2015-03-13 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / lra-spills.c
blob184735135dc5911ef8445b6eef9af15a0376d82f
1 /* Change pseudos by memory.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for a pass to change spilled pseudos into
23 memory.
25 The pass creates necessary stack slots and assigns spilled pseudos
26 to the stack slots in following way:
28 for all spilled pseudos P most frequently used first do
29 for all stack slots S do
30 if P doesn't conflict with pseudos assigned to S then
31 assign S to P and goto to the next pseudo process
32 end
33 end
34 create new stack slot S and assign P to S
35 end
37 The actual algorithm is bit more complicated because of different
38 pseudo sizes.
40 After that the code changes spilled pseudos (except ones created
41 from scratches) by corresponding stack slot memory in RTL.
43 If at least one stack slot was created, we need to run more passes
44 because we have new addresses which should be checked and because
45 the old address displacements might change and address constraints
46 (or insn memory constraints) might not be satisfied any more.
48 For some targets, the pass can spill some pseudos into hard
49 registers of different class (usually into vector registers)
50 instead of spilling them into memory if it is possible and
51 profitable. Spilling GENERAL_REGS pseudo into SSE registers for
52 Intel Corei7 is an example of such optimization. And this is
53 actually recommended by Intel optimization guide.
55 The file also contains code for final change of pseudos on hard
56 regs correspondingly assigned to them. */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "tm.h"
62 #include "rtl.h"
63 #include "tm_p.h"
64 #include "insn-config.h"
65 #include "recog.h"
66 #include "output.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "flags.h"
70 #include "hashtab.h"
71 #include "hash-set.h"
72 #include "vec.h"
73 #include "machmode.h"
74 #include "input.h"
75 #include "function.h"
76 #include "symtab.h"
77 #include "statistics.h"
78 #include "double-int.h"
79 #include "real.h"
80 #include "fixed-value.h"
81 #include "alias.h"
82 #include "wide-int.h"
83 #include "inchash.h"
84 #include "tree.h"
85 #include "expmed.h"
86 #include "dojump.h"
87 #include "explow.h"
88 #include "calls.h"
89 #include "emit-rtl.h"
90 #include "varasm.h"
91 #include "stmt.h"
92 #include "expr.h"
93 #include "predict.h"
94 #include "dominance.h"
95 #include "cfg.h"
96 #include "cfgrtl.h"
97 #include "basic-block.h"
98 #include "except.h"
99 #include "timevar.h"
100 #include "target.h"
101 #include "lra-int.h"
102 #include "ira.h"
103 #include "df.h"
106 /* Max regno at the start of the pass. */
107 static int regs_num;
109 /* Map spilled regno -> hard regno used instead of memory for
110 spilling. */
111 static rtx *spill_hard_reg;
113 /* The structure describes stack slot of a spilled pseudo. */
114 struct pseudo_slot
116 /* Number (0, 1, ...) of the stack slot to which given pseudo
117 belongs. */
118 int slot_num;
119 /* First or next slot with the same slot number. */
120 struct pseudo_slot *next, *first;
121 /* Memory representing the spilled pseudo. */
122 rtx mem;
125 /* The stack slots for each spilled pseudo. Indexed by regnos. */
126 static struct pseudo_slot *pseudo_slots;
128 /* The structure describes a register or a stack slot which can be
129 used for several spilled pseudos. */
130 struct slot
132 /* First pseudo with given stack slot. */
133 int regno;
134 /* Hard reg into which the slot pseudos are spilled. The value is
135 negative for pseudos spilled into memory. */
136 int hard_regno;
137 /* Memory representing the all stack slot. It can be different from
138 memory representing a pseudo belonging to give stack slot because
139 pseudo can be placed in a part of the corresponding stack slot.
140 The value is NULL for pseudos spilled into a hard reg. */
141 rtx mem;
142 /* Combined live ranges of all pseudos belonging to given slot. It
143 is used to figure out that a new spilled pseudo can use given
144 stack slot. */
145 lra_live_range_t live_ranges;
148 /* Array containing info about the stack slots. The array element is
149 indexed by the stack slot number in the range [0..slots_num). */
150 static struct slot *slots;
151 /* The number of the stack slots currently existing. */
152 static int slots_num;
154 /* Set up memory of the spilled pseudo I. The function can allocate
155 the corresponding stack slot if it is not done yet. */
156 static void
157 assign_mem_slot (int i)
159 rtx x = NULL_RTX;
160 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
161 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
162 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
163 unsigned int max_ref_width = GET_MODE_SIZE (lra_reg_info[i].biggest_mode);
164 unsigned int total_size = MAX (inherent_size, max_ref_width);
165 unsigned int min_align = max_ref_width * BITS_PER_UNIT;
166 int adjust = 0;
168 lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
169 && lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
171 x = slots[pseudo_slots[i].slot_num].mem;
173 /* We can use a slot already allocated because it is guaranteed the
174 slot provides both enough inherent space and enough total
175 space. */
176 if (x)
178 /* Each pseudo has an inherent size which comes from its own mode,
179 and a total size which provides room for paradoxical subregs
180 which refer to the pseudo reg in wider modes. We allocate a new
181 slot, making sure that it has enough inherent space and total
182 space. */
183 else
185 rtx stack_slot;
187 /* No known place to spill from => no slot to reuse. */
188 x = assign_stack_local (mode, total_size,
189 min_align > inherent_align
190 || total_size > inherent_size ? -1 : 0);
191 stack_slot = x;
192 /* Cancel the big-endian correction done in assign_stack_local.
193 Get the address of the beginning of the slot. This is so we
194 can do a big-endian correction unconditionally below. */
195 if (BYTES_BIG_ENDIAN)
197 adjust = inherent_size - total_size;
198 if (adjust)
199 stack_slot
200 = adjust_address_nv (x,
201 mode_for_size (total_size * BITS_PER_UNIT,
202 MODE_INT, 1),
203 adjust);
205 slots[pseudo_slots[i].slot_num].mem = stack_slot;
208 /* On a big endian machine, the "address" of the slot is the address
209 of the low part that fits its inherent mode. */
210 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
211 adjust += (total_size - inherent_size);
213 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
215 /* Set all of the memory attributes as appropriate for a spill. */
216 set_mem_attrs_for_spill (x);
217 pseudo_slots[i].mem = x;
220 /* Sort pseudos according their usage frequencies. */
221 static int
222 regno_freq_compare (const void *v1p, const void *v2p)
224 const int regno1 = *(const int *) v1p;
225 const int regno2 = *(const int *) v2p;
226 int diff;
228 if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
229 return diff;
230 return regno1 - regno2;
233 /* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
234 #ifdef STACK_GROWS_DOWNWARD
235 # undef STACK_GROWS_DOWNWARD
236 # define STACK_GROWS_DOWNWARD 1
237 #else
238 # define STACK_GROWS_DOWNWARD 0
239 #endif
241 /* Sort pseudos according to their slots, putting the slots in the order
242 that they should be allocated. Slots with lower numbers have the highest
243 priority and should get the smallest displacement from the stack or
244 frame pointer (whichever is being used).
246 The first allocated slot is always closest to the frame pointer,
247 so prefer lower slot numbers when frame_pointer_needed. If the stack
248 and frame grow in the same direction, then the first allocated slot is
249 always closest to the initial stack pointer and furthest away from the
250 final stack pointer, so allocate higher numbers first when using the
251 stack pointer in that case. The reverse is true if the stack and
252 frame grow in opposite directions. */
253 static int
254 pseudo_reg_slot_compare (const void *v1p, const void *v2p)
256 const int regno1 = *(const int *) v1p;
257 const int regno2 = *(const int *) v2p;
258 int diff, slot_num1, slot_num2;
259 int total_size1, total_size2;
261 slot_num1 = pseudo_slots[regno1].slot_num;
262 slot_num2 = pseudo_slots[regno2].slot_num;
263 if ((diff = slot_num1 - slot_num2) != 0)
264 return (frame_pointer_needed
265 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
266 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
267 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
268 if ((diff = total_size2 - total_size1) != 0)
269 return diff;
270 return regno1 - regno2;
273 /* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
274 sorted in order of highest frequency first. Put the pseudos which
275 did not get a spill hard register at the beginning of array
276 PSEUDO_REGNOS. Return the number of such pseudos. */
277 static int
278 assign_spill_hard_regs (int *pseudo_regnos, int n)
280 int i, k, p, regno, res, spill_class_size, hard_regno, nr;
281 enum reg_class rclass, spill_class;
282 machine_mode mode;
283 lra_live_range_t r;
284 rtx_insn *insn;
285 rtx set;
286 basic_block bb;
287 HARD_REG_SET conflict_hard_regs;
288 bitmap_head ok_insn_bitmap;
289 bitmap setjump_crosses = regstat_get_setjmp_crosses ();
290 /* Hard registers which can not be used for any purpose at given
291 program point because they are unallocatable or already allocated
292 for other pseudos. */
293 HARD_REG_SET *reserved_hard_regs;
295 if (! lra_reg_spill_p)
296 return n;
297 /* Set up reserved hard regs for every program point. */
298 reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
299 for (p = 0; p < lra_live_max_point; p++)
300 COPY_HARD_REG_SET (reserved_hard_regs[p], lra_no_alloc_regs);
301 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
302 if (lra_reg_info[i].nrefs != 0
303 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
304 for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
305 for (p = r->start; p <= r->finish; p++)
306 add_to_hard_reg_set (&reserved_hard_regs[p],
307 lra_reg_info[i].biggest_mode, hard_regno);
308 bitmap_initialize (&ok_insn_bitmap, &reg_obstack);
309 FOR_EACH_BB_FN (bb, cfun)
310 FOR_BB_INSNS (bb, insn)
311 if (DEBUG_INSN_P (insn)
312 || ((set = single_set (insn)) != NULL_RTX
313 && REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
314 bitmap_set_bit (&ok_insn_bitmap, INSN_UID (insn));
315 for (res = i = 0; i < n; i++)
317 regno = pseudo_regnos[i];
318 rclass = lra_get_allocno_class (regno);
319 if (bitmap_bit_p (setjump_crosses, regno)
320 || (spill_class
321 = ((enum reg_class)
322 targetm.spill_class ((reg_class_t) rclass,
323 PSEUDO_REGNO_MODE (regno)))) == NO_REGS
324 || bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
325 &ok_insn_bitmap))
327 pseudo_regnos[res++] = regno;
328 continue;
330 lra_assert (spill_class != NO_REGS);
331 COPY_HARD_REG_SET (conflict_hard_regs,
332 lra_reg_info[regno].conflict_hard_regs);
333 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
334 for (p = r->start; p <= r->finish; p++)
335 IOR_HARD_REG_SET (conflict_hard_regs, reserved_hard_regs[p]);
336 spill_class_size = ira_class_hard_regs_num[spill_class];
337 mode = lra_reg_info[regno].biggest_mode;
338 for (k = 0; k < spill_class_size; k++)
340 hard_regno = ira_class_hard_regs[spill_class][k];
341 if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
342 break;
344 if (k >= spill_class_size)
346 /* There is no available regs -- assign memory later. */
347 pseudo_regnos[res++] = regno;
348 continue;
350 if (lra_dump_file != NULL)
351 fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
352 /* Update reserved_hard_regs. */
353 for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
354 for (p = r->start; p <= r->finish; p++)
355 add_to_hard_reg_set (&reserved_hard_regs[p],
356 lra_reg_info[regno].biggest_mode, hard_regno);
357 spill_hard_reg[regno]
358 = gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
359 for (nr = 0;
360 nr < hard_regno_nregs[hard_regno][lra_reg_info[regno].biggest_mode];
361 nr++)
362 /* Just loop. */
363 df_set_regs_ever_live (hard_regno + nr, true);
365 bitmap_clear (&ok_insn_bitmap);
366 free (reserved_hard_regs);
367 return res;
370 /* Add pseudo REGNO to slot SLOT_NUM. */
371 static void
372 add_pseudo_to_slot (int regno, int slot_num)
374 struct pseudo_slot *first;
376 if (slots[slot_num].regno < 0)
378 /* It is the first pseudo in the slot. */
379 slots[slot_num].regno = regno;
380 pseudo_slots[regno].first = &pseudo_slots[regno];
381 pseudo_slots[regno].next = NULL;
383 else
385 first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
386 pseudo_slots[regno].next = first->next;
387 first->next = &pseudo_slots[regno];
389 pseudo_slots[regno].mem = NULL_RTX;
390 pseudo_slots[regno].slot_num = slot_num;
391 slots[slot_num].live_ranges
392 = lra_merge_live_ranges (slots[slot_num].live_ranges,
393 lra_copy_live_range_list
394 (lra_reg_info[regno].live_ranges));
397 /* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
398 length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
399 memory stack slots. */
400 static void
401 assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
403 int i, j, regno;
405 slots_num = 0;
406 /* Assign stack slot numbers to spilled pseudos, use smaller numbers
407 for most frequently used pseudos. */
408 for (i = 0; i < n; i++)
410 regno = pseudo_regnos[i];
411 if (! flag_ira_share_spill_slots)
412 j = slots_num;
413 else
415 for (j = 0; j < slots_num; j++)
416 if (slots[j].hard_regno < 0
417 && ! (lra_intersected_live_ranges_p
418 (slots[j].live_ranges,
419 lra_reg_info[regno].live_ranges)))
420 break;
422 if (j >= slots_num)
424 /* New slot. */
425 slots[j].live_ranges = NULL;
426 slots[j].regno = slots[j].hard_regno = -1;
427 slots[j].mem = NULL_RTX;
428 slots_num++;
430 add_pseudo_to_slot (regno, j);
432 /* Sort regnos according to their slot numbers. */
433 qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
436 /* Recursively process LOC in INSN and change spilled pseudos to the
437 corresponding memory or spilled hard reg. Ignore spilled pseudos
438 created from the scratches. */
439 static void
440 remove_pseudos (rtx *loc, rtx_insn *insn)
442 int i;
443 rtx hard_reg;
444 const char *fmt;
445 enum rtx_code code;
447 if (*loc == NULL_RTX)
448 return;
449 code = GET_CODE (*loc);
450 if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
451 && lra_get_regno_hard_regno (i) < 0
452 /* We do not want to assign memory for former scratches because
453 it might result in an address reload for some targets. In
454 any case we transform such pseudos not getting hard registers
455 into scratches back. */
456 && ! lra_former_scratch_p (i))
458 if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
459 *loc = copy_rtx (hard_reg);
460 else
462 rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
463 GET_MODE (pseudo_slots[i].mem),
464 0, false, false, true);
465 *loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
467 return;
470 fmt = GET_RTX_FORMAT (code);
471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 if (fmt[i] == 'e')
474 remove_pseudos (&XEXP (*loc, i), insn);
475 else if (fmt[i] == 'E')
477 int j;
479 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
480 remove_pseudos (&XVECEXP (*loc, i, j), insn);
485 /* Convert spilled pseudos into their stack slots or spill hard regs,
486 put insns to process on the constraint stack (that is all insns in
487 which pseudos were changed to memory or spill hard regs). */
488 static void
489 spill_pseudos (void)
491 basic_block bb;
492 rtx_insn *insn;
493 int i;
494 bitmap_head spilled_pseudos, changed_insns;
496 bitmap_initialize (&spilled_pseudos, &reg_obstack);
497 bitmap_initialize (&changed_insns, &reg_obstack);
498 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
500 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
501 && ! lra_former_scratch_p (i))
503 bitmap_set_bit (&spilled_pseudos, i);
504 bitmap_ior_into (&changed_insns, &lra_reg_info[i].insn_bitmap);
507 FOR_EACH_BB_FN (bb, cfun)
509 FOR_BB_INSNS (bb, insn)
510 if (bitmap_bit_p (&changed_insns, INSN_UID (insn)))
512 rtx *link_loc, link;
513 remove_pseudos (&PATTERN (insn), insn);
514 if (CALL_P (insn))
515 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
516 for (link_loc = &REG_NOTES (insn);
517 (link = *link_loc) != NULL_RTX;
518 link_loc = &XEXP (link, 1))
520 switch (REG_NOTE_KIND (link))
522 case REG_FRAME_RELATED_EXPR:
523 case REG_CFA_DEF_CFA:
524 case REG_CFA_ADJUST_CFA:
525 case REG_CFA_OFFSET:
526 case REG_CFA_REGISTER:
527 case REG_CFA_EXPRESSION:
528 case REG_CFA_RESTORE:
529 case REG_CFA_SET_VDRAP:
530 remove_pseudos (&XEXP (link, 0), insn);
531 break;
532 default:
533 break;
536 if (lra_dump_file != NULL)
537 fprintf (lra_dump_file,
538 "Changing spilled pseudos to memory in insn #%u\n",
539 INSN_UID (insn));
540 lra_push_insn (insn);
541 if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
542 lra_set_used_insn_alternative (insn, -1);
544 else if (CALL_P (insn))
545 /* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE does
546 not affect value of insn_bitmap of the corresponding
547 lra_reg_info. That is because we don't need to reload
548 pseudos in CALL_INSN_FUNCTION_USAGEs. So if we process
549 only insns in the insn_bitmap of given pseudo here, we
550 can miss the pseudo in some
551 CALL_INSN_FUNCTION_USAGEs. */
552 remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn);
553 bitmap_and_compl_into (df_get_live_in (bb), &spilled_pseudos);
554 bitmap_and_compl_into (df_get_live_out (bb), &spilled_pseudos);
556 bitmap_clear (&spilled_pseudos);
557 bitmap_clear (&changed_insns);
560 /* Return true if we need to change some pseudos into memory. */
561 bool
562 lra_need_for_spills_p (void)
564 int i; max_regno = max_reg_num ();
566 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
567 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
568 && ! lra_former_scratch_p (i))
569 return true;
570 return false;
573 /* Change spilled pseudos into memory or spill hard regs. Put changed
574 insns on the constraint stack (these insns will be considered on
575 the next constraint pass). The changed insns are all insns in
576 which pseudos were changed. */
577 void
578 lra_spill (void)
580 int i, n, curr_regno;
581 int *pseudo_regnos;
583 regs_num = max_reg_num ();
584 spill_hard_reg = XNEWVEC (rtx, regs_num);
585 pseudo_regnos = XNEWVEC (int, regs_num);
586 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
587 if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
588 /* We do not want to assign memory for former scratches. */
589 && ! lra_former_scratch_p (i))
591 spill_hard_reg[i] = NULL_RTX;
592 pseudo_regnos[n++] = i;
594 lra_assert (n > 0);
595 pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
596 slots = XNEWVEC (struct slot, regs_num);
597 /* Sort regnos according their usage frequencies. */
598 qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
599 n = assign_spill_hard_regs (pseudo_regnos, n);
600 assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
601 for (i = 0; i < n; i++)
602 if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
603 assign_mem_slot (pseudo_regnos[i]);
604 if (n > 0 && crtl->stack_alignment_needed)
605 /* If we have a stack frame, we must align it now. The stack size
606 may be a part of the offset computation for register
607 elimination. */
608 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
609 if (lra_dump_file != NULL)
611 for (i = 0; i < slots_num; i++)
613 fprintf (lra_dump_file, " Slot %d regnos (width = %d):", i,
614 GET_MODE_SIZE (GET_MODE (slots[i].mem)));
615 for (curr_regno = slots[i].regno;;
616 curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
618 fprintf (lra_dump_file, " %d", curr_regno);
619 if (pseudo_slots[curr_regno].next == NULL)
620 break;
622 fprintf (lra_dump_file, "\n");
625 spill_pseudos ();
626 free (slots);
627 free (pseudo_slots);
628 free (pseudo_regnos);
629 free (spill_hard_reg);
632 /* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
633 alter_subreg calls. Return true if any subreg of reg is
634 processed. */
635 static bool
636 alter_subregs (rtx *loc, bool final_p)
638 int i;
639 rtx x = *loc;
640 bool res;
641 const char *fmt;
642 enum rtx_code code;
644 if (x == NULL_RTX)
645 return false;
646 code = GET_CODE (x);
647 if (code == SUBREG && REG_P (SUBREG_REG (x)))
649 lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
650 alter_subreg (loc, final_p);
651 return true;
653 fmt = GET_RTX_FORMAT (code);
654 res = false;
655 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
657 if (fmt[i] == 'e')
659 if (alter_subregs (&XEXP (x, i), final_p))
660 res = true;
662 else if (fmt[i] == 'E')
664 int j;
666 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
667 if (alter_subregs (&XVECEXP (x, i, j), final_p))
668 res = true;
671 return res;
674 /* Return true if REGNO is used for return in the current
675 function. */
676 static bool
677 return_regno_p (unsigned int regno)
679 rtx outgoing = crtl->return_rtx;
681 if (! outgoing)
682 return false;
684 if (REG_P (outgoing))
685 return REGNO (outgoing) == regno;
686 else if (GET_CODE (outgoing) == PARALLEL)
688 int i;
690 for (i = 0; i < XVECLEN (outgoing, 0); i++)
692 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
694 if (REG_P (x) && REGNO (x) == regno)
695 return true;
698 return false;
701 /* Final change of pseudos got hard registers into the corresponding
702 hard registers and removing temporary clobbers. */
703 void
704 lra_final_code_change (void)
706 int i, hard_regno;
707 basic_block bb;
708 rtx_insn *insn, *curr;
709 int max_regno = max_reg_num ();
711 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
712 if (lra_reg_info[i].nrefs != 0
713 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
714 SET_REGNO (regno_reg_rtx[i], hard_regno);
715 FOR_EACH_BB_FN (bb, cfun)
716 FOR_BB_INSNS_SAFE (bb, insn, curr)
717 if (INSN_P (insn))
719 rtx pat = PATTERN (insn);
721 if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
723 /* Remove clobbers temporarily created in LRA. We don't
724 need them anymore and don't want to waste compiler
725 time processing them in a few subsequent passes. */
726 lra_invalidate_insn_data (insn);
727 delete_insn (insn);
728 continue;
731 /* IRA can generate move insns involving pseudos. It is
732 better remove them earlier to speed up compiler a bit.
733 It is also better to do it here as they might not pass
734 final RTL check in LRA, (e.g. insn moving a control
735 register into itself). So remove an useless move insn
736 unless next insn is USE marking the return reg (we should
737 save this as some subsequent optimizations assume that
738 such original insns are saved). */
739 if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
740 && REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
741 && REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
742 && ! return_regno_p (REGNO (SET_SRC (pat))))
744 lra_invalidate_insn_data (insn);
745 delete_insn (insn);
746 continue;
749 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
750 struct lra_static_insn_data *static_id = id->insn_static_data;
751 bool insn_change_p = false;
753 for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
754 if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
755 && alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
757 lra_update_dup (id, i);
758 insn_change_p = true;
760 if (insn_change_p)
761 lra_update_operator_dups (id);