Create branch to syn ICI 2.0 with gcc mainline.
[official-gcc.git] / gcc / explow.c
blob0bbbc003f6d95d1c5510c417f135ef2be48921ef
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "output.h"
44 static rtx break_out_memory_refs (rtx);
45 static void emit_stack_probe (rtx);
46 static void anti_adjust_stack_and_probe (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
54 int width = GET_MODE_BITSIZE (mode);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
63 /* Sign-extend for the requested mode. */
65 if (width < HOST_BITS_PER_WIDE_INT)
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
74 return c;
77 /* Return an rtx for the sum of X and the integer C. */
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
88 if (c == 0)
89 return x;
91 restart:
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
102 case CONST_DOUBLE:
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
111 add_double (l1, h1, l2, h2, &lv, &hv);
113 return immed_double_const (lv, hv, VOIDmode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
130 break;
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x, 1)))
159 c += INTVAL (XEXP (x, 1));
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
164 x = XEXP (x, 0);
165 goto restart;
167 else if (CONSTANT_P (XEXP (x, 1)))
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
277 return tree_low_cst (size, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
405 default:
406 break;
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
424 x = convert_memory_address_addr_space (address_mode, x, as);
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
448 x = oldx;
449 goto done;
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
503 done:
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
521 return x;
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
528 validize_mem (rtx ref)
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
546 use_anchored_address (rtx x)
548 rtx base;
549 HOST_WIDE_INT offset;
551 if (!flag_section_anchors)
552 return x;
554 if (!MEM_P (x))
555 return x;
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
593 return replace_equiv_address (x, plus_constant (base, offset));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
599 copy_to_reg (rtx x)
601 rtx temp = gen_reg_rtx (GET_MODE (x));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 if (x != temp)
609 emit_move_insn (temp, x);
611 return temp;
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x)
620 return copy_to_mode_reg (Pmode, x);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
629 rtx temp = gen_reg_rtx (mode);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
651 force_reg (enum machine_mode mode, rtx x)
653 rtx temp, insn, set;
655 if (REG_P (x))
656 return x;
658 if (general_operand (x, mode))
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
663 else
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
710 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
712 align = MIN (sa, ca);
715 if (align || (MEM_P (x) && MEM_POINTER (x)))
716 mark_reg_pointer (temp, align);
719 return temp;
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
726 force_not_mem (rtx x)
728 rtx temp;
730 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
731 return x;
733 temp = gen_reg_rtx (GET_MODE (x));
735 if (MEM_POINTER (x))
736 REG_POINTER (temp) = 1;
738 emit_move_insn (temp, x);
739 return temp;
742 /* Copy X to TARGET (if it's nonzero and a reg)
743 or to a new temp reg and return that reg.
744 MODE is the mode to use for X in case it is a constant. */
747 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
749 rtx temp;
751 if (target && REG_P (target))
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
756 emit_move_insn (temp, x);
757 return temp;
760 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
761 PUNSIGNEDP points to the signedness of the type and may be adjusted
762 to show what signedness to use on extension operations.
764 FOR_RETURN is nonzero if the caller is promoting the return value
765 of FNDECL, else it is for promoting args. */
767 enum machine_mode
768 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
769 const_tree funtype, int for_return)
771 switch (TREE_CODE (type))
773 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
774 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
775 case POINTER_TYPE: case REFERENCE_TYPE:
776 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
777 for_return);
779 default:
780 return mode;
783 /* Return the mode to use to store a scalar of TYPE and MODE.
784 PUNSIGNEDP points to the signedness of the type and may be adjusted
785 to show what signedness to use on extension operations. */
787 enum machine_mode
788 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
789 int *punsignedp ATTRIBUTE_UNUSED)
791 /* FIXME: this is the same logic that was there until GCC 4.4, but we
792 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
793 is not defined. The affected targets are M32C, S390, SPARC. */
794 #ifdef PROMOTE_MODE
795 const enum tree_code code = TREE_CODE (type);
796 int unsignedp = *punsignedp;
798 switch (code)
800 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
801 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
802 PROMOTE_MODE (mode, unsignedp, type);
803 *punsignedp = unsignedp;
804 return mode;
805 break;
807 #ifdef POINTERS_EXTEND_UNSIGNED
808 case REFERENCE_TYPE:
809 case POINTER_TYPE:
810 *punsignedp = POINTERS_EXTEND_UNSIGNED;
811 return targetm.addr_space.address_mode
812 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
813 break;
814 #endif
816 default:
817 return mode;
819 #else
820 return mode;
821 #endif
825 /* Use one of promote_mode or promote_function_mode to find the promoted
826 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
827 of DECL after promotion. */
829 enum machine_mode
830 promote_decl_mode (const_tree decl, int *punsignedp)
832 tree type = TREE_TYPE (decl);
833 int unsignedp = TYPE_UNSIGNED (type);
834 enum machine_mode mode = DECL_MODE (decl);
835 enum machine_mode pmode;
837 if (TREE_CODE (decl) == RESULT_DECL
838 || TREE_CODE (decl) == PARM_DECL)
839 pmode = promote_function_mode (type, mode, &unsignedp,
840 TREE_TYPE (current_function_decl), 2);
841 else
842 pmode = promote_mode (type, mode, &unsignedp);
844 if (punsignedp)
845 *punsignedp = unsignedp;
846 return pmode;
850 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
851 This pops when ADJUST is positive. ADJUST need not be constant. */
853 void
854 adjust_stack (rtx adjust)
856 rtx temp;
858 if (adjust == const0_rtx)
859 return;
861 /* We expect all variable sized adjustments to be multiple of
862 PREFERRED_STACK_BOUNDARY. */
863 if (CONST_INT_P (adjust))
864 stack_pointer_delta -= INTVAL (adjust);
866 temp = expand_binop (Pmode,
867 #ifdef STACK_GROWS_DOWNWARD
868 add_optab,
869 #else
870 sub_optab,
871 #endif
872 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
873 OPTAB_LIB_WIDEN);
875 if (temp != stack_pointer_rtx)
876 emit_move_insn (stack_pointer_rtx, temp);
879 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
880 This pushes when ADJUST is positive. ADJUST need not be constant. */
882 void
883 anti_adjust_stack (rtx adjust)
885 rtx temp;
887 if (adjust == const0_rtx)
888 return;
890 /* We expect all variable sized adjustments to be multiple of
891 PREFERRED_STACK_BOUNDARY. */
892 if (CONST_INT_P (adjust))
893 stack_pointer_delta += INTVAL (adjust);
895 temp = expand_binop (Pmode,
896 #ifdef STACK_GROWS_DOWNWARD
897 sub_optab,
898 #else
899 add_optab,
900 #endif
901 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
902 OPTAB_LIB_WIDEN);
904 if (temp != stack_pointer_rtx)
905 emit_move_insn (stack_pointer_rtx, temp);
908 /* Round the size of a block to be pushed up to the boundary required
909 by this machine. SIZE is the desired size, which need not be constant. */
911 static rtx
912 round_push (rtx size)
914 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
916 if (align == 1)
917 return size;
919 if (CONST_INT_P (size))
921 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
923 if (INTVAL (size) != new_size)
924 size = GEN_INT (new_size);
926 else
928 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
929 but we know it can't. So add ourselves and then do
930 TRUNC_DIV_EXPR. */
931 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
932 NULL_RTX, 1, OPTAB_LIB_WIDEN);
933 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
934 NULL_RTX, 1);
935 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
938 return size;
941 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
942 to a previously-created save area. If no save area has been allocated,
943 this function will allocate one. If a save area is specified, it
944 must be of the proper mode.
946 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
947 are emitted at the current position. */
949 void
950 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
952 rtx sa = *psave;
953 /* The default is that we use a move insn and save in a Pmode object. */
954 rtx (*fcn) (rtx, rtx) = gen_move_insn;
955 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
957 /* See if this machine has anything special to do for this kind of save. */
958 switch (save_level)
960 #ifdef HAVE_save_stack_block
961 case SAVE_BLOCK:
962 if (HAVE_save_stack_block)
963 fcn = gen_save_stack_block;
964 break;
965 #endif
966 #ifdef HAVE_save_stack_function
967 case SAVE_FUNCTION:
968 if (HAVE_save_stack_function)
969 fcn = gen_save_stack_function;
970 break;
971 #endif
972 #ifdef HAVE_save_stack_nonlocal
973 case SAVE_NONLOCAL:
974 if (HAVE_save_stack_nonlocal)
975 fcn = gen_save_stack_nonlocal;
976 break;
977 #endif
978 default:
979 break;
982 /* If there is no save area and we have to allocate one, do so. Otherwise
983 verify the save area is the proper mode. */
985 if (sa == 0)
987 if (mode != VOIDmode)
989 if (save_level == SAVE_NONLOCAL)
990 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
991 else
992 *psave = sa = gen_reg_rtx (mode);
996 if (after)
998 rtx seq;
1000 start_sequence ();
1001 do_pending_stack_adjust ();
1002 /* We must validize inside the sequence, to ensure that any instructions
1003 created by the validize call also get moved to the right place. */
1004 if (sa != 0)
1005 sa = validize_mem (sa);
1006 emit_insn (fcn (sa, stack_pointer_rtx));
1007 seq = get_insns ();
1008 end_sequence ();
1009 emit_insn_after (seq, after);
1011 else
1013 do_pending_stack_adjust ();
1014 if (sa != 0)
1015 sa = validize_mem (sa);
1016 emit_insn (fcn (sa, stack_pointer_rtx));
1020 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1021 area made by emit_stack_save. If it is zero, we have nothing to do.
1023 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1024 current position. */
1026 void
1027 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1029 /* The default is that we use a move insn. */
1030 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1032 /* See if this machine has anything special to do for this kind of save. */
1033 switch (save_level)
1035 #ifdef HAVE_restore_stack_block
1036 case SAVE_BLOCK:
1037 if (HAVE_restore_stack_block)
1038 fcn = gen_restore_stack_block;
1039 break;
1040 #endif
1041 #ifdef HAVE_restore_stack_function
1042 case SAVE_FUNCTION:
1043 if (HAVE_restore_stack_function)
1044 fcn = gen_restore_stack_function;
1045 break;
1046 #endif
1047 #ifdef HAVE_restore_stack_nonlocal
1048 case SAVE_NONLOCAL:
1049 if (HAVE_restore_stack_nonlocal)
1050 fcn = gen_restore_stack_nonlocal;
1051 break;
1052 #endif
1053 default:
1054 break;
1057 if (sa != 0)
1059 sa = validize_mem (sa);
1060 /* These clobbers prevent the scheduler from moving
1061 references to variable arrays below the code
1062 that deletes (pops) the arrays. */
1063 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1064 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1067 discard_pending_stack_adjust ();
1069 if (after)
1071 rtx seq;
1073 start_sequence ();
1074 emit_insn (fcn (stack_pointer_rtx, sa));
1075 seq = get_insns ();
1076 end_sequence ();
1077 emit_insn_after (seq, after);
1079 else
1080 emit_insn (fcn (stack_pointer_rtx, sa));
1083 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1084 function. This function should be called whenever we allocate or
1085 deallocate dynamic stack space. */
1087 void
1088 update_nonlocal_goto_save_area (void)
1090 tree t_save;
1091 rtx r_save;
1093 /* The nonlocal_goto_save_area object is an array of N pointers. The
1094 first one is used for the frame pointer save; the rest are sized by
1095 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1096 of the stack save area slots. */
1097 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1098 integer_one_node, NULL_TREE, NULL_TREE);
1099 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1101 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1104 /* Return an rtx representing the address of an area of memory dynamically
1105 pushed on the stack. This region of memory is always aligned to
1106 a multiple of BIGGEST_ALIGNMENT.
1108 Any required stack pointer alignment is preserved.
1110 SIZE is an rtx representing the size of the area.
1111 TARGET is a place in which the address can be placed.
1113 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1116 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1118 /* If we're asking for zero bytes, it doesn't matter what we point
1119 to since we can't dereference it. But return a reasonable
1120 address anyway. */
1121 if (size == const0_rtx)
1122 return virtual_stack_dynamic_rtx;
1124 /* Otherwise, show we're calling alloca or equivalent. */
1125 cfun->calls_alloca = 1;
1127 /* Ensure the size is in the proper mode. */
1128 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1129 size = convert_to_mode (Pmode, size, 1);
1131 /* We can't attempt to minimize alignment necessary, because we don't
1132 know the final value of preferred_stack_boundary yet while executing
1133 this code. */
1134 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1136 /* We will need to ensure that the address we return is aligned to
1137 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1138 always know its final value at this point in the compilation (it
1139 might depend on the size of the outgoing parameter lists, for
1140 example), so we must align the value to be returned in that case.
1141 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1142 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1143 We must also do an alignment operation on the returned value if
1144 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1146 If we have to align, we must leave space in SIZE for the hole
1147 that might result from the alignment operation. */
1149 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1150 #define MUST_ALIGN 1
1151 #else
1152 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1153 #endif
1155 if (MUST_ALIGN)
1156 size
1157 = force_operand (plus_constant (size,
1158 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1159 NULL_RTX);
1161 #ifdef SETJMP_VIA_SAVE_AREA
1162 /* If setjmp restores regs from a save area in the stack frame,
1163 avoid clobbering the reg save area. Note that the offset of
1164 virtual_incoming_args_rtx includes the preallocated stack args space.
1165 It would be no problem to clobber that, but it's on the wrong side
1166 of the old save area.
1168 What used to happen is that, since we did not know for sure
1169 whether setjmp() was invoked until after RTL generation, we
1170 would use reg notes to store the "optimized" size and fix things
1171 up later. These days we know this information before we ever
1172 start building RTL so the reg notes are unnecessary. */
1173 if (!cfun->calls_setjmp)
1175 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1177 /* ??? Code below assumes that the save area needs maximal
1178 alignment. This constraint may be too strong. */
1179 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1181 if (CONST_INT_P (size))
1183 HOST_WIDE_INT new_size = INTVAL (size) / align * align;
1185 if (INTVAL (size) != new_size)
1186 size = GEN_INT (new_size);
1188 else
1190 /* Since we know overflow is not possible, we avoid using
1191 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1192 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1193 GEN_INT (align), NULL_RTX, 1);
1194 size = expand_mult (Pmode, size,
1195 GEN_INT (align), NULL_RTX, 1);
1198 else
1200 rtx dynamic_offset
1201 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1202 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1204 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1205 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1207 #endif /* SETJMP_VIA_SAVE_AREA */
1209 /* Round the size to a multiple of the required stack alignment.
1210 Since the stack if presumed to be rounded before this allocation,
1211 this will maintain the required alignment.
1213 If the stack grows downward, we could save an insn by subtracting
1214 SIZE from the stack pointer and then aligning the stack pointer.
1215 The problem with this is that the stack pointer may be unaligned
1216 between the execution of the subtraction and alignment insns and
1217 some machines do not allow this. Even on those that do, some
1218 signal handlers malfunction if a signal should occur between those
1219 insns. Since this is an extremely rare event, we have no reliable
1220 way of knowing which systems have this problem. So we avoid even
1221 momentarily mis-aligning the stack. */
1223 /* If we added a variable amount to SIZE,
1224 we can no longer assume it is aligned. */
1225 #if !defined (SETJMP_VIA_SAVE_AREA)
1226 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1227 #endif
1228 size = round_push (size);
1230 do_pending_stack_adjust ();
1232 /* We ought to be called always on the toplevel and stack ought to be aligned
1233 properly. */
1234 gcc_assert (!(stack_pointer_delta
1235 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1237 /* If needed, check that we have the required amount of stack. Take into
1238 account what has already been checked. */
1239 if (STACK_CHECK_MOVING_SP)
1241 else if (flag_stack_check == GENERIC_STACK_CHECK)
1242 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1243 size);
1244 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1245 probe_stack_range (STACK_CHECK_PROTECT, size);
1247 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1248 if (target == 0 || !REG_P (target)
1249 || REGNO (target) < FIRST_PSEUDO_REGISTER
1250 || GET_MODE (target) != Pmode)
1251 target = gen_reg_rtx (Pmode);
1253 mark_reg_pointer (target, known_align);
1255 /* Perform the required allocation from the stack. Some systems do
1256 this differently than simply incrementing/decrementing from the
1257 stack pointer, such as acquiring the space by calling malloc(). */
1258 #ifdef HAVE_allocate_stack
1259 if (HAVE_allocate_stack)
1261 enum machine_mode mode = STACK_SIZE_MODE;
1262 insn_operand_predicate_fn pred;
1264 /* We don't have to check against the predicate for operand 0 since
1265 TARGET is known to be a pseudo of the proper mode, which must
1266 be valid for the operand. For operand 1, convert to the
1267 proper mode and validate. */
1268 if (mode == VOIDmode)
1269 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1271 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1272 if (pred && ! ((*pred) (size, mode)))
1273 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1275 emit_insn (gen_allocate_stack (target, size));
1277 else
1278 #endif
1280 #ifndef STACK_GROWS_DOWNWARD
1281 emit_move_insn (target, virtual_stack_dynamic_rtx);
1282 #endif
1284 /* Check stack bounds if necessary. */
1285 if (crtl->limit_stack)
1287 rtx available;
1288 rtx space_available = gen_label_rtx ();
1289 #ifdef STACK_GROWS_DOWNWARD
1290 available = expand_binop (Pmode, sub_optab,
1291 stack_pointer_rtx, stack_limit_rtx,
1292 NULL_RTX, 1, OPTAB_WIDEN);
1293 #else
1294 available = expand_binop (Pmode, sub_optab,
1295 stack_limit_rtx, stack_pointer_rtx,
1296 NULL_RTX, 1, OPTAB_WIDEN);
1297 #endif
1298 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1299 space_available);
1300 #ifdef HAVE_trap
1301 if (HAVE_trap)
1302 emit_insn (gen_trap ());
1303 else
1304 #endif
1305 error ("stack limits not supported on this target");
1306 emit_barrier ();
1307 emit_label (space_available);
1310 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1311 anti_adjust_stack_and_probe (size);
1312 else
1313 anti_adjust_stack (size);
1315 #ifdef STACK_GROWS_DOWNWARD
1316 emit_move_insn (target, virtual_stack_dynamic_rtx);
1317 #endif
1320 if (MUST_ALIGN)
1322 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1323 but we know it can't. So add ourselves and then do
1324 TRUNC_DIV_EXPR. */
1325 target = expand_binop (Pmode, add_optab, target,
1326 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1327 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1328 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1329 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1330 NULL_RTX, 1);
1331 target = expand_mult (Pmode, target,
1332 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1333 NULL_RTX, 1);
1336 /* Record the new stack level for nonlocal gotos. */
1337 if (cfun->nonlocal_goto_save_area != 0)
1338 update_nonlocal_goto_save_area ();
1340 return target;
1343 /* A front end may want to override GCC's stack checking by providing a
1344 run-time routine to call to check the stack, so provide a mechanism for
1345 calling that routine. */
1347 static GTY(()) rtx stack_check_libfunc;
1349 void
1350 set_stack_check_libfunc (rtx libfunc)
1352 stack_check_libfunc = libfunc;
1355 /* Emit one stack probe at ADDRESS, an address within the stack. */
1357 static void
1358 emit_stack_probe (rtx address)
1360 rtx memref = gen_rtx_MEM (word_mode, address);
1362 MEM_VOLATILE_P (memref) = 1;
1364 /* See if we have an insn to probe the stack. */
1365 #ifdef HAVE_probe_stack
1366 if (HAVE_probe_stack)
1367 emit_insn (gen_probe_stack (memref));
1368 else
1369 #endif
1370 if (STACK_CHECK_PROBE_LOAD)
1371 emit_move_insn (gen_reg_rtx (word_mode), memref);
1372 else
1373 emit_move_insn (memref, const0_rtx);
1376 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1377 FIRST is a constant and size is a Pmode RTX. These are offsets from
1378 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1379 or subtract them from the stack pointer. */
1381 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1383 #ifdef STACK_GROWS_DOWNWARD
1384 #define STACK_GROW_OP MINUS
1385 #define STACK_GROW_OPTAB sub_optab
1386 #define STACK_GROW_OFF(off) -(off)
1387 #else
1388 #define STACK_GROW_OP PLUS
1389 #define STACK_GROW_OPTAB add_optab
1390 #define STACK_GROW_OFF(off) (off)
1391 #endif
1393 void
1394 probe_stack_range (HOST_WIDE_INT first, rtx size)
1396 /* First ensure SIZE is Pmode. */
1397 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1398 size = convert_to_mode (Pmode, size, 1);
1400 /* Next see if we have a function to check the stack. */
1401 if (stack_check_libfunc)
1403 rtx addr = memory_address (Pmode,
1404 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1405 stack_pointer_rtx,
1406 plus_constant (size, first)));
1407 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr);
1410 /* Next see if we have an insn to check the stack. */
1411 #ifdef HAVE_check_stack
1412 else if (HAVE_check_stack)
1414 rtx addr = memory_address (Pmode,
1415 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1416 stack_pointer_rtx,
1417 plus_constant (size, first)));
1418 insn_operand_predicate_fn pred
1419 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1420 if (pred && !((*pred) (addr, Pmode)))
1421 addr = copy_to_mode_reg (Pmode, addr);
1423 emit_insn (gen_check_stack (addr));
1425 #endif
1427 /* Otherwise we have to generate explicit probes. If we have a constant
1428 small number of them to generate, that's the easy case. */
1429 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1431 HOST_WIDE_INT isize = INTVAL (size), i;
1432 rtx addr;
1434 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1435 it exceeds SIZE. If only one probe is needed, this will not
1436 generate any code. Then probe at FIRST + SIZE. */
1437 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1439 addr = memory_address (Pmode,
1440 plus_constant (stack_pointer_rtx,
1441 STACK_GROW_OFF (first + i)));
1442 emit_stack_probe (addr);
1445 addr = memory_address (Pmode,
1446 plus_constant (stack_pointer_rtx,
1447 STACK_GROW_OFF (first + isize)));
1448 emit_stack_probe (addr);
1451 /* In the variable case, do the same as above, but in a loop. Note that we
1452 must be extra careful with variables wrapping around because we might be
1453 at the very top (or the very bottom) of the address space and we have to
1454 be able to handle this case properly; in particular, we use an equality
1455 test for the loop condition. */
1456 else
1458 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1459 rtx loop_lab = gen_label_rtx ();
1460 rtx end_lab = gen_label_rtx ();
1463 /* Step 1: round SIZE to the previous multiple of the interval. */
1465 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1466 rounded_size
1467 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1468 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1471 /* Step 2: compute initial and final value of the loop counter. */
1473 /* TEST_ADDR = SP + FIRST. */
1474 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1475 stack_pointer_rtx,
1476 GEN_INT (first)), NULL_RTX);
1478 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1479 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1480 test_addr,
1481 rounded_size_op), NULL_RTX);
1484 /* Step 3: the loop
1486 while (TEST_ADDR != LAST_ADDR)
1488 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1489 probe at TEST_ADDR
1492 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1493 until it is equal to ROUNDED_SIZE. */
1495 emit_label (loop_lab);
1497 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1498 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1499 end_lab);
1501 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1502 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1503 GEN_INT (PROBE_INTERVAL), test_addr,
1504 1, OPTAB_WIDEN);
1506 gcc_assert (temp == test_addr);
1508 /* Probe at TEST_ADDR. */
1509 emit_stack_probe (test_addr);
1511 emit_jump (loop_lab);
1513 emit_label (end_lab);
1516 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1517 that SIZE is equal to ROUNDED_SIZE. */
1519 /* TEMP = SIZE - ROUNDED_SIZE. */
1520 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1521 if (temp != const0_rtx)
1523 rtx addr;
1525 if (GET_CODE (temp) == CONST_INT)
1527 /* Use [base + disp} addressing mode if supported. */
1528 HOST_WIDE_INT offset = INTVAL (temp);
1529 addr = memory_address (Pmode,
1530 plus_constant (last_addr,
1531 STACK_GROW_OFF (offset)));
1533 else
1535 /* Manual CSE if the difference is not known at compile-time. */
1536 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1537 addr = memory_address (Pmode,
1538 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1539 last_addr, temp));
1542 emit_stack_probe (addr);
1547 /* Adjust the stack by SIZE bytes while probing it. Note that we skip the
1548 probe for the first interval + a small dope of 4 words and instead probe
1549 that many bytes past the specified size to maintain a protection area. */
1551 static void
1552 anti_adjust_stack_and_probe (rtx size)
1554 const int dope = 4 * UNITS_PER_WORD;
1556 /* First ensure SIZE is Pmode. */
1557 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1558 size = convert_to_mode (Pmode, size, 1);
1560 /* If we have a constant small number of probes to generate, that's the
1561 easy case. */
1562 if (GET_CODE (size) == CONST_INT && INTVAL (size) < 7 * PROBE_INTERVAL)
1564 HOST_WIDE_INT isize = INTVAL (size), i;
1565 bool first_probe = true;
1567 /* Adjust SP and probe to PROBE_INTERVAL + N * PROBE_INTERVAL for
1568 values of N from 1 until it exceeds SIZE. If only one probe is
1569 needed, this will not generate any code. Then adjust and probe
1570 to PROBE_INTERVAL + SIZE. */
1571 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1573 if (first_probe)
1575 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1576 first_probe = false;
1578 else
1579 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1580 emit_stack_probe (stack_pointer_rtx);
1583 if (first_probe)
1584 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1585 else
1586 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1587 emit_stack_probe (stack_pointer_rtx);
1590 /* In the variable case, do the same as above, but in a loop. Note that we
1591 must be extra careful with variables wrapping around because we might be
1592 at the very top (or the very bottom) of the address space and we have to
1593 be able to handle this case properly; in particular, we use an equality
1594 test for the loop condition. */
1595 else
1597 rtx rounded_size, rounded_size_op, last_addr, temp;
1598 rtx loop_lab = gen_label_rtx ();
1599 rtx end_lab = gen_label_rtx ();
1602 /* Step 1: round SIZE to the previous multiple of the interval. */
1604 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1605 rounded_size
1606 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1607 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1610 /* Step 2: compute initial and final value of the loop counter. */
1612 /* SP = SP_0 + PROBE_INTERVAL. */
1613 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1615 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1616 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1617 stack_pointer_rtx,
1618 rounded_size_op), NULL_RTX);
1621 /* Step 3: the loop
1623 while (SP != LAST_ADDR)
1625 SP = SP + PROBE_INTERVAL
1626 probe at SP
1629 adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for
1630 values of N from 1 until it is equal to ROUNDED_SIZE. */
1632 emit_label (loop_lab);
1634 /* Jump to END_LAB if SP == LAST_ADDR. */
1635 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1636 Pmode, 1, end_lab);
1638 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1639 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1640 emit_stack_probe (stack_pointer_rtx);
1642 emit_jump (loop_lab);
1644 emit_label (end_lab);
1647 /* Step 4: adjust SP and probe to PROBE_INTERVAL + SIZE if we cannot
1648 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1650 /* TEMP = SIZE - ROUNDED_SIZE. */
1651 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1652 if (temp != const0_rtx)
1654 /* Manual CSE if the difference is not known at compile-time. */
1655 if (GET_CODE (temp) != CONST_INT)
1656 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1657 anti_adjust_stack (temp);
1658 emit_stack_probe (stack_pointer_rtx);
1662 /* Adjust back to account for the additional first interval. */
1663 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1666 /* Return an rtx representing the register or memory location
1667 in which a scalar value of data type VALTYPE
1668 was returned by a function call to function FUNC.
1669 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1670 function is known, otherwise 0.
1671 OUTGOING is 1 if on a machine with register windows this function
1672 should return the register in which the function will put its result
1673 and 0 otherwise. */
1676 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1677 int outgoing ATTRIBUTE_UNUSED)
1679 rtx val;
1681 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1683 if (REG_P (val)
1684 && GET_MODE (val) == BLKmode)
1686 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1687 enum machine_mode tmpmode;
1689 /* int_size_in_bytes can return -1. We don't need a check here
1690 since the value of bytes will then be large enough that no
1691 mode will match anyway. */
1693 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1694 tmpmode != VOIDmode;
1695 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1697 /* Have we found a large enough mode? */
1698 if (GET_MODE_SIZE (tmpmode) >= bytes)
1699 break;
1702 /* No suitable mode found. */
1703 gcc_assert (tmpmode != VOIDmode);
1705 PUT_MODE (val, tmpmode);
1707 return val;
1710 /* Return an rtx representing the register or memory location
1711 in which a scalar value of mode MODE was returned by a library call. */
1714 hard_libcall_value (enum machine_mode mode, rtx fun)
1716 return targetm.calls.libcall_value (mode, fun);
1719 /* Look up the tree code for a given rtx code
1720 to provide the arithmetic operation for REAL_ARITHMETIC.
1721 The function returns an int because the caller may not know
1722 what `enum tree_code' means. */
1725 rtx_to_tree_code (enum rtx_code code)
1727 enum tree_code tcode;
1729 switch (code)
1731 case PLUS:
1732 tcode = PLUS_EXPR;
1733 break;
1734 case MINUS:
1735 tcode = MINUS_EXPR;
1736 break;
1737 case MULT:
1738 tcode = MULT_EXPR;
1739 break;
1740 case DIV:
1741 tcode = RDIV_EXPR;
1742 break;
1743 case SMIN:
1744 tcode = MIN_EXPR;
1745 break;
1746 case SMAX:
1747 tcode = MAX_EXPR;
1748 break;
1749 default:
1750 tcode = LAST_AND_UNUSED_TREE_CODE;
1751 break;
1753 return ((int) tcode);
1756 #include "gt-explow.h"