* gcc-plugin.h (enum plugin_event): Add PLUGIN_ALL_IPA_PASSES_START,
[official-gcc.git] / gcc / cfgloopmanip.c
blob6f24415a72dd97374efa99f6cb2d63ee3dca65f0
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 #include "tree-flow.h"
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *);
44 static void unloop (struct loop *, bool *);
46 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
48 /* Checks whether basic block BB is dominated by DATA. */
49 static bool
50 rpe_enum_p (const_basic_block bb, const void *data)
52 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
55 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
57 static void
58 remove_bbs (basic_block *bbs, int nbbs)
60 int i;
62 for (i = 0; i < nbbs; i++)
63 delete_basic_block (bbs[i]);
66 /* Find path -- i.e. the basic blocks dominated by edge E and put them
67 into array BBS, that will be allocated large enough to contain them.
68 E->dest must have exactly one predecessor for this to work (it is
69 easy to achieve and we do not put it here because we do not want to
70 alter anything by this function). The number of basic blocks in the
71 path is returned. */
72 static int
73 find_path (edge e, basic_block **bbs)
75 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
77 /* Find bbs in the path. */
78 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
79 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
80 n_basic_blocks, e->dest);
83 /* Fix placement of basic block BB inside loop hierarchy --
84 Let L be a loop to that BB belongs. Then every successor of BB must either
85 1) belong to some superloop of loop L, or
86 2) be a header of loop K such that K->outer is superloop of L
87 Returns true if we had to move BB into other loop to enforce this condition,
88 false if the placement of BB was already correct (provided that placements
89 of its successors are correct). */
90 static bool
91 fix_bb_placement (basic_block bb)
93 edge e;
94 edge_iterator ei;
95 struct loop *loop = current_loops->tree_root, *act;
97 FOR_EACH_EDGE (e, ei, bb->succs)
99 if (e->dest == EXIT_BLOCK_PTR)
100 continue;
102 act = e->dest->loop_father;
103 if (act->header == e->dest)
104 act = loop_outer (act);
106 if (flow_loop_nested_p (loop, act))
107 loop = act;
110 if (loop == bb->loop_father)
111 return false;
113 remove_bb_from_loops (bb);
114 add_bb_to_loop (bb, loop);
116 return true;
119 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120 of LOOP to that leads at least one exit edge of LOOP, and set it
121 as the immediate superloop of LOOP. Return true if the immediate superloop
122 of LOOP changed. */
124 static bool
125 fix_loop_placement (struct loop *loop)
127 unsigned i;
128 edge e;
129 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
150 rescan_loop_exit (e, false, false);
152 ret = true;
155 VEC_free (edge, heap, exits);
156 return ret;
159 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160 enforce condition condition stated in description of fix_bb_placement. We
161 start from basic block FROM that had some of its successors removed, so that
162 his placement no longer has to be correct, and iteratively fix placement of
163 its predecessors that may change if placement of FROM changed. Also fix
164 placement of subloops of FROM->loop_father, that might also be altered due
165 to this change; the condition for them is similar, except that instead of
166 successors we consider edges coming out of the loops.
168 If the changes may invalidate the information about irreducible regions,
169 IRRED_INVALIDATED is set to true. */
171 static void
172 fix_bb_placements (basic_block from,
173 bool *irred_invalidated)
175 sbitmap in_queue;
176 basic_block *queue, *qtop, *qbeg, *qend;
177 struct loop *base_loop;
178 edge e;
180 /* We pass through blocks back-reachable from FROM, testing whether some
181 of their successors moved to outer loop. It may be necessary to
182 iterate several times, but it is finite, as we stop unless we move
183 the basic block up the loop structure. The whole story is a bit
184 more complicated due to presence of subloops, those are moved using
185 fix_loop_placement. */
187 base_loop = from->loop_father;
188 if (base_loop == current_loops->tree_root)
189 return;
191 in_queue = sbitmap_alloc (last_basic_block);
192 sbitmap_zero (in_queue);
193 SET_BIT (in_queue, from->index);
194 /* Prevent us from going out of the base_loop. */
195 SET_BIT (in_queue, base_loop->header->index);
197 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
198 qtop = queue + base_loop->num_nodes + 1;
199 qbeg = queue;
200 qend = queue + 1;
201 *qbeg = from;
203 while (qbeg != qend)
205 edge_iterator ei;
206 from = *qbeg;
207 qbeg++;
208 if (qbeg == qtop)
209 qbeg = queue;
210 RESET_BIT (in_queue, from->index);
212 if (from->loop_father->header == from)
214 /* Subloop header, maybe move the loop upward. */
215 if (!fix_loop_placement (from->loop_father))
216 continue;
218 else
220 /* Ordinary basic block. */
221 if (!fix_bb_placement (from))
222 continue;
225 FOR_EACH_EDGE (e, ei, from->succs)
227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
228 *irred_invalidated = true;
231 /* Something has changed, insert predecessors into queue. */
232 FOR_EACH_EDGE (e, ei, from->preds)
234 basic_block pred = e->src;
235 struct loop *nca;
237 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
238 *irred_invalidated = true;
240 if (TEST_BIT (in_queue, pred->index))
241 continue;
243 /* If it is subloop, then it either was not moved, or
244 the path up the loop tree from base_loop do not contain
245 it. */
246 nca = find_common_loop (pred->loop_father, base_loop);
247 if (pred->loop_father != base_loop
248 && (nca == base_loop
249 || nca != pred->loop_father))
250 pred = pred->loop_father->header;
251 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
253 /* No point in processing it. */
254 continue;
257 if (TEST_BIT (in_queue, pred->index))
258 continue;
260 /* Schedule the basic block. */
261 *qend = pred;
262 qend++;
263 if (qend == qtop)
264 qend = queue;
265 SET_BIT (in_queue, pred->index);
268 free (in_queue);
269 free (queue);
272 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
273 and update loop structures and dominators. Return true if we were able
274 to remove the path, false otherwise (and nothing is affected then). */
275 bool
276 remove_path (edge e)
278 edge ae;
279 basic_block *rem_bbs, *bord_bbs, from, bb;
280 VEC (basic_block, heap) *dom_bbs;
281 int i, nrem, n_bord_bbs, nreml;
282 sbitmap seen;
283 bool irred_invalidated = false;
284 struct loop **deleted_loop;
286 if (!can_remove_branch_p (e))
287 return false;
289 /* Keep track of whether we need to update information about irreducible
290 regions. This is the case if the removed area is a part of the
291 irreducible region, or if the set of basic blocks that belong to a loop
292 that is inside an irreducible region is changed, or if such a loop is
293 removed. */
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 irred_invalidated = true;
297 /* We need to check whether basic blocks are dominated by the edge
298 e, but we only have basic block dominators. This is easy to
299 fix -- when e->dest has exactly one predecessor, this corresponds
300 to blocks dominated by e->dest, if not, split the edge. */
301 if (!single_pred_p (e->dest))
302 e = single_pred_edge (split_edge (e));
304 /* It may happen that by removing path we remove one or more loops
305 we belong to. In this case first unloop the loops, then proceed
306 normally. We may assume that e->dest is not a header of any loop,
307 as it now has exactly one predecessor. */
308 while (loop_outer (e->src->loop_father)
309 && dominated_by_p (CDI_DOMINATORS,
310 e->src->loop_father->latch, e->dest))
311 unloop (e->src->loop_father, &irred_invalidated);
313 /* Identify the path. */
314 nrem = find_path (e, &rem_bbs);
316 n_bord_bbs = 0;
317 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
318 seen = sbitmap_alloc (last_basic_block);
319 sbitmap_zero (seen);
321 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
322 for (i = 0; i < nrem; i++)
323 SET_BIT (seen, rem_bbs[i]->index);
324 for (i = 0; i < nrem; i++)
326 edge_iterator ei;
327 bb = rem_bbs[i];
328 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
329 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
331 SET_BIT (seen, ae->dest->index);
332 bord_bbs[n_bord_bbs++] = ae->dest;
334 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
335 irred_invalidated = true;
339 /* Remove the path. */
340 from = e->src;
341 remove_branch (e);
342 dom_bbs = NULL;
344 /* Cancel loops contained in the path. */
345 deleted_loop = XNEWVEC (struct loop *, nrem);
346 nreml = 0;
347 for (i = 0; i < nrem; i++)
348 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
349 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
351 for (i = 0; i < nreml; i++)
352 cancel_loop_tree (deleted_loop[i]);
353 free (deleted_loop);
355 remove_bbs (rem_bbs, nrem);
356 free (rem_bbs);
358 /* Find blocks whose dominators may be affected. */
359 sbitmap_zero (seen);
360 for (i = 0; i < n_bord_bbs; i++)
362 basic_block ldom;
364 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
365 if (TEST_BIT (seen, bb->index))
366 continue;
367 SET_BIT (seen, bb->index);
369 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
370 ldom;
371 ldom = next_dom_son (CDI_DOMINATORS, ldom))
372 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
373 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
376 free (seen);
378 /* Recount dominators. */
379 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
380 VEC_free (basic_block, heap, dom_bbs);
381 free (bord_bbs);
383 /* Fix placements of basic blocks inside loops and the placement of
384 loops in the loop tree. */
385 fix_bb_placements (from, &irred_invalidated);
386 fix_loop_placements (from->loop_father, &irred_invalidated);
388 if (irred_invalidated
389 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
390 mark_irreducible_loops ();
392 return true;
395 /* Creates place for a new LOOP in loops structure. */
397 static void
398 place_new_loop (struct loop *loop)
400 loop->num = number_of_loops ();
401 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
404 /* Given LOOP structure with filled header and latch, find the body of the
405 corresponding loop and add it to loops tree. Insert the LOOP as a son of
406 outer. */
408 void
409 add_loop (struct loop *loop, struct loop *outer)
411 basic_block *bbs;
412 int i, n;
413 struct loop *subloop;
414 edge e;
415 edge_iterator ei;
417 /* Add it to loop structure. */
418 place_new_loop (loop);
419 flow_loop_tree_node_add (outer, loop);
421 /* Find its nodes. */
422 bbs = XNEWVEC (basic_block, n_basic_blocks);
423 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
425 for (i = 0; i < n; i++)
427 if (bbs[i]->loop_father == outer)
429 remove_bb_from_loops (bbs[i]);
430 add_bb_to_loop (bbs[i], loop);
431 continue;
434 loop->num_nodes++;
436 /* If we find a direct subloop of OUTER, move it to LOOP. */
437 subloop = bbs[i]->loop_father;
438 if (loop_outer (subloop) == outer
439 && subloop->header == bbs[i])
441 flow_loop_tree_node_remove (subloop);
442 flow_loop_tree_node_add (loop, subloop);
446 /* Update the information about loop exit edges. */
447 for (i = 0; i < n; i++)
449 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
451 rescan_loop_exit (e, false, false);
455 free (bbs);
458 /* Multiply all frequencies in LOOP by NUM/DEN. */
459 void
460 scale_loop_frequencies (struct loop *loop, int num, int den)
462 basic_block *bbs;
464 bbs = get_loop_body (loop);
465 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
466 free (bbs);
469 /* Recompute dominance information for basic blocks outside LOOP. */
471 static void
472 update_dominators_in_loop (struct loop *loop)
474 VEC (basic_block, heap) *dom_bbs = NULL;
475 sbitmap seen;
476 basic_block *body;
477 unsigned i;
479 seen = sbitmap_alloc (last_basic_block);
480 sbitmap_zero (seen);
481 body = get_loop_body (loop);
483 for (i = 0; i < loop->num_nodes; i++)
484 SET_BIT (seen, body[i]->index);
486 for (i = 0; i < loop->num_nodes; i++)
488 basic_block ldom;
490 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
491 ldom;
492 ldom = next_dom_son (CDI_DOMINATORS, ldom))
493 if (!TEST_BIT (seen, ldom->index))
495 SET_BIT (seen, ldom->index);
496 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
500 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
501 free (body);
502 free (seen);
503 VEC_free (basic_block, heap, dom_bbs);
506 /* Creates an if region as shown above. CONDITION is used to create
507 the test for the if.
510 | ------------- -------------
511 | | pred_bb | | pred_bb |
512 | ------------- -------------
513 | | |
514 | | | ENTRY_EDGE
515 | | ENTRY_EDGE V
516 | | ====> -------------
517 | | | cond_bb |
518 | | | CONDITION |
519 | | -------------
520 | V / \
521 | ------------- e_false / \ e_true
522 | | succ_bb | V V
523 | ------------- ----------- -----------
524 | | false_bb | | true_bb |
525 | ----------- -----------
526 | \ /
527 | \ /
528 | V V
529 | -------------
530 | | join_bb |
531 | -------------
532 | | exit_edge (result)
534 | -----------
535 | | succ_bb |
536 | -----------
540 edge
541 create_empty_if_region_on_edge (edge entry_edge, tree condition)
544 basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
545 edge e_true, e_false, exit_edge;
546 gimple cond_stmt;
547 tree simple_cond;
548 gimple_stmt_iterator gsi;
550 succ_bb = entry_edge->dest;
551 cond_bb = split_edge (entry_edge);
553 /* Insert condition in cond_bb. */
554 gsi = gsi_last_bb (cond_bb);
555 simple_cond =
556 force_gimple_operand_gsi (&gsi, condition, true, NULL,
557 false, GSI_NEW_STMT);
558 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
559 gsi = gsi_last_bb (cond_bb);
560 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
562 join_bb = split_edge (single_succ_edge (cond_bb));
564 e_true = single_succ_edge (cond_bb);
565 true_bb = split_edge (e_true);
567 e_false = make_edge (cond_bb, join_bb, 0);
568 false_bb = split_edge (e_false);
570 e_true->flags &= ~EDGE_FALLTHRU;
571 e_true->flags |= EDGE_TRUE_VALUE;
572 e_false->flags &= ~EDGE_FALLTHRU;
573 e_false->flags |= EDGE_FALSE_VALUE;
575 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
576 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
577 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
578 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
580 exit_edge = single_succ_edge (join_bb);
582 if (single_pred_p (exit_edge->dest))
583 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
585 return exit_edge;
588 /* create_empty_loop_on_edge
590 | - pred_bb - ------ pred_bb ------
591 | | | | iv0 = initial_value |
592 | -----|----- ---------|-----------
593 | | ______ | entry_edge
594 | | entry_edge / | |
595 | | ====> | -V---V- loop_header -------------
596 | V | | iv_before = phi (iv0, iv_after) |
597 | - succ_bb - | ---|-----------------------------
598 | | | | |
599 | ----------- | ---V--- loop_body ---------------
600 | | | iv_after = iv_before + stride |
601 | | | if (iv_before < upper_bound) |
602 | | ---|--------------\--------------
603 | | | \ exit_e
604 | | V \
605 | | - loop_latch - V- succ_bb -
606 | | | | | |
607 | | /------------- -----------
608 | \ ___ /
610 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
611 that is used before the increment of IV. IV_BEFORE should be used for
612 adding code to the body that uses the IV. OUTER is the outer loop in
613 which the new loop should be inserted.
615 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
616 inserted on the loop entry edge. This implies that this function
617 should be used only when the UPPER_BOUND expression is a loop
618 invariant. */
620 struct loop *
621 create_empty_loop_on_edge (edge entry_edge,
622 tree initial_value,
623 tree stride, tree upper_bound,
624 tree iv,
625 tree *iv_before,
626 tree *iv_after,
627 struct loop *outer)
629 basic_block loop_header, loop_latch, succ_bb, pred_bb;
630 struct loop *loop;
631 int freq;
632 gcov_type cnt;
633 gimple_stmt_iterator gsi;
634 gimple_seq stmts;
635 gimple cond_expr;
636 tree exit_test;
637 edge exit_e;
638 int prob;
640 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
642 /* Create header, latch and wire up the loop. */
643 pred_bb = entry_edge->src;
644 loop_header = split_edge (entry_edge);
645 loop_latch = split_edge (single_succ_edge (loop_header));
646 succ_bb = single_succ (loop_latch);
647 make_edge (loop_header, succ_bb, 0);
648 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
650 /* Set immediate dominator information. */
651 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
652 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
653 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
655 /* Initialize a loop structure and put it in a loop hierarchy. */
656 loop = alloc_loop ();
657 loop->header = loop_header;
658 loop->latch = loop_latch;
659 add_loop (loop, outer);
661 /* TODO: Fix frequencies and counts. */
662 freq = EDGE_FREQUENCY (entry_edge);
663 cnt = entry_edge->count;
665 prob = REG_BR_PROB_BASE / 2;
667 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
669 /* Update dominators. */
670 update_dominators_in_loop (loop);
672 /* Modify edge flags. */
673 exit_e = single_exit (loop);
674 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
675 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
677 /* Construct IV code in loop. */
678 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
679 if (stmts)
681 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
682 gsi_commit_edge_inserts ();
685 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
686 if (stmts)
688 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
689 gsi_commit_edge_inserts ();
692 gsi = gsi_last_bb (loop_header);
693 create_iv (initial_value, stride, iv, loop, &gsi, false,
694 iv_before, iv_after);
696 /* Insert loop exit condition. */
697 cond_expr = gimple_build_cond
698 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
700 exit_test = gimple_cond_lhs (cond_expr);
701 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
702 false, GSI_NEW_STMT);
703 gimple_cond_set_lhs (cond_expr, exit_test);
704 gsi = gsi_last_bb (exit_e->src);
705 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
707 split_block_after_labels (loop_header);
709 return loop;
712 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
713 latch to header and update loop tree and dominators
714 accordingly. Everything between them plus LATCH_EDGE destination must
715 be dominated by HEADER_EDGE destination, and back-reachable from
716 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
717 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
718 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
719 Returns the newly created loop. Frequencies and counts in the new loop
720 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
722 struct loop *
723 loopify (edge latch_edge, edge header_edge,
724 basic_block switch_bb, edge true_edge, edge false_edge,
725 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
727 basic_block succ_bb = latch_edge->dest;
728 basic_block pred_bb = header_edge->src;
729 struct loop *loop = alloc_loop ();
730 struct loop *outer = loop_outer (succ_bb->loop_father);
731 int freq;
732 gcov_type cnt;
733 edge e;
734 edge_iterator ei;
736 loop->header = header_edge->dest;
737 loop->latch = latch_edge->src;
739 freq = EDGE_FREQUENCY (header_edge);
740 cnt = header_edge->count;
742 /* Redirect edges. */
743 loop_redirect_edge (latch_edge, loop->header);
744 loop_redirect_edge (true_edge, succ_bb);
746 /* During loop versioning, one of the switch_bb edge is already properly
747 set. Do not redirect it again unless redirect_all_edges is true. */
748 if (redirect_all_edges)
750 loop_redirect_edge (header_edge, switch_bb);
751 loop_redirect_edge (false_edge, loop->header);
753 /* Update dominators. */
754 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
755 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
758 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
760 /* Compute new loop. */
761 add_loop (loop, outer);
763 /* Add switch_bb to appropriate loop. */
764 if (switch_bb->loop_father)
765 remove_bb_from_loops (switch_bb);
766 add_bb_to_loop (switch_bb, outer);
768 /* Fix frequencies. */
769 if (redirect_all_edges)
771 switch_bb->frequency = freq;
772 switch_bb->count = cnt;
773 FOR_EACH_EDGE (e, ei, switch_bb->succs)
775 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
778 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
779 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
780 update_dominators_in_loop (loop);
782 return loop;
785 /* Remove the latch edge of a LOOP and update loops to indicate that
786 the LOOP was removed. After this function, original loop latch will
787 have no successor, which caller is expected to fix somehow.
789 If this may cause the information about irreducible regions to become
790 invalid, IRRED_INVALIDATED is set to true. */
792 static void
793 unloop (struct loop *loop, bool *irred_invalidated)
795 basic_block *body;
796 struct loop *ploop;
797 unsigned i, n;
798 basic_block latch = loop->latch;
799 bool dummy = false;
801 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
802 *irred_invalidated = true;
804 /* This is relatively straightforward. The dominators are unchanged, as
805 loop header dominates loop latch, so the only thing we have to care of
806 is the placement of loops and basic blocks inside the loop tree. We
807 move them all to the loop->outer, and then let fix_bb_placements do
808 its work. */
810 body = get_loop_body (loop);
811 n = loop->num_nodes;
812 for (i = 0; i < n; i++)
813 if (body[i]->loop_father == loop)
815 remove_bb_from_loops (body[i]);
816 add_bb_to_loop (body[i], loop_outer (loop));
818 free(body);
820 while (loop->inner)
822 ploop = loop->inner;
823 flow_loop_tree_node_remove (ploop);
824 flow_loop_tree_node_add (loop_outer (loop), ploop);
827 /* Remove the loop and free its data. */
828 delete_loop (loop);
830 remove_edge (single_succ_edge (latch));
832 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
833 there is an irreducible region inside the cancelled loop, the flags will
834 be still correct. */
835 fix_bb_placements (latch, &dummy);
838 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
839 condition stated in description of fix_loop_placement holds for them.
840 It is used in case when we removed some edges coming out of LOOP, which
841 may cause the right placement of LOOP inside loop tree to change.
843 IRRED_INVALIDATED is set to true if a change in the loop structures might
844 invalidate the information about irreducible regions. */
846 static void
847 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
849 struct loop *outer;
851 while (loop_outer (loop))
853 outer = loop_outer (loop);
854 if (!fix_loop_placement (loop))
855 break;
857 /* Changing the placement of a loop in the loop tree may alter the
858 validity of condition 2) of the description of fix_bb_placement
859 for its preheader, because the successor is the header and belongs
860 to the loop. So call fix_bb_placements to fix up the placement
861 of the preheader and (possibly) of its predecessors. */
862 fix_bb_placements (loop_preheader_edge (loop)->src,
863 irred_invalidated);
864 loop = outer;
868 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
869 created loop into loops structure. */
870 struct loop *
871 duplicate_loop (struct loop *loop, struct loop *target)
873 struct loop *cloop;
874 cloop = alloc_loop ();
875 place_new_loop (cloop);
877 /* Mark the new loop as copy of LOOP. */
878 set_loop_copy (loop, cloop);
880 /* Add it to target. */
881 flow_loop_tree_node_add (target, cloop);
883 return cloop;
886 /* Copies structure of subloops of LOOP into TARGET loop, placing
887 newly created loops into loop tree. */
888 void
889 duplicate_subloops (struct loop *loop, struct loop *target)
891 struct loop *aloop, *cloop;
893 for (aloop = loop->inner; aloop; aloop = aloop->next)
895 cloop = duplicate_loop (aloop, target);
896 duplicate_subloops (aloop, cloop);
900 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
901 into TARGET loop, placing newly created loops into loop tree. */
902 static void
903 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
905 struct loop *aloop;
906 int i;
908 for (i = 0; i < n; i++)
910 aloop = duplicate_loop (copied_loops[i], target);
911 duplicate_subloops (copied_loops[i], aloop);
915 /* Redirects edge E to basic block DEST. */
916 static void
917 loop_redirect_edge (edge e, basic_block dest)
919 if (e->dest == dest)
920 return;
922 redirect_edge_and_branch_force (e, dest);
925 /* Check whether LOOP's body can be duplicated. */
926 bool
927 can_duplicate_loop_p (const struct loop *loop)
929 int ret;
930 basic_block *bbs = get_loop_body (loop);
932 ret = can_copy_bbs_p (bbs, loop->num_nodes);
933 free (bbs);
935 return ret;
938 /* Sets probability and count of edge E to zero. The probability and count
939 is redistributed evenly to the remaining edges coming from E->src. */
941 static void
942 set_zero_probability (edge e)
944 basic_block bb = e->src;
945 edge_iterator ei;
946 edge ae, last = NULL;
947 unsigned n = EDGE_COUNT (bb->succs);
948 gcov_type cnt = e->count, cnt1;
949 unsigned prob = e->probability, prob1;
951 gcc_assert (n > 1);
952 cnt1 = cnt / (n - 1);
953 prob1 = prob / (n - 1);
955 FOR_EACH_EDGE (ae, ei, bb->succs)
957 if (ae == e)
958 continue;
960 ae->probability += prob1;
961 ae->count += cnt1;
962 last = ae;
965 /* Move the rest to one of the edges. */
966 last->probability += prob % (n - 1);
967 last->count += cnt % (n - 1);
969 e->probability = 0;
970 e->count = 0;
973 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
974 loop structure and dominators. E's destination must be LOOP header for
975 this to work, i.e. it must be entry or latch edge of this loop; these are
976 unique, as the loops must have preheaders for this function to work
977 correctly (in case E is latch, the function unrolls the loop, if E is entry
978 edge, it peels the loop). Store edges created by copying ORIG edge from
979 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
980 original LOOP body, the other copies are numbered in order given by control
981 flow through them) into TO_REMOVE array. Returns false if duplication is
982 impossible. */
984 bool
985 duplicate_loop_to_header_edge (struct loop *loop, edge e,
986 unsigned int ndupl, sbitmap wont_exit,
987 edge orig, VEC (edge, heap) **to_remove,
988 int flags)
990 struct loop *target, *aloop;
991 struct loop **orig_loops;
992 unsigned n_orig_loops;
993 basic_block header = loop->header, latch = loop->latch;
994 basic_block *new_bbs, *bbs, *first_active;
995 basic_block new_bb, bb, first_active_latch = NULL;
996 edge ae, latch_edge;
997 edge spec_edges[2], new_spec_edges[2];
998 #define SE_LATCH 0
999 #define SE_ORIG 1
1000 unsigned i, j, n;
1001 int is_latch = (latch == e->src);
1002 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1003 int scale_after_exit = 0;
1004 int p, freq_in, freq_le, freq_out_orig;
1005 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1006 int add_irreducible_flag;
1007 basic_block place_after;
1008 bitmap bbs_to_scale = NULL;
1009 bitmap_iterator bi;
1011 gcc_assert (e->dest == loop->header);
1012 gcc_assert (ndupl > 0);
1014 if (orig)
1016 /* Orig must be edge out of the loop. */
1017 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1018 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1021 n = loop->num_nodes;
1022 bbs = get_loop_body_in_dom_order (loop);
1023 gcc_assert (bbs[0] == loop->header);
1024 gcc_assert (bbs[n - 1] == loop->latch);
1026 /* Check whether duplication is possible. */
1027 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1029 free (bbs);
1030 return false;
1032 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1034 /* In case we are doing loop peeling and the loop is in the middle of
1035 irreducible region, the peeled copies will be inside it too. */
1036 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1037 gcc_assert (!is_latch || !add_irreducible_flag);
1039 /* Find edge from latch. */
1040 latch_edge = loop_latch_edge (loop);
1042 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1044 /* Calculate coefficients by that we have to scale frequencies
1045 of duplicated loop bodies. */
1046 freq_in = header->frequency;
1047 freq_le = EDGE_FREQUENCY (latch_edge);
1048 if (freq_in == 0)
1049 freq_in = 1;
1050 if (freq_in < freq_le)
1051 freq_in = freq_le;
1052 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1053 if (freq_out_orig > freq_in - freq_le)
1054 freq_out_orig = freq_in - freq_le;
1055 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1056 prob_pass_wont_exit =
1057 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1059 if (orig
1060 && REG_BR_PROB_BASE - orig->probability != 0)
1062 /* The blocks that are dominated by a removed exit edge ORIG have
1063 frequencies scaled by this. */
1064 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1065 REG_BR_PROB_BASE - orig->probability);
1066 bbs_to_scale = BITMAP_ALLOC (NULL);
1067 for (i = 0; i < n; i++)
1069 if (bbs[i] != orig->src
1070 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1071 bitmap_set_bit (bbs_to_scale, i);
1075 scale_step = XNEWVEC (int, ndupl);
1077 for (i = 1; i <= ndupl; i++)
1078 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1079 ? prob_pass_wont_exit
1080 : prob_pass_thru;
1082 /* Complete peeling is special as the probability of exit in last
1083 copy becomes 1. */
1084 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1086 int wanted_freq = EDGE_FREQUENCY (e);
1088 if (wanted_freq > freq_in)
1089 wanted_freq = freq_in;
1091 gcc_assert (!is_latch);
1092 /* First copy has frequency of incoming edge. Each subsequent
1093 frequency should be reduced by prob_pass_wont_exit. Caller
1094 should've managed the flags so all except for original loop
1095 has won't exist set. */
1096 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1097 /* Now simulate the duplication adjustments and compute header
1098 frequency of the last copy. */
1099 for (i = 0; i < ndupl; i++)
1100 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1101 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1103 else if (is_latch)
1105 prob_pass_main = TEST_BIT (wont_exit, 0)
1106 ? prob_pass_wont_exit
1107 : prob_pass_thru;
1108 p = prob_pass_main;
1109 scale_main = REG_BR_PROB_BASE;
1110 for (i = 0; i < ndupl; i++)
1112 scale_main += p;
1113 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1115 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1116 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1118 else
1120 scale_main = REG_BR_PROB_BASE;
1121 for (i = 0; i < ndupl; i++)
1122 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1123 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1125 for (i = 0; i < ndupl; i++)
1126 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1127 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1128 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1131 /* Loop the new bbs will belong to. */
1132 target = e->src->loop_father;
1134 /* Original loops. */
1135 n_orig_loops = 0;
1136 for (aloop = loop->inner; aloop; aloop = aloop->next)
1137 n_orig_loops++;
1138 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1139 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1140 orig_loops[i] = aloop;
1142 set_loop_copy (loop, target);
1144 first_active = XNEWVEC (basic_block, n);
1145 if (is_latch)
1147 memcpy (first_active, bbs, n * sizeof (basic_block));
1148 first_active_latch = latch;
1151 spec_edges[SE_ORIG] = orig;
1152 spec_edges[SE_LATCH] = latch_edge;
1154 place_after = e->src;
1155 for (j = 0; j < ndupl; j++)
1157 /* Copy loops. */
1158 copy_loops_to (orig_loops, n_orig_loops, target);
1160 /* Copy bbs. */
1161 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1162 place_after);
1163 place_after = new_spec_edges[SE_LATCH]->src;
1165 if (flags & DLTHE_RECORD_COPY_NUMBER)
1166 for (i = 0; i < n; i++)
1168 gcc_assert (!new_bbs[i]->aux);
1169 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1172 /* Note whether the blocks and edges belong to an irreducible loop. */
1173 if (add_irreducible_flag)
1175 for (i = 0; i < n; i++)
1176 new_bbs[i]->flags |= BB_DUPLICATED;
1177 for (i = 0; i < n; i++)
1179 edge_iterator ei;
1180 new_bb = new_bbs[i];
1181 if (new_bb->loop_father == target)
1182 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1184 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1185 if ((ae->dest->flags & BB_DUPLICATED)
1186 && (ae->src->loop_father == target
1187 || ae->dest->loop_father == target))
1188 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1190 for (i = 0; i < n; i++)
1191 new_bbs[i]->flags &= ~BB_DUPLICATED;
1194 /* Redirect the special edges. */
1195 if (is_latch)
1197 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1198 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1199 loop->header);
1200 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1201 latch = loop->latch = new_bbs[n - 1];
1202 e = latch_edge = new_spec_edges[SE_LATCH];
1204 else
1206 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1207 loop->header);
1208 redirect_edge_and_branch_force (e, new_bbs[0]);
1209 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1210 e = new_spec_edges[SE_LATCH];
1213 /* Record exit edge in this copy. */
1214 if (orig && TEST_BIT (wont_exit, j + 1))
1216 if (to_remove)
1217 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1218 set_zero_probability (new_spec_edges[SE_ORIG]);
1220 /* Scale the frequencies of the blocks dominated by the exit. */
1221 if (bbs_to_scale)
1223 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1225 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1226 REG_BR_PROB_BASE);
1231 /* Record the first copy in the control flow order if it is not
1232 the original loop (i.e. in case of peeling). */
1233 if (!first_active_latch)
1235 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1236 first_active_latch = new_bbs[n - 1];
1239 /* Set counts and frequencies. */
1240 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1242 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1243 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1246 free (new_bbs);
1247 free (orig_loops);
1249 /* Record the exit edge in the original loop body, and update the frequencies. */
1250 if (orig && TEST_BIT (wont_exit, 0))
1252 if (to_remove)
1253 VEC_safe_push (edge, heap, *to_remove, orig);
1254 set_zero_probability (orig);
1256 /* Scale the frequencies of the blocks dominated by the exit. */
1257 if (bbs_to_scale)
1259 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1261 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1262 REG_BR_PROB_BASE);
1267 /* Update the original loop. */
1268 if (!is_latch)
1269 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1270 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1272 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1273 free (scale_step);
1276 /* Update dominators of outer blocks if affected. */
1277 for (i = 0; i < n; i++)
1279 basic_block dominated, dom_bb;
1280 VEC (basic_block, heap) *dom_bbs;
1281 unsigned j;
1283 bb = bbs[i];
1284 bb->aux = 0;
1286 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1287 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1289 if (flow_bb_inside_loop_p (loop, dominated))
1290 continue;
1291 dom_bb = nearest_common_dominator (
1292 CDI_DOMINATORS, first_active[i], first_active_latch);
1293 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1295 VEC_free (basic_block, heap, dom_bbs);
1297 free (first_active);
1299 free (bbs);
1300 BITMAP_FREE (bbs_to_scale);
1302 return true;
1305 /* A callback for make_forwarder block, to redirect all edges except for
1306 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1307 whether to redirect it. */
1309 edge mfb_kj_edge;
1310 bool
1311 mfb_keep_just (edge e)
1313 return e != mfb_kj_edge;
1316 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1318 static bool
1319 has_preds_from_loop (basic_block block, struct loop *loop)
1321 edge e;
1322 edge_iterator ei;
1324 FOR_EACH_EDGE (e, ei, block->preds)
1325 if (e->src->loop_father == loop)
1326 return true;
1327 return false;
1330 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1331 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1332 entry; otherwise we also force preheader block to have only one successor.
1333 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1334 to be a fallthru predecessor to the loop header and to have only
1335 predecessors from outside of the loop.
1336 The function also updates dominators. */
1338 basic_block
1339 create_preheader (struct loop *loop, int flags)
1341 edge e, fallthru;
1342 basic_block dummy;
1343 int nentry = 0;
1344 bool irred = false;
1345 bool latch_edge_was_fallthru;
1346 edge one_succ_pred = NULL, single_entry = NULL;
1347 edge_iterator ei;
1349 FOR_EACH_EDGE (e, ei, loop->header->preds)
1351 if (e->src == loop->latch)
1352 continue;
1353 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1354 nentry++;
1355 single_entry = e;
1356 if (single_succ_p (e->src))
1357 one_succ_pred = e;
1359 gcc_assert (nentry);
1360 if (nentry == 1)
1362 bool need_forwarder_block = false;
1364 /* We do not allow entry block to be the loop preheader, since we
1365 cannot emit code there. */
1366 if (single_entry->src == ENTRY_BLOCK_PTR)
1367 need_forwarder_block = true;
1368 else
1370 /* If we want simple preheaders, also force the preheader to have
1371 just a single successor. */
1372 if ((flags & CP_SIMPLE_PREHEADERS)
1373 && !single_succ_p (single_entry->src))
1374 need_forwarder_block = true;
1375 /* If we want fallthru preheaders, also create forwarder block when
1376 preheader ends with a jump or has predecessors from loop. */
1377 else if ((flags & CP_FALLTHRU_PREHEADERS)
1378 && (JUMP_P (BB_END (single_entry->src))
1379 || has_preds_from_loop (single_entry->src, loop)))
1380 need_forwarder_block = true;
1382 if (! need_forwarder_block)
1383 return NULL;
1386 mfb_kj_edge = loop_latch_edge (loop);
1387 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1388 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1389 dummy = fallthru->src;
1390 loop->header = fallthru->dest;
1392 /* Try to be clever in placing the newly created preheader. The idea is to
1393 avoid breaking any "fallthruness" relationship between blocks.
1395 The preheader was created just before the header and all incoming edges
1396 to the header were redirected to the preheader, except the latch edge.
1397 So the only problematic case is when this latch edge was a fallthru
1398 edge: it is not anymore after the preheader creation so we have broken
1399 the fallthruness. We're therefore going to look for a better place. */
1400 if (latch_edge_was_fallthru)
1402 if (one_succ_pred)
1403 e = one_succ_pred;
1404 else
1405 e = EDGE_PRED (dummy, 0);
1407 move_block_after (dummy, e->src);
1410 if (irred)
1412 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1413 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1416 if (dump_file)
1417 fprintf (dump_file, "Created preheader block for loop %i\n",
1418 loop->num);
1420 if (flags & CP_FALLTHRU_PREHEADERS)
1421 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1422 && !JUMP_P (BB_END (dummy)));
1424 return dummy;
1427 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1429 void
1430 create_preheaders (int flags)
1432 loop_iterator li;
1433 struct loop *loop;
1435 if (!current_loops)
1436 return;
1438 FOR_EACH_LOOP (li, loop, 0)
1439 create_preheader (loop, flags);
1440 loops_state_set (LOOPS_HAVE_PREHEADERS);
1443 /* Forces all loop latches to have only single successor. */
1445 void
1446 force_single_succ_latches (void)
1448 loop_iterator li;
1449 struct loop *loop;
1450 edge e;
1452 FOR_EACH_LOOP (li, loop, 0)
1454 if (loop->latch != loop->header && single_succ_p (loop->latch))
1455 continue;
1457 e = find_edge (loop->latch, loop->header);
1459 split_edge (e);
1461 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1464 /* This function is called from loop_version. It splits the entry edge
1465 of the loop we want to version, adds the versioning condition, and
1466 adjust the edges to the two versions of the loop appropriately.
1467 e is an incoming edge. Returns the basic block containing the
1468 condition.
1470 --- edge e ---- > [second_head]
1472 Split it and insert new conditional expression and adjust edges.
1474 --- edge e ---> [cond expr] ---> [first_head]
1476 +---------> [second_head]
1478 THEN_PROB is the probability of then branch of the condition. */
1480 static basic_block
1481 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1482 edge e, void *cond_expr, unsigned then_prob)
1484 basic_block new_head = NULL;
1485 edge e1;
1487 gcc_assert (e->dest == second_head);
1489 /* Split edge 'e'. This will create a new basic block, where we can
1490 insert conditional expr. */
1491 new_head = split_edge (e);
1493 lv_add_condition_to_bb (first_head, second_head, new_head,
1494 cond_expr);
1496 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1497 e = single_succ_edge (new_head);
1498 e1 = make_edge (new_head, first_head,
1499 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1500 e1->probability = then_prob;
1501 e->probability = REG_BR_PROB_BASE - then_prob;
1502 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1503 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1505 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1506 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1508 /* Adjust loop header phi nodes. */
1509 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1511 return new_head;
1514 /* Main entry point for Loop Versioning transformation.
1516 This transformation given a condition and a loop, creates
1517 -if (condition) { loop_copy1 } else { loop_copy2 },
1518 where loop_copy1 is the loop transformed in one way, and loop_copy2
1519 is the loop transformed in another way (or unchanged). 'condition'
1520 may be a run time test for things that were not resolved by static
1521 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1523 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1524 is the ratio by that the frequencies in the original loop should
1525 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1526 new loop should be scaled.
1528 If PLACE_AFTER is true, we place the new loop after LOOP in the
1529 instruction stream, otherwise it is placed before LOOP. */
1531 struct loop *
1532 loop_version (struct loop *loop,
1533 void *cond_expr, basic_block *condition_bb,
1534 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1535 bool place_after)
1537 basic_block first_head, second_head;
1538 edge entry, latch_edge, true_edge, false_edge;
1539 int irred_flag;
1540 struct loop *nloop;
1541 basic_block cond_bb;
1543 /* Record entry and latch edges for the loop */
1544 entry = loop_preheader_edge (loop);
1545 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1546 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1548 /* Note down head of loop as first_head. */
1549 first_head = entry->dest;
1551 /* Duplicate loop. */
1552 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1553 NULL, NULL, NULL, 0))
1554 return NULL;
1556 /* After duplication entry edge now points to new loop head block.
1557 Note down new head as second_head. */
1558 second_head = entry->dest;
1560 /* Split loop entry edge and insert new block with cond expr. */
1561 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1562 entry, cond_expr, then_prob);
1563 if (condition_bb)
1564 *condition_bb = cond_bb;
1566 if (!cond_bb)
1568 entry->flags |= irred_flag;
1569 return NULL;
1572 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1574 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1575 nloop = loopify (latch_edge,
1576 single_pred_edge (get_bb_copy (loop->header)),
1577 cond_bb, true_edge, false_edge,
1578 false /* Do not redirect all edges. */,
1579 then_scale, else_scale);
1581 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1582 lv_flush_pending_stmts (latch_edge);
1584 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1585 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1586 lv_flush_pending_stmts (false_edge);
1587 /* Adjust irreducible flag. */
1588 if (irred_flag)
1590 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1591 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1592 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1593 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1596 if (place_after)
1598 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1599 unsigned i;
1601 after = loop->latch;
1603 for (i = 0; i < nloop->num_nodes; i++)
1605 move_block_after (bbs[i], after);
1606 after = bbs[i];
1608 free (bbs);
1611 /* At this point condition_bb is loop preheader with two successors,
1612 first_head and second_head. Make sure that loop preheader has only
1613 one successor. */
1614 split_edge (loop_preheader_edge (loop));
1615 split_edge (loop_preheader_edge (nloop));
1617 return nloop;
1620 /* The structure of loops might have changed. Some loops might get removed
1621 (and their headers and latches were set to NULL), loop exists might get
1622 removed (thus the loop nesting may be wrong), and some blocks and edges
1623 were changed (so the information about bb --> loop mapping does not have
1624 to be correct). But still for the remaining loops the header dominates
1625 the latch, and loops did not get new subloops (new loops might possibly
1626 get created, but we are not interested in them). Fix up the mess.
1628 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1629 marked in it. */
1631 void
1632 fix_loop_structure (bitmap changed_bbs)
1634 basic_block bb;
1635 struct loop *loop, *ploop;
1636 loop_iterator li;
1637 bool record_exits = false;
1638 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1640 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1641 the loop hierarchy, so that we can recognize blocks whose loop nesting
1642 relationship has changed. */
1643 FOR_EACH_BB (bb)
1645 if (changed_bbs)
1646 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1647 bb->loop_father = current_loops->tree_root;
1650 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1652 release_recorded_exits ();
1653 record_exits = true;
1656 /* Remove the dead loops from structures. We start from the innermost
1657 loops, so that when we remove the loops, we know that the loops inside
1658 are preserved, and do not waste time relinking loops that will be
1659 removed later. */
1660 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1662 if (loop->header)
1663 continue;
1665 while (loop->inner)
1667 ploop = loop->inner;
1668 flow_loop_tree_node_remove (ploop);
1669 flow_loop_tree_node_add (loop_outer (loop), ploop);
1672 /* Remove the loop and free its data. */
1673 delete_loop (loop);
1676 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1677 that no optimization interchanges the order of the loops, i.e., it cannot
1678 happen that L1 was superloop of L2 before and it is subloop of L2 now
1679 (without explicitly updating loop information). At the same time, we also
1680 determine the new loop structure. */
1681 current_loops->tree_root->num_nodes = n_basic_blocks;
1682 FOR_EACH_LOOP (li, loop, 0)
1684 superloop[loop->num] = loop->header->loop_father;
1685 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1688 /* Now fix the loop nesting. */
1689 FOR_EACH_LOOP (li, loop, 0)
1691 ploop = superloop[loop->num];
1692 if (ploop != loop_outer (loop))
1694 flow_loop_tree_node_remove (loop);
1695 flow_loop_tree_node_add (ploop, loop);
1698 free (superloop);
1700 /* Mark the blocks whose loop has changed. */
1701 if (changed_bbs)
1703 FOR_EACH_BB (bb)
1705 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1706 bitmap_set_bit (changed_bbs, bb->index);
1708 bb->aux = NULL;
1712 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1713 create_preheaders (CP_SIMPLE_PREHEADERS);
1715 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1716 force_single_succ_latches ();
1718 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1719 mark_irreducible_loops ();
1721 if (record_exits)
1722 record_loop_exits ();
1724 #ifdef ENABLE_CHECKING
1725 verify_loop_structure ();
1726 #endif