In gcc/: 2010-10-20 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / tree-chrec.c
blob72955108c7bdd01e63a956c275a028d82da63e6d
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "tree-pretty-print.h"
34 #include "cfgloop.h"
35 #include "tree-flow.h"
36 #include "tree-chrec.h"
37 #include "tree-pass.h"
38 #include "params.h"
39 #include "flags.h"
40 #include "tree-scalar-evolution.h"
44 /* Extended folder for chrecs. */
46 /* Determines whether CST is not a constant evolution. */
48 static inline bool
49 is_not_constant_evolution (const_tree cst)
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
54 /* Fold CODE for a polynomial function and a constant. */
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
68 switch (code)
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88 default:
89 return chrec_dont_know;
93 /* Fold the addition of two polynomial functions. */
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
106 gcc_assert (poly0);
107 gcc_assert (poly1);
108 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
109 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
110 if (POINTER_TYPE_P (chrec_type (poly0)))
111 gcc_assert (chrec_type (poly1) == sizetype);
112 else
113 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
114 gcc_assert (type == chrec_type (poly0));
117 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
118 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
119 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
120 if (flow_loop_nested_p (loop0, loop1))
122 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
123 return build_polynomial_chrec
124 (CHREC_VARIABLE (poly1),
125 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
126 CHREC_RIGHT (poly1));
127 else
128 return build_polynomial_chrec
129 (CHREC_VARIABLE (poly1),
130 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
131 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
132 SCALAR_FLOAT_TYPE_P (type)
133 ? build_real (type, dconstm1)
134 : build_int_cst_type (type, -1)));
137 if (flow_loop_nested_p (loop1, loop0))
139 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
140 return build_polynomial_chrec
141 (CHREC_VARIABLE (poly0),
142 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
143 CHREC_RIGHT (poly0));
144 else
145 return build_polynomial_chrec
146 (CHREC_VARIABLE (poly0),
147 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
148 CHREC_RIGHT (poly0));
151 /* This function should never be called for chrecs of loops that
152 do not belong to the same loop nest. */
153 gcc_assert (loop0 == loop1);
155 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
157 left = chrec_fold_plus
158 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159 right = chrec_fold_plus
160 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
162 else
164 left = chrec_fold_minus
165 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
166 right = chrec_fold_minus
167 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
170 if (chrec_zerop (right))
171 return left;
172 else
173 return build_polynomial_chrec
174 (CHREC_VARIABLE (poly0), left, right);
179 /* Fold the multiplication of two polynomial functions. */
181 static inline tree
182 chrec_fold_multiply_poly_poly (tree type,
183 tree poly0,
184 tree poly1)
186 tree t0, t1, t2;
187 int var;
188 struct loop *loop0 = get_chrec_loop (poly0);
189 struct loop *loop1 = get_chrec_loop (poly1);
191 gcc_assert (poly0);
192 gcc_assert (poly1);
193 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
194 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
195 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
196 gcc_assert (type == chrec_type (poly0));
198 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
199 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
201 if (flow_loop_nested_p (loop0, loop1))
202 /* poly0 is a constant wrt. poly1. */
203 return build_polynomial_chrec
204 (CHREC_VARIABLE (poly1),
205 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
206 CHREC_RIGHT (poly1));
208 if (flow_loop_nested_p (loop1, loop0))
209 /* poly1 is a constant wrt. poly0. */
210 return build_polynomial_chrec
211 (CHREC_VARIABLE (poly0),
212 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
213 CHREC_RIGHT (poly0));
215 gcc_assert (loop0 == loop1);
217 /* poly0 and poly1 are two polynomials in the same variable,
218 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
220 /* "a*c". */
221 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
223 /* "a*d + b*c". */
224 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
225 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
226 CHREC_RIGHT (poly0),
227 CHREC_LEFT (poly1)));
228 /* "b*d". */
229 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
230 /* "a*d + b*c + b*d". */
231 t1 = chrec_fold_plus (type, t1, t2);
232 /* "2*b*d". */
233 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
234 ? build_real (type, dconst2)
235 : build_int_cst (type, 2), t2);
237 var = CHREC_VARIABLE (poly0);
238 return build_polynomial_chrec (var, t0,
239 build_polynomial_chrec (var, t1, t2));
242 /* When the operands are automatically_generated_chrec_p, the fold has
243 to respect the semantics of the operands. */
245 static inline tree
246 chrec_fold_automatically_generated_operands (tree op0,
247 tree op1)
249 if (op0 == chrec_dont_know
250 || op1 == chrec_dont_know)
251 return chrec_dont_know;
253 if (op0 == chrec_known
254 || op1 == chrec_known)
255 return chrec_known;
257 if (op0 == chrec_not_analyzed_yet
258 || op1 == chrec_not_analyzed_yet)
259 return chrec_not_analyzed_yet;
261 /* The default case produces a safe result. */
262 return chrec_dont_know;
265 /* Fold the addition of two chrecs. */
267 static tree
268 chrec_fold_plus_1 (enum tree_code code, tree type,
269 tree op0, tree op1)
271 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
273 if (automatically_generated_chrec_p (op0)
274 || automatically_generated_chrec_p (op1))
275 return chrec_fold_automatically_generated_operands (op0, op1);
277 switch (TREE_CODE (op0))
279 case POLYNOMIAL_CHREC:
280 switch (TREE_CODE (op1))
282 case POLYNOMIAL_CHREC:
283 return chrec_fold_plus_poly_poly (code, type, op0, op1);
285 CASE_CONVERT:
286 if (tree_contains_chrecs (op1, NULL))
287 return chrec_dont_know;
289 default:
290 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
291 return build_polynomial_chrec
292 (CHREC_VARIABLE (op0),
293 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
294 CHREC_RIGHT (op0));
295 else
296 return build_polynomial_chrec
297 (CHREC_VARIABLE (op0),
298 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
299 CHREC_RIGHT (op0));
302 CASE_CONVERT:
303 if (tree_contains_chrecs (op0, NULL))
304 return chrec_dont_know;
306 default:
307 switch (TREE_CODE (op1))
309 case POLYNOMIAL_CHREC:
310 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
311 return build_polynomial_chrec
312 (CHREC_VARIABLE (op1),
313 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
314 CHREC_RIGHT (op1));
315 else
316 return build_polynomial_chrec
317 (CHREC_VARIABLE (op1),
318 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
319 chrec_fold_multiply (type, CHREC_RIGHT (op1),
320 SCALAR_FLOAT_TYPE_P (type)
321 ? build_real (type, dconstm1)
322 : build_int_cst_type (type, -1)));
324 CASE_CONVERT:
325 if (tree_contains_chrecs (op1, NULL))
326 return chrec_dont_know;
328 default:
330 int size = 0;
331 if ((tree_contains_chrecs (op0, &size)
332 || tree_contains_chrecs (op1, &size))
333 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
334 return build2 (code, type, op0, op1);
335 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
336 return fold_build2 (code, type,
337 fold_convert (type, op0),
338 fold_convert (op1_type, op1));
339 else
340 return chrec_dont_know;
346 /* Fold the addition of two chrecs. */
348 tree
349 chrec_fold_plus (tree type,
350 tree op0,
351 tree op1)
353 enum tree_code code;
354 if (automatically_generated_chrec_p (op0)
355 || automatically_generated_chrec_p (op1))
356 return chrec_fold_automatically_generated_operands (op0, op1);
358 if (integer_zerop (op0))
359 return chrec_convert (type, op1, NULL);
360 if (integer_zerop (op1))
361 return chrec_convert (type, op0, NULL);
363 if (POINTER_TYPE_P (type))
364 code = POINTER_PLUS_EXPR;
365 else
366 code = PLUS_EXPR;
368 return chrec_fold_plus_1 (code, type, op0, op1);
371 /* Fold the subtraction of two chrecs. */
373 tree
374 chrec_fold_minus (tree type,
375 tree op0,
376 tree op1)
378 if (automatically_generated_chrec_p (op0)
379 || automatically_generated_chrec_p (op1))
380 return chrec_fold_automatically_generated_operands (op0, op1);
382 if (integer_zerop (op1))
383 return op0;
385 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
388 /* Fold the multiplication of two chrecs. */
390 tree
391 chrec_fold_multiply (tree type,
392 tree op0,
393 tree op1)
395 if (automatically_generated_chrec_p (op0)
396 || automatically_generated_chrec_p (op1))
397 return chrec_fold_automatically_generated_operands (op0, op1);
399 switch (TREE_CODE (op0))
401 case POLYNOMIAL_CHREC:
402 switch (TREE_CODE (op1))
404 case POLYNOMIAL_CHREC:
405 return chrec_fold_multiply_poly_poly (type, op0, op1);
407 CASE_CONVERT:
408 if (tree_contains_chrecs (op1, NULL))
409 return chrec_dont_know;
411 default:
412 if (integer_onep (op1))
413 return op0;
414 if (integer_zerop (op1))
415 return build_int_cst (type, 0);
417 return build_polynomial_chrec
418 (CHREC_VARIABLE (op0),
419 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
420 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
423 CASE_CONVERT:
424 if (tree_contains_chrecs (op0, NULL))
425 return chrec_dont_know;
427 default:
428 if (integer_onep (op0))
429 return op1;
431 if (integer_zerop (op0))
432 return build_int_cst (type, 0);
434 switch (TREE_CODE (op1))
436 case POLYNOMIAL_CHREC:
437 return build_polynomial_chrec
438 (CHREC_VARIABLE (op1),
439 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
440 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
442 CASE_CONVERT:
443 if (tree_contains_chrecs (op1, NULL))
444 return chrec_dont_know;
446 default:
447 if (integer_onep (op1))
448 return op0;
449 if (integer_zerop (op1))
450 return build_int_cst (type, 0);
451 return fold_build2 (MULT_EXPR, type, op0, op1);
458 /* Operations. */
460 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
461 calculation overflows, otherwise return C(n,k) with type TYPE. */
463 static tree
464 tree_fold_binomial (tree type, tree n, unsigned int k)
466 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
467 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
468 unsigned int i;
469 tree res;
471 /* Handle the most frequent cases. */
472 if (k == 0)
473 return build_int_cst (type, 1);
474 if (k == 1)
475 return fold_convert (type, n);
477 /* Check that k <= n. */
478 if (TREE_INT_CST_HIGH (n) == 0
479 && TREE_INT_CST_LOW (n) < k)
480 return NULL_TREE;
482 /* Numerator = n. */
483 lnum = TREE_INT_CST_LOW (n);
484 hnum = TREE_INT_CST_HIGH (n);
486 /* Denominator = 2. */
487 ldenom = 2;
488 hdenom = 0;
490 /* Index = Numerator-1. */
491 if (lnum == 0)
493 hidx = hnum - 1;
494 lidx = ~ (unsigned HOST_WIDE_INT) 0;
496 else
498 hidx = hnum;
499 lidx = lnum - 1;
502 /* Numerator = Numerator*Index = n*(n-1). */
503 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
504 return NULL_TREE;
506 for (i = 3; i <= k; i++)
508 /* Index--. */
509 if (lidx == 0)
511 hidx--;
512 lidx = ~ (unsigned HOST_WIDE_INT) 0;
514 else
515 lidx--;
517 /* Numerator *= Index. */
518 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
519 return NULL_TREE;
521 /* Denominator *= i. */
522 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
525 /* Result = Numerator / Denominator. */
526 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
527 &lres, &hres, &ldum, &hdum);
529 res = build_int_cst_wide (type, lres, hres);
530 return int_fits_type_p (res, type) ? res : NULL_TREE;
533 /* Helper function. Use the Newton's interpolating formula for
534 evaluating the value of the evolution function. */
536 static tree
537 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
539 tree arg0, arg1, binomial_n_k;
540 tree type = TREE_TYPE (chrec);
541 struct loop *var_loop = get_loop (var);
543 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
544 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
545 chrec = CHREC_LEFT (chrec);
547 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
548 && CHREC_VARIABLE (chrec) == var)
550 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
551 if (arg1 == chrec_dont_know)
552 return chrec_dont_know;
553 binomial_n_k = tree_fold_binomial (type, n, k);
554 if (!binomial_n_k)
555 return chrec_dont_know;
556 arg0 = fold_build2 (MULT_EXPR, type,
557 CHREC_LEFT (chrec), binomial_n_k);
558 return chrec_fold_plus (type, arg0, arg1);
561 binomial_n_k = tree_fold_binomial (type, n, k);
562 if (!binomial_n_k)
563 return chrec_dont_know;
565 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
568 /* Evaluates "CHREC (X)" when the varying variable is VAR.
569 Example: Given the following parameters,
571 var = 1
572 chrec = {3, +, 4}_1
573 x = 10
575 The result is given by the Newton's interpolating formula:
576 3 * \binom{10}{0} + 4 * \binom{10}{1}.
579 tree
580 chrec_apply (unsigned var,
581 tree chrec,
582 tree x)
584 tree type = chrec_type (chrec);
585 tree res = chrec_dont_know;
587 if (automatically_generated_chrec_p (chrec)
588 || automatically_generated_chrec_p (x)
590 /* When the symbols are defined in an outer loop, it is possible
591 to symbolically compute the apply, since the symbols are
592 constants with respect to the varying loop. */
593 || chrec_contains_symbols_defined_in_loop (chrec, var))
594 return chrec_dont_know;
596 if (dump_file && (dump_flags & TDF_DETAILS))
597 fprintf (dump_file, "(chrec_apply \n");
599 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
600 x = build_real_from_int_cst (type, x);
602 switch (TREE_CODE (chrec))
604 case POLYNOMIAL_CHREC:
605 if (evolution_function_is_affine_p (chrec))
607 if (CHREC_VARIABLE (chrec) != var)
608 return build_polynomial_chrec
609 (CHREC_VARIABLE (chrec),
610 chrec_apply (var, CHREC_LEFT (chrec), x),
611 chrec_apply (var, CHREC_RIGHT (chrec), x));
613 /* "{a, +, b} (x)" -> "a + b*x". */
614 x = chrec_convert_rhs (type, x, NULL);
615 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
616 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
618 else if (TREE_CODE (x) == INTEGER_CST
619 && tree_int_cst_sgn (x) == 1)
620 /* testsuite/.../ssa-chrec-38.c. */
621 res = chrec_evaluate (var, chrec, x, 0);
622 else
623 res = chrec_dont_know;
624 break;
626 CASE_CONVERT:
627 res = chrec_convert (TREE_TYPE (chrec),
628 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
629 NULL);
630 break;
632 default:
633 res = chrec;
634 break;
637 if (dump_file && (dump_flags & TDF_DETAILS))
639 fprintf (dump_file, " (varying_loop = %d\n", var);
640 fprintf (dump_file, ")\n (chrec = ");
641 print_generic_expr (dump_file, chrec, 0);
642 fprintf (dump_file, ")\n (x = ");
643 print_generic_expr (dump_file, x, 0);
644 fprintf (dump_file, ")\n (res = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
649 return res;
652 /* For a given CHREC and an induction variable map IV_MAP that maps
653 (loop->num, expr) for every loop number of the current_loops an
654 expression, calls chrec_apply when the expression is not NULL. */
656 tree
657 chrec_apply_map (tree chrec, VEC (tree, heap) *iv_map)
659 int i;
660 tree expr;
662 FOR_EACH_VEC_ELT (tree, iv_map, i, expr)
663 if (expr)
664 chrec = chrec_apply (i, chrec, expr);
666 return chrec;
669 /* Replaces the initial condition in CHREC with INIT_COND. */
671 tree
672 chrec_replace_initial_condition (tree chrec,
673 tree init_cond)
675 if (automatically_generated_chrec_p (chrec))
676 return chrec;
678 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
680 switch (TREE_CODE (chrec))
682 case POLYNOMIAL_CHREC:
683 return build_polynomial_chrec
684 (CHREC_VARIABLE (chrec),
685 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
686 CHREC_RIGHT (chrec));
688 default:
689 return init_cond;
693 /* Returns the initial condition of a given CHREC. */
695 tree
696 initial_condition (tree chrec)
698 if (automatically_generated_chrec_p (chrec))
699 return chrec;
701 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
702 return initial_condition (CHREC_LEFT (chrec));
703 else
704 return chrec;
707 /* Returns a univariate function that represents the evolution in
708 LOOP_NUM. Mask the evolution of any other loop. */
710 tree
711 hide_evolution_in_other_loops_than_loop (tree chrec,
712 unsigned loop_num)
714 struct loop *loop = get_loop (loop_num), *chloop;
715 if (automatically_generated_chrec_p (chrec))
716 return chrec;
718 switch (TREE_CODE (chrec))
720 case POLYNOMIAL_CHREC:
721 chloop = get_chrec_loop (chrec);
723 if (chloop == loop)
724 return build_polynomial_chrec
725 (loop_num,
726 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
727 loop_num),
728 CHREC_RIGHT (chrec));
730 else if (flow_loop_nested_p (chloop, loop))
731 /* There is no evolution in this loop. */
732 return initial_condition (chrec);
734 else
736 gcc_assert (flow_loop_nested_p (loop, chloop));
737 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
738 loop_num);
741 default:
742 return chrec;
746 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
747 true, otherwise returns the initial condition in LOOP_NUM. */
749 static tree
750 chrec_component_in_loop_num (tree chrec,
751 unsigned loop_num,
752 bool right)
754 tree component;
755 struct loop *loop = get_loop (loop_num), *chloop;
757 if (automatically_generated_chrec_p (chrec))
758 return chrec;
760 switch (TREE_CODE (chrec))
762 case POLYNOMIAL_CHREC:
763 chloop = get_chrec_loop (chrec);
765 if (chloop == loop)
767 if (right)
768 component = CHREC_RIGHT (chrec);
769 else
770 component = CHREC_LEFT (chrec);
772 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
773 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
774 return component;
776 else
777 return build_polynomial_chrec
778 (loop_num,
779 chrec_component_in_loop_num (CHREC_LEFT (chrec),
780 loop_num,
781 right),
782 component);
785 else if (flow_loop_nested_p (chloop, loop))
786 /* There is no evolution part in this loop. */
787 return NULL_TREE;
789 else
791 gcc_assert (flow_loop_nested_p (loop, chloop));
792 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
793 loop_num,
794 right);
797 default:
798 if (right)
799 return NULL_TREE;
800 else
801 return chrec;
805 /* Returns the evolution part in LOOP_NUM. Example: the call
806 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
807 {1, +, 2}_1 */
809 tree
810 evolution_part_in_loop_num (tree chrec,
811 unsigned loop_num)
813 return chrec_component_in_loop_num (chrec, loop_num, true);
816 /* Returns the initial condition in LOOP_NUM. Example: the call
817 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
818 {0, +, 1}_1 */
820 tree
821 initial_condition_in_loop_num (tree chrec,
822 unsigned loop_num)
824 return chrec_component_in_loop_num (chrec, loop_num, false);
827 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
828 This function is essentially used for setting the evolution to
829 chrec_dont_know, for example after having determined that it is
830 impossible to say how many times a loop will execute. */
832 tree
833 reset_evolution_in_loop (unsigned loop_num,
834 tree chrec,
835 tree new_evol)
837 struct loop *loop = get_loop (loop_num);
839 if (POINTER_TYPE_P (chrec_type (chrec)))
840 gcc_assert (sizetype == chrec_type (new_evol));
841 else
842 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
844 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
845 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
847 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
848 new_evol);
849 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
850 new_evol);
851 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
852 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
853 left, right);
856 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
857 && CHREC_VARIABLE (chrec) == loop_num)
858 chrec = CHREC_LEFT (chrec);
860 return build_polynomial_chrec (loop_num, chrec, new_evol);
863 /* Merges two evolution functions that were found by following two
864 alternate paths of a conditional expression. */
866 tree
867 chrec_merge (tree chrec1,
868 tree chrec2)
870 if (chrec1 == chrec_dont_know
871 || chrec2 == chrec_dont_know)
872 return chrec_dont_know;
874 if (chrec1 == chrec_known
875 || chrec2 == chrec_known)
876 return chrec_known;
878 if (chrec1 == chrec_not_analyzed_yet)
879 return chrec2;
880 if (chrec2 == chrec_not_analyzed_yet)
881 return chrec1;
883 if (eq_evolutions_p (chrec1, chrec2))
884 return chrec1;
886 return chrec_dont_know;
891 /* Observers. */
893 /* Helper function for is_multivariate_chrec. */
895 static bool
896 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
898 if (chrec == NULL_TREE)
899 return false;
901 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
903 if (CHREC_VARIABLE (chrec) != rec_var)
904 return true;
905 else
906 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
907 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
909 else
910 return false;
913 /* Determine whether the given chrec is multivariate or not. */
915 bool
916 is_multivariate_chrec (const_tree chrec)
918 if (chrec == NULL_TREE)
919 return false;
921 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
922 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
923 CHREC_VARIABLE (chrec))
924 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
925 CHREC_VARIABLE (chrec)));
926 else
927 return false;
930 /* Determines whether the chrec contains symbolic names or not. */
932 bool
933 chrec_contains_symbols (const_tree chrec)
935 int i, n;
937 if (chrec == NULL_TREE)
938 return false;
940 if (TREE_CODE (chrec) == SSA_NAME
941 || TREE_CODE (chrec) == VAR_DECL
942 || TREE_CODE (chrec) == PARM_DECL
943 || TREE_CODE (chrec) == FUNCTION_DECL
944 || TREE_CODE (chrec) == LABEL_DECL
945 || TREE_CODE (chrec) == RESULT_DECL
946 || TREE_CODE (chrec) == FIELD_DECL)
947 return true;
949 n = TREE_OPERAND_LENGTH (chrec);
950 for (i = 0; i < n; i++)
951 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
952 return true;
953 return false;
956 /* Determines whether the chrec contains undetermined coefficients. */
958 bool
959 chrec_contains_undetermined (const_tree chrec)
961 int i, n;
963 if (chrec == chrec_dont_know)
964 return true;
966 if (chrec == NULL_TREE)
967 return false;
969 n = TREE_OPERAND_LENGTH (chrec);
970 for (i = 0; i < n; i++)
971 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
972 return true;
973 return false;
976 /* Determines whether the tree EXPR contains chrecs, and increment
977 SIZE if it is not a NULL pointer by an estimation of the depth of
978 the tree. */
980 bool
981 tree_contains_chrecs (const_tree expr, int *size)
983 int i, n;
985 if (expr == NULL_TREE)
986 return false;
988 if (size)
989 (*size)++;
991 if (tree_is_chrec (expr))
992 return true;
994 n = TREE_OPERAND_LENGTH (expr);
995 for (i = 0; i < n; i++)
996 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
997 return true;
998 return false;
1001 /* Recursive helper function. */
1003 static bool
1004 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1006 if (evolution_function_is_constant_p (chrec))
1007 return true;
1009 if (TREE_CODE (chrec) == SSA_NAME
1010 && (loopnum == 0
1011 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
1012 return true;
1014 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1016 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1017 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1018 loopnum)
1019 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1020 loopnum))
1021 return false;
1022 return true;
1025 switch (TREE_OPERAND_LENGTH (chrec))
1027 case 2:
1028 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1029 loopnum))
1030 return false;
1032 case 1:
1033 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1034 loopnum))
1035 return false;
1036 return true;
1038 default:
1039 return false;
1042 return false;
1045 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1047 bool
1048 evolution_function_is_invariant_p (tree chrec, int loopnum)
1050 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1053 /* Determine whether the given tree is an affine multivariate
1054 evolution. */
1056 bool
1057 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1059 if (chrec == NULL_TREE)
1060 return false;
1062 switch (TREE_CODE (chrec))
1064 case POLYNOMIAL_CHREC:
1065 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1067 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1068 return true;
1069 else
1071 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1072 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1073 != CHREC_VARIABLE (chrec)
1074 && evolution_function_is_affine_multivariate_p
1075 (CHREC_RIGHT (chrec), loopnum))
1076 return true;
1077 else
1078 return false;
1081 else
1083 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1084 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1085 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1086 && evolution_function_is_affine_multivariate_p
1087 (CHREC_LEFT (chrec), loopnum))
1088 return true;
1089 else
1090 return false;
1093 default:
1094 return false;
1098 /* Determine whether the given tree is a function in zero or one
1099 variables. */
1101 bool
1102 evolution_function_is_univariate_p (const_tree chrec)
1104 if (chrec == NULL_TREE)
1105 return true;
1107 switch (TREE_CODE (chrec))
1109 case POLYNOMIAL_CHREC:
1110 switch (TREE_CODE (CHREC_LEFT (chrec)))
1112 case POLYNOMIAL_CHREC:
1113 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1114 return false;
1115 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1116 return false;
1117 break;
1119 default:
1120 break;
1123 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1125 case POLYNOMIAL_CHREC:
1126 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1127 return false;
1128 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1129 return false;
1130 break;
1132 default:
1133 break;
1136 default:
1137 return true;
1141 /* Returns the number of variables of CHREC. Example: the call
1142 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1144 unsigned
1145 nb_vars_in_chrec (tree chrec)
1147 if (chrec == NULL_TREE)
1148 return 0;
1150 switch (TREE_CODE (chrec))
1152 case POLYNOMIAL_CHREC:
1153 return 1 + nb_vars_in_chrec
1154 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1156 default:
1157 return 0;
1161 static tree chrec_convert_1 (tree, tree, gimple, bool);
1163 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1164 the scev corresponds to. AT_STMT is the statement at that the scev is
1165 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1166 the rules for overflow of the given language apply (e.g., that signed
1167 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1168 tests, but also to enforce that the result follows them. Returns true if the
1169 conversion succeeded, false otherwise. */
1171 bool
1172 convert_affine_scev (struct loop *loop, tree type,
1173 tree *base, tree *step, gimple at_stmt,
1174 bool use_overflow_semantics)
1176 tree ct = TREE_TYPE (*step);
1177 bool enforce_overflow_semantics;
1178 bool must_check_src_overflow, must_check_rslt_overflow;
1179 tree new_base, new_step;
1180 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1182 /* In general,
1183 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1184 but we must check some assumptions.
1186 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1187 of CT is smaller than the precision of TYPE. For example, when we
1188 cast unsigned char [254, +, 1] to unsigned, the values on left side
1189 are 254, 255, 0, 1, ..., but those on the right side are
1190 254, 255, 256, 257, ...
1191 2) In case that we must also preserve the fact that signed ivs do not
1192 overflow, we must additionally check that the new iv does not wrap.
1193 For example, unsigned char [125, +, 1] casted to signed char could
1194 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1195 which would confuse optimizers that assume that this does not
1196 happen. */
1197 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1199 enforce_overflow_semantics = (use_overflow_semantics
1200 && nowrap_type_p (type));
1201 if (enforce_overflow_semantics)
1203 /* We can avoid checking whether the result overflows in the following
1204 cases:
1206 -- must_check_src_overflow is true, and the range of TYPE is superset
1207 of the range of CT -- i.e., in all cases except if CT signed and
1208 TYPE unsigned.
1209 -- both CT and TYPE have the same precision and signedness, and we
1210 verify instead that the source does not overflow (this may be
1211 easier than verifying it for the result, as we may use the
1212 information about the semantics of overflow in CT). */
1213 if (must_check_src_overflow)
1215 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1216 must_check_rslt_overflow = true;
1217 else
1218 must_check_rslt_overflow = false;
1220 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1221 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1223 must_check_rslt_overflow = false;
1224 must_check_src_overflow = true;
1226 else
1227 must_check_rslt_overflow = true;
1229 else
1230 must_check_rslt_overflow = false;
1232 if (must_check_src_overflow
1233 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1234 use_overflow_semantics))
1235 return false;
1237 new_base = chrec_convert_1 (type, *base, at_stmt,
1238 use_overflow_semantics);
1239 /* The step must be sign extended, regardless of the signedness
1240 of CT and TYPE. This only needs to be handled specially when
1241 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1242 (with values 100, 99, 98, ...) from becoming signed or unsigned
1243 [100, +, 255] with values 100, 355, ...; the sign-extension is
1244 performed by default when CT is signed. */
1245 new_step = *step;
1246 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1247 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1248 use_overflow_semantics);
1249 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1251 if (automatically_generated_chrec_p (new_base)
1252 || automatically_generated_chrec_p (new_step))
1253 return false;
1255 if (must_check_rslt_overflow
1256 /* Note that in this case we cannot use the fact that signed variables
1257 do not overflow, as this is what we are verifying for the new iv. */
1258 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1259 return false;
1261 *base = new_base;
1262 *step = new_step;
1263 return true;
1267 /* Convert CHREC for the right hand side of a CHREC.
1268 The increment for a pointer type is always sizetype. */
1270 tree
1271 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1273 if (POINTER_TYPE_P (type))
1274 type = sizetype;
1276 return chrec_convert (type, chrec, at_stmt);
1279 /* Convert CHREC to TYPE. When the analyzer knows the context in
1280 which the CHREC is built, it sets AT_STMT to the statement that
1281 contains the definition of the analyzed variable, otherwise the
1282 conversion is less accurate: the information is used for
1283 determining a more accurate estimation of the number of iterations.
1284 By default AT_STMT could be safely set to NULL_TREE.
1286 The following rule is always true: TREE_TYPE (chrec) ==
1287 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1288 An example of what could happen when adding two chrecs and the type
1289 of the CHREC_RIGHT is different than CHREC_LEFT is:
1291 {(uint) 0, +, (uchar) 10} +
1292 {(uint) 0, +, (uchar) 250}
1294 that would produce a wrong result if CHREC_RIGHT is not (uint):
1296 {(uint) 0, +, (uchar) 4}
1298 instead of
1300 {(uint) 0, +, (uint) 260}
1303 tree
1304 chrec_convert (tree type, tree chrec, gimple at_stmt)
1306 return chrec_convert_1 (type, chrec, at_stmt, true);
1309 /* Convert CHREC to TYPE. When the analyzer knows the context in
1310 which the CHREC is built, it sets AT_STMT to the statement that
1311 contains the definition of the analyzed variable, otherwise the
1312 conversion is less accurate: the information is used for
1313 determining a more accurate estimation of the number of iterations.
1314 By default AT_STMT could be safely set to NULL_TREE.
1316 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1317 the rules for overflow of the given language apply (e.g., that signed
1318 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1319 tests, but also to enforce that the result follows them. */
1321 static tree
1322 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1323 bool use_overflow_semantics)
1325 tree ct, res;
1326 tree base, step;
1327 struct loop *loop;
1329 if (automatically_generated_chrec_p (chrec))
1330 return chrec;
1332 ct = chrec_type (chrec);
1333 if (ct == type)
1334 return chrec;
1336 if (!evolution_function_is_affine_p (chrec))
1337 goto keep_cast;
1339 loop = get_chrec_loop (chrec);
1340 base = CHREC_LEFT (chrec);
1341 step = CHREC_RIGHT (chrec);
1343 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1344 use_overflow_semantics))
1345 return build_polynomial_chrec (loop->num, base, step);
1347 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1348 keep_cast:
1349 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1350 may be more expensive. We do want to perform this optimization here
1351 though for canonicalization reasons. */
1352 if (use_overflow_semantics
1353 && (TREE_CODE (chrec) == PLUS_EXPR
1354 || TREE_CODE (chrec) == MINUS_EXPR)
1355 && TREE_CODE (type) == INTEGER_TYPE
1356 && TREE_CODE (ct) == INTEGER_TYPE
1357 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1358 && TYPE_OVERFLOW_UNDEFINED (ct))
1359 res = fold_build2 (TREE_CODE (chrec), type,
1360 fold_convert (type, TREE_OPERAND (chrec, 0)),
1361 fold_convert (type, TREE_OPERAND (chrec, 1)));
1362 else
1363 res = fold_convert (type, chrec);
1365 /* Don't propagate overflows. */
1366 if (CONSTANT_CLASS_P (res))
1367 TREE_OVERFLOW (res) = 0;
1369 /* But reject constants that don't fit in their type after conversion.
1370 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1371 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1372 and can cause problems later when computing niters of loops. Note
1373 that we don't do the check before converting because we don't want
1374 to reject conversions of negative chrecs to unsigned types. */
1375 if (TREE_CODE (res) == INTEGER_CST
1376 && TREE_CODE (type) == INTEGER_TYPE
1377 && !int_fits_type_p (res, type))
1378 res = chrec_dont_know;
1380 return res;
1383 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1384 chrec if something else than what chrec_convert would do happens, NULL_TREE
1385 otherwise. */
1387 tree
1388 chrec_convert_aggressive (tree type, tree chrec)
1390 tree inner_type, left, right, lc, rc, rtype;
1392 if (automatically_generated_chrec_p (chrec)
1393 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1394 return NULL_TREE;
1396 inner_type = TREE_TYPE (chrec);
1397 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1398 return NULL_TREE;
1400 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1402 left = CHREC_LEFT (chrec);
1403 right = CHREC_RIGHT (chrec);
1404 lc = chrec_convert_aggressive (type, left);
1405 if (!lc)
1406 lc = chrec_convert (type, left, NULL);
1407 rc = chrec_convert_aggressive (rtype, right);
1408 if (!rc)
1409 rc = chrec_convert (rtype, right, NULL);
1411 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1414 /* Returns true when CHREC0 == CHREC1. */
1416 bool
1417 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1419 if (chrec0 == NULL_TREE
1420 || chrec1 == NULL_TREE
1421 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1422 return false;
1424 if (chrec0 == chrec1)
1425 return true;
1427 switch (TREE_CODE (chrec0))
1429 case INTEGER_CST:
1430 return operand_equal_p (chrec0, chrec1, 0);
1432 case POLYNOMIAL_CHREC:
1433 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1434 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1435 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1436 default:
1437 return false;
1441 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1442 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1443 which of these cases happens. */
1445 enum ev_direction
1446 scev_direction (const_tree chrec)
1448 const_tree step;
1450 if (!evolution_function_is_affine_p (chrec))
1451 return EV_DIR_UNKNOWN;
1453 step = CHREC_RIGHT (chrec);
1454 if (TREE_CODE (step) != INTEGER_CST)
1455 return EV_DIR_UNKNOWN;
1457 if (tree_int_cst_sign_bit (step))
1458 return EV_DIR_DECREASES;
1459 else
1460 return EV_DIR_GROWS;
1463 /* Iterates over all the components of SCEV, and calls CBCK. */
1465 void
1466 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1468 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1470 case 3:
1471 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1473 case 2:
1474 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1476 case 1:
1477 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1479 default:
1480 cbck (scev, data);
1481 break;
1485 /* Returns true when the operation can be part of a linear
1486 expression. */
1488 static inline bool
1489 operator_is_linear (tree scev)
1491 switch (TREE_CODE (scev))
1493 case INTEGER_CST:
1494 case POLYNOMIAL_CHREC:
1495 case PLUS_EXPR:
1496 case POINTER_PLUS_EXPR:
1497 case MULT_EXPR:
1498 case MINUS_EXPR:
1499 case NEGATE_EXPR:
1500 case SSA_NAME:
1501 case NON_LVALUE_EXPR:
1502 case BIT_NOT_EXPR:
1503 CASE_CONVERT:
1504 return true;
1506 default:
1507 return false;
1511 /* Return true when SCEV is a linear expression. Linear expressions
1512 can contain additions, substractions and multiplications.
1513 Multiplications are restricted to constant scaling: "cst * x". */
1515 bool
1516 scev_is_linear_expression (tree scev)
1518 if (scev == NULL
1519 || !operator_is_linear (scev))
1520 return false;
1522 if (TREE_CODE (scev) == MULT_EXPR)
1523 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1524 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1526 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1527 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1528 return false;
1530 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1532 case 3:
1533 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1534 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1535 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1537 case 2:
1538 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1539 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1541 case 1:
1542 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1544 case 0:
1545 return true;
1547 default:
1548 return false;
1552 /* Determines whether the expression CHREC contains only interger consts
1553 in the right parts. */
1555 bool
1556 evolution_function_right_is_integer_cst (const_tree chrec)
1558 if (chrec == NULL_TREE)
1559 return false;
1561 switch (TREE_CODE (chrec))
1563 case INTEGER_CST:
1564 return true;
1566 case POLYNOMIAL_CHREC:
1567 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1568 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1569 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1571 CASE_CONVERT:
1572 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1574 default:
1575 return false;