1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return LOCATION_LINE (item
->locus
);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static edge
find_taken_edge_switch_expr (const gswitch
*, tree
);
175 static tree
find_case_label_for_value (const gswitch
*, tree
);
176 static void lower_phi_internal_fn ();
179 init_empty_tree_cfg_for_function (struct function
*fn
)
181 /* Initialize the basic block array. */
183 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
184 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
186 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
188 initial_cfg_capacity
);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
193 initial_cfg_capacity
);
195 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
196 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
198 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn
);
200 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun
);
210 /*---------------------------------------------------------------------------
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
218 build_gimple_cfg (gimple_seq seq
)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
225 init_empty_tree_cfg ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun
)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun
))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
237 n_basic_blocks_for_fn (cfun
));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
319 gimple_stmt_iterator gsi
;
322 FOR_EACH_LOOP (loop
, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop
->header
, loop
);
327 /* Then look into the latch, if any. */
329 replace_loop_annotate_in_block (loop
->latch
, loop
);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
355 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
356 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
357 gimple_call_arg (stmt
, 0));
358 gsi_replace (&gsi
, stmt
, true);
363 /* Lower internal PHI function from GIMPLE FE. */
366 lower_phi_internal_fn ()
368 basic_block bb
, pred
= NULL
;
369 gimple_stmt_iterator gsi
;
374 /* After edge creation, handle __PHI function from GIMPLE FE. */
375 FOR_EACH_BB_FN (bb
, cfun
)
377 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
379 stmt
= gsi_stmt (gsi
);
380 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
383 lhs
= gimple_call_lhs (stmt
);
384 phi_node
= create_phi_node (lhs
, bb
);
386 /* Add arguments to the PHI node. */
387 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
389 tree arg
= gimple_call_arg (stmt
, i
);
390 if (TREE_CODE (arg
) == LABEL_DECL
)
391 pred
= label_to_block (arg
);
394 edge e
= find_edge (pred
, bb
);
395 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
399 gsi_remove (&gsi
, true);
405 execute_build_cfg (void)
407 gimple_seq body
= gimple_body (current_function_decl
);
409 build_gimple_cfg (body
);
410 gimple_set_body (current_function_decl
, NULL
);
411 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
413 fprintf (dump_file
, "Scope blocks:\n");
414 dump_scope_blocks (dump_file
, dump_flags
);
417 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
418 replace_loop_annotate ();
424 const pass_data pass_data_build_cfg
=
426 GIMPLE_PASS
, /* type */
428 OPTGROUP_NONE
, /* optinfo_flags */
429 TV_TREE_CFG
, /* tv_id */
430 PROP_gimple_leh
, /* properties_required */
431 ( PROP_cfg
| PROP_loops
), /* properties_provided */
432 0, /* properties_destroyed */
433 0, /* todo_flags_start */
434 0, /* todo_flags_finish */
437 class pass_build_cfg
: public gimple_opt_pass
440 pass_build_cfg (gcc::context
*ctxt
)
441 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
444 /* opt_pass methods: */
445 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
447 }; // class pass_build_cfg
452 make_pass_build_cfg (gcc::context
*ctxt
)
454 return new pass_build_cfg (ctxt
);
458 /* Return true if T is a computed goto. */
461 computed_goto_p (gimple
*t
)
463 return (gimple_code (t
) == GIMPLE_GOTO
464 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
467 /* Returns true if the sequence of statements STMTS only contains
468 a call to __builtin_unreachable (). */
471 gimple_seq_unreachable_p (gimple_seq stmts
)
474 /* Return false if -fsanitize=unreachable, we don't want to
475 optimize away those calls, but rather turn them into
476 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
481 gimple_stmt_iterator gsi
= gsi_last (stmts
);
483 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
486 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
488 gimple
*stmt
= gsi_stmt (gsi
);
489 if (gimple_code (stmt
) != GIMPLE_LABEL
490 && !is_gimple_debug (stmt
)
491 && !gimple_clobber_p (stmt
))
497 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
498 the other edge points to a bb with just __builtin_unreachable ().
499 I.e. return true for C->M edge in:
507 __builtin_unreachable ();
511 assert_unreachable_fallthru_edge_p (edge e
)
513 basic_block pred_bb
= e
->src
;
514 gimple
*last
= last_stmt (pred_bb
);
515 if (last
&& gimple_code (last
) == GIMPLE_COND
)
517 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
518 if (other_bb
== e
->dest
)
519 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
520 if (EDGE_COUNT (other_bb
->succs
) == 0)
521 return gimple_seq_unreachable_p (bb_seq (other_bb
));
527 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
528 could alter control flow except via eh. We initialize the flag at
529 CFG build time and only ever clear it later. */
532 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
534 int flags
= gimple_call_flags (stmt
);
536 /* A call alters control flow if it can make an abnormal goto. */
537 if (call_can_make_abnormal_goto (stmt
)
538 /* A call also alters control flow if it does not return. */
539 || flags
& ECF_NORETURN
540 /* TM ending statements have backedges out of the transaction.
541 Return true so we split the basic block containing them.
542 Note that the TM_BUILTIN test is merely an optimization. */
543 || ((flags
& ECF_TM_BUILTIN
)
544 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
545 /* BUILT_IN_RETURN call is same as return statement. */
546 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
547 /* IFN_UNIQUE should be the last insn, to make checking for it
548 as cheap as possible. */
549 || (gimple_call_internal_p (stmt
)
550 && gimple_call_internal_unique_p (stmt
)))
551 gimple_call_set_ctrl_altering (stmt
, true);
553 gimple_call_set_ctrl_altering (stmt
, false);
557 /* Insert SEQ after BB and build a flowgraph. */
560 make_blocks_1 (gimple_seq seq
, basic_block bb
)
562 gimple_stmt_iterator i
= gsi_start (seq
);
564 gimple
*prev_stmt
= NULL
;
565 bool start_new_block
= true;
566 bool first_stmt_of_seq
= true;
568 while (!gsi_end_p (i
))
570 /* PREV_STMT should only be set to a debug stmt if the debug
571 stmt is before nondebug stmts. Once stmt reaches a nondebug
572 nonlabel, prev_stmt will be set to it, so that
573 stmt_starts_bb_p will know to start a new block if a label is
574 found. However, if stmt was a label after debug stmts only,
575 keep the label in prev_stmt even if we find further debug
576 stmts, for there may be other labels after them, and they
577 should land in the same block. */
578 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
582 if (stmt
&& is_gimple_call (stmt
))
583 gimple_call_initialize_ctrl_altering (stmt
);
585 /* If the statement starts a new basic block or if we have determined
586 in a previous pass that we need to create a new block for STMT, do
588 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
590 if (!first_stmt_of_seq
)
591 gsi_split_seq_before (&i
, &seq
);
592 bb
= create_basic_block (seq
, bb
);
593 start_new_block
= false;
597 /* Now add STMT to BB and create the subgraphs for special statement
599 gimple_set_bb (stmt
, bb
);
601 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 if (stmt_ends_bb_p (stmt
))
605 /* If the stmt can make abnormal goto use a new temporary
606 for the assignment to the LHS. This makes sure the old value
607 of the LHS is available on the abnormal edge. Otherwise
608 we will end up with overlapping life-ranges for abnormal
610 if (gimple_has_lhs (stmt
)
611 && stmt_can_make_abnormal_goto (stmt
)
612 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
614 tree lhs
= gimple_get_lhs (stmt
);
615 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
616 gimple
*s
= gimple_build_assign (lhs
, tmp
);
617 gimple_set_location (s
, gimple_location (stmt
));
618 gimple_set_block (s
, gimple_block (stmt
));
619 gimple_set_lhs (stmt
, tmp
);
620 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
621 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
622 DECL_GIMPLE_REG_P (tmp
) = 1;
623 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
625 start_new_block
= true;
629 first_stmt_of_seq
= false;
634 /* Build a flowgraph for the sequence of stmts SEQ. */
637 make_blocks (gimple_seq seq
)
639 /* Look for debug markers right before labels, and move the debug
640 stmts after the labels. Accepting labels among debug markers
641 adds no value, just complexity; if we wanted to annotate labels
642 with view numbers (so sequencing among markers would matter) or
643 somesuch, we're probably better off still moving the labels, but
644 adding other debug annotations in their original positions or
645 emitting nonbind or bind markers associated with the labels in
646 the original position of the labels.
648 Moving labels would probably be simpler, but we can't do that:
649 moving labels assigns label ids to them, and doing so because of
650 debug markers makes for -fcompare-debug and possibly even codegen
651 differences. So, we have to move the debug stmts instead. To
652 that end, we scan SEQ backwards, marking the position of the
653 latest (earliest we find) label, and moving debug stmts that are
654 not separated from it by nondebug nonlabel stmts after the
656 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
658 gimple_stmt_iterator label
= gsi_none ();
660 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
662 gimple
*stmt
= gsi_stmt (i
);
664 /* If this is the first label we encounter (latest in SEQ)
665 before nondebug stmts, record its position. */
666 if (is_a
<glabel
*> (stmt
))
668 if (gsi_end_p (label
))
673 /* Without a recorded label position to move debug stmts to,
674 there's nothing to do. */
675 if (gsi_end_p (label
))
678 /* Move the debug stmt at I after LABEL. */
679 if (is_gimple_debug (stmt
))
681 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
682 /* As STMT is removed, I advances to the stmt after
683 STMT, so the gsi_prev in the for "increment"
684 expression gets us to the stmt we're to visit after
685 STMT. LABEL, however, would advance to the moved
686 stmt if we passed it to gsi_move_after, so pass it a
687 copy instead, so as to keep LABEL pointing to the
689 gimple_stmt_iterator copy
= label
;
690 gsi_move_after (&i
, ©
);
694 /* There aren't any (more?) debug stmts before label, so
695 there isn't anything else to move after it. */
700 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
703 /* Create and return a new empty basic block after bb AFTER. */
706 create_bb (void *h
, void *e
, basic_block after
)
712 /* Create and initialize a new basic block. Since alloc_block uses
713 GC allocation that clears memory to allocate a basic block, we do
714 not have to clear the newly allocated basic block here. */
717 bb
->index
= last_basic_block_for_fn (cfun
);
719 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
721 /* Add the new block to the linked list of blocks. */
722 link_block (bb
, after
);
724 /* Grow the basic block array if needed. */
725 if ((size_t) last_basic_block_for_fn (cfun
)
726 == basic_block_info_for_fn (cfun
)->length ())
729 (last_basic_block_for_fn (cfun
)
730 + (last_basic_block_for_fn (cfun
) + 3) / 4);
731 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
734 /* Add the newly created block to the array. */
735 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
737 n_basic_blocks_for_fn (cfun
)++;
738 last_basic_block_for_fn (cfun
)++;
744 /*---------------------------------------------------------------------------
746 ---------------------------------------------------------------------------*/
748 /* If basic block BB has an abnormal edge to a basic block
749 containing IFN_ABNORMAL_DISPATCHER internal call, return
750 that the dispatcher's basic block, otherwise return NULL. */
753 get_abnormal_succ_dispatcher (basic_block bb
)
758 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
759 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
761 gimple_stmt_iterator gsi
762 = gsi_start_nondebug_after_labels_bb (e
->dest
);
763 gimple
*g
= gsi_stmt (gsi
);
764 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
770 /* Helper function for make_edges. Create a basic block with
771 with ABNORMAL_DISPATCHER internal call in it if needed, and
772 create abnormal edges from BBS to it and from it to FOR_BB
773 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
777 basic_block for_bb
, int *bb_to_omp_idx
,
778 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
780 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
781 unsigned int idx
= 0;
787 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
788 if (bb_to_omp_idx
[for_bb
->index
] != 0)
792 /* If the dispatcher has been created already, then there are basic
793 blocks with abnormal edges to it, so just make a new edge to
795 if (*dispatcher
== NULL
)
797 /* Check if there are any basic blocks that need to have
798 abnormal edges to this dispatcher. If there are none, return
800 if (bb_to_omp_idx
== NULL
)
802 if (bbs
->is_empty ())
807 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
808 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
814 /* Create the dispatcher bb. */
815 *dispatcher
= create_basic_block (NULL
, for_bb
);
818 /* Factor computed gotos into a common computed goto site. Also
819 record the location of that site so that we can un-factor the
820 gotos after we have converted back to normal form. */
821 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
823 /* Create the destination of the factored goto. Each original
824 computed goto will put its desired destination into this
825 variable and jump to the label we create immediately below. */
826 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
828 /* Build a label for the new block which will contain the
829 factored computed goto. */
830 tree factored_label_decl
831 = create_artificial_label (UNKNOWN_LOCATION
);
832 gimple
*factored_computed_goto_label
833 = gimple_build_label (factored_label_decl
);
834 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
836 /* Build our new computed goto. */
837 gimple
*factored_computed_goto
= gimple_build_goto (var
);
838 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
840 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
843 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
846 gsi
= gsi_last_bb (bb
);
847 gimple
*last
= gsi_stmt (gsi
);
849 gcc_assert (computed_goto_p (last
));
851 /* Copy the original computed goto's destination into VAR. */
853 = gimple_build_assign (var
, gimple_goto_dest (last
));
854 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
856 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
857 e
->goto_locus
= gimple_location (last
);
858 gsi_remove (&gsi
, true);
863 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
864 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
866 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
867 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
869 /* Create predecessor edges of the dispatcher. */
870 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
873 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
875 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
880 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
883 /* Creates outgoing edges for BB. Returns 1 when it ends with an
884 computed goto, returns 2 when it ends with a statement that
885 might return to this function via an nonlocal goto, otherwise
886 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
891 gimple
*last
= last_stmt (bb
);
892 bool fallthru
= false;
898 switch (gimple_code (last
))
901 if (make_goto_expr_edges (bb
))
907 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
908 e
->goto_locus
= gimple_location (last
);
913 make_cond_expr_edges (bb
);
917 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
921 make_eh_edges (last
);
924 case GIMPLE_EH_DISPATCH
:
925 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
929 /* If this function receives a nonlocal goto, then we need to
930 make edges from this call site to all the nonlocal goto
932 if (stmt_can_make_abnormal_goto (last
))
935 /* If this statement has reachable exception handlers, then
936 create abnormal edges to them. */
937 make_eh_edges (last
);
939 /* BUILTIN_RETURN is really a return statement. */
940 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
942 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
945 /* Some calls are known not to return. */
947 fallthru
= !gimple_call_noreturn_p (last
);
951 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 if (is_ctrl_altering_stmt (last
))
954 make_eh_edges (last
);
959 make_gimple_asm_edges (bb
);
964 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
967 case GIMPLE_TRANSACTION
:
969 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
970 tree label1
= gimple_transaction_label_norm (txn
);
971 tree label2
= gimple_transaction_label_uninst (txn
);
974 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
976 make_edge (bb
, label_to_block (label2
),
977 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
979 tree label3
= gimple_transaction_label_over (txn
);
980 if (gimple_transaction_subcode (txn
)
981 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
982 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
989 gcc_assert (!stmt_ends_bb_p (last
));
995 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
1000 /* Join all the blocks in the flowgraph. */
1006 struct omp_region
*cur_region
= NULL
;
1007 auto_vec
<basic_block
> ab_edge_goto
;
1008 auto_vec
<basic_block
> ab_edge_call
;
1009 int *bb_to_omp_idx
= NULL
;
1010 int cur_omp_region_idx
= 0;
1012 /* Create an edge from entry to the first block with executable
1013 statements in it. */
1014 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1015 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1018 /* Traverse the basic block array placing edges. */
1019 FOR_EACH_BB_FN (bb
, cfun
)
1024 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1026 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1028 ab_edge_goto
.safe_push (bb
);
1030 ab_edge_call
.safe_push (bb
);
1032 if (cur_region
&& bb_to_omp_idx
== NULL
)
1033 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1036 /* Computed gotos are hell to deal with, especially if there are
1037 lots of them with a large number of destinations. So we factor
1038 them to a common computed goto location before we build the
1039 edge list. After we convert back to normal form, we will un-factor
1040 the computed gotos since factoring introduces an unwanted jump.
1041 For non-local gotos and abnormal edges from calls to calls that return
1042 twice or forced labels, factor the abnormal edges too, by having all
1043 abnormal edges from the calls go to a common artificial basic block
1044 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1045 basic block to all forced labels and calls returning twice.
1046 We do this per-OpenMP structured block, because those regions
1047 are guaranteed to be single entry single exit by the standard,
1048 so it is not allowed to enter or exit such regions abnormally this way,
1049 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1050 must not transfer control across SESE region boundaries. */
1051 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1053 gimple_stmt_iterator gsi
;
1054 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1055 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1056 int count
= n_basic_blocks_for_fn (cfun
);
1059 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1061 FOR_EACH_BB_FN (bb
, cfun
)
1063 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1065 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1071 target
= gimple_label_label (label_stmt
);
1073 /* Make an edge to every label block that has been marked as a
1074 potential target for a computed goto or a non-local goto. */
1075 if (FORCED_LABEL (target
))
1076 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1077 &ab_edge_goto
, true);
1078 if (DECL_NONLOCAL (target
))
1080 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1081 &ab_edge_call
, false);
1086 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1087 gsi_next_nondebug (&gsi
);
1088 if (!gsi_end_p (gsi
))
1090 /* Make an edge to every setjmp-like call. */
1091 gimple
*call_stmt
= gsi_stmt (gsi
);
1092 if (is_gimple_call (call_stmt
)
1093 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1094 || gimple_call_builtin_p (call_stmt
,
1095 BUILT_IN_SETJMP_RECEIVER
)))
1096 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1097 &ab_edge_call
, false);
1102 XDELETE (dispatcher_bbs
);
1105 XDELETE (bb_to_omp_idx
);
1107 omp_free_regions ();
1110 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1111 needed. Returns true if new bbs were created.
1112 Note: This is transitional code, and should not be used for new code. We
1113 should be able to get rid of this by rewriting all target va-arg
1114 gimplification hooks to use an interface gimple_build_cond_value as described
1115 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1120 gimple
*stmt
= gsi_stmt (*gsi
);
1121 basic_block bb
= gimple_bb (stmt
);
1122 basic_block lastbb
, afterbb
;
1123 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1125 lastbb
= make_blocks_1 (seq
, bb
);
1126 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1128 e
= split_block (bb
, stmt
);
1129 /* Move e->dest to come after the new basic blocks. */
1131 unlink_block (afterbb
);
1132 link_block (afterbb
, lastbb
);
1133 redirect_edge_succ (e
, bb
->next_bb
);
1135 while (bb
!= afterbb
)
1137 struct omp_region
*cur_region
= NULL
;
1138 profile_count cnt
= profile_count::zero ();
1141 int cur_omp_region_idx
= 0;
1142 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1143 gcc_assert (!mer
&& !cur_region
);
1144 add_bb_to_loop (bb
, afterbb
->loop_father
);
1148 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1150 if (e
->count ().initialized_p ())
1155 tree_guess_outgoing_edge_probabilities (bb
);
1156 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1164 /* Find the next available discriminator value for LOCUS. The
1165 discriminator distinguishes among several basic blocks that
1166 share a common locus, allowing for more accurate sample-based
1170 next_discriminator_for_locus (location_t locus
)
1172 struct locus_discrim_map item
;
1173 struct locus_discrim_map
**slot
;
1176 item
.discriminator
= 0;
1177 slot
= discriminator_per_locus
->find_slot_with_hash (
1178 &item
, LOCATION_LINE (locus
), INSERT
);
1180 if (*slot
== HTAB_EMPTY_ENTRY
)
1182 *slot
= XNEW (struct locus_discrim_map
);
1184 (*slot
)->locus
= locus
;
1185 (*slot
)->discriminator
= 0;
1187 (*slot
)->discriminator
++;
1188 return (*slot
)->discriminator
;
1191 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 same_line_p (location_t locus1
, location_t locus2
)
1196 expanded_location from
, to
;
1198 if (locus1
== locus2
)
1201 from
= expand_location (locus1
);
1202 to
= expand_location (locus2
);
1204 if (from
.line
!= to
.line
)
1206 if (from
.file
== to
.file
)
1208 return (from
.file
!= NULL
1210 && filename_cmp (from
.file
, to
.file
) == 0);
1213 /* Assign discriminators to each basic block. */
1216 assign_discriminators (void)
1220 FOR_EACH_BB_FN (bb
, cfun
)
1224 gimple
*last
= last_stmt (bb
);
1225 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1227 if (locus
== UNKNOWN_LOCATION
)
1230 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1232 gimple
*first
= first_non_label_stmt (e
->dest
);
1233 gimple
*last
= last_stmt (e
->dest
);
1234 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1235 || (last
&& same_line_p (locus
, gimple_location (last
))))
1237 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1238 bb
->discriminator
= next_discriminator_for_locus (locus
);
1240 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1246 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 make_cond_expr_edges (basic_block bb
)
1251 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1252 gimple
*then_stmt
, *else_stmt
;
1253 basic_block then_bb
, else_bb
;
1254 tree then_label
, else_label
;
1258 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1260 /* Entry basic blocks for each component. */
1261 then_label
= gimple_cond_true_label (entry
);
1262 else_label
= gimple_cond_false_label (entry
);
1263 then_bb
= label_to_block (then_label
);
1264 else_bb
= label_to_block (else_label
);
1265 then_stmt
= first_stmt (then_bb
);
1266 else_stmt
= first_stmt (else_bb
);
1268 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1269 e
->goto_locus
= gimple_location (then_stmt
);
1270 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1272 e
->goto_locus
= gimple_location (else_stmt
);
1274 /* We do not need the labels anymore. */
1275 gimple_cond_set_true_label (entry
, NULL_TREE
);
1276 gimple_cond_set_false_label (entry
, NULL_TREE
);
1280 /* Called for each element in the hash table (P) as we delete the
1281 edge to cases hash table.
1283 Clear all the CASE_CHAINs to prevent problems with copying of
1284 SWITCH_EXPRs and structure sharing rules, then free the hash table
1288 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1292 for (t
= value
; t
; t
= next
)
1294 next
= CASE_CHAIN (t
);
1295 CASE_CHAIN (t
) = NULL
;
1301 /* Start recording information mapping edges to case labels. */
1304 start_recording_case_labels (void)
1306 gcc_assert (edge_to_cases
== NULL
);
1307 edge_to_cases
= new hash_map
<edge
, tree
>;
1308 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1311 /* Return nonzero if we are recording information for case labels. */
1314 recording_case_labels_p (void)
1316 return (edge_to_cases
!= NULL
);
1319 /* Stop recording information mapping edges to case labels and
1320 remove any information we have recorded. */
1322 end_recording_case_labels (void)
1326 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1327 delete edge_to_cases
;
1328 edge_to_cases
= NULL
;
1329 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1331 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1334 gimple
*stmt
= last_stmt (bb
);
1335 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1336 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1339 BITMAP_FREE (touched_switch_bbs
);
1342 /* If we are inside a {start,end}_recording_cases block, then return
1343 a chain of CASE_LABEL_EXPRs from T which reference E.
1345 Otherwise return NULL. */
1348 get_cases_for_edge (edge e
, gswitch
*t
)
1353 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1354 chains available. Return NULL so the caller can detect this case. */
1355 if (!recording_case_labels_p ())
1358 slot
= edge_to_cases
->get (e
);
1362 /* If we did not find E in the hash table, then this must be the first
1363 time we have been queried for information about E & T. Add all the
1364 elements from T to the hash table then perform the query again. */
1366 n
= gimple_switch_num_labels (t
);
1367 for (i
= 0; i
< n
; i
++)
1369 tree elt
= gimple_switch_label (t
, i
);
1370 tree lab
= CASE_LABEL (elt
);
1371 basic_block label_bb
= label_to_block (lab
);
1372 edge this_edge
= find_edge (e
->src
, label_bb
);
1374 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1377 CASE_CHAIN (elt
) = s
;
1381 return *edge_to_cases
->get (e
);
1384 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1391 n
= gimple_switch_num_labels (entry
);
1393 for (i
= 0; i
< n
; ++i
)
1395 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1396 basic_block label_bb
= label_to_block (lab
);
1397 make_edge (bb
, label_bb
, 0);
1402 /* Return the basic block holding label DEST. */
1405 label_to_block_fn (struct function
*ifun
, tree dest
)
1407 int uid
= LABEL_DECL_UID (dest
);
1409 /* We would die hard when faced by an undefined label. Emit a label to
1410 the very first basic block. This will hopefully make even the dataflow
1411 and undefined variable warnings quite right. */
1412 if (seen_error () && uid
< 0)
1414 gimple_stmt_iterator gsi
=
1415 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1418 stmt
= gimple_build_label (dest
);
1419 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1420 uid
= LABEL_DECL_UID (dest
);
1422 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1424 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1427 /* Create edges for a goto statement at block BB. Returns true
1428 if abnormal edges should be created. */
1431 make_goto_expr_edges (basic_block bb
)
1433 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1434 gimple
*goto_t
= gsi_stmt (last
);
1436 /* A simple GOTO creates normal edges. */
1437 if (simple_goto_p (goto_t
))
1439 tree dest
= gimple_goto_dest (goto_t
);
1440 basic_block label_bb
= label_to_block (dest
);
1441 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1442 e
->goto_locus
= gimple_location (goto_t
);
1443 gsi_remove (&last
, true);
1447 /* A computed GOTO creates abnormal edges. */
1451 /* Create edges for an asm statement with labels at block BB. */
1454 make_gimple_asm_edges (basic_block bb
)
1456 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1457 int i
, n
= gimple_asm_nlabels (stmt
);
1459 for (i
= 0; i
< n
; ++i
)
1461 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1462 basic_block label_bb
= label_to_block (label
);
1463 make_edge (bb
, label_bb
, 0);
1467 /*---------------------------------------------------------------------------
1469 ---------------------------------------------------------------------------*/
1471 /* Cleanup useless labels in basic blocks. This is something we wish
1472 to do early because it allows us to group case labels before creating
1473 the edges for the CFG, and it speeds up block statement iterators in
1474 all passes later on.
1475 We rerun this pass after CFG is created, to get rid of the labels that
1476 are no longer referenced. After then we do not run it any more, since
1477 (almost) no new labels should be created. */
1479 /* A map from basic block index to the leading label of that block. */
1480 static struct label_record
1485 /* True if the label is referenced from somewhere. */
1489 /* Given LABEL return the first label in the same basic block. */
1492 main_block_label (tree label
)
1494 basic_block bb
= label_to_block (label
);
1495 tree main_label
= label_for_bb
[bb
->index
].label
;
1497 /* label_to_block possibly inserted undefined label into the chain. */
1500 label_for_bb
[bb
->index
].label
= label
;
1504 label_for_bb
[bb
->index
].used
= true;
1508 /* Clean up redundant labels within the exception tree. */
1511 cleanup_dead_labels_eh (void)
1518 if (cfun
->eh
== NULL
)
1521 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1522 if (lp
&& lp
->post_landing_pad
)
1524 lab
= main_block_label (lp
->post_landing_pad
);
1525 if (lab
!= lp
->post_landing_pad
)
1527 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1528 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1532 FOR_ALL_EH_REGION (r
)
1536 case ERT_MUST_NOT_THROW
:
1542 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1546 c
->label
= main_block_label (lab
);
1551 case ERT_ALLOWED_EXCEPTIONS
:
1552 lab
= r
->u
.allowed
.label
;
1554 r
->u
.allowed
.label
= main_block_label (lab
);
1560 /* Cleanup redundant labels. This is a three-step process:
1561 1) Find the leading label for each block.
1562 2) Redirect all references to labels to the leading labels.
1563 3) Cleanup all useless labels. */
1566 cleanup_dead_labels (void)
1569 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1571 /* Find a suitable label for each block. We use the first user-defined
1572 label if there is one, or otherwise just the first label we see. */
1573 FOR_EACH_BB_FN (bb
, cfun
)
1575 gimple_stmt_iterator i
;
1577 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1580 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1585 label
= gimple_label_label (label_stmt
);
1587 /* If we have not yet seen a label for the current block,
1588 remember this one and see if there are more labels. */
1589 if (!label_for_bb
[bb
->index
].label
)
1591 label_for_bb
[bb
->index
].label
= label
;
1595 /* If we did see a label for the current block already, but it
1596 is an artificially created label, replace it if the current
1597 label is a user defined label. */
1598 if (!DECL_ARTIFICIAL (label
)
1599 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1601 label_for_bb
[bb
->index
].label
= label
;
1607 /* Now redirect all jumps/branches to the selected label.
1608 First do so for each block ending in a control statement. */
1609 FOR_EACH_BB_FN (bb
, cfun
)
1611 gimple
*stmt
= last_stmt (bb
);
1612 tree label
, new_label
;
1617 switch (gimple_code (stmt
))
1621 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1622 label
= gimple_cond_true_label (cond_stmt
);
1625 new_label
= main_block_label (label
);
1626 if (new_label
!= label
)
1627 gimple_cond_set_true_label (cond_stmt
, new_label
);
1630 label
= gimple_cond_false_label (cond_stmt
);
1633 new_label
= main_block_label (label
);
1634 if (new_label
!= label
)
1635 gimple_cond_set_false_label (cond_stmt
, new_label
);
1642 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1643 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1645 /* Replace all destination labels. */
1646 for (i
= 0; i
< n
; ++i
)
1648 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1649 label
= CASE_LABEL (case_label
);
1650 new_label
= main_block_label (label
);
1651 if (new_label
!= label
)
1652 CASE_LABEL (case_label
) = new_label
;
1659 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1660 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1662 for (i
= 0; i
< n
; ++i
)
1664 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1665 tree label
= main_block_label (TREE_VALUE (cons
));
1666 TREE_VALUE (cons
) = label
;
1671 /* We have to handle gotos until they're removed, and we don't
1672 remove them until after we've created the CFG edges. */
1674 if (!computed_goto_p (stmt
))
1676 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1677 label
= gimple_goto_dest (goto_stmt
);
1678 new_label
= main_block_label (label
);
1679 if (new_label
!= label
)
1680 gimple_goto_set_dest (goto_stmt
, new_label
);
1684 case GIMPLE_TRANSACTION
:
1686 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1688 label
= gimple_transaction_label_norm (txn
);
1691 new_label
= main_block_label (label
);
1692 if (new_label
!= label
)
1693 gimple_transaction_set_label_norm (txn
, new_label
);
1696 label
= gimple_transaction_label_uninst (txn
);
1699 new_label
= main_block_label (label
);
1700 if (new_label
!= label
)
1701 gimple_transaction_set_label_uninst (txn
, new_label
);
1704 label
= gimple_transaction_label_over (txn
);
1707 new_label
= main_block_label (label
);
1708 if (new_label
!= label
)
1709 gimple_transaction_set_label_over (txn
, new_label
);
1719 /* Do the same for the exception region tree labels. */
1720 cleanup_dead_labels_eh ();
1722 /* Finally, purge dead labels. All user-defined labels and labels that
1723 can be the target of non-local gotos and labels which have their
1724 address taken are preserved. */
1725 FOR_EACH_BB_FN (bb
, cfun
)
1727 gimple_stmt_iterator i
;
1728 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1730 if (!label_for_this_bb
)
1733 /* If the main label of the block is unused, we may still remove it. */
1734 if (!label_for_bb
[bb
->index
].used
)
1735 label_for_this_bb
= NULL
;
1737 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1740 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1745 label
= gimple_label_label (label_stmt
);
1747 if (label
== label_for_this_bb
1748 || !DECL_ARTIFICIAL (label
)
1749 || DECL_NONLOCAL (label
)
1750 || FORCED_LABEL (label
))
1753 gsi_remove (&i
, true);
1757 free (label_for_bb
);
1760 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1761 the ones jumping to the same label.
1762 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 group_case_labels_stmt (gswitch
*stmt
)
1767 int old_size
= gimple_switch_num_labels (stmt
);
1768 int i
, next_index
, new_size
;
1769 basic_block default_bb
= NULL
;
1771 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1773 /* Look for possible opportunities to merge cases. */
1775 while (i
< old_size
)
1777 tree base_case
, base_high
;
1778 basic_block base_bb
;
1780 base_case
= gimple_switch_label (stmt
, i
);
1782 gcc_assert (base_case
);
1783 base_bb
= label_to_block (CASE_LABEL (base_case
));
1785 /* Discard cases that have the same destination as the default case or
1786 whose destiniation blocks have already been removed as unreachable. */
1787 if (base_bb
== NULL
|| base_bb
== default_bb
)
1793 base_high
= CASE_HIGH (base_case
)
1794 ? CASE_HIGH (base_case
)
1795 : CASE_LOW (base_case
);
1798 /* Try to merge case labels. Break out when we reach the end
1799 of the label vector or when we cannot merge the next case
1800 label with the current one. */
1801 while (next_index
< old_size
)
1803 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1804 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1805 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1807 /* Merge the cases if they jump to the same place,
1808 and their ranges are consecutive. */
1809 if (merge_bb
== base_bb
1810 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1812 base_high
= CASE_HIGH (merge_case
) ?
1813 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1814 CASE_HIGH (base_case
) = base_high
;
1821 /* Discard cases that have an unreachable destination block. */
1822 if (EDGE_COUNT (base_bb
->succs
) == 0
1823 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1824 /* Don't optimize this if __builtin_unreachable () is the
1825 implicitly added one by the C++ FE too early, before
1826 -Wreturn-type can be diagnosed. We'll optimize it later
1827 during switchconv pass or any other cfg cleanup. */
1828 && (gimple_in_ssa_p (cfun
)
1829 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1830 != BUILTINS_LOCATION
)))
1832 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1833 if (base_edge
!= NULL
)
1834 remove_edge_and_dominated_blocks (base_edge
);
1840 gimple_switch_set_label (stmt
, new_size
,
1841 gimple_switch_label (stmt
, i
));
1846 gcc_assert (new_size
<= old_size
);
1848 if (new_size
< old_size
)
1849 gimple_switch_set_num_labels (stmt
, new_size
);
1851 return new_size
< old_size
;
1854 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1855 and scan the sorted vector of cases. Combine the ones jumping to the
1859 group_case_labels (void)
1862 bool changed
= false;
1864 FOR_EACH_BB_FN (bb
, cfun
)
1866 gimple
*stmt
= last_stmt (bb
);
1867 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1868 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1874 /* Checks whether we can merge block B into block A. */
1877 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1881 if (!single_succ_p (a
))
1884 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1887 if (single_succ (a
) != b
)
1890 if (!single_pred_p (b
))
1893 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1894 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1897 /* If A ends by a statement causing exceptions or something similar, we
1898 cannot merge the blocks. */
1899 stmt
= last_stmt (a
);
1900 if (stmt
&& stmt_ends_bb_p (stmt
))
1903 /* Do not allow a block with only a non-local label to be merged. */
1905 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1906 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1909 /* Examine the labels at the beginning of B. */
1910 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1914 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1917 lab
= gimple_label_label (label_stmt
);
1919 /* Do not remove user forced labels or for -O0 any user labels. */
1920 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1924 /* Protect simple loop latches. We only want to avoid merging
1925 the latch with the loop header or with a block in another
1926 loop in this case. */
1928 && b
->loop_father
->latch
== b
1929 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1930 && (b
->loop_father
->header
== a
1931 || b
->loop_father
!= a
->loop_father
))
1934 /* It must be possible to eliminate all phi nodes in B. If ssa form
1935 is not up-to-date and a name-mapping is registered, we cannot eliminate
1936 any phis. Symbols marked for renaming are never a problem though. */
1937 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1940 gphi
*phi
= gsi
.phi ();
1941 /* Technically only new names matter. */
1942 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1946 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1950 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1951 gimple_stmt_iterator prev
, next
;
1952 prev
= gsi_last_nondebug_bb (a
);
1953 next
= gsi_after_labels (b
);
1954 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1955 gsi_next_nondebug (&next
);
1956 if ((gsi_end_p (prev
)
1957 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1958 && (gsi_end_p (next
)
1959 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1966 /* Replaces all uses of NAME by VAL. */
1969 replace_uses_by (tree name
, tree val
)
1971 imm_use_iterator imm_iter
;
1976 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1978 /* Mark the block if we change the last stmt in it. */
1979 if (cfgcleanup_altered_bbs
1980 && stmt_ends_bb_p (stmt
))
1981 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1983 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1985 replace_exp (use
, val
);
1987 if (gimple_code (stmt
) == GIMPLE_PHI
)
1989 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1990 PHI_ARG_INDEX_FROM_USE (use
));
1991 if (e
->flags
& EDGE_ABNORMAL
1992 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1994 /* This can only occur for virtual operands, since
1995 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1996 would prevent replacement. */
1997 gcc_checking_assert (virtual_operand_p (name
));
1998 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2003 if (gimple_code (stmt
) != GIMPLE_PHI
)
2005 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2006 gimple
*orig_stmt
= stmt
;
2009 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2010 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2011 only change sth from non-invariant to invariant, and only
2012 when propagating constants. */
2013 if (is_gimple_min_invariant (val
))
2014 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2016 tree op
= gimple_op (stmt
, i
);
2017 /* Operands may be empty here. For example, the labels
2018 of a GIMPLE_COND are nulled out following the creation
2019 of the corresponding CFG edges. */
2020 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2021 recompute_tree_invariant_for_addr_expr (op
);
2024 if (fold_stmt (&gsi
))
2025 stmt
= gsi_stmt (gsi
);
2027 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2028 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2034 gcc_checking_assert (has_zero_uses (name
));
2036 /* Also update the trees stored in loop structures. */
2041 FOR_EACH_LOOP (loop
, 0)
2043 substitute_in_loop_info (loop
, name
, val
);
2048 /* Merge block B into block A. */
2051 gimple_merge_blocks (basic_block a
, basic_block b
)
2053 gimple_stmt_iterator last
, gsi
;
2057 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2059 /* Remove all single-valued PHI nodes from block B of the form
2060 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2061 gsi
= gsi_last_bb (a
);
2062 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2064 gimple
*phi
= gsi_stmt (psi
);
2065 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2067 bool may_replace_uses
= (virtual_operand_p (def
)
2068 || may_propagate_copy (def
, use
));
2070 /* In case we maintain loop closed ssa form, do not propagate arguments
2071 of loop exit phi nodes. */
2073 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2074 && !virtual_operand_p (def
)
2075 && TREE_CODE (use
) == SSA_NAME
2076 && a
->loop_father
!= b
->loop_father
)
2077 may_replace_uses
= false;
2079 if (!may_replace_uses
)
2081 gcc_assert (!virtual_operand_p (def
));
2083 /* Note that just emitting the copies is fine -- there is no problem
2084 with ordering of phi nodes. This is because A is the single
2085 predecessor of B, therefore results of the phi nodes cannot
2086 appear as arguments of the phi nodes. */
2087 copy
= gimple_build_assign (def
, use
);
2088 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2089 remove_phi_node (&psi
, false);
2093 /* If we deal with a PHI for virtual operands, we can simply
2094 propagate these without fussing with folding or updating
2096 if (virtual_operand_p (def
))
2098 imm_use_iterator iter
;
2099 use_operand_p use_p
;
2102 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2103 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2104 SET_USE (use_p
, use
);
2106 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2107 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2110 replace_uses_by (def
, use
);
2112 remove_phi_node (&psi
, true);
2116 /* Ensure that B follows A. */
2117 move_block_after (b
, a
);
2119 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2120 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2122 /* Remove labels from B and set gimple_bb to A for other statements. */
2123 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2125 gimple
*stmt
= gsi_stmt (gsi
);
2126 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2128 tree label
= gimple_label_label (label_stmt
);
2131 gsi_remove (&gsi
, false);
2133 /* Now that we can thread computed gotos, we might have
2134 a situation where we have a forced label in block B
2135 However, the label at the start of block B might still be
2136 used in other ways (think about the runtime checking for
2137 Fortran assigned gotos). So we can not just delete the
2138 label. Instead we move the label to the start of block A. */
2139 if (FORCED_LABEL (label
))
2141 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2142 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2144 /* Other user labels keep around in a form of a debug stmt. */
2145 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2147 gimple
*dbg
= gimple_build_debug_bind (label
,
2150 gimple_debug_bind_reset_value (dbg
);
2151 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2154 lp_nr
= EH_LANDING_PAD_NR (label
);
2157 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2158 lp
->post_landing_pad
= NULL
;
2163 gimple_set_bb (stmt
, a
);
2168 /* When merging two BBs, if their counts are different, the larger count
2169 is selected as the new bb count. This is to handle inconsistent
2171 if (a
->loop_father
== b
->loop_father
)
2173 a
->count
= a
->count
.merge (b
->count
);
2176 /* Merge the sequences. */
2177 last
= gsi_last_bb (a
);
2178 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2179 set_bb_seq (b
, NULL
);
2181 if (cfgcleanup_altered_bbs
)
2182 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2186 /* Return the one of two successors of BB that is not reachable by a
2187 complex edge, if there is one. Else, return BB. We use
2188 this in optimizations that use post-dominators for their heuristics,
2189 to catch the cases in C++ where function calls are involved. */
2192 single_noncomplex_succ (basic_block bb
)
2195 if (EDGE_COUNT (bb
->succs
) != 2)
2198 e0
= EDGE_SUCC (bb
, 0);
2199 e1
= EDGE_SUCC (bb
, 1);
2200 if (e0
->flags
& EDGE_COMPLEX
)
2202 if (e1
->flags
& EDGE_COMPLEX
)
2208 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 notice_special_calls (gcall
*call
)
2213 int flags
= gimple_call_flags (call
);
2215 if (flags
& ECF_MAY_BE_ALLOCA
)
2216 cfun
->calls_alloca
= true;
2217 if (flags
& ECF_RETURNS_TWICE
)
2218 cfun
->calls_setjmp
= true;
2222 /* Clear flags set by notice_special_calls. Used by dead code removal
2223 to update the flags. */
2226 clear_special_calls (void)
2228 cfun
->calls_alloca
= false;
2229 cfun
->calls_setjmp
= false;
2232 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2237 /* Since this block is no longer reachable, we can just delete all
2238 of its PHI nodes. */
2239 remove_phi_nodes (bb
);
2241 /* Remove edges to BB's successors. */
2242 while (EDGE_COUNT (bb
->succs
) > 0)
2243 remove_edge (EDGE_SUCC (bb
, 0));
2247 /* Remove statements of basic block BB. */
2250 remove_bb (basic_block bb
)
2252 gimple_stmt_iterator i
;
2256 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2257 if (dump_flags
& TDF_DETAILS
)
2259 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2260 fprintf (dump_file
, "\n");
2266 struct loop
*loop
= bb
->loop_father
;
2268 /* If a loop gets removed, clean up the information associated
2270 if (loop
->latch
== bb
2271 || loop
->header
== bb
)
2272 free_numbers_of_iterations_estimates (loop
);
2275 /* Remove all the instructions in the block. */
2276 if (bb_seq (bb
) != NULL
)
2278 /* Walk backwards so as to get a chance to substitute all
2279 released DEFs into debug stmts. See
2280 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2284 gimple
*stmt
= gsi_stmt (i
);
2285 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2287 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2288 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2291 gimple_stmt_iterator new_gsi
;
2293 /* A non-reachable non-local label may still be referenced.
2294 But it no longer needs to carry the extra semantics of
2296 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2298 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2299 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2302 new_bb
= bb
->prev_bb
;
2303 new_gsi
= gsi_start_bb (new_bb
);
2304 gsi_remove (&i
, false);
2305 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2309 /* Release SSA definitions. */
2310 release_defs (stmt
);
2311 gsi_remove (&i
, true);
2315 i
= gsi_last_bb (bb
);
2321 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2322 bb
->il
.gimple
.seq
= NULL
;
2323 bb
->il
.gimple
.phi_nodes
= NULL
;
2327 /* Given a basic block BB and a value VAL for use in the final statement
2328 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2329 the edge that will be taken out of the block.
2330 If VAL is NULL_TREE, then the current value of the final statement's
2331 predicate or index is used.
2332 If the value does not match a unique edge, NULL is returned. */
2335 find_taken_edge (basic_block bb
, tree val
)
2339 stmt
= last_stmt (bb
);
2341 /* Handle ENTRY and EXIT. */
2345 if (gimple_code (stmt
) == GIMPLE_COND
)
2346 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2348 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2349 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2351 if (computed_goto_p (stmt
))
2353 /* Only optimize if the argument is a label, if the argument is
2354 not a label then we can not construct a proper CFG.
2356 It may be the case that we only need to allow the LABEL_REF to
2357 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2358 appear inside a LABEL_EXPR just to be safe. */
2360 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2361 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2362 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2365 /* Otherwise we only know the taken successor edge if it's unique. */
2366 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2369 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2370 statement, determine which of the outgoing edges will be taken out of the
2371 block. Return NULL if either edge may be taken. */
2374 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2379 dest
= label_to_block (val
);
2382 e
= find_edge (bb
, dest
);
2383 gcc_assert (e
!= NULL
);
2389 /* Given COND_STMT and a constant value VAL for use as the predicate,
2390 determine which of the two edges will be taken out of
2391 the statement's block. Return NULL if either edge may be taken.
2392 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2396 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2398 edge true_edge
, false_edge
;
2400 if (val
== NULL_TREE
)
2402 /* Use the current value of the predicate. */
2403 if (gimple_cond_true_p (cond_stmt
))
2404 val
= integer_one_node
;
2405 else if (gimple_cond_false_p (cond_stmt
))
2406 val
= integer_zero_node
;
2410 else if (TREE_CODE (val
) != INTEGER_CST
)
2413 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2414 &true_edge
, &false_edge
);
2416 return (integer_zerop (val
) ? false_edge
: true_edge
);
2419 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2420 which edge will be taken out of the statement's block. Return NULL if any
2422 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2426 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2428 basic_block dest_bb
;
2432 if (gimple_switch_num_labels (switch_stmt
) == 1)
2433 taken_case
= gimple_switch_default_label (switch_stmt
);
2436 if (val
== NULL_TREE
)
2437 val
= gimple_switch_index (switch_stmt
);
2438 if (TREE_CODE (val
) != INTEGER_CST
)
2441 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2443 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2445 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2451 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2452 We can make optimal use here of the fact that the case labels are
2453 sorted: We can do a binary search for a case matching VAL. */
2456 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2458 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2459 tree default_case
= gimple_switch_default_label (switch_stmt
);
2461 for (low
= 0, high
= n
; high
- low
> 1; )
2463 size_t i
= (high
+ low
) / 2;
2464 tree t
= gimple_switch_label (switch_stmt
, i
);
2467 /* Cache the result of comparing CASE_LOW and val. */
2468 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2475 if (CASE_HIGH (t
) == NULL
)
2477 /* A singe-valued case label. */
2483 /* A case range. We can only handle integer ranges. */
2484 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2489 return default_case
;
2493 /* Dump a basic block on stderr. */
2496 gimple_debug_bb (basic_block bb
)
2498 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2502 /* Dump basic block with index N on stderr. */
2505 gimple_debug_bb_n (int n
)
2507 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2508 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2512 /* Dump the CFG on stderr.
2514 FLAGS are the same used by the tree dumping functions
2515 (see TDF_* in dumpfile.h). */
2518 gimple_debug_cfg (dump_flags_t flags
)
2520 gimple_dump_cfg (stderr
, flags
);
2524 /* Dump the program showing basic block boundaries on the given FILE.
2526 FLAGS are the same used by the tree dumping functions (see TDF_* in
2530 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2532 if (flags
& TDF_DETAILS
)
2534 dump_function_header (file
, current_function_decl
, flags
);
2535 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2536 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2537 last_basic_block_for_fn (cfun
));
2539 brief_dump_cfg (file
, flags
);
2540 fprintf (file
, "\n");
2543 if (flags
& TDF_STATS
)
2544 dump_cfg_stats (file
);
2546 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2550 /* Dump CFG statistics on FILE. */
2553 dump_cfg_stats (FILE *file
)
2555 static long max_num_merged_labels
= 0;
2556 unsigned long size
, total
= 0;
2559 const char * const fmt_str
= "%-30s%-13s%12s\n";
2560 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2561 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2562 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2563 const char *funcname
= current_function_name ();
2565 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2567 fprintf (file
, "---------------------------------------------------------\n");
2568 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2569 fprintf (file
, fmt_str
, "", " instances ", "used ");
2570 fprintf (file
, "---------------------------------------------------------\n");
2572 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2574 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2575 SCALE (size
), LABEL (size
));
2578 FOR_EACH_BB_FN (bb
, cfun
)
2579 num_edges
+= EDGE_COUNT (bb
->succs
);
2580 size
= num_edges
* sizeof (struct edge_def
);
2582 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2584 fprintf (file
, "---------------------------------------------------------\n");
2585 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2587 fprintf (file
, "---------------------------------------------------------\n");
2588 fprintf (file
, "\n");
2590 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2591 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2593 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2594 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2596 fprintf (file
, "\n");
2600 /* Dump CFG statistics on stderr. Keep extern so that it's always
2601 linked in the final executable. */
2604 debug_cfg_stats (void)
2606 dump_cfg_stats (stderr
);
2609 /*---------------------------------------------------------------------------
2610 Miscellaneous helpers
2611 ---------------------------------------------------------------------------*/
2613 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2614 flow. Transfers of control flow associated with EH are excluded. */
2617 call_can_make_abnormal_goto (gimple
*t
)
2619 /* If the function has no non-local labels, then a call cannot make an
2620 abnormal transfer of control. */
2621 if (!cfun
->has_nonlocal_label
2622 && !cfun
->calls_setjmp
)
2625 /* Likewise if the call has no side effects. */
2626 if (!gimple_has_side_effects (t
))
2629 /* Likewise if the called function is leaf. */
2630 if (gimple_call_flags (t
) & ECF_LEAF
)
2637 /* Return true if T can make an abnormal transfer of control flow.
2638 Transfers of control flow associated with EH are excluded. */
2641 stmt_can_make_abnormal_goto (gimple
*t
)
2643 if (computed_goto_p (t
))
2645 if (is_gimple_call (t
))
2646 return call_can_make_abnormal_goto (t
);
2651 /* Return true if T represents a stmt that always transfers control. */
2654 is_ctrl_stmt (gimple
*t
)
2656 switch (gimple_code (t
))
2670 /* Return true if T is a statement that may alter the flow of control
2671 (e.g., a call to a non-returning function). */
2674 is_ctrl_altering_stmt (gimple
*t
)
2678 switch (gimple_code (t
))
2681 /* Per stmt call flag indicates whether the call could alter
2683 if (gimple_call_ctrl_altering_p (t
))
2687 case GIMPLE_EH_DISPATCH
:
2688 /* EH_DISPATCH branches to the individual catch handlers at
2689 this level of a try or allowed-exceptions region. It can
2690 fallthru to the next statement as well. */
2694 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2699 /* OpenMP directives alter control flow. */
2702 case GIMPLE_TRANSACTION
:
2703 /* A transaction start alters control flow. */
2710 /* If a statement can throw, it alters control flow. */
2711 return stmt_can_throw_internal (t
);
2715 /* Return true if T is a simple local goto. */
2718 simple_goto_p (gimple
*t
)
2720 return (gimple_code (t
) == GIMPLE_GOTO
2721 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2725 /* Return true if STMT should start a new basic block. PREV_STMT is
2726 the statement preceding STMT. It is used when STMT is a label or a
2727 case label. Labels should only start a new basic block if their
2728 previous statement wasn't a label. Otherwise, sequence of labels
2729 would generate unnecessary basic blocks that only contain a single
2733 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2738 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2739 any nondebug stmts in the block. We don't want to start another
2740 block in this case: the debug stmt will already have started the
2741 one STMT would start if we weren't outputting debug stmts. */
2742 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2745 /* Labels start a new basic block only if the preceding statement
2746 wasn't a label of the same type. This prevents the creation of
2747 consecutive blocks that have nothing but a single label. */
2748 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2750 /* Nonlocal and computed GOTO targets always start a new block. */
2751 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2752 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2755 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2757 if (DECL_NONLOCAL (gimple_label_label (
2758 as_a
<glabel
*> (prev_stmt
))))
2761 cfg_stats
.num_merged_labels
++;
2767 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2769 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2770 /* setjmp acts similar to a nonlocal GOTO target and thus should
2771 start a new block. */
2773 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2775 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2776 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2777 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2778 /* PHI nodes start a new block unless preceeded by a label
2787 /* Return true if T should end a basic block. */
2790 stmt_ends_bb_p (gimple
*t
)
2792 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2795 /* Remove block annotations and other data structures. */
2798 delete_tree_cfg_annotations (struct function
*fn
)
2800 vec_free (label_to_block_map_for_fn (fn
));
2803 /* Return the virtual phi in BB. */
2806 get_virtual_phi (basic_block bb
)
2808 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2812 gphi
*phi
= gsi
.phi ();
2814 if (virtual_operand_p (PHI_RESULT (phi
)))
2821 /* Return the first statement in basic block BB. */
2824 first_stmt (basic_block bb
)
2826 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2827 gimple
*stmt
= NULL
;
2829 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2837 /* Return the first non-label statement in basic block BB. */
2840 first_non_label_stmt (basic_block bb
)
2842 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2843 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2845 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2848 /* Return the last statement in basic block BB. */
2851 last_stmt (basic_block bb
)
2853 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2854 gimple
*stmt
= NULL
;
2856 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2864 /* Return the last statement of an otherwise empty block. Return NULL
2865 if the block is totally empty, or if it contains more than one
2869 last_and_only_stmt (basic_block bb
)
2871 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2872 gimple
*last
, *prev
;
2877 last
= gsi_stmt (i
);
2878 gsi_prev_nondebug (&i
);
2882 /* Empty statements should no longer appear in the instruction stream.
2883 Everything that might have appeared before should be deleted by
2884 remove_useless_stmts, and the optimizers should just gsi_remove
2885 instead of smashing with build_empty_stmt.
2887 Thus the only thing that should appear here in a block containing
2888 one executable statement is a label. */
2889 prev
= gsi_stmt (i
);
2890 if (gimple_code (prev
) == GIMPLE_LABEL
)
2896 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2899 reinstall_phi_args (edge new_edge
, edge old_edge
)
2905 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2909 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2910 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2911 i
++, gsi_next (&phis
))
2913 gphi
*phi
= phis
.phi ();
2914 tree result
= redirect_edge_var_map_result (vm
);
2915 tree arg
= redirect_edge_var_map_def (vm
);
2917 gcc_assert (result
== gimple_phi_result (phi
));
2919 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2922 redirect_edge_var_map_clear (old_edge
);
2925 /* Returns the basic block after which the new basic block created
2926 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2927 near its "logical" location. This is of most help to humans looking
2928 at debugging dumps. */
2931 split_edge_bb_loc (edge edge_in
)
2933 basic_block dest
= edge_in
->dest
;
2934 basic_block dest_prev
= dest
->prev_bb
;
2938 edge e
= find_edge (dest_prev
, dest
);
2939 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2940 return edge_in
->src
;
2945 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2946 Abort on abnormal edges. */
2949 gimple_split_edge (edge edge_in
)
2951 basic_block new_bb
, after_bb
, dest
;
2954 /* Abnormal edges cannot be split. */
2955 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2957 dest
= edge_in
->dest
;
2959 after_bb
= split_edge_bb_loc (edge_in
);
2961 new_bb
= create_empty_bb (after_bb
);
2962 new_bb
->count
= edge_in
->count ();
2964 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2965 gcc_assert (e
== edge_in
);
2967 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2968 reinstall_phi_args (new_edge
, e
);
2974 /* Verify properties of the address expression T with base object BASE. */
2977 verify_address (tree t
, tree base
)
2980 bool old_side_effects
;
2982 bool new_side_effects
;
2984 old_constant
= TREE_CONSTANT (t
);
2985 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2987 recompute_tree_invariant_for_addr_expr (t
);
2988 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2989 new_constant
= TREE_CONSTANT (t
);
2991 if (old_constant
!= new_constant
)
2993 error ("constant not recomputed when ADDR_EXPR changed");
2996 if (old_side_effects
!= new_side_effects
)
2998 error ("side effects not recomputed when ADDR_EXPR changed");
3003 || TREE_CODE (base
) == PARM_DECL
3004 || TREE_CODE (base
) == RESULT_DECL
))
3007 if (DECL_GIMPLE_REG_P (base
))
3009 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3016 /* Callback for walk_tree, check that all elements with address taken are
3017 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3018 inside a PHI node. */
3021 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
3028 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3029 #define CHECK_OP(N, MSG) \
3030 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3031 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3033 switch (TREE_CODE (t
))
3036 if (SSA_NAME_IN_FREE_LIST (t
))
3038 error ("SSA name in freelist but still referenced");
3047 tree context
= decl_function_context (t
);
3048 if (context
!= cfun
->decl
3049 && !SCOPE_FILE_SCOPE_P (context
)
3051 && !DECL_EXTERNAL (t
))
3053 error ("Local declaration from a different function");
3060 error ("INDIRECT_REF in gimple IL");
3064 x
= TREE_OPERAND (t
, 0);
3065 if (!POINTER_TYPE_P (TREE_TYPE (x
))
3066 || !is_gimple_mem_ref_addr (x
))
3068 error ("invalid first operand of MEM_REF");
3071 if (!poly_int_tree_p (TREE_OPERAND (t
, 1))
3072 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
3074 error ("invalid offset operand of MEM_REF");
3075 return TREE_OPERAND (t
, 1);
3077 if (TREE_CODE (x
) == ADDR_EXPR
)
3079 tree va
= verify_address (x
, TREE_OPERAND (x
, 0));
3082 x
= TREE_OPERAND (x
, 0);
3084 walk_tree (&x
, verify_expr
, data
, NULL
);
3089 x
= fold (ASSERT_EXPR_COND (t
));
3090 if (x
== boolean_false_node
)
3092 error ("ASSERT_EXPR with an always-false condition");
3098 error ("MODIFY_EXPR not expected while having tuples");
3105 gcc_assert (is_gimple_address (t
));
3107 /* Skip any references (they will be checked when we recurse down the
3108 tree) and ensure that any variable used as a prefix is marked
3110 for (x
= TREE_OPERAND (t
, 0);
3111 handled_component_p (x
);
3112 x
= TREE_OPERAND (x
, 0))
3115 if ((tem
= verify_address (t
, x
)))
3119 || TREE_CODE (x
) == PARM_DECL
3120 || TREE_CODE (x
) == RESULT_DECL
))
3123 if (!TREE_ADDRESSABLE (x
))
3125 error ("address taken, but ADDRESSABLE bit not set");
3133 x
= COND_EXPR_COND (t
);
3134 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
3136 error ("non-integral used in condition");
3139 if (!is_gimple_condexpr (x
))
3141 error ("invalid conditional operand");
3146 case NON_LVALUE_EXPR
:
3147 case TRUTH_NOT_EXPR
:
3151 case FIX_TRUNC_EXPR
:
3156 CHECK_OP (0, "invalid operand to unary operator");
3162 if (!is_gimple_reg_type (TREE_TYPE (t
)))
3164 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3168 if (TREE_CODE (t
) == BIT_FIELD_REF
)
3170 tree t0
= TREE_OPERAND (t
, 0);
3171 tree t1
= TREE_OPERAND (t
, 1);
3172 tree t2
= TREE_OPERAND (t
, 2);
3173 poly_uint64 size
, bitpos
;
3174 if (!poly_int_tree_p (t1
, &size
)
3175 || !poly_int_tree_p (t2
, &bitpos
)
3176 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3177 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3179 error ("invalid position or size operand to BIT_FIELD_REF");
3182 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3183 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t
)), size
))
3185 error ("integral result type precision does not match "
3186 "field size of BIT_FIELD_REF");
3189 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
3190 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
3191 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))),
3194 error ("mode size of non-integral result does not "
3195 "match field size of BIT_FIELD_REF");
3198 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
3199 && maybe_gt (size
+ bitpos
,
3200 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0
)))))
3202 error ("position plus size exceeds size of referenced object in "
3207 t
= TREE_OPERAND (t
, 0);
3212 case ARRAY_RANGE_REF
:
3213 case VIEW_CONVERT_EXPR
:
3214 /* We have a nest of references. Verify that each of the operands
3215 that determine where to reference is either a constant or a variable,
3216 verify that the base is valid, and then show we've already checked
3218 while (handled_component_p (t
))
3220 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
3221 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3222 else if (TREE_CODE (t
) == ARRAY_REF
3223 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
3225 CHECK_OP (1, "invalid array index");
3226 if (TREE_OPERAND (t
, 2))
3227 CHECK_OP (2, "invalid array lower bound");
3228 if (TREE_OPERAND (t
, 3))
3229 CHECK_OP (3, "invalid array stride");
3231 else if (TREE_CODE (t
) == BIT_FIELD_REF
3232 || TREE_CODE (t
) == REALPART_EXPR
3233 || TREE_CODE (t
) == IMAGPART_EXPR
)
3235 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3240 t
= TREE_OPERAND (t
, 0);
3243 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3245 error ("invalid reference prefix");
3248 walk_tree (&t
, verify_expr
, data
, NULL
);
3253 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3254 POINTER_PLUS_EXPR. */
3255 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3257 error ("invalid operand to plus/minus, type is a pointer");
3260 CHECK_OP (0, "invalid operand to binary operator");
3261 CHECK_OP (1, "invalid operand to binary operator");
3264 case POINTER_DIFF_EXPR
:
3265 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0)))
3266 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
3268 error ("invalid operand to pointer diff, operand is not a pointer");
3271 if (TREE_CODE (TREE_TYPE (t
)) != INTEGER_TYPE
3272 || TYPE_UNSIGNED (TREE_TYPE (t
))
3273 || (TYPE_PRECISION (TREE_TYPE (t
))
3274 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t
, 0)))))
3276 error ("invalid type for pointer diff");
3279 CHECK_OP (0, "invalid operand to pointer diff");
3280 CHECK_OP (1, "invalid operand to pointer diff");
3283 case POINTER_PLUS_EXPR
:
3284 /* Check to make sure the first operand is a pointer or reference type. */
3285 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3287 error ("invalid operand to pointer plus, first operand is not a pointer");
3290 /* Check to make sure the second operand is a ptrofftype. */
3291 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
3293 error ("invalid operand to pointer plus, second operand is not an "
3294 "integer type of appropriate width");
3304 case UNORDERED_EXPR
:
3313 case TRUNC_DIV_EXPR
:
3315 case FLOOR_DIV_EXPR
:
3316 case ROUND_DIV_EXPR
:
3317 case TRUNC_MOD_EXPR
:
3319 case FLOOR_MOD_EXPR
:
3320 case ROUND_MOD_EXPR
:
3322 case EXACT_DIV_EXPR
:
3332 CHECK_OP (0, "invalid operand to binary operator");
3333 CHECK_OP (1, "invalid operand to binary operator");
3337 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3341 case CASE_LABEL_EXPR
:
3344 error ("invalid CASE_CHAIN");
3358 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3359 Returns true if there is an error, otherwise false. */
3362 verify_types_in_gimple_min_lval (tree expr
)
3366 if (is_gimple_id (expr
))
3369 if (TREE_CODE (expr
) != TARGET_MEM_REF
3370 && TREE_CODE (expr
) != MEM_REF
)
3372 error ("invalid expression for min lvalue");
3376 /* TARGET_MEM_REFs are strange beasts. */
3377 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3380 op
= TREE_OPERAND (expr
, 0);
3381 if (!is_gimple_val (op
))
3383 error ("invalid operand in indirect reference");
3384 debug_generic_stmt (op
);
3387 /* Memory references now generally can involve a value conversion. */
3392 /* Verify if EXPR is a valid GIMPLE reference expression. If
3393 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3394 if there is an error, otherwise false. */
3397 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3399 while (handled_component_p (expr
))
3401 tree op
= TREE_OPERAND (expr
, 0);
3403 if (TREE_CODE (expr
) == ARRAY_REF
3404 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3406 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3407 || (TREE_OPERAND (expr
, 2)
3408 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3409 || (TREE_OPERAND (expr
, 3)
3410 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3412 error ("invalid operands to array reference");
3413 debug_generic_stmt (expr
);
3418 /* Verify if the reference array element types are compatible. */
3419 if (TREE_CODE (expr
) == ARRAY_REF
3420 && !useless_type_conversion_p (TREE_TYPE (expr
),
3421 TREE_TYPE (TREE_TYPE (op
))))
3423 error ("type mismatch in array reference");
3424 debug_generic_stmt (TREE_TYPE (expr
));
3425 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3428 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3429 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3430 TREE_TYPE (TREE_TYPE (op
))))
3432 error ("type mismatch in array range reference");
3433 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3434 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3438 if ((TREE_CODE (expr
) == REALPART_EXPR
3439 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3440 && !useless_type_conversion_p (TREE_TYPE (expr
),
3441 TREE_TYPE (TREE_TYPE (op
))))
3443 error ("type mismatch in real/imagpart reference");
3444 debug_generic_stmt (TREE_TYPE (expr
));
3445 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3449 if (TREE_CODE (expr
) == COMPONENT_REF
3450 && !useless_type_conversion_p (TREE_TYPE (expr
),
3451 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3453 error ("type mismatch in component reference");
3454 debug_generic_stmt (TREE_TYPE (expr
));
3455 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3459 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3461 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3462 that their operand is not an SSA name or an invariant when
3463 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3464 bug). Otherwise there is nothing to verify, gross mismatches at
3465 most invoke undefined behavior. */
3467 && (TREE_CODE (op
) == SSA_NAME
3468 || is_gimple_min_invariant (op
)))
3470 error ("conversion of an SSA_NAME on the left hand side");
3471 debug_generic_stmt (expr
);
3474 else if (TREE_CODE (op
) == SSA_NAME
3475 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3477 error ("conversion of register to a different size");
3478 debug_generic_stmt (expr
);
3481 else if (!handled_component_p (op
))
3488 if (TREE_CODE (expr
) == MEM_REF
)
3490 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3492 error ("invalid address operand in MEM_REF");
3493 debug_generic_stmt (expr
);
3496 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3497 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3499 error ("invalid offset operand in MEM_REF");
3500 debug_generic_stmt (expr
);
3504 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3506 if (!TMR_BASE (expr
)
3507 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3509 error ("invalid address operand in TARGET_MEM_REF");
3512 if (!TMR_OFFSET (expr
)
3513 || !poly_int_tree_p (TMR_OFFSET (expr
))
3514 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3516 error ("invalid offset operand in TARGET_MEM_REF");
3517 debug_generic_stmt (expr
);
3522 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3523 && verify_types_in_gimple_min_lval (expr
));
3526 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3527 list of pointer-to types that is trivially convertible to DEST. */
3530 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3534 if (!TYPE_POINTER_TO (src_obj
))
3537 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3538 if (useless_type_conversion_p (dest
, src
))
3544 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3545 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3548 valid_fixed_convert_types_p (tree type1
, tree type2
)
3550 return (FIXED_POINT_TYPE_P (type1
)
3551 && (INTEGRAL_TYPE_P (type2
)
3552 || SCALAR_FLOAT_TYPE_P (type2
)
3553 || FIXED_POINT_TYPE_P (type2
)));
3556 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3557 is a problem, otherwise false. */
3560 verify_gimple_call (gcall
*stmt
)
3562 tree fn
= gimple_call_fn (stmt
);
3563 tree fntype
, fndecl
;
3566 if (gimple_call_internal_p (stmt
))
3570 error ("gimple call has two targets");
3571 debug_generic_stmt (fn
);
3574 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3575 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3584 error ("gimple call has no target");
3589 if (fn
&& !is_gimple_call_addr (fn
))
3591 error ("invalid function in gimple call");
3592 debug_generic_stmt (fn
);
3597 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3598 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3599 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3601 error ("non-function in gimple call");
3605 fndecl
= gimple_call_fndecl (stmt
);
3607 && TREE_CODE (fndecl
) == FUNCTION_DECL
3608 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3609 && !DECL_PURE_P (fndecl
)
3610 && !TREE_READONLY (fndecl
))
3612 error ("invalid pure const state for function");
3616 tree lhs
= gimple_call_lhs (stmt
);
3618 && (!is_gimple_lvalue (lhs
)
3619 || verify_types_in_gimple_reference (lhs
, true)))
3621 error ("invalid LHS in gimple call");
3625 if (gimple_call_ctrl_altering_p (stmt
)
3626 && gimple_call_noreturn_p (stmt
)
3627 && should_remove_lhs_p (lhs
))
3629 error ("LHS in noreturn call");
3633 fntype
= gimple_call_fntype (stmt
);
3636 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3637 /* ??? At least C++ misses conversions at assignments from
3638 void * call results.
3639 For now simply allow arbitrary pointer type conversions. */
3640 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3641 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3643 error ("invalid conversion in gimple call");
3644 debug_generic_stmt (TREE_TYPE (lhs
));
3645 debug_generic_stmt (TREE_TYPE (fntype
));
3649 if (gimple_call_chain (stmt
)
3650 && !is_gimple_val (gimple_call_chain (stmt
)))
3652 error ("invalid static chain in gimple call");
3653 debug_generic_stmt (gimple_call_chain (stmt
));
3657 /* If there is a static chain argument, the call should either be
3658 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3659 if (gimple_call_chain (stmt
)
3661 && !DECL_STATIC_CHAIN (fndecl
))
3663 error ("static chain with function that doesn%'t use one");
3667 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3669 switch (DECL_FUNCTION_CODE (fndecl
))
3671 case BUILT_IN_UNREACHABLE
:
3673 if (gimple_call_num_args (stmt
) > 0)
3675 /* Built-in unreachable with parameters might not be caught by
3676 undefined behavior sanitizer. Front-ends do check users do not
3677 call them that way but we also produce calls to
3678 __builtin_unreachable internally, for example when IPA figures
3679 out a call cannot happen in a legal program. In such cases,
3680 we must make sure arguments are stripped off. */
3681 error ("__builtin_unreachable or __builtin_trap call with "
3691 /* ??? The C frontend passes unpromoted arguments in case it
3692 didn't see a function declaration before the call. So for now
3693 leave the call arguments mostly unverified. Once we gimplify
3694 unit-at-a-time we have a chance to fix this. */
3696 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3698 tree arg
= gimple_call_arg (stmt
, i
);
3699 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3700 && !is_gimple_val (arg
))
3701 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3702 && !is_gimple_lvalue (arg
)))
3704 error ("invalid argument to gimple call");
3705 debug_generic_expr (arg
);
3713 /* Verifies the gimple comparison with the result type TYPE and
3714 the operands OP0 and OP1, comparison code is CODE. */
3717 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3719 tree op0_type
= TREE_TYPE (op0
);
3720 tree op1_type
= TREE_TYPE (op1
);
3722 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3724 error ("invalid operands in gimple comparison");
3728 /* For comparisons we do not have the operations type as the
3729 effective type the comparison is carried out in. Instead
3730 we require that either the first operand is trivially
3731 convertible into the second, or the other way around.
3732 Because we special-case pointers to void we allow
3733 comparisons of pointers with the same mode as well. */
3734 if (!useless_type_conversion_p (op0_type
, op1_type
)
3735 && !useless_type_conversion_p (op1_type
, op0_type
)
3736 && (!POINTER_TYPE_P (op0_type
)
3737 || !POINTER_TYPE_P (op1_type
)
3738 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3740 error ("mismatching comparison operand types");
3741 debug_generic_expr (op0_type
);
3742 debug_generic_expr (op1_type
);
3746 /* The resulting type of a comparison may be an effective boolean type. */
3747 if (INTEGRAL_TYPE_P (type
)
3748 && (TREE_CODE (type
) == BOOLEAN_TYPE
3749 || TYPE_PRECISION (type
) == 1))
3751 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3752 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3753 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3754 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3755 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3757 error ("unsupported operation or type for vector comparison"
3758 " returning a boolean");
3759 debug_generic_expr (op0_type
);
3760 debug_generic_expr (op1_type
);
3764 /* Or a boolean vector type with the same element count
3765 as the comparison operand types. */
3766 else if (TREE_CODE (type
) == VECTOR_TYPE
3767 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3769 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3770 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3772 error ("non-vector operands in vector comparison");
3773 debug_generic_expr (op0_type
);
3774 debug_generic_expr (op1_type
);
3778 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
))
3780 error ("invalid vector comparison resulting type");
3781 debug_generic_expr (type
);
3787 error ("bogus comparison result type");
3788 debug_generic_expr (type
);
3795 /* Verify a gimple assignment statement STMT with an unary rhs.
3796 Returns true if anything is wrong. */
3799 verify_gimple_assign_unary (gassign
*stmt
)
3801 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3802 tree lhs
= gimple_assign_lhs (stmt
);
3803 tree lhs_type
= TREE_TYPE (lhs
);
3804 tree rhs1
= gimple_assign_rhs1 (stmt
);
3805 tree rhs1_type
= TREE_TYPE (rhs1
);
3807 if (!is_gimple_reg (lhs
))
3809 error ("non-register as LHS of unary operation");
3813 if (!is_gimple_val (rhs1
))
3815 error ("invalid operand in unary operation");
3819 /* First handle conversions. */
3824 /* Allow conversions from pointer type to integral type only if
3825 there is no sign or zero extension involved.
3826 For targets were the precision of ptrofftype doesn't match that
3827 of pointers we need to allow arbitrary conversions to ptrofftype. */
3828 if ((POINTER_TYPE_P (lhs_type
)
3829 && INTEGRAL_TYPE_P (rhs1_type
))
3830 || (POINTER_TYPE_P (rhs1_type
)
3831 && INTEGRAL_TYPE_P (lhs_type
)
3832 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3833 || ptrofftype_p (sizetype
))))
3836 /* Allow conversion from integral to offset type and vice versa. */
3837 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3838 && INTEGRAL_TYPE_P (rhs1_type
))
3839 || (INTEGRAL_TYPE_P (lhs_type
)
3840 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3843 /* Otherwise assert we are converting between types of the
3845 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3847 error ("invalid types in nop conversion");
3848 debug_generic_expr (lhs_type
);
3849 debug_generic_expr (rhs1_type
);
3856 case ADDR_SPACE_CONVERT_EXPR
:
3858 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3859 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3860 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3862 error ("invalid types in address space conversion");
3863 debug_generic_expr (lhs_type
);
3864 debug_generic_expr (rhs1_type
);
3871 case FIXED_CONVERT_EXPR
:
3873 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3874 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3876 error ("invalid types in fixed-point conversion");
3877 debug_generic_expr (lhs_type
);
3878 debug_generic_expr (rhs1_type
);
3887 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3888 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3889 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3891 error ("invalid types in conversion to floating point");
3892 debug_generic_expr (lhs_type
);
3893 debug_generic_expr (rhs1_type
);
3900 case FIX_TRUNC_EXPR
:
3902 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3903 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3904 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3906 error ("invalid types in conversion to integer");
3907 debug_generic_expr (lhs_type
);
3908 debug_generic_expr (rhs1_type
);
3915 case VEC_UNPACK_HI_EXPR
:
3916 case VEC_UNPACK_LO_EXPR
:
3917 case VEC_UNPACK_FLOAT_HI_EXPR
:
3918 case VEC_UNPACK_FLOAT_LO_EXPR
:
3929 case VEC_DUPLICATE_EXPR
:
3930 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3931 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3933 error ("vec_duplicate should be from a scalar to a like vector");
3934 debug_generic_expr (lhs_type
);
3935 debug_generic_expr (rhs1_type
);
3944 /* For the remaining codes assert there is no conversion involved. */
3945 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3947 error ("non-trivial conversion in unary operation");
3948 debug_generic_expr (lhs_type
);
3949 debug_generic_expr (rhs1_type
);
3956 /* Verify a gimple assignment statement STMT with a binary rhs.
3957 Returns true if anything is wrong. */
3960 verify_gimple_assign_binary (gassign
*stmt
)
3962 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3963 tree lhs
= gimple_assign_lhs (stmt
);
3964 tree lhs_type
= TREE_TYPE (lhs
);
3965 tree rhs1
= gimple_assign_rhs1 (stmt
);
3966 tree rhs1_type
= TREE_TYPE (rhs1
);
3967 tree rhs2
= gimple_assign_rhs2 (stmt
);
3968 tree rhs2_type
= TREE_TYPE (rhs2
);
3970 if (!is_gimple_reg (lhs
))
3972 error ("non-register as LHS of binary operation");
3976 if (!is_gimple_val (rhs1
)
3977 || !is_gimple_val (rhs2
))
3979 error ("invalid operands in binary operation");
3983 /* First handle operations that involve different types. */
3988 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3989 || !(INTEGRAL_TYPE_P (rhs1_type
)
3990 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3991 || !(INTEGRAL_TYPE_P (rhs2_type
)
3992 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3994 error ("type mismatch in complex expression");
3995 debug_generic_expr (lhs_type
);
3996 debug_generic_expr (rhs1_type
);
3997 debug_generic_expr (rhs2_type
);
4009 /* Shifts and rotates are ok on integral types, fixed point
4010 types and integer vector types. */
4011 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4012 && !FIXED_POINT_TYPE_P (rhs1_type
)
4013 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
4014 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
4015 || (!INTEGRAL_TYPE_P (rhs2_type
)
4016 /* Vector shifts of vectors are also ok. */
4017 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
4018 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4019 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
4020 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
4021 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
4023 error ("type mismatch in shift expression");
4024 debug_generic_expr (lhs_type
);
4025 debug_generic_expr (rhs1_type
);
4026 debug_generic_expr (rhs2_type
);
4033 case WIDEN_LSHIFT_EXPR
:
4035 if (!INTEGRAL_TYPE_P (lhs_type
)
4036 || !INTEGRAL_TYPE_P (rhs1_type
)
4037 || TREE_CODE (rhs2
) != INTEGER_CST
4038 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
4040 error ("type mismatch in widening vector shift expression");
4041 debug_generic_expr (lhs_type
);
4042 debug_generic_expr (rhs1_type
);
4043 debug_generic_expr (rhs2_type
);
4050 case VEC_WIDEN_LSHIFT_HI_EXPR
:
4051 case VEC_WIDEN_LSHIFT_LO_EXPR
:
4053 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4054 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4055 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4056 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
4057 || TREE_CODE (rhs2
) != INTEGER_CST
4058 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
4059 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
4061 error ("type mismatch in widening vector shift expression");
4062 debug_generic_expr (lhs_type
);
4063 debug_generic_expr (rhs1_type
);
4064 debug_generic_expr (rhs2_type
);
4074 tree lhs_etype
= lhs_type
;
4075 tree rhs1_etype
= rhs1_type
;
4076 tree rhs2_etype
= rhs2_type
;
4077 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
4079 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4080 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
4082 error ("invalid non-vector operands to vector valued plus");
4085 lhs_etype
= TREE_TYPE (lhs_type
);
4086 rhs1_etype
= TREE_TYPE (rhs1_type
);
4087 rhs2_etype
= TREE_TYPE (rhs2_type
);
4089 if (POINTER_TYPE_P (lhs_etype
)
4090 || POINTER_TYPE_P (rhs1_etype
)
4091 || POINTER_TYPE_P (rhs2_etype
))
4093 error ("invalid (pointer) operands to plus/minus");
4097 /* Continue with generic binary expression handling. */
4101 case POINTER_PLUS_EXPR
:
4103 if (!POINTER_TYPE_P (rhs1_type
)
4104 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
4105 || !ptrofftype_p (rhs2_type
))
4107 error ("type mismatch in pointer plus expression");
4108 debug_generic_stmt (lhs_type
);
4109 debug_generic_stmt (rhs1_type
);
4110 debug_generic_stmt (rhs2_type
);
4117 case POINTER_DIFF_EXPR
:
4119 if (!POINTER_TYPE_P (rhs1_type
)
4120 || !POINTER_TYPE_P (rhs2_type
)
4121 /* Because we special-case pointers to void we allow difference
4122 of arbitrary pointers with the same mode. */
4123 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
4124 || TREE_CODE (lhs_type
) != INTEGER_TYPE
4125 || TYPE_UNSIGNED (lhs_type
)
4126 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
4128 error ("type mismatch in pointer diff expression");
4129 debug_generic_stmt (lhs_type
);
4130 debug_generic_stmt (rhs1_type
);
4131 debug_generic_stmt (rhs2_type
);
4138 case TRUTH_ANDIF_EXPR
:
4139 case TRUTH_ORIF_EXPR
:
4140 case TRUTH_AND_EXPR
:
4142 case TRUTH_XOR_EXPR
:
4152 case UNORDERED_EXPR
:
4160 /* Comparisons are also binary, but the result type is not
4161 connected to the operand types. */
4162 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
4164 case WIDEN_MULT_EXPR
:
4165 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
4167 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
4168 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
4170 case WIDEN_SUM_EXPR
:
4172 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4173 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4174 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4175 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4176 || (!INTEGRAL_TYPE_P (lhs_type
)
4177 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4178 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4179 || (GET_MODE_SIZE (element_mode (rhs2_type
))
4180 < 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4182 error ("type mismatch in widening sum reduction");
4183 debug_generic_expr (lhs_type
);
4184 debug_generic_expr (rhs1_type
);
4185 debug_generic_expr (rhs2_type
);
4191 case VEC_WIDEN_MULT_HI_EXPR
:
4192 case VEC_WIDEN_MULT_LO_EXPR
:
4193 case VEC_WIDEN_MULT_EVEN_EXPR
:
4194 case VEC_WIDEN_MULT_ODD_EXPR
:
4196 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4197 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4198 || !types_compatible_p (rhs1_type
, rhs2_type
)
4199 || (GET_MODE_SIZE (element_mode (lhs_type
))
4200 != 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4202 error ("type mismatch in vector widening multiplication");
4203 debug_generic_expr (lhs_type
);
4204 debug_generic_expr (rhs1_type
);
4205 debug_generic_expr (rhs2_type
);
4211 case VEC_PACK_TRUNC_EXPR
:
4212 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4213 vector boolean types. */
4214 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4215 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4216 && types_compatible_p (rhs1_type
, rhs2_type
)
4217 && (TYPE_VECTOR_SUBPARTS (lhs_type
)
4218 == 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4222 case VEC_PACK_SAT_EXPR
:
4223 case VEC_PACK_FIX_TRUNC_EXPR
:
4225 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4226 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4227 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4228 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4229 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4230 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4231 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4232 || !types_compatible_p (rhs1_type
, rhs2_type
)
4233 || (GET_MODE_SIZE (element_mode (rhs1_type
))
4234 != 2 * GET_MODE_SIZE (element_mode (lhs_type
))))
4236 error ("type mismatch in vector pack expression");
4237 debug_generic_expr (lhs_type
);
4238 debug_generic_expr (rhs1_type
);
4239 debug_generic_expr (rhs2_type
);
4247 case MULT_HIGHPART_EXPR
:
4248 case TRUNC_DIV_EXPR
:
4250 case FLOOR_DIV_EXPR
:
4251 case ROUND_DIV_EXPR
:
4252 case TRUNC_MOD_EXPR
:
4254 case FLOOR_MOD_EXPR
:
4255 case ROUND_MOD_EXPR
:
4257 case EXACT_DIV_EXPR
:
4263 /* Continue with generic binary expression handling. */
4266 case VEC_SERIES_EXPR
:
4267 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4269 error ("type mismatch in series expression");
4270 debug_generic_expr (rhs1_type
);
4271 debug_generic_expr (rhs2_type
);
4274 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4275 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4277 error ("vector type expected in series expression");
4278 debug_generic_expr (lhs_type
);
4287 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4288 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4290 error ("type mismatch in binary expression");
4291 debug_generic_stmt (lhs_type
);
4292 debug_generic_stmt (rhs1_type
);
4293 debug_generic_stmt (rhs2_type
);
4300 /* Verify a gimple assignment statement STMT with a ternary rhs.
4301 Returns true if anything is wrong. */
4304 verify_gimple_assign_ternary (gassign
*stmt
)
4306 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4307 tree lhs
= gimple_assign_lhs (stmt
);
4308 tree lhs_type
= TREE_TYPE (lhs
);
4309 tree rhs1
= gimple_assign_rhs1 (stmt
);
4310 tree rhs1_type
= TREE_TYPE (rhs1
);
4311 tree rhs2
= gimple_assign_rhs2 (stmt
);
4312 tree rhs2_type
= TREE_TYPE (rhs2
);
4313 tree rhs3
= gimple_assign_rhs3 (stmt
);
4314 tree rhs3_type
= TREE_TYPE (rhs3
);
4316 if (!is_gimple_reg (lhs
))
4318 error ("non-register as LHS of ternary operation");
4322 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4323 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4324 || !is_gimple_val (rhs2
)
4325 || !is_gimple_val (rhs3
))
4327 error ("invalid operands in ternary operation");
4331 /* First handle operations that involve different types. */
4334 case WIDEN_MULT_PLUS_EXPR
:
4335 case WIDEN_MULT_MINUS_EXPR
:
4336 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4337 && !FIXED_POINT_TYPE_P (rhs1_type
))
4338 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4339 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4340 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4341 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4343 error ("type mismatch in widening multiply-accumulate expression");
4344 debug_generic_expr (lhs_type
);
4345 debug_generic_expr (rhs1_type
);
4346 debug_generic_expr (rhs2_type
);
4347 debug_generic_expr (rhs3_type
);
4353 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4354 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4355 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4357 error ("type mismatch in fused multiply-add expression");
4358 debug_generic_expr (lhs_type
);
4359 debug_generic_expr (rhs1_type
);
4360 debug_generic_expr (rhs2_type
);
4361 debug_generic_expr (rhs3_type
);
4367 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4368 || TYPE_VECTOR_SUBPARTS (rhs1_type
)
4369 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4371 error ("the first argument of a VEC_COND_EXPR must be of a "
4372 "boolean vector type of the same number of elements "
4374 debug_generic_expr (lhs_type
);
4375 debug_generic_expr (rhs1_type
);
4380 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4381 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4383 error ("type mismatch in conditional expression");
4384 debug_generic_expr (lhs_type
);
4385 debug_generic_expr (rhs2_type
);
4386 debug_generic_expr (rhs3_type
);
4392 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4393 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4395 error ("type mismatch in vector permute expression");
4396 debug_generic_expr (lhs_type
);
4397 debug_generic_expr (rhs1_type
);
4398 debug_generic_expr (rhs2_type
);
4399 debug_generic_expr (rhs3_type
);
4403 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4404 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4405 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4407 error ("vector types expected in vector permute expression");
4408 debug_generic_expr (lhs_type
);
4409 debug_generic_expr (rhs1_type
);
4410 debug_generic_expr (rhs2_type
);
4411 debug_generic_expr (rhs3_type
);
4415 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
4416 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
4417 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
4418 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
4419 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4421 error ("vectors with different element number found "
4422 "in vector permute expression");
4423 debug_generic_expr (lhs_type
);
4424 debug_generic_expr (rhs1_type
);
4425 debug_generic_expr (rhs2_type
);
4426 debug_generic_expr (rhs3_type
);
4430 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4431 || GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs3_type
)))
4432 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (rhs1_type
))))
4434 error ("invalid mask type in vector permute expression");
4435 debug_generic_expr (lhs_type
);
4436 debug_generic_expr (rhs1_type
);
4437 debug_generic_expr (rhs2_type
);
4438 debug_generic_expr (rhs3_type
);
4445 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4446 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4447 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4448 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4450 error ("type mismatch in sad expression");
4451 debug_generic_expr (lhs_type
);
4452 debug_generic_expr (rhs1_type
);
4453 debug_generic_expr (rhs2_type
);
4454 debug_generic_expr (rhs3_type
);
4458 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4459 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4460 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4462 error ("vector types expected in sad expression");
4463 debug_generic_expr (lhs_type
);
4464 debug_generic_expr (rhs1_type
);
4465 debug_generic_expr (rhs2_type
);
4466 debug_generic_expr (rhs3_type
);
4472 case BIT_INSERT_EXPR
:
4473 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4475 error ("type mismatch in BIT_INSERT_EXPR");
4476 debug_generic_expr (lhs_type
);
4477 debug_generic_expr (rhs1_type
);
4480 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4481 && INTEGRAL_TYPE_P (rhs2_type
))
4482 || (VECTOR_TYPE_P (rhs1_type
)
4483 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4485 error ("not allowed type combination in BIT_INSERT_EXPR");
4486 debug_generic_expr (rhs1_type
);
4487 debug_generic_expr (rhs2_type
);
4490 if (! tree_fits_uhwi_p (rhs3
)
4491 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4492 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4494 error ("invalid position or size in BIT_INSERT_EXPR");
4497 if (INTEGRAL_TYPE_P (rhs1_type
))
4499 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4500 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4501 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4502 > TYPE_PRECISION (rhs1_type
)))
4504 error ("insertion out of range in BIT_INSERT_EXPR");
4508 else if (VECTOR_TYPE_P (rhs1_type
))
4510 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4511 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4512 if (bitpos
% bitsize
!= 0)
4514 error ("vector insertion not at element boundary");
4522 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4523 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4524 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4525 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4526 || (!INTEGRAL_TYPE_P (lhs_type
)
4527 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4528 || !types_compatible_p (rhs1_type
, rhs2_type
)
4529 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4530 || (GET_MODE_SIZE (element_mode (rhs3_type
))
4531 < 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4533 error ("type mismatch in dot product reduction");
4534 debug_generic_expr (lhs_type
);
4535 debug_generic_expr (rhs1_type
);
4536 debug_generic_expr (rhs2_type
);
4542 case REALIGN_LOAD_EXPR
:
4552 /* Verify a gimple assignment statement STMT with a single rhs.
4553 Returns true if anything is wrong. */
4556 verify_gimple_assign_single (gassign
*stmt
)
4558 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4559 tree lhs
= gimple_assign_lhs (stmt
);
4560 tree lhs_type
= TREE_TYPE (lhs
);
4561 tree rhs1
= gimple_assign_rhs1 (stmt
);
4562 tree rhs1_type
= TREE_TYPE (rhs1
);
4565 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4567 error ("non-trivial conversion at assignment");
4568 debug_generic_expr (lhs_type
);
4569 debug_generic_expr (rhs1_type
);
4573 if (gimple_clobber_p (stmt
)
4574 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4576 error ("non-decl/MEM_REF LHS in clobber statement");
4577 debug_generic_expr (lhs
);
4581 if (handled_component_p (lhs
)
4582 || TREE_CODE (lhs
) == MEM_REF
4583 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4584 res
|= verify_types_in_gimple_reference (lhs
, true);
4586 /* Special codes we cannot handle via their class. */
4591 tree op
= TREE_OPERAND (rhs1
, 0);
4592 if (!is_gimple_addressable (op
))
4594 error ("invalid operand in unary expression");
4598 /* Technically there is no longer a need for matching types, but
4599 gimple hygiene asks for this check. In LTO we can end up
4600 combining incompatible units and thus end up with addresses
4601 of globals that change their type to a common one. */
4603 && !types_compatible_p (TREE_TYPE (op
),
4604 TREE_TYPE (TREE_TYPE (rhs1
)))
4605 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4608 error ("type mismatch in address expression");
4609 debug_generic_stmt (TREE_TYPE (rhs1
));
4610 debug_generic_stmt (TREE_TYPE (op
));
4614 return verify_types_in_gimple_reference (op
, true);
4619 error ("INDIRECT_REF in gimple IL");
4625 case ARRAY_RANGE_REF
:
4626 case VIEW_CONVERT_EXPR
:
4629 case TARGET_MEM_REF
:
4631 if (!is_gimple_reg (lhs
)
4632 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4634 error ("invalid rhs for gimple memory store");
4635 debug_generic_stmt (lhs
);
4636 debug_generic_stmt (rhs1
);
4639 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4651 /* tcc_declaration */
4656 if (!is_gimple_reg (lhs
)
4657 && !is_gimple_reg (rhs1
)
4658 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4660 error ("invalid rhs for gimple memory store");
4661 debug_generic_stmt (lhs
);
4662 debug_generic_stmt (rhs1
);
4668 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4671 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4673 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4675 /* For vector CONSTRUCTORs we require that either it is empty
4676 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4677 (then the element count must be correct to cover the whole
4678 outer vector and index must be NULL on all elements, or it is
4679 a CONSTRUCTOR of scalar elements, where we as an exception allow
4680 smaller number of elements (assuming zero filling) and
4681 consecutive indexes as compared to NULL indexes (such
4682 CONSTRUCTORs can appear in the IL from FEs). */
4683 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4685 if (elt_t
== NULL_TREE
)
4687 elt_t
= TREE_TYPE (elt_v
);
4688 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4690 tree elt_t
= TREE_TYPE (elt_v
);
4691 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4694 error ("incorrect type of vector CONSTRUCTOR"
4696 debug_generic_stmt (rhs1
);
4699 else if (CONSTRUCTOR_NELTS (rhs1
)
4700 * TYPE_VECTOR_SUBPARTS (elt_t
)
4701 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4703 error ("incorrect number of vector CONSTRUCTOR"
4705 debug_generic_stmt (rhs1
);
4709 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4712 error ("incorrect type of vector CONSTRUCTOR elements");
4713 debug_generic_stmt (rhs1
);
4716 else if (CONSTRUCTOR_NELTS (rhs1
)
4717 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4719 error ("incorrect number of vector CONSTRUCTOR elements");
4720 debug_generic_stmt (rhs1
);
4724 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4726 error ("incorrect type of vector CONSTRUCTOR elements");
4727 debug_generic_stmt (rhs1
);
4730 if (elt_i
!= NULL_TREE
4731 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4732 || TREE_CODE (elt_i
) != INTEGER_CST
4733 || compare_tree_int (elt_i
, i
) != 0))
4735 error ("vector CONSTRUCTOR with non-NULL element index");
4736 debug_generic_stmt (rhs1
);
4739 if (!is_gimple_val (elt_v
))
4741 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4742 debug_generic_stmt (rhs1
);
4747 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4749 error ("non-vector CONSTRUCTOR with elements");
4750 debug_generic_stmt (rhs1
);
4756 case WITH_SIZE_EXPR
:
4766 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4767 is a problem, otherwise false. */
4770 verify_gimple_assign (gassign
*stmt
)
4772 switch (gimple_assign_rhs_class (stmt
))
4774 case GIMPLE_SINGLE_RHS
:
4775 return verify_gimple_assign_single (stmt
);
4777 case GIMPLE_UNARY_RHS
:
4778 return verify_gimple_assign_unary (stmt
);
4780 case GIMPLE_BINARY_RHS
:
4781 return verify_gimple_assign_binary (stmt
);
4783 case GIMPLE_TERNARY_RHS
:
4784 return verify_gimple_assign_ternary (stmt
);
4791 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4792 is a problem, otherwise false. */
4795 verify_gimple_return (greturn
*stmt
)
4797 tree op
= gimple_return_retval (stmt
);
4798 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4800 /* We cannot test for present return values as we do not fix up missing
4801 return values from the original source. */
4805 if (!is_gimple_val (op
)
4806 && TREE_CODE (op
) != RESULT_DECL
)
4808 error ("invalid operand in return statement");
4809 debug_generic_stmt (op
);
4813 if ((TREE_CODE (op
) == RESULT_DECL
4814 && DECL_BY_REFERENCE (op
))
4815 || (TREE_CODE (op
) == SSA_NAME
4816 && SSA_NAME_VAR (op
)
4817 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4818 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4819 op
= TREE_TYPE (op
);
4821 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4823 error ("invalid conversion in return statement");
4824 debug_generic_stmt (restype
);
4825 debug_generic_stmt (TREE_TYPE (op
));
4833 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4834 is a problem, otherwise false. */
4837 verify_gimple_goto (ggoto
*stmt
)
4839 tree dest
= gimple_goto_dest (stmt
);
4841 /* ??? We have two canonical forms of direct goto destinations, a
4842 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4843 if (TREE_CODE (dest
) != LABEL_DECL
4844 && (!is_gimple_val (dest
)
4845 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4847 error ("goto destination is neither a label nor a pointer");
4854 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4855 is a problem, otherwise false. */
4858 verify_gimple_switch (gswitch
*stmt
)
4861 tree elt
, prev_upper_bound
= NULL_TREE
;
4862 tree index_type
, elt_type
= NULL_TREE
;
4864 if (!is_gimple_val (gimple_switch_index (stmt
)))
4866 error ("invalid operand to switch statement");
4867 debug_generic_stmt (gimple_switch_index (stmt
));
4871 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4872 if (! INTEGRAL_TYPE_P (index_type
))
4874 error ("non-integral type switch statement");
4875 debug_generic_expr (index_type
);
4879 elt
= gimple_switch_label (stmt
, 0);
4880 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4882 error ("invalid default case label in switch statement");
4883 debug_generic_expr (elt
);
4887 n
= gimple_switch_num_labels (stmt
);
4888 for (i
= 1; i
< n
; i
++)
4890 elt
= gimple_switch_label (stmt
, i
);
4892 if (! CASE_LOW (elt
))
4894 error ("invalid case label in switch statement");
4895 debug_generic_expr (elt
);
4899 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4901 error ("invalid case range in switch statement");
4902 debug_generic_expr (elt
);
4908 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4909 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4911 error ("type mismatch for case label in switch statement");
4912 debug_generic_expr (elt
);
4918 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4919 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4921 error ("type precision mismatch in switch statement");
4926 if (prev_upper_bound
)
4928 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4930 error ("case labels not sorted in switch statement");
4935 prev_upper_bound
= CASE_HIGH (elt
);
4936 if (! prev_upper_bound
)
4937 prev_upper_bound
= CASE_LOW (elt
);
4943 /* Verify a gimple debug statement STMT.
4944 Returns true if anything is wrong. */
4947 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4949 /* There isn't much that could be wrong in a gimple debug stmt. A
4950 gimple debug bind stmt, for example, maps a tree, that's usually
4951 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4952 component or member of an aggregate type, to another tree, that
4953 can be an arbitrary expression. These stmts expand into debug
4954 insns, and are converted to debug notes by var-tracking.c. */
4958 /* Verify a gimple label statement STMT.
4959 Returns true if anything is wrong. */
4962 verify_gimple_label (glabel
*stmt
)
4964 tree decl
= gimple_label_label (stmt
);
4968 if (TREE_CODE (decl
) != LABEL_DECL
)
4970 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4971 && DECL_CONTEXT (decl
) != current_function_decl
)
4973 error ("label's context is not the current function decl");
4977 uid
= LABEL_DECL_UID (decl
);
4980 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4982 error ("incorrect entry in label_to_block_map");
4986 uid
= EH_LANDING_PAD_NR (decl
);
4989 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4990 if (decl
!= lp
->post_landing_pad
)
4992 error ("incorrect setting of landing pad number");
5000 /* Verify a gimple cond statement STMT.
5001 Returns true if anything is wrong. */
5004 verify_gimple_cond (gcond
*stmt
)
5006 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
5008 error ("invalid comparison code in gimple cond");
5011 if (!(!gimple_cond_true_label (stmt
)
5012 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
5013 || !(!gimple_cond_false_label (stmt
)
5014 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
5016 error ("invalid labels in gimple cond");
5020 return verify_gimple_comparison (boolean_type_node
,
5021 gimple_cond_lhs (stmt
),
5022 gimple_cond_rhs (stmt
),
5023 gimple_cond_code (stmt
));
5026 /* Verify the GIMPLE statement STMT. Returns true if there is an
5027 error, otherwise false. */
5030 verify_gimple_stmt (gimple
*stmt
)
5032 switch (gimple_code (stmt
))
5035 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
5038 return verify_gimple_label (as_a
<glabel
*> (stmt
));
5041 return verify_gimple_call (as_a
<gcall
*> (stmt
));
5044 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
5047 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
5050 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
5053 return verify_gimple_return (as_a
<greturn
*> (stmt
));
5058 case GIMPLE_TRANSACTION
:
5059 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5061 /* Tuples that do not have tree operands. */
5063 case GIMPLE_PREDICT
:
5065 case GIMPLE_EH_DISPATCH
:
5066 case GIMPLE_EH_MUST_NOT_THROW
:
5070 /* OpenMP directives are validated by the FE and never operated
5071 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5072 non-gimple expressions when the main index variable has had
5073 its address taken. This does not affect the loop itself
5074 because the header of an GIMPLE_OMP_FOR is merely used to determine
5075 how to setup the parallel iteration. */
5079 return verify_gimple_debug (stmt
);
5086 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5087 and false otherwise. */
5090 verify_gimple_phi (gimple
*phi
)
5094 tree phi_result
= gimple_phi_result (phi
);
5099 error ("invalid PHI result");
5103 virtual_p
= virtual_operand_p (phi_result
);
5104 if (TREE_CODE (phi_result
) != SSA_NAME
5106 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
5108 error ("invalid PHI result");
5112 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5114 tree t
= gimple_phi_arg_def (phi
, i
);
5118 error ("missing PHI def");
5122 /* Addressable variables do have SSA_NAMEs but they
5123 are not considered gimple values. */
5124 else if ((TREE_CODE (t
) == SSA_NAME
5125 && virtual_p
!= virtual_operand_p (t
))
5127 && (TREE_CODE (t
) != SSA_NAME
5128 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
5130 && !is_gimple_val (t
)))
5132 error ("invalid PHI argument");
5133 debug_generic_expr (t
);
5136 #ifdef ENABLE_TYPES_CHECKING
5137 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
5139 error ("incompatible types in PHI argument %u", i
);
5140 debug_generic_stmt (TREE_TYPE (phi_result
));
5141 debug_generic_stmt (TREE_TYPE (t
));
5150 /* Verify the GIMPLE statements inside the sequence STMTS. */
5153 verify_gimple_in_seq_2 (gimple_seq stmts
)
5155 gimple_stmt_iterator ittr
;
5158 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5160 gimple
*stmt
= gsi_stmt (ittr
);
5162 switch (gimple_code (stmt
))
5165 err
|= verify_gimple_in_seq_2 (
5166 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5170 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5171 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5174 case GIMPLE_EH_FILTER
:
5175 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5178 case GIMPLE_EH_ELSE
:
5180 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5181 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5182 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5187 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5188 as_a
<gcatch
*> (stmt
)));
5191 case GIMPLE_TRANSACTION
:
5192 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5197 bool err2
= verify_gimple_stmt (stmt
);
5199 debug_gimple_stmt (stmt
);
5208 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5209 is a problem, otherwise false. */
5212 verify_gimple_transaction (gtransaction
*stmt
)
5216 lab
= gimple_transaction_label_norm (stmt
);
5217 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5219 lab
= gimple_transaction_label_uninst (stmt
);
5220 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5222 lab
= gimple_transaction_label_over (stmt
);
5223 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5226 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5230 /* Verify the GIMPLE statements inside the statement list STMTS. */
5233 verify_gimple_in_seq (gimple_seq stmts
)
5235 timevar_push (TV_TREE_STMT_VERIFY
);
5236 if (verify_gimple_in_seq_2 (stmts
))
5237 internal_error ("verify_gimple failed");
5238 timevar_pop (TV_TREE_STMT_VERIFY
);
5241 /* Return true when the T can be shared. */
5244 tree_node_can_be_shared (tree t
)
5246 if (IS_TYPE_OR_DECL_P (t
)
5247 || is_gimple_min_invariant (t
)
5248 || TREE_CODE (t
) == SSA_NAME
5249 || t
== error_mark_node
5250 || TREE_CODE (t
) == IDENTIFIER_NODE
)
5253 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
5262 /* Called via walk_tree. Verify tree sharing. */
5265 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5267 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5269 if (tree_node_can_be_shared (*tp
))
5271 *walk_subtrees
= false;
5275 if (visited
->add (*tp
))
5281 /* Called via walk_gimple_stmt. Verify tree sharing. */
5284 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5286 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5287 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5290 static bool eh_error_found
;
5292 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5293 hash_set
<gimple
*> *visited
)
5295 if (!visited
->contains (stmt
))
5297 error ("dead STMT in EH table");
5298 debug_gimple_stmt (stmt
);
5299 eh_error_found
= true;
5304 /* Verify if the location LOCs block is in BLOCKS. */
5307 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5309 tree block
= LOCATION_BLOCK (loc
);
5310 if (block
!= NULL_TREE
5311 && !blocks
->contains (block
))
5313 error ("location references block not in block tree");
5316 if (block
!= NULL_TREE
)
5317 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5321 /* Called via walk_tree. Verify that expressions have no blocks. */
5324 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5328 *walk_subtrees
= false;
5332 location_t loc
= EXPR_LOCATION (*tp
);
5333 if (LOCATION_BLOCK (loc
) != NULL
)
5339 /* Called via walk_tree. Verify locations of expressions. */
5342 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5344 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5346 if (VAR_P (*tp
) && DECL_HAS_DEBUG_EXPR_P (*tp
))
5348 tree t
= DECL_DEBUG_EXPR (*tp
);
5349 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5354 || TREE_CODE (*tp
) == PARM_DECL
5355 || TREE_CODE (*tp
) == RESULT_DECL
)
5356 && DECL_HAS_VALUE_EXPR_P (*tp
))
5358 tree t
= DECL_VALUE_EXPR (*tp
);
5359 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5366 *walk_subtrees
= false;
5370 location_t loc
= EXPR_LOCATION (*tp
);
5371 if (verify_location (blocks
, loc
))
5377 /* Called via walk_gimple_op. Verify locations of expressions. */
5380 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5382 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5383 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5386 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5389 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5392 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5395 collect_subblocks (blocks
, t
);
5399 /* Verify the GIMPLE statements in the CFG of FN. */
5402 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5407 timevar_push (TV_TREE_STMT_VERIFY
);
5408 hash_set
<void *> visited
;
5409 hash_set
<gimple
*> visited_stmts
;
5411 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5412 hash_set
<tree
> blocks
;
5413 if (DECL_INITIAL (fn
->decl
))
5415 blocks
.add (DECL_INITIAL (fn
->decl
));
5416 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5419 FOR_EACH_BB_FN (bb
, fn
)
5421 gimple_stmt_iterator gsi
;
5423 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5427 gphi
*phi
= gpi
.phi ();
5431 visited_stmts
.add (phi
);
5433 if (gimple_bb (phi
) != bb
)
5435 error ("gimple_bb (phi) is set to a wrong basic block");
5439 err2
|= verify_gimple_phi (phi
);
5441 /* Only PHI arguments have locations. */
5442 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5444 error ("PHI node with location");
5448 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5450 tree arg
= gimple_phi_arg_def (phi
, i
);
5451 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5455 error ("incorrect sharing of tree nodes");
5456 debug_generic_expr (addr
);
5459 location_t loc
= gimple_phi_arg_location (phi
, i
);
5460 if (virtual_operand_p (gimple_phi_result (phi
))
5461 && loc
!= UNKNOWN_LOCATION
)
5463 error ("virtual PHI with argument locations");
5466 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5469 debug_generic_expr (addr
);
5472 err2
|= verify_location (&blocks
, loc
);
5476 debug_gimple_stmt (phi
);
5480 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5482 gimple
*stmt
= gsi_stmt (gsi
);
5484 struct walk_stmt_info wi
;
5488 visited_stmts
.add (stmt
);
5490 if (gimple_bb (stmt
) != bb
)
5492 error ("gimple_bb (stmt) is set to a wrong basic block");
5496 err2
|= verify_gimple_stmt (stmt
);
5497 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5499 memset (&wi
, 0, sizeof (wi
));
5500 wi
.info
= (void *) &visited
;
5501 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5504 error ("incorrect sharing of tree nodes");
5505 debug_generic_expr (addr
);
5509 memset (&wi
, 0, sizeof (wi
));
5510 wi
.info
= (void *) &blocks
;
5511 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5514 debug_generic_expr (addr
);
5518 /* ??? Instead of not checking these stmts at all the walker
5519 should know its context via wi. */
5520 if (!is_gimple_debug (stmt
)
5521 && !is_gimple_omp (stmt
))
5523 memset (&wi
, 0, sizeof (wi
));
5524 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
5527 debug_generic_expr (addr
);
5528 inform (gimple_location (stmt
), "in statement");
5533 /* If the statement is marked as part of an EH region, then it is
5534 expected that the statement could throw. Verify that when we
5535 have optimizations that simplify statements such that we prove
5536 that they cannot throw, that we update other data structures
5538 lp_nr
= lookup_stmt_eh_lp (stmt
);
5541 if (!stmt_could_throw_p (stmt
))
5545 error ("statement marked for throw, but doesn%'t");
5549 else if (!gsi_one_before_end_p (gsi
))
5551 error ("statement marked for throw in middle of block");
5557 debug_gimple_stmt (stmt
);
5562 eh_error_found
= false;
5563 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5565 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5568 if (err
|| eh_error_found
)
5569 internal_error ("verify_gimple failed");
5571 verify_histograms ();
5572 timevar_pop (TV_TREE_STMT_VERIFY
);
5576 /* Verifies that the flow information is OK. */
5579 gimple_verify_flow_info (void)
5583 gimple_stmt_iterator gsi
;
5588 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5589 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5591 error ("ENTRY_BLOCK has IL associated with it");
5595 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5596 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5598 error ("EXIT_BLOCK has IL associated with it");
5602 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5603 if (e
->flags
& EDGE_FALLTHRU
)
5605 error ("fallthru to exit from bb %d", e
->src
->index
);
5609 FOR_EACH_BB_FN (bb
, cfun
)
5611 bool found_ctrl_stmt
= false;
5615 /* Skip labels on the start of basic block. */
5616 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5619 gimple
*prev_stmt
= stmt
;
5621 stmt
= gsi_stmt (gsi
);
5623 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5626 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5627 if (prev_stmt
&& DECL_NONLOCAL (label
))
5629 error ("nonlocal label ");
5630 print_generic_expr (stderr
, label
);
5631 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5636 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5638 error ("EH landing pad label ");
5639 print_generic_expr (stderr
, label
);
5640 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5645 if (label_to_block (label
) != bb
)
5648 print_generic_expr (stderr
, label
);
5649 fprintf (stderr
, " to block does not match in bb %d",
5654 if (decl_function_context (label
) != current_function_decl
)
5657 print_generic_expr (stderr
, label
);
5658 fprintf (stderr
, " has incorrect context in bb %d",
5664 /* Verify that body of basic block BB is free of control flow. */
5665 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5667 gimple
*stmt
= gsi_stmt (gsi
);
5669 if (found_ctrl_stmt
)
5671 error ("control flow in the middle of basic block %d",
5676 if (stmt_ends_bb_p (stmt
))
5677 found_ctrl_stmt
= true;
5679 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5682 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5683 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5688 gsi
= gsi_last_nondebug_bb (bb
);
5689 if (gsi_end_p (gsi
))
5692 stmt
= gsi_stmt (gsi
);
5694 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5697 err
|= verify_eh_edges (stmt
);
5699 if (is_ctrl_stmt (stmt
))
5701 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5702 if (e
->flags
& EDGE_FALLTHRU
)
5704 error ("fallthru edge after a control statement in bb %d",
5710 if (gimple_code (stmt
) != GIMPLE_COND
)
5712 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5713 after anything else but if statement. */
5714 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5715 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5717 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5723 switch (gimple_code (stmt
))
5730 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5734 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5735 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5736 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5737 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5738 || EDGE_COUNT (bb
->succs
) >= 3)
5740 error ("wrong outgoing edge flags at end of bb %d",
5748 if (simple_goto_p (stmt
))
5750 error ("explicit goto at end of bb %d", bb
->index
);
5755 /* FIXME. We should double check that the labels in the
5756 destination blocks have their address taken. */
5757 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5758 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5759 | EDGE_FALSE_VALUE
))
5760 || !(e
->flags
& EDGE_ABNORMAL
))
5762 error ("wrong outgoing edge flags at end of bb %d",
5770 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5774 if (!single_succ_p (bb
)
5775 || (single_succ_edge (bb
)->flags
5776 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5777 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5779 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5782 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5784 error ("return edge does not point to exit in bb %d",
5792 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5797 n
= gimple_switch_num_labels (switch_stmt
);
5799 /* Mark all the destination basic blocks. */
5800 for (i
= 0; i
< n
; ++i
)
5802 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5803 basic_block label_bb
= label_to_block (lab
);
5804 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5805 label_bb
->aux
= (void *)1;
5808 /* Verify that the case labels are sorted. */
5809 prev
= gimple_switch_label (switch_stmt
, 0);
5810 for (i
= 1; i
< n
; ++i
)
5812 tree c
= gimple_switch_label (switch_stmt
, i
);
5815 error ("found default case not at the start of "
5821 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5823 error ("case labels not sorted: ");
5824 print_generic_expr (stderr
, prev
);
5825 fprintf (stderr
," is greater than ");
5826 print_generic_expr (stderr
, c
);
5827 fprintf (stderr
," but comes before it.\n");
5832 /* VRP will remove the default case if it can prove it will
5833 never be executed. So do not verify there always exists
5834 a default case here. */
5836 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5840 error ("extra outgoing edge %d->%d",
5841 bb
->index
, e
->dest
->index
);
5845 e
->dest
->aux
= (void *)2;
5846 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5847 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5849 error ("wrong outgoing edge flags at end of bb %d",
5855 /* Check that we have all of them. */
5856 for (i
= 0; i
< n
; ++i
)
5858 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5859 basic_block label_bb
= label_to_block (lab
);
5861 if (label_bb
->aux
!= (void *)2)
5863 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5868 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5869 e
->dest
->aux
= (void *)0;
5873 case GIMPLE_EH_DISPATCH
:
5874 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5882 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5883 verify_dominators (CDI_DOMINATORS
);
5889 /* Updates phi nodes after creating a forwarder block joined
5890 by edge FALLTHRU. */
5893 gimple_make_forwarder_block (edge fallthru
)
5897 basic_block dummy
, bb
;
5901 dummy
= fallthru
->src
;
5902 bb
= fallthru
->dest
;
5904 if (single_pred_p (bb
))
5907 /* If we redirected a branch we must create new PHI nodes at the
5909 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5911 gphi
*phi
, *new_phi
;
5914 var
= gimple_phi_result (phi
);
5915 new_phi
= create_phi_node (var
, bb
);
5916 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5917 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5921 /* Add the arguments we have stored on edges. */
5922 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5927 flush_pending_stmts (e
);
5932 /* Return a non-special label in the head of basic block BLOCK.
5933 Create one if it doesn't exist. */
5936 gimple_block_label (basic_block bb
)
5938 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5943 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5945 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5948 label
= gimple_label_label (stmt
);
5949 if (!DECL_NONLOCAL (label
))
5952 gsi_move_before (&i
, &s
);
5957 label
= create_artificial_label (UNKNOWN_LOCATION
);
5958 stmt
= gimple_build_label (label
);
5959 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5964 /* Attempt to perform edge redirection by replacing a possibly complex
5965 jump instruction by a goto or by removing the jump completely.
5966 This can apply only if all edges now point to the same block. The
5967 parameters and return values are equivalent to
5968 redirect_edge_and_branch. */
5971 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5973 basic_block src
= e
->src
;
5974 gimple_stmt_iterator i
;
5977 /* We can replace or remove a complex jump only when we have exactly
5979 if (EDGE_COUNT (src
->succs
) != 2
5980 /* Verify that all targets will be TARGET. Specifically, the
5981 edge that is not E must also go to TARGET. */
5982 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5985 i
= gsi_last_bb (src
);
5989 stmt
= gsi_stmt (i
);
5991 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5993 gsi_remove (&i
, true);
5994 e
= ssa_redirect_edge (e
, target
);
5995 e
->flags
= EDGE_FALLTHRU
;
6003 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6004 edge representing the redirected branch. */
6007 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
6009 basic_block bb
= e
->src
;
6010 gimple_stmt_iterator gsi
;
6014 if (e
->flags
& EDGE_ABNORMAL
)
6017 if (e
->dest
== dest
)
6020 if (e
->flags
& EDGE_EH
)
6021 return redirect_eh_edge (e
, dest
);
6023 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
6025 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
6030 gsi
= gsi_last_nondebug_bb (bb
);
6031 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
6033 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
6036 /* For COND_EXPR, we only need to redirect the edge. */
6040 /* No non-abnormal edges should lead from a non-simple goto, and
6041 simple ones should be represented implicitly. */
6046 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
6047 tree label
= gimple_block_label (dest
);
6048 tree cases
= get_cases_for_edge (e
, switch_stmt
);
6050 /* If we have a list of cases associated with E, then use it
6051 as it's a lot faster than walking the entire case vector. */
6054 edge e2
= find_edge (e
->src
, dest
);
6061 CASE_LABEL (cases
) = label
;
6062 cases
= CASE_CHAIN (cases
);
6065 /* If there was already an edge in the CFG, then we need
6066 to move all the cases associated with E to E2. */
6069 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
6071 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
6072 CASE_CHAIN (cases2
) = first
;
6074 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
6078 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
6080 for (i
= 0; i
< n
; i
++)
6082 tree elt
= gimple_switch_label (switch_stmt
, i
);
6083 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
6084 CASE_LABEL (elt
) = label
;
6092 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
6093 int i
, n
= gimple_asm_nlabels (asm_stmt
);
6096 for (i
= 0; i
< n
; ++i
)
6098 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
6099 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
6102 label
= gimple_block_label (dest
);
6103 TREE_VALUE (cons
) = label
;
6107 /* If we didn't find any label matching the former edge in the
6108 asm labels, we must be redirecting the fallthrough
6110 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
6115 gsi_remove (&gsi
, true);
6116 e
->flags
|= EDGE_FALLTHRU
;
6119 case GIMPLE_OMP_RETURN
:
6120 case GIMPLE_OMP_CONTINUE
:
6121 case GIMPLE_OMP_SECTIONS_SWITCH
:
6122 case GIMPLE_OMP_FOR
:
6123 /* The edges from OMP constructs can be simply redirected. */
6126 case GIMPLE_EH_DISPATCH
:
6127 if (!(e
->flags
& EDGE_FALLTHRU
))
6128 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
6131 case GIMPLE_TRANSACTION
:
6132 if (e
->flags
& EDGE_TM_ABORT
)
6133 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
6134 gimple_block_label (dest
));
6135 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
6136 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
6137 gimple_block_label (dest
));
6139 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
6140 gimple_block_label (dest
));
6144 /* Otherwise it must be a fallthru edge, and we don't need to
6145 do anything besides redirecting it. */
6146 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6150 /* Update/insert PHI nodes as necessary. */
6152 /* Now update the edges in the CFG. */
6153 e
= ssa_redirect_edge (e
, dest
);
6158 /* Returns true if it is possible to remove edge E by redirecting
6159 it to the destination of the other edge from E->src. */
6162 gimple_can_remove_branch_p (const_edge e
)
6164 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6170 /* Simple wrapper, as we can always redirect fallthru edges. */
6173 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6175 e
= gimple_redirect_edge_and_branch (e
, dest
);
6182 /* Splits basic block BB after statement STMT (but at least after the
6183 labels). If STMT is NULL, BB is split just after the labels. */
6186 gimple_split_block (basic_block bb
, void *stmt
)
6188 gimple_stmt_iterator gsi
;
6189 gimple_stmt_iterator gsi_tgt
;
6195 new_bb
= create_empty_bb (bb
);
6197 /* Redirect the outgoing edges. */
6198 new_bb
->succs
= bb
->succs
;
6200 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6203 /* Get a stmt iterator pointing to the first stmt to move. */
6204 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6205 gsi
= gsi_after_labels (bb
);
6208 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6212 /* Move everything from GSI to the new basic block. */
6213 if (gsi_end_p (gsi
))
6216 /* Split the statement list - avoid re-creating new containers as this
6217 brings ugly quadratic memory consumption in the inliner.
6218 (We are still quadratic since we need to update stmt BB pointers,
6220 gsi_split_seq_before (&gsi
, &list
);
6221 set_bb_seq (new_bb
, list
);
6222 for (gsi_tgt
= gsi_start (list
);
6223 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6224 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6230 /* Moves basic block BB after block AFTER. */
6233 gimple_move_block_after (basic_block bb
, basic_block after
)
6235 if (bb
->prev_bb
== after
)
6239 link_block (bb
, after
);
6245 /* Return TRUE if block BB has no executable statements, otherwise return
6249 gimple_empty_block_p (basic_block bb
)
6251 /* BB must have no executable statements. */
6252 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6255 if (gsi_end_p (gsi
))
6257 if (is_gimple_debug (gsi_stmt (gsi
)))
6258 gsi_next_nondebug (&gsi
);
6259 return gsi_end_p (gsi
);
6263 /* Split a basic block if it ends with a conditional branch and if the
6264 other part of the block is not empty. */
6267 gimple_split_block_before_cond_jump (basic_block bb
)
6269 gimple
*last
, *split_point
;
6270 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6271 if (gsi_end_p (gsi
))
6273 last
= gsi_stmt (gsi
);
6274 if (gimple_code (last
) != GIMPLE_COND
6275 && gimple_code (last
) != GIMPLE_SWITCH
)
6278 split_point
= gsi_stmt (gsi
);
6279 return split_block (bb
, split_point
)->dest
;
6283 /* Return true if basic_block can be duplicated. */
6286 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6291 /* Create a duplicate of the basic block BB. NOTE: This does not
6292 preserve SSA form. */
6295 gimple_duplicate_bb (basic_block bb
)
6298 gimple_stmt_iterator gsi_tgt
;
6300 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6302 /* Copy the PHI nodes. We ignore PHI node arguments here because
6303 the incoming edges have not been setup yet. */
6304 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6310 copy
= create_phi_node (NULL_TREE
, new_bb
);
6311 create_new_def_for (gimple_phi_result (phi
), copy
,
6312 gimple_phi_result_ptr (copy
));
6313 gimple_set_uid (copy
, gimple_uid (phi
));
6316 gsi_tgt
= gsi_start_bb (new_bb
);
6317 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6321 def_operand_p def_p
;
6322 ssa_op_iter op_iter
;
6324 gimple
*stmt
, *copy
;
6326 stmt
= gsi_stmt (gsi
);
6327 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6330 /* Don't duplicate label debug stmts. */
6331 if (gimple_debug_bind_p (stmt
)
6332 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6336 /* Create a new copy of STMT and duplicate STMT's virtual
6338 copy
= gimple_copy (stmt
);
6339 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6341 maybe_duplicate_eh_stmt (copy
, stmt
);
6342 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6344 /* When copying around a stmt writing into a local non-user
6345 aggregate, make sure it won't share stack slot with other
6347 lhs
= gimple_get_lhs (stmt
);
6348 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6350 tree base
= get_base_address (lhs
);
6352 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6353 && DECL_IGNORED_P (base
)
6354 && !TREE_STATIC (base
)
6355 && !DECL_EXTERNAL (base
)
6356 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6357 DECL_NONSHAREABLE (base
) = 1;
6360 /* Create new names for all the definitions created by COPY and
6361 add replacement mappings for each new name. */
6362 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6363 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6369 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6372 add_phi_args_after_copy_edge (edge e_copy
)
6374 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6377 gphi
*phi
, *phi_copy
;
6379 gphi_iterator psi
, psi_copy
;
6381 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6384 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6386 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6387 dest
= get_bb_original (e_copy
->dest
);
6389 dest
= e_copy
->dest
;
6391 e
= find_edge (bb
, dest
);
6394 /* During loop unrolling the target of the latch edge is copied.
6395 In this case we are not looking for edge to dest, but to
6396 duplicated block whose original was dest. */
6397 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6399 if ((e
->dest
->flags
& BB_DUPLICATED
)
6400 && get_bb_original (e
->dest
) == dest
)
6404 gcc_assert (e
!= NULL
);
6407 for (psi
= gsi_start_phis (e
->dest
),
6408 psi_copy
= gsi_start_phis (e_copy
->dest
);
6410 gsi_next (&psi
), gsi_next (&psi_copy
))
6413 phi_copy
= psi_copy
.phi ();
6414 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6415 add_phi_arg (phi_copy
, def
, e_copy
,
6416 gimple_phi_arg_location_from_edge (phi
, e
));
6421 /* Basic block BB_COPY was created by code duplication. Add phi node
6422 arguments for edges going out of BB_COPY. The blocks that were
6423 duplicated have BB_DUPLICATED set. */
6426 add_phi_args_after_copy_bb (basic_block bb_copy
)
6431 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6433 add_phi_args_after_copy_edge (e_copy
);
6437 /* Blocks in REGION_COPY array of length N_REGION were created by
6438 duplication of basic blocks. Add phi node arguments for edges
6439 going from these blocks. If E_COPY is not NULL, also add
6440 phi node arguments for its destination.*/
6443 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6448 for (i
= 0; i
< n_region
; i
++)
6449 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6451 for (i
= 0; i
< n_region
; i
++)
6452 add_phi_args_after_copy_bb (region_copy
[i
]);
6454 add_phi_args_after_copy_edge (e_copy
);
6456 for (i
= 0; i
< n_region
; i
++)
6457 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6460 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6461 important exit edge EXIT. By important we mean that no SSA name defined
6462 inside region is live over the other exit edges of the region. All entry
6463 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6464 to the duplicate of the region. Dominance and loop information is
6465 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6466 UPDATE_DOMINANCE is false then we assume that the caller will update the
6467 dominance information after calling this function. The new basic
6468 blocks are stored to REGION_COPY in the same order as they had in REGION,
6469 provided that REGION_COPY is not NULL.
6470 The function returns false if it is unable to copy the region,
6474 gimple_duplicate_sese_region (edge entry
, edge exit
,
6475 basic_block
*region
, unsigned n_region
,
6476 basic_block
*region_copy
,
6477 bool update_dominance
)
6480 bool free_region_copy
= false, copying_header
= false;
6481 struct loop
*loop
= entry
->dest
->loop_father
;
6483 vec
<basic_block
> doms
= vNULL
;
6485 profile_count total_count
= profile_count::uninitialized ();
6486 profile_count entry_count
= profile_count::uninitialized ();
6488 if (!can_copy_bbs_p (region
, n_region
))
6491 /* Some sanity checking. Note that we do not check for all possible
6492 missuses of the functions. I.e. if you ask to copy something weird,
6493 it will work, but the state of structures probably will not be
6495 for (i
= 0; i
< n_region
; i
++)
6497 /* We do not handle subloops, i.e. all the blocks must belong to the
6499 if (region
[i
]->loop_father
!= loop
)
6502 if (region
[i
] != entry
->dest
6503 && region
[i
] == loop
->header
)
6507 /* In case the function is used for loop header copying (which is the primary
6508 use), ensure that EXIT and its copy will be new latch and entry edges. */
6509 if (loop
->header
== entry
->dest
)
6511 copying_header
= true;
6513 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6516 for (i
= 0; i
< n_region
; i
++)
6517 if (region
[i
] != exit
->src
6518 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6522 initialize_original_copy_tables ();
6525 set_loop_copy (loop
, loop_outer (loop
));
6527 set_loop_copy (loop
, loop
);
6531 region_copy
= XNEWVEC (basic_block
, n_region
);
6532 free_region_copy
= true;
6535 /* Record blocks outside the region that are dominated by something
6537 if (update_dominance
)
6540 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6543 if (entry
->dest
->count
.initialized_p ())
6545 total_count
= entry
->dest
->count
;
6546 entry_count
= entry
->count ();
6547 /* Fix up corner cases, to avoid division by zero or creation of negative
6549 if (entry_count
> total_count
)
6550 entry_count
= total_count
;
6553 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6554 split_edge_bb_loc (entry
), update_dominance
);
6555 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6557 scale_bbs_frequencies_profile_count (region
, n_region
,
6558 total_count
- entry_count
,
6560 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6566 loop
->header
= exit
->dest
;
6567 loop
->latch
= exit
->src
;
6570 /* Redirect the entry and add the phi node arguments. */
6571 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6572 gcc_assert (redirected
!= NULL
);
6573 flush_pending_stmts (entry
);
6575 /* Concerning updating of dominators: We must recount dominators
6576 for entry block and its copy. Anything that is outside of the
6577 region, but was dominated by something inside needs recounting as
6579 if (update_dominance
)
6581 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6582 doms
.safe_push (get_bb_original (entry
->dest
));
6583 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6587 /* Add the other PHI node arguments. */
6588 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6590 if (free_region_copy
)
6593 free_original_copy_tables ();
6597 /* Checks if BB is part of the region defined by N_REGION BBS. */
6599 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6603 for (n
= 0; n
< n_region
; n
++)
6611 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6612 are stored to REGION_COPY in the same order in that they appear
6613 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6614 the region, EXIT an exit from it. The condition guarding EXIT
6615 is moved to ENTRY. Returns true if duplication succeeds, false
6641 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6642 basic_block
*region
, unsigned n_region
,
6643 basic_block
*region_copy
)
6646 bool free_region_copy
= false;
6647 struct loop
*loop
= exit
->dest
->loop_father
;
6648 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6649 basic_block switch_bb
, entry_bb
, nentry_bb
;
6650 vec
<basic_block
> doms
;
6651 profile_count total_count
= profile_count::uninitialized (),
6652 exit_count
= profile_count::uninitialized ();
6653 edge exits
[2], nexits
[2], e
;
6654 gimple_stmt_iterator gsi
;
6657 basic_block exit_bb
;
6661 struct loop
*target
, *aloop
, *cloop
;
6663 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6665 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6667 if (!can_copy_bbs_p (region
, n_region
))
6670 initialize_original_copy_tables ();
6671 set_loop_copy (orig_loop
, loop
);
6674 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6676 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6678 cloop
= duplicate_loop (aloop
, target
);
6679 duplicate_subloops (aloop
, cloop
);
6685 region_copy
= XNEWVEC (basic_block
, n_region
);
6686 free_region_copy
= true;
6689 gcc_assert (!need_ssa_update_p (cfun
));
6691 /* Record blocks outside the region that are dominated by something
6693 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6695 total_count
= exit
->src
->count
;
6696 exit_count
= exit
->count ();
6697 /* Fix up corner cases, to avoid division by zero or creation of negative
6699 if (exit_count
> total_count
)
6700 exit_count
= total_count
;
6702 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6703 split_edge_bb_loc (exit
), true);
6704 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6706 scale_bbs_frequencies_profile_count (region
, n_region
,
6707 total_count
- exit_count
,
6709 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6713 /* Create the switch block, and put the exit condition to it. */
6714 entry_bb
= entry
->dest
;
6715 nentry_bb
= get_bb_copy (entry_bb
);
6716 if (!last_stmt (entry
->src
)
6717 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6718 switch_bb
= entry
->src
;
6720 switch_bb
= split_edge (entry
);
6721 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6723 gsi
= gsi_last_bb (switch_bb
);
6724 cond_stmt
= last_stmt (exit
->src
);
6725 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6726 cond_stmt
= gimple_copy (cond_stmt
);
6728 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6730 sorig
= single_succ_edge (switch_bb
);
6731 sorig
->flags
= exits
[1]->flags
;
6732 sorig
->probability
= exits
[1]->probability
;
6733 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6734 snew
->probability
= exits
[0]->probability
;
6737 /* Register the new edge from SWITCH_BB in loop exit lists. */
6738 rescan_loop_exit (snew
, true, false);
6740 /* Add the PHI node arguments. */
6741 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6743 /* Get rid of now superfluous conditions and associated edges (and phi node
6745 exit_bb
= exit
->dest
;
6747 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6748 PENDING_STMT (e
) = NULL
;
6750 /* The latch of ORIG_LOOP was copied, and so was the backedge
6751 to the original header. We redirect this backedge to EXIT_BB. */
6752 for (i
= 0; i
< n_region
; i
++)
6753 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6755 gcc_assert (single_succ_edge (region_copy
[i
]));
6756 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6757 PENDING_STMT (e
) = NULL
;
6758 for (psi
= gsi_start_phis (exit_bb
);
6763 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6764 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6767 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6768 PENDING_STMT (e
) = NULL
;
6770 /* Anything that is outside of the region, but was dominated by something
6771 inside needs to update dominance info. */
6772 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6774 /* Update the SSA web. */
6775 update_ssa (TODO_update_ssa
);
6777 if (free_region_copy
)
6780 free_original_copy_tables ();
6784 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6785 adding blocks when the dominator traversal reaches EXIT. This
6786 function silently assumes that ENTRY strictly dominates EXIT. */
6789 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6790 vec
<basic_block
> *bbs_p
)
6794 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6796 son
= next_dom_son (CDI_DOMINATORS
, son
))
6798 bbs_p
->safe_push (son
);
6800 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6804 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6805 The duplicates are recorded in VARS_MAP. */
6808 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6811 tree t
= *tp
, new_t
;
6812 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6814 if (DECL_CONTEXT (t
) == to_context
)
6818 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6824 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6825 add_local_decl (f
, new_t
);
6829 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6830 new_t
= copy_node (t
);
6832 DECL_CONTEXT (new_t
) = to_context
;
6843 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6844 VARS_MAP maps old ssa names and var_decls to the new ones. */
6847 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6852 gcc_assert (!virtual_operand_p (name
));
6854 tree
*loc
= vars_map
->get (name
);
6858 tree decl
= SSA_NAME_VAR (name
);
6861 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6862 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6863 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6864 decl
, SSA_NAME_DEF_STMT (name
));
6867 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6868 name
, SSA_NAME_DEF_STMT (name
));
6870 /* Now that we've used the def stmt to define new_name, make sure it
6871 doesn't define name anymore. */
6872 SSA_NAME_DEF_STMT (name
) = NULL
;
6874 vars_map
->put (name
, new_name
);
6888 hash_map
<tree
, tree
> *vars_map
;
6889 htab_t new_label_map
;
6890 hash_map
<void *, void *> *eh_map
;
6894 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6895 contained in *TP if it has been ORIG_BLOCK previously and change the
6896 DECL_CONTEXT of every local variable referenced in *TP. */
6899 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6901 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6902 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6907 tree block
= TREE_BLOCK (t
);
6908 if (block
== NULL_TREE
)
6910 else if (block
== p
->orig_block
6911 || p
->orig_block
== NULL_TREE
)
6912 TREE_SET_BLOCK (t
, p
->new_block
);
6913 else if (flag_checking
)
6915 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6916 block
= BLOCK_SUPERCONTEXT (block
);
6917 gcc_assert (block
== p
->orig_block
);
6920 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6922 if (TREE_CODE (t
) == SSA_NAME
)
6923 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6924 else if (TREE_CODE (t
) == PARM_DECL
6925 && gimple_in_ssa_p (cfun
))
6926 *tp
= *(p
->vars_map
->get (t
));
6927 else if (TREE_CODE (t
) == LABEL_DECL
)
6929 if (p
->new_label_map
)
6931 struct tree_map in
, *out
;
6933 out
= (struct tree_map
*)
6934 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6939 /* For FORCED_LABELs we can end up with references from other
6940 functions if some SESE regions are outlined. It is UB to
6941 jump in between them, but they could be used just for printing
6942 addresses etc. In that case, DECL_CONTEXT on the label should
6943 be the function containing the glabel stmt with that LABEL_DECL,
6944 rather than whatever function a reference to the label was seen
6946 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6947 DECL_CONTEXT (t
) = p
->to_context
;
6949 else if (p
->remap_decls_p
)
6951 /* Replace T with its duplicate. T should no longer appear in the
6952 parent function, so this looks wasteful; however, it may appear
6953 in referenced_vars, and more importantly, as virtual operands of
6954 statements, and in alias lists of other variables. It would be
6955 quite difficult to expunge it from all those places. ??? It might
6956 suffice to do this for addressable variables. */
6957 if ((VAR_P (t
) && !is_global_var (t
))
6958 || TREE_CODE (t
) == CONST_DECL
)
6959 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6963 else if (TYPE_P (t
))
6969 /* Helper for move_stmt_r. Given an EH region number for the source
6970 function, map that to the duplicate EH regio number in the dest. */
6973 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6975 eh_region old_r
, new_r
;
6977 old_r
= get_eh_region_from_number (old_nr
);
6978 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6980 return new_r
->index
;
6983 /* Similar, but operate on INTEGER_CSTs. */
6986 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6990 old_nr
= tree_to_shwi (old_t_nr
);
6991 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6993 return build_int_cst (integer_type_node
, new_nr
);
6996 /* Like move_stmt_op, but for gimple statements.
6998 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6999 contained in the current statement in *GSI_P and change the
7000 DECL_CONTEXT of every local variable referenced in the current
7004 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
7005 struct walk_stmt_info
*wi
)
7007 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
7008 gimple
*stmt
= gsi_stmt (*gsi_p
);
7009 tree block
= gimple_block (stmt
);
7011 if (block
== p
->orig_block
7012 || (p
->orig_block
== NULL_TREE
7013 && block
!= NULL_TREE
))
7014 gimple_set_block (stmt
, p
->new_block
);
7016 switch (gimple_code (stmt
))
7019 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7021 tree r
, fndecl
= gimple_call_fndecl (stmt
);
7022 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
7023 switch (DECL_FUNCTION_CODE (fndecl
))
7025 case BUILT_IN_EH_COPY_VALUES
:
7026 r
= gimple_call_arg (stmt
, 1);
7027 r
= move_stmt_eh_region_tree_nr (r
, p
);
7028 gimple_call_set_arg (stmt
, 1, r
);
7031 case BUILT_IN_EH_POINTER
:
7032 case BUILT_IN_EH_FILTER
:
7033 r
= gimple_call_arg (stmt
, 0);
7034 r
= move_stmt_eh_region_tree_nr (r
, p
);
7035 gimple_call_set_arg (stmt
, 0, r
);
7046 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
7047 int r
= gimple_resx_region (resx_stmt
);
7048 r
= move_stmt_eh_region_nr (r
, p
);
7049 gimple_resx_set_region (resx_stmt
, r
);
7053 case GIMPLE_EH_DISPATCH
:
7055 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
7056 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
7057 r
= move_stmt_eh_region_nr (r
, p
);
7058 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
7062 case GIMPLE_OMP_RETURN
:
7063 case GIMPLE_OMP_CONTINUE
:
7068 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7069 so that such labels can be referenced from other regions.
7070 Make sure to update it when seeing a GIMPLE_LABEL though,
7071 that is the owner of the label. */
7072 walk_gimple_op (stmt
, move_stmt_op
, wi
);
7073 *handled_ops_p
= true;
7074 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
7075 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
7076 DECL_CONTEXT (label
) = p
->to_context
;
7081 if (is_gimple_omp (stmt
))
7083 /* Do not remap variables inside OMP directives. Variables
7084 referenced in clauses and directive header belong to the
7085 parent function and should not be moved into the child
7087 bool save_remap_decls_p
= p
->remap_decls_p
;
7088 p
->remap_decls_p
= false;
7089 *handled_ops_p
= true;
7091 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
7094 p
->remap_decls_p
= save_remap_decls_p
;
7102 /* Move basic block BB from function CFUN to function DEST_FN. The
7103 block is moved out of the original linked list and placed after
7104 block AFTER in the new list. Also, the block is removed from the
7105 original array of blocks and placed in DEST_FN's array of blocks.
7106 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7107 updated to reflect the moved edges.
7109 The local variables are remapped to new instances, VARS_MAP is used
7110 to record the mapping. */
7113 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
7114 basic_block after
, bool update_edge_count_p
,
7115 struct move_stmt_d
*d
)
7117 struct control_flow_graph
*cfg
;
7120 gimple_stmt_iterator si
;
7121 unsigned old_len
, new_len
;
7123 /* Remove BB from dominance structures. */
7124 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
7126 /* Move BB from its current loop to the copy in the new function. */
7129 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
7131 bb
->loop_father
= new_loop
;
7134 /* Link BB to the new linked list. */
7135 move_block_after (bb
, after
);
7137 /* Update the edge count in the corresponding flowgraphs. */
7138 if (update_edge_count_p
)
7139 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7141 cfun
->cfg
->x_n_edges
--;
7142 dest_cfun
->cfg
->x_n_edges
++;
7145 /* Remove BB from the original basic block array. */
7146 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7147 cfun
->cfg
->x_n_basic_blocks
--;
7149 /* Grow DEST_CFUN's basic block array if needed. */
7150 cfg
= dest_cfun
->cfg
;
7151 cfg
->x_n_basic_blocks
++;
7152 if (bb
->index
>= cfg
->x_last_basic_block
)
7153 cfg
->x_last_basic_block
= bb
->index
+ 1;
7155 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7156 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7158 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
7159 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
7162 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7164 /* Remap the variables in phi nodes. */
7165 for (gphi_iterator psi
= gsi_start_phis (bb
);
7168 gphi
*phi
= psi
.phi ();
7170 tree op
= PHI_RESULT (phi
);
7174 if (virtual_operand_p (op
))
7176 /* Remove the phi nodes for virtual operands (alias analysis will be
7177 run for the new function, anyway). */
7178 remove_phi_node (&psi
, true);
7182 SET_PHI_RESULT (phi
,
7183 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7184 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7186 op
= USE_FROM_PTR (use
);
7187 if (TREE_CODE (op
) == SSA_NAME
)
7188 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7191 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7193 location_t locus
= gimple_phi_arg_location (phi
, i
);
7194 tree block
= LOCATION_BLOCK (locus
);
7196 if (locus
== UNKNOWN_LOCATION
)
7198 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7200 locus
= set_block (locus
, d
->new_block
);
7201 gimple_phi_arg_set_location (phi
, i
, locus
);
7208 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7210 gimple
*stmt
= gsi_stmt (si
);
7211 struct walk_stmt_info wi
;
7213 memset (&wi
, 0, sizeof (wi
));
7215 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7217 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7219 tree label
= gimple_label_label (label_stmt
);
7220 int uid
= LABEL_DECL_UID (label
);
7222 gcc_assert (uid
> -1);
7224 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7225 if (old_len
<= (unsigned) uid
)
7227 new_len
= 3 * uid
/ 2 + 1;
7228 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7231 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7232 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7234 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7236 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7237 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7240 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7241 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7243 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7244 gimple_remove_stmt_histograms (cfun
, stmt
);
7246 /* We cannot leave any operands allocated from the operand caches of
7247 the current function. */
7248 free_stmt_operands (cfun
, stmt
);
7249 push_cfun (dest_cfun
);
7254 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7255 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7257 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7258 if (d
->orig_block
== NULL_TREE
7259 || block
== d
->orig_block
)
7260 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7264 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7265 the outermost EH region. Use REGION as the incoming base EH region. */
7268 find_outermost_region_in_block (struct function
*src_cfun
,
7269 basic_block bb
, eh_region region
)
7271 gimple_stmt_iterator si
;
7273 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7275 gimple
*stmt
= gsi_stmt (si
);
7276 eh_region stmt_region
;
7279 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7280 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7284 region
= stmt_region
;
7285 else if (stmt_region
!= region
)
7287 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7288 gcc_assert (region
!= NULL
);
7297 new_label_mapper (tree decl
, void *data
)
7299 htab_t hash
= (htab_t
) data
;
7303 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7305 m
= XNEW (struct tree_map
);
7306 m
->hash
= DECL_UID (decl
);
7307 m
->base
.from
= decl
;
7308 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7309 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7310 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7311 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7313 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7314 gcc_assert (*slot
== NULL
);
7321 /* Tree walker to replace the decls used inside value expressions by
7325 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7327 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7329 switch (TREE_CODE (*tp
))
7334 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7340 if (IS_TYPE_OR_DECL_P (*tp
))
7341 *walk_subtrees
= false;
7346 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7350 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7355 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7358 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7360 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7363 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7365 tree x
= DECL_VALUE_EXPR (*tp
);
7366 struct replace_decls_d rd
= { vars_map
, to_context
};
7368 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7369 SET_DECL_VALUE_EXPR (t
, x
);
7370 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7372 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7377 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7378 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7381 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7385 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7388 /* Discard it from the old loop array. */
7389 (*get_loops (fn1
))[loop
->num
] = NULL
;
7391 /* Place it in the new loop array, assigning it a new number. */
7392 loop
->num
= number_of_loops (fn2
);
7393 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7395 /* Recurse to children. */
7396 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7397 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7400 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7401 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7404 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7409 bitmap bbs
= BITMAP_ALLOC (NULL
);
7412 gcc_assert (entry
!= NULL
);
7413 gcc_assert (entry
!= exit
);
7414 gcc_assert (bbs_p
!= NULL
);
7416 gcc_assert (bbs_p
->length () > 0);
7418 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7419 bitmap_set_bit (bbs
, bb
->index
);
7421 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7422 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7424 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7428 gcc_assert (single_pred_p (entry
));
7429 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7432 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7435 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7440 gcc_assert (single_succ_p (exit
));
7441 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7444 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7447 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7454 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7457 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7459 bitmap release_names
= (bitmap
)data
;
7461 if (TREE_CODE (from
) != SSA_NAME
)
7464 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7468 /* Return LOOP_DIST_ALIAS call if present in BB. */
7471 find_loop_dist_alias (basic_block bb
)
7473 gimple
*g
= last_stmt (bb
);
7474 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7477 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7479 if (gsi_end_p (gsi
))
7483 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7488 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7489 to VALUE and update any immediate uses of it's LHS. */
7492 fold_loop_internal_call (gimple
*g
, tree value
)
7494 tree lhs
= gimple_call_lhs (g
);
7495 use_operand_p use_p
;
7496 imm_use_iterator iter
;
7498 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7500 update_call_from_tree (&gsi
, value
);
7501 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7503 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7504 SET_USE (use_p
, value
);
7505 update_stmt (use_stmt
);
7509 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7510 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7511 single basic block in the original CFG and the new basic block is
7512 returned. DEST_CFUN must not have a CFG yet.
7514 Note that the region need not be a pure SESE region. Blocks inside
7515 the region may contain calls to abort/exit. The only restriction
7516 is that ENTRY_BB should be the only entry point and it must
7519 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7520 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7521 to the new function.
7523 All local variables referenced in the region are assumed to be in
7524 the corresponding BLOCK_VARS and unexpanded variable lists
7525 associated with DEST_CFUN.
7527 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7528 reimplement move_sese_region_to_fn by duplicating the region rather than
7532 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7533 basic_block exit_bb
, tree orig_block
)
7535 vec
<basic_block
> bbs
, dom_bbs
;
7536 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7537 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7538 struct function
*saved_cfun
= cfun
;
7539 int *entry_flag
, *exit_flag
;
7540 profile_probability
*entry_prob
, *exit_prob
;
7541 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7544 htab_t new_label_map
;
7545 hash_map
<void *, void *> *eh_map
;
7546 struct loop
*loop
= entry_bb
->loop_father
;
7547 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7548 struct move_stmt_d d
;
7550 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7552 gcc_assert (entry_bb
!= exit_bb
7554 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7556 /* Collect all the blocks in the region. Manually add ENTRY_BB
7557 because it won't be added by dfs_enumerate_from. */
7559 bbs
.safe_push (entry_bb
);
7560 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7563 verify_sese (entry_bb
, exit_bb
, &bbs
);
7565 /* The blocks that used to be dominated by something in BBS will now be
7566 dominated by the new block. */
7567 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7571 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7572 the predecessor edges to ENTRY_BB and the successor edges to
7573 EXIT_BB so that we can re-attach them to the new basic block that
7574 will replace the region. */
7575 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7576 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7577 entry_flag
= XNEWVEC (int, num_entry_edges
);
7578 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7580 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7582 entry_prob
[i
] = e
->probability
;
7583 entry_flag
[i
] = e
->flags
;
7584 entry_pred
[i
++] = e
->src
;
7590 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7591 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7592 exit_flag
= XNEWVEC (int, num_exit_edges
);
7593 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7595 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7597 exit_prob
[i
] = e
->probability
;
7598 exit_flag
[i
] = e
->flags
;
7599 exit_succ
[i
++] = e
->dest
;
7611 /* Switch context to the child function to initialize DEST_FN's CFG. */
7612 gcc_assert (dest_cfun
->cfg
== NULL
);
7613 push_cfun (dest_cfun
);
7615 init_empty_tree_cfg ();
7617 /* Initialize EH information for the new function. */
7619 new_label_map
= NULL
;
7622 eh_region region
= NULL
;
7624 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7625 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7627 init_eh_for_function ();
7630 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7631 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7632 new_label_mapper
, new_label_map
);
7636 /* Initialize an empty loop tree. */
7637 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7638 init_loops_structure (dest_cfun
, loops
, 1);
7639 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7640 set_loops_for_fn (dest_cfun
, loops
);
7642 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7644 /* Move the outlined loop tree part. */
7645 num_nodes
= bbs
.length ();
7646 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7648 if (bb
->loop_father
->header
== bb
)
7650 struct loop
*this_loop
= bb
->loop_father
;
7651 struct loop
*outer
= loop_outer (this_loop
);
7653 /* If the SESE region contains some bbs ending with
7654 a noreturn call, those are considered to belong
7655 to the outermost loop in saved_cfun, rather than
7656 the entry_bb's loop_father. */
7660 num_nodes
-= this_loop
->num_nodes
;
7661 flow_loop_tree_node_remove (bb
->loop_father
);
7662 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7663 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7666 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7669 /* Remove loop exits from the outlined region. */
7670 if (loops_for_fn (saved_cfun
)->exits
)
7671 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7673 struct loops
*l
= loops_for_fn (saved_cfun
);
7675 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7678 l
->exits
->clear_slot (slot
);
7682 /* Adjust the number of blocks in the tree root of the outlined part. */
7683 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7685 /* Setup a mapping to be used by move_block_to_fn. */
7686 loop
->aux
= current_loops
->tree_root
;
7687 loop0
->aux
= current_loops
->tree_root
;
7689 /* Fix up orig_loop_num. If the block referenced in it has been moved
7690 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7692 signed char *moved_orig_loop_num
= NULL
;
7693 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7694 if (dloop
->orig_loop_num
)
7696 if (moved_orig_loop_num
== NULL
)
7698 = XCNEWVEC (signed char, vec_safe_length (larray
));
7699 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7700 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7702 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7703 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7704 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7705 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7709 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7710 dloop
->orig_loop_num
= 0;
7715 if (moved_orig_loop_num
)
7717 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7719 gimple
*g
= find_loop_dist_alias (bb
);
7723 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7724 gcc_assert (orig_loop_num
7725 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7726 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7728 /* If we have moved both loops with this orig_loop_num into
7729 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7730 too, update the first argument. */
7731 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7732 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7734 tree t
= build_int_cst (integer_type_node
,
7735 (*larray
)[dloop
->orig_loop_num
]->num
);
7736 gimple_call_set_arg (g
, 0, t
);
7738 /* Make sure the following loop will not update it. */
7739 moved_orig_loop_num
[orig_loop_num
] = 0;
7742 /* Otherwise at least one of the loops stayed in saved_cfun.
7743 Remove the LOOP_DIST_ALIAS call. */
7744 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7746 FOR_EACH_BB_FN (bb
, saved_cfun
)
7748 gimple
*g
= find_loop_dist_alias (bb
);
7751 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7752 gcc_assert (orig_loop_num
7753 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7754 if (moved_orig_loop_num
[orig_loop_num
])
7755 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7756 of the corresponding loops was moved, remove it. */
7757 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7759 XDELETEVEC (moved_orig_loop_num
);
7763 /* Move blocks from BBS into DEST_CFUN. */
7764 gcc_assert (bbs
.length () >= 2);
7765 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7766 hash_map
<tree
, tree
> vars_map
;
7768 memset (&d
, 0, sizeof (d
));
7769 d
.orig_block
= orig_block
;
7770 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7771 d
.from_context
= cfun
->decl
;
7772 d
.to_context
= dest_cfun
->decl
;
7773 d
.vars_map
= &vars_map
;
7774 d
.new_label_map
= new_label_map
;
7776 d
.remap_decls_p
= true;
7778 if (gimple_in_ssa_p (cfun
))
7779 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7781 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7782 set_ssa_default_def (dest_cfun
, arg
, narg
);
7783 vars_map
.put (arg
, narg
);
7786 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7788 /* No need to update edge counts on the last block. It has
7789 already been updated earlier when we detached the region from
7790 the original CFG. */
7791 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7797 /* Loop sizes are no longer correct, fix them up. */
7798 loop
->num_nodes
-= num_nodes
;
7799 for (struct loop
*outer
= loop_outer (loop
);
7800 outer
; outer
= loop_outer (outer
))
7801 outer
->num_nodes
-= num_nodes
;
7802 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7804 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7807 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7812 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7814 dest_cfun
->has_simduid_loops
= true;
7816 if (aloop
->force_vectorize
)
7817 dest_cfun
->has_force_vectorize_loops
= true;
7821 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7825 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7827 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7828 = BLOCK_SUBBLOCKS (orig_block
);
7829 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7830 block
; block
= BLOCK_CHAIN (block
))
7831 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7832 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7835 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7836 &vars_map
, dest_cfun
->decl
);
7839 htab_delete (new_label_map
);
7843 if (gimple_in_ssa_p (cfun
))
7845 /* We need to release ssa-names in a defined order, so first find them,
7846 and then iterate in ascending version order. */
7847 bitmap release_names
= BITMAP_ALLOC (NULL
);
7848 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7851 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7852 release_ssa_name (ssa_name (i
));
7853 BITMAP_FREE (release_names
);
7856 /* Rewire the entry and exit blocks. The successor to the entry
7857 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7858 the child function. Similarly, the predecessor of DEST_FN's
7859 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7860 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7861 various CFG manipulation function get to the right CFG.
7863 FIXME, this is silly. The CFG ought to become a parameter to
7865 push_cfun (dest_cfun
);
7866 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7867 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7870 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7871 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7874 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7877 /* Back in the original function, the SESE region has disappeared,
7878 create a new basic block in its place. */
7879 bb
= create_empty_bb (entry_pred
[0]);
7881 add_bb_to_loop (bb
, loop
);
7882 for (i
= 0; i
< num_entry_edges
; i
++)
7884 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7885 e
->probability
= entry_prob
[i
];
7888 for (i
= 0; i
< num_exit_edges
; i
++)
7890 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7891 e
->probability
= exit_prob
[i
];
7894 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7895 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7896 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7913 /* Dump default def DEF to file FILE using FLAGS and indentation
7917 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7919 for (int i
= 0; i
< spc
; ++i
)
7920 fprintf (file
, " ");
7921 dump_ssaname_info_to_file (file
, def
, spc
);
7923 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7924 fprintf (file
, " ");
7925 print_generic_expr (file
, def
, flags
);
7926 fprintf (file
, " = ");
7927 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7928 fprintf (file
, ";\n");
7931 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7934 print_no_sanitize_attr_value (FILE *file
, tree value
)
7936 unsigned int flags
= tree_to_uhwi (value
);
7938 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7940 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7943 fprintf (file
, " | ");
7944 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7950 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7954 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7956 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7957 struct function
*dsf
;
7958 bool ignore_topmost_bind
= false, any_var
= false;
7961 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7962 && decl_is_tm_clone (fndecl
));
7963 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7965 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7967 fprintf (file
, "__attribute__((");
7971 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7972 first
= false, chain
= TREE_CHAIN (chain
))
7975 fprintf (file
, ", ");
7977 tree name
= get_attribute_name (chain
);
7978 print_generic_expr (file
, name
, dump_flags
);
7979 if (TREE_VALUE (chain
) != NULL_TREE
)
7981 fprintf (file
, " (");
7983 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7984 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7986 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7987 fprintf (file
, ")");
7991 fprintf (file
, "))\n");
7994 current_function_decl
= fndecl
;
7995 if (flags
& TDF_GIMPLE
)
7997 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7998 dump_flags
| TDF_SLIM
);
7999 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
8002 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
8004 arg
= DECL_ARGUMENTS (fndecl
);
8007 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
8008 fprintf (file
, " ");
8009 print_generic_expr (file
, arg
, dump_flags
);
8010 if (DECL_CHAIN (arg
))
8011 fprintf (file
, ", ");
8012 arg
= DECL_CHAIN (arg
);
8014 fprintf (file
, ")\n");
8016 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
8017 if (dsf
&& (flags
& TDF_EH
))
8018 dump_eh_tree (file
, dsf
);
8020 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
8022 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
8023 current_function_decl
= old_current_fndecl
;
8027 /* When GIMPLE is lowered, the variables are no longer available in
8028 BIND_EXPRs, so display them separately. */
8029 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
8032 ignore_topmost_bind
= true;
8034 fprintf (file
, "{\n");
8035 if (gimple_in_ssa_p (fun
)
8036 && (flags
& TDF_ALIAS
))
8038 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
8039 arg
= DECL_CHAIN (arg
))
8041 tree def
= ssa_default_def (fun
, arg
);
8043 dump_default_def (file
, def
, 2, flags
);
8046 tree res
= DECL_RESULT (fun
->decl
);
8047 if (res
!= NULL_TREE
8048 && DECL_BY_REFERENCE (res
))
8050 tree def
= ssa_default_def (fun
, res
);
8052 dump_default_def (file
, def
, 2, flags
);
8055 tree static_chain
= fun
->static_chain_decl
;
8056 if (static_chain
!= NULL_TREE
)
8058 tree def
= ssa_default_def (fun
, static_chain
);
8060 dump_default_def (file
, def
, 2, flags
);
8064 if (!vec_safe_is_empty (fun
->local_decls
))
8065 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
8067 print_generic_decl (file
, var
, flags
);
8068 fprintf (file
, "\n");
8075 if (gimple_in_ssa_p (cfun
))
8076 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
8078 if (!SSA_NAME_VAR (name
))
8080 fprintf (file
, " ");
8081 print_generic_expr (file
, TREE_TYPE (name
), flags
);
8082 fprintf (file
, " ");
8083 print_generic_expr (file
, name
, flags
);
8084 fprintf (file
, ";\n");
8091 if (fun
&& fun
->decl
== fndecl
8093 && basic_block_info_for_fn (fun
))
8095 /* If the CFG has been built, emit a CFG-based dump. */
8096 if (!ignore_topmost_bind
)
8097 fprintf (file
, "{\n");
8099 if (any_var
&& n_basic_blocks_for_fn (fun
))
8100 fprintf (file
, "\n");
8102 FOR_EACH_BB_FN (bb
, fun
)
8103 dump_bb (file
, bb
, 2, flags
);
8105 fprintf (file
, "}\n");
8107 else if (fun
->curr_properties
& PROP_gimple_any
)
8109 /* The function is now in GIMPLE form but the CFG has not been
8110 built yet. Emit the single sequence of GIMPLE statements
8111 that make up its body. */
8112 gimple_seq body
= gimple_body (fndecl
);
8114 if (gimple_seq_first_stmt (body
)
8115 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
8116 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
8117 print_gimple_seq (file
, body
, 0, flags
);
8120 if (!ignore_topmost_bind
)
8121 fprintf (file
, "{\n");
8124 fprintf (file
, "\n");
8126 print_gimple_seq (file
, body
, 2, flags
);
8127 fprintf (file
, "}\n");
8134 /* Make a tree based dump. */
8135 chain
= DECL_SAVED_TREE (fndecl
);
8136 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
8138 if (ignore_topmost_bind
)
8140 chain
= BIND_EXPR_BODY (chain
);
8148 if (!ignore_topmost_bind
)
8150 fprintf (file
, "{\n");
8151 /* No topmost bind, pretend it's ignored for later. */
8152 ignore_topmost_bind
= true;
8158 fprintf (file
, "\n");
8160 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8161 if (ignore_topmost_bind
)
8162 fprintf (file
, "}\n");
8165 if (flags
& TDF_ENUMERATE_LOCALS
)
8166 dump_enumerated_decls (file
, flags
);
8167 fprintf (file
, "\n\n");
8169 current_function_decl
= old_current_fndecl
;
8172 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8175 debug_function (tree fn
, dump_flags_t flags
)
8177 dump_function_to_file (fn
, stderr
, flags
);
8181 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8184 print_pred_bbs (FILE *file
, basic_block bb
)
8189 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8190 fprintf (file
, "bb_%d ", e
->src
->index
);
8194 /* Print on FILE the indexes for the successors of basic_block BB. */
8197 print_succ_bbs (FILE *file
, basic_block bb
)
8202 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8203 fprintf (file
, "bb_%d ", e
->dest
->index
);
8206 /* Print to FILE the basic block BB following the VERBOSITY level. */
8209 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8211 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8212 memset ((void *) s_indent
, ' ', (size_t) indent
);
8213 s_indent
[indent
] = '\0';
8215 /* Print basic_block's header. */
8218 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8219 print_pred_bbs (file
, bb
);
8220 fprintf (file
, "}, succs = {");
8221 print_succ_bbs (file
, bb
);
8222 fprintf (file
, "})\n");
8225 /* Print basic_block's body. */
8228 fprintf (file
, "%s {\n", s_indent
);
8229 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8230 fprintf (file
, "%s }\n", s_indent
);
8234 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8236 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8237 VERBOSITY level this outputs the contents of the loop, or just its
8241 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8249 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8250 memset ((void *) s_indent
, ' ', (size_t) indent
);
8251 s_indent
[indent
] = '\0';
8253 /* Print loop's header. */
8254 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8256 fprintf (file
, "header = %d", loop
->header
->index
);
8259 fprintf (file
, "deleted)\n");
8263 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8265 fprintf (file
, ", multiple latches");
8266 fprintf (file
, ", niter = ");
8267 print_generic_expr (file
, loop
->nb_iterations
);
8269 if (loop
->any_upper_bound
)
8271 fprintf (file
, ", upper_bound = ");
8272 print_decu (loop
->nb_iterations_upper_bound
, file
);
8274 if (loop
->any_likely_upper_bound
)
8276 fprintf (file
, ", likely_upper_bound = ");
8277 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8280 if (loop
->any_estimate
)
8282 fprintf (file
, ", estimate = ");
8283 print_decu (loop
->nb_iterations_estimate
, file
);
8286 fprintf (file
, ", unroll = %d", loop
->unroll
);
8287 fprintf (file
, ")\n");
8289 /* Print loop's body. */
8292 fprintf (file
, "%s{\n", s_indent
);
8293 FOR_EACH_BB_FN (bb
, cfun
)
8294 if (bb
->loop_father
== loop
)
8295 print_loops_bb (file
, bb
, indent
, verbosity
);
8297 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8298 fprintf (file
, "%s}\n", s_indent
);
8302 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8303 spaces. Following VERBOSITY level this outputs the contents of the
8304 loop, or just its structure. */
8307 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8313 print_loop (file
, loop
, indent
, verbosity
);
8314 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8317 /* Follow a CFG edge from the entry point of the program, and on entry
8318 of a loop, pretty print the loop structure on FILE. */
8321 print_loops (FILE *file
, int verbosity
)
8325 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8326 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8327 if (bb
&& bb
->loop_father
)
8328 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8334 debug (struct loop
&ref
)
8336 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8340 debug (struct loop
*ptr
)
8345 fprintf (stderr
, "<nil>\n");
8348 /* Dump a loop verbosely. */
8351 debug_verbose (struct loop
&ref
)
8353 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8357 debug_verbose (struct loop
*ptr
)
8362 fprintf (stderr
, "<nil>\n");
8366 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8369 debug_loops (int verbosity
)
8371 print_loops (stderr
, verbosity
);
8374 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8377 debug_loop (struct loop
*loop
, int verbosity
)
8379 print_loop (stderr
, loop
, 0, verbosity
);
8382 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8386 debug_loop_num (unsigned num
, int verbosity
)
8388 debug_loop (get_loop (cfun
, num
), verbosity
);
8391 /* Return true if BB ends with a call, possibly followed by some
8392 instructions that must stay with the call. Return false,
8396 gimple_block_ends_with_call_p (basic_block bb
)
8398 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8399 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8403 /* Return true if BB ends with a conditional branch. Return false,
8407 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8409 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8410 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8414 /* Return true if statement T may terminate execution of BB in ways not
8415 explicitly represtented in the CFG. */
8418 stmt_can_terminate_bb_p (gimple
*t
)
8420 tree fndecl
= NULL_TREE
;
8423 /* Eh exception not handled internally terminates execution of the whole
8425 if (stmt_can_throw_external (t
))
8428 /* NORETURN and LONGJMP calls already have an edge to exit.
8429 CONST and PURE calls do not need one.
8430 We don't currently check for CONST and PURE here, although
8431 it would be a good idea, because those attributes are
8432 figured out from the RTL in mark_constant_function, and
8433 the counter incrementation code from -fprofile-arcs
8434 leads to different results from -fbranch-probabilities. */
8435 if (is_gimple_call (t
))
8437 fndecl
= gimple_call_fndecl (t
);
8438 call_flags
= gimple_call_flags (t
);
8441 if (is_gimple_call (t
)
8443 && DECL_BUILT_IN (fndecl
)
8444 && (call_flags
& ECF_NOTHROW
)
8445 && !(call_flags
& ECF_RETURNS_TWICE
)
8446 /* fork() doesn't really return twice, but the effect of
8447 wrapping it in __gcov_fork() which calls __gcov_flush()
8448 and clears the counters before forking has the same
8449 effect as returning twice. Force a fake edge. */
8450 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8451 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8454 if (is_gimple_call (t
))
8460 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8461 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8464 /* Function call may do longjmp, terminate program or do other things.
8465 Special case noreturn that have non-abnormal edges out as in this case
8466 the fact is sufficiently represented by lack of edges out of T. */
8467 if (!(call_flags
& ECF_NORETURN
))
8471 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8472 if ((e
->flags
& EDGE_FAKE
) == 0)
8476 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8477 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8484 /* Add fake edges to the function exit for any non constant and non
8485 noreturn calls (or noreturn calls with EH/abnormal edges),
8486 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8487 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8490 The goal is to expose cases in which entering a basic block does
8491 not imply that all subsequent instructions must be executed. */
8494 gimple_flow_call_edges_add (sbitmap blocks
)
8497 int blocks_split
= 0;
8498 int last_bb
= last_basic_block_for_fn (cfun
);
8499 bool check_last_block
= false;
8501 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8505 check_last_block
= true;
8507 check_last_block
= bitmap_bit_p (blocks
,
8508 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8510 /* In the last basic block, before epilogue generation, there will be
8511 a fallthru edge to EXIT. Special care is required if the last insn
8512 of the last basic block is a call because make_edge folds duplicate
8513 edges, which would result in the fallthru edge also being marked
8514 fake, which would result in the fallthru edge being removed by
8515 remove_fake_edges, which would result in an invalid CFG.
8517 Moreover, we can't elide the outgoing fake edge, since the block
8518 profiler needs to take this into account in order to solve the minimal
8519 spanning tree in the case that the call doesn't return.
8521 Handle this by adding a dummy instruction in a new last basic block. */
8522 if (check_last_block
)
8524 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8525 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8528 if (!gsi_end_p (gsi
))
8531 if (t
&& stmt_can_terminate_bb_p (t
))
8535 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8538 gsi_insert_on_edge (e
, gimple_build_nop ());
8539 gsi_commit_edge_inserts ();
8544 /* Now add fake edges to the function exit for any non constant
8545 calls since there is no way that we can determine if they will
8547 for (i
= 0; i
< last_bb
; i
++)
8549 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8550 gimple_stmt_iterator gsi
;
8551 gimple
*stmt
, *last_stmt
;
8556 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8559 gsi
= gsi_last_nondebug_bb (bb
);
8560 if (!gsi_end_p (gsi
))
8562 last_stmt
= gsi_stmt (gsi
);
8565 stmt
= gsi_stmt (gsi
);
8566 if (stmt_can_terminate_bb_p (stmt
))
8570 /* The handling above of the final block before the
8571 epilogue should be enough to verify that there is
8572 no edge to the exit block in CFG already.
8573 Calling make_edge in such case would cause us to
8574 mark that edge as fake and remove it later. */
8575 if (flag_checking
&& stmt
== last_stmt
)
8577 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8578 gcc_assert (e
== NULL
);
8581 /* Note that the following may create a new basic block
8582 and renumber the existing basic blocks. */
8583 if (stmt
!= last_stmt
)
8585 e
= split_block (bb
, stmt
);
8589 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8590 e
->probability
= profile_probability::guessed_never ();
8594 while (!gsi_end_p (gsi
));
8599 checking_verify_flow_info ();
8601 return blocks_split
;
8604 /* Removes edge E and all the blocks dominated by it, and updates dominance
8605 information. The IL in E->src needs to be updated separately.
8606 If dominance info is not available, only the edge E is removed.*/
8609 remove_edge_and_dominated_blocks (edge e
)
8611 vec
<basic_block
> bbs_to_remove
= vNULL
;
8612 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8615 bool none_removed
= false;
8617 basic_block bb
, dbb
;
8620 /* If we are removing a path inside a non-root loop that may change
8621 loop ownership of blocks or remove loops. Mark loops for fixup. */
8623 && loop_outer (e
->src
->loop_father
) != NULL
8624 && e
->src
->loop_father
== e
->dest
->loop_father
)
8625 loops_state_set (LOOPS_NEED_FIXUP
);
8627 if (!dom_info_available_p (CDI_DOMINATORS
))
8633 /* No updating is needed for edges to exit. */
8634 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8636 if (cfgcleanup_altered_bbs
)
8637 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8642 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8643 that is not dominated by E->dest, then this set is empty. Otherwise,
8644 all the basic blocks dominated by E->dest are removed.
8646 Also, to DF_IDOM we store the immediate dominators of the blocks in
8647 the dominance frontier of E (i.e., of the successors of the
8648 removed blocks, if there are any, and of E->dest otherwise). */
8649 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8654 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8656 none_removed
= true;
8661 auto_bitmap df
, df_idom
;
8663 bitmap_set_bit (df_idom
,
8664 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8667 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8668 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8670 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8672 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8673 bitmap_set_bit (df
, f
->dest
->index
);
8676 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8677 bitmap_clear_bit (df
, bb
->index
);
8679 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8681 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8682 bitmap_set_bit (df_idom
,
8683 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8687 if (cfgcleanup_altered_bbs
)
8689 /* Record the set of the altered basic blocks. */
8690 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8691 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8694 /* Remove E and the cancelled blocks. */
8699 /* Walk backwards so as to get a chance to substitute all
8700 released DEFs into debug stmts. See
8701 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8703 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8704 delete_basic_block (bbs_to_remove
[i
]);
8707 /* Update the dominance information. The immediate dominator may change only
8708 for blocks whose immediate dominator belongs to DF_IDOM:
8710 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8711 removal. Let Z the arbitrary block such that idom(Z) = Y and
8712 Z dominates X after the removal. Before removal, there exists a path P
8713 from Y to X that avoids Z. Let F be the last edge on P that is
8714 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8715 dominates W, and because of P, Z does not dominate W), and W belongs to
8716 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8717 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8719 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8720 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8722 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8723 bbs_to_fix_dom
.safe_push (dbb
);
8726 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8728 bbs_to_remove
.release ();
8729 bbs_to_fix_dom
.release ();
8732 /* Purge dead EH edges from basic block BB. */
8735 gimple_purge_dead_eh_edges (basic_block bb
)
8737 bool changed
= false;
8740 gimple
*stmt
= last_stmt (bb
);
8742 if (stmt
&& stmt_can_throw_internal (stmt
))
8745 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8747 if (e
->flags
& EDGE_EH
)
8749 remove_edge_and_dominated_blocks (e
);
8759 /* Purge dead EH edges from basic block listed in BLOCKS. */
8762 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8764 bool changed
= false;
8768 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8770 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8772 /* Earlier gimple_purge_dead_eh_edges could have removed
8773 this basic block already. */
8774 gcc_assert (bb
|| changed
);
8776 changed
|= gimple_purge_dead_eh_edges (bb
);
8782 /* Purge dead abnormal call edges from basic block BB. */
8785 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8787 bool changed
= false;
8790 gimple
*stmt
= last_stmt (bb
);
8792 if (!cfun
->has_nonlocal_label
8793 && !cfun
->calls_setjmp
)
8796 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8799 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8801 if (e
->flags
& EDGE_ABNORMAL
)
8803 if (e
->flags
& EDGE_FALLTHRU
)
8804 e
->flags
&= ~EDGE_ABNORMAL
;
8806 remove_edge_and_dominated_blocks (e
);
8816 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8819 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8821 bool changed
= false;
8825 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8827 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8829 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8830 this basic block already. */
8831 gcc_assert (bb
|| changed
);
8833 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8839 /* This function is called whenever a new edge is created or
8843 gimple_execute_on_growing_pred (edge e
)
8845 basic_block bb
= e
->dest
;
8847 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8848 reserve_phi_args_for_new_edge (bb
);
8851 /* This function is called immediately before edge E is removed from
8852 the edge vector E->dest->preds. */
8855 gimple_execute_on_shrinking_pred (edge e
)
8857 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8858 remove_phi_args (e
);
8861 /*---------------------------------------------------------------------------
8862 Helper functions for Loop versioning
8863 ---------------------------------------------------------------------------*/
8865 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8866 of 'first'. Both of them are dominated by 'new_head' basic block. When
8867 'new_head' was created by 'second's incoming edge it received phi arguments
8868 on the edge by split_edge(). Later, additional edge 'e' was created to
8869 connect 'new_head' and 'first'. Now this routine adds phi args on this
8870 additional edge 'e' that new_head to second edge received as part of edge
8874 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8875 basic_block new_head
, edge e
)
8878 gphi_iterator psi1
, psi2
;
8880 edge e2
= find_edge (new_head
, second
);
8882 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8883 edge, we should always have an edge from NEW_HEAD to SECOND. */
8884 gcc_assert (e2
!= NULL
);
8886 /* Browse all 'second' basic block phi nodes and add phi args to
8887 edge 'e' for 'first' head. PHI args are always in correct order. */
8889 for (psi2
= gsi_start_phis (second
),
8890 psi1
= gsi_start_phis (first
);
8891 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8892 gsi_next (&psi2
), gsi_next (&psi1
))
8896 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8897 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8902 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8903 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8904 the destination of the ELSE part. */
8907 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8908 basic_block second_head ATTRIBUTE_UNUSED
,
8909 basic_block cond_bb
, void *cond_e
)
8911 gimple_stmt_iterator gsi
;
8912 gimple
*new_cond_expr
;
8913 tree cond_expr
= (tree
) cond_e
;
8916 /* Build new conditional expr */
8917 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8918 NULL_TREE
, NULL_TREE
);
8920 /* Add new cond in cond_bb. */
8921 gsi
= gsi_last_bb (cond_bb
);
8922 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8924 /* Adjust edges appropriately to connect new head with first head
8925 as well as second head. */
8926 e0
= single_succ_edge (cond_bb
);
8927 e0
->flags
&= ~EDGE_FALLTHRU
;
8928 e0
->flags
|= EDGE_FALSE_VALUE
;
8932 /* Do book-keeping of basic block BB for the profile consistency checker.
8933 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8934 then do post-pass accounting. Store the counting in RECORD. */
8936 gimple_account_profile_record (basic_block bb
, int after_pass
,
8937 struct profile_record
*record
)
8939 gimple_stmt_iterator i
;
8940 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8942 record
->size
[after_pass
]
8943 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8944 if (bb
->count
.initialized_p ())
8945 record
->time
[after_pass
]
8946 += estimate_num_insns (gsi_stmt (i
),
8947 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8948 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8949 record
->time
[after_pass
]
8950 += estimate_num_insns (gsi_stmt (i
),
8951 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8955 struct cfg_hooks gimple_cfg_hooks
= {
8957 gimple_verify_flow_info
,
8958 gimple_dump_bb
, /* dump_bb */
8959 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8960 create_bb
, /* create_basic_block */
8961 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8962 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8963 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8964 remove_bb
, /* delete_basic_block */
8965 gimple_split_block
, /* split_block */
8966 gimple_move_block_after
, /* move_block_after */
8967 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8968 gimple_merge_blocks
, /* merge_blocks */
8969 gimple_predict_edge
, /* predict_edge */
8970 gimple_predicted_by_p
, /* predicted_by_p */
8971 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8972 gimple_duplicate_bb
, /* duplicate_block */
8973 gimple_split_edge
, /* split_edge */
8974 gimple_make_forwarder_block
, /* make_forward_block */
8975 NULL
, /* tidy_fallthru_edge */
8976 NULL
, /* force_nonfallthru */
8977 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8978 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8979 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8980 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8981 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8982 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8983 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8984 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8985 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8986 flush_pending_stmts
, /* flush_pending_stmts */
8987 gimple_empty_block_p
, /* block_empty_p */
8988 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8989 gimple_account_profile_record
,
8993 /* Split all critical edges. */
8996 split_critical_edges (void)
9002 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9003 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9004 mappings around the calls to split_edge. */
9005 start_recording_case_labels ();
9006 FOR_ALL_BB_FN (bb
, cfun
)
9008 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9010 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
9012 /* PRE inserts statements to edges and expects that
9013 since split_critical_edges was done beforehand, committing edge
9014 insertions will not split more edges. In addition to critical
9015 edges we must split edges that have multiple successors and
9016 end by control flow statements, such as RESX.
9017 Go ahead and split them too. This matches the logic in
9018 gimple_find_edge_insert_loc. */
9019 else if ((!single_pred_p (e
->dest
)
9020 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
9021 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
9022 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
9023 && !(e
->flags
& EDGE_ABNORMAL
))
9025 gimple_stmt_iterator gsi
;
9027 gsi
= gsi_last_bb (e
->src
);
9028 if (!gsi_end_p (gsi
)
9029 && stmt_ends_bb_p (gsi_stmt (gsi
))
9030 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
9031 && !gimple_call_builtin_p (gsi_stmt (gsi
),
9037 end_recording_case_labels ();
9043 const pass_data pass_data_split_crit_edges
=
9045 GIMPLE_PASS
, /* type */
9046 "crited", /* name */
9047 OPTGROUP_NONE
, /* optinfo_flags */
9048 TV_TREE_SPLIT_EDGES
, /* tv_id */
9049 PROP_cfg
, /* properties_required */
9050 PROP_no_crit_edges
, /* properties_provided */
9051 0, /* properties_destroyed */
9052 0, /* todo_flags_start */
9053 0, /* todo_flags_finish */
9056 class pass_split_crit_edges
: public gimple_opt_pass
9059 pass_split_crit_edges (gcc::context
*ctxt
)
9060 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
9063 /* opt_pass methods: */
9064 virtual unsigned int execute (function
*) { return split_critical_edges (); }
9066 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
9067 }; // class pass_split_crit_edges
9072 make_pass_split_crit_edges (gcc::context
*ctxt
)
9074 return new pass_split_crit_edges (ctxt
);
9078 /* Insert COND expression which is GIMPLE_COND after STMT
9079 in basic block BB with appropriate basic block split
9080 and creation of a new conditionally executed basic block.
9081 Update profile so the new bb is visited with probability PROB.
9082 Return created basic block. */
9084 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
9085 profile_probability prob
)
9087 edge fall
= split_block (bb
, stmt
);
9088 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
9091 /* Insert cond statement. */
9092 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
9093 if (gsi_end_p (iter
))
9094 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
9096 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
9098 /* Create conditionally executed block. */
9099 new_bb
= create_empty_bb (bb
);
9100 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
9101 e
->probability
= prob
;
9102 new_bb
->count
= e
->count ();
9103 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
9105 /* Fix edge for split bb. */
9106 fall
->flags
= EDGE_FALSE_VALUE
;
9107 fall
->probability
-= e
->probability
;
9109 /* Update dominance info. */
9110 if (dom_info_available_p (CDI_DOMINATORS
))
9112 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
9113 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
9116 /* Update loop info. */
9118 add_bb_to_loop (new_bb
, bb
->loop_father
);
9123 /* Build a ternary operation and gimplify it. Emit code before GSI.
9124 Return the gimple_val holding the result. */
9127 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9128 tree type
, tree a
, tree b
, tree c
)
9131 location_t loc
= gimple_location (gsi_stmt (*gsi
));
9133 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
9136 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9140 /* Build a binary operation and gimplify it. Emit code before GSI.
9141 Return the gimple_val holding the result. */
9144 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9145 tree type
, tree a
, tree b
)
9149 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
9152 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9156 /* Build a unary operation and gimplify it. Emit code before GSI.
9157 Return the gimple_val holding the result. */
9160 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
9165 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9168 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9174 /* Given a basic block B which ends with a conditional and has
9175 precisely two successors, determine which of the edges is taken if
9176 the conditional is true and which is taken if the conditional is
9177 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9180 extract_true_false_edges_from_block (basic_block b
,
9184 edge e
= EDGE_SUCC (b
, 0);
9186 if (e
->flags
& EDGE_TRUE_VALUE
)
9189 *false_edge
= EDGE_SUCC (b
, 1);
9194 *true_edge
= EDGE_SUCC (b
, 1);
9199 /* From a controlling predicate in the immediate dominator DOM of
9200 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9201 predicate evaluates to true and false and store them to
9202 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9203 they are non-NULL. Returns true if the edges can be determined,
9204 else return false. */
9207 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9208 edge
*true_controlled_edge
,
9209 edge
*false_controlled_edge
)
9211 basic_block bb
= phiblock
;
9212 edge true_edge
, false_edge
, tem
;
9213 edge e0
= NULL
, e1
= NULL
;
9215 /* We have to verify that one edge into the PHI node is dominated
9216 by the true edge of the predicate block and the other edge
9217 dominated by the false edge. This ensures that the PHI argument
9218 we are going to take is completely determined by the path we
9219 take from the predicate block.
9220 We can only use BB dominance checks below if the destination of
9221 the true/false edges are dominated by their edge, thus only
9222 have a single predecessor. */
9223 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9224 tem
= EDGE_PRED (bb
, 0);
9225 if (tem
== true_edge
9226 || (single_pred_p (true_edge
->dest
)
9227 && (tem
->src
== true_edge
->dest
9228 || dominated_by_p (CDI_DOMINATORS
,
9229 tem
->src
, true_edge
->dest
))))
9231 else if (tem
== false_edge
9232 || (single_pred_p (false_edge
->dest
)
9233 && (tem
->src
== false_edge
->dest
9234 || dominated_by_p (CDI_DOMINATORS
,
9235 tem
->src
, false_edge
->dest
))))
9239 tem
= EDGE_PRED (bb
, 1);
9240 if (tem
== true_edge
9241 || (single_pred_p (true_edge
->dest
)
9242 && (tem
->src
== true_edge
->dest
9243 || dominated_by_p (CDI_DOMINATORS
,
9244 tem
->src
, true_edge
->dest
))))
9246 else if (tem
== false_edge
9247 || (single_pred_p (false_edge
->dest
)
9248 && (tem
->src
== false_edge
->dest
9249 || dominated_by_p (CDI_DOMINATORS
,
9250 tem
->src
, false_edge
->dest
))))
9257 if (true_controlled_edge
)
9258 *true_controlled_edge
= e0
;
9259 if (false_controlled_edge
)
9260 *false_controlled_edge
= e1
;
9265 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9266 range [low, high]. Place associated stmts before *GSI. */
9269 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9270 tree
*lhs
, tree
*rhs
)
9272 tree type
= TREE_TYPE (index
);
9273 tree utype
= unsigned_type_for (type
);
9275 low
= fold_convert (type
, low
);
9276 high
= fold_convert (type
, high
);
9278 tree tmp
= make_ssa_name (type
);
9280 = gimple_build_assign (tmp
, MINUS_EXPR
, index
, low
);
9282 *lhs
= make_ssa_name (utype
);
9283 gassign
*a
= gimple_build_assign (*lhs
, NOP_EXPR
, tmp
);
9285 *rhs
= fold_build2 (MINUS_EXPR
, utype
, high
, low
);
9286 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9287 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
9288 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
9291 /* Emit return warnings. */
9295 const pass_data pass_data_warn_function_return
=
9297 GIMPLE_PASS
, /* type */
9298 "*warn_function_return", /* name */
9299 OPTGROUP_NONE
, /* optinfo_flags */
9300 TV_NONE
, /* tv_id */
9301 PROP_cfg
, /* properties_required */
9302 0, /* properties_provided */
9303 0, /* properties_destroyed */
9304 0, /* todo_flags_start */
9305 0, /* todo_flags_finish */
9308 class pass_warn_function_return
: public gimple_opt_pass
9311 pass_warn_function_return (gcc::context
*ctxt
)
9312 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9315 /* opt_pass methods: */
9316 virtual unsigned int execute (function
*);
9318 }; // class pass_warn_function_return
9321 pass_warn_function_return::execute (function
*fun
)
9323 source_location location
;
9328 if (!targetm
.warn_func_return (fun
->decl
))
9331 /* If we have a path to EXIT, then we do return. */
9332 if (TREE_THIS_VOLATILE (fun
->decl
)
9333 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9335 location
= UNKNOWN_LOCATION
;
9336 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9337 (e
= ei_safe_edge (ei
)); )
9339 last
= last_stmt (e
->src
);
9340 if ((gimple_code (last
) == GIMPLE_RETURN
9341 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9342 && location
== UNKNOWN_LOCATION
9343 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9344 != UNKNOWN_LOCATION
)
9347 /* When optimizing, replace return stmts in noreturn functions
9348 with __builtin_unreachable () call. */
9349 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9351 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9352 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9353 gimple_set_location (new_stmt
, gimple_location (last
));
9354 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9355 gsi_replace (&gsi
, new_stmt
, true);
9361 if (location
== UNKNOWN_LOCATION
)
9362 location
= cfun
->function_end_locus
;
9363 warning_at (location
, 0, "%<noreturn%> function does return");
9366 /* If we see "return;" in some basic block, then we do reach the end
9367 without returning a value. */
9368 else if (warn_return_type
> 0
9369 && !TREE_NO_WARNING (fun
->decl
)
9370 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9372 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9374 gimple
*last
= last_stmt (e
->src
);
9375 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9377 && gimple_return_retval (return_stmt
) == NULL
9378 && !gimple_no_warning_p (last
))
9380 location
= gimple_location (last
);
9381 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9382 location
= fun
->function_end_locus
;
9383 warning_at (location
, OPT_Wreturn_type
,
9384 "control reaches end of non-void function");
9385 TREE_NO_WARNING (fun
->decl
) = 1;
9389 /* The C++ FE turns fallthrough from the end of non-void function
9390 into __builtin_unreachable () call with BUILTINS_LOCATION.
9391 Recognize those too. */
9393 if (!TREE_NO_WARNING (fun
->decl
))
9394 FOR_EACH_BB_FN (bb
, fun
)
9395 if (EDGE_COUNT (bb
->succs
) == 0)
9397 gimple
*last
= last_stmt (bb
);
9398 const enum built_in_function ubsan_missing_ret
9399 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9401 && ((LOCATION_LOCUS (gimple_location (last
))
9402 == BUILTINS_LOCATION
9403 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9404 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9406 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9407 gsi_prev_nondebug (&gsi
);
9408 gimple
*prev
= gsi_stmt (gsi
);
9410 location
= UNKNOWN_LOCATION
;
9412 location
= gimple_location (prev
);
9413 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9414 location
= fun
->function_end_locus
;
9415 warning_at (location
, OPT_Wreturn_type
,
9416 "control reaches end of non-void function");
9417 TREE_NO_WARNING (fun
->decl
) = 1;
9428 make_pass_warn_function_return (gcc::context
*ctxt
)
9430 return new pass_warn_function_return (ctxt
);
9433 /* Walk a gimplified function and warn for functions whose return value is
9434 ignored and attribute((warn_unused_result)) is set. This is done before
9435 inlining, so we don't have to worry about that. */
9438 do_warn_unused_result (gimple_seq seq
)
9441 gimple_stmt_iterator i
;
9443 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9445 gimple
*g
= gsi_stmt (i
);
9447 switch (gimple_code (g
))
9450 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9453 do_warn_unused_result (gimple_try_eval (g
));
9454 do_warn_unused_result (gimple_try_cleanup (g
));
9457 do_warn_unused_result (gimple_catch_handler (
9458 as_a
<gcatch
*> (g
)));
9460 case GIMPLE_EH_FILTER
:
9461 do_warn_unused_result (gimple_eh_filter_failure (g
));
9465 if (gimple_call_lhs (g
))
9467 if (gimple_call_internal_p (g
))
9470 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9471 LHS. All calls whose value is ignored should be
9472 represented like this. Look for the attribute. */
9473 fdecl
= gimple_call_fndecl (g
);
9474 ftype
= gimple_call_fntype (g
);
9476 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9478 location_t loc
= gimple_location (g
);
9481 warning_at (loc
, OPT_Wunused_result
,
9482 "ignoring return value of %qD, "
9483 "declared with attribute warn_unused_result",
9486 warning_at (loc
, OPT_Wunused_result
,
9487 "ignoring return value of function "
9488 "declared with attribute warn_unused_result");
9493 /* Not a container, not a call, or a call whose value is used. */
9501 const pass_data pass_data_warn_unused_result
=
9503 GIMPLE_PASS
, /* type */
9504 "*warn_unused_result", /* name */
9505 OPTGROUP_NONE
, /* optinfo_flags */
9506 TV_NONE
, /* tv_id */
9507 PROP_gimple_any
, /* properties_required */
9508 0, /* properties_provided */
9509 0, /* properties_destroyed */
9510 0, /* todo_flags_start */
9511 0, /* todo_flags_finish */
9514 class pass_warn_unused_result
: public gimple_opt_pass
9517 pass_warn_unused_result (gcc::context
*ctxt
)
9518 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9521 /* opt_pass methods: */
9522 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9523 virtual unsigned int execute (function
*)
9525 do_warn_unused_result (gimple_body (current_function_decl
));
9529 }; // class pass_warn_unused_result
9534 make_pass_warn_unused_result (gcc::context
*ctxt
)
9536 return new pass_warn_unused_result (ctxt
);
9539 /* IPA passes, compilation of earlier functions or inlining
9540 might have changed some properties, such as marked functions nothrow,
9541 pure, const or noreturn.
9542 Remove redundant edges and basic blocks, and create new ones if necessary.
9544 This pass can't be executed as stand alone pass from pass manager, because
9545 in between inlining and this fixup the verify_flow_info would fail. */
9548 execute_fixup_cfg (void)
9551 gimple_stmt_iterator gsi
;
9553 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9554 profile_count num
= node
->count
;
9555 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9556 bool scale
= num
.initialized_p () && !(num
== den
);
9560 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9561 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9562 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9563 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9566 FOR_EACH_BB_FN (bb
, cfun
)
9569 bb
->count
= bb
->count
.apply_scale (num
, den
);
9570 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9572 gimple
*stmt
= gsi_stmt (gsi
);
9573 tree decl
= is_gimple_call (stmt
)
9574 ? gimple_call_fndecl (stmt
)
9578 int flags
= gimple_call_flags (stmt
);
9579 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9581 if (gimple_purge_dead_abnormal_call_edges (bb
))
9582 todo
|= TODO_cleanup_cfg
;
9584 if (gimple_in_ssa_p (cfun
))
9586 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9591 if (flags
& ECF_NORETURN
9592 && fixup_noreturn_call (stmt
))
9593 todo
|= TODO_cleanup_cfg
;
9596 /* Remove stores to variables we marked write-only.
9597 Keep access when store has side effect, i.e. in case when source
9599 if (gimple_store_p (stmt
)
9600 && !gimple_has_side_effects (stmt
))
9602 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9605 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9606 && varpool_node::get (lhs
)->writeonly
)
9608 unlink_stmt_vdef (stmt
);
9609 gsi_remove (&gsi
, true);
9610 release_defs (stmt
);
9611 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9615 /* For calls we can simply remove LHS when it is known
9616 to be write-only. */
9617 if (is_gimple_call (stmt
)
9618 && gimple_get_lhs (stmt
))
9620 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9623 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9624 && varpool_node::get (lhs
)->writeonly
)
9626 gimple_call_set_lhs (stmt
, NULL
);
9628 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9632 if (maybe_clean_eh_stmt (stmt
)
9633 && gimple_purge_dead_eh_edges (bb
))
9634 todo
|= TODO_cleanup_cfg
;
9638 /* If we have a basic block with no successors that does not
9639 end with a control statement or a noreturn call end it with
9640 a call to __builtin_unreachable. This situation can occur
9641 when inlining a noreturn call that does in fact return. */
9642 if (EDGE_COUNT (bb
->succs
) == 0)
9644 gimple
*stmt
= last_stmt (bb
);
9646 || (!is_ctrl_stmt (stmt
)
9647 && (!is_gimple_call (stmt
)
9648 || !gimple_call_noreturn_p (stmt
))))
9650 if (stmt
&& is_gimple_call (stmt
))
9651 gimple_call_set_ctrl_altering (stmt
, false);
9652 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9653 stmt
= gimple_build_call (fndecl
, 0);
9654 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9655 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9656 if (!cfun
->after_inlining
)
9658 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9659 node
->create_edge (cgraph_node::get_create (fndecl
),
9660 call_stmt
, bb
->count
);
9666 compute_function_frequency ();
9669 && (todo
& TODO_cleanup_cfg
))
9670 loops_state_set (LOOPS_NEED_FIXUP
);
9677 const pass_data pass_data_fixup_cfg
=
9679 GIMPLE_PASS
, /* type */
9680 "fixup_cfg", /* name */
9681 OPTGROUP_NONE
, /* optinfo_flags */
9682 TV_NONE
, /* tv_id */
9683 PROP_cfg
, /* properties_required */
9684 0, /* properties_provided */
9685 0, /* properties_destroyed */
9686 0, /* todo_flags_start */
9687 0, /* todo_flags_finish */
9690 class pass_fixup_cfg
: public gimple_opt_pass
9693 pass_fixup_cfg (gcc::context
*ctxt
)
9694 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9697 /* opt_pass methods: */
9698 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9699 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9701 }; // class pass_fixup_cfg
9706 make_pass_fixup_cfg (gcc::context
*ctxt
)
9708 return new pass_fixup_cfg (ctxt
);
9711 /* Garbage collection support for edge_def. */
9713 extern void gt_ggc_mx (tree
&);
9714 extern void gt_ggc_mx (gimple
*&);
9715 extern void gt_ggc_mx (rtx
&);
9716 extern void gt_ggc_mx (basic_block
&);
9719 gt_ggc_mx (rtx_insn
*& x
)
9722 gt_ggc_mx_rtx_def ((void *) x
);
9726 gt_ggc_mx (edge_def
*e
)
9728 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9730 gt_ggc_mx (e
->dest
);
9731 if (current_ir_type () == IR_GIMPLE
)
9732 gt_ggc_mx (e
->insns
.g
);
9734 gt_ggc_mx (e
->insns
.r
);
9738 /* PCH support for edge_def. */
9740 extern void gt_pch_nx (tree
&);
9741 extern void gt_pch_nx (gimple
*&);
9742 extern void gt_pch_nx (rtx
&);
9743 extern void gt_pch_nx (basic_block
&);
9746 gt_pch_nx (rtx_insn
*& x
)
9749 gt_pch_nx_rtx_def ((void *) x
);
9753 gt_pch_nx (edge_def
*e
)
9755 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9757 gt_pch_nx (e
->dest
);
9758 if (current_ir_type () == IR_GIMPLE
)
9759 gt_pch_nx (e
->insns
.g
);
9761 gt_pch_nx (e
->insns
.r
);
9766 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9768 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9769 op (&(e
->src
), cookie
);
9770 op (&(e
->dest
), cookie
);
9771 if (current_ir_type () == IR_GIMPLE
)
9772 op (&(e
->insns
.g
), cookie
);
9774 op (&(e
->insns
.r
), cookie
);
9775 op (&(block
), cookie
);
9780 namespace selftest
{
9782 /* Helper function for CFG selftests: create a dummy function decl
9783 and push it as cfun. */
9786 push_fndecl (const char *name
)
9788 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9789 /* FIXME: this uses input_location: */
9790 tree fndecl
= build_fn_decl (name
, fn_type
);
9791 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9792 NULL_TREE
, integer_type_node
);
9793 DECL_RESULT (fndecl
) = retval
;
9794 push_struct_function (fndecl
);
9795 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9796 ASSERT_TRUE (fun
!= NULL
);
9797 init_empty_tree_cfg_for_function (fun
);
9798 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9799 ASSERT_EQ (0, n_edges_for_fn (fun
));
9803 /* These tests directly create CFGs.
9804 Compare with the static fns within tree-cfg.c:
9806 - make_blocks: calls create_basic_block (seq, bb);
9809 /* Verify a simple cfg of the form:
9810 ENTRY -> A -> B -> C -> EXIT. */
9813 test_linear_chain ()
9815 gimple_register_cfg_hooks ();
9817 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9818 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9820 /* Create some empty blocks. */
9821 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9822 basic_block bb_b
= create_empty_bb (bb_a
);
9823 basic_block bb_c
= create_empty_bb (bb_b
);
9825 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9826 ASSERT_EQ (0, n_edges_for_fn (fun
));
9828 /* Create some edges: a simple linear chain of BBs. */
9829 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9830 make_edge (bb_a
, bb_b
, 0);
9831 make_edge (bb_b
, bb_c
, 0);
9832 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9834 /* Verify the edges. */
9835 ASSERT_EQ (4, n_edges_for_fn (fun
));
9836 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9837 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9838 ASSERT_EQ (1, bb_a
->preds
->length ());
9839 ASSERT_EQ (1, bb_a
->succs
->length ());
9840 ASSERT_EQ (1, bb_b
->preds
->length ());
9841 ASSERT_EQ (1, bb_b
->succs
->length ());
9842 ASSERT_EQ (1, bb_c
->preds
->length ());
9843 ASSERT_EQ (1, bb_c
->succs
->length ());
9844 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9845 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9847 /* Verify the dominance information
9848 Each BB in our simple chain should be dominated by the one before
9850 calculate_dominance_info (CDI_DOMINATORS
);
9851 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9852 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9853 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9854 ASSERT_EQ (1, dom_by_b
.length ());
9855 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9856 free_dominance_info (CDI_DOMINATORS
);
9857 dom_by_b
.release ();
9859 /* Similarly for post-dominance: each BB in our chain is post-dominated
9860 by the one after it. */
9861 calculate_dominance_info (CDI_POST_DOMINATORS
);
9862 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9863 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9864 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9865 ASSERT_EQ (1, postdom_by_b
.length ());
9866 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9867 free_dominance_info (CDI_POST_DOMINATORS
);
9868 postdom_by_b
.release ();
9873 /* Verify a simple CFG of the form:
9889 gimple_register_cfg_hooks ();
9891 tree fndecl
= push_fndecl ("cfg_test_diamond");
9892 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9894 /* Create some empty blocks. */
9895 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9896 basic_block bb_b
= create_empty_bb (bb_a
);
9897 basic_block bb_c
= create_empty_bb (bb_a
);
9898 basic_block bb_d
= create_empty_bb (bb_b
);
9900 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9901 ASSERT_EQ (0, n_edges_for_fn (fun
));
9903 /* Create the edges. */
9904 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9905 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9906 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9907 make_edge (bb_b
, bb_d
, 0);
9908 make_edge (bb_c
, bb_d
, 0);
9909 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9911 /* Verify the edges. */
9912 ASSERT_EQ (6, n_edges_for_fn (fun
));
9913 ASSERT_EQ (1, bb_a
->preds
->length ());
9914 ASSERT_EQ (2, bb_a
->succs
->length ());
9915 ASSERT_EQ (1, bb_b
->preds
->length ());
9916 ASSERT_EQ (1, bb_b
->succs
->length ());
9917 ASSERT_EQ (1, bb_c
->preds
->length ());
9918 ASSERT_EQ (1, bb_c
->succs
->length ());
9919 ASSERT_EQ (2, bb_d
->preds
->length ());
9920 ASSERT_EQ (1, bb_d
->succs
->length ());
9922 /* Verify the dominance information. */
9923 calculate_dominance_info (CDI_DOMINATORS
);
9924 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9925 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9926 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9927 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9928 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9929 dom_by_a
.release ();
9930 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9931 ASSERT_EQ (0, dom_by_b
.length ());
9932 dom_by_b
.release ();
9933 free_dominance_info (CDI_DOMINATORS
);
9935 /* Similarly for post-dominance. */
9936 calculate_dominance_info (CDI_POST_DOMINATORS
);
9937 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9938 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9939 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9940 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9941 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9942 postdom_by_d
.release ();
9943 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9944 ASSERT_EQ (0, postdom_by_b
.length ());
9945 postdom_by_b
.release ();
9946 free_dominance_info (CDI_POST_DOMINATORS
);
9951 /* Verify that we can handle a CFG containing a "complete" aka
9952 fully-connected subgraph (where A B C D below all have edges
9953 pointing to each other node, also to themselves).
9971 test_fully_connected ()
9973 gimple_register_cfg_hooks ();
9975 tree fndecl
= push_fndecl ("cfg_fully_connected");
9976 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9980 /* Create some empty blocks. */
9981 auto_vec
<basic_block
> subgraph_nodes
;
9982 for (int i
= 0; i
< n
; i
++)
9983 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9985 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9986 ASSERT_EQ (0, n_edges_for_fn (fun
));
9988 /* Create the edges. */
9989 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9990 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9991 for (int i
= 0; i
< n
; i
++)
9992 for (int j
= 0; j
< n
; j
++)
9993 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9995 /* Verify the edges. */
9996 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9997 /* The first one is linked to ENTRY/EXIT as well as itself and
9999 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
10000 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
10001 /* The other ones in the subgraph are linked to everything in
10002 the subgraph (including themselves). */
10003 for (int i
= 1; i
< n
; i
++)
10005 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
10006 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
10009 /* Verify the dominance information. */
10010 calculate_dominance_info (CDI_DOMINATORS
);
10011 /* The initial block in the subgraph should be dominated by ENTRY. */
10012 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
10013 get_immediate_dominator (CDI_DOMINATORS
,
10014 subgraph_nodes
[0]));
10015 /* Every other block in the subgraph should be dominated by the
10017 for (int i
= 1; i
< n
; i
++)
10018 ASSERT_EQ (subgraph_nodes
[0],
10019 get_immediate_dominator (CDI_DOMINATORS
,
10020 subgraph_nodes
[i
]));
10021 free_dominance_info (CDI_DOMINATORS
);
10023 /* Similarly for post-dominance. */
10024 calculate_dominance_info (CDI_POST_DOMINATORS
);
10025 /* The initial block in the subgraph should be postdominated by EXIT. */
10026 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
10027 get_immediate_dominator (CDI_POST_DOMINATORS
,
10028 subgraph_nodes
[0]));
10029 /* Every other block in the subgraph should be postdominated by the
10030 initial block, since that leads to EXIT. */
10031 for (int i
= 1; i
< n
; i
++)
10032 ASSERT_EQ (subgraph_nodes
[0],
10033 get_immediate_dominator (CDI_POST_DOMINATORS
,
10034 subgraph_nodes
[i
]));
10035 free_dominance_info (CDI_POST_DOMINATORS
);
10040 /* Run all of the selftests within this file. */
10043 tree_cfg_c_tests ()
10045 test_linear_chain ();
10047 test_fully_connected ();
10050 } // namespace selftest
10052 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10055 - switch statement (a block with many out-edges)
10056 - something that jumps to itself
10059 #endif /* CHECKING_P */