temp);
8746 emit_insn (insn);
8748 return reg;
8751 return temp;
8754 case TARGET_MEM_REF:
8756 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8757 struct mem_address addr;
8759 get_address_description (exp, &addr);
8760 op0 = addr_for_mem_ref (&addr, as, true);
8761 op0 = memory_address_addr_space (mode, op0, as);
8762 temp = gen_rtx_MEM (mode, op0);
8763 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8764 set_mem_addr_space (temp, as);
8766 return temp;
8768 case ARRAY_REF:
8771 tree array = treeop0;
8772 tree index = treeop1;
8774 /* Fold an expression like: "foo"[2].
8775 This is not done in fold so it won't happen inside &.
8776 Don't fold if this is for wide characters since it's too
8777 difficult to do correctly and this is a very rare case. */
8779 if (modifier != EXPAND_CONST_ADDRESS
8780 && modifier != EXPAND_INITIALIZER
8781 && modifier != EXPAND_MEMORY)
8783 tree t = fold_read_from_constant_string (exp);
8785 if (t)
8786 return expand_expr (t, target, tmode, modifier);
8789 /* If this is a constant index into a constant array,
8790 just get the value from the array. Handle both the cases when
8791 we have an explicit constructor and when our operand is a variable
8792 that was declared const. */
8794 if (modifier != EXPAND_CONST_ADDRESS
8795 && modifier != EXPAND_INITIALIZER
8796 && modifier != EXPAND_MEMORY
8797 && TREE_CODE (array) == CONSTRUCTOR
8798 && ! TREE_SIDE_EFFECTS (array)
8799 && TREE_CODE (index) == INTEGER_CST)
8801 unsigned HOST_WIDE_INT ix;
8802 tree field, value;
8804 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8805 field, value)
8806 if (tree_int_cst_equal (field, index))
8808 if (!TREE_SIDE_EFFECTS (value))
8809 return expand_expr (fold (value), target, tmode, modifier);
8810 break;
8814 else if (optimize >= 1
8815 && modifier != EXPAND_CONST_ADDRESS
8816 && modifier != EXPAND_INITIALIZER
8817 && modifier != EXPAND_MEMORY
8818 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8819 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8820 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8821 && targetm.binds_local_p (array))
8823 if (TREE_CODE (index) == INTEGER_CST)
8825 tree init = DECL_INITIAL (array);
8827 if (TREE_CODE (init) == CONSTRUCTOR)
8829 unsigned HOST_WIDE_INT ix;
8830 tree field, value;
8832 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8833 field, value)
8834 if (tree_int_cst_equal (field, index))
8836 if (TREE_SIDE_EFFECTS (value))
8837 break;
8839 if (TREE_CODE (value) == CONSTRUCTOR)
8841 /* If VALUE is a CONSTRUCTOR, this
8842 optimization is only useful if
8843 this doesn't store the CONSTRUCTOR
8844 into memory. If it does, it is more
8845 efficient to just load the data from
8846 the array directly. */
8847 rtx ret = expand_constructor (value, target,
8848 modifier, true);
8849 if (ret == NULL_RTX)
8850 break;
8853 return expand_expr (fold (value), target, tmode,
8854 modifier);
8857 else if(TREE_CODE (init) == STRING_CST)
8859 tree index1 = index;
8860 tree low_bound = array_ref_low_bound (exp);
8861 index1 = fold_convert_loc (loc, sizetype,
8862 treeop1);
8864 /* Optimize the special-case of a zero lower bound.
8866 We convert the low_bound to sizetype to avoid some problems
8867 with constant folding. (E.g. suppose the lower bound is 1,
8868 and its mode is QI. Without the conversion,l (ARRAY
8869 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8870 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8872 if (! integer_zerop (low_bound))
8873 index1 = size_diffop_loc (loc, index1,
8874 fold_convert_loc (loc, sizetype,
8875 low_bound));
8877 if (0 > compare_tree_int (index1,
8878 TREE_STRING_LENGTH (init)))
8880 tree type = TREE_TYPE (TREE_TYPE (init));
8881 enum machine_mode mode = TYPE_MODE (type);
8883 if (GET_MODE_CLASS (mode) == MODE_INT
8884 && GET_MODE_SIZE (mode) == 1)
8885 return gen_int_mode (TREE_STRING_POINTER (init)
8886 [TREE_INT_CST_LOW (index1)],
8887 mode);
8893 goto normal_inner_ref;
8895 case COMPONENT_REF:
8896 /* If the operand is a CONSTRUCTOR, we can just extract the
8897 appropriate field if it is present. */
8898 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8900 unsigned HOST_WIDE_INT idx;
8901 tree field, value;
8903 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8904 idx, field, value)
8905 if (field == treeop1
8906 /* We can normally use the value of the field in the
8907 CONSTRUCTOR. However, if this is a bitfield in
8908 an integral mode that we can fit in a HOST_WIDE_INT,
8909 we must mask only the number of bits in the bitfield,
8910 since this is done implicitly by the constructor. If
8911 the bitfield does not meet either of those conditions,
8912 we can't do this optimization. */
8913 && (! DECL_BIT_FIELD (field)
8914 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8915 && (GET_MODE_BITSIZE (DECL_MODE (field))
8916 <= HOST_BITS_PER_WIDE_INT))))
8918 if (DECL_BIT_FIELD (field)
8919 && modifier == EXPAND_STACK_PARM)
8920 target = 0;
8921 op0 = expand_expr (value, target, tmode, modifier);
8922 if (DECL_BIT_FIELD (field))
8924 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8925 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8927 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8929 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8930 op0 = expand_and (imode, op0, op1, target);
8932 else
8934 tree count
8935 = build_int_cst (NULL_TREE,
8936 GET_MODE_BITSIZE (imode) - bitsize);
8938 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8939 target, 0);
8940 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8941 target, 0);
8945 return op0;
8948 goto normal_inner_ref;
8950 case BIT_FIELD_REF:
8951 case ARRAY_RANGE_REF:
8952 normal_inner_ref:
8954 enum machine_mode mode1, mode2;
8955 HOST_WIDE_INT bitsize, bitpos;
8956 tree offset;
8957 int volatilep = 0, must_force_mem;
8958 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8959 &mode1, &unsignedp, &volatilep, true);
8960 rtx orig_op0, memloc;
8962 /* If we got back the original object, something is wrong. Perhaps
8963 we are evaluating an expression too early. In any event, don't
8964 infinitely recurse. */
8965 gcc_assert (tem != exp);
8967 /* If TEM's type is a union of variable size, pass TARGET to the inner
8968 computation, since it will need a temporary and TARGET is known
8969 to have to do. This occurs in unchecked conversion in Ada. */
8970 orig_op0 = op0
8971 = expand_expr (tem,
8972 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8973 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8974 != INTEGER_CST)
8975 && modifier != EXPAND_STACK_PARM
8976 ? target : NULL_RTX),
8977 VOIDmode,
8978 (modifier == EXPAND_INITIALIZER
8979 || modifier == EXPAND_CONST_ADDRESS
8980 || modifier == EXPAND_STACK_PARM)
8981 ? modifier : EXPAND_NORMAL);
8983 mode2
8984 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8986 /* If we have either an offset, a BLKmode result, or a reference
8987 outside the underlying object, we must force it to memory.
8988 Such a case can occur in Ada if we have unchecked conversion
8989 of an expression from a scalar type to an aggregate type or
8990 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8991 passed a partially uninitialized object or a view-conversion
8992 to a larger size. */
8993 must_force_mem = (offset
8994 || mode1 == BLKmode
8995 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8997 /* Handle CONCAT first. */
8998 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9000 if (bitpos == 0
9001 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9002 return op0;
9003 if (bitpos == 0
9004 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9005 && bitsize)
9007 op0 = XEXP (op0, 0);
9008 mode2 = GET_MODE (op0);
9010 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9011 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9012 && bitpos
9013 && bitsize)
9015 op0 = XEXP (op0, 1);
9016 bitpos = 0;
9017 mode2 = GET_MODE (op0);
9019 else
9020 /* Otherwise force into memory. */
9021 must_force_mem = 1;
9024 /* If this is a constant, put it in a register if it is a legitimate
9025 constant and we don't need a memory reference. */
9026 if (CONSTANT_P (op0)
9027 && mode2 != BLKmode
9028 && LEGITIMATE_CONSTANT_P (op0)
9029 && !must_force_mem)
9030 op0 = force_reg (mode2, op0);
9032 /* Otherwise, if this is a constant, try to force it to the constant
9033 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9034 is a legitimate constant. */
9035 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9036 op0 = validize_mem (memloc);
9038 /* Otherwise, if this is a constant or the object is not in memory
9039 and need be, put it there. */
9040 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9042 tree nt = build_qualified_type (TREE_TYPE (tem),
9043 (TYPE_QUALS (TREE_TYPE (tem))
9044 | TYPE_QUAL_CONST));
9045 memloc = assign_temp (nt, 1, 1, 1);
9046 emit_move_insn (memloc, op0);
9047 op0 = memloc;
9050 if (offset)
9052 enum machine_mode address_mode;
9053 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9054 EXPAND_SUM);
9056 gcc_assert (MEM_P (op0));
9058 address_mode
9059 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9060 if (GET_MODE (offset_rtx) != address_mode)
9061 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9063 if (GET_MODE (op0) == BLKmode
9064 /* A constant address in OP0 can have VOIDmode, we must
9065 not try to call force_reg in that case. */
9066 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9067 && bitsize != 0
9068 && (bitpos % bitsize) == 0
9069 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9070 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9072 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9073 bitpos = 0;
9076 op0 = offset_address (op0, offset_rtx,
9077 highest_pow2_factor (offset));
9080 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9081 record its alignment as BIGGEST_ALIGNMENT. */
9082 if (MEM_P (op0) && bitpos == 0 && offset != 0
9083 && is_aligning_offset (offset, tem))
9084 set_mem_align (op0, BIGGEST_ALIGNMENT);
9086 /* Don't forget about volatility even if this is a bitfield. */
9087 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9089 if (op0 == orig_op0)
9090 op0 = copy_rtx (op0);
9092 MEM_VOLATILE_P (op0) = 1;
9095 /* In cases where an aligned union has an unaligned object
9096 as a field, we might be extracting a BLKmode value from
9097 an integer-mode (e.g., SImode) object. Handle this case
9098 by doing the extract into an object as wide as the field
9099 (which we know to be the width of a basic mode), then
9100 storing into memory, and changing the mode to BLKmode. */
9101 if (mode1 == VOIDmode
9102 || REG_P (op0) || GET_CODE (op0) == SUBREG
9103 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9104 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9105 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9106 && modifier != EXPAND_CONST_ADDRESS
9107 && modifier != EXPAND_INITIALIZER)
9108 /* If the field isn't aligned enough to fetch as a memref,
9109 fetch it as a bit field. */
9110 || (mode1 != BLKmode
9111 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9112 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9113 || (MEM_P (op0)
9114 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9115 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9116 && ((modifier == EXPAND_CONST_ADDRESS
9117 || modifier == EXPAND_INITIALIZER)
9118 ? STRICT_ALIGNMENT
9119 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9120 || (bitpos % BITS_PER_UNIT != 0)))
9121 /* If the type and the field are a constant size and the
9122 size of the type isn't the same size as the bitfield,
9123 we must use bitfield operations. */
9124 || (bitsize >= 0
9125 && TYPE_SIZE (TREE_TYPE (exp))
9126 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9127 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9128 bitsize)))
9130 enum machine_mode ext_mode = mode;
9132 if (ext_mode == BLKmode
9133 && ! (target != 0 && MEM_P (op0)
9134 && MEM_P (target)
9135 && bitpos % BITS_PER_UNIT == 0))
9136 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9138 if (ext_mode == BLKmode)
9140 if (target == 0)
9141 target = assign_temp (type, 0, 1, 1);
9143 if (bitsize == 0)
9144 return target;
9146 /* In this case, BITPOS must start at a byte boundary and
9147 TARGET, if specified, must be a MEM. */
9148 gcc_assert (MEM_P (op0)
9149 && (!target || MEM_P (target))
9150 && !(bitpos % BITS_PER_UNIT));
9152 emit_block_move (target,
9153 adjust_address (op0, VOIDmode,
9154 bitpos / BITS_PER_UNIT),
9155 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9156 / BITS_PER_UNIT),
9157 (modifier == EXPAND_STACK_PARM
9158 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9160 return target;
9163 op0 = validize_mem (op0);
9165 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9166 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9168 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9169 (modifier == EXPAND_STACK_PARM
9170 ? NULL_RTX : target),
9171 ext_mode, ext_mode);
9173 /* If the result is a record type and BITSIZE is narrower than
9174 the mode of OP0, an integral mode, and this is a big endian
9175 machine, we must put the field into the high-order bits. */
9176 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9177 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9178 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9179 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9180 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9181 - bitsize),
9182 op0, 1);
9184 /* If the result type is BLKmode, store the data into a temporary
9185 of the appropriate type, but with the mode corresponding to the
9186 mode for the data we have (op0's mode). It's tempting to make
9187 this a constant type, since we know it's only being stored once,
9188 but that can cause problems if we are taking the address of this
9189 COMPONENT_REF because the MEM of any reference via that address
9190 will have flags corresponding to the type, which will not
9191 necessarily be constant. */
9192 if (mode == BLKmode)
9194 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9195 rtx new_rtx;
9197 /* If the reference doesn't use the alias set of its type,
9198 we cannot create the temporary using that type. */
9199 if (component_uses_parent_alias_set (exp))
9201 new_rtx = assign_stack_local (ext_mode, size, 0);
9202 set_mem_alias_set (new_rtx, get_alias_set (exp));
9204 else
9205 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9207 emit_move_insn (new_rtx, op0);
9208 op0 = copy_rtx (new_rtx);
9209 PUT_MODE (op0, BLKmode);
9210 set_mem_attributes (op0, exp, 1);
9213 return op0;
9216 /* If the result is BLKmode, use that to access the object
9217 now as well. */
9218 if (mode == BLKmode)
9219 mode1 = BLKmode;
9221 /* Get a reference to just this component. */
9222 if (modifier == EXPAND_CONST_ADDRESS
9223 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9224 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9225 else
9226 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9228 if (op0 == orig_op0)
9229 op0 = copy_rtx (op0);
9231 set_mem_attributes (op0, exp, 0);
9232 if (REG_P (XEXP (op0, 0)))
9233 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9235 MEM_VOLATILE_P (op0) |= volatilep;
9236 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9237 || modifier == EXPAND_CONST_ADDRESS
9238 || modifier == EXPAND_INITIALIZER)
9239 return op0;
9240 else if (target == 0)
9241 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9243 convert_move (target, op0, unsignedp);
9244 return target;
9247 case OBJ_TYPE_REF:
9248 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9250 case CALL_EXPR:
9251 /* All valid uses of __builtin_va_arg_pack () are removed during
9252 inlining. */
9253 if (CALL_EXPR_VA_ARG_PACK (exp))
9254 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9256 tree fndecl = get_callee_fndecl (exp), attr;
9258 if (fndecl
9259 && (attr = lookup_attribute ("error",
9260 DECL_ATTRIBUTES (fndecl))) != NULL)
9261 error ("%Kcall to %qs declared with attribute error: %s",
9262 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9263 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9264 if (fndecl
9265 && (attr = lookup_attribute ("warning",
9266 DECL_ATTRIBUTES (fndecl))) != NULL)
9267 warning_at (tree_nonartificial_location (exp),
9268 0, "%Kcall to %qs declared with attribute warning: %s",
9269 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9270 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9272 /* Check for a built-in function. */
9273 if (fndecl && DECL_BUILT_IN (fndecl))
9275 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9276 return expand_builtin (exp, target, subtarget, tmode, ignore);
9279 return expand_call (exp, target, ignore);
9281 case VIEW_CONVERT_EXPR:
9282 op0 = NULL_RTX;
9284 /* If we are converting to BLKmode, try to avoid an intermediate
9285 temporary by fetching an inner memory reference. */
9286 if (mode == BLKmode
9287 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9288 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9289 && handled_component_p (treeop0))
9291 enum machine_mode mode1;
9292 HOST_WIDE_INT bitsize, bitpos;
9293 tree offset;
9294 int unsignedp;
9295 int volatilep = 0;
9296 tree tem
9297 = get_inner_reference (treeop0, &bitsize, &bitpos,
9298 &offset, &mode1, &unsignedp, &volatilep,
9299 true);
9300 rtx orig_op0;
9302 /* ??? We should work harder and deal with non-zero offsets. */
9303 if (!offset
9304 && (bitpos % BITS_PER_UNIT) == 0
9305 && bitsize >= 0
9306 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9308 /* See the normal_inner_ref case for the rationale. */
9309 orig_op0
9310 = expand_expr (tem,
9311 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9312 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9313 != INTEGER_CST)
9314 && modifier != EXPAND_STACK_PARM
9315 ? target : NULL_RTX),
9316 VOIDmode,
9317 (modifier == EXPAND_INITIALIZER
9318 || modifier == EXPAND_CONST_ADDRESS
9319 || modifier == EXPAND_STACK_PARM)
9320 ? modifier : EXPAND_NORMAL);
9322 if (MEM_P (orig_op0))
9324 op0 = orig_op0;
9326 /* Get a reference to just this component. */
9327 if (modifier == EXPAND_CONST_ADDRESS
9328 || modifier == EXPAND_SUM
9329 || modifier == EXPAND_INITIALIZER)
9330 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9331 else
9332 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9334 if (op0 == orig_op0)
9335 op0 = copy_rtx (op0);
9337 set_mem_attributes (op0, treeop0, 0);
9338 if (REG_P (XEXP (op0, 0)))
9339 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9341 MEM_VOLATILE_P (op0) |= volatilep;
9346 if (!op0)
9347 op0 = expand_expr (treeop0,
9348 NULL_RTX, VOIDmode, modifier);
9350 /* If the input and output modes are both the same, we are done. */
9351 if (mode == GET_MODE (op0))
9353 /* If neither mode is BLKmode, and both modes are the same size
9354 then we can use gen_lowpart. */
9355 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9356 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9357 && !COMPLEX_MODE_P (GET_MODE (op0)))
9359 if (GET_CODE (op0) == SUBREG)
9360 op0 = force_reg (GET_MODE (op0), op0);
9361 op0 = gen_lowpart (mode, op0);
9363 /* If both modes are integral, then we can convert from one to the
9364 other. */
9365 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
9366 op0 = convert_modes (mode, GET_MODE (op0), op0,
9367 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9368 /* As a last resort, spill op0 to memory, and reload it in a
9369 different mode. */
9370 else if (!MEM_P (op0))
9372 /* If the operand is not a MEM, force it into memory. Since we
9373 are going to be changing the mode of the MEM, don't call
9374 force_const_mem for constants because we don't allow pool
9375 constants to change mode. */
9376 tree inner_type = TREE_TYPE (treeop0);
9378 gcc_assert (!TREE_ADDRESSABLE (exp));
9380 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9381 target
9382 = assign_stack_temp_for_type
9383 (TYPE_MODE (inner_type),
9384 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9386 emit_move_insn (target, op0);
9387 op0 = target;
9390 /* At this point, OP0 is in the correct mode. If the output type is
9391 such that the operand is known to be aligned, indicate that it is.
9392 Otherwise, we need only be concerned about alignment for non-BLKmode
9393 results. */
9394 if (MEM_P (op0))
9396 op0 = copy_rtx (op0);
9398 if (TYPE_ALIGN_OK (type))
9399 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9400 else if (STRICT_ALIGNMENT
9401 && mode != BLKmode
9402 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9404 tree inner_type = TREE_TYPE (treeop0);
9405 HOST_WIDE_INT temp_size
9406 = MAX (int_size_in_bytes (inner_type),
9407 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9408 rtx new_rtx
9409 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9410 rtx new_with_op0_mode
9411 = adjust_address (new_rtx, GET_MODE (op0), 0);
9413 gcc_assert (!TREE_ADDRESSABLE (exp));
9415 if (GET_MODE (op0) == BLKmode)
9416 emit_block_move (new_with_op0_mode, op0,
9417 GEN_INT (GET_MODE_SIZE (mode)),
9418 (modifier == EXPAND_STACK_PARM
9419 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9420 else
9421 emit_move_insn (new_with_op0_mode, op0);
9423 op0 = new_rtx;
9426 op0 = adjust_address (op0, mode, 0);
9429 return op0;
9431 /* Use a compare and a jump for BLKmode comparisons, or for function
9432 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9434 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9435 are occassionally created by folding during expansion. */
9436 case TRUTH_ANDIF_EXPR:
9437 case TRUTH_ORIF_EXPR:
9438 if (! ignore
9439 && (target == 0
9440 || modifier == EXPAND_STACK_PARM
9441 || ! safe_from_p (target, treeop0, 1)
9442 || ! safe_from_p (target, treeop1, 1)
9443 /* Make sure we don't have a hard reg (such as function's return
9444 value) live across basic blocks, if not optimizing. */
9445 || (!optimize && REG_P (target)
9446 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9447 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9449 if (target)
9450 emit_move_insn (target, const0_rtx);
9452 op1 = gen_label_rtx ();
9453 jumpifnot_1 (code, treeop0, treeop1, op1);
9455 if (target)
9456 emit_move_insn (target, const1_rtx);
9458 emit_label (op1);
9459 return ignore ? const0_rtx : target;
9461 case STATEMENT_LIST:
9463 tree_stmt_iterator iter;
9465 gcc_assert (ignore);
9467 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9468 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9470 return const0_rtx;
9472 case COND_EXPR:
9473 /* A COND_EXPR with its type being VOID_TYPE represents a
9474 conditional jump and is handled in
9475 expand_gimple_cond_expr. */
9476 gcc_assert (!VOID_TYPE_P (type));
9478 /* Note that COND_EXPRs whose type is a structure or union
9479 are required to be constructed to contain assignments of
9480 a temporary variable, so that we can evaluate them here
9481 for side effect only. If type is void, we must do likewise. */
9483 gcc_assert (!TREE_ADDRESSABLE (type)
9484 && !ignore
9485 && TREE_TYPE (treeop1) != void_type_node
9486 && TREE_TYPE (treeop2) != void_type_node);
9488 /* If we are not to produce a result, we have no target. Otherwise,
9489 if a target was specified use it; it will not be used as an
9490 intermediate target unless it is safe. If no target, use a
9491 temporary. */
9493 if (modifier != EXPAND_STACK_PARM
9494 && original_target
9495 && safe_from_p (original_target, treeop0, 1)
9496 && GET_MODE (original_target) == mode
9497 #ifdef HAVE_conditional_move
9498 && (! can_conditionally_move_p (mode)
9499 || REG_P (original_target))
9500 #endif
9501 && !MEM_P (original_target))
9502 temp = original_target;
9503 else
9504 temp = assign_temp (type, 0, 0, 1);
9506 do_pending_stack_adjust ();
9507 NO_DEFER_POP;
9508 op0 = gen_label_rtx ();
9509 op1 = gen_label_rtx ();
9510 jumpifnot (treeop0, op0);
9511 store_expr (treeop1, temp,
9512 modifier == EXPAND_STACK_PARM,
9513 false);
9515 emit_jump_insn (gen_jump (op1));
9516 emit_barrier ();
9517 emit_label (op0);
9518 store_expr (treeop2, temp,
9519 modifier == EXPAND_STACK_PARM,
9520 false);
9522 emit_label (op1);
9523 OK_DEFER_POP;
9524 return temp;
9526 case VEC_COND_EXPR:
9527 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9528 return target;
9530 case MODIFY_EXPR:
9532 tree lhs = treeop0;
9533 tree rhs = treeop1;
9534 gcc_assert (ignore);
9536 /* Check for |= or &= of a bitfield of size one into another bitfield
9537 of size 1. In this case, (unless we need the result of the
9538 assignment) we can do this more efficiently with a
9539 test followed by an assignment, if necessary.
9541 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9542 things change so we do, this code should be enhanced to
9543 support it. */
9544 if (TREE_CODE (lhs) == COMPONENT_REF
9545 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9546 || TREE_CODE (rhs) == BIT_AND_EXPR)
9547 && TREE_OPERAND (rhs, 0) == lhs
9548 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9549 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9550 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9552 rtx label = gen_label_rtx ();
9553 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9554 do_jump (TREE_OPERAND (rhs, 1),
9555 value ? label : 0,
9556 value ? 0 : label);
9557 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9558 MOVE_NONTEMPORAL (exp));
9559 do_pending_stack_adjust ();
9560 emit_label (label);
9561 return const0_rtx;
9564 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9565 return const0_rtx;
9568 case ADDR_EXPR:
9569 return expand_expr_addr_expr (exp, target, tmode, modifier);
9571 case REALPART_EXPR:
9572 op0 = expand_normal (treeop0);
9573 return read_complex_part (op0, false);
9575 case IMAGPART_EXPR:
9576 op0 = expand_normal (treeop0);
9577 return read_complex_part (op0, true);
9579 case RETURN_EXPR:
9580 case LABEL_EXPR:
9581 case GOTO_EXPR:
9582 case SWITCH_EXPR:
9583 case ASM_EXPR:
9584 /* Expanded in cfgexpand.c. */
9585 gcc_unreachable ();
9587 case TRY_CATCH_EXPR:
9588 case CATCH_EXPR:
9589 case EH_FILTER_EXPR:
9590 case TRY_FINALLY_EXPR:
9591 /* Lowered by tree-eh.c. */
9592 gcc_unreachable ();
9594 case WITH_CLEANUP_EXPR:
9595 case CLEANUP_POINT_EXPR:
9596 case TARGET_EXPR:
9597 case CASE_LABEL_EXPR:
9598 case VA_ARG_EXPR:
9599 case BIND_EXPR:
9600 case INIT_EXPR:
9601 case CONJ_EXPR:
9602 case COMPOUND_EXPR:
9603 case PREINCREMENT_EXPR:
9604 case PREDECREMENT_EXPR:
9605 case POSTINCREMENT_EXPR:
9606 case POSTDECREMENT_EXPR:
9607 case LOOP_EXPR:
9608 case EXIT_EXPR:
9609 /* Lowered by gimplify.c. */
9610 gcc_unreachable ();
9612 case FDESC_EXPR:
9613 /* Function descriptors are not valid except for as
9614 initialization constants, and should not be expanded. */
9615 gcc_unreachable ();
9617 case WITH_SIZE_EXPR:
9618 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9619 have pulled out the size to use in whatever context it needed. */
9620 return expand_expr_real (treeop0, original_target, tmode,
9621 modifier, alt_rtl);
9623 case REALIGN_LOAD_EXPR:
9625 tree oprnd0 = treeop0;
9626 tree oprnd1 = treeop1;
9627 tree oprnd2 = treeop2;
9628 rtx op2;
9630 this_optab = optab_for_tree_code (code, type, optab_default);
9631 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9632 op2 = expand_normal (oprnd2);
9633 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9634 target, unsignedp);
9635 gcc_assert (temp);
9636 return temp;
9639 case DOT_PROD_EXPR:
9641 tree oprnd0 = treeop0;
9642 tree oprnd1 = treeop1;
9643 tree oprnd2 = treeop2;
9644 rtx op2;
9646 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9647 op2 = expand_normal (oprnd2);
9648 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9649 target, unsignedp);
9650 return target;
9653 case COMPOUND_LITERAL_EXPR:
9655 /* Initialize the anonymous variable declared in the compound
9656 literal, then return the variable. */
9657 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9659 /* Create RTL for this variable. */
9660 if (!DECL_RTL_SET_P (decl))
9662 if (DECL_HARD_REGISTER (decl))
9663 /* The user specified an assembler name for this variable.
9664 Set that up now. */
9665 rest_of_decl_compilation (decl, 0, 0);
9666 else
9667 expand_decl (decl);
9670 return expand_expr_real (decl, original_target, tmode,
9671 modifier, alt_rtl);
9674 default:
9675 return expand_expr_real_2 (&ops, target, tmode, modifier);
9679 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9680 signedness of TYPE), possibly returning the result in TARGET. */
9681 static rtx
9682 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9684 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9685 if (target && GET_MODE (target) != GET_MODE (exp))
9686 target = 0;
9687 /* For constant values, reduce using build_int_cst_type. */
9688 if (CONST_INT_P (exp))
9690 HOST_WIDE_INT value = INTVAL (exp);
9691 tree t = build_int_cst_type (type, value);
9692 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9694 else if (TYPE_UNSIGNED (type))
9696 rtx mask;
9697 if (prec < HOST_BITS_PER_WIDE_INT)
9698 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9699 GET_MODE (exp));
9700 else
9701 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9702 ((unsigned HOST_WIDE_INT) 1
9703 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9704 GET_MODE (exp));
9705 return expand_and (GET_MODE (exp), exp, mask, target);
9707 else
9709 tree count = build_int_cst (NULL_TREE,
9710 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9711 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9712 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9716 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9717 when applied to the address of EXP produces an address known to be
9718 aligned more than BIGGEST_ALIGNMENT. */
9720 static int
9721 is_aligning_offset (const_tree offset, const_tree exp)
9723 /* Strip off any conversions. */
9724 while (CONVERT_EXPR_P (offset))
9725 offset = TREE_OPERAND (offset, 0);
9727 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9728 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9729 if (TREE_CODE (offset) != BIT_AND_EXPR
9730 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9731 || compare_tree_int (TREE_OPERAND (offset, 1),
9732 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9733 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9734 return 0;
9736 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9737 It must be NEGATE_EXPR. Then strip any more conversions. */
9738 offset = TREE_OPERAND (offset, 0);
9739 while (CONVERT_EXPR_P (offset))
9740 offset = TREE_OPERAND (offset, 0);
9742 if (TREE_CODE (offset) != NEGATE_EXPR)
9743 return 0;
9745 offset = TREE_OPERAND (offset, 0);
9746 while (CONVERT_EXPR_P (offset))
9747 offset = TREE_OPERAND (offset, 0);
9749 /* This must now be the address of EXP. */
9750 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9753 /* Return the tree node if an ARG corresponds to a string constant or zero
9754 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9755 in bytes within the string that ARG is accessing. The type of the
9756 offset will be `sizetype'. */
9758 tree
9759 string_constant (tree arg, tree *ptr_offset)
9761 tree array, offset, lower_bound;
9762 STRIP_NOPS (arg);
9764 if (TREE_CODE (arg) == ADDR_EXPR)
9766 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9768 *ptr_offset = size_zero_node;
9769 return TREE_OPERAND (arg, 0);
9771 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9773 array = TREE_OPERAND (arg, 0);
9774 offset = size_zero_node;
9776 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9778 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9779 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9780 if (TREE_CODE (array) != STRING_CST
9781 && TREE_CODE (array) != VAR_DECL)
9782 return 0;
9784 /* Check if the array has a nonzero lower bound. */
9785 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9786 if (!integer_zerop (lower_bound))
9788 /* If the offset and base aren't both constants, return 0. */
9789 if (TREE_CODE (lower_bound) != INTEGER_CST)
9790 return 0;
9791 if (TREE_CODE (offset) != INTEGER_CST)
9792 return 0;
9793 /* Adjust offset by the lower bound. */
9794 offset = size_diffop (fold_convert (sizetype, offset),
9795 fold_convert (sizetype, lower_bound));
9798 else
9799 return 0;
9801 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9803 tree arg0 = TREE_OPERAND (arg, 0);
9804 tree arg1 = TREE_OPERAND (arg, 1);
9806 STRIP_NOPS (arg0);
9807 STRIP_NOPS (arg1);
9809 if (TREE_CODE (arg0) == ADDR_EXPR
9810 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9811 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9813 array = TREE_OPERAND (arg0, 0);
9814 offset = arg1;
9816 else if (TREE_CODE (arg1) == ADDR_EXPR
9817 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9818 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9820 array = TREE_OPERAND (arg1, 0);
9821 offset = arg0;
9823 else
9824 return 0;
9826 else
9827 return 0;
9829 if (TREE_CODE (array) == STRING_CST)
9831 *ptr_offset = fold_convert (sizetype, offset);
9832 return array;
9834 else if (TREE_CODE (array) == VAR_DECL)
9836 int length;
9838 /* Variables initialized to string literals can be handled too. */
9839 if (DECL_INITIAL (array) == NULL_TREE
9840 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9841 return 0;
9843 /* If they are read-only, non-volatile and bind locally. */
9844 if (! TREE_READONLY (array)
9845 || TREE_SIDE_EFFECTS (array)
9846 || ! targetm.binds_local_p (array))
9847 return 0;
9849 /* Avoid const char foo[4] = "abcde"; */
9850 if (DECL_SIZE_UNIT (array) == NULL_TREE
9851 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9852 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9853 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9854 return 0;
9856 /* If variable is bigger than the string literal, OFFSET must be constant
9857 and inside of the bounds of the string literal. */
9858 offset = fold_convert (sizetype, offset);
9859 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9860 && (! host_integerp (offset, 1)
9861 || compare_tree_int (offset, length) >= 0))
9862 return 0;
9864 *ptr_offset = offset;
9865 return DECL_INITIAL (array);
9868 return 0;
9871 /* Generate code to calculate OPS, and exploded expression
9872 using a store-flag instruction and return an rtx for the result.
9873 OPS reflects a comparison.
9875 If TARGET is nonzero, store the result there if convenient.
9877 Return zero if there is no suitable set-flag instruction
9878 available on this machine.
9880 Once expand_expr has been called on the arguments of the comparison,
9881 we are committed to doing the store flag, since it is not safe to
9882 re-evaluate the expression. We emit the store-flag insn by calling
9883 emit_store_flag, but only expand the arguments if we have a reason
9884 to believe that emit_store_flag will be successful. If we think that
9885 it will, but it isn't, we have to simulate the store-flag with a
9886 set/jump/set sequence. */
9888 static rtx
9889 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9891 enum rtx_code code;
9892 tree arg0, arg1, type;
9893 tree tem;
9894 enum machine_mode operand_mode;
9895 int unsignedp;
9896 rtx op0, op1;
9897 rtx subtarget = target;
9898 location_t loc = ops->location;
9900 arg0 = ops->op0;
9901 arg1 = ops->op1;
9903 /* Don't crash if the comparison was erroneous. */
9904 if (arg0 == error_mark_node || arg1 == error_mark_node)
9905 return const0_rtx;
9907 type = TREE_TYPE (arg0);
9908 operand_mode = TYPE_MODE (type);
9909 unsignedp = TYPE_UNSIGNED (type);
9911 /* We won't bother with BLKmode store-flag operations because it would mean
9912 passing a lot of information to emit_store_flag. */
9913 if (operand_mode == BLKmode)
9914 return 0;
9916 /* We won't bother with store-flag operations involving function pointers
9917 when function pointers must be canonicalized before comparisons. */
9918 #ifdef HAVE_canonicalize_funcptr_for_compare
9919 if (HAVE_canonicalize_funcptr_for_compare
9920 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9921 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9922 == FUNCTION_TYPE))
9923 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9924 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9925 == FUNCTION_TYPE))))
9926 return 0;
9927 #endif
9929 STRIP_NOPS (arg0);
9930 STRIP_NOPS (arg1);
9932 /* Get the rtx comparison code to use. We know that EXP is a comparison
9933 operation of some type. Some comparisons against 1 and -1 can be
9934 converted to comparisons with zero. Do so here so that the tests
9935 below will be aware that we have a comparison with zero. These
9936 tests will not catch constants in the first operand, but constants
9937 are rarely passed as the first operand. */
9939 switch (ops->code)
9941 case EQ_EXPR:
9942 code = EQ;
9943 break;
9944 case NE_EXPR:
9945 code = NE;
9946 break;
9947 case LT_EXPR:
9948 if (integer_onep (arg1))
9949 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9950 else
9951 code = unsignedp ? LTU : LT;
9952 break;
9953 case LE_EXPR:
9954 if (! unsignedp && integer_all_onesp (arg1))
9955 arg1 = integer_zero_node, code = LT;
9956 else
9957 code = unsignedp ? LEU : LE;
9958 break;
9959 case GT_EXPR:
9960 if (! unsignedp && integer_all_onesp (arg1))
9961 arg1 = integer_zero_node, code = GE;
9962 else
9963 code = unsignedp ? GTU : GT;
9964 break;
9965 case GE_EXPR:
9966 if (integer_onep (arg1))
9967 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9968 else
9969 code = unsignedp ? GEU : GE;
9970 break;
9972 case UNORDERED_EXPR:
9973 code = UNORDERED;
9974 break;
9975 case ORDERED_EXPR:
9976 code = ORDERED;
9977 break;
9978 case UNLT_EXPR:
9979 code = UNLT;
9980 break;
9981 case UNLE_EXPR:
9982 code = UNLE;
9983 break;
9984 case UNGT_EXPR:
9985 code = UNGT;
9986 break;
9987 case UNGE_EXPR:
9988 code = UNGE;
9989 break;
9990 case UNEQ_EXPR:
9991 code = UNEQ;
9992 break;
9993 case LTGT_EXPR:
9994 code = LTGT;
9995 break;
9997 default:
9998 gcc_unreachable ();
10001 /* Put a constant second. */
10002 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10003 || TREE_CODE (arg0) == FIXED_CST)
10005 tem = arg0; arg0 = arg1; arg1 = tem;
10006 code = swap_condition (code);
10009 /* If this is an equality or inequality test of a single bit, we can
10010 do this by shifting the bit being tested to the low-order bit and
10011 masking the result with the constant 1. If the condition was EQ,
10012 we xor it with 1. This does not require an scc insn and is faster
10013 than an scc insn even if we have it.
10015 The code to make this transformation was moved into fold_single_bit_test,
10016 so we just call into the folder and expand its result. */
10018 if ((code == NE || code == EQ)
10019 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10020 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10022 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10023 return expand_expr (fold_single_bit_test (loc,
10024 code == NE ? NE_EXPR : EQ_EXPR,
10025 arg0, arg1, type),
10026 target, VOIDmode, EXPAND_NORMAL);
10029 if (! get_subtarget (target)
10030 || GET_MODE (subtarget) != operand_mode)
10031 subtarget = 0;
10033 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10035 if (target == 0)
10036 target = gen_reg_rtx (mode);
10038 /* Try a cstore if possible. */
10039 return emit_store_flag_force (target, code, op0, op1,
10040 operand_mode, unsignedp, 1);
10044 /* Stubs in case we haven't got a casesi insn. */
10045 #ifndef HAVE_casesi
10046 # define HAVE_casesi 0
10047 # define gen_casesi(a, b, c, d, e) (0)
10048 # define CODE_FOR_casesi CODE_FOR_nothing
10049 #endif
10051 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10052 0 otherwise (i.e. if there is no casesi instruction). */
10054 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10055 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10056 rtx fallback_label ATTRIBUTE_UNUSED)
10058 enum machine_mode index_mode = SImode;
10059 int index_bits = GET_MODE_BITSIZE (index_mode);
10060 rtx op1, op2, index;
10061 enum machine_mode op_mode;
10063 if (! HAVE_casesi)
10064 return 0;
10066 /* Convert the index to SImode. */
10067 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10069 enum machine_mode omode = TYPE_MODE (index_type);
10070 rtx rangertx = expand_normal (range);
10072 /* We must handle the endpoints in the original mode. */
10073 index_expr = build2 (MINUS_EXPR, index_type,
10074 index_expr, minval);
10075 minval = integer_zero_node;
10076 index = expand_normal (index_expr);
10077 if (default_label)
10078 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10079 omode, 1, default_label);
10080 /* Now we can safely truncate. */
10081 index = convert_to_mode (index_mode, index, 0);
10083 else
10085 if (TYPE_MODE (index_type) != index_mode)
10087 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10088 index_expr = fold_convert (index_type, index_expr);
10091 index = expand_normal (index_expr);
10094 do_pending_stack_adjust ();
10096 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10097 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10098 (index, op_mode))
10099 index = copy_to_mode_reg (op_mode, index);
10101 op1 = expand_normal (minval);
10103 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10104 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10105 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10106 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10107 (op1, op_mode))
10108 op1 = copy_to_mode_reg (op_mode, op1);
10110 op2 = expand_normal (range);
10112 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10113 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10114 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10115 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10116 (op2, op_mode))
10117 op2 = copy_to_mode_reg (op_mode, op2);
10119 emit_jump_insn (gen_casesi (index, op1, op2,
10120 table_label, !default_label
10121 ? fallback_label : default_label));
10122 return 1;
10125 /* Attempt to generate a tablejump instruction; same concept. */
10126 #ifndef HAVE_tablejump
10127 #define HAVE_tablejump 0
10128 #define gen_tablejump(x, y) (0)
10129 #endif
10131 /* Subroutine of the next function.
10133 INDEX is the value being switched on, with the lowest value
10134 in the table already subtracted.
10135 MODE is its expected mode (needed if INDEX is constant).
10136 RANGE is the length of the jump table.
10137 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10139 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10140 index value is out of range. */
10142 static void
10143 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10144 rtx default_label)
10146 rtx temp, vector;
10148 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10149 cfun->cfg->max_jumptable_ents = INTVAL (range);
10151 /* Do an unsigned comparison (in the proper mode) between the index
10152 expression and the value which represents the length of the range.
10153 Since we just finished subtracting the lower bound of the range
10154 from the index expression, this comparison allows us to simultaneously
10155 check that the original index expression value is both greater than
10156 or equal to the minimum value of the range and less than or equal to
10157 the maximum value of the range. */
10159 if (default_label)
10160 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10161 default_label);
10163 /* If index is in range, it must fit in Pmode.
10164 Convert to Pmode so we can index with it. */
10165 if (mode != Pmode)
10166 index = convert_to_mode (Pmode, index, 1);
10168 /* Don't let a MEM slip through, because then INDEX that comes
10169 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10170 and break_out_memory_refs will go to work on it and mess it up. */
10171 #ifdef PIC_CASE_VECTOR_ADDRESS
10172 if (flag_pic && !REG_P (index))
10173 index = copy_to_mode_reg (Pmode, index);
10174 #endif
10176 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10177 GET_MODE_SIZE, because this indicates how large insns are. The other
10178 uses should all be Pmode, because they are addresses. This code
10179 could fail if addresses and insns are not the same size. */
10180 index = gen_rtx_PLUS (Pmode,
10181 gen_rtx_MULT (Pmode, index,
10182 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10183 gen_rtx_LABEL_REF (Pmode, table_label));
10184 #ifdef PIC_CASE_VECTOR_ADDRESS
10185 if (flag_pic)
10186 index = PIC_CASE_VECTOR_ADDRESS (index);
10187 else
10188 #endif
10189 index = memory_address (CASE_VECTOR_MODE, index);
10190 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10191 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10192 convert_move (temp, vector, 0);
10194 emit_jump_insn (gen_tablejump (temp, table_label));
10196 /* If we are generating PIC code or if the table is PC-relative, the
10197 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10198 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10199 emit_barrier ();
10203 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10204 rtx table_label, rtx default_label)
10206 rtx index;
10208 if (! HAVE_tablejump)
10209 return 0;
10211 index_expr = fold_build2 (MINUS_EXPR, index_type,
10212 fold_convert (index_type, index_expr),
10213 fold_convert (index_type, minval));
10214 index = expand_normal (index_expr);
10215 do_pending_stack_adjust ();
10217 do_tablejump (index, TYPE_MODE (index_type),
10218 convert_modes (TYPE_MODE (index_type),
10219 TYPE_MODE (TREE_TYPE (range)),
10220 expand_normal (range),
10221 TYPE_UNSIGNED (TREE_TYPE (range))),
10222 table_label, default_label);
10223 return 1;
10226 /* Nonzero if the mode is a valid vector mode for this architecture.
10227 This returns nonzero even if there is no hardware support for the
10228 vector mode, but we can emulate with narrower modes. */
10231 vector_mode_valid_p (enum machine_mode mode)
10233 enum mode_class mclass = GET_MODE_CLASS (mode);
10234 enum machine_mode innermode;
10236 /* Doh! What's going on? */
10237 if (mclass != MODE_VECTOR_INT
10238 && mclass != MODE_VECTOR_FLOAT
10239 && mclass != MODE_VECTOR_FRACT
10240 && mclass != MODE_VECTOR_UFRACT
10241 && mclass != MODE_VECTOR_ACCUM
10242 && mclass != MODE_VECTOR_UACCUM)
10243 return 0;
10245 /* Hardware support. Woo hoo! */
10246 if (targetm.vector_mode_supported_p (mode))
10247 return 1;
10249 innermode = GET_MODE_INNER (mode);
10251 /* We should probably return 1 if requesting V4DI and we have no DI,
10252 but we have V2DI, but this is probably very unlikely. */
10254 /* If we have support for the inner mode, we can safely emulate it.
10255 We may not have V2DI, but me can emulate with a pair of DIs. */
10256 return targetm.scalar_mode_supported_p (innermode);
10259 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10260 static rtx
10261 const_vector_from_tree (tree exp)
10263 rtvec v;
10264 int units, i;
10265 tree link, elt;
10266 enum machine_mode inner, mode;
10268 mode = TYPE_MODE (TREE_TYPE (exp));
10270 if (initializer_zerop (exp))
10271 return CONST0_RTX (mode);
10273 units = GET_MODE_NUNITS (mode);
10274 inner = GET_MODE_INNER (mode);
10276 v = rtvec_alloc (units);
10278 link = TREE_VECTOR_CST_ELTS (exp);
10279 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10281 elt = TREE_VALUE (link);
10283 if (TREE_CODE (elt) == REAL_CST)
10284 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10285 inner);
10286 else if (TREE_CODE (elt) == FIXED_CST)
10287 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10288 inner);
10289 else
10290 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10291 TREE_INT_CST_HIGH (elt),
10292 inner);
10295 /* Initialize remaining elements to 0. */
10296 for (; i < units; ++i)
10297 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10299 return gen_rtx_CONST_VECTOR (mode, v);
10303 /* Build a decl for a EH personality function named NAME. */
10305 tree
10306 build_personality_function (const char *name)
10308 tree decl, type;
10310 type = build_function_type_list (integer_type_node, integer_type_node,
10311 long_long_unsigned_type_node,
10312 ptr_type_node, ptr_type_node, NULL_TREE);
10313 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10314 get_identifier (name), type);
10315 DECL_ARTIFICIAL (decl) = 1;
10316 DECL_EXTERNAL (decl) = 1;
10317 TREE_PUBLIC (decl) = 1;
10319 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10320 are the flags assigned by targetm.encode_section_info. */
10321 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10323 return decl;
10326 /* Extracts the personality function of DECL and returns the corresponding
10327 libfunc. */
10330 get_personality_function (tree decl)
10332 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10333 enum eh_personality_kind pk;
10335 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10336 if (pk == eh_personality_none)
10337 return NULL;
10339 if (!personality
10340 && pk == eh_personality_any)
10341 personality = lang_hooks.eh_personality ();
10343 if (pk == eh_personality_lang)
10344 gcc_assert (personality != NULL_TREE);
10346 return XEXP (DECL_RTL (personality), 0);
10349 #include "gt-expr.h"