1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 static rtx
break_out_memory_refs (rtx
);
42 static void emit_stack_probe (rtx
);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
50 int width
= GET_MODE_BITSIZE (mode
);
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode
));
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 return c
& 1 ? STORE_FLAG_VALUE
: 0;
59 /* Sign-extend for the requested mode. */
61 if (width
< HOST_BITS_PER_WIDE_INT
)
63 HOST_WIDE_INT sign
= 1;
73 /* Return an rtx for the sum of X and the integer C. */
76 plus_constant (rtx x
, HOST_WIDE_INT c
)
80 enum machine_mode mode
;
96 return GEN_INT (INTVAL (x
) + c
);
100 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
101 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
102 unsigned HOST_WIDE_INT l2
= c
;
103 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
104 unsigned HOST_WIDE_INT lv
;
107 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
109 return immed_double_const (lv
, hv
, VOIDmode
);
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
120 = force_const_mem (GET_MODE (x
),
121 plus_constant (get_pool_constant (XEXP (x
, 0)),
123 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
141 /* The interesting case is adding the integer to a sum.
142 Look for constant term in the sum and combine
143 with C. For an integer constant term, we make a combined
144 integer. For a constant term that is not an explicit integer,
145 we cannot really combine, but group them together anyway.
147 Restart or use a recursive call in case the remaining operand is
148 something that we handle specially, such as a SYMBOL_REF.
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
153 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
155 c
+= INTVAL (XEXP (x
, 1));
157 if (GET_MODE (x
) != VOIDmode
)
158 c
= trunc_int_for_mode (c
, GET_MODE (x
));
163 else if (CONSTANT_P (XEXP (x
, 1)))
165 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), plus_constant (XEXP (x
, 1), c
));
168 else if (find_constant_term_loc (&y
))
170 /* We need to be careful since X may be shared and we can't
171 modify it in place. */
172 rtx copy
= copy_rtx (x
);
173 rtx
*const_loc
= find_constant_term_loc (©
);
175 *const_loc
= plus_constant (*const_loc
, c
);
186 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
188 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
190 else if (all_constant
)
191 return gen_rtx_CONST (mode
, x
);
196 /* If X is a sum, return a new sum like X but lacking any constant terms.
197 Add all the removed constant terms into *CONSTPTR.
198 X itself is not altered. The result != X if and only if
199 it is not isomorphic to X. */
202 eliminate_constant_term (rtx x
, rtx
*constptr
)
207 if (GET_CODE (x
) != PLUS
)
210 /* First handle constants appearing at this level explicitly. */
211 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
212 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
214 && GET_CODE (tem
) == CONST_INT
)
217 return eliminate_constant_term (XEXP (x
, 0), constptr
);
221 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
222 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
223 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
224 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
226 && GET_CODE (tem
) == CONST_INT
)
229 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
235 /* Return an rtx for the size in bytes of the value of EXP. */
242 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
243 size
= TREE_OPERAND (exp
, 1);
245 size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks
.expr_size (exp
), exp
);
247 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), 0);
250 /* Return a wide integer for the size in bytes of the value of EXP, or -1
251 if the size can vary or is larger than an integer. */
254 int_expr_size (tree exp
)
258 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
259 size
= TREE_OPERAND (exp
, 1);
261 size
= lang_hooks
.expr_size (exp
);
263 if (size
== 0 || !host_integerp (size
, 0))
266 return tree_low_cst (size
, 0);
269 /* Return a copy of X in which all memory references
270 and all constants that involve symbol refs
271 have been replaced with new temporary registers.
272 Also emit code to load the memory locations and constants
273 into those registers.
275 If X contains no such constants or memory references,
276 X itself (not a copy) is returned.
278 If a constant is found in the address that is not a legitimate constant
279 in an insn, it is left alone in the hope that it might be valid in the
282 X may contain no arithmetic except addition, subtraction and multiplication.
283 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
286 break_out_memory_refs (rtx x
)
289 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
290 && GET_MODE (x
) != VOIDmode
))
291 x
= force_reg (GET_MODE (x
), x
);
292 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
293 || GET_CODE (x
) == MULT
)
295 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
296 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
298 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
299 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
305 /* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
312 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
315 #ifndef POINTERS_EXTEND_UNSIGNED
317 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
318 enum machine_mode from_mode
;
322 /* If X already has the right mode, just return it. */
323 if (GET_MODE (x
) == to_mode
)
326 from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
328 /* Here we handle some special cases. If none of them apply, fall through
329 to the default case. */
330 switch (GET_CODE (x
))
334 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
336 else if (POINTERS_EXTEND_UNSIGNED
< 0)
338 else if (POINTERS_EXTEND_UNSIGNED
> 0)
342 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
348 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
349 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
350 return SUBREG_REG (x
);
354 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
355 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
360 temp
= shallow_copy_rtx (x
);
361 PUT_MODE (temp
, to_mode
);
366 return gen_rtx_CONST (to_mode
,
367 convert_memory_address (to_mode
, XEXP (x
, 0)));
372 /* For addition we can safely permute the conversion and addition
373 operation if one operand is a constant and converting the constant
374 does not change it. We can always safely permute them if we are
375 making the address narrower. */
376 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
377 || (GET_CODE (x
) == PLUS
378 && GET_CODE (XEXP (x
, 1)) == CONST_INT
379 && XEXP (x
, 1) == convert_memory_address (to_mode
, XEXP (x
, 1))))
380 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
381 convert_memory_address (to_mode
, XEXP (x
, 0)),
389 return convert_modes (to_mode
, from_mode
,
390 x
, POINTERS_EXTEND_UNSIGNED
);
391 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394 /* Given a memory address or facsimile X, construct a new address,
395 currently equivalent, that is stable: future stores won't change it.
397 X must be composed of constants, register and memory references
398 combined with addition, subtraction and multiplication:
399 in other words, just what you can get from expand_expr if sum_ok is 1.
401 Works by making copies of all regs and memory locations used
402 by X and combining them the same way X does.
403 You could also stabilize the reference to this address
404 by copying the address to a register with copy_to_reg;
405 but then you wouldn't get indexed addressing in the reference. */
408 copy_all_regs (rtx x
)
412 if (REGNO (x
) != FRAME_POINTER_REGNUM
413 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
414 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
421 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
422 || GET_CODE (x
) == MULT
)
424 rtx op0
= copy_all_regs (XEXP (x
, 0));
425 rtx op1
= copy_all_regs (XEXP (x
, 1));
426 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
427 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
432 /* Return something equivalent to X but valid as a memory address
433 for something of mode MODE. When X is not itself valid, this
434 works by copying X or subexpressions of it into registers. */
437 memory_address (enum machine_mode mode
, rtx x
)
441 x
= convert_memory_address (Pmode
, x
);
443 /* By passing constant addresses through registers
444 we get a chance to cse them. */
445 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
446 x
= force_reg (Pmode
, x
);
448 /* We get better cse by rejecting indirect addressing at this stage.
449 Let the combiner create indirect addresses where appropriate.
450 For now, generate the code so that the subexpressions useful to share
451 are visible. But not if cse won't be done! */
454 if (! cse_not_expected
&& !REG_P (x
))
455 x
= break_out_memory_refs (x
);
457 /* At this point, any valid address is accepted. */
458 if (memory_address_p (mode
, x
))
461 /* If it was valid before but breaking out memory refs invalidated it,
462 use it the old way. */
463 if (memory_address_p (mode
, oldx
))
466 /* Perform machine-dependent transformations on X
467 in certain cases. This is not necessary since the code
468 below can handle all possible cases, but machine-dependent
469 transformations can make better code. */
470 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
472 /* PLUS and MULT can appear in special ways
473 as the result of attempts to make an address usable for indexing.
474 Usually they are dealt with by calling force_operand, below.
475 But a sum containing constant terms is special
476 if removing them makes the sum a valid address:
477 then we generate that address in a register
478 and index off of it. We do this because it often makes
479 shorter code, and because the addresses thus generated
480 in registers often become common subexpressions. */
481 if (GET_CODE (x
) == PLUS
)
483 rtx constant_term
= const0_rtx
;
484 rtx y
= eliminate_constant_term (x
, &constant_term
);
485 if (constant_term
== const0_rtx
486 || ! memory_address_p (mode
, y
))
487 x
= force_operand (x
, NULL_RTX
);
490 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
491 if (! memory_address_p (mode
, y
))
492 x
= force_operand (x
, NULL_RTX
);
498 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
499 x
= force_operand (x
, NULL_RTX
);
501 /* If we have a register that's an invalid address,
502 it must be a hard reg of the wrong class. Copy it to a pseudo. */
506 /* Last resort: copy the value to a register, since
507 the register is a valid address. */
509 x
= force_reg (Pmode
, x
);
516 if (flag_force_addr
&& ! cse_not_expected
&& !REG_P (x
)
517 /* Don't copy an addr via a reg if it is one of our stack slots. */
518 && ! (GET_CODE (x
) == PLUS
519 && (XEXP (x
, 0) == virtual_stack_vars_rtx
520 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
522 if (general_operand (x
, Pmode
))
523 x
= force_reg (Pmode
, x
);
525 x
= force_operand (x
, NULL_RTX
);
531 /* If we didn't change the address, we are done. Otherwise, mark
532 a reg as a pointer if we have REG or REG + CONST_INT. */
536 mark_reg_pointer (x
, BITS_PER_UNIT
);
537 else if (GET_CODE (x
) == PLUS
538 && REG_P (XEXP (x
, 0))
539 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
540 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
542 /* OLDX may have been the address on a temporary. Update the address
543 to indicate that X is now used. */
544 update_temp_slot_address (oldx
, x
);
549 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
552 memory_address_noforce (enum machine_mode mode
, rtx x
)
554 int ambient_force_addr
= flag_force_addr
;
558 val
= memory_address (mode
, x
);
559 flag_force_addr
= ambient_force_addr
;
563 /* Convert a mem ref into one with a valid memory address.
564 Pass through anything else unchanged. */
567 validize_mem (rtx ref
)
571 if (! (flag_force_addr
&& CONSTANT_ADDRESS_P (XEXP (ref
, 0)))
572 && memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
575 /* Don't alter REF itself, since that is probably a stack slot. */
576 return replace_equiv_address (ref
, XEXP (ref
, 0));
579 /* Return a modified copy of X with its memory address copied
580 into a temporary register to protect it from side effects.
581 If X is not a MEM, it is returned unchanged (and not copied).
582 Perhaps even if it is a MEM, if there is no need to change it. */
588 || ! rtx_unstable_p (XEXP (x
, 0)))
592 replace_equiv_address (x
, force_reg (Pmode
, copy_all_regs (XEXP (x
, 0))));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
600 rtx temp
= gen_reg_rtx (GET_MODE (x
));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x
, VOIDmode
))
605 x
= force_operand (x
, temp
);
608 emit_move_insn (temp
, x
);
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x
)
619 return copy_to_mode_reg (Pmode
, x
);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
628 rtx temp
= gen_reg_rtx (mode
);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x
, VOIDmode
))
633 x
= force_operand (x
, temp
);
635 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
637 emit_move_insn (temp
, x
);
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode
, rtx x
)
657 if (general_operand (x
, mode
))
659 temp
= gen_reg_rtx (mode
);
660 insn
= emit_move_insn (temp
, x
);
664 temp
= force_operand (x
, NULL_RTX
);
666 insn
= get_last_insn ();
669 rtx temp2
= gen_reg_rtx (mode
);
670 insn
= emit_move_insn (temp2
, temp
);
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
679 && (set
= single_set (insn
)) != 0
680 && SET_DEST (set
) == temp
681 && ! rtx_equal_p (x
, SET_SRC (set
)))
682 set_unique_reg_note (insn
, REG_EQUAL
, x
);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
688 if (GET_CODE (x
) == SYMBOL_REF
)
690 align
= BITS_PER_UNIT
;
691 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
692 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
694 else if (GET_CODE (x
) == LABEL_REF
)
695 align
= BITS_PER_UNIT
;
696 else if (GET_CODE (x
) == CONST
697 && GET_CODE (XEXP (x
, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
699 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
701 rtx s
= XEXP (XEXP (x
, 0), 0);
702 rtx c
= XEXP (XEXP (x
, 0), 1);
706 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
707 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
709 ca
= exact_log2 (INTVAL (c
) & -INTVAL (c
)) * BITS_PER_UNIT
;
711 align
= MIN (sa
, ca
);
715 mark_reg_pointer (temp
, align
);
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
725 force_not_mem (rtx x
)
729 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
732 temp
= gen_reg_rtx (GET_MODE (x
));
735 REG_POINTER (temp
) = 1;
737 emit_move_insn (temp
, x
);
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
746 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
750 if (target
&& REG_P (target
))
753 temp
= gen_reg_rtx (mode
);
755 emit_move_insn (temp
, x
);
759 /* Return the mode to use to store a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
763 FOR_CALL is nonzero if this call is promoting args for a call. */
765 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
766 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
770 promote_mode (tree type
, enum machine_mode mode
, int *punsignedp
,
771 int for_call ATTRIBUTE_UNUSED
)
773 enum tree_code code
= TREE_CODE (type
);
774 int unsignedp
= *punsignedp
;
783 #ifdef PROMOTE_FUNCTION_MODE
784 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
785 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
790 PROMOTE_FUNCTION_MODE (mode
, unsignedp
, type
);
795 PROMOTE_MODE (mode
, unsignedp
, type
);
801 #ifdef POINTERS_EXTEND_UNSIGNED
805 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
813 *punsignedp
= unsignedp
;
817 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
818 This pops when ADJUST is positive. ADJUST need not be constant. */
821 adjust_stack (rtx adjust
)
825 if (adjust
== const0_rtx
)
828 /* We expect all variable sized adjustments to be multiple of
829 PREFERRED_STACK_BOUNDARY. */
830 if (GET_CODE (adjust
) == CONST_INT
)
831 stack_pointer_delta
-= INTVAL (adjust
);
833 temp
= expand_binop (Pmode
,
834 #ifdef STACK_GROWS_DOWNWARD
839 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
842 if (temp
!= stack_pointer_rtx
)
843 emit_move_insn (stack_pointer_rtx
, temp
);
846 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
847 This pushes when ADJUST is positive. ADJUST need not be constant. */
850 anti_adjust_stack (rtx adjust
)
854 if (adjust
== const0_rtx
)
857 /* We expect all variable sized adjustments to be multiple of
858 PREFERRED_STACK_BOUNDARY. */
859 if (GET_CODE (adjust
) == CONST_INT
)
860 stack_pointer_delta
+= INTVAL (adjust
);
862 temp
= expand_binop (Pmode
,
863 #ifdef STACK_GROWS_DOWNWARD
868 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
871 if (temp
!= stack_pointer_rtx
)
872 emit_move_insn (stack_pointer_rtx
, temp
);
875 /* Round the size of a block to be pushed up to the boundary required
876 by this machine. SIZE is the desired size, which need not be constant. */
879 round_push (rtx size
)
881 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
886 if (GET_CODE (size
) == CONST_INT
)
888 HOST_WIDE_INT
new = (INTVAL (size
) + align
- 1) / align
* align
;
890 if (INTVAL (size
) != new)
891 size
= GEN_INT (new);
895 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
896 but we know it can't. So add ourselves and then do
898 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
899 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
900 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
902 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
908 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
909 to a previously-created save area. If no save area has been allocated,
910 this function will allocate one. If a save area is specified, it
911 must be of the proper mode.
913 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
914 are emitted at the current position. */
917 emit_stack_save (enum save_level save_level
, rtx
*psave
, rtx after
)
920 /* The default is that we use a move insn and save in a Pmode object. */
921 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
922 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
924 /* See if this machine has anything special to do for this kind of save. */
927 #ifdef HAVE_save_stack_block
929 if (HAVE_save_stack_block
)
930 fcn
= gen_save_stack_block
;
933 #ifdef HAVE_save_stack_function
935 if (HAVE_save_stack_function
)
936 fcn
= gen_save_stack_function
;
939 #ifdef HAVE_save_stack_nonlocal
941 if (HAVE_save_stack_nonlocal
)
942 fcn
= gen_save_stack_nonlocal
;
949 /* If there is no save area and we have to allocate one, do so. Otherwise
950 verify the save area is the proper mode. */
954 if (mode
!= VOIDmode
)
956 if (save_level
== SAVE_NONLOCAL
)
957 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
959 *psave
= sa
= gen_reg_rtx (mode
);
968 /* We must validize inside the sequence, to ensure that any instructions
969 created by the validize call also get moved to the right place. */
971 sa
= validize_mem (sa
);
972 emit_insn (fcn (sa
, stack_pointer_rtx
));
975 emit_insn_after (seq
, after
);
980 sa
= validize_mem (sa
);
981 emit_insn (fcn (sa
, stack_pointer_rtx
));
985 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
986 area made by emit_stack_save. If it is zero, we have nothing to do.
988 Put any emitted insns after insn AFTER, if nonzero, otherwise at
992 emit_stack_restore (enum save_level save_level
, rtx sa
, rtx after
)
994 /* The default is that we use a move insn. */
995 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
997 /* See if this machine has anything special to do for this kind of save. */
1000 #ifdef HAVE_restore_stack_block
1002 if (HAVE_restore_stack_block
)
1003 fcn
= gen_restore_stack_block
;
1006 #ifdef HAVE_restore_stack_function
1008 if (HAVE_restore_stack_function
)
1009 fcn
= gen_restore_stack_function
;
1012 #ifdef HAVE_restore_stack_nonlocal
1014 if (HAVE_restore_stack_nonlocal
)
1015 fcn
= gen_restore_stack_nonlocal
;
1024 sa
= validize_mem (sa
);
1025 /* These clobbers prevent the scheduler from moving
1026 references to variable arrays below the code
1027 that deletes (pops) the arrays. */
1028 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1029 gen_rtx_MEM (BLKmode
,
1030 gen_rtx_SCRATCH (VOIDmode
))));
1031 emit_insn (gen_rtx_CLOBBER (VOIDmode
,
1032 gen_rtx_MEM (BLKmode
, stack_pointer_rtx
)));
1040 emit_insn (fcn (stack_pointer_rtx
, sa
));
1043 emit_insn_after (seq
, after
);
1046 emit_insn (fcn (stack_pointer_rtx
, sa
));
1049 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1050 function. This function should be called whenever we allocate or
1051 deallocate dynamic stack space. */
1054 update_nonlocal_goto_save_area (void)
1059 /* The nonlocal_goto_save_area object is an array of N pointers. The
1060 first one is used for the frame pointer save; the rest are sized by
1061 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1062 of the stack save area slots. */
1063 t_save
= build4 (ARRAY_REF
, ptr_type_node
, cfun
->nonlocal_goto_save_area
,
1064 integer_one_node
, NULL_TREE
, NULL_TREE
);
1065 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1067 emit_stack_save (SAVE_NONLOCAL
, &r_save
, NULL_RTX
);
1070 #ifdef SETJMP_VIA_SAVE_AREA
1071 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1072 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1073 platforms, the dynamic stack space used can corrupt the original
1074 frame, thus causing a crash if a longjmp unwinds to it. */
1077 optimize_save_area_alloca (void)
1081 for (insn
= get_insns (); insn
; insn
= NEXT_INSN(insn
))
1085 if (!NONJUMP_INSN_P (insn
))
1088 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1090 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1093 if (!current_function_calls_setjmp
)
1095 rtx pat
= PATTERN (insn
);
1097 /* If we do not see the note in a pattern matching
1098 these precise characteristics, we did something
1099 entirely wrong in allocate_dynamic_stack_space.
1101 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1102 was defined on a machine where stacks grow towards higher
1105 Right now only supported port with stack that grow upward
1106 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1107 gcc_assert (GET_CODE (pat
) == SET
1108 && SET_DEST (pat
) == stack_pointer_rtx
1109 && GET_CODE (SET_SRC (pat
)) == MINUS
1110 && XEXP (SET_SRC (pat
), 0) == stack_pointer_rtx
);
1112 /* This will now be transformed into a (set REG REG)
1113 so we can just blow away all the other notes. */
1114 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1115 REG_NOTES (insn
) = NULL_RTX
;
1119 /* setjmp was called, we must remove the REG_SAVE_AREA
1120 note so that later passes do not get confused by its
1122 if (note
== REG_NOTES (insn
))
1124 REG_NOTES (insn
) = XEXP (note
, 1);
1130 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1131 if (XEXP (srch
, 1) == note
)
1136 XEXP (srch
, 1) = XEXP (note
, 1);
1139 /* Once we've seen the note of interest, we need not look at
1140 the rest of them. */
1145 #endif /* SETJMP_VIA_SAVE_AREA */
1147 /* Return an rtx representing the address of an area of memory dynamically
1148 pushed on the stack. This region of memory is always aligned to
1149 a multiple of BIGGEST_ALIGNMENT.
1151 Any required stack pointer alignment is preserved.
1153 SIZE is an rtx representing the size of the area.
1154 TARGET is a place in which the address can be placed.
1156 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1159 allocate_dynamic_stack_space (rtx size
, rtx target
, int known_align
)
1161 #ifdef SETJMP_VIA_SAVE_AREA
1162 rtx setjmpless_size
= NULL_RTX
;
1165 /* If we're asking for zero bytes, it doesn't matter what we point
1166 to since we can't dereference it. But return a reasonable
1168 if (size
== const0_rtx
)
1169 return virtual_stack_dynamic_rtx
;
1171 /* Otherwise, show we're calling alloca or equivalent. */
1172 current_function_calls_alloca
= 1;
1174 /* Ensure the size is in the proper mode. */
1175 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1176 size
= convert_to_mode (Pmode
, size
, 1);
1178 /* We can't attempt to minimize alignment necessary, because we don't
1179 know the final value of preferred_stack_boundary yet while executing
1181 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1183 /* We will need to ensure that the address we return is aligned to
1184 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1185 always know its final value at this point in the compilation (it
1186 might depend on the size of the outgoing parameter lists, for
1187 example), so we must align the value to be returned in that case.
1188 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1189 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1190 We must also do an alignment operation on the returned value if
1191 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1193 If we have to align, we must leave space in SIZE for the hole
1194 that might result from the alignment operation. */
1196 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1197 #define MUST_ALIGN 1
1199 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1204 = force_operand (plus_constant (size
,
1205 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1208 #ifdef SETJMP_VIA_SAVE_AREA
1209 /* If setjmp restores regs from a save area in the stack frame,
1210 avoid clobbering the reg save area. Note that the offset of
1211 virtual_incoming_args_rtx includes the preallocated stack args space.
1212 It would be no problem to clobber that, but it's on the wrong side
1213 of the old save area. */
1216 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1217 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1219 if (!current_function_calls_setjmp
)
1221 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1223 /* See optimize_save_area_alloca to understand what is being
1226 /* ??? Code below assumes that the save area needs maximal
1227 alignment. This constraint may be too strong. */
1228 gcc_assert (PREFERRED_STACK_BOUNDARY
== BIGGEST_ALIGNMENT
);
1230 if (GET_CODE (size
) == CONST_INT
)
1232 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1234 if (INTVAL (size
) != new)
1235 setjmpless_size
= GEN_INT (new);
1237 setjmpless_size
= size
;
1241 /* Since we know overflow is not possible, we avoid using
1242 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1243 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1244 GEN_INT (align
), NULL_RTX
, 1);
1245 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1246 GEN_INT (align
), NULL_RTX
, 1);
1248 /* Our optimization works based upon being able to perform a simple
1249 transformation of this RTL into a (set REG REG) so make sure things
1250 did in fact end up in a REG. */
1251 if (!register_operand (setjmpless_size
, Pmode
))
1252 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1255 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1256 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1258 #endif /* SETJMP_VIA_SAVE_AREA */
1260 /* Round the size to a multiple of the required stack alignment.
1261 Since the stack if presumed to be rounded before this allocation,
1262 this will maintain the required alignment.
1264 If the stack grows downward, we could save an insn by subtracting
1265 SIZE from the stack pointer and then aligning the stack pointer.
1266 The problem with this is that the stack pointer may be unaligned
1267 between the execution of the subtraction and alignment insns and
1268 some machines do not allow this. Even on those that do, some
1269 signal handlers malfunction if a signal should occur between those
1270 insns. Since this is an extremely rare event, we have no reliable
1271 way of knowing which systems have this problem. So we avoid even
1272 momentarily mis-aligning the stack. */
1274 /* If we added a variable amount to SIZE,
1275 we can no longer assume it is aligned. */
1276 #if !defined (SETJMP_VIA_SAVE_AREA)
1277 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1279 size
= round_push (size
);
1281 do_pending_stack_adjust ();
1283 /* We ought to be called always on the toplevel and stack ought to be aligned
1285 gcc_assert (!(stack_pointer_delta
1286 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1288 /* If needed, check that we have the required amount of stack. Take into
1289 account what has already been checked. */
1290 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1291 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1293 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1294 if (target
== 0 || !REG_P (target
)
1295 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1296 || GET_MODE (target
) != Pmode
)
1297 target
= gen_reg_rtx (Pmode
);
1299 mark_reg_pointer (target
, known_align
);
1301 /* Perform the required allocation from the stack. Some systems do
1302 this differently than simply incrementing/decrementing from the
1303 stack pointer, such as acquiring the space by calling malloc(). */
1304 #ifdef HAVE_allocate_stack
1305 if (HAVE_allocate_stack
)
1307 enum machine_mode mode
= STACK_SIZE_MODE
;
1308 insn_operand_predicate_fn pred
;
1310 /* We don't have to check against the predicate for operand 0 since
1311 TARGET is known to be a pseudo of the proper mode, which must
1312 be valid for the operand. For operand 1, convert to the
1313 proper mode and validate. */
1314 if (mode
== VOIDmode
)
1315 mode
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].mode
;
1317 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1318 if (pred
&& ! ((*pred
) (size
, mode
)))
1319 size
= copy_to_mode_reg (mode
, convert_to_mode (mode
, size
, 1));
1321 emit_insn (gen_allocate_stack (target
, size
));
1326 #ifndef STACK_GROWS_DOWNWARD
1327 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1330 /* Check stack bounds if necessary. */
1331 if (current_function_limit_stack
)
1334 rtx space_available
= gen_label_rtx ();
1335 #ifdef STACK_GROWS_DOWNWARD
1336 available
= expand_binop (Pmode
, sub_optab
,
1337 stack_pointer_rtx
, stack_limit_rtx
,
1338 NULL_RTX
, 1, OPTAB_WIDEN
);
1340 available
= expand_binop (Pmode
, sub_optab
,
1341 stack_limit_rtx
, stack_pointer_rtx
,
1342 NULL_RTX
, 1, OPTAB_WIDEN
);
1344 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1348 emit_insn (gen_trap ());
1351 error ("stack limits not supported on this target");
1353 emit_label (space_available
);
1356 anti_adjust_stack (size
);
1357 #ifdef SETJMP_VIA_SAVE_AREA
1358 if (setjmpless_size
!= NULL_RTX
)
1360 rtx note_target
= get_last_insn ();
1362 REG_NOTES (note_target
)
1363 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1364 REG_NOTES (note_target
));
1366 #endif /* SETJMP_VIA_SAVE_AREA */
1368 #ifdef STACK_GROWS_DOWNWARD
1369 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1375 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1376 but we know it can't. So add ourselves and then do
1378 target
= expand_binop (Pmode
, add_optab
, target
,
1379 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1380 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1381 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1382 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1384 target
= expand_mult (Pmode
, target
,
1385 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1389 /* Record the new stack level for nonlocal gotos. */
1390 if (cfun
->nonlocal_goto_save_area
!= 0)
1391 update_nonlocal_goto_save_area ();
1396 /* A front end may want to override GCC's stack checking by providing a
1397 run-time routine to call to check the stack, so provide a mechanism for
1398 calling that routine. */
1400 static GTY(()) rtx stack_check_libfunc
;
1403 set_stack_check_libfunc (rtx libfunc
)
1405 stack_check_libfunc
= libfunc
;
1408 /* Emit one stack probe at ADDRESS, an address within the stack. */
1411 emit_stack_probe (rtx address
)
1413 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1415 MEM_VOLATILE_P (memref
) = 1;
1417 if (STACK_CHECK_PROBE_LOAD
)
1418 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1420 emit_move_insn (memref
, const0_rtx
);
1423 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1424 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1425 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1426 subtract from the stack. If SIZE is constant, this is done
1427 with a fixed number of probes. Otherwise, we must make a loop. */
1429 #ifdef STACK_GROWS_DOWNWARD
1430 #define STACK_GROW_OP MINUS
1432 #define STACK_GROW_OP PLUS
1436 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1438 /* First ensure SIZE is Pmode. */
1439 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1440 size
= convert_to_mode (Pmode
, size
, 1);
1442 /* Next see if the front end has set up a function for us to call to
1444 if (stack_check_libfunc
!= 0)
1446 rtx addr
= memory_address (QImode
,
1447 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1449 plus_constant (size
, first
)));
1451 addr
= convert_memory_address (ptr_mode
, addr
);
1452 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1456 /* Next see if we have an insn to check the stack. Use it if so. */
1457 #ifdef HAVE_check_stack
1458 else if (HAVE_check_stack
)
1460 insn_operand_predicate_fn pred
;
1462 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1464 plus_constant (size
, first
)),
1467 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1468 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1469 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1471 emit_insn (gen_check_stack (last_addr
));
1475 /* If we have to generate explicit probes, see if we have a constant
1476 small number of them to generate. If so, that's the easy case. */
1477 else if (GET_CODE (size
) == CONST_INT
1478 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1480 HOST_WIDE_INT offset
;
1482 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1483 for values of N from 1 until it exceeds LAST. If only one
1484 probe is needed, this will not generate any code. Then probe
1486 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1487 offset
< INTVAL (size
);
1488 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1489 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1493 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1495 plus_constant (size
, first
)));
1498 /* In the variable case, do the same as above, but in a loop. We emit loop
1499 notes so that loop optimization can be done. */
1503 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1505 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1508 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1510 plus_constant (size
, first
)),
1512 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1513 rtx loop_lab
= gen_label_rtx ();
1514 rtx test_lab
= gen_label_rtx ();
1515 rtx end_lab
= gen_label_rtx ();
1518 if (!REG_P (test_addr
)
1519 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1520 test_addr
= force_reg (Pmode
, test_addr
);
1522 emit_jump (test_lab
);
1524 emit_label (loop_lab
);
1525 emit_stack_probe (test_addr
);
1527 #ifdef STACK_GROWS_DOWNWARD
1528 #define CMP_OPCODE GTU
1529 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1532 #define CMP_OPCODE LTU
1533 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1537 gcc_assert (temp
== test_addr
);
1539 emit_label (test_lab
);
1540 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1541 NULL_RTX
, Pmode
, 1, loop_lab
);
1542 emit_jump (end_lab
);
1543 emit_label (end_lab
);
1545 emit_stack_probe (last_addr
);
1549 /* Return an rtx representing the register or memory location
1550 in which a scalar value of data type VALTYPE
1551 was returned by a function call to function FUNC.
1552 FUNC is a FUNCTION_DECL node if the precise function is known,
1554 OUTGOING is 1 if on a machine with register windows this function
1555 should return the register in which the function will put its result
1559 hard_function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
,
1560 int outgoing ATTRIBUTE_UNUSED
)
1564 #ifdef FUNCTION_OUTGOING_VALUE
1566 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1569 val
= FUNCTION_VALUE (valtype
, func
);
1572 && GET_MODE (val
) == BLKmode
)
1574 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1575 enum machine_mode tmpmode
;
1577 /* int_size_in_bytes can return -1. We don't need a check here
1578 since the value of bytes will be large enough that no mode
1579 will match and we will abort later in this function. */
1581 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1582 tmpmode
!= VOIDmode
;
1583 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1585 /* Have we found a large enough mode? */
1586 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1590 /* No suitable mode found. */
1591 gcc_assert (tmpmode
!= VOIDmode
);
1593 PUT_MODE (val
, tmpmode
);
1598 /* Return an rtx representing the register or memory location
1599 in which a scalar value of mode MODE was returned by a library call. */
1602 hard_libcall_value (enum machine_mode mode
)
1604 return LIBCALL_VALUE (mode
);
1607 /* Look up the tree code for a given rtx code
1608 to provide the arithmetic operation for REAL_ARITHMETIC.
1609 The function returns an int because the caller may not know
1610 what `enum tree_code' means. */
1613 rtx_to_tree_code (enum rtx_code code
)
1615 enum tree_code tcode
;
1638 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1641 return ((int) tcode
);
1644 #include "gt-explow.h"