* gcc-plugin.h (enum plugin_event): Add PLUGIN_ALL_IPA_PASSES_START,
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobc0ddc8afa305c90734e5ea1d01fa88ec49c42a0e
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "tree-flow.h"
94 #include "real.h"
95 #include "timevar.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
99 #include "target.h"
100 #include "diagnostic.h"
101 #include "rtl.h"
102 #include "expr.h"
103 #include "optabs.h"
105 /* This structure represents one basic block that either computes a
106 division, or is a common dominator for basic block that compute a
107 division. */
108 struct occurrence {
109 /* The basic block represented by this structure. */
110 basic_block bb;
112 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
113 inserted in BB. */
114 tree recip_def;
116 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
117 was inserted in BB. */
118 gimple recip_def_stmt;
120 /* Pointer to a list of "struct occurrence"s for blocks dominated
121 by BB. */
122 struct occurrence *children;
124 /* Pointer to the next "struct occurrence"s in the list of blocks
125 sharing a common dominator. */
126 struct occurrence *next;
128 /* The number of divisions that are in BB before compute_merit. The
129 number of divisions that are in BB or post-dominate it after
130 compute_merit. */
131 int num_divisions;
133 /* True if the basic block has a division, false if it is a common
134 dominator for basic blocks that do. If it is false and trapping
135 math is active, BB is not a candidate for inserting a reciprocal. */
136 bool bb_has_division;
140 /* The instance of "struct occurrence" representing the highest
141 interesting block in the dominator tree. */
142 static struct occurrence *occ_head;
144 /* Allocation pool for getting instances of "struct occurrence". */
145 static alloc_pool occ_pool;
149 /* Allocate and return a new struct occurrence for basic block BB, and
150 whose children list is headed by CHILDREN. */
151 static struct occurrence *
152 occ_new (basic_block bb, struct occurrence *children)
154 struct occurrence *occ;
156 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
157 memset (occ, 0, sizeof (struct occurrence));
159 occ->bb = bb;
160 occ->children = children;
161 return occ;
165 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
166 list of "struct occurrence"s, one per basic block, having IDOM as
167 their common dominator.
169 We try to insert NEW_OCC as deep as possible in the tree, and we also
170 insert any other block that is a common dominator for BB and one
171 block already in the tree. */
173 static void
174 insert_bb (struct occurrence *new_occ, basic_block idom,
175 struct occurrence **p_head)
177 struct occurrence *occ, **p_occ;
179 for (p_occ = p_head; (occ = *p_occ) != NULL; )
181 basic_block bb = new_occ->bb, occ_bb = occ->bb;
182 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
183 if (dom == bb)
185 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
186 from its list. */
187 *p_occ = occ->next;
188 occ->next = new_occ->children;
189 new_occ->children = occ;
191 /* Try the next block (it may as well be dominated by BB). */
194 else if (dom == occ_bb)
196 /* OCC_BB dominates BB. Tail recurse to look deeper. */
197 insert_bb (new_occ, dom, &occ->children);
198 return;
201 else if (dom != idom)
203 gcc_assert (!dom->aux);
205 /* There is a dominator between IDOM and BB, add it and make
206 two children out of NEW_OCC and OCC. First, remove OCC from
207 its list. */
208 *p_occ = occ->next;
209 new_occ->next = occ;
210 occ->next = NULL;
212 /* None of the previous blocks has DOM as a dominator: if we tail
213 recursed, we would reexamine them uselessly. Just switch BB with
214 DOM, and go on looking for blocks dominated by DOM. */
215 new_occ = occ_new (dom, new_occ);
218 else
220 /* Nothing special, go on with the next element. */
221 p_occ = &occ->next;
225 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
226 new_occ->next = *p_head;
227 *p_head = new_occ;
230 /* Register that we found a division in BB. */
232 static inline void
233 register_division_in (basic_block bb)
235 struct occurrence *occ;
237 occ = (struct occurrence *) bb->aux;
238 if (!occ)
240 occ = occ_new (bb, NULL);
241 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
244 occ->bb_has_division = true;
245 occ->num_divisions++;
249 /* Compute the number of divisions that postdominate each block in OCC and
250 its children. */
252 static void
253 compute_merit (struct occurrence *occ)
255 struct occurrence *occ_child;
256 basic_block dom = occ->bb;
258 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
260 basic_block bb;
261 if (occ_child->children)
262 compute_merit (occ_child);
264 if (flag_exceptions)
265 bb = single_noncomplex_succ (dom);
266 else
267 bb = dom;
269 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
270 occ->num_divisions += occ_child->num_divisions;
275 /* Return whether USE_STMT is a floating-point division by DEF. */
276 static inline bool
277 is_division_by (gimple use_stmt, tree def)
279 return is_gimple_assign (use_stmt)
280 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
281 && gimple_assign_rhs2 (use_stmt) == def
282 /* Do not recognize x / x as valid division, as we are getting
283 confused later by replacing all immediate uses x in such
284 a stmt. */
285 && gimple_assign_rhs1 (use_stmt) != def;
288 /* Walk the subset of the dominator tree rooted at OCC, setting the
289 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
290 the given basic block. The field may be left NULL, of course,
291 if it is not possible or profitable to do the optimization.
293 DEF_BSI is an iterator pointing at the statement defining DEF.
294 If RECIP_DEF is set, a dominator already has a computation that can
295 be used. */
297 static void
298 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
299 tree def, tree recip_def, int threshold)
301 tree type;
302 gimple new_stmt;
303 gimple_stmt_iterator gsi;
304 struct occurrence *occ_child;
306 if (!recip_def
307 && (occ->bb_has_division || !flag_trapping_math)
308 && occ->num_divisions >= threshold)
310 /* Make a variable with the replacement and substitute it. */
311 type = TREE_TYPE (def);
312 recip_def = make_rename_temp (type, "reciptmp");
313 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
314 build_one_cst (type), def);
316 if (occ->bb_has_division)
318 /* Case 1: insert before an existing division. */
319 gsi = gsi_after_labels (occ->bb);
320 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
321 gsi_next (&gsi);
323 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
325 else if (def_gsi && occ->bb == def_gsi->bb)
327 /* Case 2: insert right after the definition. Note that this will
328 never happen if the definition statement can throw, because in
329 that case the sole successor of the statement's basic block will
330 dominate all the uses as well. */
331 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
333 else
335 /* Case 3: insert in a basic block not containing defs/uses. */
336 gsi = gsi_after_labels (occ->bb);
337 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
340 occ->recip_def_stmt = new_stmt;
343 occ->recip_def = recip_def;
344 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
345 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
349 /* Replace the division at USE_P with a multiplication by the reciprocal, if
350 possible. */
352 static inline void
353 replace_reciprocal (use_operand_p use_p)
355 gimple use_stmt = USE_STMT (use_p);
356 basic_block bb = gimple_bb (use_stmt);
357 struct occurrence *occ = (struct occurrence *) bb->aux;
359 if (optimize_bb_for_speed_p (bb)
360 && occ->recip_def && use_stmt != occ->recip_def_stmt)
362 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
363 SET_USE (use_p, occ->recip_def);
364 fold_stmt_inplace (use_stmt);
365 update_stmt (use_stmt);
370 /* Free OCC and return one more "struct occurrence" to be freed. */
372 static struct occurrence *
373 free_bb (struct occurrence *occ)
375 struct occurrence *child, *next;
377 /* First get the two pointers hanging off OCC. */
378 next = occ->next;
379 child = occ->children;
380 occ->bb->aux = NULL;
381 pool_free (occ_pool, occ);
383 /* Now ensure that we don't recurse unless it is necessary. */
384 if (!child)
385 return next;
386 else
388 while (next)
389 next = free_bb (next);
391 return child;
396 /* Look for floating-point divisions among DEF's uses, and try to
397 replace them by multiplications with the reciprocal. Add
398 as many statements computing the reciprocal as needed.
400 DEF must be a GIMPLE register of a floating-point type. */
402 static void
403 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
405 use_operand_p use_p;
406 imm_use_iterator use_iter;
407 struct occurrence *occ;
408 int count = 0, threshold;
410 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
412 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
414 gimple use_stmt = USE_STMT (use_p);
415 if (is_division_by (use_stmt, def))
417 register_division_in (gimple_bb (use_stmt));
418 count++;
422 /* Do the expensive part only if we can hope to optimize something. */
423 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
424 if (count >= threshold)
426 gimple use_stmt;
427 for (occ = occ_head; occ; occ = occ->next)
429 compute_merit (occ);
430 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
433 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
435 if (is_division_by (use_stmt, def))
437 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
438 replace_reciprocal (use_p);
443 for (occ = occ_head; occ; )
444 occ = free_bb (occ);
446 occ_head = NULL;
449 static bool
450 gate_cse_reciprocals (void)
452 return optimize && flag_reciprocal_math;
455 /* Go through all the floating-point SSA_NAMEs, and call
456 execute_cse_reciprocals_1 on each of them. */
457 static unsigned int
458 execute_cse_reciprocals (void)
460 basic_block bb;
461 tree arg;
463 occ_pool = create_alloc_pool ("dominators for recip",
464 sizeof (struct occurrence),
465 n_basic_blocks / 3 + 1);
467 calculate_dominance_info (CDI_DOMINATORS);
468 calculate_dominance_info (CDI_POST_DOMINATORS);
470 #ifdef ENABLE_CHECKING
471 FOR_EACH_BB (bb)
472 gcc_assert (!bb->aux);
473 #endif
475 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = TREE_CHAIN (arg))
476 if (gimple_default_def (cfun, arg)
477 && FLOAT_TYPE_P (TREE_TYPE (arg))
478 && is_gimple_reg (arg))
479 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
481 FOR_EACH_BB (bb)
483 gimple_stmt_iterator gsi;
484 gimple phi;
485 tree def;
487 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
489 phi = gsi_stmt (gsi);
490 def = PHI_RESULT (phi);
491 if (FLOAT_TYPE_P (TREE_TYPE (def))
492 && is_gimple_reg (def))
493 execute_cse_reciprocals_1 (NULL, def);
496 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
498 gimple stmt = gsi_stmt (gsi);
500 if (gimple_has_lhs (stmt)
501 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
502 && FLOAT_TYPE_P (TREE_TYPE (def))
503 && TREE_CODE (def) == SSA_NAME)
504 execute_cse_reciprocals_1 (&gsi, def);
507 if (optimize_bb_for_size_p (bb))
508 continue;
510 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
511 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
513 gimple stmt = gsi_stmt (gsi);
514 tree fndecl;
516 if (is_gimple_assign (stmt)
517 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
519 tree arg1 = gimple_assign_rhs2 (stmt);
520 gimple stmt1;
522 if (TREE_CODE (arg1) != SSA_NAME)
523 continue;
525 stmt1 = SSA_NAME_DEF_STMT (arg1);
527 if (is_gimple_call (stmt1)
528 && gimple_call_lhs (stmt1)
529 && (fndecl = gimple_call_fndecl (stmt1))
530 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
531 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
533 enum built_in_function code;
534 bool md_code, fail;
535 imm_use_iterator ui;
536 use_operand_p use_p;
538 code = DECL_FUNCTION_CODE (fndecl);
539 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
541 fndecl = targetm.builtin_reciprocal (code, md_code, false);
542 if (!fndecl)
543 continue;
545 /* Check that all uses of the SSA name are divisions,
546 otherwise replacing the defining statement will do
547 the wrong thing. */
548 fail = false;
549 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
551 gimple stmt2 = USE_STMT (use_p);
552 if (is_gimple_debug (stmt2))
553 continue;
554 if (!is_gimple_assign (stmt2)
555 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
556 || gimple_assign_rhs1 (stmt2) == arg1
557 || gimple_assign_rhs2 (stmt2) != arg1)
559 fail = true;
560 break;
563 if (fail)
564 continue;
566 gimple_call_set_fndecl (stmt1, fndecl);
567 update_stmt (stmt1);
569 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
571 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
572 fold_stmt_inplace (stmt);
573 update_stmt (stmt);
580 free_dominance_info (CDI_DOMINATORS);
581 free_dominance_info (CDI_POST_DOMINATORS);
582 free_alloc_pool (occ_pool);
583 return 0;
586 struct gimple_opt_pass pass_cse_reciprocals =
589 GIMPLE_PASS,
590 "recip", /* name */
591 gate_cse_reciprocals, /* gate */
592 execute_cse_reciprocals, /* execute */
593 NULL, /* sub */
594 NULL, /* next */
595 0, /* static_pass_number */
596 TV_NONE, /* tv_id */
597 PROP_ssa, /* properties_required */
598 0, /* properties_provided */
599 0, /* properties_destroyed */
600 0, /* todo_flags_start */
601 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
602 | TODO_verify_stmts /* todo_flags_finish */
606 /* Records an occurrence at statement USE_STMT in the vector of trees
607 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
608 is not yet initialized. Returns true if the occurrence was pushed on
609 the vector. Adjusts *TOP_BB to be the basic block dominating all
610 statements in the vector. */
612 static bool
613 maybe_record_sincos (VEC(gimple, heap) **stmts,
614 basic_block *top_bb, gimple use_stmt)
616 basic_block use_bb = gimple_bb (use_stmt);
617 if (*top_bb
618 && (*top_bb == use_bb
619 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
620 VEC_safe_push (gimple, heap, *stmts, use_stmt);
621 else if (!*top_bb
622 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
624 VEC_safe_push (gimple, heap, *stmts, use_stmt);
625 *top_bb = use_bb;
627 else
628 return false;
630 return true;
633 /* Look for sin, cos and cexpi calls with the same argument NAME and
634 create a single call to cexpi CSEing the result in this case.
635 We first walk over all immediate uses of the argument collecting
636 statements that we can CSE in a vector and in a second pass replace
637 the statement rhs with a REALPART or IMAGPART expression on the
638 result of the cexpi call we insert before the use statement that
639 dominates all other candidates. */
641 static void
642 execute_cse_sincos_1 (tree name)
644 gimple_stmt_iterator gsi;
645 imm_use_iterator use_iter;
646 tree fndecl, res, type;
647 gimple def_stmt, use_stmt, stmt;
648 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
649 VEC(gimple, heap) *stmts = NULL;
650 basic_block top_bb = NULL;
651 int i;
653 type = TREE_TYPE (name);
654 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
656 if (gimple_code (use_stmt) != GIMPLE_CALL
657 || !gimple_call_lhs (use_stmt)
658 || !(fndecl = gimple_call_fndecl (use_stmt))
659 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
660 continue;
662 switch (DECL_FUNCTION_CODE (fndecl))
664 CASE_FLT_FN (BUILT_IN_COS):
665 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
666 break;
668 CASE_FLT_FN (BUILT_IN_SIN):
669 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
670 break;
672 CASE_FLT_FN (BUILT_IN_CEXPI):
673 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
674 break;
676 default:;
680 if (seen_cos + seen_sin + seen_cexpi <= 1)
682 VEC_free(gimple, heap, stmts);
683 return;
686 /* Simply insert cexpi at the beginning of top_bb but not earlier than
687 the name def statement. */
688 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
689 if (!fndecl)
690 return;
691 res = make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
692 stmt = gimple_build_call (fndecl, 1, name);
693 gimple_call_set_lhs (stmt, res);
695 def_stmt = SSA_NAME_DEF_STMT (name);
696 if (!SSA_NAME_IS_DEFAULT_DEF (name)
697 && gimple_code (def_stmt) != GIMPLE_PHI
698 && gimple_bb (def_stmt) == top_bb)
700 gsi = gsi_for_stmt (def_stmt);
701 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
703 else
705 gsi = gsi_after_labels (top_bb);
706 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
708 update_stmt (stmt);
710 /* And adjust the recorded old call sites. */
711 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
713 tree rhs = NULL;
714 fndecl = gimple_call_fndecl (use_stmt);
716 switch (DECL_FUNCTION_CODE (fndecl))
718 CASE_FLT_FN (BUILT_IN_COS):
719 rhs = fold_build1 (REALPART_EXPR, type, res);
720 break;
722 CASE_FLT_FN (BUILT_IN_SIN):
723 rhs = fold_build1 (IMAGPART_EXPR, type, res);
724 break;
726 CASE_FLT_FN (BUILT_IN_CEXPI):
727 rhs = res;
728 break;
730 default:;
731 gcc_unreachable ();
734 /* Replace call with a copy. */
735 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
737 gsi = gsi_for_stmt (use_stmt);
738 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
739 gsi_remove (&gsi, true);
742 VEC_free(gimple, heap, stmts);
745 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
746 on the SSA_NAME argument of each of them. */
748 static unsigned int
749 execute_cse_sincos (void)
751 basic_block bb;
753 calculate_dominance_info (CDI_DOMINATORS);
755 FOR_EACH_BB (bb)
757 gimple_stmt_iterator gsi;
759 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
761 gimple stmt = gsi_stmt (gsi);
762 tree fndecl;
764 if (is_gimple_call (stmt)
765 && gimple_call_lhs (stmt)
766 && (fndecl = gimple_call_fndecl (stmt))
767 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
769 tree arg;
771 switch (DECL_FUNCTION_CODE (fndecl))
773 CASE_FLT_FN (BUILT_IN_COS):
774 CASE_FLT_FN (BUILT_IN_SIN):
775 CASE_FLT_FN (BUILT_IN_CEXPI):
776 arg = gimple_call_arg (stmt, 0);
777 if (TREE_CODE (arg) == SSA_NAME)
778 execute_cse_sincos_1 (arg);
779 break;
781 default:;
787 free_dominance_info (CDI_DOMINATORS);
788 return 0;
791 static bool
792 gate_cse_sincos (void)
794 /* Make sure we have either sincos or cexp. */
795 return (TARGET_HAS_SINCOS
796 || TARGET_C99_FUNCTIONS)
797 && optimize;
800 struct gimple_opt_pass pass_cse_sincos =
803 GIMPLE_PASS,
804 "sincos", /* name */
805 gate_cse_sincos, /* gate */
806 execute_cse_sincos, /* execute */
807 NULL, /* sub */
808 NULL, /* next */
809 0, /* static_pass_number */
810 TV_NONE, /* tv_id */
811 PROP_ssa, /* properties_required */
812 0, /* properties_provided */
813 0, /* properties_destroyed */
814 0, /* todo_flags_start */
815 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
816 | TODO_verify_stmts /* todo_flags_finish */
820 /* A symbolic number is used to detect byte permutation and selection
821 patterns. Therefore the field N contains an artificial number
822 consisting of byte size markers:
824 0 - byte has the value 0
825 1..size - byte contains the content of the byte
826 number indexed with that value minus one */
828 struct symbolic_number {
829 unsigned HOST_WIDEST_INT n;
830 int size;
833 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
834 number N. Return false if the requested operation is not permitted
835 on a symbolic number. */
837 static inline bool
838 do_shift_rotate (enum tree_code code,
839 struct symbolic_number *n,
840 int count)
842 if (count % 8 != 0)
843 return false;
845 /* Zero out the extra bits of N in order to avoid them being shifted
846 into the significant bits. */
847 if (n->size < (int)sizeof (HOST_WIDEST_INT))
848 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
850 switch (code)
852 case LSHIFT_EXPR:
853 n->n <<= count;
854 break;
855 case RSHIFT_EXPR:
856 n->n >>= count;
857 break;
858 case LROTATE_EXPR:
859 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
860 break;
861 case RROTATE_EXPR:
862 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
863 break;
864 default:
865 return false;
867 return true;
870 /* Perform sanity checking for the symbolic number N and the gimple
871 statement STMT. */
873 static inline bool
874 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
876 tree lhs_type;
878 lhs_type = gimple_expr_type (stmt);
880 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
881 return false;
883 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
884 return false;
886 return true;
889 /* find_bswap_1 invokes itself recursively with N and tries to perform
890 the operation given by the rhs of STMT on the result. If the
891 operation could successfully be executed the function returns the
892 tree expression of the source operand and NULL otherwise. */
894 static tree
895 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
897 enum tree_code code;
898 tree rhs1, rhs2 = NULL;
899 gimple rhs1_stmt, rhs2_stmt;
900 tree source_expr1;
901 enum gimple_rhs_class rhs_class;
903 if (!limit || !is_gimple_assign (stmt))
904 return NULL_TREE;
906 rhs1 = gimple_assign_rhs1 (stmt);
908 if (TREE_CODE (rhs1) != SSA_NAME)
909 return NULL_TREE;
911 code = gimple_assign_rhs_code (stmt);
912 rhs_class = gimple_assign_rhs_class (stmt);
913 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
915 if (rhs_class == GIMPLE_BINARY_RHS)
916 rhs2 = gimple_assign_rhs2 (stmt);
918 /* Handle unary rhs and binary rhs with integer constants as second
919 operand. */
921 if (rhs_class == GIMPLE_UNARY_RHS
922 || (rhs_class == GIMPLE_BINARY_RHS
923 && TREE_CODE (rhs2) == INTEGER_CST))
925 if (code != BIT_AND_EXPR
926 && code != LSHIFT_EXPR
927 && code != RSHIFT_EXPR
928 && code != LROTATE_EXPR
929 && code != RROTATE_EXPR
930 && code != NOP_EXPR
931 && code != CONVERT_EXPR)
932 return NULL_TREE;
934 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
936 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
937 to initialize the symbolic number. */
938 if (!source_expr1)
940 /* Set up the symbolic number N by setting each byte to a
941 value between 1 and the byte size of rhs1. The highest
942 order byte is set to 1 and the lowest order byte to
943 n.size. */
944 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
945 if (n->size % BITS_PER_UNIT != 0)
946 return NULL_TREE;
947 n->size /= BITS_PER_UNIT;
948 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
949 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708);
950 n->n >>= (sizeof (HOST_WIDEST_INT) - n->size) * BITS_PER_UNIT;
952 source_expr1 = rhs1;
955 switch (code)
957 case BIT_AND_EXPR:
959 int i;
960 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
961 unsigned HOST_WIDEST_INT tmp = val;
963 /* Only constants masking full bytes are allowed. */
964 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
965 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
966 return NULL_TREE;
968 n->n &= val;
970 break;
971 case LSHIFT_EXPR:
972 case RSHIFT_EXPR:
973 case LROTATE_EXPR:
974 case RROTATE_EXPR:
975 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
976 return NULL_TREE;
977 break;
978 CASE_CONVERT:
980 int type_size;
982 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
983 if (type_size % BITS_PER_UNIT != 0)
984 return NULL_TREE;
986 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
988 /* If STMT casts to a smaller type mask out the bits not
989 belonging to the target type. */
990 n->size = type_size / BITS_PER_UNIT;
991 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
994 break;
995 default:
996 return NULL_TREE;
998 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1001 /* Handle binary rhs. */
1003 if (rhs_class == GIMPLE_BINARY_RHS)
1005 struct symbolic_number n1, n2;
1006 tree source_expr2;
1008 if (code != BIT_IOR_EXPR)
1009 return NULL_TREE;
1011 if (TREE_CODE (rhs2) != SSA_NAME)
1012 return NULL_TREE;
1014 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1016 switch (code)
1018 case BIT_IOR_EXPR:
1019 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1021 if (!source_expr1)
1022 return NULL_TREE;
1024 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1026 if (source_expr1 != source_expr2
1027 || n1.size != n2.size)
1028 return NULL_TREE;
1030 n->size = n1.size;
1031 n->n = n1.n | n2.n;
1033 if (!verify_symbolic_number_p (n, stmt))
1034 return NULL_TREE;
1036 break;
1037 default:
1038 return NULL_TREE;
1040 return source_expr1;
1042 return NULL_TREE;
1045 /* Check if STMT completes a bswap implementation consisting of ORs,
1046 SHIFTs and ANDs. Return the source tree expression on which the
1047 byte swap is performed and NULL if no bswap was found. */
1049 static tree
1050 find_bswap (gimple stmt)
1052 /* The number which the find_bswap result should match in order to
1053 have a full byte swap. The insignificant bytes are masked out
1054 before using it. */
1055 unsigned HOST_WIDEST_INT cmp =
1056 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1057 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201;
1059 struct symbolic_number n;
1060 tree source_expr;
1062 /* The last parameter determines the depth search limit. It usually
1063 correlates directly to the number of bytes to be touched. We
1064 increase that number by one here in order to also cover signed ->
1065 unsigned conversions of the src operand as can be seen in
1066 libgcc. */
1067 source_expr = find_bswap_1 (stmt, &n,
1068 TREE_INT_CST_LOW (
1069 TYPE_SIZE_UNIT (gimple_expr_type (stmt))) + 1);
1071 if (!source_expr)
1072 return NULL_TREE;
1074 /* Zero out the extra bits of N and CMP. */
1075 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1077 unsigned HOST_WIDEST_INT mask =
1078 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1080 n.n &= mask;
1081 cmp &= mask;
1084 /* A complete byte swap should make the symbolic number to start
1085 with the largest digit in the highest order byte. */
1086 if (cmp != n.n)
1087 return NULL_TREE;
1089 return source_expr;
1092 /* Find manual byte swap implementations and turn them into a bswap
1093 builtin invokation. */
1095 static unsigned int
1096 execute_optimize_bswap (void)
1098 basic_block bb;
1099 bool bswap32_p, bswap64_p;
1100 bool changed = false;
1101 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1103 if (BITS_PER_UNIT != 8)
1104 return 0;
1106 if (sizeof (HOST_WIDEST_INT) < 8)
1107 return 0;
1109 bswap32_p = (built_in_decls[BUILT_IN_BSWAP32]
1110 && optab_handler (bswap_optab, SImode)->insn_code !=
1111 CODE_FOR_nothing);
1112 bswap64_p = (built_in_decls[BUILT_IN_BSWAP64]
1113 && optab_handler (bswap_optab, DImode)->insn_code !=
1114 CODE_FOR_nothing);
1116 if (!bswap32_p && !bswap64_p)
1117 return 0;
1119 /* Determine the argument type of the builtins. The code later on
1120 assumes that the return and argument type are the same. */
1121 if (bswap32_p)
1123 tree fndecl = built_in_decls[BUILT_IN_BSWAP32];
1124 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1127 if (bswap64_p)
1129 tree fndecl = built_in_decls[BUILT_IN_BSWAP64];
1130 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1133 FOR_EACH_BB (bb)
1135 gimple_stmt_iterator gsi;
1137 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1139 gimple stmt = gsi_stmt (gsi);
1140 tree bswap_src, bswap_type;
1141 tree bswap_tmp;
1142 tree fndecl = NULL_TREE;
1143 int type_size;
1144 gimple call;
1146 if (!is_gimple_assign (stmt)
1147 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1148 continue;
1150 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1152 switch (type_size)
1154 case 32:
1155 if (bswap32_p)
1157 fndecl = built_in_decls[BUILT_IN_BSWAP32];
1158 bswap_type = bswap32_type;
1160 break;
1161 case 64:
1162 if (bswap64_p)
1164 fndecl = built_in_decls[BUILT_IN_BSWAP64];
1165 bswap_type = bswap64_type;
1167 break;
1168 default:
1169 continue;
1172 if (!fndecl)
1173 continue;
1175 bswap_src = find_bswap (stmt);
1177 if (!bswap_src)
1178 continue;
1180 changed = true;
1182 bswap_tmp = bswap_src;
1184 /* Convert the src expression if necessary. */
1185 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1187 gimple convert_stmt;
1189 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1190 add_referenced_var (bswap_tmp);
1191 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1193 convert_stmt = gimple_build_assign_with_ops (
1194 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1195 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1198 call = gimple_build_call (fndecl, 1, bswap_tmp);
1200 bswap_tmp = gimple_assign_lhs (stmt);
1202 /* Convert the result if necessary. */
1203 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1205 gimple convert_stmt;
1207 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1208 add_referenced_var (bswap_tmp);
1209 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1210 convert_stmt = gimple_build_assign_with_ops (
1211 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1212 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1215 gimple_call_set_lhs (call, bswap_tmp);
1217 if (dump_file)
1219 fprintf (dump_file, "%d bit bswap implementation found at: ",
1220 (int)type_size);
1221 print_gimple_stmt (dump_file, stmt, 0, 0);
1224 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1225 gsi_remove (&gsi, true);
1229 return (changed ? TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
1230 | TODO_verify_stmts : 0);
1233 static bool
1234 gate_optimize_bswap (void)
1236 return flag_expensive_optimizations && optimize;
1239 struct gimple_opt_pass pass_optimize_bswap =
1242 GIMPLE_PASS,
1243 "bswap", /* name */
1244 gate_optimize_bswap, /* gate */
1245 execute_optimize_bswap, /* execute */
1246 NULL, /* sub */
1247 NULL, /* next */
1248 0, /* static_pass_number */
1249 TV_NONE, /* tv_id */
1250 PROP_ssa, /* properties_required */
1251 0, /* properties_provided */
1252 0, /* properties_destroyed */
1253 0, /* todo_flags_start */
1254 0 /* todo_flags_finish */