1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "fold-const.h"
29 #include "stor-layout.h"
30 #include "stringpool.h"
32 #include "print-tree.h"
36 #include "hard-reg-set.h"
38 #include "insn-config.h"
46 #include "diagnostic-core.h"
48 #include "langhooks.h"
52 #include "tree-inline.h"
53 #include "tree-dump.h"
56 /* Data type for the expressions representing sizes of data types.
57 It is the first integer type laid out. */
58 tree sizetype_tab
[(int) stk_type_kind_last
];
60 /* If nonzero, this is an upper limit on alignment of structure fields.
61 The value is measured in bits. */
62 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
64 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
65 in the address spaces' address_mode, not pointer_mode. Set only by
66 internal_reference_types called only by a front end. */
67 static int reference_types_internal
= 0;
69 static tree
self_referential_size (tree
);
70 static void finalize_record_size (record_layout_info
);
71 static void finalize_type_size (tree
);
72 static void place_union_field (record_layout_info
, tree
);
73 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
75 extern void debug_rli (record_layout_info
);
77 /* Show that REFERENCE_TYPES are internal and should use address_mode.
78 Called only by front end. */
81 internal_reference_types (void)
83 reference_types_internal
= 1;
86 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
87 to serve as the actual size-expression for a type or decl. */
90 variable_size (tree size
)
93 if (TREE_CONSTANT (size
))
96 /* If the size is self-referential, we can't make a SAVE_EXPR (see
97 save_expr for the rationale). But we can do something else. */
98 if (CONTAINS_PLACEHOLDER_P (size
))
99 return self_referential_size (size
);
101 /* If we are in the global binding level, we can't make a SAVE_EXPR
102 since it may end up being shared across functions, so it is up
103 to the front-end to deal with this case. */
104 if (lang_hooks
.decls
.global_bindings_p ())
107 return save_expr (size
);
110 /* An array of functions used for self-referential size computation. */
111 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
113 /* Return true if T is a self-referential component reference. */
116 self_referential_component_ref_p (tree t
)
118 if (TREE_CODE (t
) != COMPONENT_REF
)
121 while (REFERENCE_CLASS_P (t
))
122 t
= TREE_OPERAND (t
, 0);
124 return (TREE_CODE (t
) == PLACEHOLDER_EXPR
);
127 /* Similar to copy_tree_r but do not copy component references involving
128 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
129 and substituted in substitute_in_expr. */
132 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
134 enum tree_code code
= TREE_CODE (*tp
);
136 /* Stop at types, decls, constants like copy_tree_r. */
137 if (TREE_CODE_CLASS (code
) == tcc_type
138 || TREE_CODE_CLASS (code
) == tcc_declaration
139 || TREE_CODE_CLASS (code
) == tcc_constant
)
145 /* This is the pattern built in ada/make_aligning_type. */
146 else if (code
== ADDR_EXPR
147 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
153 /* Default case: the component reference. */
154 else if (self_referential_component_ref_p (*tp
))
160 /* We're not supposed to have them in self-referential size trees
161 because we wouldn't properly control when they are evaluated.
162 However, not creating superfluous SAVE_EXPRs requires accurate
163 tracking of readonly-ness all the way down to here, which we
164 cannot always guarantee in practice. So punt in this case. */
165 else if (code
== SAVE_EXPR
)
166 return error_mark_node
;
168 else if (code
== STATEMENT_LIST
)
171 return copy_tree_r (tp
, walk_subtrees
, data
);
174 /* Given a SIZE expression that is self-referential, return an equivalent
175 expression to serve as the actual size expression for a type. */
178 self_referential_size (tree size
)
180 static unsigned HOST_WIDE_INT fnno
= 0;
181 vec
<tree
> self_refs
= vNULL
;
182 tree param_type_list
= NULL
, param_decl_list
= NULL
;
183 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
186 vec
<tree
, va_gc
> *args
= NULL
;
188 /* Do not factor out simple operations. */
189 t
= skip_simple_constant_arithmetic (size
);
190 if (TREE_CODE (t
) == CALL_EXPR
|| self_referential_component_ref_p (t
))
193 /* Collect the list of self-references in the expression. */
194 find_placeholder_in_expr (size
, &self_refs
);
195 gcc_assert (self_refs
.length () > 0);
197 /* Obtain a private copy of the expression. */
199 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
203 /* Build the parameter and argument lists in parallel; also
204 substitute the former for the latter in the expression. */
205 vec_alloc (args
, self_refs
.length ());
206 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
208 tree subst
, param_name
, param_type
, param_decl
;
212 /* We shouldn't have true variables here. */
213 gcc_assert (TREE_READONLY (ref
));
216 /* This is the pattern built in ada/make_aligning_type. */
217 else if (TREE_CODE (ref
) == ADDR_EXPR
)
219 /* Default case: the component reference. */
221 subst
= TREE_OPERAND (ref
, 1);
223 sprintf (buf
, "p%d", i
);
224 param_name
= get_identifier (buf
);
225 param_type
= TREE_TYPE (ref
);
227 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
228 DECL_ARG_TYPE (param_decl
) = param_type
;
229 DECL_ARTIFICIAL (param_decl
) = 1;
230 TREE_READONLY (param_decl
) = 1;
232 size
= substitute_in_expr (size
, subst
, param_decl
);
234 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
235 param_decl_list
= chainon (param_decl
, param_decl_list
);
236 args
->quick_push (ref
);
239 self_refs
.release ();
241 /* Append 'void' to indicate that the number of parameters is fixed. */
242 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
244 /* The 3 lists have been created in reverse order. */
245 param_type_list
= nreverse (param_type_list
);
246 param_decl_list
= nreverse (param_decl_list
);
248 /* Build the function type. */
249 return_type
= TREE_TYPE (size
);
250 fntype
= build_function_type (return_type
, param_type_list
);
252 /* Build the function declaration. */
253 sprintf (buf
, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
254 fnname
= get_file_function_name (buf
);
255 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
256 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
257 DECL_CONTEXT (t
) = fndecl
;
258 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
260 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
261 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
263 /* The function has been created by the compiler and we don't
264 want to emit debug info for it. */
265 DECL_ARTIFICIAL (fndecl
) = 1;
266 DECL_IGNORED_P (fndecl
) = 1;
268 /* It is supposed to be "const" and never throw. */
269 TREE_READONLY (fndecl
) = 1;
270 TREE_NOTHROW (fndecl
) = 1;
272 /* We want it to be inlined when this is deemed profitable, as
273 well as discarded if every call has been integrated. */
274 DECL_DECLARED_INLINE_P (fndecl
) = 1;
276 /* It is made up of a unique return statement. */
277 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
278 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
279 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
280 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
281 TREE_STATIC (fndecl
) = 1;
283 /* Put it onto the list of size functions. */
284 vec_safe_push (size_functions
, fndecl
);
286 /* Replace the original expression with a call to the size function. */
287 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
290 /* Take, queue and compile all the size functions. It is essential that
291 the size functions be gimplified at the very end of the compilation
292 in order to guarantee transparent handling of self-referential sizes.
293 Otherwise the GENERIC inliner would not be able to inline them back
294 at each of their call sites, thus creating artificial non-constant
295 size expressions which would trigger nasty problems later on. */
298 finalize_size_functions (void)
303 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
305 allocate_struct_function (fndecl
, false);
307 dump_function (TDI_original
, fndecl
);
308 gimplify_function_tree (fndecl
);
309 cgraph_node::finalize_function (fndecl
, false);
312 vec_free (size_functions
);
315 /* Return the machine mode to use for a nonscalar of SIZE bits. The
316 mode must be in class MCLASS, and have exactly that many value bits;
317 it may have padding as well. If LIMIT is nonzero, modes of wider
318 than MAX_FIXED_MODE_SIZE will not be used. */
321 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
326 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
329 /* Get the first mode which has this size, in the specified class. */
330 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
331 mode
= GET_MODE_WIDER_MODE (mode
))
332 if (GET_MODE_PRECISION (mode
) == size
)
335 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
336 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
337 if (int_n_data
[i
].bitsize
== size
338 && int_n_enabled_p
[i
])
339 return int_n_data
[i
].m
;
344 /* Similar, except passed a tree node. */
347 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
349 unsigned HOST_WIDE_INT uhwi
;
352 if (!tree_fits_uhwi_p (size
))
354 uhwi
= tree_to_uhwi (size
);
358 return mode_for_size (ui
, mclass
, limit
);
361 /* Similar, but never return BLKmode; return the narrowest mode that
362 contains at least the requested number of value bits. */
365 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
367 machine_mode mode
= VOIDmode
;
370 /* Get the first mode which has at least this size, in the
372 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
373 mode
= GET_MODE_WIDER_MODE (mode
))
374 if (GET_MODE_PRECISION (mode
) >= size
)
377 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
378 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
379 if (int_n_data
[i
].bitsize
>= size
380 && int_n_data
[i
].bitsize
< GET_MODE_PRECISION (mode
)
381 && int_n_enabled_p
[i
])
382 mode
= int_n_data
[i
].m
;
384 if (mode
== VOIDmode
)
390 /* Find an integer mode of the exact same size, or BLKmode on failure. */
393 int_mode_for_mode (machine_mode mode
)
395 switch (GET_MODE_CLASS (mode
))
398 case MODE_PARTIAL_INT
:
401 case MODE_COMPLEX_INT
:
402 case MODE_COMPLEX_FLOAT
:
404 case MODE_DECIMAL_FLOAT
:
405 case MODE_VECTOR_INT
:
406 case MODE_VECTOR_FLOAT
:
411 case MODE_VECTOR_FRACT
:
412 case MODE_VECTOR_ACCUM
:
413 case MODE_VECTOR_UFRACT
:
414 case MODE_VECTOR_UACCUM
:
415 case MODE_POINTER_BOUNDS
:
416 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
423 /* ... fall through ... */
433 /* Find a mode that can be used for efficient bitwise operations on MODE.
434 Return BLKmode if no such mode exists. */
437 bitwise_mode_for_mode (machine_mode mode
)
439 /* Quick exit if we already have a suitable mode. */
440 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
441 if (SCALAR_INT_MODE_P (mode
) && bitsize
<= MAX_FIXED_MODE_SIZE
)
444 /* Reuse the sanity checks from int_mode_for_mode. */
445 gcc_checking_assert ((int_mode_for_mode (mode
), true));
447 /* Try to replace complex modes with complex modes. In general we
448 expect both components to be processed independently, so we only
449 care whether there is a register for the inner mode. */
450 if (COMPLEX_MODE_P (mode
))
452 machine_mode trial
= mode
;
453 if (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
)
454 trial
= mode_for_size (bitsize
, MODE_COMPLEX_INT
, false);
456 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
460 /* Try to replace vector modes with vector modes. Also try using vector
461 modes if an integer mode would be too big. */
462 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
464 machine_mode trial
= mode
;
465 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
466 trial
= mode_for_size (bitsize
, MODE_VECTOR_INT
, 0);
468 && have_regs_of_mode
[trial
]
469 && targetm
.vector_mode_supported_p (trial
))
473 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
474 return mode_for_size (bitsize
, MODE_INT
, true);
477 /* Find a type that can be used for efficient bitwise operations on MODE.
478 Return null if no such mode exists. */
481 bitwise_type_for_mode (machine_mode mode
)
483 mode
= bitwise_mode_for_mode (mode
);
487 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
488 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
490 if (VECTOR_MODE_P (mode
))
491 return build_vector_type_for_mode (inner_type
, mode
);
493 if (COMPLEX_MODE_P (mode
))
494 return build_complex_type (inner_type
);
496 gcc_checking_assert (GET_MODE_INNER (mode
) == VOIDmode
);
500 /* Find a mode that is suitable for representing a vector with
501 NUNITS elements of mode INNERMODE. Returns BLKmode if there
502 is no suitable mode. */
505 mode_for_vector (machine_mode innermode
, unsigned nunits
)
509 /* First, look for a supported vector type. */
510 if (SCALAR_FLOAT_MODE_P (innermode
))
511 mode
= MIN_MODE_VECTOR_FLOAT
;
512 else if (SCALAR_FRACT_MODE_P (innermode
))
513 mode
= MIN_MODE_VECTOR_FRACT
;
514 else if (SCALAR_UFRACT_MODE_P (innermode
))
515 mode
= MIN_MODE_VECTOR_UFRACT
;
516 else if (SCALAR_ACCUM_MODE_P (innermode
))
517 mode
= MIN_MODE_VECTOR_ACCUM
;
518 else if (SCALAR_UACCUM_MODE_P (innermode
))
519 mode
= MIN_MODE_VECTOR_UACCUM
;
521 mode
= MIN_MODE_VECTOR_INT
;
523 /* Do not check vector_mode_supported_p here. We'll do that
524 later in vector_type_mode. */
525 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
526 if (GET_MODE_NUNITS (mode
) == nunits
527 && GET_MODE_INNER (mode
) == innermode
)
530 /* For integers, try mapping it to a same-sized scalar mode. */
532 && GET_MODE_CLASS (innermode
) == MODE_INT
)
533 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
537 || (GET_MODE_CLASS (mode
) == MODE_INT
538 && !have_regs_of_mode
[mode
]))
544 /* Return the alignment of MODE. This will be bounded by 1 and
545 BIGGEST_ALIGNMENT. */
548 get_mode_alignment (machine_mode mode
)
550 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
553 /* Return the precision of the mode, or for a complex or vector mode the
554 precision of the mode of its elements. */
557 element_precision (machine_mode mode
)
559 if (COMPLEX_MODE_P (mode
) || VECTOR_MODE_P (mode
))
560 mode
= GET_MODE_INNER (mode
);
562 return GET_MODE_PRECISION (mode
);
565 /* Return the natural mode of an array, given that it is SIZE bytes in
566 total and has elements of type ELEM_TYPE. */
569 mode_for_array (tree elem_type
, tree size
)
572 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
575 /* One-element arrays get the component type's mode. */
576 elem_size
= TYPE_SIZE (elem_type
);
577 if (simple_cst_equal (size
, elem_size
))
578 return TYPE_MODE (elem_type
);
581 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
583 int_size
= tree_to_uhwi (size
);
584 int_elem_size
= tree_to_uhwi (elem_size
);
585 if (int_elem_size
> 0
586 && int_size
% int_elem_size
== 0
587 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
588 int_size
/ int_elem_size
))
591 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
594 /* Subroutine of layout_decl: Force alignment required for the data type.
595 But if the decl itself wants greater alignment, don't override that. */
598 do_type_align (tree type
, tree decl
)
600 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
602 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
603 if (TREE_CODE (decl
) == FIELD_DECL
)
604 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
608 /* Set the size, mode and alignment of a ..._DECL node.
609 TYPE_DECL does need this for C++.
610 Note that LABEL_DECL and CONST_DECL nodes do not need this,
611 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
612 Don't call layout_decl for them.
614 KNOWN_ALIGN is the amount of alignment we can assume this
615 decl has with no special effort. It is relevant only for FIELD_DECLs
616 and depends on the previous fields.
617 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
618 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
619 the record will be aligned to suit. */
622 layout_decl (tree decl
, unsigned int known_align
)
624 tree type
= TREE_TYPE (decl
);
625 enum tree_code code
= TREE_CODE (decl
);
627 location_t loc
= DECL_SOURCE_LOCATION (decl
);
629 if (code
== CONST_DECL
)
632 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
633 || code
== TYPE_DECL
||code
== FIELD_DECL
);
635 rtl
= DECL_RTL_IF_SET (decl
);
637 if (type
== error_mark_node
)
638 type
= void_type_node
;
640 /* Usually the size and mode come from the data type without change,
641 however, the front-end may set the explicit width of the field, so its
642 size may not be the same as the size of its type. This happens with
643 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
644 also happens with other fields. For example, the C++ front-end creates
645 zero-sized fields corresponding to empty base classes, and depends on
646 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
647 size in bytes from the size in bits. If we have already set the mode,
648 don't set it again since we can be called twice for FIELD_DECLs. */
650 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
651 if (DECL_MODE (decl
) == VOIDmode
)
652 DECL_MODE (decl
) = TYPE_MODE (type
);
654 if (DECL_SIZE (decl
) == 0)
656 DECL_SIZE (decl
) = TYPE_SIZE (type
);
657 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
659 else if (DECL_SIZE_UNIT (decl
) == 0)
660 DECL_SIZE_UNIT (decl
)
661 = fold_convert_loc (loc
, sizetype
,
662 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
665 if (code
!= FIELD_DECL
)
666 /* For non-fields, update the alignment from the type. */
667 do_type_align (type
, decl
);
669 /* For fields, it's a bit more complicated... */
671 bool old_user_align
= DECL_USER_ALIGN (decl
);
672 bool zero_bitfield
= false;
673 bool packed_p
= DECL_PACKED (decl
);
676 if (DECL_BIT_FIELD (decl
))
678 DECL_BIT_FIELD_TYPE (decl
) = type
;
680 /* A zero-length bit-field affects the alignment of the next
681 field. In essence such bit-fields are not influenced by
682 any packing due to #pragma pack or attribute packed. */
683 if (integer_zerop (DECL_SIZE (decl
))
684 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
686 zero_bitfield
= true;
688 if (PCC_BITFIELD_TYPE_MATTERS
)
689 do_type_align (type
, decl
);
692 #ifdef EMPTY_FIELD_BOUNDARY
693 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
695 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
696 DECL_USER_ALIGN (decl
) = 0;
702 /* See if we can use an ordinary integer mode for a bit-field.
703 Conditions are: a fixed size that is correct for another mode,
704 occupying a complete byte or bytes on proper boundary. */
705 if (TYPE_SIZE (type
) != 0
706 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
707 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
710 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
711 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
714 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
715 && (known_align
== 0 || known_align
>= xalign
))
717 DECL_ALIGN (decl
) = MAX (xalign
, DECL_ALIGN (decl
));
718 DECL_MODE (decl
) = xmode
;
719 DECL_BIT_FIELD (decl
) = 0;
723 /* Turn off DECL_BIT_FIELD if we won't need it set. */
724 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
725 && known_align
>= TYPE_ALIGN (type
)
726 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
727 DECL_BIT_FIELD (decl
) = 0;
729 else if (packed_p
&& DECL_USER_ALIGN (decl
))
730 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
731 round up; we'll reduce it again below. We want packing to
732 supersede USER_ALIGN inherited from the type, but defer to
733 alignment explicitly specified on the field decl. */;
735 do_type_align (type
, decl
);
737 /* If the field is packed and not explicitly aligned, give it the
738 minimum alignment. Note that do_type_align may set
739 DECL_USER_ALIGN, so we need to check old_user_align instead. */
742 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
744 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
746 /* Some targets (i.e. i386, VMS) limit struct field alignment
747 to a lower boundary than alignment of variables unless
748 it was overridden by attribute aligned. */
749 #ifdef BIGGEST_FIELD_ALIGNMENT
751 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
753 #ifdef ADJUST_FIELD_ALIGN
754 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
759 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
761 mfa
= maximum_field_alignment
;
762 /* Should this be controlled by DECL_USER_ALIGN, too? */
764 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), mfa
);
767 /* Evaluate nonconstant size only once, either now or as soon as safe. */
768 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
769 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
770 if (DECL_SIZE_UNIT (decl
) != 0
771 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
772 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
774 /* If requested, warn about definitions of large data objects. */
776 && (code
== VAR_DECL
|| code
== PARM_DECL
)
777 && ! DECL_EXTERNAL (decl
))
779 tree size
= DECL_SIZE_UNIT (decl
);
781 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
782 && compare_tree_int (size
, larger_than_size
) > 0)
784 int size_as_int
= TREE_INT_CST_LOW (size
);
786 if (compare_tree_int (size
, size_as_int
) == 0)
787 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
789 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
790 decl
, larger_than_size
);
794 /* If the RTL was already set, update its mode and mem attributes. */
797 PUT_MODE (rtl
, DECL_MODE (decl
));
798 SET_DECL_RTL (decl
, 0);
799 set_mem_attributes (rtl
, decl
, 1);
800 SET_DECL_RTL (decl
, rtl
);
804 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
805 a previous call to layout_decl and calls it again. */
808 relayout_decl (tree decl
)
810 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
811 DECL_MODE (decl
) = VOIDmode
;
812 if (!DECL_USER_ALIGN (decl
))
813 DECL_ALIGN (decl
) = 0;
814 SET_DECL_RTL (decl
, 0);
816 layout_decl (decl
, 0);
819 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
820 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
821 is to be passed to all other layout functions for this record. It is the
822 responsibility of the caller to call `free' for the storage returned.
823 Note that garbage collection is not permitted until we finish laying
827 start_record_layout (tree t
)
829 record_layout_info rli
= XNEW (struct record_layout_info_s
);
833 /* If the type has a minimum specified alignment (via an attribute
834 declaration, for example) use it -- otherwise, start with a
835 one-byte alignment. */
836 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
837 rli
->unpacked_align
= rli
->record_align
;
838 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
840 #ifdef STRUCTURE_SIZE_BOUNDARY
841 /* Packed structures don't need to have minimum size. */
842 if (! TYPE_PACKED (t
))
846 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
847 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
848 if (maximum_field_alignment
!= 0)
849 tmp
= MIN (tmp
, maximum_field_alignment
);
850 rli
->record_align
= MAX (rli
->record_align
, tmp
);
854 rli
->offset
= size_zero_node
;
855 rli
->bitpos
= bitsize_zero_node
;
857 rli
->pending_statics
= 0;
858 rli
->packed_maybe_necessary
= 0;
859 rli
->remaining_in_alignment
= 0;
864 /* Return the combined bit position for the byte offset OFFSET and the
867 These functions operate on byte and bit positions present in FIELD_DECLs
868 and assume that these expressions result in no (intermediate) overflow.
869 This assumption is necessary to fold the expressions as much as possible,
870 so as to avoid creating artificially variable-sized types in languages
871 supporting variable-sized types like Ada. */
874 bit_from_pos (tree offset
, tree bitpos
)
876 if (TREE_CODE (offset
) == PLUS_EXPR
)
877 offset
= size_binop (PLUS_EXPR
,
878 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
879 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
881 offset
= fold_convert (bitsizetype
, offset
);
882 return size_binop (PLUS_EXPR
, bitpos
,
883 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
886 /* Return the combined truncated byte position for the byte offset OFFSET and
887 the bit position BITPOS. */
890 byte_from_pos (tree offset
, tree bitpos
)
893 if (TREE_CODE (bitpos
) == MULT_EXPR
894 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
895 bytepos
= TREE_OPERAND (bitpos
, 0);
897 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
898 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
901 /* Split the bit position POS into a byte offset *POFFSET and a bit
902 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
905 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
908 tree toff_align
= bitsize_int (off_align
);
909 if (TREE_CODE (pos
) == MULT_EXPR
910 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
912 *poffset
= size_binop (MULT_EXPR
,
913 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
914 size_int (off_align
/ BITS_PER_UNIT
));
915 *pbitpos
= bitsize_zero_node
;
919 *poffset
= size_binop (MULT_EXPR
,
920 fold_convert (sizetype
,
921 size_binop (FLOOR_DIV_EXPR
, pos
,
923 size_int (off_align
/ BITS_PER_UNIT
));
924 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
928 /* Given a pointer to bit and byte offsets and an offset alignment,
929 normalize the offsets so they are within the alignment. */
932 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
934 /* If the bit position is now larger than it should be, adjust it
936 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
939 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
940 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
945 /* Print debugging information about the information in RLI. */
948 debug_rli (record_layout_info rli
)
950 print_node_brief (stderr
, "type", rli
->t
, 0);
951 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
952 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
954 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
955 rli
->record_align
, rli
->unpacked_align
,
958 /* The ms_struct code is the only that uses this. */
959 if (targetm
.ms_bitfield_layout_p (rli
->t
))
960 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
962 if (rli
->packed_maybe_necessary
)
963 fprintf (stderr
, "packed may be necessary\n");
965 if (!vec_safe_is_empty (rli
->pending_statics
))
967 fprintf (stderr
, "pending statics:\n");
968 debug_vec_tree (rli
->pending_statics
);
972 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
973 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
976 normalize_rli (record_layout_info rli
)
978 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
981 /* Returns the size in bytes allocated so far. */
984 rli_size_unit_so_far (record_layout_info rli
)
986 return byte_from_pos (rli
->offset
, rli
->bitpos
);
989 /* Returns the size in bits allocated so far. */
992 rli_size_so_far (record_layout_info rli
)
994 return bit_from_pos (rli
->offset
, rli
->bitpos
);
997 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
998 the next available location within the record is given by KNOWN_ALIGN.
999 Update the variable alignment fields in RLI, and return the alignment
1000 to give the FIELD. */
1003 update_alignment_for_field (record_layout_info rli
, tree field
,
1004 unsigned int known_align
)
1006 /* The alignment required for FIELD. */
1007 unsigned int desired_align
;
1008 /* The type of this field. */
1009 tree type
= TREE_TYPE (field
);
1010 /* True if the field was explicitly aligned by the user. */
1014 /* Do not attempt to align an ERROR_MARK node */
1015 if (TREE_CODE (type
) == ERROR_MARK
)
1018 /* Lay out the field so we know what alignment it needs. */
1019 layout_decl (field
, known_align
);
1020 desired_align
= DECL_ALIGN (field
);
1021 user_align
= DECL_USER_ALIGN (field
);
1023 is_bitfield
= (type
!= error_mark_node
1024 && DECL_BIT_FIELD_TYPE (field
)
1025 && ! integer_zerop (TYPE_SIZE (type
)));
1027 /* Record must have at least as much alignment as any field.
1028 Otherwise, the alignment of the field within the record is
1030 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1032 /* Here, the alignment of the underlying type of a bitfield can
1033 affect the alignment of a record; even a zero-sized field
1034 can do this. The alignment should be to the alignment of
1035 the type, except that for zero-size bitfields this only
1036 applies if there was an immediately prior, nonzero-size
1037 bitfield. (That's the way it is, experimentally.) */
1038 if ((!is_bitfield
&& !DECL_PACKED (field
))
1039 || ((DECL_SIZE (field
) == NULL_TREE
1040 || !integer_zerop (DECL_SIZE (field
)))
1041 ? !DECL_PACKED (field
)
1043 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1044 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1046 unsigned int type_align
= TYPE_ALIGN (type
);
1047 type_align
= MAX (type_align
, desired_align
);
1048 if (maximum_field_alignment
!= 0)
1049 type_align
= MIN (type_align
, maximum_field_alignment
);
1050 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1051 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1054 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1056 /* Named bit-fields cause the entire structure to have the
1057 alignment implied by their type. Some targets also apply the same
1058 rules to unnamed bitfields. */
1059 if (DECL_NAME (field
) != 0
1060 || targetm
.align_anon_bitfield ())
1062 unsigned int type_align
= TYPE_ALIGN (type
);
1064 #ifdef ADJUST_FIELD_ALIGN
1065 if (! TYPE_USER_ALIGN (type
))
1066 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1069 /* Targets might chose to handle unnamed and hence possibly
1070 zero-width bitfield. Those are not influenced by #pragmas
1071 or packed attributes. */
1072 if (integer_zerop (DECL_SIZE (field
)))
1074 if (initial_max_fld_align
)
1075 type_align
= MIN (type_align
,
1076 initial_max_fld_align
* BITS_PER_UNIT
);
1078 else if (maximum_field_alignment
!= 0)
1079 type_align
= MIN (type_align
, maximum_field_alignment
);
1080 else if (DECL_PACKED (field
))
1081 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1083 /* The alignment of the record is increased to the maximum
1084 of the current alignment, the alignment indicated on the
1085 field (i.e., the alignment specified by an __aligned__
1086 attribute), and the alignment indicated by the type of
1088 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1089 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1092 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1093 user_align
|= TYPE_USER_ALIGN (type
);
1098 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1099 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1102 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1104 return desired_align
;
1107 /* Called from place_field to handle unions. */
1110 place_union_field (record_layout_info rli
, tree field
)
1112 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1114 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1115 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1116 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1118 /* If this is an ERROR_MARK return *after* having set the
1119 field at the start of the union. This helps when parsing
1121 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1124 /* We assume the union's size will be a multiple of a byte so we don't
1125 bother with BITPOS. */
1126 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1127 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1128 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1129 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1130 DECL_SIZE_UNIT (field
), rli
->offset
);
1133 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1134 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1135 units of alignment than the underlying TYPE. */
1137 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1138 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1140 /* Note that the calculation of OFFSET might overflow; we calculate it so
1141 that we still get the right result as long as ALIGN is a power of two. */
1142 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1144 offset
= offset
% align
;
1145 return ((offset
+ size
+ align
- 1) / align
1146 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1149 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1150 is a FIELD_DECL to be added after those fields already present in
1151 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1152 callers that desire that behavior must manually perform that step.) */
1155 place_field (record_layout_info rli
, tree field
)
1157 /* The alignment required for FIELD. */
1158 unsigned int desired_align
;
1159 /* The alignment FIELD would have if we just dropped it into the
1160 record as it presently stands. */
1161 unsigned int known_align
;
1162 unsigned int actual_align
;
1163 /* The type of this field. */
1164 tree type
= TREE_TYPE (field
);
1166 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1168 /* If FIELD is static, then treat it like a separate variable, not
1169 really like a structure field. If it is a FUNCTION_DECL, it's a
1170 method. In both cases, all we do is lay out the decl, and we do
1171 it *after* the record is laid out. */
1172 if (TREE_CODE (field
) == VAR_DECL
)
1174 vec_safe_push (rli
->pending_statics
, field
);
1178 /* Enumerators and enum types which are local to this class need not
1179 be laid out. Likewise for initialized constant fields. */
1180 else if (TREE_CODE (field
) != FIELD_DECL
)
1183 /* Unions are laid out very differently than records, so split
1184 that code off to another function. */
1185 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1187 place_union_field (rli
, field
);
1191 else if (TREE_CODE (type
) == ERROR_MARK
)
1193 /* Place this field at the current allocation position, so we
1194 maintain monotonicity. */
1195 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1196 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1197 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1201 /* Work out the known alignment so far. Note that A & (-A) is the
1202 value of the least-significant bit in A that is one. */
1203 if (! integer_zerop (rli
->bitpos
))
1204 known_align
= (tree_to_uhwi (rli
->bitpos
)
1205 & - tree_to_uhwi (rli
->bitpos
));
1206 else if (integer_zerop (rli
->offset
))
1208 else if (tree_fits_uhwi_p (rli
->offset
))
1209 known_align
= (BITS_PER_UNIT
1210 * (tree_to_uhwi (rli
->offset
)
1211 & - tree_to_uhwi (rli
->offset
)));
1213 known_align
= rli
->offset_align
;
1215 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1216 if (known_align
== 0)
1217 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1219 if (warn_packed
&& DECL_PACKED (field
))
1221 if (known_align
>= TYPE_ALIGN (type
))
1223 if (TYPE_ALIGN (type
) > desired_align
)
1225 if (STRICT_ALIGNMENT
)
1226 warning (OPT_Wattributes
, "packed attribute causes "
1227 "inefficient alignment for %q+D", field
);
1228 /* Don't warn if DECL_PACKED was set by the type. */
1229 else if (!TYPE_PACKED (rli
->t
))
1230 warning (OPT_Wattributes
, "packed attribute is "
1231 "unnecessary for %q+D", field
);
1235 rli
->packed_maybe_necessary
= 1;
1238 /* Does this field automatically have alignment it needs by virtue
1239 of the fields that precede it and the record's own alignment? */
1240 if (known_align
< desired_align
)
1242 /* No, we need to skip space before this field.
1243 Bump the cumulative size to multiple of field alignment. */
1245 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1246 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1247 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1249 /* If the alignment is still within offset_align, just align
1250 the bit position. */
1251 if (desired_align
< rli
->offset_align
)
1252 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1255 /* First adjust OFFSET by the partial bits, then align. */
1257 = size_binop (PLUS_EXPR
, rli
->offset
,
1258 fold_convert (sizetype
,
1259 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1260 bitsize_unit_node
)));
1261 rli
->bitpos
= bitsize_zero_node
;
1263 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1266 if (! TREE_CONSTANT (rli
->offset
))
1267 rli
->offset_align
= desired_align
;
1268 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1269 rli
->prev_field
= NULL
;
1272 /* Handle compatibility with PCC. Note that if the record has any
1273 variable-sized fields, we need not worry about compatibility. */
1274 if (PCC_BITFIELD_TYPE_MATTERS
1275 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1276 && TREE_CODE (field
) == FIELD_DECL
1277 && type
!= error_mark_node
1278 && DECL_BIT_FIELD (field
)
1279 && (! DECL_PACKED (field
)
1280 /* Enter for these packed fields only to issue a warning. */
1281 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1282 && maximum_field_alignment
== 0
1283 && ! integer_zerop (DECL_SIZE (field
))
1284 && tree_fits_uhwi_p (DECL_SIZE (field
))
1285 && tree_fits_uhwi_p (rli
->offset
)
1286 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1288 unsigned int type_align
= TYPE_ALIGN (type
);
1289 tree dsize
= DECL_SIZE (field
);
1290 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1291 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1292 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1294 #ifdef ADJUST_FIELD_ALIGN
1295 if (! TYPE_USER_ALIGN (type
))
1296 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1299 /* A bit field may not span more units of alignment of its type
1300 than its type itself. Advance to next boundary if necessary. */
1301 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1303 if (DECL_PACKED (field
))
1305 if (warn_packed_bitfield_compat
== 1)
1308 "offset of packed bit-field %qD has changed in GCC 4.4",
1312 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1315 if (! DECL_PACKED (field
))
1316 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1319 #ifdef BITFIELD_NBYTES_LIMITED
1320 if (BITFIELD_NBYTES_LIMITED
1321 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1322 && TREE_CODE (field
) == FIELD_DECL
1323 && type
!= error_mark_node
1324 && DECL_BIT_FIELD_TYPE (field
)
1325 && ! DECL_PACKED (field
)
1326 && ! integer_zerop (DECL_SIZE (field
))
1327 && tree_fits_uhwi_p (DECL_SIZE (field
))
1328 && tree_fits_uhwi_p (rli
->offset
)
1329 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1331 unsigned int type_align
= TYPE_ALIGN (type
);
1332 tree dsize
= DECL_SIZE (field
);
1333 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1334 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1335 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1337 #ifdef ADJUST_FIELD_ALIGN
1338 if (! TYPE_USER_ALIGN (type
))
1339 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1342 if (maximum_field_alignment
!= 0)
1343 type_align
= MIN (type_align
, maximum_field_alignment
);
1344 /* ??? This test is opposite the test in the containing if
1345 statement, so this code is unreachable currently. */
1346 else if (DECL_PACKED (field
))
1347 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1349 /* A bit field may not span the unit of alignment of its type.
1350 Advance to next boundary if necessary. */
1351 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1352 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1354 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1358 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1360 When a bit field is inserted into a packed record, the whole
1361 size of the underlying type is used by one or more same-size
1362 adjacent bitfields. (That is, if its long:3, 32 bits is
1363 used in the record, and any additional adjacent long bitfields are
1364 packed into the same chunk of 32 bits. However, if the size
1365 changes, a new field of that size is allocated.) In an unpacked
1366 record, this is the same as using alignment, but not equivalent
1369 Note: for compatibility, we use the type size, not the type alignment
1370 to determine alignment, since that matches the documentation */
1372 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1374 tree prev_saved
= rli
->prev_field
;
1375 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1377 /* This is a bitfield if it exists. */
1378 if (rli
->prev_field
)
1380 /* If both are bitfields, nonzero, and the same size, this is
1381 the middle of a run. Zero declared size fields are special
1382 and handled as "end of run". (Note: it's nonzero declared
1383 size, but equal type sizes!) (Since we know that both
1384 the current and previous fields are bitfields by the
1385 time we check it, DECL_SIZE must be present for both.) */
1386 if (DECL_BIT_FIELD_TYPE (field
)
1387 && !integer_zerop (DECL_SIZE (field
))
1388 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1389 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1390 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1391 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1393 /* We're in the middle of a run of equal type size fields; make
1394 sure we realign if we run out of bits. (Not decl size,
1396 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1398 if (rli
->remaining_in_alignment
< bitsize
)
1400 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1402 /* out of bits; bump up to next 'word'. */
1404 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1405 bitsize_int (rli
->remaining_in_alignment
));
1406 rli
->prev_field
= field
;
1407 if (typesize
< bitsize
)
1408 rli
->remaining_in_alignment
= 0;
1410 rli
->remaining_in_alignment
= typesize
- bitsize
;
1413 rli
->remaining_in_alignment
-= bitsize
;
1417 /* End of a run: if leaving a run of bitfields of the same type
1418 size, we have to "use up" the rest of the bits of the type
1421 Compute the new position as the sum of the size for the prior
1422 type and where we first started working on that type.
1423 Note: since the beginning of the field was aligned then
1424 of course the end will be too. No round needed. */
1426 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1429 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1430 bitsize_int (rli
->remaining_in_alignment
));
1433 /* We "use up" size zero fields; the code below should behave
1434 as if the prior field was not a bitfield. */
1437 /* Cause a new bitfield to be captured, either this time (if
1438 currently a bitfield) or next time we see one. */
1439 if (!DECL_BIT_FIELD_TYPE (field
)
1440 || integer_zerop (DECL_SIZE (field
)))
1441 rli
->prev_field
= NULL
;
1444 normalize_rli (rli
);
1447 /* If we're starting a new run of same type size bitfields
1448 (or a run of non-bitfields), set up the "first of the run"
1451 That is, if the current field is not a bitfield, or if there
1452 was a prior bitfield the type sizes differ, or if there wasn't
1453 a prior bitfield the size of the current field is nonzero.
1455 Note: we must be sure to test ONLY the type size if there was
1456 a prior bitfield and ONLY for the current field being zero if
1459 if (!DECL_BIT_FIELD_TYPE (field
)
1460 || (prev_saved
!= NULL
1461 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1462 : !integer_zerop (DECL_SIZE (field
)) ))
1464 /* Never smaller than a byte for compatibility. */
1465 unsigned int type_align
= BITS_PER_UNIT
;
1467 /* (When not a bitfield), we could be seeing a flex array (with
1468 no DECL_SIZE). Since we won't be using remaining_in_alignment
1469 until we see a bitfield (and come by here again) we just skip
1471 if (DECL_SIZE (field
) != NULL
1472 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1473 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1475 unsigned HOST_WIDE_INT bitsize
1476 = tree_to_uhwi (DECL_SIZE (field
));
1477 unsigned HOST_WIDE_INT typesize
1478 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1480 if (typesize
< bitsize
)
1481 rli
->remaining_in_alignment
= 0;
1483 rli
->remaining_in_alignment
= typesize
- bitsize
;
1486 /* Now align (conventionally) for the new type. */
1487 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1489 if (maximum_field_alignment
!= 0)
1490 type_align
= MIN (type_align
, maximum_field_alignment
);
1492 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1494 /* If we really aligned, don't allow subsequent bitfields
1496 rli
->prev_field
= NULL
;
1500 /* Offset so far becomes the position of this field after normalizing. */
1501 normalize_rli (rli
);
1502 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1503 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1504 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1506 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1507 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1508 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1510 /* If this field ended up more aligned than we thought it would be (we
1511 approximate this by seeing if its position changed), lay out the field
1512 again; perhaps we can use an integral mode for it now. */
1513 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1514 actual_align
= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1515 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1516 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1517 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1518 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1519 actual_align
= (BITS_PER_UNIT
1520 * (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1521 & - tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1523 actual_align
= DECL_OFFSET_ALIGN (field
);
1524 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1525 store / extract bit field operations will check the alignment of the
1526 record against the mode of bit fields. */
1528 if (known_align
!= actual_align
)
1529 layout_decl (field
, actual_align
);
1531 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1532 rli
->prev_field
= field
;
1534 /* Now add size of this field to the size of the record. If the size is
1535 not constant, treat the field as being a multiple of bytes and just
1536 adjust the offset, resetting the bit position. Otherwise, apportion the
1537 size amongst the bit position and offset. First handle the case of an
1538 unspecified size, which can happen when we have an invalid nested struct
1539 definition, such as struct j { struct j { int i; } }. The error message
1540 is printed in finish_struct. */
1541 if (DECL_SIZE (field
) == 0)
1543 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1544 || TREE_OVERFLOW (DECL_SIZE (field
)))
1547 = size_binop (PLUS_EXPR
, rli
->offset
,
1548 fold_convert (sizetype
,
1549 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1550 bitsize_unit_node
)));
1552 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1553 rli
->bitpos
= bitsize_zero_node
;
1554 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1556 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1558 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1560 /* If we ended a bitfield before the full length of the type then
1561 pad the struct out to the full length of the last type. */
1562 if ((DECL_CHAIN (field
) == NULL
1563 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1564 && DECL_BIT_FIELD_TYPE (field
)
1565 && !integer_zerop (DECL_SIZE (field
)))
1566 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1567 bitsize_int (rli
->remaining_in_alignment
));
1569 normalize_rli (rli
);
1573 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1574 normalize_rli (rli
);
1578 /* Assuming that all the fields have been laid out, this function uses
1579 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1580 indicated by RLI. */
1583 finalize_record_size (record_layout_info rli
)
1585 tree unpadded_size
, unpadded_size_unit
;
1587 /* Now we want just byte and bit offsets, so set the offset alignment
1588 to be a byte and then normalize. */
1589 rli
->offset_align
= BITS_PER_UNIT
;
1590 normalize_rli (rli
);
1592 /* Determine the desired alignment. */
1593 #ifdef ROUND_TYPE_ALIGN
1594 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1597 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1600 /* Compute the size so far. Be sure to allow for extra bits in the
1601 size in bytes. We have guaranteed above that it will be no more
1602 than a single byte. */
1603 unpadded_size
= rli_size_so_far (rli
);
1604 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1605 if (! integer_zerop (rli
->bitpos
))
1607 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1609 /* Round the size up to be a multiple of the required alignment. */
1610 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1611 TYPE_SIZE_UNIT (rli
->t
)
1612 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1614 if (TREE_CONSTANT (unpadded_size
)
1615 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1616 && input_location
!= BUILTINS_LOCATION
)
1617 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1619 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1620 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1621 && TREE_CONSTANT (unpadded_size
))
1625 #ifdef ROUND_TYPE_ALIGN
1627 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1629 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1632 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1633 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1635 if (TYPE_NAME (rli
->t
))
1639 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1640 name
= TYPE_NAME (rli
->t
);
1642 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1644 if (STRICT_ALIGNMENT
)
1645 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1646 "alignment for %qE", name
);
1648 warning (OPT_Wpacked
,
1649 "packed attribute is unnecessary for %qE", name
);
1653 if (STRICT_ALIGNMENT
)
1654 warning (OPT_Wpacked
,
1655 "packed attribute causes inefficient alignment");
1657 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1663 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1666 compute_record_mode (tree type
)
1669 machine_mode mode
= VOIDmode
;
1671 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1672 However, if possible, we use a mode that fits in a register
1673 instead, in order to allow for better optimization down the
1675 SET_TYPE_MODE (type
, BLKmode
);
1677 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1680 /* A record which has any BLKmode members must itself be
1681 BLKmode; it can't go in a register. Unless the member is
1682 BLKmode only because it isn't aligned. */
1683 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1685 if (TREE_CODE (field
) != FIELD_DECL
)
1688 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1689 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1690 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1691 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1692 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1693 || ! tree_fits_uhwi_p (bit_position (field
))
1694 || DECL_SIZE (field
) == 0
1695 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1698 /* If this field is the whole struct, remember its mode so
1699 that, say, we can put a double in a class into a DF
1700 register instead of forcing it to live in the stack. */
1701 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1702 mode
= DECL_MODE (field
);
1704 /* With some targets, it is sub-optimal to access an aligned
1705 BLKmode structure as a scalar. */
1706 if (targetm
.member_type_forces_blk (field
, mode
))
1710 /* If we only have one real field; use its mode if that mode's size
1711 matches the type's size. This only applies to RECORD_TYPE. This
1712 does not apply to unions. */
1713 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1714 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1715 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1716 SET_TYPE_MODE (type
, mode
);
1718 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1720 /* If structure's known alignment is less than what the scalar
1721 mode would need, and it matters, then stick with BLKmode. */
1722 if (TYPE_MODE (type
) != BLKmode
1724 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1725 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1727 /* If this is the only reason this type is BLKmode, then
1728 don't force containing types to be BLKmode. */
1729 TYPE_NO_FORCE_BLK (type
) = 1;
1730 SET_TYPE_MODE (type
, BLKmode
);
1734 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1738 finalize_type_size (tree type
)
1740 /* Normally, use the alignment corresponding to the mode chosen.
1741 However, where strict alignment is not required, avoid
1742 over-aligning structures, since most compilers do not do this
1744 if (TYPE_MODE (type
) != BLKmode
1745 && TYPE_MODE (type
) != VOIDmode
1746 && (STRICT_ALIGNMENT
|| !AGGREGATE_TYPE_P (type
)))
1748 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1750 /* Don't override a larger alignment requirement coming from a user
1751 alignment of one of the fields. */
1752 if (mode_align
>= TYPE_ALIGN (type
))
1754 TYPE_ALIGN (type
) = mode_align
;
1755 TYPE_USER_ALIGN (type
) = 0;
1759 /* Do machine-dependent extra alignment. */
1760 #ifdef ROUND_TYPE_ALIGN
1762 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1765 /* If we failed to find a simple way to calculate the unit size
1766 of the type, find it by division. */
1767 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1768 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1769 result will fit in sizetype. We will get more efficient code using
1770 sizetype, so we force a conversion. */
1771 TYPE_SIZE_UNIT (type
)
1772 = fold_convert (sizetype
,
1773 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1774 bitsize_unit_node
));
1776 if (TYPE_SIZE (type
) != 0)
1778 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1779 TYPE_SIZE_UNIT (type
)
1780 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1783 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1784 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1785 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1786 if (TYPE_SIZE_UNIT (type
) != 0
1787 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1788 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1790 /* Also layout any other variants of the type. */
1791 if (TYPE_NEXT_VARIANT (type
)
1792 || type
!= TYPE_MAIN_VARIANT (type
))
1795 /* Record layout info of this variant. */
1796 tree size
= TYPE_SIZE (type
);
1797 tree size_unit
= TYPE_SIZE_UNIT (type
);
1798 unsigned int align
= TYPE_ALIGN (type
);
1799 unsigned int precision
= TYPE_PRECISION (type
);
1800 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1801 machine_mode mode
= TYPE_MODE (type
);
1803 /* Copy it into all variants. */
1804 for (variant
= TYPE_MAIN_VARIANT (type
);
1806 variant
= TYPE_NEXT_VARIANT (variant
))
1808 TYPE_SIZE (variant
) = size
;
1809 TYPE_SIZE_UNIT (variant
) = size_unit
;
1810 unsigned valign
= align
;
1811 if (TYPE_USER_ALIGN (variant
))
1812 valign
= MAX (valign
, TYPE_ALIGN (variant
));
1814 TYPE_USER_ALIGN (variant
) = user_align
;
1815 TYPE_ALIGN (variant
) = valign
;
1816 TYPE_PRECISION (variant
) = precision
;
1817 SET_TYPE_MODE (variant
, mode
);
1822 /* Return a new underlying object for a bitfield started with FIELD. */
1825 start_bitfield_representative (tree field
)
1827 tree repr
= make_node (FIELD_DECL
);
1828 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1829 /* Force the representative to begin at a BITS_PER_UNIT aligned
1830 boundary - C++ may use tail-padding of a base object to
1831 continue packing bits so the bitfield region does not start
1832 at bit zero (see g++.dg/abi/bitfield5.C for example).
1833 Unallocated bits may happen for other reasons as well,
1834 for example Ada which allows explicit bit-granular structure layout. */
1835 DECL_FIELD_BIT_OFFSET (repr
)
1836 = size_binop (BIT_AND_EXPR
,
1837 DECL_FIELD_BIT_OFFSET (field
),
1838 bitsize_int (~(BITS_PER_UNIT
- 1)));
1839 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1840 DECL_SIZE (repr
) = DECL_SIZE (field
);
1841 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1842 DECL_PACKED (repr
) = DECL_PACKED (field
);
1843 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1847 /* Finish up a bitfield group that was started by creating the underlying
1848 object REPR with the last field in the bitfield group FIELD. */
1851 finish_bitfield_representative (tree repr
, tree field
)
1853 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1857 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1858 DECL_FIELD_OFFSET (repr
));
1859 while (TREE_CODE (size
) == COMPOUND_EXPR
)
1860 size
= TREE_OPERAND (size
, 1);
1861 gcc_assert (tree_fits_uhwi_p (size
));
1862 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1863 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1864 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1865 + tree_to_uhwi (DECL_SIZE (field
)));
1867 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1868 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1870 /* Now nothing tells us how to pad out bitsize ... */
1871 nextf
= DECL_CHAIN (field
);
1872 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1873 nextf
= DECL_CHAIN (nextf
);
1877 /* If there was an error, the field may be not laid out
1878 correctly. Don't bother to do anything. */
1879 if (TREE_TYPE (nextf
) == error_mark_node
)
1881 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1882 DECL_FIELD_OFFSET (repr
));
1883 if (tree_fits_uhwi_p (maxsize
))
1885 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1886 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1887 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1888 /* If the group ends within a bitfield nextf does not need to be
1889 aligned to BITS_PER_UNIT. Thus round up. */
1890 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1893 maxbitsize
= bitsize
;
1897 /* ??? If you consider that tail-padding of this struct might be
1898 re-used when deriving from it we cannot really do the following
1899 and thus need to set maxsize to bitsize? Also we cannot
1900 generally rely on maxsize to fold to an integer constant, so
1901 use bitsize as fallback for this case. */
1902 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1903 DECL_FIELD_OFFSET (repr
));
1904 if (tree_fits_uhwi_p (maxsize
))
1905 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1906 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1908 maxbitsize
= bitsize
;
1911 /* Only if we don't artificially break up the representative in
1912 the middle of a large bitfield with different possibly
1913 overlapping representatives. And all representatives start
1915 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1917 /* Find the smallest nice mode to use. */
1918 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1919 mode
= GET_MODE_WIDER_MODE (mode
))
1920 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1922 if (mode
!= VOIDmode
1923 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1924 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1927 if (mode
== VOIDmode
)
1929 /* We really want a BLKmode representative only as a last resort,
1930 considering the member b in
1931 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1932 Otherwise we simply want to split the representative up
1933 allowing for overlaps within the bitfield region as required for
1934 struct { int a : 7; int b : 7;
1935 int c : 10; int d; } __attribute__((packed));
1936 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1937 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1938 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1939 DECL_MODE (repr
) = BLKmode
;
1940 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1941 bitsize
/ BITS_PER_UNIT
);
1945 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1946 DECL_SIZE (repr
) = bitsize_int (modesize
);
1947 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1948 DECL_MODE (repr
) = mode
;
1949 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1952 /* Remember whether the bitfield group is at the end of the
1953 structure or not. */
1954 DECL_CHAIN (repr
) = nextf
;
1957 /* Compute and set FIELD_DECLs for the underlying objects we should
1958 use for bitfield access for the structure T. */
1961 finish_bitfield_layout (tree t
)
1964 tree repr
= NULL_TREE
;
1966 /* Unions would be special, for the ease of type-punning optimizations
1967 we could use the underlying type as hint for the representative
1968 if the bitfield would fit and the representative would not exceed
1969 the union in size. */
1970 if (TREE_CODE (t
) != RECORD_TYPE
)
1973 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
1974 field
; field
= DECL_CHAIN (field
))
1976 if (TREE_CODE (field
) != FIELD_DECL
)
1979 /* In the C++ memory model, consecutive bit fields in a structure are
1980 considered one memory location and updating a memory location
1981 may not store into adjacent memory locations. */
1983 && DECL_BIT_FIELD_TYPE (field
))
1985 /* Start new representative. */
1986 repr
= start_bitfield_representative (field
);
1989 && ! DECL_BIT_FIELD_TYPE (field
))
1991 /* Finish off new representative. */
1992 finish_bitfield_representative (repr
, prev
);
1995 else if (DECL_BIT_FIELD_TYPE (field
))
1997 gcc_assert (repr
!= NULL_TREE
);
1999 /* Zero-size bitfields finish off a representative and
2000 do not have a representative themselves. This is
2001 required by the C++ memory model. */
2002 if (integer_zerop (DECL_SIZE (field
)))
2004 finish_bitfield_representative (repr
, prev
);
2008 /* We assume that either DECL_FIELD_OFFSET of the representative
2009 and each bitfield member is a constant or they are equal.
2010 This is because we need to be able to compute the bit-offset
2011 of each field relative to the representative in get_bit_range
2012 during RTL expansion.
2013 If these constraints are not met, simply force a new
2014 representative to be generated. That will at most
2015 generate worse code but still maintain correctness with
2016 respect to the C++ memory model. */
2017 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2018 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2019 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2020 DECL_FIELD_OFFSET (field
), 0)))
2022 finish_bitfield_representative (repr
, prev
);
2023 repr
= start_bitfield_representative (field
);
2030 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2036 finish_bitfield_representative (repr
, prev
);
2039 /* Do all of the work required to layout the type indicated by RLI,
2040 once the fields have been laid out. This function will call `free'
2041 for RLI, unless FREE_P is false. Passing a value other than false
2042 for FREE_P is bad practice; this option only exists to support the
2046 finish_record_layout (record_layout_info rli
, int free_p
)
2050 /* Compute the final size. */
2051 finalize_record_size (rli
);
2053 /* Compute the TYPE_MODE for the record. */
2054 compute_record_mode (rli
->t
);
2056 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2057 finalize_type_size (rli
->t
);
2059 /* Compute bitfield representatives. */
2060 finish_bitfield_layout (rli
->t
);
2062 /* Propagate TYPE_PACKED to variants. With C++ templates,
2063 handle_packed_attribute is too early to do this. */
2064 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2065 variant
= TYPE_NEXT_VARIANT (variant
))
2066 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2068 /* Lay out any static members. This is done now because their type
2069 may use the record's type. */
2070 while (!vec_safe_is_empty (rli
->pending_statics
))
2071 layout_decl (rli
->pending_statics
->pop (), 0);
2076 vec_free (rli
->pending_statics
);
2082 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2083 NAME, its fields are chained in reverse on FIELDS.
2085 If ALIGN_TYPE is non-null, it is given the same alignment as
2089 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2094 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2096 DECL_FIELD_CONTEXT (fields
) = type
;
2097 next
= DECL_CHAIN (fields
);
2098 DECL_CHAIN (fields
) = tail
;
2100 TYPE_FIELDS (type
) = tail
;
2104 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
2105 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2109 #if 0 /* not yet, should get fixed properly later */
2110 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2112 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2113 TYPE_DECL
, get_identifier (name
), type
);
2115 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2116 layout_decl (TYPE_NAME (type
), 0);
2119 /* Calculate the mode, size, and alignment for TYPE.
2120 For an array type, calculate the element separation as well.
2121 Record TYPE on the chain of permanent or temporary types
2122 so that dbxout will find out about it.
2124 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2125 layout_type does nothing on such a type.
2127 If the type is incomplete, its TYPE_SIZE remains zero. */
2130 layout_type (tree type
)
2134 if (type
== error_mark_node
)
2137 /* We don't want finalize_type_size to copy an alignment attribute to
2138 variants that don't have it. */
2139 type
= TYPE_MAIN_VARIANT (type
);
2141 /* Do nothing if type has been laid out before. */
2142 if (TYPE_SIZE (type
))
2145 switch (TREE_CODE (type
))
2148 /* This kind of type is the responsibility
2149 of the language-specific code. */
2155 SET_TYPE_MODE (type
,
2156 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2157 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2158 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2159 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2163 SET_TYPE_MODE (type
,
2164 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2165 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2166 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2169 case FIXED_POINT_TYPE
:
2170 /* TYPE_MODE (type) has been set already. */
2171 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2172 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2176 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2177 SET_TYPE_MODE (type
,
2178 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2179 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2180 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2182 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2183 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2188 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2189 tree innertype
= TREE_TYPE (type
);
2191 gcc_assert (!(nunits
& (nunits
- 1)));
2193 /* Find an appropriate mode for the vector type. */
2194 if (TYPE_MODE (type
) == VOIDmode
)
2195 SET_TYPE_MODE (type
,
2196 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2198 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2199 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2200 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2201 TYPE_SIZE_UNIT (innertype
),
2203 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
, TYPE_SIZE (innertype
),
2204 bitsize_int (nunits
));
2206 /* For vector types, we do not default to the mode's alignment.
2207 Instead, query a target hook, defaulting to natural alignment.
2208 This prevents ABI changes depending on whether or not native
2209 vector modes are supported. */
2210 TYPE_ALIGN (type
) = targetm
.vector_alignment (type
);
2212 /* However, if the underlying mode requires a bigger alignment than
2213 what the target hook provides, we cannot use the mode. For now,
2214 simply reject that case. */
2215 gcc_assert (TYPE_ALIGN (type
)
2216 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2221 /* This is an incomplete type and so doesn't have a size. */
2222 TYPE_ALIGN (type
) = 1;
2223 TYPE_USER_ALIGN (type
) = 0;
2224 SET_TYPE_MODE (type
, VOIDmode
);
2227 case POINTER_BOUNDS_TYPE
:
2228 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2229 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2233 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2234 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2235 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2236 integral, which may be an __intN. */
2237 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2238 TYPE_PRECISION (type
) = POINTER_SIZE
;
2243 /* It's hard to see what the mode and size of a function ought to
2244 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2245 make it consistent with that. */
2246 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2247 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2248 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2252 case REFERENCE_TYPE
:
2254 machine_mode mode
= TYPE_MODE (type
);
2255 if (TREE_CODE (type
) == REFERENCE_TYPE
&& reference_types_internal
)
2257 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
2258 mode
= targetm
.addr_space
.address_mode (as
);
2261 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2262 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2263 TYPE_UNSIGNED (type
) = 1;
2264 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2270 tree index
= TYPE_DOMAIN (type
);
2271 tree element
= TREE_TYPE (type
);
2273 build_pointer_type (element
);
2275 /* We need to know both bounds in order to compute the size. */
2276 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2277 && TYPE_SIZE (element
))
2279 tree ub
= TYPE_MAX_VALUE (index
);
2280 tree lb
= TYPE_MIN_VALUE (index
);
2281 tree element_size
= TYPE_SIZE (element
);
2284 /* Make sure that an array of zero-sized element is zero-sized
2285 regardless of its extent. */
2286 if (integer_zerop (element_size
))
2287 length
= size_zero_node
;
2289 /* The computation should happen in the original signedness so
2290 that (possible) negative values are handled appropriately
2291 when determining overflow. */
2294 /* ??? When it is obvious that the range is signed
2295 represent it using ssizetype. */
2296 if (TREE_CODE (lb
) == INTEGER_CST
2297 && TREE_CODE (ub
) == INTEGER_CST
2298 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2299 && tree_int_cst_lt (ub
, lb
))
2301 lb
= wide_int_to_tree (ssizetype
,
2302 offset_int::from (lb
, SIGNED
));
2303 ub
= wide_int_to_tree (ssizetype
,
2304 offset_int::from (ub
, SIGNED
));
2307 = fold_convert (sizetype
,
2308 size_binop (PLUS_EXPR
,
2309 build_int_cst (TREE_TYPE (lb
), 1),
2310 size_binop (MINUS_EXPR
, ub
, lb
)));
2313 /* ??? We have no way to distinguish a null-sized array from an
2314 array spanning the whole sizetype range, so we arbitrarily
2315 decide that [0, -1] is the only valid representation. */
2316 if (integer_zerop (length
)
2317 && TREE_OVERFLOW (length
)
2318 && integer_zerop (lb
))
2319 length
= size_zero_node
;
2321 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2322 fold_convert (bitsizetype
,
2325 /* If we know the size of the element, calculate the total size
2326 directly, rather than do some division thing below. This
2327 optimization helps Fortran assumed-size arrays (where the
2328 size of the array is determined at runtime) substantially. */
2329 if (TYPE_SIZE_UNIT (element
))
2330 TYPE_SIZE_UNIT (type
)
2331 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2334 /* Now round the alignment and size,
2335 using machine-dependent criteria if any. */
2337 unsigned align
= TYPE_ALIGN (element
);
2338 if (TYPE_USER_ALIGN (type
))
2339 align
= MAX (align
, TYPE_ALIGN (type
));
2341 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2342 #ifdef ROUND_TYPE_ALIGN
2343 align
= ROUND_TYPE_ALIGN (type
, align
, BITS_PER_UNIT
);
2345 align
= MAX (align
, BITS_PER_UNIT
);
2347 TYPE_ALIGN (type
) = align
;
2348 SET_TYPE_MODE (type
, BLKmode
);
2349 if (TYPE_SIZE (type
) != 0
2350 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2351 /* BLKmode elements force BLKmode aggregate;
2352 else extract/store fields may lose. */
2353 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2354 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2356 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2358 if (TYPE_MODE (type
) != BLKmode
2359 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2360 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2362 TYPE_NO_FORCE_BLK (type
) = 1;
2363 SET_TYPE_MODE (type
, BLKmode
);
2366 /* When the element size is constant, check that it is at least as
2367 large as the element alignment. */
2368 if (TYPE_SIZE_UNIT (element
)
2369 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2370 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2372 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2373 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2374 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2375 TYPE_ALIGN_UNIT (element
)) < 0)
2376 error ("alignment of array elements is greater than element size");
2382 case QUAL_UNION_TYPE
:
2385 record_layout_info rli
;
2387 /* Initialize the layout information. */
2388 rli
= start_record_layout (type
);
2390 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2391 in the reverse order in building the COND_EXPR that denotes
2392 its size. We reverse them again later. */
2393 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2394 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2396 /* Place all the fields. */
2397 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2398 place_field (rli
, field
);
2400 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2401 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2403 /* Finish laying out the record. */
2404 finish_record_layout (rli
, /*free_p=*/true);
2412 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2413 records and unions, finish_record_layout already called this
2415 if (!RECORD_OR_UNION_TYPE_P (type
))
2416 finalize_type_size (type
);
2418 /* We should never see alias sets on incomplete aggregates. And we
2419 should not call layout_type on not incomplete aggregates. */
2420 if (AGGREGATE_TYPE_P (type
))
2421 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2424 /* Return the least alignment required for type TYPE. */
2427 min_align_of_type (tree type
)
2429 unsigned int align
= TYPE_ALIGN (type
);
2430 if (!TYPE_USER_ALIGN (type
))
2432 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2433 #ifdef BIGGEST_FIELD_ALIGNMENT
2434 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2436 unsigned int field_align
= align
;
2437 #ifdef ADJUST_FIELD_ALIGN
2438 tree field
= build_decl (UNKNOWN_LOCATION
, FIELD_DECL
, NULL_TREE
, type
);
2439 field_align
= ADJUST_FIELD_ALIGN (field
, field_align
);
2442 align
= MIN (align
, field_align
);
2444 return align
/ BITS_PER_UNIT
;
2447 /* Vector types need to re-check the target flags each time we report
2448 the machine mode. We need to do this because attribute target can
2449 change the result of vector_mode_supported_p and have_regs_of_mode
2450 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2451 change on a per-function basis. */
2452 /* ??? Possibly a better solution is to run through all the types
2453 referenced by a function and re-compute the TYPE_MODE once, rather
2454 than make the TYPE_MODE macro call a function. */
2457 vector_type_mode (const_tree t
)
2461 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2463 mode
= t
->type_common
.mode
;
2464 if (VECTOR_MODE_P (mode
)
2465 && (!targetm
.vector_mode_supported_p (mode
)
2466 || !have_regs_of_mode
[mode
]))
2468 machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2470 /* For integers, try mapping it to a same-sized scalar mode. */
2471 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2473 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2474 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2476 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2486 /* Create and return a type for signed integers of PRECISION bits. */
2489 make_signed_type (int precision
)
2491 tree type
= make_node (INTEGER_TYPE
);
2493 TYPE_PRECISION (type
) = precision
;
2495 fixup_signed_type (type
);
2499 /* Create and return a type for unsigned integers of PRECISION bits. */
2502 make_unsigned_type (int precision
)
2504 tree type
= make_node (INTEGER_TYPE
);
2506 TYPE_PRECISION (type
) = precision
;
2508 fixup_unsigned_type (type
);
2512 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2516 make_fract_type (int precision
, int unsignedp
, int satp
)
2518 tree type
= make_node (FIXED_POINT_TYPE
);
2520 TYPE_PRECISION (type
) = precision
;
2523 TYPE_SATURATING (type
) = 1;
2525 /* Lay out the type: set its alignment, size, etc. */
2528 TYPE_UNSIGNED (type
) = 1;
2529 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2532 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2538 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2542 make_accum_type (int precision
, int unsignedp
, int satp
)
2544 tree type
= make_node (FIXED_POINT_TYPE
);
2546 TYPE_PRECISION (type
) = precision
;
2549 TYPE_SATURATING (type
) = 1;
2551 /* Lay out the type: set its alignment, size, etc. */
2554 TYPE_UNSIGNED (type
) = 1;
2555 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2558 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2564 /* Initialize sizetypes so layout_type can use them. */
2567 initialize_sizetypes (void)
2569 int precision
, bprecision
;
2571 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2572 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2573 precision
= INT_TYPE_SIZE
;
2574 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2575 precision
= LONG_TYPE_SIZE
;
2576 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2577 precision
= LONG_LONG_TYPE_SIZE
;
2578 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2579 precision
= SHORT_TYPE_SIZE
;
2585 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2586 if (int_n_enabled_p
[i
])
2589 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2591 if (strcmp (name
, SIZETYPE
) == 0)
2593 precision
= int_n_data
[i
].bitsize
;
2596 if (precision
== -1)
2601 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2603 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2604 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2605 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2607 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2608 sizetype
= make_node (INTEGER_TYPE
);
2609 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2610 TYPE_PRECISION (sizetype
) = precision
;
2611 TYPE_UNSIGNED (sizetype
) = 1;
2612 bitsizetype
= make_node (INTEGER_TYPE
);
2613 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2614 TYPE_PRECISION (bitsizetype
) = bprecision
;
2615 TYPE_UNSIGNED (bitsizetype
) = 1;
2617 /* Now layout both types manually. */
2618 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2619 TYPE_ALIGN (sizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
));
2620 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2621 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2622 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2624 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2625 TYPE_ALIGN (bitsizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
));
2626 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2627 TYPE_SIZE_UNIT (bitsizetype
)
2628 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2629 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2631 /* Create the signed variants of *sizetype. */
2632 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2633 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2634 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2635 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2638 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2639 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2640 for TYPE, based on the PRECISION and whether or not the TYPE
2641 IS_UNSIGNED. PRECISION need not correspond to a width supported
2642 natively by the hardware; for example, on a machine with 8-bit,
2643 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2647 set_min_and_max_values_for_integral_type (tree type
,
2651 /* For bitfields with zero width we end up creating integer types
2652 with zero precision. Don't assign any minimum/maximum values
2653 to those types, they don't have any valid value. */
2657 TYPE_MIN_VALUE (type
)
2658 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2659 TYPE_MAX_VALUE (type
)
2660 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2663 /* Set the extreme values of TYPE based on its precision in bits,
2664 then lay it out. Used when make_signed_type won't do
2665 because the tree code is not INTEGER_TYPE.
2666 E.g. for Pascal, when the -fsigned-char option is given. */
2669 fixup_signed_type (tree type
)
2671 int precision
= TYPE_PRECISION (type
);
2673 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2675 /* Lay out the type: set its alignment, size, etc. */
2679 /* Set the extreme values of TYPE based on its precision in bits,
2680 then lay it out. This is used both in `make_unsigned_type'
2681 and for enumeral types. */
2684 fixup_unsigned_type (tree type
)
2686 int precision
= TYPE_PRECISION (type
);
2688 TYPE_UNSIGNED (type
) = 1;
2690 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2692 /* Lay out the type: set its alignment, size, etc. */
2696 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2699 BITREGION_START is the bit position of the first bit in this
2700 sequence of bit fields. BITREGION_END is the last bit in this
2701 sequence. If these two fields are non-zero, we should restrict the
2702 memory access to that range. Otherwise, we are allowed to touch
2703 any adjacent non bit-fields.
2705 ALIGN is the alignment of the underlying object in bits.
2706 VOLATILEP says whether the bitfield is volatile. */
2708 bit_field_mode_iterator
2709 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2710 HOST_WIDE_INT bitregion_start
,
2711 HOST_WIDE_INT bitregion_end
,
2712 unsigned int align
, bool volatilep
)
2713 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT
)), m_bitsize (bitsize
),
2714 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2715 m_bitregion_end (bitregion_end
), m_align (align
),
2716 m_volatilep (volatilep
), m_count (0)
2718 if (!m_bitregion_end
)
2720 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2721 the bitfield is mapped and won't trap, provided that ALIGN isn't
2722 too large. The cap is the biggest required alignment for data,
2723 or at least the word size. And force one such chunk at least. */
2724 unsigned HOST_WIDE_INT units
2725 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2728 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2729 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2733 /* Calls to this function return successively larger modes that can be used
2734 to represent the bitfield. Return true if another bitfield mode is
2735 available, storing it in *OUT_MODE if so. */
2738 bit_field_mode_iterator::next_mode (machine_mode
*out_mode
)
2740 for (; m_mode
!= VOIDmode
; m_mode
= GET_MODE_WIDER_MODE (m_mode
))
2742 unsigned int unit
= GET_MODE_BITSIZE (m_mode
);
2744 /* Skip modes that don't have full precision. */
2745 if (unit
!= GET_MODE_PRECISION (m_mode
))
2748 /* Stop if the mode is too wide to handle efficiently. */
2749 if (unit
> MAX_FIXED_MODE_SIZE
)
2752 /* Don't deliver more than one multiword mode; the smallest one
2754 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2757 /* Skip modes that are too small. */
2758 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2759 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2763 /* Stop if the mode goes outside the bitregion. */
2764 HOST_WIDE_INT start
= m_bitpos
- substart
;
2765 if (m_bitregion_start
&& start
< m_bitregion_start
)
2767 HOST_WIDE_INT end
= start
+ unit
;
2768 if (end
> m_bitregion_end
+ 1)
2771 /* Stop if the mode requires too much alignment. */
2772 if (GET_MODE_ALIGNMENT (m_mode
) > m_align
2773 && SLOW_UNALIGNED_ACCESS (m_mode
, m_align
))
2777 m_mode
= GET_MODE_WIDER_MODE (m_mode
);
2784 /* Return true if smaller modes are generally preferred for this kind
2788 bit_field_mode_iterator::prefer_smaller_modes ()
2791 ? targetm
.narrow_volatile_bitfield ()
2792 : !SLOW_BYTE_ACCESS
);
2795 /* Find the best machine mode to use when referencing a bit field of length
2796 BITSIZE bits starting at BITPOS.
2798 BITREGION_START is the bit position of the first bit in this
2799 sequence of bit fields. BITREGION_END is the last bit in this
2800 sequence. If these two fields are non-zero, we should restrict the
2801 memory access to that range. Otherwise, we are allowed to touch
2802 any adjacent non bit-fields.
2804 The underlying object is known to be aligned to a boundary of ALIGN bits.
2805 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2806 larger than LARGEST_MODE (usually SImode).
2808 If no mode meets all these conditions, we return VOIDmode.
2810 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2811 smallest mode meeting these conditions.
2813 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2814 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2817 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2818 decide which of the above modes should be used. */
2821 get_best_mode (int bitsize
, int bitpos
,
2822 unsigned HOST_WIDE_INT bitregion_start
,
2823 unsigned HOST_WIDE_INT bitregion_end
,
2825 machine_mode largest_mode
, bool volatilep
)
2827 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2828 bitregion_end
, align
, volatilep
);
2829 machine_mode widest_mode
= VOIDmode
;
2831 while (iter
.next_mode (&mode
)
2832 /* ??? For historical reasons, reject modes that would normally
2833 receive greater alignment, even if unaligned accesses are
2834 acceptable. This has both advantages and disadvantages.
2835 Removing this check means that something like:
2837 struct s { unsigned int x; unsigned int y; };
2838 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2840 can be implemented using a single load and compare on
2841 64-bit machines that have no alignment restrictions.
2842 For example, on powerpc64-linux-gnu, we would generate:
2864 However, accessing more than one field can make life harder
2865 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2866 has a series of unsigned short copies followed by a series of
2867 unsigned short comparisons. With this check, both the copies
2868 and comparisons remain 16-bit accesses and FRE is able
2869 to eliminate the latter. Without the check, the comparisons
2870 can be done using 2 64-bit operations, which FRE isn't able
2871 to handle in the same way.
2873 Either way, it would probably be worth disabling this check
2874 during expand. One particular example where removing the
2875 check would help is the get_best_mode call in store_bit_field.
2876 If we are given a memory bitregion of 128 bits that is aligned
2877 to a 64-bit boundary, and the bitfield we want to modify is
2878 in the second half of the bitregion, this check causes
2879 store_bitfield to turn the memory into a 64-bit reference
2880 to the _first_ half of the region. We later use
2881 adjust_bitfield_address to get a reference to the correct half,
2882 but doing so looks to adjust_bitfield_address as though we are
2883 moving past the end of the original object, so it drops the
2884 associated MEM_EXPR and MEM_OFFSET. Removing the check
2885 causes store_bit_field to keep a 128-bit memory reference,
2886 so that the final bitfield reference still has a MEM_EXPR
2888 && GET_MODE_ALIGNMENT (mode
) <= align
2889 && (largest_mode
== VOIDmode
2890 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2893 if (iter
.prefer_smaller_modes ())
2899 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2900 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2903 get_mode_bounds (machine_mode mode
, int sign
,
2904 machine_mode target_mode
,
2905 rtx
*mmin
, rtx
*mmax
)
2907 unsigned size
= GET_MODE_PRECISION (mode
);
2908 unsigned HOST_WIDE_INT min_val
, max_val
;
2910 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2912 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2915 if (STORE_FLAG_VALUE
< 0)
2917 min_val
= STORE_FLAG_VALUE
;
2923 max_val
= STORE_FLAG_VALUE
;
2928 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2929 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2934 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2937 *mmin
= gen_int_mode (min_val
, target_mode
);
2938 *mmax
= gen_int_mode (max_val
, target_mode
);
2941 #include "gt-stor-layout.h"