1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
24 #include "hash-table.h"
28 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity
= 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t
*edge_to_cases
;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
92 /* Hashtable helpers. */
94 struct locus_descrim_hasher
: typed_free_remove
<locus_discrim_map
>
96 typedef locus_discrim_map value_type
;
97 typedef locus_discrim_map compare_type
;
98 static inline hashval_t
hash (const value_type
*);
99 static inline bool equal (const value_type
*, const compare_type
*);
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
106 locus_descrim_hasher::hash (const value_type
*item
)
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
115 locus_descrim_hasher::equal (const value_type
*a
, const compare_type
*b
)
117 return a
->locus
== b
->locus
;
120 static hash_table
<locus_descrim_hasher
> discriminator_per_locus
;
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq
);
124 static void factor_computed_gotos (void);
127 static void make_edges (void);
128 static void make_cond_expr_edges (basic_block
);
129 static void make_gimple_switch_edges (basic_block
);
130 static void make_goto_expr_edges (basic_block
);
131 static void make_gimple_asm_edges (basic_block
);
132 static void assign_discriminator (location_t
, basic_block
);
133 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
134 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
135 static unsigned int split_critical_edges (void);
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple
, gimple
);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge
);
141 static gimple
first_non_label_stmt (basic_block
);
142 static bool verify_gimple_transaction (gimple
);
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block
, basic_block
);
146 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
147 static void remove_bb (basic_block
);
148 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
149 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
150 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
151 static tree
find_case_label_for_value (gimple
, tree
);
154 init_empty_tree_cfg_for_function (struct function
*fn
)
156 /* Initialize the basic block array. */
158 profile_status_for_function (fn
) = PROFILE_ABSENT
;
159 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
160 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
161 vec_alloc (basic_block_info_for_function (fn
), initial_cfg_capacity
);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn
),
163 initial_cfg_capacity
);
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn
), initial_cfg_capacity
);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn
),
168 initial_cfg_capacity
);
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
182 init_empty_tree_cfg (void)
184 init_empty_tree_cfg_for_function (cfun
);
187 /*---------------------------------------------------------------------------
189 ---------------------------------------------------------------------------*/
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
195 build_gimple_cfg (gimple_seq seq
)
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
200 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
202 init_empty_tree_cfg ();
204 found_computed_goto
= 0;
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto
)
213 factor_computed_gotos ();
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
217 create_empty_bb (ENTRY_BLOCK_PTR
);
219 /* Adjust the size of the array. */
220 if (basic_block_info
->length () < (size_t) n_basic_blocks
)
221 vec_safe_grow_cleared (basic_block_info
, n_basic_blocks
);
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus
.create (13);
234 cleanup_dead_labels ();
235 discriminator_per_locus
.dispose ();
239 execute_build_cfg (void)
241 gimple_seq body
= gimple_body (current_function_decl
);
243 build_gimple_cfg (body
);
244 gimple_set_body (current_function_decl
, NULL
);
245 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
247 fprintf (dump_file
, "Scope blocks:\n");
248 dump_scope_blocks (dump_file
, dump_flags
);
251 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
255 struct gimple_opt_pass pass_build_cfg
=
260 OPTGROUP_NONE
, /* optinfo_flags */
262 execute_build_cfg
, /* execute */
265 0, /* static_pass_number */
266 TV_TREE_CFG
, /* tv_id */
267 PROP_gimple_leh
, /* properties_required */
268 PROP_cfg
| PROP_loops
, /* properties_provided */
269 0, /* properties_destroyed */
270 0, /* todo_flags_start */
271 TODO_verify_stmts
/* todo_flags_finish */
276 /* Return true if T is a computed goto. */
279 computed_goto_p (gimple t
)
281 return (gimple_code (t
) == GIMPLE_GOTO
282 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
286 /* Search the CFG for any computed gotos. If found, factor them to a
287 common computed goto site. Also record the location of that site so
288 that we can un-factor the gotos after we have converted back to
292 factor_computed_gotos (void)
295 tree factored_label_decl
= NULL
;
297 gimple factored_computed_goto_label
= NULL
;
298 gimple factored_computed_goto
= NULL
;
300 /* We know there are one or more computed gotos in this function.
301 Examine the last statement in each basic block to see if the block
302 ends with a computed goto. */
306 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
312 last
= gsi_stmt (gsi
);
314 /* Ignore the computed goto we create when we factor the original
316 if (last
== factored_computed_goto
)
319 /* If the last statement is a computed goto, factor it. */
320 if (computed_goto_p (last
))
324 /* The first time we find a computed goto we need to create
325 the factored goto block and the variable each original
326 computed goto will use for their goto destination. */
327 if (!factored_computed_goto
)
329 basic_block new_bb
= create_empty_bb (bb
);
330 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
332 /* Create the destination of the factored goto. Each original
333 computed goto will put its desired destination into this
334 variable and jump to the label we create immediately
336 var
= create_tmp_var (ptr_type_node
, "gotovar");
338 /* Build a label for the new block which will contain the
339 factored computed goto. */
340 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
341 factored_computed_goto_label
342 = gimple_build_label (factored_label_decl
);
343 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
346 /* Build our new computed goto. */
347 factored_computed_goto
= gimple_build_goto (var
);
348 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
351 /* Copy the original computed goto's destination into VAR. */
352 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
353 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
355 /* And re-vector the computed goto to the new destination. */
356 gimple_goto_set_dest (last
, factored_label_decl
);
362 /* Build a flowgraph for the sequence of stmts SEQ. */
365 make_blocks (gimple_seq seq
)
367 gimple_stmt_iterator i
= gsi_start (seq
);
369 bool start_new_block
= true;
370 bool first_stmt_of_seq
= true;
371 basic_block bb
= ENTRY_BLOCK_PTR
;
373 while (!gsi_end_p (i
))
380 /* If the statement starts a new basic block or if we have determined
381 in a previous pass that we need to create a new block for STMT, do
383 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
385 if (!first_stmt_of_seq
)
386 gsi_split_seq_before (&i
, &seq
);
387 bb
= create_basic_block (seq
, NULL
, bb
);
388 start_new_block
= false;
391 /* Now add STMT to BB and create the subgraphs for special statement
393 gimple_set_bb (stmt
, bb
);
395 if (computed_goto_p (stmt
))
396 found_computed_goto
= true;
398 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
400 if (stmt_ends_bb_p (stmt
))
402 /* If the stmt can make abnormal goto use a new temporary
403 for the assignment to the LHS. This makes sure the old value
404 of the LHS is available on the abnormal edge. Otherwise
405 we will end up with overlapping life-ranges for abnormal
407 if (gimple_has_lhs (stmt
)
408 && stmt_can_make_abnormal_goto (stmt
)
409 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
411 tree lhs
= gimple_get_lhs (stmt
);
412 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
413 gimple s
= gimple_build_assign (lhs
, tmp
);
414 gimple_set_location (s
, gimple_location (stmt
));
415 gimple_set_block (s
, gimple_block (stmt
));
416 gimple_set_lhs (stmt
, tmp
);
417 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
418 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
419 DECL_GIMPLE_REG_P (tmp
) = 1;
420 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
422 start_new_block
= true;
426 first_stmt_of_seq
= false;
431 /* Create and return a new empty basic block after bb AFTER. */
434 create_bb (void *h
, void *e
, basic_block after
)
440 /* Create and initialize a new basic block. Since alloc_block uses
441 GC allocation that clears memory to allocate a basic block, we do
442 not have to clear the newly allocated basic block here. */
445 bb
->index
= last_basic_block
;
447 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
449 /* Add the new block to the linked list of blocks. */
450 link_block (bb
, after
);
452 /* Grow the basic block array if needed. */
453 if ((size_t) last_basic_block
== basic_block_info
->length ())
455 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
456 vec_safe_grow_cleared (basic_block_info
, new_size
);
459 /* Add the newly created block to the array. */
460 SET_BASIC_BLOCK (last_basic_block
, bb
);
469 /*---------------------------------------------------------------------------
471 ---------------------------------------------------------------------------*/
473 /* Fold COND_EXPR_COND of each COND_EXPR. */
476 fold_cond_expr_cond (void)
482 gimple stmt
= last_stmt (bb
);
484 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
486 location_t loc
= gimple_location (stmt
);
490 fold_defer_overflow_warnings ();
491 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
492 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
495 zerop
= integer_zerop (cond
);
496 onep
= integer_onep (cond
);
499 zerop
= onep
= false;
501 fold_undefer_overflow_warnings (zerop
|| onep
,
503 WARN_STRICT_OVERFLOW_CONDITIONAL
);
505 gimple_cond_make_false (stmt
);
507 gimple_cond_make_true (stmt
);
512 /* Join all the blocks in the flowgraph. */
518 struct omp_region
*cur_region
= NULL
;
520 /* Create an edge from entry to the first block with executable
522 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
524 /* Traverse the basic block array placing edges. */
527 gimple last
= last_stmt (bb
);
532 enum gimple_code code
= gimple_code (last
);
536 make_goto_expr_edges (bb
);
540 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
544 make_cond_expr_edges (bb
);
548 make_gimple_switch_edges (bb
);
552 make_eh_edges (last
);
555 case GIMPLE_EH_DISPATCH
:
556 fallthru
= make_eh_dispatch_edges (last
);
560 /* If this function receives a nonlocal goto, then we need to
561 make edges from this call site to all the nonlocal goto
563 if (stmt_can_make_abnormal_goto (last
))
564 make_abnormal_goto_edges (bb
, true);
566 /* If this statement has reachable exception handlers, then
567 create abnormal edges to them. */
568 make_eh_edges (last
);
570 /* BUILTIN_RETURN is really a return statement. */
571 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
572 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
573 /* Some calls are known not to return. */
575 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
579 /* A GIMPLE_ASSIGN may throw internally and thus be considered
581 if (is_ctrl_altering_stmt (last
))
582 make_eh_edges (last
);
587 make_gimple_asm_edges (bb
);
591 case GIMPLE_OMP_PARALLEL
:
592 case GIMPLE_OMP_TASK
:
594 case GIMPLE_OMP_SINGLE
:
595 case GIMPLE_OMP_MASTER
:
596 case GIMPLE_OMP_ORDERED
:
597 case GIMPLE_OMP_CRITICAL
:
598 case GIMPLE_OMP_SECTION
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS
:
604 cur_region
= new_omp_region (bb
, code
, cur_region
);
608 case GIMPLE_OMP_SECTIONS_SWITCH
:
612 case GIMPLE_OMP_ATOMIC_LOAD
:
613 case GIMPLE_OMP_ATOMIC_STORE
:
617 case GIMPLE_OMP_RETURN
:
618 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
619 somewhere other than the next block. This will be
621 cur_region
->exit
= bb
;
622 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
623 cur_region
= cur_region
->outer
;
626 case GIMPLE_OMP_CONTINUE
:
627 cur_region
->cont
= bb
;
628 switch (cur_region
->type
)
631 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
632 succs edges as abnormal to prevent splitting
634 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
635 /* Make the loopback edge. */
636 make_edge (bb
, single_succ (cur_region
->entry
),
639 /* Create an edge from GIMPLE_OMP_FOR to exit, which
640 corresponds to the case that the body of the loop
641 is not executed at all. */
642 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
643 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
647 case GIMPLE_OMP_SECTIONS
:
648 /* Wire up the edges into and out of the nested sections. */
650 basic_block switch_bb
= single_succ (cur_region
->entry
);
652 struct omp_region
*i
;
653 for (i
= cur_region
->inner
; i
; i
= i
->next
)
655 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
656 make_edge (switch_bb
, i
->entry
, 0);
657 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
660 /* Make the loopback edge to the block with
661 GIMPLE_OMP_SECTIONS_SWITCH. */
662 make_edge (bb
, switch_bb
, 0);
664 /* Make the edge from the switch to exit. */
665 make_edge (switch_bb
, bb
->next_bb
, 0);
675 case GIMPLE_TRANSACTION
:
677 tree abort_label
= gimple_transaction_label (last
);
679 make_edge (bb
, label_to_block (abort_label
), EDGE_TM_ABORT
);
685 gcc_assert (!stmt_ends_bb_p (last
));
694 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
696 assign_discriminator (gimple_location (last
), bb
->next_bb
);
703 /* Fold COND_EXPR_COND of each COND_EXPR. */
704 fold_cond_expr_cond ();
707 /* Find the next available discriminator value for LOCUS. The
708 discriminator distinguishes among several basic blocks that
709 share a common locus, allowing for more accurate sample-based
713 next_discriminator_for_locus (location_t locus
)
715 struct locus_discrim_map item
;
716 struct locus_discrim_map
**slot
;
719 item
.discriminator
= 0;
720 slot
= discriminator_per_locus
.find_slot_with_hash (&item
, locus
, INSERT
);
722 if (*slot
== HTAB_EMPTY_ENTRY
)
724 *slot
= XNEW (struct locus_discrim_map
);
726 (*slot
)->locus
= locus
;
727 (*slot
)->discriminator
= 0;
729 (*slot
)->discriminator
++;
730 return (*slot
)->discriminator
;
733 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
736 same_line_p (location_t locus1
, location_t locus2
)
738 expanded_location from
, to
;
740 if (locus1
== locus2
)
743 from
= expand_location (locus1
);
744 to
= expand_location (locus2
);
746 if (from
.line
!= to
.line
)
748 if (from
.file
== to
.file
)
750 return (from
.file
!= NULL
752 && filename_cmp (from
.file
, to
.file
) == 0);
755 /* Assign a unique discriminator value to block BB if it begins at the same
756 LOCUS as its predecessor block. */
759 assign_discriminator (location_t locus
, basic_block bb
)
761 gimple first_in_to_bb
, last_in_to_bb
;
763 if (locus
== 0 || bb
->discriminator
!= 0)
766 first_in_to_bb
= first_non_label_stmt (bb
);
767 last_in_to_bb
= last_stmt (bb
);
768 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
769 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
770 bb
->discriminator
= next_discriminator_for_locus (locus
);
773 /* Create the edges for a GIMPLE_COND starting at block BB. */
776 make_cond_expr_edges (basic_block bb
)
778 gimple entry
= last_stmt (bb
);
779 gimple then_stmt
, else_stmt
;
780 basic_block then_bb
, else_bb
;
781 tree then_label
, else_label
;
783 location_t entry_locus
;
786 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
788 entry_locus
= gimple_location (entry
);
790 /* Entry basic blocks for each component. */
791 then_label
= gimple_cond_true_label (entry
);
792 else_label
= gimple_cond_false_label (entry
);
793 then_bb
= label_to_block (then_label
);
794 else_bb
= label_to_block (else_label
);
795 then_stmt
= first_stmt (then_bb
);
796 else_stmt
= first_stmt (else_bb
);
798 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
799 assign_discriminator (entry_locus
, then_bb
);
800 e
->goto_locus
= gimple_location (then_stmt
);
801 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
804 assign_discriminator (entry_locus
, else_bb
);
805 e
->goto_locus
= gimple_location (else_stmt
);
808 /* We do not need the labels anymore. */
809 gimple_cond_set_true_label (entry
, NULL_TREE
);
810 gimple_cond_set_false_label (entry
, NULL_TREE
);
814 /* Called for each element in the hash table (P) as we delete the
815 edge to cases hash table.
817 Clear all the TREE_CHAINs to prevent problems with copying of
818 SWITCH_EXPRs and structure sharing rules, then free the hash table
822 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
823 void *data ATTRIBUTE_UNUSED
)
827 for (t
= (tree
) *value
; t
; t
= next
)
829 next
= CASE_CHAIN (t
);
830 CASE_CHAIN (t
) = NULL
;
837 /* Start recording information mapping edges to case labels. */
840 start_recording_case_labels (void)
842 gcc_assert (edge_to_cases
== NULL
);
843 edge_to_cases
= pointer_map_create ();
844 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
847 /* Return nonzero if we are recording information for case labels. */
850 recording_case_labels_p (void)
852 return (edge_to_cases
!= NULL
);
855 /* Stop recording information mapping edges to case labels and
856 remove any information we have recorded. */
858 end_recording_case_labels (void)
862 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
863 pointer_map_destroy (edge_to_cases
);
864 edge_to_cases
= NULL
;
865 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
867 basic_block bb
= BASIC_BLOCK (i
);
870 gimple stmt
= last_stmt (bb
);
871 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
872 group_case_labels_stmt (stmt
);
875 BITMAP_FREE (touched_switch_bbs
);
878 /* If we are inside a {start,end}_recording_cases block, then return
879 a chain of CASE_LABEL_EXPRs from T which reference E.
881 Otherwise return NULL. */
884 get_cases_for_edge (edge e
, gimple t
)
889 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
890 chains available. Return NULL so the caller can detect this case. */
891 if (!recording_case_labels_p ())
894 slot
= pointer_map_contains (edge_to_cases
, e
);
898 /* If we did not find E in the hash table, then this must be the first
899 time we have been queried for information about E & T. Add all the
900 elements from T to the hash table then perform the query again. */
902 n
= gimple_switch_num_labels (t
);
903 for (i
= 0; i
< n
; i
++)
905 tree elt
= gimple_switch_label (t
, i
);
906 tree lab
= CASE_LABEL (elt
);
907 basic_block label_bb
= label_to_block (lab
);
908 edge this_edge
= find_edge (e
->src
, label_bb
);
910 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
912 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
913 CASE_CHAIN (elt
) = (tree
) *slot
;
917 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
920 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
923 make_gimple_switch_edges (basic_block bb
)
925 gimple entry
= last_stmt (bb
);
926 location_t entry_locus
;
929 entry_locus
= gimple_location (entry
);
931 n
= gimple_switch_num_labels (entry
);
933 for (i
= 0; i
< n
; ++i
)
935 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
936 basic_block label_bb
= label_to_block (lab
);
937 make_edge (bb
, label_bb
, 0);
938 assign_discriminator (entry_locus
, label_bb
);
943 /* Return the basic block holding label DEST. */
946 label_to_block_fn (struct function
*ifun
, tree dest
)
948 int uid
= LABEL_DECL_UID (dest
);
950 /* We would die hard when faced by an undefined label. Emit a label to
951 the very first basic block. This will hopefully make even the dataflow
952 and undefined variable warnings quite right. */
953 if (seen_error () && uid
< 0)
955 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
958 stmt
= gimple_build_label (dest
);
959 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
960 uid
= LABEL_DECL_UID (dest
);
962 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
964 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
967 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
968 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
971 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
973 basic_block target_bb
;
974 gimple_stmt_iterator gsi
;
976 FOR_EACH_BB (target_bb
)
978 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
980 gimple label_stmt
= gsi_stmt (gsi
);
983 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
986 target
= gimple_label_label (label_stmt
);
988 /* Make an edge to every label block that has been marked as a
989 potential target for a computed goto or a non-local goto. */
990 if ((FORCED_LABEL (target
) && !for_call
)
991 || (DECL_NONLOCAL (target
) && for_call
))
993 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
997 if (!gsi_end_p (gsi
))
999 /* Make an edge to every setjmp-like call. */
1000 gimple call_stmt
= gsi_stmt (gsi
);
1001 if (is_gimple_call (call_stmt
)
1002 && (gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
))
1003 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1008 /* Create edges for a goto statement at block BB. */
1011 make_goto_expr_edges (basic_block bb
)
1013 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1014 gimple goto_t
= gsi_stmt (last
);
1016 /* A simple GOTO creates normal edges. */
1017 if (simple_goto_p (goto_t
))
1019 tree dest
= gimple_goto_dest (goto_t
);
1020 basic_block label_bb
= label_to_block (dest
);
1021 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1022 e
->goto_locus
= gimple_location (goto_t
);
1023 assign_discriminator (e
->goto_locus
, label_bb
);
1024 gsi_remove (&last
, true);
1028 /* A computed GOTO creates abnormal edges. */
1029 make_abnormal_goto_edges (bb
, false);
1032 /* Create edges for an asm statement with labels at block BB. */
1035 make_gimple_asm_edges (basic_block bb
)
1037 gimple stmt
= last_stmt (bb
);
1038 location_t stmt_loc
= gimple_location (stmt
);
1039 int i
, n
= gimple_asm_nlabels (stmt
);
1041 for (i
= 0; i
< n
; ++i
)
1043 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1044 basic_block label_bb
= label_to_block (label
);
1045 make_edge (bb
, label_bb
, 0);
1046 assign_discriminator (stmt_loc
, label_bb
);
1050 /*---------------------------------------------------------------------------
1052 ---------------------------------------------------------------------------*/
1054 /* Cleanup useless labels in basic blocks. This is something we wish
1055 to do early because it allows us to group case labels before creating
1056 the edges for the CFG, and it speeds up block statement iterators in
1057 all passes later on.
1058 We rerun this pass after CFG is created, to get rid of the labels that
1059 are no longer referenced. After then we do not run it any more, since
1060 (almost) no new labels should be created. */
1062 /* A map from basic block index to the leading label of that block. */
1063 static struct label_record
1068 /* True if the label is referenced from somewhere. */
1072 /* Given LABEL return the first label in the same basic block. */
1075 main_block_label (tree label
)
1077 basic_block bb
= label_to_block (label
);
1078 tree main_label
= label_for_bb
[bb
->index
].label
;
1080 /* label_to_block possibly inserted undefined label into the chain. */
1083 label_for_bb
[bb
->index
].label
= label
;
1087 label_for_bb
[bb
->index
].used
= true;
1091 /* Clean up redundant labels within the exception tree. */
1094 cleanup_dead_labels_eh (void)
1101 if (cfun
->eh
== NULL
)
1104 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1105 if (lp
&& lp
->post_landing_pad
)
1107 lab
= main_block_label (lp
->post_landing_pad
);
1108 if (lab
!= lp
->post_landing_pad
)
1110 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1111 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1115 FOR_ALL_EH_REGION (r
)
1119 case ERT_MUST_NOT_THROW
:
1125 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1129 c
->label
= main_block_label (lab
);
1134 case ERT_ALLOWED_EXCEPTIONS
:
1135 lab
= r
->u
.allowed
.label
;
1137 r
->u
.allowed
.label
= main_block_label (lab
);
1143 /* Cleanup redundant labels. This is a three-step process:
1144 1) Find the leading label for each block.
1145 2) Redirect all references to labels to the leading labels.
1146 3) Cleanup all useless labels. */
1149 cleanup_dead_labels (void)
1152 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1154 /* Find a suitable label for each block. We use the first user-defined
1155 label if there is one, or otherwise just the first label we see. */
1158 gimple_stmt_iterator i
;
1160 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1163 gimple stmt
= gsi_stmt (i
);
1165 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1168 label
= gimple_label_label (stmt
);
1170 /* If we have not yet seen a label for the current block,
1171 remember this one and see if there are more labels. */
1172 if (!label_for_bb
[bb
->index
].label
)
1174 label_for_bb
[bb
->index
].label
= label
;
1178 /* If we did see a label for the current block already, but it
1179 is an artificially created label, replace it if the current
1180 label is a user defined label. */
1181 if (!DECL_ARTIFICIAL (label
)
1182 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1184 label_for_bb
[bb
->index
].label
= label
;
1190 /* Now redirect all jumps/branches to the selected label.
1191 First do so for each block ending in a control statement. */
1194 gimple stmt
= last_stmt (bb
);
1195 tree label
, new_label
;
1200 switch (gimple_code (stmt
))
1203 label
= gimple_cond_true_label (stmt
);
1206 new_label
= main_block_label (label
);
1207 if (new_label
!= label
)
1208 gimple_cond_set_true_label (stmt
, new_label
);
1211 label
= gimple_cond_false_label (stmt
);
1214 new_label
= main_block_label (label
);
1215 if (new_label
!= label
)
1216 gimple_cond_set_false_label (stmt
, new_label
);
1222 size_t i
, n
= gimple_switch_num_labels (stmt
);
1224 /* Replace all destination labels. */
1225 for (i
= 0; i
< n
; ++i
)
1227 tree case_label
= gimple_switch_label (stmt
, i
);
1228 label
= CASE_LABEL (case_label
);
1229 new_label
= main_block_label (label
);
1230 if (new_label
!= label
)
1231 CASE_LABEL (case_label
) = new_label
;
1238 int i
, n
= gimple_asm_nlabels (stmt
);
1240 for (i
= 0; i
< n
; ++i
)
1242 tree cons
= gimple_asm_label_op (stmt
, i
);
1243 tree label
= main_block_label (TREE_VALUE (cons
));
1244 TREE_VALUE (cons
) = label
;
1249 /* We have to handle gotos until they're removed, and we don't
1250 remove them until after we've created the CFG edges. */
1252 if (!computed_goto_p (stmt
))
1254 label
= gimple_goto_dest (stmt
);
1255 new_label
= main_block_label (label
);
1256 if (new_label
!= label
)
1257 gimple_goto_set_dest (stmt
, new_label
);
1261 case GIMPLE_TRANSACTION
:
1263 tree label
= gimple_transaction_label (stmt
);
1266 tree new_label
= main_block_label (label
);
1267 if (new_label
!= label
)
1268 gimple_transaction_set_label (stmt
, new_label
);
1278 /* Do the same for the exception region tree labels. */
1279 cleanup_dead_labels_eh ();
1281 /* Finally, purge dead labels. All user-defined labels and labels that
1282 can be the target of non-local gotos and labels which have their
1283 address taken are preserved. */
1286 gimple_stmt_iterator i
;
1287 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1289 if (!label_for_this_bb
)
1292 /* If the main label of the block is unused, we may still remove it. */
1293 if (!label_for_bb
[bb
->index
].used
)
1294 label_for_this_bb
= NULL
;
1296 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1299 gimple stmt
= gsi_stmt (i
);
1301 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1304 label
= gimple_label_label (stmt
);
1306 if (label
== label_for_this_bb
1307 || !DECL_ARTIFICIAL (label
)
1308 || DECL_NONLOCAL (label
)
1309 || FORCED_LABEL (label
))
1312 gsi_remove (&i
, true);
1316 free (label_for_bb
);
1319 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1320 the ones jumping to the same label.
1321 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1324 group_case_labels_stmt (gimple stmt
)
1326 int old_size
= gimple_switch_num_labels (stmt
);
1327 int i
, j
, new_size
= old_size
;
1328 basic_block default_bb
= NULL
;
1330 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1332 /* Look for possible opportunities to merge cases. */
1334 while (i
< old_size
)
1336 tree base_case
, base_high
;
1337 basic_block base_bb
;
1339 base_case
= gimple_switch_label (stmt
, i
);
1341 gcc_assert (base_case
);
1342 base_bb
= label_to_block (CASE_LABEL (base_case
));
1344 /* Discard cases that have the same destination as the
1346 if (base_bb
== default_bb
)
1348 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1354 base_high
= CASE_HIGH (base_case
)
1355 ? CASE_HIGH (base_case
)
1356 : CASE_LOW (base_case
);
1359 /* Try to merge case labels. Break out when we reach the end
1360 of the label vector or when we cannot merge the next case
1361 label with the current one. */
1362 while (i
< old_size
)
1364 tree merge_case
= gimple_switch_label (stmt
, i
);
1365 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1366 double_int bhp1
= tree_to_double_int (base_high
) + double_int_one
;
1368 /* Merge the cases if they jump to the same place,
1369 and their ranges are consecutive. */
1370 if (merge_bb
== base_bb
1371 && tree_to_double_int (CASE_LOW (merge_case
)) == bhp1
)
1373 base_high
= CASE_HIGH (merge_case
) ?
1374 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1375 CASE_HIGH (base_case
) = base_high
;
1376 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1385 /* Compress the case labels in the label vector, and adjust the
1386 length of the vector. */
1387 for (i
= 0, j
= 0; i
< new_size
; i
++)
1389 while (! gimple_switch_label (stmt
, j
))
1391 gimple_switch_set_label (stmt
, i
,
1392 gimple_switch_label (stmt
, j
++));
1395 gcc_assert (new_size
<= old_size
);
1396 gimple_switch_set_num_labels (stmt
, new_size
);
1399 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1400 and scan the sorted vector of cases. Combine the ones jumping to the
1404 group_case_labels (void)
1410 gimple stmt
= last_stmt (bb
);
1411 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1412 group_case_labels_stmt (stmt
);
1416 /* Checks whether we can merge block B into block A. */
1419 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1422 gimple_stmt_iterator gsi
;
1424 if (!single_succ_p (a
))
1427 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1430 if (single_succ (a
) != b
)
1433 if (!single_pred_p (b
))
1436 if (b
== EXIT_BLOCK_PTR
)
1439 /* If A ends by a statement causing exceptions or something similar, we
1440 cannot merge the blocks. */
1441 stmt
= last_stmt (a
);
1442 if (stmt
&& stmt_ends_bb_p (stmt
))
1445 /* Do not allow a block with only a non-local label to be merged. */
1447 && gimple_code (stmt
) == GIMPLE_LABEL
1448 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1451 /* Examine the labels at the beginning of B. */
1452 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1455 stmt
= gsi_stmt (gsi
);
1456 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1458 lab
= gimple_label_label (stmt
);
1460 /* Do not remove user forced labels or for -O0 any user labels. */
1461 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1465 /* Protect the loop latches. */
1466 if (current_loops
&& b
->loop_father
->latch
== b
)
1469 /* It must be possible to eliminate all phi nodes in B. If ssa form
1470 is not up-to-date and a name-mapping is registered, we cannot eliminate
1471 any phis. Symbols marked for renaming are never a problem though. */
1472 for (gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1474 gimple phi
= gsi_stmt (gsi
);
1475 /* Technically only new names matter. */
1476 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1480 /* When not optimizing, don't merge if we'd lose goto_locus. */
1482 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1484 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1485 gimple_stmt_iterator prev
, next
;
1486 prev
= gsi_last_nondebug_bb (a
);
1487 next
= gsi_after_labels (b
);
1488 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1489 gsi_next_nondebug (&next
);
1490 if ((gsi_end_p (prev
)
1491 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1492 && (gsi_end_p (next
)
1493 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1500 /* Return true if the var whose chain of uses starts at PTR has no
1503 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1505 const ssa_use_operand_t
*ptr
;
1507 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1508 if (!is_gimple_debug (USE_STMT (ptr
)))
1514 /* Return true if the var whose chain of uses starts at PTR has a
1515 single nondebug use. Set USE_P and STMT to that single nondebug
1516 use, if so, or to NULL otherwise. */
1518 single_imm_use_1 (const ssa_use_operand_t
*head
,
1519 use_operand_p
*use_p
, gimple
*stmt
)
1521 ssa_use_operand_t
*ptr
, *single_use
= 0;
1523 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1524 if (!is_gimple_debug (USE_STMT (ptr
)))
1535 *use_p
= single_use
;
1538 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1540 return !!single_use
;
1543 /* Replaces all uses of NAME by VAL. */
1546 replace_uses_by (tree name
, tree val
)
1548 imm_use_iterator imm_iter
;
1553 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1555 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1557 replace_exp (use
, val
);
1559 if (gimple_code (stmt
) == GIMPLE_PHI
)
1561 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1562 if (e
->flags
& EDGE_ABNORMAL
)
1564 /* This can only occur for virtual operands, since
1565 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1566 would prevent replacement. */
1567 gcc_checking_assert (virtual_operand_p (name
));
1568 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1573 if (gimple_code (stmt
) != GIMPLE_PHI
)
1575 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1576 gimple orig_stmt
= stmt
;
1579 /* Mark the block if we changed the last stmt in it. */
1580 if (cfgcleanup_altered_bbs
1581 && stmt_ends_bb_p (stmt
))
1582 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1584 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1585 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1586 only change sth from non-invariant to invariant, and only
1587 when propagating constants. */
1588 if (is_gimple_min_invariant (val
))
1589 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1591 tree op
= gimple_op (stmt
, i
);
1592 /* Operands may be empty here. For example, the labels
1593 of a GIMPLE_COND are nulled out following the creation
1594 of the corresponding CFG edges. */
1595 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1596 recompute_tree_invariant_for_addr_expr (op
);
1599 if (fold_stmt (&gsi
))
1600 stmt
= gsi_stmt (gsi
);
1602 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1603 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1609 gcc_checking_assert (has_zero_uses (name
));
1611 /* Also update the trees stored in loop structures. */
1617 FOR_EACH_LOOP (li
, loop
, 0)
1619 substitute_in_loop_info (loop
, name
, val
);
1624 /* Merge block B into block A. */
1627 gimple_merge_blocks (basic_block a
, basic_block b
)
1629 gimple_stmt_iterator last
, gsi
, psi
;
1632 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1634 /* Remove all single-valued PHI nodes from block B of the form
1635 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1636 gsi
= gsi_last_bb (a
);
1637 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1639 gimple phi
= gsi_stmt (psi
);
1640 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1642 bool may_replace_uses
= (virtual_operand_p (def
)
1643 || may_propagate_copy (def
, use
));
1645 /* In case we maintain loop closed ssa form, do not propagate arguments
1646 of loop exit phi nodes. */
1648 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1649 && !virtual_operand_p (def
)
1650 && TREE_CODE (use
) == SSA_NAME
1651 && a
->loop_father
!= b
->loop_father
)
1652 may_replace_uses
= false;
1654 if (!may_replace_uses
)
1656 gcc_assert (!virtual_operand_p (def
));
1658 /* Note that just emitting the copies is fine -- there is no problem
1659 with ordering of phi nodes. This is because A is the single
1660 predecessor of B, therefore results of the phi nodes cannot
1661 appear as arguments of the phi nodes. */
1662 copy
= gimple_build_assign (def
, use
);
1663 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1664 remove_phi_node (&psi
, false);
1668 /* If we deal with a PHI for virtual operands, we can simply
1669 propagate these without fussing with folding or updating
1671 if (virtual_operand_p (def
))
1673 imm_use_iterator iter
;
1674 use_operand_p use_p
;
1677 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1678 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1679 SET_USE (use_p
, use
);
1681 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1682 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1685 replace_uses_by (def
, use
);
1687 remove_phi_node (&psi
, true);
1691 /* Ensure that B follows A. */
1692 move_block_after (b
, a
);
1694 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1695 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1697 /* Remove labels from B and set gimple_bb to A for other statements. */
1698 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1700 gimple stmt
= gsi_stmt (gsi
);
1701 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1703 tree label
= gimple_label_label (stmt
);
1706 gsi_remove (&gsi
, false);
1708 /* Now that we can thread computed gotos, we might have
1709 a situation where we have a forced label in block B
1710 However, the label at the start of block B might still be
1711 used in other ways (think about the runtime checking for
1712 Fortran assigned gotos). So we can not just delete the
1713 label. Instead we move the label to the start of block A. */
1714 if (FORCED_LABEL (label
))
1716 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1717 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1719 /* Other user labels keep around in a form of a debug stmt. */
1720 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1722 gimple dbg
= gimple_build_debug_bind (label
,
1725 gimple_debug_bind_reset_value (dbg
);
1726 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1729 lp_nr
= EH_LANDING_PAD_NR (label
);
1732 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1733 lp
->post_landing_pad
= NULL
;
1738 gimple_set_bb (stmt
, a
);
1743 /* Merge the sequences. */
1744 last
= gsi_last_bb (a
);
1745 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1746 set_bb_seq (b
, NULL
);
1748 if (cfgcleanup_altered_bbs
)
1749 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1753 /* Return the one of two successors of BB that is not reachable by a
1754 complex edge, if there is one. Else, return BB. We use
1755 this in optimizations that use post-dominators for their heuristics,
1756 to catch the cases in C++ where function calls are involved. */
1759 single_noncomplex_succ (basic_block bb
)
1762 if (EDGE_COUNT (bb
->succs
) != 2)
1765 e0
= EDGE_SUCC (bb
, 0);
1766 e1
= EDGE_SUCC (bb
, 1);
1767 if (e0
->flags
& EDGE_COMPLEX
)
1769 if (e1
->flags
& EDGE_COMPLEX
)
1775 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1778 notice_special_calls (gimple call
)
1780 int flags
= gimple_call_flags (call
);
1782 if (flags
& ECF_MAY_BE_ALLOCA
)
1783 cfun
->calls_alloca
= true;
1784 if (flags
& ECF_RETURNS_TWICE
)
1785 cfun
->calls_setjmp
= true;
1789 /* Clear flags set by notice_special_calls. Used by dead code removal
1790 to update the flags. */
1793 clear_special_calls (void)
1795 cfun
->calls_alloca
= false;
1796 cfun
->calls_setjmp
= false;
1799 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1802 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1804 /* Since this block is no longer reachable, we can just delete all
1805 of its PHI nodes. */
1806 remove_phi_nodes (bb
);
1808 /* Remove edges to BB's successors. */
1809 while (EDGE_COUNT (bb
->succs
) > 0)
1810 remove_edge (EDGE_SUCC (bb
, 0));
1814 /* Remove statements of basic block BB. */
1817 remove_bb (basic_block bb
)
1819 gimple_stmt_iterator i
;
1823 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1824 if (dump_flags
& TDF_DETAILS
)
1826 dump_bb (dump_file
, bb
, 0, dump_flags
);
1827 fprintf (dump_file
, "\n");
1833 struct loop
*loop
= bb
->loop_father
;
1835 /* If a loop gets removed, clean up the information associated
1837 if (loop
->latch
== bb
1838 || loop
->header
== bb
)
1839 free_numbers_of_iterations_estimates_loop (loop
);
1842 /* Remove all the instructions in the block. */
1843 if (bb_seq (bb
) != NULL
)
1845 /* Walk backwards so as to get a chance to substitute all
1846 released DEFs into debug stmts. See
1847 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1849 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1851 gimple stmt
= gsi_stmt (i
);
1852 if (gimple_code (stmt
) == GIMPLE_LABEL
1853 && (FORCED_LABEL (gimple_label_label (stmt
))
1854 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1857 gimple_stmt_iterator new_gsi
;
1859 /* A non-reachable non-local label may still be referenced.
1860 But it no longer needs to carry the extra semantics of
1862 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1864 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1865 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1868 new_bb
= bb
->prev_bb
;
1869 new_gsi
= gsi_start_bb (new_bb
);
1870 gsi_remove (&i
, false);
1871 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1875 /* Release SSA definitions if we are in SSA. Note that we
1876 may be called when not in SSA. For example,
1877 final_cleanup calls this function via
1878 cleanup_tree_cfg. */
1879 if (gimple_in_ssa_p (cfun
))
1880 release_defs (stmt
);
1882 gsi_remove (&i
, true);
1886 i
= gsi_last_bb (bb
);
1892 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1893 bb
->il
.gimple
.seq
= NULL
;
1894 bb
->il
.gimple
.phi_nodes
= NULL
;
1898 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1899 predicate VAL, return the edge that will be taken out of the block.
1900 If VAL does not match a unique edge, NULL is returned. */
1903 find_taken_edge (basic_block bb
, tree val
)
1907 stmt
= last_stmt (bb
);
1910 gcc_assert (is_ctrl_stmt (stmt
));
1915 if (!is_gimple_min_invariant (val
))
1918 if (gimple_code (stmt
) == GIMPLE_COND
)
1919 return find_taken_edge_cond_expr (bb
, val
);
1921 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1922 return find_taken_edge_switch_expr (bb
, val
);
1924 if (computed_goto_p (stmt
))
1926 /* Only optimize if the argument is a label, if the argument is
1927 not a label then we can not construct a proper CFG.
1929 It may be the case that we only need to allow the LABEL_REF to
1930 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1931 appear inside a LABEL_EXPR just to be safe. */
1932 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1933 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1934 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1941 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1942 statement, determine which of the outgoing edges will be taken out of the
1943 block. Return NULL if either edge may be taken. */
1946 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1951 dest
= label_to_block (val
);
1954 e
= find_edge (bb
, dest
);
1955 gcc_assert (e
!= NULL
);
1961 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1962 statement, determine which of the two edges will be taken out of the
1963 block. Return NULL if either edge may be taken. */
1966 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1968 edge true_edge
, false_edge
;
1970 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1972 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1973 return (integer_zerop (val
) ? false_edge
: true_edge
);
1976 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1977 statement, determine which edge will be taken out of the block. Return
1978 NULL if any edge may be taken. */
1981 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1983 basic_block dest_bb
;
1988 switch_stmt
= last_stmt (bb
);
1989 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1990 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1992 e
= find_edge (bb
, dest_bb
);
1998 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1999 We can make optimal use here of the fact that the case labels are
2000 sorted: We can do a binary search for a case matching VAL. */
2003 find_case_label_for_value (gimple switch_stmt
, tree val
)
2005 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2006 tree default_case
= gimple_switch_default_label (switch_stmt
);
2008 for (low
= 0, high
= n
; high
- low
> 1; )
2010 size_t i
= (high
+ low
) / 2;
2011 tree t
= gimple_switch_label (switch_stmt
, i
);
2014 /* Cache the result of comparing CASE_LOW and val. */
2015 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2022 if (CASE_HIGH (t
) == NULL
)
2024 /* A singe-valued case label. */
2030 /* A case range. We can only handle integer ranges. */
2031 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2036 return default_case
;
2040 /* Dump a basic block on stderr. */
2043 gimple_debug_bb (basic_block bb
)
2045 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2049 /* Dump basic block with index N on stderr. */
2052 gimple_debug_bb_n (int n
)
2054 gimple_debug_bb (BASIC_BLOCK (n
));
2055 return BASIC_BLOCK (n
);
2059 /* Dump the CFG on stderr.
2061 FLAGS are the same used by the tree dumping functions
2062 (see TDF_* in dumpfile.h). */
2065 gimple_debug_cfg (int flags
)
2067 gimple_dump_cfg (stderr
, flags
);
2071 /* Dump the program showing basic block boundaries on the given FILE.
2073 FLAGS are the same used by the tree dumping functions (see TDF_* in
2077 gimple_dump_cfg (FILE *file
, int flags
)
2079 if (flags
& TDF_DETAILS
)
2081 dump_function_header (file
, current_function_decl
, flags
);
2082 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2083 n_basic_blocks
, n_edges
, last_basic_block
);
2085 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2086 fprintf (file
, "\n");
2089 if (flags
& TDF_STATS
)
2090 dump_cfg_stats (file
);
2092 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2096 /* Dump CFG statistics on FILE. */
2099 dump_cfg_stats (FILE *file
)
2101 static long max_num_merged_labels
= 0;
2102 unsigned long size
, total
= 0;
2105 const char * const fmt_str
= "%-30s%-13s%12s\n";
2106 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2107 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2108 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2109 const char *funcname
= current_function_name ();
2111 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2113 fprintf (file
, "---------------------------------------------------------\n");
2114 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2115 fprintf (file
, fmt_str
, "", " instances ", "used ");
2116 fprintf (file
, "---------------------------------------------------------\n");
2118 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2120 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2121 SCALE (size
), LABEL (size
));
2125 num_edges
+= EDGE_COUNT (bb
->succs
);
2126 size
= num_edges
* sizeof (struct edge_def
);
2128 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2130 fprintf (file
, "---------------------------------------------------------\n");
2131 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2133 fprintf (file
, "---------------------------------------------------------\n");
2134 fprintf (file
, "\n");
2136 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2137 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2139 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2140 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2142 fprintf (file
, "\n");
2146 /* Dump CFG statistics on stderr. Keep extern so that it's always
2147 linked in the final executable. */
2150 debug_cfg_stats (void)
2152 dump_cfg_stats (stderr
);
2155 /*---------------------------------------------------------------------------
2156 Miscellaneous helpers
2157 ---------------------------------------------------------------------------*/
2159 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2160 flow. Transfers of control flow associated with EH are excluded. */
2163 call_can_make_abnormal_goto (gimple t
)
2165 /* If the function has no non-local labels, then a call cannot make an
2166 abnormal transfer of control. */
2167 if (!cfun
->has_nonlocal_label
2168 && !cfun
->calls_setjmp
)
2171 /* Likewise if the call has no side effects. */
2172 if (!gimple_has_side_effects (t
))
2175 /* Likewise if the called function is leaf. */
2176 if (gimple_call_flags (t
) & ECF_LEAF
)
2183 /* Return true if T can make an abnormal transfer of control flow.
2184 Transfers of control flow associated with EH are excluded. */
2187 stmt_can_make_abnormal_goto (gimple t
)
2189 if (computed_goto_p (t
))
2191 if (is_gimple_call (t
))
2192 return call_can_make_abnormal_goto (t
);
2197 /* Return true if T represents a stmt that always transfers control. */
2200 is_ctrl_stmt (gimple t
)
2202 switch (gimple_code (t
))
2216 /* Return true if T is a statement that may alter the flow of control
2217 (e.g., a call to a non-returning function). */
2220 is_ctrl_altering_stmt (gimple t
)
2224 switch (gimple_code (t
))
2228 int flags
= gimple_call_flags (t
);
2230 /* A call alters control flow if it can make an abnormal goto. */
2231 if (call_can_make_abnormal_goto (t
))
2234 /* A call also alters control flow if it does not return. */
2235 if (flags
& ECF_NORETURN
)
2238 /* TM ending statements have backedges out of the transaction.
2239 Return true so we split the basic block containing them.
2240 Note that the TM_BUILTIN test is merely an optimization. */
2241 if ((flags
& ECF_TM_BUILTIN
)
2242 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2245 /* BUILT_IN_RETURN call is same as return statement. */
2246 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2251 case GIMPLE_EH_DISPATCH
:
2252 /* EH_DISPATCH branches to the individual catch handlers at
2253 this level of a try or allowed-exceptions region. It can
2254 fallthru to the next statement as well. */
2258 if (gimple_asm_nlabels (t
) > 0)
2263 /* OpenMP directives alter control flow. */
2266 case GIMPLE_TRANSACTION
:
2267 /* A transaction start alters control flow. */
2274 /* If a statement can throw, it alters control flow. */
2275 return stmt_can_throw_internal (t
);
2279 /* Return true if T is a simple local goto. */
2282 simple_goto_p (gimple t
)
2284 return (gimple_code (t
) == GIMPLE_GOTO
2285 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2289 /* Return true if STMT should start a new basic block. PREV_STMT is
2290 the statement preceding STMT. It is used when STMT is a label or a
2291 case label. Labels should only start a new basic block if their
2292 previous statement wasn't a label. Otherwise, sequence of labels
2293 would generate unnecessary basic blocks that only contain a single
2297 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2302 /* Labels start a new basic block only if the preceding statement
2303 wasn't a label of the same type. This prevents the creation of
2304 consecutive blocks that have nothing but a single label. */
2305 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2307 /* Nonlocal and computed GOTO targets always start a new block. */
2308 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2309 || FORCED_LABEL (gimple_label_label (stmt
)))
2312 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2314 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2317 cfg_stats
.num_merged_labels
++;
2323 else if (gimple_code (stmt
) == GIMPLE_CALL
2324 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2325 /* setjmp acts similar to a nonlocal GOTO target and thus should
2326 start a new block. */
2333 /* Return true if T should end a basic block. */
2336 stmt_ends_bb_p (gimple t
)
2338 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2341 /* Remove block annotations and other data structures. */
2344 delete_tree_cfg_annotations (void)
2346 vec_free (label_to_block_map
);
2350 /* Return the first statement in basic block BB. */
2353 first_stmt (basic_block bb
)
2355 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2358 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2366 /* Return the first non-label statement in basic block BB. */
2369 first_non_label_stmt (basic_block bb
)
2371 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2372 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2374 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2377 /* Return the last statement in basic block BB. */
2380 last_stmt (basic_block bb
)
2382 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2385 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2393 /* Return the last statement of an otherwise empty block. Return NULL
2394 if the block is totally empty, or if it contains more than one
2398 last_and_only_stmt (basic_block bb
)
2400 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2406 last
= gsi_stmt (i
);
2407 gsi_prev_nondebug (&i
);
2411 /* Empty statements should no longer appear in the instruction stream.
2412 Everything that might have appeared before should be deleted by
2413 remove_useless_stmts, and the optimizers should just gsi_remove
2414 instead of smashing with build_empty_stmt.
2416 Thus the only thing that should appear here in a block containing
2417 one executable statement is a label. */
2418 prev
= gsi_stmt (i
);
2419 if (gimple_code (prev
) == GIMPLE_LABEL
)
2425 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2428 reinstall_phi_args (edge new_edge
, edge old_edge
)
2430 edge_var_map_vector
*v
;
2433 gimple_stmt_iterator phis
;
2435 v
= redirect_edge_var_map_vector (old_edge
);
2439 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2440 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2441 i
++, gsi_next (&phis
))
2443 gimple phi
= gsi_stmt (phis
);
2444 tree result
= redirect_edge_var_map_result (vm
);
2445 tree arg
= redirect_edge_var_map_def (vm
);
2447 gcc_assert (result
== gimple_phi_result (phi
));
2449 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2452 redirect_edge_var_map_clear (old_edge
);
2455 /* Returns the basic block after which the new basic block created
2456 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2457 near its "logical" location. This is of most help to humans looking
2458 at debugging dumps. */
2461 split_edge_bb_loc (edge edge_in
)
2463 basic_block dest
= edge_in
->dest
;
2464 basic_block dest_prev
= dest
->prev_bb
;
2468 edge e
= find_edge (dest_prev
, dest
);
2469 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2470 return edge_in
->src
;
2475 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2476 Abort on abnormal edges. */
2479 gimple_split_edge (edge edge_in
)
2481 basic_block new_bb
, after_bb
, dest
;
2484 /* Abnormal edges cannot be split. */
2485 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2487 dest
= edge_in
->dest
;
2489 after_bb
= split_edge_bb_loc (edge_in
);
2491 new_bb
= create_empty_bb (after_bb
);
2492 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2493 new_bb
->count
= edge_in
->count
;
2494 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2495 new_edge
->probability
= REG_BR_PROB_BASE
;
2496 new_edge
->count
= edge_in
->count
;
2498 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2499 gcc_assert (e
== edge_in
);
2500 reinstall_phi_args (new_edge
, e
);
2506 /* Verify properties of the address expression T with base object BASE. */
2509 verify_address (tree t
, tree base
)
2512 bool old_side_effects
;
2514 bool new_side_effects
;
2516 old_constant
= TREE_CONSTANT (t
);
2517 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2519 recompute_tree_invariant_for_addr_expr (t
);
2520 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2521 new_constant
= TREE_CONSTANT (t
);
2523 if (old_constant
!= new_constant
)
2525 error ("constant not recomputed when ADDR_EXPR changed");
2528 if (old_side_effects
!= new_side_effects
)
2530 error ("side effects not recomputed when ADDR_EXPR changed");
2534 if (!(TREE_CODE (base
) == VAR_DECL
2535 || TREE_CODE (base
) == PARM_DECL
2536 || TREE_CODE (base
) == RESULT_DECL
))
2539 if (DECL_GIMPLE_REG_P (base
))
2541 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2548 /* Callback for walk_tree, check that all elements with address taken are
2549 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2550 inside a PHI node. */
2553 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2560 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2561 #define CHECK_OP(N, MSG) \
2562 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2563 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2565 switch (TREE_CODE (t
))
2568 if (SSA_NAME_IN_FREE_LIST (t
))
2570 error ("SSA name in freelist but still referenced");
2576 error ("INDIRECT_REF in gimple IL");
2580 x
= TREE_OPERAND (t
, 0);
2581 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2582 || !is_gimple_mem_ref_addr (x
))
2584 error ("invalid first operand of MEM_REF");
2587 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2588 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2590 error ("invalid offset operand of MEM_REF");
2591 return TREE_OPERAND (t
, 1);
2593 if (TREE_CODE (x
) == ADDR_EXPR
2594 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2600 x
= fold (ASSERT_EXPR_COND (t
));
2601 if (x
== boolean_false_node
)
2603 error ("ASSERT_EXPR with an always-false condition");
2609 error ("MODIFY_EXPR not expected while having tuples");
2616 gcc_assert (is_gimple_address (t
));
2618 /* Skip any references (they will be checked when we recurse down the
2619 tree) and ensure that any variable used as a prefix is marked
2621 for (x
= TREE_OPERAND (t
, 0);
2622 handled_component_p (x
);
2623 x
= TREE_OPERAND (x
, 0))
2626 if ((tem
= verify_address (t
, x
)))
2629 if (!(TREE_CODE (x
) == VAR_DECL
2630 || TREE_CODE (x
) == PARM_DECL
2631 || TREE_CODE (x
) == RESULT_DECL
))
2634 if (!TREE_ADDRESSABLE (x
))
2636 error ("address taken, but ADDRESSABLE bit not set");
2644 x
= COND_EXPR_COND (t
);
2645 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2647 error ("non-integral used in condition");
2650 if (!is_gimple_condexpr (x
))
2652 error ("invalid conditional operand");
2657 case NON_LVALUE_EXPR
:
2658 case TRUTH_NOT_EXPR
:
2662 case FIX_TRUNC_EXPR
:
2667 CHECK_OP (0, "invalid operand to unary operator");
2674 case ARRAY_RANGE_REF
:
2676 case VIEW_CONVERT_EXPR
:
2677 /* We have a nest of references. Verify that each of the operands
2678 that determine where to reference is either a constant or a variable,
2679 verify that the base is valid, and then show we've already checked
2681 while (handled_component_p (t
))
2683 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2684 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2685 else if (TREE_CODE (t
) == ARRAY_REF
2686 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2688 CHECK_OP (1, "invalid array index");
2689 if (TREE_OPERAND (t
, 2))
2690 CHECK_OP (2, "invalid array lower bound");
2691 if (TREE_OPERAND (t
, 3))
2692 CHECK_OP (3, "invalid array stride");
2694 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2696 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2697 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2699 error ("invalid position or size operand to BIT_FIELD_REF");
2702 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2703 && (TYPE_PRECISION (TREE_TYPE (t
))
2704 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2706 error ("integral result type precision does not match "
2707 "field size of BIT_FIELD_REF");
2710 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2711 && !AGGREGATE_TYPE_P (TREE_TYPE (t
))
2712 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2722 t
= TREE_OPERAND (t
, 0);
2725 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2727 error ("invalid reference prefix");
2734 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2735 POINTER_PLUS_EXPR. */
2736 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2738 error ("invalid operand to plus/minus, type is a pointer");
2741 CHECK_OP (0, "invalid operand to binary operator");
2742 CHECK_OP (1, "invalid operand to binary operator");
2745 case POINTER_PLUS_EXPR
:
2746 /* Check to make sure the first operand is a pointer or reference type. */
2747 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2749 error ("invalid operand to pointer plus, first operand is not a pointer");
2752 /* Check to make sure the second operand is a ptrofftype. */
2753 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2755 error ("invalid operand to pointer plus, second operand is not an "
2756 "integer type of appropriate width");
2766 case UNORDERED_EXPR
:
2775 case TRUNC_DIV_EXPR
:
2777 case FLOOR_DIV_EXPR
:
2778 case ROUND_DIV_EXPR
:
2779 case TRUNC_MOD_EXPR
:
2781 case FLOOR_MOD_EXPR
:
2782 case ROUND_MOD_EXPR
:
2784 case EXACT_DIV_EXPR
:
2794 CHECK_OP (0, "invalid operand to binary operator");
2795 CHECK_OP (1, "invalid operand to binary operator");
2799 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2803 case CASE_LABEL_EXPR
:
2806 error ("invalid CASE_CHAIN");
2820 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2821 Returns true if there is an error, otherwise false. */
2824 verify_types_in_gimple_min_lval (tree expr
)
2828 if (is_gimple_id (expr
))
2831 if (TREE_CODE (expr
) != TARGET_MEM_REF
2832 && TREE_CODE (expr
) != MEM_REF
)
2834 error ("invalid expression for min lvalue");
2838 /* TARGET_MEM_REFs are strange beasts. */
2839 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2842 op
= TREE_OPERAND (expr
, 0);
2843 if (!is_gimple_val (op
))
2845 error ("invalid operand in indirect reference");
2846 debug_generic_stmt (op
);
2849 /* Memory references now generally can involve a value conversion. */
2854 /* Verify if EXPR is a valid GIMPLE reference expression. If
2855 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2856 if there is an error, otherwise false. */
2859 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2861 while (handled_component_p (expr
))
2863 tree op
= TREE_OPERAND (expr
, 0);
2865 if (TREE_CODE (expr
) == ARRAY_REF
2866 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2868 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2869 || (TREE_OPERAND (expr
, 2)
2870 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2871 || (TREE_OPERAND (expr
, 3)
2872 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2874 error ("invalid operands to array reference");
2875 debug_generic_stmt (expr
);
2880 /* Verify if the reference array element types are compatible. */
2881 if (TREE_CODE (expr
) == ARRAY_REF
2882 && !useless_type_conversion_p (TREE_TYPE (expr
),
2883 TREE_TYPE (TREE_TYPE (op
))))
2885 error ("type mismatch in array reference");
2886 debug_generic_stmt (TREE_TYPE (expr
));
2887 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2890 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2891 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2892 TREE_TYPE (TREE_TYPE (op
))))
2894 error ("type mismatch in array range reference");
2895 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2896 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2900 if ((TREE_CODE (expr
) == REALPART_EXPR
2901 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2902 && !useless_type_conversion_p (TREE_TYPE (expr
),
2903 TREE_TYPE (TREE_TYPE (op
))))
2905 error ("type mismatch in real/imagpart reference");
2906 debug_generic_stmt (TREE_TYPE (expr
));
2907 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2911 if (TREE_CODE (expr
) == COMPONENT_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr
),
2913 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2915 error ("type mismatch in component reference");
2916 debug_generic_stmt (TREE_TYPE (expr
));
2917 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2921 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2923 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2924 that their operand is not an SSA name or an invariant when
2925 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2926 bug). Otherwise there is nothing to verify, gross mismatches at
2927 most invoke undefined behavior. */
2929 && (TREE_CODE (op
) == SSA_NAME
2930 || is_gimple_min_invariant (op
)))
2932 error ("conversion of an SSA_NAME on the left hand side");
2933 debug_generic_stmt (expr
);
2936 else if (TREE_CODE (op
) == SSA_NAME
2937 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2939 error ("conversion of register to a different size");
2940 debug_generic_stmt (expr
);
2943 else if (!handled_component_p (op
))
2950 if (TREE_CODE (expr
) == MEM_REF
)
2952 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2954 error ("invalid address operand in MEM_REF");
2955 debug_generic_stmt (expr
);
2958 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2959 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2961 error ("invalid offset operand in MEM_REF");
2962 debug_generic_stmt (expr
);
2966 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2968 if (!TMR_BASE (expr
)
2969 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2971 error ("invalid address operand in TARGET_MEM_REF");
2974 if (!TMR_OFFSET (expr
)
2975 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
2976 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
2978 error ("invalid offset operand in TARGET_MEM_REF");
2979 debug_generic_stmt (expr
);
2984 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
2985 && verify_types_in_gimple_min_lval (expr
));
2988 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2989 list of pointer-to types that is trivially convertible to DEST. */
2992 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
2996 if (!TYPE_POINTER_TO (src_obj
))
2999 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3000 if (useless_type_conversion_p (dest
, src
))
3006 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3007 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3010 valid_fixed_convert_types_p (tree type1
, tree type2
)
3012 return (FIXED_POINT_TYPE_P (type1
)
3013 && (INTEGRAL_TYPE_P (type2
)
3014 || SCALAR_FLOAT_TYPE_P (type2
)
3015 || FIXED_POINT_TYPE_P (type2
)));
3018 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3019 is a problem, otherwise false. */
3022 verify_gimple_call (gimple stmt
)
3024 tree fn
= gimple_call_fn (stmt
);
3025 tree fntype
, fndecl
;
3028 if (gimple_call_internal_p (stmt
))
3032 error ("gimple call has two targets");
3033 debug_generic_stmt (fn
);
3041 error ("gimple call has no target");
3046 if (fn
&& !is_gimple_call_addr (fn
))
3048 error ("invalid function in gimple call");
3049 debug_generic_stmt (fn
);
3054 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3055 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3056 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3058 error ("non-function in gimple call");
3062 fndecl
= gimple_call_fndecl (stmt
);
3064 && TREE_CODE (fndecl
) == FUNCTION_DECL
3065 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3066 && !DECL_PURE_P (fndecl
)
3067 && !TREE_READONLY (fndecl
))
3069 error ("invalid pure const state for function");
3073 if (gimple_call_lhs (stmt
)
3074 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3075 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3077 error ("invalid LHS in gimple call");
3081 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3083 error ("LHS in noreturn call");
3087 fntype
= gimple_call_fntype (stmt
);
3089 && gimple_call_lhs (stmt
)
3090 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3092 /* ??? At least C++ misses conversions at assignments from
3093 void * call results.
3094 ??? Java is completely off. Especially with functions
3095 returning java.lang.Object.
3096 For now simply allow arbitrary pointer type conversions. */
3097 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3098 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3100 error ("invalid conversion in gimple call");
3101 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3102 debug_generic_stmt (TREE_TYPE (fntype
));
3106 if (gimple_call_chain (stmt
)
3107 && !is_gimple_val (gimple_call_chain (stmt
)))
3109 error ("invalid static chain in gimple call");
3110 debug_generic_stmt (gimple_call_chain (stmt
));
3114 /* If there is a static chain argument, this should not be an indirect
3115 call, and the decl should have DECL_STATIC_CHAIN set. */
3116 if (gimple_call_chain (stmt
))
3118 if (!gimple_call_fndecl (stmt
))
3120 error ("static chain in indirect gimple call");
3123 fn
= TREE_OPERAND (fn
, 0);
3125 if (!DECL_STATIC_CHAIN (fn
))
3127 error ("static chain with function that doesn%'t use one");
3132 /* ??? The C frontend passes unpromoted arguments in case it
3133 didn't see a function declaration before the call. So for now
3134 leave the call arguments mostly unverified. Once we gimplify
3135 unit-at-a-time we have a chance to fix this. */
3137 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3139 tree arg
= gimple_call_arg (stmt
, i
);
3140 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3141 && !is_gimple_val (arg
))
3142 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3143 && !is_gimple_lvalue (arg
)))
3145 error ("invalid argument to gimple call");
3146 debug_generic_expr (arg
);
3154 /* Verifies the gimple comparison with the result type TYPE and
3155 the operands OP0 and OP1. */
3158 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3160 tree op0_type
= TREE_TYPE (op0
);
3161 tree op1_type
= TREE_TYPE (op1
);
3163 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3165 error ("invalid operands in gimple comparison");
3169 /* For comparisons we do not have the operations type as the
3170 effective type the comparison is carried out in. Instead
3171 we require that either the first operand is trivially
3172 convertible into the second, or the other way around.
3173 Because we special-case pointers to void we allow
3174 comparisons of pointers with the same mode as well. */
3175 if (!useless_type_conversion_p (op0_type
, op1_type
)
3176 && !useless_type_conversion_p (op1_type
, op0_type
)
3177 && (!POINTER_TYPE_P (op0_type
)
3178 || !POINTER_TYPE_P (op1_type
)
3179 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3181 error ("mismatching comparison operand types");
3182 debug_generic_expr (op0_type
);
3183 debug_generic_expr (op1_type
);
3187 /* The resulting type of a comparison may be an effective boolean type. */
3188 if (INTEGRAL_TYPE_P (type
)
3189 && (TREE_CODE (type
) == BOOLEAN_TYPE
3190 || TYPE_PRECISION (type
) == 1))
3192 if (TREE_CODE (op0_type
) == VECTOR_TYPE
3193 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3195 error ("vector comparison returning a boolean");
3196 debug_generic_expr (op0_type
);
3197 debug_generic_expr (op1_type
);
3201 /* Or an integer vector type with the same size and element count
3202 as the comparison operand types. */
3203 else if (TREE_CODE (type
) == VECTOR_TYPE
3204 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3206 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3207 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3209 error ("non-vector operands in vector comparison");
3210 debug_generic_expr (op0_type
);
3211 debug_generic_expr (op1_type
);
3215 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3216 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3217 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
))))
3218 /* The result of a vector comparison is of signed
3220 || TYPE_UNSIGNED (TREE_TYPE (type
)))
3222 error ("invalid vector comparison resulting type");
3223 debug_generic_expr (type
);
3229 error ("bogus comparison result type");
3230 debug_generic_expr (type
);
3237 /* Verify a gimple assignment statement STMT with an unary rhs.
3238 Returns true if anything is wrong. */
3241 verify_gimple_assign_unary (gimple stmt
)
3243 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3244 tree lhs
= gimple_assign_lhs (stmt
);
3245 tree lhs_type
= TREE_TYPE (lhs
);
3246 tree rhs1
= gimple_assign_rhs1 (stmt
);
3247 tree rhs1_type
= TREE_TYPE (rhs1
);
3249 if (!is_gimple_reg (lhs
))
3251 error ("non-register as LHS of unary operation");
3255 if (!is_gimple_val (rhs1
))
3257 error ("invalid operand in unary operation");
3261 /* First handle conversions. */
3266 /* Allow conversions from pointer type to integral type only if
3267 there is no sign or zero extension involved.
3268 For targets were the precision of ptrofftype doesn't match that
3269 of pointers we need to allow arbitrary conversions to ptrofftype. */
3270 if ((POINTER_TYPE_P (lhs_type
)
3271 && INTEGRAL_TYPE_P (rhs1_type
))
3272 || (POINTER_TYPE_P (rhs1_type
)
3273 && INTEGRAL_TYPE_P (lhs_type
)
3274 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3275 || ptrofftype_p (sizetype
))))
3278 /* Allow conversion from integral to offset type and vice versa. */
3279 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3280 && INTEGRAL_TYPE_P (rhs1_type
))
3281 || (INTEGRAL_TYPE_P (lhs_type
)
3282 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3285 /* Otherwise assert we are converting between types of the
3287 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3289 error ("invalid types in nop conversion");
3290 debug_generic_expr (lhs_type
);
3291 debug_generic_expr (rhs1_type
);
3298 case ADDR_SPACE_CONVERT_EXPR
:
3300 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3301 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3302 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3304 error ("invalid types in address space conversion");
3305 debug_generic_expr (lhs_type
);
3306 debug_generic_expr (rhs1_type
);
3313 case FIXED_CONVERT_EXPR
:
3315 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3316 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3318 error ("invalid types in fixed-point conversion");
3319 debug_generic_expr (lhs_type
);
3320 debug_generic_expr (rhs1_type
);
3329 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3330 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3331 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3333 error ("invalid types in conversion to floating point");
3334 debug_generic_expr (lhs_type
);
3335 debug_generic_expr (rhs1_type
);
3342 case FIX_TRUNC_EXPR
:
3344 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3345 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3346 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3348 error ("invalid types in conversion to integer");
3349 debug_generic_expr (lhs_type
);
3350 debug_generic_expr (rhs1_type
);
3357 case VEC_UNPACK_HI_EXPR
:
3358 case VEC_UNPACK_LO_EXPR
:
3359 case REDUC_MAX_EXPR
:
3360 case REDUC_MIN_EXPR
:
3361 case REDUC_PLUS_EXPR
:
3362 case VEC_UNPACK_FLOAT_HI_EXPR
:
3363 case VEC_UNPACK_FLOAT_LO_EXPR
:
3371 case NON_LVALUE_EXPR
:
3379 /* For the remaining codes assert there is no conversion involved. */
3380 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3382 error ("non-trivial conversion in unary operation");
3383 debug_generic_expr (lhs_type
);
3384 debug_generic_expr (rhs1_type
);
3391 /* Verify a gimple assignment statement STMT with a binary rhs.
3392 Returns true if anything is wrong. */
3395 verify_gimple_assign_binary (gimple stmt
)
3397 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3398 tree lhs
= gimple_assign_lhs (stmt
);
3399 tree lhs_type
= TREE_TYPE (lhs
);
3400 tree rhs1
= gimple_assign_rhs1 (stmt
);
3401 tree rhs1_type
= TREE_TYPE (rhs1
);
3402 tree rhs2
= gimple_assign_rhs2 (stmt
);
3403 tree rhs2_type
= TREE_TYPE (rhs2
);
3405 if (!is_gimple_reg (lhs
))
3407 error ("non-register as LHS of binary operation");
3411 if (!is_gimple_val (rhs1
)
3412 || !is_gimple_val (rhs2
))
3414 error ("invalid operands in binary operation");
3418 /* First handle operations that involve different types. */
3423 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3424 || !(INTEGRAL_TYPE_P (rhs1_type
)
3425 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3426 || !(INTEGRAL_TYPE_P (rhs2_type
)
3427 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3429 error ("type mismatch in complex expression");
3430 debug_generic_expr (lhs_type
);
3431 debug_generic_expr (rhs1_type
);
3432 debug_generic_expr (rhs2_type
);
3444 /* Shifts and rotates are ok on integral types, fixed point
3445 types and integer vector types. */
3446 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3447 && !FIXED_POINT_TYPE_P (rhs1_type
)
3448 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3449 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3450 || (!INTEGRAL_TYPE_P (rhs2_type
)
3451 /* Vector shifts of vectors are also ok. */
3452 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3454 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3455 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3456 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3458 error ("type mismatch in shift expression");
3459 debug_generic_expr (lhs_type
);
3460 debug_generic_expr (rhs1_type
);
3461 debug_generic_expr (rhs2_type
);
3468 case VEC_LSHIFT_EXPR
:
3469 case VEC_RSHIFT_EXPR
:
3471 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3472 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3473 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3474 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3475 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3476 || (!INTEGRAL_TYPE_P (rhs2_type
)
3477 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3478 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3479 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3481 error ("type mismatch in vector shift expression");
3482 debug_generic_expr (lhs_type
);
3483 debug_generic_expr (rhs1_type
);
3484 debug_generic_expr (rhs2_type
);
3487 /* For shifting a vector of non-integral components we
3488 only allow shifting by a constant multiple of the element size. */
3489 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3490 && (TREE_CODE (rhs2
) != INTEGER_CST
3491 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3492 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3494 error ("non-element sized vector shift of floating point vector");
3501 case WIDEN_LSHIFT_EXPR
:
3503 if (!INTEGRAL_TYPE_P (lhs_type
)
3504 || !INTEGRAL_TYPE_P (rhs1_type
)
3505 || TREE_CODE (rhs2
) != INTEGER_CST
3506 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3508 error ("type mismatch in widening vector shift expression");
3509 debug_generic_expr (lhs_type
);
3510 debug_generic_expr (rhs1_type
);
3511 debug_generic_expr (rhs2_type
);
3518 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3519 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3521 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3522 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3523 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3524 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3525 || TREE_CODE (rhs2
) != INTEGER_CST
3526 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3527 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3529 error ("type mismatch in widening vector shift expression");
3530 debug_generic_expr (lhs_type
);
3531 debug_generic_expr (rhs1_type
);
3532 debug_generic_expr (rhs2_type
);
3542 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3543 ??? This just makes the checker happy and may not be what is
3545 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3546 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3548 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3549 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3551 error ("invalid non-vector operands to vector valued plus");
3554 lhs_type
= TREE_TYPE (lhs_type
);
3555 rhs1_type
= TREE_TYPE (rhs1_type
);
3556 rhs2_type
= TREE_TYPE (rhs2_type
);
3557 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3558 the pointer to 2nd place. */
3559 if (POINTER_TYPE_P (rhs2_type
))
3561 tree tem
= rhs1_type
;
3562 rhs1_type
= rhs2_type
;
3565 goto do_pointer_plus_expr_check
;
3567 if (POINTER_TYPE_P (lhs_type
)
3568 || POINTER_TYPE_P (rhs1_type
)
3569 || POINTER_TYPE_P (rhs2_type
))
3571 error ("invalid (pointer) operands to plus/minus");
3575 /* Continue with generic binary expression handling. */
3579 case POINTER_PLUS_EXPR
:
3581 do_pointer_plus_expr_check
:
3582 if (!POINTER_TYPE_P (rhs1_type
)
3583 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3584 || !ptrofftype_p (rhs2_type
))
3586 error ("type mismatch in pointer plus expression");
3587 debug_generic_stmt (lhs_type
);
3588 debug_generic_stmt (rhs1_type
);
3589 debug_generic_stmt (rhs2_type
);
3596 case TRUTH_ANDIF_EXPR
:
3597 case TRUTH_ORIF_EXPR
:
3598 case TRUTH_AND_EXPR
:
3600 case TRUTH_XOR_EXPR
:
3610 case UNORDERED_EXPR
:
3618 /* Comparisons are also binary, but the result type is not
3619 connected to the operand types. */
3620 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3622 case WIDEN_MULT_EXPR
:
3623 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3625 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3626 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3628 case WIDEN_SUM_EXPR
:
3629 case VEC_WIDEN_MULT_HI_EXPR
:
3630 case VEC_WIDEN_MULT_LO_EXPR
:
3631 case VEC_WIDEN_MULT_EVEN_EXPR
:
3632 case VEC_WIDEN_MULT_ODD_EXPR
:
3633 case VEC_PACK_TRUNC_EXPR
:
3634 case VEC_PACK_SAT_EXPR
:
3635 case VEC_PACK_FIX_TRUNC_EXPR
:
3640 case MULT_HIGHPART_EXPR
:
3641 case TRUNC_DIV_EXPR
:
3643 case FLOOR_DIV_EXPR
:
3644 case ROUND_DIV_EXPR
:
3645 case TRUNC_MOD_EXPR
:
3647 case FLOOR_MOD_EXPR
:
3648 case ROUND_MOD_EXPR
:
3650 case EXACT_DIV_EXPR
:
3656 /* Continue with generic binary expression handling. */
3663 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3664 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3666 error ("type mismatch in binary expression");
3667 debug_generic_stmt (lhs_type
);
3668 debug_generic_stmt (rhs1_type
);
3669 debug_generic_stmt (rhs2_type
);
3676 /* Verify a gimple assignment statement STMT with a ternary rhs.
3677 Returns true if anything is wrong. */
3680 verify_gimple_assign_ternary (gimple stmt
)
3682 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3683 tree lhs
= gimple_assign_lhs (stmt
);
3684 tree lhs_type
= TREE_TYPE (lhs
);
3685 tree rhs1
= gimple_assign_rhs1 (stmt
);
3686 tree rhs1_type
= TREE_TYPE (rhs1
);
3687 tree rhs2
= gimple_assign_rhs2 (stmt
);
3688 tree rhs2_type
= TREE_TYPE (rhs2
);
3689 tree rhs3
= gimple_assign_rhs3 (stmt
);
3690 tree rhs3_type
= TREE_TYPE (rhs3
);
3692 if (!is_gimple_reg (lhs
))
3694 error ("non-register as LHS of ternary operation");
3698 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3699 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3700 || !is_gimple_val (rhs2
)
3701 || !is_gimple_val (rhs3
))
3703 error ("invalid operands in ternary operation");
3707 /* First handle operations that involve different types. */
3710 case WIDEN_MULT_PLUS_EXPR
:
3711 case WIDEN_MULT_MINUS_EXPR
:
3712 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3713 && !FIXED_POINT_TYPE_P (rhs1_type
))
3714 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3715 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3716 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3717 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3719 error ("type mismatch in widening multiply-accumulate expression");
3720 debug_generic_expr (lhs_type
);
3721 debug_generic_expr (rhs1_type
);
3722 debug_generic_expr (rhs2_type
);
3723 debug_generic_expr (rhs3_type
);
3729 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3730 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3731 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3733 error ("type mismatch in fused multiply-add expression");
3734 debug_generic_expr (lhs_type
);
3735 debug_generic_expr (rhs1_type
);
3736 debug_generic_expr (rhs2_type
);
3737 debug_generic_expr (rhs3_type
);
3744 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3745 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3747 error ("type mismatch in conditional expression");
3748 debug_generic_expr (lhs_type
);
3749 debug_generic_expr (rhs2_type
);
3750 debug_generic_expr (rhs3_type
);
3756 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3757 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3759 error ("type mismatch in vector permute expression");
3760 debug_generic_expr (lhs_type
);
3761 debug_generic_expr (rhs1_type
);
3762 debug_generic_expr (rhs2_type
);
3763 debug_generic_expr (rhs3_type
);
3767 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3768 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3769 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3771 error ("vector types expected in vector permute expression");
3772 debug_generic_expr (lhs_type
);
3773 debug_generic_expr (rhs1_type
);
3774 debug_generic_expr (rhs2_type
);
3775 debug_generic_expr (rhs3_type
);
3779 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3780 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3781 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3782 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3783 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3785 error ("vectors with different element number found "
3786 "in vector permute expression");
3787 debug_generic_expr (lhs_type
);
3788 debug_generic_expr (rhs1_type
);
3789 debug_generic_expr (rhs2_type
);
3790 debug_generic_expr (rhs3_type
);
3794 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3795 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3796 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3798 error ("invalid mask type in vector permute expression");
3799 debug_generic_expr (lhs_type
);
3800 debug_generic_expr (rhs1_type
);
3801 debug_generic_expr (rhs2_type
);
3802 debug_generic_expr (rhs3_type
);
3809 case REALIGN_LOAD_EXPR
:
3819 /* Verify a gimple assignment statement STMT with a single rhs.
3820 Returns true if anything is wrong. */
3823 verify_gimple_assign_single (gimple stmt
)
3825 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3826 tree lhs
= gimple_assign_lhs (stmt
);
3827 tree lhs_type
= TREE_TYPE (lhs
);
3828 tree rhs1
= gimple_assign_rhs1 (stmt
);
3829 tree rhs1_type
= TREE_TYPE (rhs1
);
3832 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3834 error ("non-trivial conversion at assignment");
3835 debug_generic_expr (lhs_type
);
3836 debug_generic_expr (rhs1_type
);
3840 if (gimple_clobber_p (stmt
)
3841 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
3843 error ("non-decl/MEM_REF LHS in clobber statement");
3844 debug_generic_expr (lhs
);
3848 if (handled_component_p (lhs
))
3849 res
|= verify_types_in_gimple_reference (lhs
, true);
3851 /* Special codes we cannot handle via their class. */
3856 tree op
= TREE_OPERAND (rhs1
, 0);
3857 if (!is_gimple_addressable (op
))
3859 error ("invalid operand in unary expression");
3863 /* Technically there is no longer a need for matching types, but
3864 gimple hygiene asks for this check. In LTO we can end up
3865 combining incompatible units and thus end up with addresses
3866 of globals that change their type to a common one. */
3868 && !types_compatible_p (TREE_TYPE (op
),
3869 TREE_TYPE (TREE_TYPE (rhs1
)))
3870 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3873 error ("type mismatch in address expression");
3874 debug_generic_stmt (TREE_TYPE (rhs1
));
3875 debug_generic_stmt (TREE_TYPE (op
));
3879 return verify_types_in_gimple_reference (op
, true);
3884 error ("INDIRECT_REF in gimple IL");
3890 case ARRAY_RANGE_REF
:
3891 case VIEW_CONVERT_EXPR
:
3894 case TARGET_MEM_REF
:
3896 if (!is_gimple_reg (lhs
)
3897 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3899 error ("invalid rhs for gimple memory store");
3900 debug_generic_stmt (lhs
);
3901 debug_generic_stmt (rhs1
);
3904 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3916 /* tcc_declaration */
3921 if (!is_gimple_reg (lhs
)
3922 && !is_gimple_reg (rhs1
)
3923 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3925 error ("invalid rhs for gimple memory store");
3926 debug_generic_stmt (lhs
);
3927 debug_generic_stmt (rhs1
);
3933 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
3936 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
3938 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
3940 /* For vector CONSTRUCTORs we require that either it is empty
3941 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3942 (then the element count must be correct to cover the whole
3943 outer vector and index must be NULL on all elements, or it is
3944 a CONSTRUCTOR of scalar elements, where we as an exception allow
3945 smaller number of elements (assuming zero filling) and
3946 consecutive indexes as compared to NULL indexes (such
3947 CONSTRUCTORs can appear in the IL from FEs). */
3948 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
3950 if (elt_t
== NULL_TREE
)
3952 elt_t
= TREE_TYPE (elt_v
);
3953 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
3955 tree elt_t
= TREE_TYPE (elt_v
);
3956 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
3959 error ("incorrect type of vector CONSTRUCTOR"
3961 debug_generic_stmt (rhs1
);
3964 else if (CONSTRUCTOR_NELTS (rhs1
)
3965 * TYPE_VECTOR_SUBPARTS (elt_t
)
3966 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
3968 error ("incorrect number of vector CONSTRUCTOR"
3970 debug_generic_stmt (rhs1
);
3974 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
3977 error ("incorrect type of vector CONSTRUCTOR elements");
3978 debug_generic_stmt (rhs1
);
3981 else if (CONSTRUCTOR_NELTS (rhs1
)
3982 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
3984 error ("incorrect number of vector CONSTRUCTOR elements");
3985 debug_generic_stmt (rhs1
);
3989 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
3991 error ("incorrect type of vector CONSTRUCTOR elements");
3992 debug_generic_stmt (rhs1
);
3995 if (elt_i
!= NULL_TREE
3996 && (TREE_CODE (elt_t
) == VECTOR_TYPE
3997 || TREE_CODE (elt_i
) != INTEGER_CST
3998 || compare_tree_int (elt_i
, i
) != 0))
4000 error ("vector CONSTRUCTOR with non-NULL element index");
4001 debug_generic_stmt (rhs1
);
4009 case WITH_SIZE_EXPR
:
4019 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4020 is a problem, otherwise false. */
4023 verify_gimple_assign (gimple stmt
)
4025 switch (gimple_assign_rhs_class (stmt
))
4027 case GIMPLE_SINGLE_RHS
:
4028 return verify_gimple_assign_single (stmt
);
4030 case GIMPLE_UNARY_RHS
:
4031 return verify_gimple_assign_unary (stmt
);
4033 case GIMPLE_BINARY_RHS
:
4034 return verify_gimple_assign_binary (stmt
);
4036 case GIMPLE_TERNARY_RHS
:
4037 return verify_gimple_assign_ternary (stmt
);
4044 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4045 is a problem, otherwise false. */
4048 verify_gimple_return (gimple stmt
)
4050 tree op
= gimple_return_retval (stmt
);
4051 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4053 /* We cannot test for present return values as we do not fix up missing
4054 return values from the original source. */
4058 if (!is_gimple_val (op
)
4059 && TREE_CODE (op
) != RESULT_DECL
)
4061 error ("invalid operand in return statement");
4062 debug_generic_stmt (op
);
4066 if ((TREE_CODE (op
) == RESULT_DECL
4067 && DECL_BY_REFERENCE (op
))
4068 || (TREE_CODE (op
) == SSA_NAME
4069 && SSA_NAME_VAR (op
)
4070 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4071 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4072 op
= TREE_TYPE (op
);
4074 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4076 error ("invalid conversion in return statement");
4077 debug_generic_stmt (restype
);
4078 debug_generic_stmt (TREE_TYPE (op
));
4086 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4087 is a problem, otherwise false. */
4090 verify_gimple_goto (gimple stmt
)
4092 tree dest
= gimple_goto_dest (stmt
);
4094 /* ??? We have two canonical forms of direct goto destinations, a
4095 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4096 if (TREE_CODE (dest
) != LABEL_DECL
4097 && (!is_gimple_val (dest
)
4098 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4100 error ("goto destination is neither a label nor a pointer");
4107 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4108 is a problem, otherwise false. */
4111 verify_gimple_switch (gimple stmt
)
4114 tree elt
, prev_upper_bound
= NULL_TREE
;
4115 tree index_type
, elt_type
= NULL_TREE
;
4117 if (!is_gimple_val (gimple_switch_index (stmt
)))
4119 error ("invalid operand to switch statement");
4120 debug_generic_stmt (gimple_switch_index (stmt
));
4124 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4125 if (! INTEGRAL_TYPE_P (index_type
))
4127 error ("non-integral type switch statement");
4128 debug_generic_expr (index_type
);
4132 elt
= gimple_switch_label (stmt
, 0);
4133 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4135 error ("invalid default case label in switch statement");
4136 debug_generic_expr (elt
);
4140 n
= gimple_switch_num_labels (stmt
);
4141 for (i
= 1; i
< n
; i
++)
4143 elt
= gimple_switch_label (stmt
, i
);
4145 if (! CASE_LOW (elt
))
4147 error ("invalid case label in switch statement");
4148 debug_generic_expr (elt
);
4152 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4154 error ("invalid case range in switch statement");
4155 debug_generic_expr (elt
);
4161 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4162 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4164 error ("type mismatch for case label in switch statement");
4165 debug_generic_expr (elt
);
4171 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4172 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4174 error ("type precision mismatch in switch statement");
4179 if (prev_upper_bound
)
4181 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4183 error ("case labels not sorted in switch statement");
4188 prev_upper_bound
= CASE_HIGH (elt
);
4189 if (! prev_upper_bound
)
4190 prev_upper_bound
= CASE_LOW (elt
);
4196 /* Verify a gimple debug statement STMT.
4197 Returns true if anything is wrong. */
4200 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4202 /* There isn't much that could be wrong in a gimple debug stmt. A
4203 gimple debug bind stmt, for example, maps a tree, that's usually
4204 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4205 component or member of an aggregate type, to another tree, that
4206 can be an arbitrary expression. These stmts expand into debug
4207 insns, and are converted to debug notes by var-tracking.c. */
4211 /* Verify a gimple label statement STMT.
4212 Returns true if anything is wrong. */
4215 verify_gimple_label (gimple stmt
)
4217 tree decl
= gimple_label_label (stmt
);
4221 if (TREE_CODE (decl
) != LABEL_DECL
)
4224 uid
= LABEL_DECL_UID (decl
);
4226 && (uid
== -1 || (*label_to_block_map
)[uid
] != gimple_bb (stmt
)))
4228 error ("incorrect entry in label_to_block_map");
4232 uid
= EH_LANDING_PAD_NR (decl
);
4235 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4236 if (decl
!= lp
->post_landing_pad
)
4238 error ("incorrect setting of landing pad number");
4246 /* Verify the GIMPLE statement STMT. Returns true if there is an
4247 error, otherwise false. */
4250 verify_gimple_stmt (gimple stmt
)
4252 switch (gimple_code (stmt
))
4255 return verify_gimple_assign (stmt
);
4258 return verify_gimple_label (stmt
);
4261 return verify_gimple_call (stmt
);
4264 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4266 error ("invalid comparison code in gimple cond");
4269 if (!(!gimple_cond_true_label (stmt
)
4270 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4271 || !(!gimple_cond_false_label (stmt
)
4272 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4274 error ("invalid labels in gimple cond");
4278 return verify_gimple_comparison (boolean_type_node
,
4279 gimple_cond_lhs (stmt
),
4280 gimple_cond_rhs (stmt
));
4283 return verify_gimple_goto (stmt
);
4286 return verify_gimple_switch (stmt
);
4289 return verify_gimple_return (stmt
);
4294 case GIMPLE_TRANSACTION
:
4295 return verify_gimple_transaction (stmt
);
4297 /* Tuples that do not have tree operands. */
4299 case GIMPLE_PREDICT
:
4301 case GIMPLE_EH_DISPATCH
:
4302 case GIMPLE_EH_MUST_NOT_THROW
:
4306 /* OpenMP directives are validated by the FE and never operated
4307 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4308 non-gimple expressions when the main index variable has had
4309 its address taken. This does not affect the loop itself
4310 because the header of an GIMPLE_OMP_FOR is merely used to determine
4311 how to setup the parallel iteration. */
4315 return verify_gimple_debug (stmt
);
4322 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4323 and false otherwise. */
4326 verify_gimple_phi (gimple phi
)
4330 tree phi_result
= gimple_phi_result (phi
);
4335 error ("invalid PHI result");
4339 virtual_p
= virtual_operand_p (phi_result
);
4340 if (TREE_CODE (phi_result
) != SSA_NAME
4342 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4344 error ("invalid PHI result");
4348 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4350 tree t
= gimple_phi_arg_def (phi
, i
);
4354 error ("missing PHI def");
4358 /* Addressable variables do have SSA_NAMEs but they
4359 are not considered gimple values. */
4360 else if ((TREE_CODE (t
) == SSA_NAME
4361 && virtual_p
!= virtual_operand_p (t
))
4363 && (TREE_CODE (t
) != SSA_NAME
4364 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4366 && !is_gimple_val (t
)))
4368 error ("invalid PHI argument");
4369 debug_generic_expr (t
);
4372 #ifdef ENABLE_TYPES_CHECKING
4373 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4375 error ("incompatible types in PHI argument %u", i
);
4376 debug_generic_stmt (TREE_TYPE (phi_result
));
4377 debug_generic_stmt (TREE_TYPE (t
));
4386 /* Verify the GIMPLE statements inside the sequence STMTS. */
4389 verify_gimple_in_seq_2 (gimple_seq stmts
)
4391 gimple_stmt_iterator ittr
;
4394 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4396 gimple stmt
= gsi_stmt (ittr
);
4398 switch (gimple_code (stmt
))
4401 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4405 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4406 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4409 case GIMPLE_EH_FILTER
:
4410 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4413 case GIMPLE_EH_ELSE
:
4414 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4415 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4419 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4422 case GIMPLE_TRANSACTION
:
4423 err
|= verify_gimple_transaction (stmt
);
4428 bool err2
= verify_gimple_stmt (stmt
);
4430 debug_gimple_stmt (stmt
);
4439 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4440 is a problem, otherwise false. */
4443 verify_gimple_transaction (gimple stmt
)
4445 tree lab
= gimple_transaction_label (stmt
);
4446 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4448 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4452 /* Verify the GIMPLE statements inside the statement list STMTS. */
4455 verify_gimple_in_seq (gimple_seq stmts
)
4457 timevar_push (TV_TREE_STMT_VERIFY
);
4458 if (verify_gimple_in_seq_2 (stmts
))
4459 internal_error ("verify_gimple failed");
4460 timevar_pop (TV_TREE_STMT_VERIFY
);
4463 /* Return true when the T can be shared. */
4466 tree_node_can_be_shared (tree t
)
4468 if (IS_TYPE_OR_DECL_P (t
)
4469 || is_gimple_min_invariant (t
)
4470 || TREE_CODE (t
) == SSA_NAME
4471 || t
== error_mark_node
4472 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4475 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4484 /* Called via walk_tree. Verify tree sharing. */
4487 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4489 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4491 if (tree_node_can_be_shared (*tp
))
4493 *walk_subtrees
= false;
4497 if (pointer_set_insert (visited
, *tp
))
4503 /* Called via walk_gimple_stmt. Verify tree sharing. */
4506 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4508 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4509 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
4512 static bool eh_error_found
;
4514 verify_eh_throw_stmt_node (void **slot
, void *data
)
4516 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4517 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4519 if (!pointer_set_contains (visited
, node
->stmt
))
4521 error ("dead STMT in EH table");
4522 debug_gimple_stmt (node
->stmt
);
4523 eh_error_found
= true;
4528 /* Verify if the location LOCs block is in BLOCKS. */
4531 verify_location (pointer_set_t
*blocks
, location_t loc
)
4533 tree block
= LOCATION_BLOCK (loc
);
4534 if (block
!= NULL_TREE
4535 && !pointer_set_contains (blocks
, block
))
4537 error ("location references block not in block tree");
4540 if (block
!= NULL_TREE
)
4541 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
4545 /* Called via walk_tree. Verify that expressions have no blocks. */
4548 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
4552 *walk_subtrees
= false;
4556 location_t loc
= EXPR_LOCATION (*tp
);
4557 if (LOCATION_BLOCK (loc
) != NULL
)
4563 /* Called via walk_tree. Verify locations of expressions. */
4566 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4568 struct pointer_set_t
*blocks
= (struct pointer_set_t
*) data
;
4570 if (TREE_CODE (*tp
) == VAR_DECL
4571 && DECL_HAS_DEBUG_EXPR_P (*tp
))
4573 tree t
= DECL_DEBUG_EXPR (*tp
);
4574 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4578 if ((TREE_CODE (*tp
) == VAR_DECL
4579 || TREE_CODE (*tp
) == PARM_DECL
4580 || TREE_CODE (*tp
) == RESULT_DECL
)
4581 && DECL_HAS_VALUE_EXPR_P (*tp
))
4583 tree t
= DECL_VALUE_EXPR (*tp
);
4584 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4591 *walk_subtrees
= false;
4595 location_t loc
= EXPR_LOCATION (*tp
);
4596 if (verify_location (blocks
, loc
))
4602 /* Called via walk_gimple_op. Verify locations of expressions. */
4605 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
4607 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4608 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
4611 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4614 collect_subblocks (pointer_set_t
*blocks
, tree block
)
4617 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
4619 pointer_set_insert (blocks
, t
);
4620 collect_subblocks (blocks
, t
);
4624 /* Verify the GIMPLE statements in the CFG of FN. */
4627 verify_gimple_in_cfg (struct function
*fn
)
4631 struct pointer_set_t
*visited
, *visited_stmts
, *blocks
;
4633 timevar_push (TV_TREE_STMT_VERIFY
);
4634 visited
= pointer_set_create ();
4635 visited_stmts
= pointer_set_create ();
4637 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4638 blocks
= pointer_set_create ();
4639 if (DECL_INITIAL (fn
->decl
))
4641 pointer_set_insert (blocks
, DECL_INITIAL (fn
->decl
));
4642 collect_subblocks (blocks
, DECL_INITIAL (fn
->decl
));
4645 FOR_EACH_BB_FN (bb
, fn
)
4647 gimple_stmt_iterator gsi
;
4649 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4651 gimple phi
= gsi_stmt (gsi
);
4655 pointer_set_insert (visited_stmts
, phi
);
4657 if (gimple_bb (phi
) != bb
)
4659 error ("gimple_bb (phi) is set to a wrong basic block");
4663 err2
|= verify_gimple_phi (phi
);
4665 /* Only PHI arguments have locations. */
4666 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
4668 error ("PHI node with location");
4672 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4674 tree arg
= gimple_phi_arg_def (phi
, i
);
4675 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
4679 error ("incorrect sharing of tree nodes");
4680 debug_generic_expr (addr
);
4683 location_t loc
= gimple_phi_arg_location (phi
, i
);
4684 if (virtual_operand_p (gimple_phi_result (phi
))
4685 && loc
!= UNKNOWN_LOCATION
)
4687 error ("virtual PHI with argument locations");
4690 addr
= walk_tree (&arg
, verify_expr_location_1
, blocks
, NULL
);
4693 debug_generic_expr (addr
);
4696 err2
|= verify_location (blocks
, loc
);
4700 debug_gimple_stmt (phi
);
4704 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4706 gimple stmt
= gsi_stmt (gsi
);
4708 struct walk_stmt_info wi
;
4712 pointer_set_insert (visited_stmts
, stmt
);
4714 if (gimple_bb (stmt
) != bb
)
4716 error ("gimple_bb (stmt) is set to a wrong basic block");
4720 err2
|= verify_gimple_stmt (stmt
);
4721 err2
|= verify_location (blocks
, gimple_location (stmt
));
4723 memset (&wi
, 0, sizeof (wi
));
4724 wi
.info
= (void *) visited
;
4725 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4728 error ("incorrect sharing of tree nodes");
4729 debug_generic_expr (addr
);
4733 memset (&wi
, 0, sizeof (wi
));
4734 wi
.info
= (void *) blocks
;
4735 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
4738 debug_generic_expr (addr
);
4742 /* ??? Instead of not checking these stmts at all the walker
4743 should know its context via wi. */
4744 if (!is_gimple_debug (stmt
)
4745 && !is_gimple_omp (stmt
))
4747 memset (&wi
, 0, sizeof (wi
));
4748 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4751 debug_generic_expr (addr
);
4752 inform (gimple_location (stmt
), "in statement");
4757 /* If the statement is marked as part of an EH region, then it is
4758 expected that the statement could throw. Verify that when we
4759 have optimizations that simplify statements such that we prove
4760 that they cannot throw, that we update other data structures
4762 lp_nr
= lookup_stmt_eh_lp (stmt
);
4765 if (!stmt_could_throw_p (stmt
))
4767 error ("statement marked for throw, but doesn%'t");
4771 && !gsi_one_before_end_p (gsi
)
4772 && stmt_can_throw_internal (stmt
))
4774 error ("statement marked for throw in middle of block");
4780 debug_gimple_stmt (stmt
);
4785 eh_error_found
= false;
4786 if (get_eh_throw_stmt_table (cfun
))
4787 htab_traverse (get_eh_throw_stmt_table (cfun
),
4788 verify_eh_throw_stmt_node
,
4791 if (err
|| eh_error_found
)
4792 internal_error ("verify_gimple failed");
4794 pointer_set_destroy (visited
);
4795 pointer_set_destroy (visited_stmts
);
4796 pointer_set_destroy (blocks
);
4797 verify_histograms ();
4798 timevar_pop (TV_TREE_STMT_VERIFY
);
4802 /* Verifies that the flow information is OK. */
4805 gimple_verify_flow_info (void)
4809 gimple_stmt_iterator gsi
;
4814 if (ENTRY_BLOCK_PTR
->il
.gimple
.seq
|| ENTRY_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4816 error ("ENTRY_BLOCK has IL associated with it");
4820 if (EXIT_BLOCK_PTR
->il
.gimple
.seq
|| EXIT_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4822 error ("EXIT_BLOCK has IL associated with it");
4826 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4827 if (e
->flags
& EDGE_FALLTHRU
)
4829 error ("fallthru to exit from bb %d", e
->src
->index
);
4835 bool found_ctrl_stmt
= false;
4839 /* Skip labels on the start of basic block. */
4840 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4843 gimple prev_stmt
= stmt
;
4845 stmt
= gsi_stmt (gsi
);
4847 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4850 label
= gimple_label_label (stmt
);
4851 if (prev_stmt
&& DECL_NONLOCAL (label
))
4853 error ("nonlocal label ");
4854 print_generic_expr (stderr
, label
, 0);
4855 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4860 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4862 error ("EH landing pad label ");
4863 print_generic_expr (stderr
, label
, 0);
4864 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4869 if (label_to_block (label
) != bb
)
4872 print_generic_expr (stderr
, label
, 0);
4873 fprintf (stderr
, " to block does not match in bb %d",
4878 if (decl_function_context (label
) != current_function_decl
)
4881 print_generic_expr (stderr
, label
, 0);
4882 fprintf (stderr
, " has incorrect context in bb %d",
4888 /* Verify that body of basic block BB is free of control flow. */
4889 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4891 gimple stmt
= gsi_stmt (gsi
);
4893 if (found_ctrl_stmt
)
4895 error ("control flow in the middle of basic block %d",
4900 if (stmt_ends_bb_p (stmt
))
4901 found_ctrl_stmt
= true;
4903 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4906 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4907 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4912 gsi
= gsi_last_bb (bb
);
4913 if (gsi_end_p (gsi
))
4916 stmt
= gsi_stmt (gsi
);
4918 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4921 err
|= verify_eh_edges (stmt
);
4923 if (is_ctrl_stmt (stmt
))
4925 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4926 if (e
->flags
& EDGE_FALLTHRU
)
4928 error ("fallthru edge after a control statement in bb %d",
4934 if (gimple_code (stmt
) != GIMPLE_COND
)
4936 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4937 after anything else but if statement. */
4938 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4939 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4941 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4947 switch (gimple_code (stmt
))
4954 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4958 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4959 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4960 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4961 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4962 || EDGE_COUNT (bb
->succs
) >= 3)
4964 error ("wrong outgoing edge flags at end of bb %d",
4972 if (simple_goto_p (stmt
))
4974 error ("explicit goto at end of bb %d", bb
->index
);
4979 /* FIXME. We should double check that the labels in the
4980 destination blocks have their address taken. */
4981 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4982 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4983 | EDGE_FALSE_VALUE
))
4984 || !(e
->flags
& EDGE_ABNORMAL
))
4986 error ("wrong outgoing edge flags at end of bb %d",
4994 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4996 /* ... fallthru ... */
4998 if (!single_succ_p (bb
)
4999 || (single_succ_edge (bb
)->flags
5000 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5001 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5003 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5006 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
5008 error ("return edge does not point to exit in bb %d",
5020 n
= gimple_switch_num_labels (stmt
);
5022 /* Mark all the destination basic blocks. */
5023 for (i
= 0; i
< n
; ++i
)
5025 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5026 basic_block label_bb
= label_to_block (lab
);
5027 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5028 label_bb
->aux
= (void *)1;
5031 /* Verify that the case labels are sorted. */
5032 prev
= gimple_switch_label (stmt
, 0);
5033 for (i
= 1; i
< n
; ++i
)
5035 tree c
= gimple_switch_label (stmt
, i
);
5038 error ("found default case not at the start of "
5044 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5046 error ("case labels not sorted: ");
5047 print_generic_expr (stderr
, prev
, 0);
5048 fprintf (stderr
," is greater than ");
5049 print_generic_expr (stderr
, c
, 0);
5050 fprintf (stderr
," but comes before it.\n");
5055 /* VRP will remove the default case if it can prove it will
5056 never be executed. So do not verify there always exists
5057 a default case here. */
5059 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5063 error ("extra outgoing edge %d->%d",
5064 bb
->index
, e
->dest
->index
);
5068 e
->dest
->aux
= (void *)2;
5069 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5070 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5072 error ("wrong outgoing edge flags at end of bb %d",
5078 /* Check that we have all of them. */
5079 for (i
= 0; i
< n
; ++i
)
5081 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5082 basic_block label_bb
= label_to_block (lab
);
5084 if (label_bb
->aux
!= (void *)2)
5086 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5091 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5092 e
->dest
->aux
= (void *)0;
5096 case GIMPLE_EH_DISPATCH
:
5097 err
|= verify_eh_dispatch_edge (stmt
);
5105 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5106 verify_dominators (CDI_DOMINATORS
);
5112 /* Updates phi nodes after creating a forwarder block joined
5113 by edge FALLTHRU. */
5116 gimple_make_forwarder_block (edge fallthru
)
5120 basic_block dummy
, bb
;
5122 gimple_stmt_iterator gsi
;
5124 dummy
= fallthru
->src
;
5125 bb
= fallthru
->dest
;
5127 if (single_pred_p (bb
))
5130 /* If we redirected a branch we must create new PHI nodes at the
5132 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5134 gimple phi
, new_phi
;
5136 phi
= gsi_stmt (gsi
);
5137 var
= gimple_phi_result (phi
);
5138 new_phi
= create_phi_node (var
, bb
);
5139 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5140 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5144 /* Add the arguments we have stored on edges. */
5145 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5150 flush_pending_stmts (e
);
5155 /* Return a non-special label in the head of basic block BLOCK.
5156 Create one if it doesn't exist. */
5159 gimple_block_label (basic_block bb
)
5161 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5166 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5168 stmt
= gsi_stmt (i
);
5169 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5171 label
= gimple_label_label (stmt
);
5172 if (!DECL_NONLOCAL (label
))
5175 gsi_move_before (&i
, &s
);
5180 label
= create_artificial_label (UNKNOWN_LOCATION
);
5181 stmt
= gimple_build_label (label
);
5182 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5187 /* Attempt to perform edge redirection by replacing a possibly complex
5188 jump instruction by a goto or by removing the jump completely.
5189 This can apply only if all edges now point to the same block. The
5190 parameters and return values are equivalent to
5191 redirect_edge_and_branch. */
5194 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5196 basic_block src
= e
->src
;
5197 gimple_stmt_iterator i
;
5200 /* We can replace or remove a complex jump only when we have exactly
5202 if (EDGE_COUNT (src
->succs
) != 2
5203 /* Verify that all targets will be TARGET. Specifically, the
5204 edge that is not E must also go to TARGET. */
5205 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5208 i
= gsi_last_bb (src
);
5212 stmt
= gsi_stmt (i
);
5214 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5216 gsi_remove (&i
, true);
5217 e
= ssa_redirect_edge (e
, target
);
5218 e
->flags
= EDGE_FALLTHRU
;
5226 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5227 edge representing the redirected branch. */
5230 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5232 basic_block bb
= e
->src
;
5233 gimple_stmt_iterator gsi
;
5237 if (e
->flags
& EDGE_ABNORMAL
)
5240 if (e
->dest
== dest
)
5243 if (e
->flags
& EDGE_EH
)
5244 return redirect_eh_edge (e
, dest
);
5246 if (e
->src
!= ENTRY_BLOCK_PTR
)
5248 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5253 gsi
= gsi_last_bb (bb
);
5254 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5256 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5259 /* For COND_EXPR, we only need to redirect the edge. */
5263 /* No non-abnormal edges should lead from a non-simple goto, and
5264 simple ones should be represented implicitly. */
5269 tree label
= gimple_block_label (dest
);
5270 tree cases
= get_cases_for_edge (e
, stmt
);
5272 /* If we have a list of cases associated with E, then use it
5273 as it's a lot faster than walking the entire case vector. */
5276 edge e2
= find_edge (e
->src
, dest
);
5283 CASE_LABEL (cases
) = label
;
5284 cases
= CASE_CHAIN (cases
);
5287 /* If there was already an edge in the CFG, then we need
5288 to move all the cases associated with E to E2. */
5291 tree cases2
= get_cases_for_edge (e2
, stmt
);
5293 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5294 CASE_CHAIN (cases2
) = first
;
5296 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5300 size_t i
, n
= gimple_switch_num_labels (stmt
);
5302 for (i
= 0; i
< n
; i
++)
5304 tree elt
= gimple_switch_label (stmt
, i
);
5305 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5306 CASE_LABEL (elt
) = label
;
5314 int i
, n
= gimple_asm_nlabels (stmt
);
5317 for (i
= 0; i
< n
; ++i
)
5319 tree cons
= gimple_asm_label_op (stmt
, i
);
5320 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5323 label
= gimple_block_label (dest
);
5324 TREE_VALUE (cons
) = label
;
5328 /* If we didn't find any label matching the former edge in the
5329 asm labels, we must be redirecting the fallthrough
5331 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5336 gsi_remove (&gsi
, true);
5337 e
->flags
|= EDGE_FALLTHRU
;
5340 case GIMPLE_OMP_RETURN
:
5341 case GIMPLE_OMP_CONTINUE
:
5342 case GIMPLE_OMP_SECTIONS_SWITCH
:
5343 case GIMPLE_OMP_FOR
:
5344 /* The edges from OMP constructs can be simply redirected. */
5347 case GIMPLE_EH_DISPATCH
:
5348 if (!(e
->flags
& EDGE_FALLTHRU
))
5349 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5352 case GIMPLE_TRANSACTION
:
5353 /* The ABORT edge has a stored label associated with it, otherwise
5354 the edges are simply redirectable. */
5356 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5360 /* Otherwise it must be a fallthru edge, and we don't need to
5361 do anything besides redirecting it. */
5362 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5366 /* Update/insert PHI nodes as necessary. */
5368 /* Now update the edges in the CFG. */
5369 e
= ssa_redirect_edge (e
, dest
);
5374 /* Returns true if it is possible to remove edge E by redirecting
5375 it to the destination of the other edge from E->src. */
5378 gimple_can_remove_branch_p (const_edge e
)
5380 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5386 /* Simple wrapper, as we can always redirect fallthru edges. */
5389 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5391 e
= gimple_redirect_edge_and_branch (e
, dest
);
5398 /* Splits basic block BB after statement STMT (but at least after the
5399 labels). If STMT is NULL, BB is split just after the labels. */
5402 gimple_split_block (basic_block bb
, void *stmt
)
5404 gimple_stmt_iterator gsi
;
5405 gimple_stmt_iterator gsi_tgt
;
5412 new_bb
= create_empty_bb (bb
);
5414 /* Redirect the outgoing edges. */
5415 new_bb
->succs
= bb
->succs
;
5417 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5420 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5423 /* Move everything from GSI to the new basic block. */
5424 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5426 act
= gsi_stmt (gsi
);
5427 if (gimple_code (act
) == GIMPLE_LABEL
)
5440 if (gsi_end_p (gsi
))
5443 /* Split the statement list - avoid re-creating new containers as this
5444 brings ugly quadratic memory consumption in the inliner.
5445 (We are still quadratic since we need to update stmt BB pointers,
5447 gsi_split_seq_before (&gsi
, &list
);
5448 set_bb_seq (new_bb
, list
);
5449 for (gsi_tgt
= gsi_start (list
);
5450 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5451 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5457 /* Moves basic block BB after block AFTER. */
5460 gimple_move_block_after (basic_block bb
, basic_block after
)
5462 if (bb
->prev_bb
== after
)
5466 link_block (bb
, after
);
5472 /* Return TRUE if block BB has no executable statements, otherwise return
5476 gimple_empty_block_p (basic_block bb
)
5478 /* BB must have no executable statements. */
5479 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5482 if (gsi_end_p (gsi
))
5484 if (is_gimple_debug (gsi_stmt (gsi
)))
5485 gsi_next_nondebug (&gsi
);
5486 return gsi_end_p (gsi
);
5490 /* Split a basic block if it ends with a conditional branch and if the
5491 other part of the block is not empty. */
5494 gimple_split_block_before_cond_jump (basic_block bb
)
5496 gimple last
, split_point
;
5497 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5498 if (gsi_end_p (gsi
))
5500 last
= gsi_stmt (gsi
);
5501 if (gimple_code (last
) != GIMPLE_COND
5502 && gimple_code (last
) != GIMPLE_SWITCH
)
5504 gsi_prev_nondebug (&gsi
);
5505 split_point
= gsi_stmt (gsi
);
5506 return split_block (bb
, split_point
)->dest
;
5510 /* Return true if basic_block can be duplicated. */
5513 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5518 /* Create a duplicate of the basic block BB. NOTE: This does not
5519 preserve SSA form. */
5522 gimple_duplicate_bb (basic_block bb
)
5525 gimple_stmt_iterator gsi
, gsi_tgt
;
5526 gimple_seq phis
= phi_nodes (bb
);
5527 gimple phi
, stmt
, copy
;
5529 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5531 /* Copy the PHI nodes. We ignore PHI node arguments here because
5532 the incoming edges have not been setup yet. */
5533 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5535 phi
= gsi_stmt (gsi
);
5536 copy
= create_phi_node (NULL_TREE
, new_bb
);
5537 create_new_def_for (gimple_phi_result (phi
), copy
,
5538 gimple_phi_result_ptr (copy
));
5541 gsi_tgt
= gsi_start_bb (new_bb
);
5542 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5544 def_operand_p def_p
;
5545 ssa_op_iter op_iter
;
5548 stmt
= gsi_stmt (gsi
);
5549 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5552 /* Don't duplicate label debug stmts. */
5553 if (gimple_debug_bind_p (stmt
)
5554 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5558 /* Create a new copy of STMT and duplicate STMT's virtual
5560 copy
= gimple_copy (stmt
);
5561 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5563 maybe_duplicate_eh_stmt (copy
, stmt
);
5564 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5566 /* When copying around a stmt writing into a local non-user
5567 aggregate, make sure it won't share stack slot with other
5569 lhs
= gimple_get_lhs (stmt
);
5570 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5572 tree base
= get_base_address (lhs
);
5574 && (TREE_CODE (base
) == VAR_DECL
5575 || TREE_CODE (base
) == RESULT_DECL
)
5576 && DECL_IGNORED_P (base
)
5577 && !TREE_STATIC (base
)
5578 && !DECL_EXTERNAL (base
)
5579 && (TREE_CODE (base
) != VAR_DECL
5580 || !DECL_HAS_VALUE_EXPR_P (base
)))
5581 DECL_NONSHAREABLE (base
) = 1;
5584 /* Create new names for all the definitions created by COPY and
5585 add replacement mappings for each new name. */
5586 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5587 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5593 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5596 add_phi_args_after_copy_edge (edge e_copy
)
5598 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5601 gimple phi
, phi_copy
;
5603 gimple_stmt_iterator psi
, psi_copy
;
5605 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5608 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5610 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5611 dest
= get_bb_original (e_copy
->dest
);
5613 dest
= e_copy
->dest
;
5615 e
= find_edge (bb
, dest
);
5618 /* During loop unrolling the target of the latch edge is copied.
5619 In this case we are not looking for edge to dest, but to
5620 duplicated block whose original was dest. */
5621 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5623 if ((e
->dest
->flags
& BB_DUPLICATED
)
5624 && get_bb_original (e
->dest
) == dest
)
5628 gcc_assert (e
!= NULL
);
5631 for (psi
= gsi_start_phis (e
->dest
),
5632 psi_copy
= gsi_start_phis (e_copy
->dest
);
5634 gsi_next (&psi
), gsi_next (&psi_copy
))
5636 phi
= gsi_stmt (psi
);
5637 phi_copy
= gsi_stmt (psi_copy
);
5638 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5639 add_phi_arg (phi_copy
, def
, e_copy
,
5640 gimple_phi_arg_location_from_edge (phi
, e
));
5645 /* Basic block BB_COPY was created by code duplication. Add phi node
5646 arguments for edges going out of BB_COPY. The blocks that were
5647 duplicated have BB_DUPLICATED set. */
5650 add_phi_args_after_copy_bb (basic_block bb_copy
)
5655 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5657 add_phi_args_after_copy_edge (e_copy
);
5661 /* Blocks in REGION_COPY array of length N_REGION were created by
5662 duplication of basic blocks. Add phi node arguments for edges
5663 going from these blocks. If E_COPY is not NULL, also add
5664 phi node arguments for its destination.*/
5667 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5672 for (i
= 0; i
< n_region
; i
++)
5673 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5675 for (i
= 0; i
< n_region
; i
++)
5676 add_phi_args_after_copy_bb (region_copy
[i
]);
5678 add_phi_args_after_copy_edge (e_copy
);
5680 for (i
= 0; i
< n_region
; i
++)
5681 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5684 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5685 important exit edge EXIT. By important we mean that no SSA name defined
5686 inside region is live over the other exit edges of the region. All entry
5687 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5688 to the duplicate of the region. Dominance and loop information is
5689 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5690 UPDATE_DOMINANCE is false then we assume that the caller will update the
5691 dominance information after calling this function. The new basic
5692 blocks are stored to REGION_COPY in the same order as they had in REGION,
5693 provided that REGION_COPY is not NULL.
5694 The function returns false if it is unable to copy the region,
5698 gimple_duplicate_sese_region (edge entry
, edge exit
,
5699 basic_block
*region
, unsigned n_region
,
5700 basic_block
*region_copy
,
5701 bool update_dominance
)
5704 bool free_region_copy
= false, copying_header
= false;
5705 struct loop
*loop
= entry
->dest
->loop_father
;
5707 vec
<basic_block
> doms
;
5709 int total_freq
= 0, entry_freq
= 0;
5710 gcov_type total_count
= 0, entry_count
= 0;
5712 if (!can_copy_bbs_p (region
, n_region
))
5715 /* Some sanity checking. Note that we do not check for all possible
5716 missuses of the functions. I.e. if you ask to copy something weird,
5717 it will work, but the state of structures probably will not be
5719 for (i
= 0; i
< n_region
; i
++)
5721 /* We do not handle subloops, i.e. all the blocks must belong to the
5723 if (region
[i
]->loop_father
!= loop
)
5726 if (region
[i
] != entry
->dest
5727 && region
[i
] == loop
->header
)
5731 set_loop_copy (loop
, loop
);
5733 /* In case the function is used for loop header copying (which is the primary
5734 use), ensure that EXIT and its copy will be new latch and entry edges. */
5735 if (loop
->header
== entry
->dest
)
5737 copying_header
= true;
5738 set_loop_copy (loop
, loop_outer (loop
));
5740 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5743 for (i
= 0; i
< n_region
; i
++)
5744 if (region
[i
] != exit
->src
5745 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5751 region_copy
= XNEWVEC (basic_block
, n_region
);
5752 free_region_copy
= true;
5755 initialize_original_copy_tables ();
5757 /* Record blocks outside the region that are dominated by something
5759 if (update_dominance
)
5762 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5765 if (entry
->dest
->count
)
5767 total_count
= entry
->dest
->count
;
5768 entry_count
= entry
->count
;
5769 /* Fix up corner cases, to avoid division by zero or creation of negative
5771 if (entry_count
> total_count
)
5772 entry_count
= total_count
;
5776 total_freq
= entry
->dest
->frequency
;
5777 entry_freq
= EDGE_FREQUENCY (entry
);
5778 /* Fix up corner cases, to avoid division by zero or creation of negative
5780 if (total_freq
== 0)
5782 else if (entry_freq
> total_freq
)
5783 entry_freq
= total_freq
;
5786 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5787 split_edge_bb_loc (entry
), update_dominance
);
5790 scale_bbs_frequencies_gcov_type (region
, n_region
,
5791 total_count
- entry_count
,
5793 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5798 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5800 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5805 loop
->header
= exit
->dest
;
5806 loop
->latch
= exit
->src
;
5809 /* Redirect the entry and add the phi node arguments. */
5810 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5811 gcc_assert (redirected
!= NULL
);
5812 flush_pending_stmts (entry
);
5814 /* Concerning updating of dominators: We must recount dominators
5815 for entry block and its copy. Anything that is outside of the
5816 region, but was dominated by something inside needs recounting as
5818 if (update_dominance
)
5820 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5821 doms
.safe_push (get_bb_original (entry
->dest
));
5822 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5826 /* Add the other PHI node arguments. */
5827 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5829 if (free_region_copy
)
5832 free_original_copy_tables ();
5836 /* Checks if BB is part of the region defined by N_REGION BBS. */
5838 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
5842 for (n
= 0; n
< n_region
; n
++)
5850 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5851 are stored to REGION_COPY in the same order in that they appear
5852 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5853 the region, EXIT an exit from it. The condition guarding EXIT
5854 is moved to ENTRY. Returns true if duplication succeeds, false
5880 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5881 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5882 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5885 bool free_region_copy
= false;
5886 struct loop
*loop
= exit
->dest
->loop_father
;
5887 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5888 basic_block switch_bb
, entry_bb
, nentry_bb
;
5889 vec
<basic_block
> doms
;
5890 int total_freq
= 0, exit_freq
= 0;
5891 gcov_type total_count
= 0, exit_count
= 0;
5892 edge exits
[2], nexits
[2], e
;
5893 gimple_stmt_iterator gsi
;
5896 basic_block exit_bb
;
5897 gimple_stmt_iterator psi
;
5900 struct loop
*target
, *aloop
, *cloop
;
5902 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5904 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5906 if (!can_copy_bbs_p (region
, n_region
))
5909 initialize_original_copy_tables ();
5910 set_loop_copy (orig_loop
, loop
);
5913 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
5915 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
5917 cloop
= duplicate_loop (aloop
, target
);
5918 duplicate_subloops (aloop
, cloop
);
5924 region_copy
= XNEWVEC (basic_block
, n_region
);
5925 free_region_copy
= true;
5928 gcc_assert (!need_ssa_update_p (cfun
));
5930 /* Record blocks outside the region that are dominated by something
5932 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5934 if (exit
->src
->count
)
5936 total_count
= exit
->src
->count
;
5937 exit_count
= exit
->count
;
5938 /* Fix up corner cases, to avoid division by zero or creation of negative
5940 if (exit_count
> total_count
)
5941 exit_count
= total_count
;
5945 total_freq
= exit
->src
->frequency
;
5946 exit_freq
= EDGE_FREQUENCY (exit
);
5947 /* Fix up corner cases, to avoid division by zero or creation of negative
5949 if (total_freq
== 0)
5951 if (exit_freq
> total_freq
)
5952 exit_freq
= total_freq
;
5955 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5956 split_edge_bb_loc (exit
), true);
5959 scale_bbs_frequencies_gcov_type (region
, n_region
,
5960 total_count
- exit_count
,
5962 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5967 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5969 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5972 /* Create the switch block, and put the exit condition to it. */
5973 entry_bb
= entry
->dest
;
5974 nentry_bb
= get_bb_copy (entry_bb
);
5975 if (!last_stmt (entry
->src
)
5976 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5977 switch_bb
= entry
->src
;
5979 switch_bb
= split_edge (entry
);
5980 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5982 gsi
= gsi_last_bb (switch_bb
);
5983 cond_stmt
= last_stmt (exit
->src
);
5984 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5985 cond_stmt
= gimple_copy (cond_stmt
);
5987 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5989 sorig
= single_succ_edge (switch_bb
);
5990 sorig
->flags
= exits
[1]->flags
;
5991 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5993 /* Register the new edge from SWITCH_BB in loop exit lists. */
5994 rescan_loop_exit (snew
, true, false);
5996 /* Add the PHI node arguments. */
5997 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5999 /* Get rid of now superfluous conditions and associated edges (and phi node
6001 exit_bb
= exit
->dest
;
6003 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6004 PENDING_STMT (e
) = NULL
;
6006 /* The latch of ORIG_LOOP was copied, and so was the backedge
6007 to the original header. We redirect this backedge to EXIT_BB. */
6008 for (i
= 0; i
< n_region
; i
++)
6009 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6011 gcc_assert (single_succ_edge (region_copy
[i
]));
6012 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6013 PENDING_STMT (e
) = NULL
;
6014 for (psi
= gsi_start_phis (exit_bb
);
6018 phi
= gsi_stmt (psi
);
6019 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6020 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6023 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6024 PENDING_STMT (e
) = NULL
;
6026 /* Anything that is outside of the region, but was dominated by something
6027 inside needs to update dominance info. */
6028 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6030 /* Update the SSA web. */
6031 update_ssa (TODO_update_ssa
);
6033 if (free_region_copy
)
6036 free_original_copy_tables ();
6040 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6041 adding blocks when the dominator traversal reaches EXIT. This
6042 function silently assumes that ENTRY strictly dominates EXIT. */
6045 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6046 vec
<basic_block
> *bbs_p
)
6050 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6052 son
= next_dom_son (CDI_DOMINATORS
, son
))
6054 bbs_p
->safe_push (son
);
6056 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6060 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6061 The duplicates are recorded in VARS_MAP. */
6064 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
6067 tree t
= *tp
, new_t
;
6068 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6071 if (DECL_CONTEXT (t
) == to_context
)
6074 loc
= pointer_map_contains (vars_map
, t
);
6078 loc
= pointer_map_insert (vars_map
, t
);
6082 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6083 add_local_decl (f
, new_t
);
6087 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6088 new_t
= copy_node (t
);
6090 DECL_CONTEXT (new_t
) = to_context
;
6095 new_t
= (tree
) *loc
;
6101 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6102 VARS_MAP maps old ssa names and var_decls to the new ones. */
6105 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
6111 gcc_assert (!virtual_operand_p (name
));
6113 loc
= pointer_map_contains (vars_map
, name
);
6117 tree decl
= SSA_NAME_VAR (name
);
6120 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6121 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6122 decl
, SSA_NAME_DEF_STMT (name
));
6123 if (SSA_NAME_IS_DEFAULT_DEF (name
))
6124 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context
),
6128 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6129 name
, SSA_NAME_DEF_STMT (name
));
6131 loc
= pointer_map_insert (vars_map
, name
);
6135 new_name
= (tree
) *loc
;
6146 struct pointer_map_t
*vars_map
;
6147 htab_t new_label_map
;
6148 struct pointer_map_t
*eh_map
;
6152 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6153 contained in *TP if it has been ORIG_BLOCK previously and change the
6154 DECL_CONTEXT of every local variable referenced in *TP. */
6157 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6159 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6160 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6165 tree block
= TREE_BLOCK (t
);
6166 if (block
== p
->orig_block
6167 || (p
->orig_block
== NULL_TREE
6168 && block
!= NULL_TREE
))
6169 TREE_SET_BLOCK (t
, p
->new_block
);
6170 #ifdef ENABLE_CHECKING
6171 else if (block
!= NULL_TREE
)
6173 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6174 block
= BLOCK_SUPERCONTEXT (block
);
6175 gcc_assert (block
== p
->orig_block
);
6179 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6181 if (TREE_CODE (t
) == SSA_NAME
)
6182 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6183 else if (TREE_CODE (t
) == LABEL_DECL
)
6185 if (p
->new_label_map
)
6187 struct tree_map in
, *out
;
6189 out
= (struct tree_map
*)
6190 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6195 DECL_CONTEXT (t
) = p
->to_context
;
6197 else if (p
->remap_decls_p
)
6199 /* Replace T with its duplicate. T should no longer appear in the
6200 parent function, so this looks wasteful; however, it may appear
6201 in referenced_vars, and more importantly, as virtual operands of
6202 statements, and in alias lists of other variables. It would be
6203 quite difficult to expunge it from all those places. ??? It might
6204 suffice to do this for addressable variables. */
6205 if ((TREE_CODE (t
) == VAR_DECL
6206 && !is_global_var (t
))
6207 || TREE_CODE (t
) == CONST_DECL
)
6208 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6212 else if (TYPE_P (t
))
6218 /* Helper for move_stmt_r. Given an EH region number for the source
6219 function, map that to the duplicate EH regio number in the dest. */
6222 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6224 eh_region old_r
, new_r
;
6227 old_r
= get_eh_region_from_number (old_nr
);
6228 slot
= pointer_map_contains (p
->eh_map
, old_r
);
6229 new_r
= (eh_region
) *slot
;
6231 return new_r
->index
;
6234 /* Similar, but operate on INTEGER_CSTs. */
6237 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6241 old_nr
= tree_low_cst (old_t_nr
, 0);
6242 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6244 return build_int_cst (integer_type_node
, new_nr
);
6247 /* Like move_stmt_op, but for gimple statements.
6249 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6250 contained in the current statement in *GSI_P and change the
6251 DECL_CONTEXT of every local variable referenced in the current
6255 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6256 struct walk_stmt_info
*wi
)
6258 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6259 gimple stmt
= gsi_stmt (*gsi_p
);
6260 tree block
= gimple_block (stmt
);
6262 if (block
== p
->orig_block
6263 || (p
->orig_block
== NULL_TREE
6264 && block
!= NULL_TREE
))
6265 gimple_set_block (stmt
, p
->new_block
);
6267 switch (gimple_code (stmt
))
6270 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6272 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6273 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6274 switch (DECL_FUNCTION_CODE (fndecl
))
6276 case BUILT_IN_EH_COPY_VALUES
:
6277 r
= gimple_call_arg (stmt
, 1);
6278 r
= move_stmt_eh_region_tree_nr (r
, p
);
6279 gimple_call_set_arg (stmt
, 1, r
);
6282 case BUILT_IN_EH_POINTER
:
6283 case BUILT_IN_EH_FILTER
:
6284 r
= gimple_call_arg (stmt
, 0);
6285 r
= move_stmt_eh_region_tree_nr (r
, p
);
6286 gimple_call_set_arg (stmt
, 0, r
);
6297 int r
= gimple_resx_region (stmt
);
6298 r
= move_stmt_eh_region_nr (r
, p
);
6299 gimple_resx_set_region (stmt
, r
);
6303 case GIMPLE_EH_DISPATCH
:
6305 int r
= gimple_eh_dispatch_region (stmt
);
6306 r
= move_stmt_eh_region_nr (r
, p
);
6307 gimple_eh_dispatch_set_region (stmt
, r
);
6311 case GIMPLE_OMP_RETURN
:
6312 case GIMPLE_OMP_CONTINUE
:
6315 if (is_gimple_omp (stmt
))
6317 /* Do not remap variables inside OMP directives. Variables
6318 referenced in clauses and directive header belong to the
6319 parent function and should not be moved into the child
6321 bool save_remap_decls_p
= p
->remap_decls_p
;
6322 p
->remap_decls_p
= false;
6323 *handled_ops_p
= true;
6325 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6328 p
->remap_decls_p
= save_remap_decls_p
;
6336 /* Move basic block BB from function CFUN to function DEST_FN. The
6337 block is moved out of the original linked list and placed after
6338 block AFTER in the new list. Also, the block is removed from the
6339 original array of blocks and placed in DEST_FN's array of blocks.
6340 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6341 updated to reflect the moved edges.
6343 The local variables are remapped to new instances, VARS_MAP is used
6344 to record the mapping. */
6347 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6348 basic_block after
, bool update_edge_count_p
,
6349 struct move_stmt_d
*d
)
6351 struct control_flow_graph
*cfg
;
6354 gimple_stmt_iterator si
;
6355 unsigned old_len
, new_len
;
6357 /* Remove BB from dominance structures. */
6358 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6360 /* Move BB from its current loop to the copy in the new function. */
6363 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6365 bb
->loop_father
= new_loop
;
6368 /* Link BB to the new linked list. */
6369 move_block_after (bb
, after
);
6371 /* Update the edge count in the corresponding flowgraphs. */
6372 if (update_edge_count_p
)
6373 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6375 cfun
->cfg
->x_n_edges
--;
6376 dest_cfun
->cfg
->x_n_edges
++;
6379 /* Remove BB from the original basic block array. */
6380 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6381 cfun
->cfg
->x_n_basic_blocks
--;
6383 /* Grow DEST_CFUN's basic block array if needed. */
6384 cfg
= dest_cfun
->cfg
;
6385 cfg
->x_n_basic_blocks
++;
6386 if (bb
->index
>= cfg
->x_last_basic_block
)
6387 cfg
->x_last_basic_block
= bb
->index
+ 1;
6389 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6390 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6392 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6393 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6396 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6398 /* Remap the variables in phi nodes. */
6399 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6401 gimple phi
= gsi_stmt (si
);
6403 tree op
= PHI_RESULT (phi
);
6407 if (virtual_operand_p (op
))
6409 /* Remove the phi nodes for virtual operands (alias analysis will be
6410 run for the new function, anyway). */
6411 remove_phi_node (&si
, true);
6415 SET_PHI_RESULT (phi
,
6416 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6417 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6419 op
= USE_FROM_PTR (use
);
6420 if (TREE_CODE (op
) == SSA_NAME
)
6421 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6424 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6426 location_t locus
= gimple_phi_arg_location (phi
, i
);
6427 tree block
= LOCATION_BLOCK (locus
);
6429 if (locus
== UNKNOWN_LOCATION
)
6431 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6433 if (d
->new_block
== NULL_TREE
)
6434 locus
= LOCATION_LOCUS (locus
);
6436 locus
= COMBINE_LOCATION_DATA (line_table
, locus
, d
->new_block
);
6437 gimple_phi_arg_set_location (phi
, i
, locus
);
6444 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6446 gimple stmt
= gsi_stmt (si
);
6447 struct walk_stmt_info wi
;
6449 memset (&wi
, 0, sizeof (wi
));
6451 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6453 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6455 tree label
= gimple_label_label (stmt
);
6456 int uid
= LABEL_DECL_UID (label
);
6458 gcc_assert (uid
> -1);
6460 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6461 if (old_len
<= (unsigned) uid
)
6463 new_len
= 3 * uid
/ 2 + 1;
6464 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6467 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6468 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6470 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6472 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6473 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6476 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6477 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6479 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6480 gimple_remove_stmt_histograms (cfun
, stmt
);
6482 /* We cannot leave any operands allocated from the operand caches of
6483 the current function. */
6484 free_stmt_operands (stmt
);
6485 push_cfun (dest_cfun
);
6490 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6491 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6493 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6494 if (d
->orig_block
== NULL_TREE
6495 || block
== d
->orig_block
)
6496 e
->goto_locus
= d
->new_block
?
6497 COMBINE_LOCATION_DATA (line_table
, e
->goto_locus
, d
->new_block
) :
6498 LOCATION_LOCUS (e
->goto_locus
);
6502 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6503 the outermost EH region. Use REGION as the incoming base EH region. */
6506 find_outermost_region_in_block (struct function
*src_cfun
,
6507 basic_block bb
, eh_region region
)
6509 gimple_stmt_iterator si
;
6511 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6513 gimple stmt
= gsi_stmt (si
);
6514 eh_region stmt_region
;
6517 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6518 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6522 region
= stmt_region
;
6523 else if (stmt_region
!= region
)
6525 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6526 gcc_assert (region
!= NULL
);
6535 new_label_mapper (tree decl
, void *data
)
6537 htab_t hash
= (htab_t
) data
;
6541 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6543 m
= XNEW (struct tree_map
);
6544 m
->hash
= DECL_UID (decl
);
6545 m
->base
.from
= decl
;
6546 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6547 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6548 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6549 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6551 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6552 gcc_assert (*slot
== NULL
);
6559 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6563 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6568 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6571 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6573 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6576 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6578 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6579 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6581 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6586 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6587 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6590 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6594 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
6597 /* Discard it from the old loop array. */
6598 (*get_loops (fn1
))[loop
->num
] = NULL
;
6600 /* Place it in the new loop array, assigning it a new number. */
6601 loop
->num
= number_of_loops (fn2
);
6602 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
6604 /* Recurse to children. */
6605 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
6606 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
6609 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6610 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6611 single basic block in the original CFG and the new basic block is
6612 returned. DEST_CFUN must not have a CFG yet.
6614 Note that the region need not be a pure SESE region. Blocks inside
6615 the region may contain calls to abort/exit. The only restriction
6616 is that ENTRY_BB should be the only entry point and it must
6619 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6620 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6621 to the new function.
6623 All local variables referenced in the region are assumed to be in
6624 the corresponding BLOCK_VARS and unexpanded variable lists
6625 associated with DEST_CFUN. */
6628 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6629 basic_block exit_bb
, tree orig_block
)
6631 vec
<basic_block
> bbs
, dom_bbs
;
6632 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6633 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6634 struct function
*saved_cfun
= cfun
;
6635 int *entry_flag
, *exit_flag
;
6636 unsigned *entry_prob
, *exit_prob
;
6637 unsigned i
, num_entry_edges
, num_exit_edges
;
6640 htab_t new_label_map
;
6641 struct pointer_map_t
*vars_map
, *eh_map
;
6642 struct loop
*loop
= entry_bb
->loop_father
;
6643 struct move_stmt_d d
;
6645 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6647 gcc_assert (entry_bb
!= exit_bb
6649 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6651 /* Collect all the blocks in the region. Manually add ENTRY_BB
6652 because it won't be added by dfs_enumerate_from. */
6654 bbs
.safe_push (entry_bb
);
6655 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6657 /* The blocks that used to be dominated by something in BBS will now be
6658 dominated by the new block. */
6659 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6663 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6664 the predecessor edges to ENTRY_BB and the successor edges to
6665 EXIT_BB so that we can re-attach them to the new basic block that
6666 will replace the region. */
6667 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6668 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
6669 entry_flag
= XNEWVEC (int, num_entry_edges
);
6670 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6672 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6674 entry_prob
[i
] = e
->probability
;
6675 entry_flag
[i
] = e
->flags
;
6676 entry_pred
[i
++] = e
->src
;
6682 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6683 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
6684 exit_flag
= XNEWVEC (int, num_exit_edges
);
6685 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6687 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6689 exit_prob
[i
] = e
->probability
;
6690 exit_flag
[i
] = e
->flags
;
6691 exit_succ
[i
++] = e
->dest
;
6703 /* Switch context to the child function to initialize DEST_FN's CFG. */
6704 gcc_assert (dest_cfun
->cfg
== NULL
);
6705 push_cfun (dest_cfun
);
6707 init_empty_tree_cfg ();
6709 /* Initialize EH information for the new function. */
6711 new_label_map
= NULL
;
6714 eh_region region
= NULL
;
6716 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6717 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6719 init_eh_for_function ();
6722 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6723 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6724 new_label_mapper
, new_label_map
);
6728 /* Initialize an empty loop tree. */
6729 struct loops
*loops
= ggc_alloc_cleared_loops ();
6730 init_loops_structure (dest_cfun
, loops
, 1);
6731 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
6732 set_loops_for_fn (dest_cfun
, loops
);
6734 /* Move the outlined loop tree part. */
6735 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6737 if (bb
->loop_father
->header
== bb
6738 && loop_outer (bb
->loop_father
) == loop
)
6740 struct loop
*loop
= bb
->loop_father
;
6741 flow_loop_tree_node_remove (bb
->loop_father
);
6742 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), loop
);
6743 fixup_loop_arrays_after_move (saved_cfun
, cfun
, loop
);
6746 /* Remove loop exits from the outlined region. */
6747 if (loops_for_fn (saved_cfun
)->exits
)
6748 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6750 void **slot
= htab_find_slot_with_hash
6751 (loops_for_fn (saved_cfun
)->exits
, e
,
6752 htab_hash_pointer (e
), NO_INSERT
);
6754 htab_clear_slot (loops_for_fn (saved_cfun
)->exits
, slot
);
6759 /* Adjust the number of blocks in the tree root of the outlined part. */
6760 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
6762 /* Setup a mapping to be used by move_block_to_fn. */
6763 loop
->aux
= current_loops
->tree_root
;
6767 /* Move blocks from BBS into DEST_CFUN. */
6768 gcc_assert (bbs
.length () >= 2);
6769 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6770 vars_map
= pointer_map_create ();
6772 memset (&d
, 0, sizeof (d
));
6773 d
.orig_block
= orig_block
;
6774 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6775 d
.from_context
= cfun
->decl
;
6776 d
.to_context
= dest_cfun
->decl
;
6777 d
.vars_map
= vars_map
;
6778 d
.new_label_map
= new_label_map
;
6780 d
.remap_decls_p
= true;
6782 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6784 /* No need to update edge counts on the last block. It has
6785 already been updated earlier when we detached the region from
6786 the original CFG. */
6787 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6792 /* Loop sizes are no longer correct, fix them up. */
6793 loop
->num_nodes
-= bbs
.length ();
6794 for (struct loop
*outer
= loop_outer (loop
);
6795 outer
; outer
= loop_outer (outer
))
6796 outer
->num_nodes
-= bbs
.length ();
6798 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6802 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6804 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6805 = BLOCK_SUBBLOCKS (orig_block
);
6806 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6807 block
; block
= BLOCK_CHAIN (block
))
6808 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6809 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6812 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6813 vars_map
, dest_cfun
->decl
);
6816 htab_delete (new_label_map
);
6818 pointer_map_destroy (eh_map
);
6819 pointer_map_destroy (vars_map
);
6821 /* Rewire the entry and exit blocks. The successor to the entry
6822 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6823 the child function. Similarly, the predecessor of DEST_FN's
6824 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6825 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6826 various CFG manipulation function get to the right CFG.
6828 FIXME, this is silly. The CFG ought to become a parameter to
6830 push_cfun (dest_cfun
);
6831 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6833 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6836 /* Back in the original function, the SESE region has disappeared,
6837 create a new basic block in its place. */
6838 bb
= create_empty_bb (entry_pred
[0]);
6840 add_bb_to_loop (bb
, loop
);
6841 for (i
= 0; i
< num_entry_edges
; i
++)
6843 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6844 e
->probability
= entry_prob
[i
];
6847 for (i
= 0; i
< num_exit_edges
; i
++)
6849 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6850 e
->probability
= exit_prob
[i
];
6853 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6854 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
6855 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6873 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6877 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
6879 tree arg
, var
, old_current_fndecl
= current_function_decl
;
6880 struct function
*dsf
;
6881 bool ignore_topmost_bind
= false, any_var
= false;
6884 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
6885 && decl_is_tm_clone (fndecl
));
6886 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
6888 current_function_decl
= fndecl
;
6889 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
6891 arg
= DECL_ARGUMENTS (fndecl
);
6894 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6895 fprintf (file
, " ");
6896 print_generic_expr (file
, arg
, dump_flags
);
6897 if (flags
& TDF_VERBOSE
)
6898 print_node (file
, "", arg
, 4);
6899 if (DECL_CHAIN (arg
))
6900 fprintf (file
, ", ");
6901 arg
= DECL_CHAIN (arg
);
6903 fprintf (file
, ")\n");
6905 if (flags
& TDF_VERBOSE
)
6906 print_node (file
, "", fndecl
, 2);
6908 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
6909 if (dsf
&& (flags
& TDF_EH
))
6910 dump_eh_tree (file
, dsf
);
6912 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
6914 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
6915 current_function_decl
= old_current_fndecl
;
6919 /* When GIMPLE is lowered, the variables are no longer available in
6920 BIND_EXPRs, so display them separately. */
6921 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
6924 ignore_topmost_bind
= true;
6926 fprintf (file
, "{\n");
6927 if (!vec_safe_is_empty (fun
->local_decls
))
6928 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
6930 print_generic_decl (file
, var
, flags
);
6931 if (flags
& TDF_VERBOSE
)
6932 print_node (file
, "", var
, 4);
6933 fprintf (file
, "\n");
6937 if (gimple_in_ssa_p (cfun
))
6938 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
6940 tree name
= ssa_name (ix
);
6941 if (name
&& !SSA_NAME_VAR (name
))
6943 fprintf (file
, " ");
6944 print_generic_expr (file
, TREE_TYPE (name
), flags
);
6945 fprintf (file
, " ");
6946 print_generic_expr (file
, name
, flags
);
6947 fprintf (file
, ";\n");
6954 if (fun
&& fun
->decl
== fndecl
6956 && basic_block_info_for_function (fun
))
6958 /* If the CFG has been built, emit a CFG-based dump. */
6959 if (!ignore_topmost_bind
)
6960 fprintf (file
, "{\n");
6962 if (any_var
&& n_basic_blocks_for_function (fun
))
6963 fprintf (file
, "\n");
6965 FOR_EACH_BB_FN (bb
, fun
)
6966 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
6968 fprintf (file
, "}\n");
6970 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
6972 /* The function is now in GIMPLE form but the CFG has not been
6973 built yet. Emit the single sequence of GIMPLE statements
6974 that make up its body. */
6975 gimple_seq body
= gimple_body (fndecl
);
6977 if (gimple_seq_first_stmt (body
)
6978 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6979 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6980 print_gimple_seq (file
, body
, 0, flags
);
6983 if (!ignore_topmost_bind
)
6984 fprintf (file
, "{\n");
6987 fprintf (file
, "\n");
6989 print_gimple_seq (file
, body
, 2, flags
);
6990 fprintf (file
, "}\n");
6997 /* Make a tree based dump. */
6998 chain
= DECL_SAVED_TREE (fndecl
);
6999 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7001 if (ignore_topmost_bind
)
7003 chain
= BIND_EXPR_BODY (chain
);
7011 if (!ignore_topmost_bind
)
7012 fprintf (file
, "{\n");
7017 fprintf (file
, "\n");
7019 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7020 if (ignore_topmost_bind
)
7021 fprintf (file
, "}\n");
7024 if (flags
& TDF_ENUMERATE_LOCALS
)
7025 dump_enumerated_decls (file
, flags
);
7026 fprintf (file
, "\n\n");
7028 current_function_decl
= old_current_fndecl
;
7031 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7034 debug_function (tree fn
, int flags
)
7036 dump_function_to_file (fn
, stderr
, flags
);
7040 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7043 print_pred_bbs (FILE *file
, basic_block bb
)
7048 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7049 fprintf (file
, "bb_%d ", e
->src
->index
);
7053 /* Print on FILE the indexes for the successors of basic_block BB. */
7056 print_succ_bbs (FILE *file
, basic_block bb
)
7061 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7062 fprintf (file
, "bb_%d ", e
->dest
->index
);
7065 /* Print to FILE the basic block BB following the VERBOSITY level. */
7068 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7070 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7071 memset ((void *) s_indent
, ' ', (size_t) indent
);
7072 s_indent
[indent
] = '\0';
7074 /* Print basic_block's header. */
7077 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7078 print_pred_bbs (file
, bb
);
7079 fprintf (file
, "}, succs = {");
7080 print_succ_bbs (file
, bb
);
7081 fprintf (file
, "})\n");
7084 /* Print basic_block's body. */
7087 fprintf (file
, "%s {\n", s_indent
);
7088 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7089 fprintf (file
, "%s }\n", s_indent
);
7093 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7095 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7096 VERBOSITY level this outputs the contents of the loop, or just its
7100 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7108 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7109 memset ((void *) s_indent
, ' ', (size_t) indent
);
7110 s_indent
[indent
] = '\0';
7112 /* Print loop's header. */
7113 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7115 fprintf (file
, "header = %d", loop
->header
->index
);
7118 fprintf (file
, "deleted)\n");
7122 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7124 fprintf (file
, ", multiple latches");
7125 fprintf (file
, ", niter = ");
7126 print_generic_expr (file
, loop
->nb_iterations
, 0);
7128 if (loop
->any_upper_bound
)
7130 fprintf (file
, ", upper_bound = ");
7131 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
7134 if (loop
->any_estimate
)
7136 fprintf (file
, ", estimate = ");
7137 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
7139 fprintf (file
, ")\n");
7141 /* Print loop's body. */
7144 fprintf (file
, "%s{\n", s_indent
);
7146 if (bb
->loop_father
== loop
)
7147 print_loops_bb (file
, bb
, indent
, verbosity
);
7149 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7150 fprintf (file
, "%s}\n", s_indent
);
7154 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7155 spaces. Following VERBOSITY level this outputs the contents of the
7156 loop, or just its structure. */
7159 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7165 print_loop (file
, loop
, indent
, verbosity
);
7166 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7169 /* Follow a CFG edge from the entry point of the program, and on entry
7170 of a loop, pretty print the loop structure on FILE. */
7173 print_loops (FILE *file
, int verbosity
)
7177 bb
= ENTRY_BLOCK_PTR
;
7178 if (bb
&& bb
->loop_father
)
7179 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7185 debug (struct loop
&ref
)
7187 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7191 debug (struct loop
*ptr
)
7196 fprintf (stderr
, "<nil>\n");
7199 /* Dump a loop verbosely. */
7202 debug_verbose (struct loop
&ref
)
7204 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7208 debug_verbose (struct loop
*ptr
)
7213 fprintf (stderr
, "<nil>\n");
7217 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7220 debug_loops (int verbosity
)
7222 print_loops (stderr
, verbosity
);
7225 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7228 debug_loop (struct loop
*loop
, int verbosity
)
7230 print_loop (stderr
, loop
, 0, verbosity
);
7233 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7237 debug_loop_num (unsigned num
, int verbosity
)
7239 debug_loop (get_loop (cfun
, num
), verbosity
);
7242 /* Return true if BB ends with a call, possibly followed by some
7243 instructions that must stay with the call. Return false,
7247 gimple_block_ends_with_call_p (basic_block bb
)
7249 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7250 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7254 /* Return true if BB ends with a conditional branch. Return false,
7258 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7260 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
7261 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7265 /* Return true if we need to add fake edge to exit at statement T.
7266 Helper function for gimple_flow_call_edges_add. */
7269 need_fake_edge_p (gimple t
)
7271 tree fndecl
= NULL_TREE
;
7274 /* NORETURN and LONGJMP calls already have an edge to exit.
7275 CONST and PURE calls do not need one.
7276 We don't currently check for CONST and PURE here, although
7277 it would be a good idea, because those attributes are
7278 figured out from the RTL in mark_constant_function, and
7279 the counter incrementation code from -fprofile-arcs
7280 leads to different results from -fbranch-probabilities. */
7281 if (is_gimple_call (t
))
7283 fndecl
= gimple_call_fndecl (t
);
7284 call_flags
= gimple_call_flags (t
);
7287 if (is_gimple_call (t
)
7289 && DECL_BUILT_IN (fndecl
)
7290 && (call_flags
& ECF_NOTHROW
)
7291 && !(call_flags
& ECF_RETURNS_TWICE
)
7292 /* fork() doesn't really return twice, but the effect of
7293 wrapping it in __gcov_fork() which calls __gcov_flush()
7294 and clears the counters before forking has the same
7295 effect as returning twice. Force a fake edge. */
7296 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7297 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7300 if (is_gimple_call (t
))
7306 if (!(call_flags
& ECF_NORETURN
))
7310 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7311 if ((e
->flags
& EDGE_FAKE
) == 0)
7315 if (gimple_code (t
) == GIMPLE_ASM
7316 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
7323 /* Add fake edges to the function exit for any non constant and non
7324 noreturn calls (or noreturn calls with EH/abnormal edges),
7325 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7326 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7329 The goal is to expose cases in which entering a basic block does
7330 not imply that all subsequent instructions must be executed. */
7333 gimple_flow_call_edges_add (sbitmap blocks
)
7336 int blocks_split
= 0;
7337 int last_bb
= last_basic_block
;
7338 bool check_last_block
= false;
7340 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
7344 check_last_block
= true;
7346 check_last_block
= bitmap_bit_p (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
7348 /* In the last basic block, before epilogue generation, there will be
7349 a fallthru edge to EXIT. Special care is required if the last insn
7350 of the last basic block is a call because make_edge folds duplicate
7351 edges, which would result in the fallthru edge also being marked
7352 fake, which would result in the fallthru edge being removed by
7353 remove_fake_edges, which would result in an invalid CFG.
7355 Moreover, we can't elide the outgoing fake edge, since the block
7356 profiler needs to take this into account in order to solve the minimal
7357 spanning tree in the case that the call doesn't return.
7359 Handle this by adding a dummy instruction in a new last basic block. */
7360 if (check_last_block
)
7362 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
7363 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7366 if (!gsi_end_p (gsi
))
7369 if (t
&& need_fake_edge_p (t
))
7373 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7376 gsi_insert_on_edge (e
, gimple_build_nop ());
7377 gsi_commit_edge_inserts ();
7382 /* Now add fake edges to the function exit for any non constant
7383 calls since there is no way that we can determine if they will
7385 for (i
= 0; i
< last_bb
; i
++)
7387 basic_block bb
= BASIC_BLOCK (i
);
7388 gimple_stmt_iterator gsi
;
7389 gimple stmt
, last_stmt
;
7394 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7397 gsi
= gsi_last_nondebug_bb (bb
);
7398 if (!gsi_end_p (gsi
))
7400 last_stmt
= gsi_stmt (gsi
);
7403 stmt
= gsi_stmt (gsi
);
7404 if (need_fake_edge_p (stmt
))
7408 /* The handling above of the final block before the
7409 epilogue should be enough to verify that there is
7410 no edge to the exit block in CFG already.
7411 Calling make_edge in such case would cause us to
7412 mark that edge as fake and remove it later. */
7413 #ifdef ENABLE_CHECKING
7414 if (stmt
== last_stmt
)
7416 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7417 gcc_assert (e
== NULL
);
7421 /* Note that the following may create a new basic block
7422 and renumber the existing basic blocks. */
7423 if (stmt
!= last_stmt
)
7425 e
= split_block (bb
, stmt
);
7429 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7433 while (!gsi_end_p (gsi
));
7438 verify_flow_info ();
7440 return blocks_split
;
7443 /* Removes edge E and all the blocks dominated by it, and updates dominance
7444 information. The IL in E->src needs to be updated separately.
7445 If dominance info is not available, only the edge E is removed.*/
7448 remove_edge_and_dominated_blocks (edge e
)
7450 vec
<basic_block
> bbs_to_remove
= vNULL
;
7451 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
7455 bool none_removed
= false;
7457 basic_block bb
, dbb
;
7460 if (!dom_info_available_p (CDI_DOMINATORS
))
7466 /* No updating is needed for edges to exit. */
7467 if (e
->dest
== EXIT_BLOCK_PTR
)
7469 if (cfgcleanup_altered_bbs
)
7470 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7475 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7476 that is not dominated by E->dest, then this set is empty. Otherwise,
7477 all the basic blocks dominated by E->dest are removed.
7479 Also, to DF_IDOM we store the immediate dominators of the blocks in
7480 the dominance frontier of E (i.e., of the successors of the
7481 removed blocks, if there are any, and of E->dest otherwise). */
7482 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7487 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7489 none_removed
= true;
7494 df
= BITMAP_ALLOC (NULL
);
7495 df_idom
= BITMAP_ALLOC (NULL
);
7498 bitmap_set_bit (df_idom
,
7499 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7502 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7503 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7505 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7507 if (f
->dest
!= EXIT_BLOCK_PTR
)
7508 bitmap_set_bit (df
, f
->dest
->index
);
7511 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7512 bitmap_clear_bit (df
, bb
->index
);
7514 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7516 bb
= BASIC_BLOCK (i
);
7517 bitmap_set_bit (df_idom
,
7518 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7522 if (cfgcleanup_altered_bbs
)
7524 /* Record the set of the altered basic blocks. */
7525 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7526 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7529 /* Remove E and the cancelled blocks. */
7534 /* Walk backwards so as to get a chance to substitute all
7535 released DEFs into debug stmts. See
7536 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7538 for (i
= bbs_to_remove
.length (); i
-- > 0; )
7539 delete_basic_block (bbs_to_remove
[i
]);
7542 /* Update the dominance information. The immediate dominator may change only
7543 for blocks whose immediate dominator belongs to DF_IDOM:
7545 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7546 removal. Let Z the arbitrary block such that idom(Z) = Y and
7547 Z dominates X after the removal. Before removal, there exists a path P
7548 from Y to X that avoids Z. Let F be the last edge on P that is
7549 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7550 dominates W, and because of P, Z does not dominate W), and W belongs to
7551 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7552 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7554 bb
= BASIC_BLOCK (i
);
7555 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7557 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7558 bbs_to_fix_dom
.safe_push (dbb
);
7561 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7564 BITMAP_FREE (df_idom
);
7565 bbs_to_remove
.release ();
7566 bbs_to_fix_dom
.release ();
7569 /* Purge dead EH edges from basic block BB. */
7572 gimple_purge_dead_eh_edges (basic_block bb
)
7574 bool changed
= false;
7577 gimple stmt
= last_stmt (bb
);
7579 if (stmt
&& stmt_can_throw_internal (stmt
))
7582 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7584 if (e
->flags
& EDGE_EH
)
7586 remove_edge_and_dominated_blocks (e
);
7596 /* Purge dead EH edges from basic block listed in BLOCKS. */
7599 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7601 bool changed
= false;
7605 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7607 basic_block bb
= BASIC_BLOCK (i
);
7609 /* Earlier gimple_purge_dead_eh_edges could have removed
7610 this basic block already. */
7611 gcc_assert (bb
|| changed
);
7613 changed
|= gimple_purge_dead_eh_edges (bb
);
7619 /* Purge dead abnormal call edges from basic block BB. */
7622 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7624 bool changed
= false;
7627 gimple stmt
= last_stmt (bb
);
7629 if (!cfun
->has_nonlocal_label
7630 && !cfun
->calls_setjmp
)
7633 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7636 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7638 if (e
->flags
& EDGE_ABNORMAL
)
7640 if (e
->flags
& EDGE_FALLTHRU
)
7641 e
->flags
&= ~EDGE_ABNORMAL
;
7643 remove_edge_and_dominated_blocks (e
);
7653 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7656 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7658 bool changed
= false;
7662 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7664 basic_block bb
= BASIC_BLOCK (i
);
7666 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7667 this basic block already. */
7668 gcc_assert (bb
|| changed
);
7670 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7676 /* This function is called whenever a new edge is created or
7680 gimple_execute_on_growing_pred (edge e
)
7682 basic_block bb
= e
->dest
;
7684 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7685 reserve_phi_args_for_new_edge (bb
);
7688 /* This function is called immediately before edge E is removed from
7689 the edge vector E->dest->preds. */
7692 gimple_execute_on_shrinking_pred (edge e
)
7694 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7695 remove_phi_args (e
);
7698 /*---------------------------------------------------------------------------
7699 Helper functions for Loop versioning
7700 ---------------------------------------------------------------------------*/
7702 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7703 of 'first'. Both of them are dominated by 'new_head' basic block. When
7704 'new_head' was created by 'second's incoming edge it received phi arguments
7705 on the edge by split_edge(). Later, additional edge 'e' was created to
7706 connect 'new_head' and 'first'. Now this routine adds phi args on this
7707 additional edge 'e' that new_head to second edge received as part of edge
7711 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7712 basic_block new_head
, edge e
)
7715 gimple_stmt_iterator psi1
, psi2
;
7717 edge e2
= find_edge (new_head
, second
);
7719 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7720 edge, we should always have an edge from NEW_HEAD to SECOND. */
7721 gcc_assert (e2
!= NULL
);
7723 /* Browse all 'second' basic block phi nodes and add phi args to
7724 edge 'e' for 'first' head. PHI args are always in correct order. */
7726 for (psi2
= gsi_start_phis (second
),
7727 psi1
= gsi_start_phis (first
);
7728 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7729 gsi_next (&psi2
), gsi_next (&psi1
))
7731 phi1
= gsi_stmt (psi1
);
7732 phi2
= gsi_stmt (psi2
);
7733 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7734 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7739 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7740 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7741 the destination of the ELSE part. */
7744 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7745 basic_block second_head ATTRIBUTE_UNUSED
,
7746 basic_block cond_bb
, void *cond_e
)
7748 gimple_stmt_iterator gsi
;
7749 gimple new_cond_expr
;
7750 tree cond_expr
= (tree
) cond_e
;
7753 /* Build new conditional expr */
7754 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7755 NULL_TREE
, NULL_TREE
);
7757 /* Add new cond in cond_bb. */
7758 gsi
= gsi_last_bb (cond_bb
);
7759 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7761 /* Adjust edges appropriately to connect new head with first head
7762 as well as second head. */
7763 e0
= single_succ_edge (cond_bb
);
7764 e0
->flags
&= ~EDGE_FALLTHRU
;
7765 e0
->flags
|= EDGE_FALSE_VALUE
;
7769 /* Do book-keeping of basic block BB for the profile consistency checker.
7770 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7771 then do post-pass accounting. Store the counting in RECORD. */
7773 gimple_account_profile_record (basic_block bb
, int after_pass
,
7774 struct profile_record
*record
)
7776 gimple_stmt_iterator i
;
7777 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
7779 record
->size
[after_pass
]
7780 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
7781 if (profile_status
== PROFILE_READ
)
7782 record
->time
[after_pass
]
7783 += estimate_num_insns (gsi_stmt (i
),
7784 &eni_time_weights
) * bb
->count
;
7785 else if (profile_status
== PROFILE_GUESSED
)
7786 record
->time
[after_pass
]
7787 += estimate_num_insns (gsi_stmt (i
),
7788 &eni_time_weights
) * bb
->frequency
;
7792 struct cfg_hooks gimple_cfg_hooks
= {
7794 gimple_verify_flow_info
,
7795 gimple_dump_bb
, /* dump_bb */
7796 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
7797 create_bb
, /* create_basic_block */
7798 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7799 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7800 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7801 remove_bb
, /* delete_basic_block */
7802 gimple_split_block
, /* split_block */
7803 gimple_move_block_after
, /* move_block_after */
7804 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7805 gimple_merge_blocks
, /* merge_blocks */
7806 gimple_predict_edge
, /* predict_edge */
7807 gimple_predicted_by_p
, /* predicted_by_p */
7808 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7809 gimple_duplicate_bb
, /* duplicate_block */
7810 gimple_split_edge
, /* split_edge */
7811 gimple_make_forwarder_block
, /* make_forward_block */
7812 NULL
, /* tidy_fallthru_edge */
7813 NULL
, /* force_nonfallthru */
7814 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7815 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7816 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7817 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7818 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7819 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7820 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7821 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7822 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7823 flush_pending_stmts
, /* flush_pending_stmts */
7824 gimple_empty_block_p
, /* block_empty_p */
7825 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
7826 gimple_account_profile_record
,
7830 /* Split all critical edges. */
7833 split_critical_edges (void)
7839 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7840 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7841 mappings around the calls to split_edge. */
7842 start_recording_case_labels ();
7845 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7847 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7849 /* PRE inserts statements to edges and expects that
7850 since split_critical_edges was done beforehand, committing edge
7851 insertions will not split more edges. In addition to critical
7852 edges we must split edges that have multiple successors and
7853 end by control flow statements, such as RESX.
7854 Go ahead and split them too. This matches the logic in
7855 gimple_find_edge_insert_loc. */
7856 else if ((!single_pred_p (e
->dest
)
7857 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7858 || e
->dest
== EXIT_BLOCK_PTR
)
7859 && e
->src
!= ENTRY_BLOCK_PTR
7860 && !(e
->flags
& EDGE_ABNORMAL
))
7862 gimple_stmt_iterator gsi
;
7864 gsi
= gsi_last_bb (e
->src
);
7865 if (!gsi_end_p (gsi
)
7866 && stmt_ends_bb_p (gsi_stmt (gsi
))
7867 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7868 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7874 end_recording_case_labels ();
7878 struct gimple_opt_pass pass_split_crit_edges
=
7882 "crited", /* name */
7883 OPTGROUP_NONE
, /* optinfo_flags */
7885 split_critical_edges
, /* execute */
7888 0, /* static_pass_number */
7889 TV_TREE_SPLIT_EDGES
, /* tv_id */
7890 PROP_cfg
, /* properties required */
7891 PROP_no_crit_edges
, /* properties_provided */
7892 0, /* properties_destroyed */
7893 0, /* todo_flags_start */
7894 TODO_verify_flow
/* todo_flags_finish */
7899 /* Build a ternary operation and gimplify it. Emit code before GSI.
7900 Return the gimple_val holding the result. */
7903 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7904 tree type
, tree a
, tree b
, tree c
)
7907 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7909 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7912 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7916 /* Build a binary operation and gimplify it. Emit code before GSI.
7917 Return the gimple_val holding the result. */
7920 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7921 tree type
, tree a
, tree b
)
7925 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7928 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7932 /* Build a unary operation and gimplify it. Emit code before GSI.
7933 Return the gimple_val holding the result. */
7936 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7941 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7944 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7950 /* Emit return warnings. */
7953 execute_warn_function_return (void)
7955 source_location location
;
7960 if (!targetm
.warn_func_return (cfun
->decl
))
7963 /* If we have a path to EXIT, then we do return. */
7964 if (TREE_THIS_VOLATILE (cfun
->decl
)
7965 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7967 location
= UNKNOWN_LOCATION
;
7968 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7970 last
= last_stmt (e
->src
);
7971 if ((gimple_code (last
) == GIMPLE_RETURN
7972 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7973 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7976 if (location
== UNKNOWN_LOCATION
)
7977 location
= cfun
->function_end_locus
;
7978 warning_at (location
, 0, "%<noreturn%> function does return");
7981 /* If we see "return;" in some basic block, then we do reach the end
7982 without returning a value. */
7983 else if (warn_return_type
7984 && !TREE_NO_WARNING (cfun
->decl
)
7985 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7986 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7988 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7990 gimple last
= last_stmt (e
->src
);
7991 if (gimple_code (last
) == GIMPLE_RETURN
7992 && gimple_return_retval (last
) == NULL
7993 && !gimple_no_warning_p (last
))
7995 location
= gimple_location (last
);
7996 if (location
== UNKNOWN_LOCATION
)
7997 location
= cfun
->function_end_locus
;
7998 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7999 TREE_NO_WARNING (cfun
->decl
) = 1;
8008 /* Given a basic block B which ends with a conditional and has
8009 precisely two successors, determine which of the edges is taken if
8010 the conditional is true and which is taken if the conditional is
8011 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8014 extract_true_false_edges_from_block (basic_block b
,
8018 edge e
= EDGE_SUCC (b
, 0);
8020 if (e
->flags
& EDGE_TRUE_VALUE
)
8023 *false_edge
= EDGE_SUCC (b
, 1);
8028 *true_edge
= EDGE_SUCC (b
, 1);
8032 struct gimple_opt_pass pass_warn_function_return
=
8036 "*warn_function_return", /* name */
8037 OPTGROUP_NONE
, /* optinfo_flags */
8039 execute_warn_function_return
, /* execute */
8042 0, /* static_pass_number */
8043 TV_NONE
, /* tv_id */
8044 PROP_cfg
, /* properties_required */
8045 0, /* properties_provided */
8046 0, /* properties_destroyed */
8047 0, /* todo_flags_start */
8048 0 /* todo_flags_finish */
8052 /* Emit noreturn warnings. */
8055 execute_warn_function_noreturn (void)
8057 if (!TREE_THIS_VOLATILE (current_function_decl
)
8058 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
8059 warn_function_noreturn (current_function_decl
);
8064 gate_warn_function_noreturn (void)
8066 return warn_suggest_attribute_noreturn
;
8069 struct gimple_opt_pass pass_warn_function_noreturn
=
8073 "*warn_function_noreturn", /* name */
8074 OPTGROUP_NONE
, /* optinfo_flags */
8075 gate_warn_function_noreturn
, /* gate */
8076 execute_warn_function_noreturn
, /* execute */
8079 0, /* static_pass_number */
8080 TV_NONE
, /* tv_id */
8081 PROP_cfg
, /* properties_required */
8082 0, /* properties_provided */
8083 0, /* properties_destroyed */
8084 0, /* todo_flags_start */
8085 0 /* todo_flags_finish */
8090 /* Walk a gimplified function and warn for functions whose return value is
8091 ignored and attribute((warn_unused_result)) is set. This is done before
8092 inlining, so we don't have to worry about that. */
8095 do_warn_unused_result (gimple_seq seq
)
8098 gimple_stmt_iterator i
;
8100 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
8102 gimple g
= gsi_stmt (i
);
8104 switch (gimple_code (g
))
8107 do_warn_unused_result (gimple_bind_body (g
));
8110 do_warn_unused_result (gimple_try_eval (g
));
8111 do_warn_unused_result (gimple_try_cleanup (g
));
8114 do_warn_unused_result (gimple_catch_handler (g
));
8116 case GIMPLE_EH_FILTER
:
8117 do_warn_unused_result (gimple_eh_filter_failure (g
));
8121 if (gimple_call_lhs (g
))
8123 if (gimple_call_internal_p (g
))
8126 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8127 LHS. All calls whose value is ignored should be
8128 represented like this. Look for the attribute. */
8129 fdecl
= gimple_call_fndecl (g
);
8130 ftype
= gimple_call_fntype (g
);
8132 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
8134 location_t loc
= gimple_location (g
);
8137 warning_at (loc
, OPT_Wunused_result
,
8138 "ignoring return value of %qD, "
8139 "declared with attribute warn_unused_result",
8142 warning_at (loc
, OPT_Wunused_result
,
8143 "ignoring return value of function "
8144 "declared with attribute warn_unused_result");
8149 /* Not a container, not a call, or a call whose value is used. */
8156 run_warn_unused_result (void)
8158 do_warn_unused_result (gimple_body (current_function_decl
));
8163 gate_warn_unused_result (void)
8165 return flag_warn_unused_result
;
8168 struct gimple_opt_pass pass_warn_unused_result
=
8172 "*warn_unused_result", /* name */
8173 OPTGROUP_NONE
, /* optinfo_flags */
8174 gate_warn_unused_result
, /* gate */
8175 run_warn_unused_result
, /* execute */
8178 0, /* static_pass_number */
8179 TV_NONE
, /* tv_id */
8180 PROP_gimple_any
, /* properties_required */
8181 0, /* properties_provided */
8182 0, /* properties_destroyed */
8183 0, /* todo_flags_start */
8184 0, /* todo_flags_finish */
8189 /* Garbage collection support for edge_def. */
8191 extern void gt_ggc_mx (tree
&);
8192 extern void gt_ggc_mx (gimple
&);
8193 extern void gt_ggc_mx (rtx
&);
8194 extern void gt_ggc_mx (basic_block
&);
8197 gt_ggc_mx (edge_def
*e
)
8199 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8201 gt_ggc_mx (e
->dest
);
8202 if (current_ir_type () == IR_GIMPLE
)
8203 gt_ggc_mx (e
->insns
.g
);
8205 gt_ggc_mx (e
->insns
.r
);
8209 /* PCH support for edge_def. */
8211 extern void gt_pch_nx (tree
&);
8212 extern void gt_pch_nx (gimple
&);
8213 extern void gt_pch_nx (rtx
&);
8214 extern void gt_pch_nx (basic_block
&);
8217 gt_pch_nx (edge_def
*e
)
8219 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8221 gt_pch_nx (e
->dest
);
8222 if (current_ir_type () == IR_GIMPLE
)
8223 gt_pch_nx (e
->insns
.g
);
8225 gt_pch_nx (e
->insns
.r
);
8230 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
8232 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8233 op (&(e
->src
), cookie
);
8234 op (&(e
->dest
), cookie
);
8235 if (current_ir_type () == IR_GIMPLE
)
8236 op (&(e
->insns
.g
), cookie
);
8238 op (&(e
->insns
.r
), cookie
);
8239 op (&(block
), cookie
);