1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
31 #ifndef _Unwind_Find_FDE
34 #include "coretypes.h"
38 #define NO_BASE_OF_ENCODED_VALUE
39 #include "unwind-pe.h"
40 #include "unwind-dw2-fde.h"
44 /* The unseen_objects list contains objects that have been registered
45 but not yet categorized in any way. The seen_objects list has had
46 it's pc_begin and count fields initialized at minimum, and is sorted
47 by decreasing value of pc_begin. */
48 static struct object
*unseen_objects
;
49 static struct object
*seen_objects
;
51 #ifdef __GTHREAD_MUTEX_INIT
52 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
54 static __gthread_mutex_t object_mutex
;
57 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
59 init_object_mutex (void)
61 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
65 init_object_mutex_once (void)
67 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
68 __gthread_once (&once
, init_object_mutex
);
71 #define init_object_mutex_once()
74 /* Called from crtbegin.o to register the unwind info for an object. */
77 __register_frame_info_bases (const void *begin
, struct object
*ob
,
78 void *tbase
, void *dbase
)
80 /* If .eh_frame is empty, don't register at all. */
81 if ((uword
*) begin
== 0 || *(uword
*) begin
== 0)
84 ob
->pc_begin
= (void *)-1;
89 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
90 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
94 init_object_mutex_once ();
95 __gthread_mutex_lock (&object_mutex
);
97 ob
->next
= unseen_objects
;
100 __gthread_mutex_unlock (&object_mutex
);
104 __register_frame_info (const void *begin
, struct object
*ob
)
106 __register_frame_info_bases (begin
, ob
, 0, 0);
110 __register_frame (void *begin
)
114 /* If .eh_frame is empty, don't register at all. */
115 if (*(uword
*) begin
== 0)
118 ob
= malloc (sizeof (struct object
));
119 __register_frame_info (begin
, ob
);
122 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
123 for different translation units. Called from the file generated by
127 __register_frame_info_table_bases (void *begin
, struct object
*ob
,
128 void *tbase
, void *dbase
)
130 ob
->pc_begin
= (void *)-1;
135 ob
->s
.b
.from_array
= 1;
136 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
138 init_object_mutex_once ();
139 __gthread_mutex_lock (&object_mutex
);
141 ob
->next
= unseen_objects
;
144 __gthread_mutex_unlock (&object_mutex
);
148 __register_frame_info_table (void *begin
, struct object
*ob
)
150 __register_frame_info_table_bases (begin
, ob
, 0, 0);
154 __register_frame_table (void *begin
)
156 struct object
*ob
= malloc (sizeof (struct object
));
157 __register_frame_info_table (begin
, ob
);
160 /* Called from crtbegin.o to deregister the unwind info for an object. */
161 /* ??? Glibc has for a while now exported __register_frame_info and
162 __deregister_frame_info. If we call __register_frame_info_bases
163 from crtbegin (wherein it is declared weak), and this object does
164 not get pulled from libgcc.a for other reasons, then the
165 invocation of __deregister_frame_info will be resolved from glibc.
166 Since the registration did not happen there, we'll abort.
168 Therefore, declare a new deregistration entry point that does the
169 exact same thing, but will resolve to the same library as
170 implements __register_frame_info_bases. */
173 __deregister_frame_info_bases (const void *begin
)
176 struct object
*ob
= 0;
178 /* If .eh_frame is empty, we haven't registered. */
179 if ((uword
*) begin
== 0 || *(uword
*) begin
== 0)
182 init_object_mutex_once ();
183 __gthread_mutex_lock (&object_mutex
);
185 for (p
= &unseen_objects
; *p
; p
= &(*p
)->next
)
186 if ((*p
)->u
.single
== begin
)
193 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
194 if ((*p
)->s
.b
.sorted
)
196 if ((*p
)->u
.sort
->orig_data
== begin
)
206 if ((*p
)->u
.single
== begin
)
214 __gthread_mutex_unlock (&object_mutex
);
218 __gthread_mutex_unlock (&object_mutex
);
223 __deregister_frame_info (const void *begin
)
225 return __deregister_frame_info_bases (begin
);
229 __deregister_frame (void *begin
)
231 /* If .eh_frame is empty, we haven't registered. */
232 if (*(uword
*) begin
!= 0)
233 free (__deregister_frame_info (begin
));
237 /* Like base_of_encoded_value, but take the base from a struct object
238 instead of an _Unwind_Context. */
241 base_from_object (unsigned char encoding
, struct object
*ob
)
243 if (encoding
== DW_EH_PE_omit
)
246 switch (encoding
& 0x70)
248 case DW_EH_PE_absptr
:
250 case DW_EH_PE_aligned
:
253 case DW_EH_PE_textrel
:
254 return (_Unwind_Ptr
) ob
->tbase
;
255 case DW_EH_PE_datarel
:
256 return (_Unwind_Ptr
) ob
->dbase
;
261 /* Return the FDE pointer encoding from the CIE. */
262 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
265 get_cie_encoding (const struct dwarf_cie
*cie
)
267 const unsigned char *aug
, *p
;
272 aug
= cie
->augmentation
;
274 return DW_EH_PE_absptr
;
276 p
= aug
+ strlen ((const char *)aug
) + 1; /* Skip the augmentation string. */
277 p
= read_uleb128 (p
, &utmp
); /* Skip code alignment. */
278 p
= read_sleb128 (p
, &stmp
); /* Skip data alignment. */
279 if (cie
->version
== 1) /* Skip return address column. */
282 p
= read_uleb128 (p
, &utmp
);
284 aug
++; /* Skip 'z' */
285 p
= read_uleb128 (p
, &utmp
); /* Skip augmentation length. */
288 /* This is what we're looking for. */
291 /* Personality encoding and pointer. */
292 else if (*aug
== 'P')
294 /* ??? Avoid dereferencing indirect pointers, since we're
295 faking the base address. Gotta keep DW_EH_PE_aligned
297 p
= read_encoded_value_with_base (*p
& 0x7F, 0, p
+ 1, &dummy
);
300 else if (*aug
== 'L')
302 /* Otherwise end of string, or unknown augmentation. */
304 return DW_EH_PE_absptr
;
310 get_fde_encoding (const struct dwarf_fde
*f
)
312 return get_cie_encoding (get_cie (f
));
316 /* Sorting an array of FDEs by address.
317 (Ideally we would have the linker sort the FDEs so we don't have to do
318 it at run time. But the linkers are not yet prepared for this.) */
320 /* Comparison routines. Three variants of increasing complexity. */
323 fde_unencoded_compare (struct object
*ob
__attribute__((unused
)),
324 const fde
*x
, const fde
*y
)
326 _Unwind_Ptr x_ptr
= *(_Unwind_Ptr
*) x
->pc_begin
;
327 _Unwind_Ptr y_ptr
= *(_Unwind_Ptr
*) y
->pc_begin
;
337 fde_single_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
339 _Unwind_Ptr base
, x_ptr
, y_ptr
;
341 base
= base_from_object (ob
->s
.b
.encoding
, ob
);
342 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, x
->pc_begin
, &x_ptr
);
343 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, y
->pc_begin
, &y_ptr
);
353 fde_mixed_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
355 int x_encoding
, y_encoding
;
356 _Unwind_Ptr x_ptr
, y_ptr
;
358 x_encoding
= get_fde_encoding (x
);
359 read_encoded_value_with_base (x_encoding
, base_from_object (x_encoding
, ob
),
360 x
->pc_begin
, &x_ptr
);
362 y_encoding
= get_fde_encoding (y
);
363 read_encoded_value_with_base (y_encoding
, base_from_object (y_encoding
, ob
),
364 y
->pc_begin
, &y_ptr
);
373 typedef int (*fde_compare_t
) (struct object
*, const fde
*, const fde
*);
376 /* This is a special mix of insertion sort and heap sort, optimized for
377 the data sets that actually occur. They look like
378 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
379 I.e. a linearly increasing sequence (coming from functions in the text
380 section), with additionally a few unordered elements (coming from functions
381 in gnu_linkonce sections) whose values are higher than the values in the
382 surrounding linear sequence (but not necessarily higher than the values
383 at the end of the linear sequence!).
384 The worst-case total run time is O(N) + O(n log (n)), where N is the
385 total number of FDEs and n is the number of erratic ones. */
387 struct fde_accumulator
389 struct fde_vector
*linear
;
390 struct fde_vector
*erratic
;
394 start_fde_sort (struct fde_accumulator
*accu
, size_t count
)
400 size
= sizeof (struct fde_vector
) + sizeof (const fde
*) * count
;
401 if ((accu
->linear
= malloc (size
)))
403 accu
->linear
->count
= 0;
404 if ((accu
->erratic
= malloc (size
)))
405 accu
->erratic
->count
= 0;
413 fde_insert (struct fde_accumulator
*accu
, const fde
*this_fde
)
416 accu
->linear
->array
[accu
->linear
->count
++] = this_fde
;
419 /* Split LINEAR into a linear sequence with low values and an erratic
420 sequence with high values, put the linear one (of longest possible
421 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
423 Because the longest linear sequence we are trying to locate within the
424 incoming LINEAR array can be interspersed with (high valued) erratic
425 entries. We construct a chain indicating the sequenced entries.
426 To avoid having to allocate this chain, we overlay it onto the space of
427 the ERRATIC array during construction. A final pass iterates over the
428 chain to determine what should be placed in the ERRATIC array, and
429 what is the linear sequence. This overlay is safe from aliasing. */
432 fde_split (struct object
*ob
, fde_compare_t fde_compare
,
433 struct fde_vector
*linear
, struct fde_vector
*erratic
)
435 static const fde
*marker
;
436 size_t count
= linear
->count
;
437 const fde
**chain_end
= &marker
;
440 /* This should optimize out, but it is wise to make sure this assumption
441 is correct. Should these have different sizes, we cannot cast between
442 them and the overlaying onto ERRATIC will not work. */
443 if (sizeof (const fde
*) != sizeof (const fde
**))
446 for (i
= 0; i
< count
; i
++)
450 for (probe
= chain_end
;
451 probe
!= &marker
&& fde_compare (ob
, linear
->array
[i
], *probe
) < 0;
454 chain_end
= (const fde
**) erratic
->array
[probe
- linear
->array
];
455 erratic
->array
[probe
- linear
->array
] = NULL
;
457 erratic
->array
[i
] = (const fde
*) chain_end
;
458 chain_end
= &linear
->array
[i
];
461 /* Each entry in LINEAR which is part of the linear sequence we have
462 discovered will correspond to a non-NULL entry in the chain we built in
463 the ERRATIC array. */
464 for (i
= j
= k
= 0; i
< count
; i
++)
465 if (erratic
->array
[i
])
466 linear
->array
[j
++] = linear
->array
[i
];
468 erratic
->array
[k
++] = linear
->array
[i
];
473 #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
475 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
476 for the first (root) node; push it down to its rightful place. */
479 frame_downheap (struct object
*ob
, fde_compare_t fde_compare
, const fde
**a
,
484 for (i
= lo
, j
= 2*i
+1;
488 if (j
+1 < hi
&& fde_compare (ob
, a
[j
], a
[j
+1]) < 0)
491 if (fde_compare (ob
, a
[i
], a
[j
]) < 0)
501 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
502 use a name that does not conflict. */
505 frame_heapsort (struct object
*ob
, fde_compare_t fde_compare
,
506 struct fde_vector
*erratic
)
508 /* For a description of this algorithm, see:
509 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
511 const fde
** a
= erratic
->array
;
512 /* A portion of the array is called a "heap" if for all i>=0:
513 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
514 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
515 size_t n
= erratic
->count
;
518 /* Expand our heap incrementally from the end of the array, heapifying
519 each resulting semi-heap as we go. After each step, a[m] is the top
521 for (m
= n
/2-1; m
>= 0; --m
)
522 frame_downheap (ob
, fde_compare
, a
, m
, n
);
524 /* Shrink our heap incrementally from the end of the array, first
525 swapping out the largest element a[0] and then re-heapifying the
526 resulting semi-heap. After each step, a[0..m) is a heap. */
527 for (m
= n
-1; m
>= 1; --m
)
530 frame_downheap (ob
, fde_compare
, a
, 0, m
);
535 /* Merge V1 and V2, both sorted, and put the result into V1. */
537 fde_merge (struct object
*ob
, fde_compare_t fde_compare
,
538 struct fde_vector
*v1
, struct fde_vector
*v2
)
550 fde2
= v2
->array
[i2
];
551 while (i1
> 0 && fde_compare (ob
, v1
->array
[i1
-1], fde2
) > 0)
553 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
556 v1
->array
[i1
+i2
] = fde2
;
559 v1
->count
+= v2
->count
;
564 end_fde_sort (struct object
*ob
, struct fde_accumulator
*accu
, size_t count
)
566 fde_compare_t fde_compare
;
568 if (accu
->linear
&& accu
->linear
->count
!= count
)
571 if (ob
->s
.b
.mixed_encoding
)
572 fde_compare
= fde_mixed_encoding_compare
;
573 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
574 fde_compare
= fde_unencoded_compare
;
576 fde_compare
= fde_single_encoding_compare
;
580 fde_split (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
581 if (accu
->linear
->count
+ accu
->erratic
->count
!= count
)
583 frame_heapsort (ob
, fde_compare
, accu
->erratic
);
584 fde_merge (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
585 free (accu
->erratic
);
589 /* We've not managed to malloc an erratic array,
590 so heap sort in the linear one. */
591 frame_heapsort (ob
, fde_compare
, accu
->linear
);
596 /* Update encoding, mixed_encoding, and pc_begin for OB for the
597 fde array beginning at THIS_FDE. Return the number of fdes
598 encountered along the way. */
601 classify_object_over_fdes (struct object
*ob
, const fde
*this_fde
)
603 const struct dwarf_cie
*last_cie
= 0;
605 int encoding
= DW_EH_PE_absptr
;
606 _Unwind_Ptr base
= 0;
608 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
610 const struct dwarf_cie
*this_cie
;
611 _Unwind_Ptr mask
, pc_begin
;
614 if (this_fde
->CIE_delta
== 0)
617 /* Determine the encoding for this FDE. Note mixed encoded
618 objects for later. */
619 this_cie
= get_cie (this_fde
);
620 if (this_cie
!= last_cie
)
623 encoding
= get_cie_encoding (this_cie
);
624 base
= base_from_object (encoding
, ob
);
625 if (ob
->s
.b
.encoding
== DW_EH_PE_omit
)
626 ob
->s
.b
.encoding
= encoding
;
627 else if (ob
->s
.b
.encoding
!= encoding
)
628 ob
->s
.b
.mixed_encoding
= 1;
631 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
634 /* Take care to ignore link-once functions that were removed.
635 In these cases, the function address will be NULL, but if
636 the encoding is smaller than a pointer a true NULL may not
637 be representable. Assume 0 in the representable bits is NULL. */
638 mask
= size_of_encoded_value (encoding
);
639 if (mask
< sizeof (void *))
640 mask
= (1L << (mask
<< 3)) - 1;
644 if ((pc_begin
& mask
) == 0)
648 if ((void *) pc_begin
< ob
->pc_begin
)
649 ob
->pc_begin
= (void *) pc_begin
;
656 add_fdes (struct object
*ob
, struct fde_accumulator
*accu
, const fde
*this_fde
)
658 const struct dwarf_cie
*last_cie
= 0;
659 int encoding
= ob
->s
.b
.encoding
;
660 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
662 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
664 const struct dwarf_cie
*this_cie
;
667 if (this_fde
->CIE_delta
== 0)
670 if (ob
->s
.b
.mixed_encoding
)
672 /* Determine the encoding for this FDE. Note mixed encoded
673 objects for later. */
674 this_cie
= get_cie (this_fde
);
675 if (this_cie
!= last_cie
)
678 encoding
= get_cie_encoding (this_cie
);
679 base
= base_from_object (encoding
, ob
);
683 if (encoding
== DW_EH_PE_absptr
)
685 if (*(_Unwind_Ptr
*) this_fde
->pc_begin
== 0)
690 _Unwind_Ptr pc_begin
, mask
;
692 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
695 /* Take care to ignore link-once functions that were removed.
696 In these cases, the function address will be NULL, but if
697 the encoding is smaller than a pointer a true NULL may not
698 be representable. Assume 0 in the representable bits is NULL. */
699 mask
= size_of_encoded_value (encoding
);
700 if (mask
< sizeof (void *))
701 mask
= (1L << (mask
<< 3)) - 1;
705 if ((pc_begin
& mask
) == 0)
709 fde_insert (accu
, this_fde
);
713 /* Set up a sorted array of pointers to FDEs for a loaded object. We
714 count up the entries before allocating the array because it's likely to
715 be faster. We can be called multiple times, should we have failed to
716 allocate a sorted fde array on a previous occasion. */
719 init_object (struct object
* ob
)
721 struct fde_accumulator accu
;
724 count
= ob
->s
.b
.count
;
727 if (ob
->s
.b
.from_array
)
729 fde
**p
= ob
->u
.array
;
730 for (count
= 0; *p
; ++p
)
731 count
+= classify_object_over_fdes (ob
, *p
);
734 count
= classify_object_over_fdes (ob
, ob
->u
.single
);
736 /* The count field we have in the main struct object is somewhat
737 limited, but should suffice for virtually all cases. If the
738 counted value doesn't fit, re-write a zero. The worst that
739 happens is that we re-count next time -- admittedly non-trivial
740 in that this implies some 2M fdes, but at least we function. */
741 ob
->s
.b
.count
= count
;
742 if (ob
->s
.b
.count
!= count
)
746 if (!start_fde_sort (&accu
, count
))
749 if (ob
->s
.b
.from_array
)
752 for (p
= ob
->u
.array
; *p
; ++p
)
753 add_fdes (ob
, &accu
, *p
);
756 add_fdes (ob
, &accu
, ob
->u
.single
);
758 end_fde_sort (ob
, &accu
, count
);
760 /* Save the original fde pointer, since this is the key by which the
761 DSO will deregister the object. */
762 accu
.linear
->orig_data
= ob
->u
.single
;
763 ob
->u
.sort
= accu
.linear
;
768 /* A linear search through a set of FDEs for the given PC. This is
769 used when there was insufficient memory to allocate and sort an
773 linear_search_fdes (struct object
*ob
, const fde
*this_fde
, void *pc
)
775 const struct dwarf_cie
*last_cie
= 0;
776 int encoding
= ob
->s
.b
.encoding
;
777 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
779 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
781 const struct dwarf_cie
*this_cie
;
782 _Unwind_Ptr pc_begin
, pc_range
;
785 if (this_fde
->CIE_delta
== 0)
788 if (ob
->s
.b
.mixed_encoding
)
790 /* Determine the encoding for this FDE. Note mixed encoded
791 objects for later. */
792 this_cie
= get_cie (this_fde
);
793 if (this_cie
!= last_cie
)
796 encoding
= get_cie_encoding (this_cie
);
797 base
= base_from_object (encoding
, ob
);
801 if (encoding
== DW_EH_PE_absptr
)
803 pc_begin
= ((_Unwind_Ptr
*) this_fde
->pc_begin
)[0];
804 pc_range
= ((_Unwind_Ptr
*) this_fde
->pc_begin
)[1];
811 const unsigned char *p
;
813 p
= read_encoded_value_with_base (encoding
, base
,
814 this_fde
->pc_begin
, &pc_begin
);
815 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
817 /* Take care to ignore link-once functions that were removed.
818 In these cases, the function address will be NULL, but if
819 the encoding is smaller than a pointer a true NULL may not
820 be representable. Assume 0 in the representable bits is NULL. */
821 mask
= size_of_encoded_value (encoding
);
822 if (mask
< sizeof (void *))
823 mask
= (1L << (mask
<< 3)) - 1;
827 if ((pc_begin
& mask
) == 0)
831 if ((_Unwind_Ptr
) pc
- pc_begin
< pc_range
)
838 /* Binary search for an FDE containing the given PC. Here are three
839 implementations of increasing complexity. */
841 static inline const fde
*
842 binary_search_unencoded_fdes (struct object
*ob
, void *pc
)
844 struct fde_vector
*vec
= ob
->u
.sort
;
847 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
849 size_t i
= (lo
+ hi
) / 2;
850 const fde
*f
= vec
->array
[i
];
854 pc_begin
= ((void **) f
->pc_begin
)[0];
855 pc_range
= ((uaddr
*) f
->pc_begin
)[1];
859 else if (pc
>= pc_begin
+ pc_range
)
868 static inline const fde
*
869 binary_search_single_encoding_fdes (struct object
*ob
, void *pc
)
871 struct fde_vector
*vec
= ob
->u
.sort
;
872 int encoding
= ob
->s
.b
.encoding
;
873 _Unwind_Ptr base
= base_from_object (encoding
, ob
);
876 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
878 size_t i
= (lo
+ hi
) / 2;
879 const fde
*f
= vec
->array
[i
];
880 _Unwind_Ptr pc_begin
, pc_range
;
881 const unsigned char *p
;
883 p
= read_encoded_value_with_base (encoding
, base
, f
->pc_begin
,
885 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
887 if ((_Unwind_Ptr
) pc
< pc_begin
)
889 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
898 static inline const fde
*
899 binary_search_mixed_encoding_fdes (struct object
*ob
, void *pc
)
901 struct fde_vector
*vec
= ob
->u
.sort
;
904 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
906 size_t i
= (lo
+ hi
) / 2;
907 const fde
*f
= vec
->array
[i
];
908 _Unwind_Ptr pc_begin
, pc_range
;
909 const unsigned char *p
;
912 encoding
= get_fde_encoding (f
);
913 p
= read_encoded_value_with_base (encoding
,
914 base_from_object (encoding
, ob
),
915 f
->pc_begin
, &pc_begin
);
916 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
918 if ((_Unwind_Ptr
) pc
< pc_begin
)
920 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
930 search_object (struct object
* ob
, void *pc
)
932 /* If the data hasn't been sorted, try to do this now. We may have
933 more memory available than last time we tried. */
934 if (! ob
->s
.b
.sorted
)
938 /* Despite the above comment, the normal reason to get here is
939 that we've not processed this object before. A quick range
940 check is in order. */
941 if (pc
< ob
->pc_begin
)
947 if (ob
->s
.b
.mixed_encoding
)
948 return binary_search_mixed_encoding_fdes (ob
, pc
);
949 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
950 return binary_search_unencoded_fdes (ob
, pc
);
952 return binary_search_single_encoding_fdes (ob
, pc
);
956 /* Long slow labourious linear search, cos we've no memory. */
957 if (ob
->s
.b
.from_array
)
960 for (p
= ob
->u
.array
; *p
; p
++)
962 const fde
*f
= linear_search_fdes (ob
, *p
, pc
);
969 return linear_search_fdes (ob
, ob
->u
.single
, pc
);
974 _Unwind_Find_FDE (void *pc
, struct dwarf_eh_bases
*bases
)
979 init_object_mutex_once ();
980 __gthread_mutex_lock (&object_mutex
);
982 /* Linear search through the classified objects, to find the one
983 containing the pc. Note that pc_begin is sorted descending, and
984 we expect objects to be non-overlapping. */
985 for (ob
= seen_objects
; ob
; ob
= ob
->next
)
986 if (pc
>= ob
->pc_begin
)
988 f
= search_object (ob
, pc
);
994 /* Classify and search the objects we've not yet processed. */
995 while ((ob
= unseen_objects
))
999 unseen_objects
= ob
->next
;
1000 f
= search_object (ob
, pc
);
1002 /* Insert the object into the classified list. */
1003 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
1004 if ((*p
)->pc_begin
< ob
->pc_begin
)
1014 __gthread_mutex_unlock (&object_mutex
);
1020 bases
->tbase
= ob
->tbase
;
1021 bases
->dbase
= ob
->dbase
;
1023 encoding
= ob
->s
.b
.encoding
;
1024 if (ob
->s
.b
.mixed_encoding
)
1025 encoding
= get_fde_encoding (f
);
1026 read_encoded_value_with_base (encoding
, base_from_object (encoding
, ob
),
1027 f
->pc_begin
, (_Unwind_Ptr
*)&bases
->func
);