darwin_stop_world.c: Update for -m64 multilib.
[official-gcc.git] / gcc / tree-vectorizer.c
blob5859880977e75c68751e8a11ecab033e07a76576
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Loop Vectorization Pass.
24 This pass tries to vectorize loops. This first implementation focuses on
25 simple inner-most loops, with no conditional control flow, and a set of
26 simple operations which vector form can be expressed using existing
27 tree codes (PLUS, MULT etc).
29 For example, the vectorizer transforms the following simple loop:
31 short a[N]; short b[N]; short c[N]; int i;
33 for (i=0; i<N; i++){
34 a[i] = b[i] + c[i];
37 as if it was manually vectorized by rewriting the source code into:
39 typedef int __attribute__((mode(V8HI))) v8hi;
40 short a[N]; short b[N]; short c[N]; int i;
41 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
42 v8hi va, vb, vc;
44 for (i=0; i<N/8; i++){
45 vb = pb[i];
46 vc = pc[i];
47 va = vb + vc;
48 pa[i] = va;
51 The main entry to this pass is vectorize_loops(), in which
52 the vectorizer applies a set of analyses on a given set of loops,
53 followed by the actual vectorization transformation for the loops that
54 had successfully passed the analysis phase.
56 Throughout this pass we make a distinction between two types of
57 data: scalars (which are represented by SSA_NAMES), and memory references
58 ("data-refs"). These two types of data require different handling both
59 during analysis and transformation. The types of data-refs that the
60 vectorizer currently supports are ARRAY_REFS which base is an array DECL
61 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
62 accesses are required to have a simple (consecutive) access pattern.
64 Analysis phase:
65 ===============
66 The driver for the analysis phase is vect_analyze_loop_nest().
67 It applies a set of analyses, some of which rely on the scalar evolution
68 analyzer (scev) developed by Sebastian Pop.
70 During the analysis phase the vectorizer records some information
71 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
72 loop, as well as general information about the loop as a whole, which is
73 recorded in a "loop_vec_info" struct attached to each loop.
75 Transformation phase:
76 =====================
77 The loop transformation phase scans all the stmts in the loop, and
78 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
79 the loop that needs to be vectorized. It insert the vector code sequence
80 just before the scalar stmt S, and records a pointer to the vector code
81 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
82 attached to S). This pointer will be used for the vectorization of following
83 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
84 otherwise, we rely on dead code elimination for removing it.
86 For example, say stmt S1 was vectorized into stmt VS1:
88 VS1: vb = px[i];
89 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
90 S2: a = b;
92 To vectorize stmt S2, the vectorizer first finds the stmt that defines
93 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
94 vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
95 resulting sequence would be:
97 VS1: vb = px[i];
98 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
99 VS2: va = vb;
100 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
102 Operands that are not SSA_NAMEs, are data-refs that appear in
103 load/store operations (like 'x[i]' in S1), and are handled differently.
105 Target modeling:
106 =================
107 Currently the only target specific information that is used is the
108 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
109 support different sizes of vectors, for now will need to specify one value
110 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
112 Since we only vectorize operations which vector form can be
113 expressed using existing tree codes, to verify that an operation is
114 supported, the vectorizer checks the relevant optab at the relevant
115 machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
116 the value found is CODE_FOR_nothing, then there's no target support, and
117 we can't vectorize the stmt.
119 For additional information on this project see:
120 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
123 #include "config.h"
124 #include "system.h"
125 #include "coretypes.h"
126 #include "tm.h"
127 #include "errors.h"
128 #include "ggc.h"
129 #include "tree.h"
130 #include "target.h"
131 #include "rtl.h"
132 #include "basic-block.h"
133 #include "diagnostic.h"
134 #include "tree-flow.h"
135 #include "tree-dump.h"
136 #include "timevar.h"
137 #include "cfgloop.h"
138 #include "cfglayout.h"
139 #include "expr.h"
140 #include "optabs.h"
141 #include "toplev.h"
142 #include "tree-chrec.h"
143 #include "tree-data-ref.h"
144 #include "tree-scalar-evolution.h"
145 #include "input.h"
146 #include "tree-vectorizer.h"
147 #include "tree-pass.h"
149 /*************************************************************************
150 Simple Loop Peeling Utilities
151 *************************************************************************/
152 static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
153 (struct loop *, struct loops *, edge);
154 static void slpeel_update_phis_for_duplicate_loop
155 (struct loop *, struct loop *, bool after);
156 static void slpeel_update_phi_nodes_for_guard (edge, struct loop *, bool, bool);
157 static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
159 static void allocate_new_names (bitmap);
160 static void rename_use_op (use_operand_p);
161 static void rename_def_op (def_operand_p, tree);
162 static void rename_variables_in_bb (basic_block);
163 static void free_new_names (bitmap);
164 static void rename_variables_in_loop (struct loop *);
166 /*************************************************************************
167 General Vectorization Utilities
168 *************************************************************************/
169 static void vect_set_dump_settings (void);
170 static bool need_imm_uses_for (tree);
172 /* vect_dump will be set to stderr or dump_file if exist. */
173 FILE *vect_dump;
175 /* vect_verbosity_level set to an invalid value
176 to mark that it's uninitialized. */
177 enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
181 /*************************************************************************
182 Simple Loop Peeling Utilities
184 Utilities to support loop peeling for vectorization purposes.
185 *************************************************************************/
188 /* For each definition in DEFINITIONS this function allocates
189 new ssa name. */
191 static void
192 allocate_new_names (bitmap definitions)
194 unsigned ver;
195 bitmap_iterator bi;
197 EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
199 tree def = ssa_name (ver);
200 tree *new_name_ptr = xmalloc (sizeof (tree));
202 bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def);
204 *new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def));
205 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal;
207 SSA_NAME_AUX (def) = new_name_ptr;
212 /* Renames the use *OP_P. */
214 static void
215 rename_use_op (use_operand_p op_p)
217 tree *new_name_ptr;
219 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
220 return;
222 new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p));
224 /* Something defined outside of the loop. */
225 if (!new_name_ptr)
226 return;
228 /* An ordinary ssa name defined in the loop. */
230 SET_USE (op_p, *new_name_ptr);
234 /* Renames the def *OP_P in statement STMT. */
236 static void
237 rename_def_op (def_operand_p op_p, tree stmt)
239 tree *new_name_ptr;
241 if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME)
242 return;
244 new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p));
246 /* Something defined outside of the loop. */
247 if (!new_name_ptr)
248 return;
250 /* An ordinary ssa name defined in the loop. */
252 SET_DEF (op_p, *new_name_ptr);
253 SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt;
257 /* Renames the variables in basic block BB. */
259 static void
260 rename_variables_in_bb (basic_block bb)
262 tree phi;
263 block_stmt_iterator bsi;
264 tree stmt;
265 stmt_ann_t ann;
266 use_optype uses;
267 vuse_optype vuses;
268 def_optype defs;
269 v_may_def_optype v_may_defs;
270 v_must_def_optype v_must_defs;
271 unsigned i;
272 edge e;
273 edge_iterator ei;
274 struct loop *loop = bb->loop_father;
276 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
277 rename_def_op (PHI_RESULT_PTR (phi), phi);
279 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
281 stmt = bsi_stmt (bsi);
282 get_stmt_operands (stmt);
283 ann = stmt_ann (stmt);
285 uses = USE_OPS (ann);
286 for (i = 0; i < NUM_USES (uses); i++)
287 rename_use_op (USE_OP_PTR (uses, i));
289 defs = DEF_OPS (ann);
290 for (i = 0; i < NUM_DEFS (defs); i++)
291 rename_def_op (DEF_OP_PTR (defs, i), stmt);
293 vuses = VUSE_OPS (ann);
294 for (i = 0; i < NUM_VUSES (vuses); i++)
295 rename_use_op (VUSE_OP_PTR (vuses, i));
297 v_may_defs = V_MAY_DEF_OPS (ann);
298 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
300 rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i));
301 rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt);
304 v_must_defs = V_MUST_DEF_OPS (ann);
305 for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
307 rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i));
308 rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt);
312 FOR_EACH_EDGE (e, ei, bb->succs)
314 if (!flow_bb_inside_loop_p (loop, e->dest))
315 continue;
316 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
317 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
322 /* Releases the structures holding the new ssa names. */
324 static void
325 free_new_names (bitmap definitions)
327 unsigned ver;
328 bitmap_iterator bi;
330 EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
332 tree def = ssa_name (ver);
334 if (SSA_NAME_AUX (def))
336 free (SSA_NAME_AUX (def));
337 SSA_NAME_AUX (def) = NULL;
343 /* Renames variables in new generated LOOP. */
345 static void
346 rename_variables_in_loop (struct loop *loop)
348 unsigned i;
349 basic_block *bbs;
351 bbs = get_loop_body (loop);
353 for (i = 0; i < loop->num_nodes; i++)
354 rename_variables_in_bb (bbs[i]);
356 free (bbs);
360 /* Update the PHI nodes of NEW_LOOP.
362 NEW_LOOP is a duplicate of ORIG_LOOP.
363 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
364 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
365 executes before it. */
367 static void
368 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
369 struct loop *new_loop, bool after)
371 tree *new_name_ptr, new_ssa_name;
372 tree phi_new, phi_orig;
373 tree def;
374 edge orig_loop_latch = loop_latch_edge (orig_loop);
375 edge orig_entry_e = loop_preheader_edge (orig_loop);
376 edge new_loop_exit_e = new_loop->single_exit;
377 edge new_loop_entry_e = loop_preheader_edge (new_loop);
378 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
381 step 1. For each loop-header-phi:
382 Add the first phi argument for the phi in NEW_LOOP
383 (the one associated with the entry of NEW_LOOP)
385 step 2. For each loop-header-phi:
386 Add the second phi argument for the phi in NEW_LOOP
387 (the one associated with the latch of NEW_LOOP)
389 step 3. Update the phis in the successor block of NEW_LOOP.
391 case 1: NEW_LOOP was placed before ORIG_LOOP:
392 The successor block of NEW_LOOP is the header of ORIG_LOOP.
393 Updating the phis in the successor block can therefore be done
394 along with the scanning of the loop header phis, because the
395 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
396 phi nodes, organized in the same order.
398 case 2: NEW_LOOP was placed after ORIG_LOOP:
399 The successor block of NEW_LOOP is the original exit block of
400 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
401 We postpone updating these phis to a later stage (when
402 loop guards are added).
406 /* Scan the phis in the headers of the old and new loops
407 (they are organized in exactly the same order). */
409 for (phi_new = phi_nodes (new_loop->header),
410 phi_orig = phi_nodes (orig_loop->header);
411 phi_new && phi_orig;
412 phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
414 /* step 1. */
415 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
416 add_phi_arg (phi_new, def, new_loop_entry_e);
418 /* step 2. */
419 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
420 if (TREE_CODE (def) != SSA_NAME)
421 continue;
423 new_name_ptr = SSA_NAME_AUX (def);
424 if (!new_name_ptr)
425 /* Something defined outside of the loop. */
426 continue;
428 /* An ordinary ssa name defined in the loop. */
429 new_ssa_name = *new_name_ptr;
430 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
432 /* step 3 (case 1). */
433 if (!after)
435 gcc_assert (new_loop_exit_e == orig_entry_e);
436 SET_PHI_ARG_DEF (phi_orig,
437 new_loop_exit_e->dest_idx,
438 new_ssa_name);
444 /* Update PHI nodes for a guard of the LOOP.
446 Input:
447 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
448 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
449 originates from the guard-bb, skips LOOP and reaches the (unique) exit
450 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
451 We denote this bb NEW_MERGE_BB because it had a single predecessor (the
452 LOOP header) before the guard code was added, and now it became a merge
453 point of two paths - the path that ends with the LOOP exit-edge, and
454 the path that ends with GUARD_EDGE.
456 This function creates and updates the relevant phi nodes to account for
457 the new incoming edge (GUARD_EDGE) into NEW_MERGE_BB:
458 1. Create phi nodes at NEW_MERGE_BB.
459 2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
460 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
461 was added:
463 ===> The CFG before the guard-code was added:
464 LOOP_header_bb:
465 if (exit_loop) goto update_bb : LOOP_header_bb
466 update_bb:
468 ==> The CFG after the guard-code was added:
469 guard_bb:
470 if (LOOP_guard_condition) goto new_merge_bb : LOOP_header_bb
471 LOOP_header_bb:
472 if (exit_loop_condition) goto new_merge_bb : LOOP_header_bb
473 new_merge_bb:
474 goto update_bb
475 update_bb:
477 - ENTRY_PHIS: If ENTRY_PHIS is TRUE, this indicates that the phis in
478 UPDATE_BB are loop entry phis, like the phis in the LOOP header,
479 organized in the same order.
480 If ENTRY_PHIs is FALSE, this indicates that the phis in UPDATE_BB are
481 loop exit phis.
483 - IS_NEW_LOOP: TRUE if LOOP is a new loop (a duplicated copy of another
484 "original" loop). FALSE if LOOP is an original loop (not a newly
485 created copy). The SSA_NAME_AUX fields of the defs in the original
486 loop are the corresponding new ssa-names used in the new duplicated
487 loop copy. IS_NEW_LOOP indicates which of the two args of the phi
488 nodes in UPDATE_BB takes the original ssa-name, and which takes the
489 new name: If IS_NEW_LOOP is TRUE, the phi-arg that is associated with
490 the LOOP-exit-edge takes the new-name, and the phi-arg that is
491 associated with GUARD_EDGE takes the original name. If IS_NEW_LOOP is
492 FALSE, it's the other way around.
495 static void
496 slpeel_update_phi_nodes_for_guard (edge guard_edge,
497 struct loop *loop,
498 bool entry_phis,
499 bool is_new_loop)
501 tree orig_phi, new_phi, update_phi;
502 tree guard_arg, loop_arg;
503 basic_block new_merge_bb = guard_edge->dest;
504 edge e = single_succ_edge (new_merge_bb);
505 basic_block update_bb = e->dest;
506 basic_block orig_bb = (entry_phis ? loop->header : update_bb);
508 for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
509 orig_phi && update_phi;
510 orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
512 /* 1. Generate new phi node in NEW_MERGE_BB: */
513 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
514 new_merge_bb);
516 /* 2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
517 of LOOP. Set the two phi args in NEW_PHI for these edges: */
518 if (entry_phis)
520 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
521 loop_latch_edge (loop));
522 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
523 loop_preheader_edge (loop));
525 else /* exit phis */
527 tree orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
528 tree *new_name_ptr = SSA_NAME_AUX (orig_def);
529 tree new_name;
531 if (new_name_ptr)
532 new_name = *new_name_ptr;
533 else
534 /* Something defined outside of the loop */
535 new_name = orig_def;
537 if (is_new_loop)
539 guard_arg = orig_def;
540 loop_arg = new_name;
542 else
544 guard_arg = new_name;
545 loop_arg = orig_def;
548 add_phi_arg (new_phi, loop_arg, loop->single_exit);
549 add_phi_arg (new_phi, guard_arg, guard_edge);
551 /* 3. Update phi in successor block. */
552 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
553 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
554 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
557 set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
561 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
562 that starts at zero, increases by one and its limit is NITERS.
564 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
566 void
567 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
569 tree indx_before_incr, indx_after_incr, cond_stmt, cond;
570 tree orig_cond;
571 edge exit_edge = loop->single_exit;
572 block_stmt_iterator loop_cond_bsi;
573 block_stmt_iterator incr_bsi;
574 bool insert_after;
575 tree begin_label = tree_block_label (loop->latch);
576 tree exit_label = tree_block_label (loop->single_exit->dest);
577 tree init = build_int_cst (TREE_TYPE (niters), 0);
578 tree step = build_int_cst (TREE_TYPE (niters), 1);
579 tree then_label;
580 tree else_label;
581 LOC loop_loc;
583 orig_cond = get_loop_exit_condition (loop);
584 #ifdef ENABLE_CHECKING
585 gcc_assert (orig_cond);
586 #endif
587 loop_cond_bsi = bsi_for_stmt (orig_cond);
589 standard_iv_increment_position (loop, &incr_bsi, &insert_after);
590 create_iv (init, step, NULL_TREE, loop,
591 &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
593 if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
595 cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
596 then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
597 else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
599 else /* 'then' edge loops back. */
601 cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
602 then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
603 else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
606 cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
607 then_label, else_label);
608 bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
610 /* Remove old loop exit test: */
611 bsi_remove (&loop_cond_bsi);
613 loop_loc = find_loop_location (loop);
614 if (dump_file && (dump_flags & TDF_DETAILS))
616 if (loop_loc != UNKNOWN_LOC)
617 fprintf (dump_file, "\nloop at %s:%d: ",
618 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
619 print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
622 loop->nb_iterations = niters;
626 /* Given LOOP this function generates a new copy of it and puts it
627 on E which is either the entry or exit of LOOP. */
629 static struct loop *
630 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
631 edge e)
633 struct loop *new_loop;
634 basic_block *new_bbs, *bbs;
635 bool at_exit;
636 bool was_imm_dom;
637 basic_block exit_dest;
638 tree phi, phi_arg;
640 at_exit = (e == loop->single_exit);
641 if (!at_exit && e != loop_preheader_edge (loop))
642 return NULL;
644 bbs = get_loop_body (loop);
646 /* Check whether duplication is possible. */
647 if (!can_copy_bbs_p (bbs, loop->num_nodes))
649 free (bbs);
650 return NULL;
653 /* Generate new loop structure. */
654 new_loop = duplicate_loop (loops, loop, loop->outer);
655 if (!new_loop)
657 free (bbs);
658 return NULL;
661 exit_dest = loop->single_exit->dest;
662 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
663 exit_dest) == loop->header ?
664 true : false);
666 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
668 copy_bbs (bbs, loop->num_nodes, new_bbs,
669 &loop->single_exit, 1, &new_loop->single_exit, NULL);
671 /* Duplicating phi args at exit bbs as coming
672 also from exit of duplicated loop. */
673 for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
675 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->single_exit);
676 if (phi_arg)
678 edge new_loop_exit_edge;
680 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
681 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
682 else
683 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
685 add_phi_arg (phi, phi_arg, new_loop_exit_edge);
689 if (at_exit) /* Add the loop copy at exit. */
691 redirect_edge_and_branch_force (e, new_loop->header);
692 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
693 if (was_imm_dom)
694 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
696 else /* Add the copy at entry. */
698 edge new_exit_e;
699 edge entry_e = loop_preheader_edge (loop);
700 basic_block preheader = entry_e->src;
702 if (!flow_bb_inside_loop_p (new_loop,
703 EDGE_SUCC (new_loop->header, 0)->dest))
704 new_exit_e = EDGE_SUCC (new_loop->header, 0);
705 else
706 new_exit_e = EDGE_SUCC (new_loop->header, 1);
708 redirect_edge_and_branch_force (new_exit_e, loop->header);
709 set_immediate_dominator (CDI_DOMINATORS, loop->header,
710 new_exit_e->src);
712 /* We have to add phi args to the loop->header here as coming
713 from new_exit_e edge. */
714 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
716 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
717 if (phi_arg)
718 add_phi_arg (phi, phi_arg, new_exit_e);
721 redirect_edge_and_branch_force (entry_e, new_loop->header);
722 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
725 free (new_bbs);
726 free (bbs);
728 return new_loop;
732 /* Given the condition statement COND, put it as the last statement
733 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
734 Assumes that this is the single exit of the guarded loop.
735 Returns the skip edge. */
737 static edge
738 slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
739 basic_block dom_bb)
741 block_stmt_iterator bsi;
742 edge new_e, enter_e;
743 tree cond_stmt, then_label, else_label;
745 enter_e = single_succ_edge (guard_bb);
746 enter_e->flags &= ~EDGE_FALLTHRU;
747 enter_e->flags |= EDGE_FALSE_VALUE;
748 bsi = bsi_last (guard_bb);
750 then_label = build1 (GOTO_EXPR, void_type_node,
751 tree_block_label (exit_bb));
752 else_label = build1 (GOTO_EXPR, void_type_node,
753 tree_block_label (enter_e->dest));
754 cond_stmt = build3 (COND_EXPR, void_type_node, cond,
755 then_label, else_label);
756 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
757 /* Add new edge to connect entry block to the second loop. */
758 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
759 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
760 return new_e;
764 /* This function verifies that the following restrictions apply to LOOP:
765 (1) it is innermost
766 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
767 (3) it is single entry, single exit
768 (4) its exit condition is the last stmt in the header
769 (5) E is the entry/exit edge of LOOP.
772 bool
773 slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
775 edge exit_e = loop->single_exit;
776 edge entry_e = loop_preheader_edge (loop);
777 tree orig_cond = get_loop_exit_condition (loop);
778 block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
780 if (any_marked_for_rewrite_p ())
781 return false;
783 if (loop->inner
784 /* All loops have an outer scope; the only case loop->outer is NULL is for
785 the function itself. */
786 || !loop->outer
787 || loop->num_nodes != 2
788 || !empty_block_p (loop->latch)
789 || !loop->single_exit
790 /* Verify that new loop exit condition can be trivially modified. */
791 || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
792 || (e != exit_e && e != entry_e))
793 return false;
795 return true;
798 #ifdef ENABLE_CHECKING
799 void
800 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
801 struct loop *second_loop)
803 basic_block loop1_exit_bb = first_loop->single_exit->dest;
804 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
805 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
807 /* A guard that controls whether the second_loop is to be executed or skipped
808 is placed in first_loop->exit. first_loopt->exit therefore has two
809 successors - one is the preheader of second_loop, and the other is a bb
810 after second_loop.
812 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
814 /* 1. Verify that one of the successors of first_loopt->exit is the preheader
815 of second_loop. */
817 /* The preheader of new_loop is expected to have two predessors:
818 first_loop->exit and the block that precedes first_loop. */
820 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
821 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
822 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
823 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
824 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
826 /* Verify that the other successor of first_loopt->exit is after the
827 second_loop. */
828 /* TODO */
830 #endif
832 /* Function slpeel_tree_peel_loop_to_edge.
834 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
835 that is placed on the entry (exit) edge E of LOOP. After this transformation
836 we have two loops one after the other - first-loop iterates FIRST_NITERS
837 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
839 Input:
840 - LOOP: the loop to be peeled.
841 - E: the exit or entry edge of LOOP.
842 If it is the entry edge, we peel the first iterations of LOOP. In this
843 case first-loop is LOOP, and second-loop is the newly created loop.
844 If it is the exit edge, we peel the last iterations of LOOP. In this
845 case, first-loop is the newly created loop, and second-loop is LOOP.
846 - NITERS: the number of iterations that LOOP iterates.
847 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
848 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
849 for updating the loop bound of the first-loop to FIRST_NITERS. If it
850 is false, the caller of this function may want to take care of this
851 (this can be useful if we don't want new stmts added to first-loop).
853 Output:
854 The function returns a pointer to the new loop-copy, or NULL if it failed
855 to perform the transformation.
857 The function generates two if-then-else guards: one before the first loop,
858 and the other before the second loop:
859 The first guard is:
860 if (FIRST_NITERS == 0) then skip the first loop,
861 and go directly to the second loop.
862 The second guard is:
863 if (FIRST_NITERS == NITERS) then skip the second loop.
865 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
866 FORNOW the resulting code will not be in loop-closed-ssa form.
869 struct loop*
870 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
871 edge e, tree first_niters,
872 tree niters, bool update_first_loop_count)
874 struct loop *new_loop = NULL, *first_loop, *second_loop;
875 edge skip_e;
876 tree pre_condition;
877 bitmap definitions;
878 basic_block bb_before_second_loop, bb_after_second_loop;
879 basic_block bb_before_first_loop;
880 basic_block bb_between_loops;
881 edge exit_e = loop->single_exit;
882 LOC loop_loc;
884 if (!slpeel_can_duplicate_loop_p (loop, e))
885 return NULL;
887 /* We have to initialize cfg_hooks. Then, when calling
888 cfg_hooks->split_edge, the function tree_split_edge
889 is actually called and, when calling cfg_hooks->duplicate_block,
890 the function tree_duplicate_bb is called. */
891 tree_register_cfg_hooks ();
894 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
895 Resulting CFG would be:
897 first_loop:
898 do {
899 } while ...
901 second_loop:
902 do {
903 } while ...
905 orig_exit_bb:
908 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
910 loop_loc = find_loop_location (loop);
911 if (dump_file && (dump_flags & TDF_DETAILS))
913 if (loop_loc != UNKNOWN_LOC)
914 fprintf (dump_file, "\n%s:%d: note: ",
915 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
916 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
918 return NULL;
921 if (e == exit_e)
923 /* NEW_LOOP was placed after LOOP. */
924 first_loop = loop;
925 second_loop = new_loop;
927 else
929 /* NEW_LOOP was placed before LOOP. */
930 first_loop = new_loop;
931 second_loop = loop;
934 definitions = marked_ssa_names ();
935 allocate_new_names (definitions);
936 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
937 rename_variables_in_loop (new_loop);
940 /* 2. Add the guard that controls whether the first loop is executed.
941 Resulting CFG would be:
943 bb_before_first_loop:
944 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
945 GOTO first-loop
947 first_loop:
948 do {
949 } while ...
951 bb_before_second_loop:
953 second_loop:
954 do {
955 } while ...
957 orig_exit_bb:
960 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
961 add_bb_to_loop (bb_before_first_loop, first_loop->outer);
962 bb_before_second_loop = split_edge (first_loop->single_exit);
963 add_bb_to_loop (bb_before_second_loop, first_loop->outer);
965 pre_condition =
966 fold (build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node));
967 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
968 bb_before_second_loop, bb_before_first_loop);
969 slpeel_update_phi_nodes_for_guard (skip_e, first_loop, true /* entry-phis */,
970 first_loop == new_loop);
973 /* 3. Add the guard that controls whether the second loop is executed.
974 Resulting CFG would be:
976 bb_before_first_loop:
977 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
978 GOTO first-loop
980 first_loop:
981 do {
982 } while ...
984 bb_between_loops:
985 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
986 GOTO bb_before_second_loop
988 bb_before_second_loop:
990 second_loop:
991 do {
992 } while ...
994 bb_after_second_loop:
996 orig_exit_bb:
999 bb_between_loops = split_edge (first_loop->single_exit);
1000 add_bb_to_loop (bb_between_loops, first_loop->outer);
1001 bb_after_second_loop = split_edge (second_loop->single_exit);
1002 add_bb_to_loop (bb_after_second_loop, second_loop->outer);
1004 pre_condition =
1005 fold (build2 (EQ_EXPR, boolean_type_node, first_niters, niters));
1006 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
1007 bb_after_second_loop, bb_before_first_loop);
1008 slpeel_update_phi_nodes_for_guard (skip_e, second_loop, false /* exit-phis */,
1009 second_loop == new_loop);
1011 /* Flow loop scan does not update loop->single_exit field. */
1012 first_loop->single_exit = first_loop->single_exit;
1013 second_loop->single_exit = second_loop->single_exit;
1015 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1017 if (update_first_loop_count)
1018 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1020 free_new_names (definitions);
1021 BITMAP_FREE (definitions);
1022 unmark_all_for_rewrite ();
1024 return new_loop;
1027 /* Function vect_get_loop_location.
1029 Extract the location of the loop in the source code.
1030 If the loop is not well formed for vectorization, an estimated
1031 location is calculated.
1032 Return the loop location if succeed and NULL if not. */
1035 find_loop_location (struct loop *loop)
1037 tree node = NULL_TREE;
1038 basic_block bb;
1039 block_stmt_iterator si;
1041 if (!loop)
1042 return UNKNOWN_LOC;
1044 node = get_loop_exit_condition (loop);
1046 if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node)
1047 && EXPR_FILENAME (node) && EXPR_LINENO (node))
1048 return EXPR_LOC (node);
1050 /* If we got here the loop is probably not "well formed",
1051 try to estimate the loop location */
1053 if (!loop->header)
1054 return UNKNOWN_LOC;
1056 bb = loop->header;
1058 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1060 node = bsi_stmt (si);
1061 if (node && EXPR_P (node) && EXPR_HAS_LOCATION (node))
1062 return EXPR_LOC (node);
1065 return UNKNOWN_LOC;
1069 /*************************************************************************
1070 Vectorization Debug Information.
1071 *************************************************************************/
1073 /* Function vect_set_verbosity_level.
1075 Called from toplev.c upon detection of the
1076 -ftree-vectorizer-verbose=N option. */
1078 void
1079 vect_set_verbosity_level (const char *val)
1081 unsigned int vl;
1083 vl = atoi (val);
1084 if (vl < MAX_VERBOSITY_LEVEL)
1085 vect_verbosity_level = vl;
1086 else
1087 vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
1091 /* Function vect_set_dump_settings.
1093 Fix the verbosity level of the vectorizer if the
1094 requested level was not set explicitly using the flag
1095 -ftree-vectorizer-verbose=N.
1096 Decide where to print the debugging information (dump_file/stderr).
1097 If the user defined the verbosity level, but there is no dump file,
1098 print to stderr, otherwise print to the dump file. */
1100 static void
1101 vect_set_dump_settings (void)
1103 vect_dump = dump_file;
1105 /* Check if the verbosity level was defined by the user: */
1106 if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
1108 /* If there is no dump file, print to stderr. */
1109 if (!dump_file)
1110 vect_dump = stderr;
1111 return;
1114 /* User didn't specify verbosity level: */
1115 if (dump_file && (dump_flags & TDF_DETAILS))
1116 vect_verbosity_level = REPORT_DETAILS;
1117 else if (dump_file && (dump_flags & TDF_STATS))
1118 vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
1119 else
1120 vect_verbosity_level = REPORT_NONE;
1122 gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1126 /* Function debug_loop_details.
1128 For vectorization debug dumps. */
1130 bool
1131 vect_print_dump_info (enum verbosity_levels vl, LOC loc)
1133 if (vl > vect_verbosity_level)
1134 return false;
1136 if (loc == UNKNOWN_LOC)
1137 fprintf (vect_dump, "\n%s:%d: note: ",
1138 DECL_SOURCE_FILE (current_function_decl),
1139 DECL_SOURCE_LINE (current_function_decl));
1140 else
1141 fprintf (vect_dump, "\n%s:%d: note: ", LOC_FILE (loc), LOC_LINE (loc));
1144 return true;
1148 /*************************************************************************
1149 Vectorization Utilities.
1150 *************************************************************************/
1152 /* Function new_stmt_vec_info.
1154 Create and initialize a new stmt_vec_info struct for STMT. */
1156 stmt_vec_info
1157 new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
1159 stmt_vec_info res;
1160 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
1162 STMT_VINFO_TYPE (res) = undef_vec_info_type;
1163 STMT_VINFO_STMT (res) = stmt;
1164 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1165 STMT_VINFO_RELEVANT_P (res) = 0;
1166 STMT_VINFO_VECTYPE (res) = NULL;
1167 STMT_VINFO_VEC_STMT (res) = NULL;
1168 STMT_VINFO_DATA_REF (res) = NULL;
1169 STMT_VINFO_MEMTAG (res) = NULL;
1170 STMT_VINFO_SUBVARS (res) = NULL;
1171 STMT_VINFO_VECT_DR_BASE_ADDRESS (res) = NULL;
1172 STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE;
1173 STMT_VINFO_VECT_STEP (res) = NULL_TREE;
1174 STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false;
1175 STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE;
1177 return res;
1181 /* Function new_loop_vec_info.
1183 Create and initialize a new loop_vec_info struct for LOOP, as well as
1184 stmt_vec_info structs for all the stmts in LOOP. */
1186 loop_vec_info
1187 new_loop_vec_info (struct loop *loop)
1189 loop_vec_info res;
1190 basic_block *bbs;
1191 block_stmt_iterator si;
1192 unsigned int i;
1194 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1196 bbs = get_loop_body (loop);
1198 /* Create stmt_info for all stmts in the loop. */
1199 for (i = 0; i < loop->num_nodes; i++)
1201 basic_block bb = bbs[i];
1202 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1204 tree stmt = bsi_stmt (si);
1205 stmt_ann_t ann;
1207 get_stmt_operands (stmt);
1208 ann = stmt_ann (stmt);
1209 set_stmt_info (ann, new_stmt_vec_info (stmt, res));
1213 LOOP_VINFO_LOOP (res) = loop;
1214 LOOP_VINFO_BBS (res) = bbs;
1215 LOOP_VINFO_EXIT_COND (res) = NULL;
1216 LOOP_VINFO_NITERS (res) = NULL;
1217 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1218 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1219 LOOP_VINFO_VECT_FACTOR (res) = 0;
1220 VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
1221 "loop_write_datarefs");
1222 VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
1223 "loop_read_datarefs");
1224 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1225 LOOP_VINFO_LOC (res) = UNKNOWN_LOC;
1227 return res;
1231 /* Function destroy_loop_vec_info.
1233 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1234 stmts in the loop. */
1236 void
1237 destroy_loop_vec_info (loop_vec_info loop_vinfo)
1239 struct loop *loop;
1240 basic_block *bbs;
1241 int nbbs;
1242 block_stmt_iterator si;
1243 int j;
1245 if (!loop_vinfo)
1246 return;
1248 loop = LOOP_VINFO_LOOP (loop_vinfo);
1250 bbs = LOOP_VINFO_BBS (loop_vinfo);
1251 nbbs = loop->num_nodes;
1253 for (j = 0; j < nbbs; j++)
1255 basic_block bb = bbs[j];
1256 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1258 tree stmt = bsi_stmt (si);
1259 stmt_ann_t ann = stmt_ann (stmt);
1260 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1261 free (stmt_info);
1262 set_stmt_info (ann, NULL);
1266 free (LOOP_VINFO_BBS (loop_vinfo));
1267 varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
1268 varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
1270 free (loop_vinfo);
1274 /* Function vect_strip_conversions
1276 Strip conversions that don't narrow the mode. */
1278 tree
1279 vect_strip_conversion (tree expr)
1281 tree to, ti, oprnd0;
1283 while (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1285 to = TREE_TYPE (expr);
1286 oprnd0 = TREE_OPERAND (expr, 0);
1287 ti = TREE_TYPE (oprnd0);
1289 if (!INTEGRAL_TYPE_P (to) || !INTEGRAL_TYPE_P (ti))
1290 return NULL_TREE;
1291 if (GET_MODE_SIZE (TYPE_MODE (to)) < GET_MODE_SIZE (TYPE_MODE (ti)))
1292 return NULL_TREE;
1294 expr = oprnd0;
1296 return expr;
1300 /* Function vect_force_dr_alignment_p.
1302 Returns whether the alignment of a DECL can be forced to be aligned
1303 on ALIGNMENT bit boundary. */
1305 bool
1306 vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
1308 if (TREE_CODE (decl) != VAR_DECL)
1309 return false;
1311 if (DECL_EXTERNAL (decl))
1312 return false;
1314 if (TREE_ASM_WRITTEN (decl))
1315 return false;
1317 if (TREE_STATIC (decl))
1318 return (alignment <= MAX_OFILE_ALIGNMENT);
1319 else
1320 /* This is not 100% correct. The absolute correct stack alignment
1321 is STACK_BOUNDARY. We're supposed to hope, but not assume, that
1322 PREFERRED_STACK_BOUNDARY is honored by all translation units.
1323 However, until someone implements forced stack alignment, SSE
1324 isn't really usable without this. */
1325 return (alignment <= PREFERRED_STACK_BOUNDARY);
1329 /* Function get_vectype_for_scalar_type.
1331 Returns the vector type corresponding to SCALAR_TYPE as supported
1332 by the target. */
1334 tree
1335 get_vectype_for_scalar_type (tree scalar_type)
1337 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
1338 int nbytes = GET_MODE_SIZE (inner_mode);
1339 int nunits;
1340 tree vectype;
1342 if (nbytes == 0)
1343 return NULL_TREE;
1345 /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
1346 is expected. */
1347 nunits = UNITS_PER_SIMD_WORD / nbytes;
1349 vectype = build_vector_type (scalar_type, nunits);
1350 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1352 fprintf (vect_dump, "get vectype with %d units of type ", nunits);
1353 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1356 if (!vectype)
1357 return NULL_TREE;
1359 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1361 fprintf (vect_dump, "vectype: ");
1362 print_generic_expr (vect_dump, vectype, TDF_SLIM);
1365 if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
1367 /* TODO: tree-complex.c sometimes can parallelize operations
1368 on generic vectors. We can vectorize the loop in that case,
1369 but then we should re-run the lowering pass. */
1370 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1371 fprintf (vect_dump, "mode not supported by target.");
1372 return NULL_TREE;
1375 return vectype;
1379 /* Function vect_supportable_dr_alignment
1381 Return whether the data reference DR is supported with respect to its
1382 alignment. */
1384 enum dr_alignment_support
1385 vect_supportable_dr_alignment (struct data_reference *dr)
1387 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
1388 enum machine_mode mode = (int) TYPE_MODE (vectype);
1390 if (aligned_access_p (dr))
1391 return dr_aligned;
1393 /* Possibly unaligned access. */
1395 if (DR_IS_READ (dr))
1397 if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
1398 && (!targetm.vectorize.builtin_mask_for_load
1399 || targetm.vectorize.builtin_mask_for_load ()))
1400 return dr_unaligned_software_pipeline;
1402 if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
1403 /* Can't software pipeline the loads, but can at least do them. */
1404 return dr_unaligned_supported;
1407 /* Unsupported. */
1408 return dr_unaligned_unsupported;
1412 /* Function vect_is_simple_use.
1414 Input:
1415 LOOP - the loop that is being vectorized.
1416 OPERAND - operand of a stmt in LOOP.
1417 DEF - the defining stmt in case OPERAND is an SSA_NAME.
1419 Returns whether a stmt with OPERAND can be vectorized.
1420 Supportable operands are constants, loop invariants, and operands that are
1421 defined by the current iteration of the loop. Unsupportable operands are
1422 those that are defined by a previous iteration of the loop (as is the case
1423 in reduction/induction computations). */
1425 bool
1426 vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def)
1428 tree def_stmt;
1429 basic_block bb;
1430 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1432 if (def)
1433 *def = NULL_TREE;
1435 if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
1436 return true;
1438 if (TREE_CODE (operand) != SSA_NAME)
1439 return false;
1441 def_stmt = SSA_NAME_DEF_STMT (operand);
1442 if (def_stmt == NULL_TREE )
1444 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1445 fprintf (vect_dump, "no def_stmt.");
1446 return false;
1449 /* empty stmt is expected only in case of a function argument.
1450 (Otherwise - we expect a phi_node or a modify_expr). */
1451 if (IS_EMPTY_STMT (def_stmt))
1453 tree arg = TREE_OPERAND (def_stmt, 0);
1454 if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
1455 return true;
1456 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1458 fprintf (vect_dump, "Unexpected empty stmt: ");
1459 print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
1461 return false;
1464 /* phi_node inside the loop indicates an induction/reduction pattern.
1465 This is not supported yet. */
1466 bb = bb_for_stmt (def_stmt);
1467 if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
1469 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1470 fprintf (vect_dump, "reduction/induction - unsupported.");
1471 return false; /* FORNOW: not supported yet. */
1474 /* Expecting a modify_expr or a phi_node. */
1475 if (TREE_CODE (def_stmt) == MODIFY_EXPR
1476 || TREE_CODE (def_stmt) == PHI_NODE)
1478 if (def)
1479 *def = def_stmt;
1480 return true;
1483 return false;
1487 /* Function vect_is_simple_iv_evolution.
1489 FORNOW: A simple evolution of an induction variables in the loop is
1490 considered a polynomial evolution with constant step. */
1492 bool
1493 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
1494 tree * step)
1496 tree init_expr;
1497 tree step_expr;
1499 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
1501 /* When there is no evolution in this loop, the evolution function
1502 is not "simple". */
1503 if (evolution_part == NULL_TREE)
1504 return false;
1506 /* When the evolution is a polynomial of degree >= 2
1507 the evolution function is not "simple". */
1508 if (tree_is_chrec (evolution_part))
1509 return false;
1511 step_expr = evolution_part;
1512 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1513 loop_nb));
1515 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1517 fprintf (vect_dump, "step: ");
1518 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
1519 fprintf (vect_dump, ", init: ");
1520 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
1523 *init = init_expr;
1524 *step = step_expr;
1526 if (TREE_CODE (step_expr) != INTEGER_CST)
1528 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1529 fprintf (vect_dump, "step unknown.");
1530 return false;
1533 return true;
1537 /* Function need_imm_uses_for.
1539 Return whether we ought to include information for 'var'
1540 when calculating immediate uses. For this pass we only want use
1541 information for non-virtual variables. */
1543 static bool
1544 need_imm_uses_for (tree var)
1546 return is_gimple_reg (var);
1550 /* Function vectorize_loops.
1552 Entry Point to loop vectorization phase. */
1554 void
1555 vectorize_loops (struct loops *loops)
1557 unsigned int i, loops_num;
1558 unsigned int num_vectorized_loops = 0;
1560 /* Fix the verbosity level if not defined explicitly by the user. */
1561 vect_set_dump_settings ();
1563 /* Does the target support SIMD? */
1564 /* FORNOW: until more sophisticated machine modelling is in place. */
1565 if (!UNITS_PER_SIMD_WORD)
1567 if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
1568 fprintf (vect_dump, "vectorizer: target vector size is not defined.");
1569 return;
1572 #ifdef ENABLE_CHECKING
1573 verify_loop_closed_ssa ();
1574 #endif
1576 compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);
1578 /* ----------- Analyze loops. ----------- */
1580 /* If some loop was duplicated, it gets bigger number
1581 than all previously defined loops. This fact allows us to run
1582 only over initial loops skipping newly generated ones. */
1583 loops_num = loops->num;
1584 for (i = 1; i < loops_num; i++)
1586 loop_vec_info loop_vinfo;
1587 struct loop *loop = loops->parray[i];
1589 if (!loop)
1590 continue;
1592 loop_vinfo = vect_analyze_loop (loop);
1593 loop->aux = loop_vinfo;
1595 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
1596 continue;
1598 vect_transform_loop (loop_vinfo, loops);
1599 num_vectorized_loops++;
1602 if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, UNKNOWN_LOC))
1603 fprintf (vect_dump, "vectorized %u loops in function.\n",
1604 num_vectorized_loops);
1606 /* ----------- Finalize. ----------- */
1608 free_df ();
1609 for (i = 1; i < loops_num; i++)
1611 struct loop *loop = loops->parray[i];
1612 loop_vec_info loop_vinfo;
1614 if (!loop)
1615 continue;
1616 loop_vinfo = loop->aux;
1617 destroy_loop_vec_info (loop_vinfo);
1618 loop->aux = NULL;
1621 rewrite_into_ssa (false);
1622 rewrite_into_loop_closed_ssa (NULL); /* FORNOW */
1623 bitmap_clear (vars_to_rename);