1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Ch6
; use Exp_Ch6
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
35 with Ghost
; use Ghost
;
37 with Lib
.Xref
; use Lib
.Xref
;
38 with Namet
; use Namet
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
44 with Rtsfind
; use Rtsfind
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Case
; use Sem_Case
;
48 with Sem_Ch3
; use Sem_Ch3
;
49 with Sem_Ch6
; use Sem_Ch6
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Dim
; use Sem_Dim
;
52 with Sem_Disp
; use Sem_Disp
;
53 with Sem_Elab
; use Sem_Elab
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Res
; use Sem_Res
;
56 with Sem_Type
; use Sem_Type
;
57 with Sem_Util
; use Sem_Util
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Snames
; use Snames
;
60 with Stand
; use Stand
;
61 with Sinfo
; use Sinfo
;
62 with Targparm
; use Targparm
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Ch5
is
68 Unblocked_Exit_Count
: Nat
:= 0;
69 -- This variable is used when processing if statements, case statements,
70 -- and block statements. It counts the number of exit points that are not
71 -- blocked by unconditional transfer instructions: for IF and CASE, these
72 -- are the branches of the conditional; for a block, they are the statement
73 -- sequence of the block, and the statement sequences of any exception
74 -- handlers that are part of the block. When processing is complete, if
75 -- this count is zero, it means that control cannot fall through the IF,
76 -- CASE or block statement. This is used for the generation of warning
77 -- messages. This variable is recursively saved on entry to processing the
78 -- construct, and restored on exit.
80 procedure Preanalyze_Range
(R_Copy
: Node_Id
);
81 -- Determine expected type of range or domain of iteration of Ada 2012
82 -- loop by analyzing separate copy. Do the analysis and resolution of the
83 -- copy of the bound(s) with expansion disabled, to prevent the generation
84 -- of finalization actions. This prevents memory leaks when the bounds
85 -- contain calls to functions returning controlled arrays or when the
86 -- domain of iteration is a container.
88 ------------------------
89 -- Analyze_Assignment --
90 ------------------------
92 procedure Analyze_Assignment
(N
: Node_Id
) is
93 Lhs
: constant Node_Id
:= Name
(N
);
94 Rhs
: constant Node_Id
:= Expression
(N
);
99 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
100 -- N is the node for the left hand side of an assignment, and it is not
101 -- a variable. This routine issues an appropriate diagnostic.
104 -- This is called to kill current value settings of a simple variable
105 -- on the left hand side. We call it if we find any error in analyzing
106 -- the assignment, and at the end of processing before setting any new
107 -- current values in place.
109 procedure Set_Assignment_Type
111 Opnd_Type
: in out Entity_Id
);
112 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
113 -- nominal subtype. This procedure is used to deal with cases where the
114 -- nominal subtype must be replaced by the actual subtype.
116 -------------------------------
117 -- Diagnose_Non_Variable_Lhs --
118 -------------------------------
120 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
122 -- Not worth posting another error if left hand side already flagged
123 -- as being illegal in some respect.
125 if Error_Posted
(N
) then
128 -- Some special bad cases of entity names
130 elsif Is_Entity_Name
(N
) then
132 Ent
: constant Entity_Id
:= Entity
(N
);
135 if Ekind
(Ent
) = E_In_Parameter
then
137 ("assignment to IN mode parameter not allowed", N
);
140 -- Renamings of protected private components are turned into
141 -- constants when compiling a protected function. In the case
142 -- of single protected types, the private component appears
145 elsif (Is_Prival
(Ent
)
147 (Ekind
(Current_Scope
) = E_Function
148 or else Ekind
(Enclosing_Dynamic_Scope
149 (Current_Scope
)) = E_Function
))
151 (Ekind
(Ent
) = E_Component
152 and then Is_Protected_Type
(Scope
(Ent
)))
155 ("protected function cannot modify protected object", N
);
158 elsif Ekind
(Ent
) = E_Loop_Parameter
then
159 Error_Msg_N
("assignment to loop parameter not allowed", N
);
164 -- For indexed components, test prefix if it is in array. We do not
165 -- want to recurse for cases where the prefix is a pointer, since we
166 -- may get a message confusing the pointer and what it references.
168 elsif Nkind
(N
) = N_Indexed_Component
169 and then Is_Array_Type
(Etype
(Prefix
(N
)))
171 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
174 -- Another special case for assignment to discriminant
176 elsif Nkind
(N
) = N_Selected_Component
then
177 if Present
(Entity
(Selector_Name
(N
)))
178 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
180 Error_Msg_N
("assignment to discriminant not allowed", N
);
183 -- For selection from record, diagnose prefix, but note that again
184 -- we only do this for a record, not e.g. for a pointer.
186 elsif Is_Record_Type
(Etype
(Prefix
(N
))) then
187 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
192 -- If we fall through, we have no special message to issue
194 Error_Msg_N
("left hand side of assignment must be a variable", N
);
195 end Diagnose_Non_Variable_Lhs
;
201 procedure Kill_Lhs
is
203 if Is_Entity_Name
(Lhs
) then
205 Ent
: constant Entity_Id
:= Entity
(Lhs
);
207 if Present
(Ent
) then
208 Kill_Current_Values
(Ent
);
214 -------------------------
215 -- Set_Assignment_Type --
216 -------------------------
218 procedure Set_Assignment_Type
220 Opnd_Type
: in out Entity_Id
)
223 Require_Entity
(Opnd
);
225 -- If the assignment operand is an in-out or out parameter, then we
226 -- get the actual subtype (needed for the unconstrained case). If the
227 -- operand is the actual in an entry declaration, then within the
228 -- accept statement it is replaced with a local renaming, which may
229 -- also have an actual subtype.
231 if Is_Entity_Name
(Opnd
)
232 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
233 or else Ekind_In
(Entity
(Opnd
),
235 E_Generic_In_Out_Parameter
)
237 (Ekind
(Entity
(Opnd
)) = E_Variable
238 and then Nkind
(Parent
(Entity
(Opnd
))) =
239 N_Object_Renaming_Declaration
240 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
243 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
245 -- If assignment operand is a component reference, then we get the
246 -- actual subtype of the component for the unconstrained case.
248 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
249 and then not Is_Unchecked_Union
(Opnd_Type
)
251 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
253 if Present
(Decl
) then
254 Insert_Action
(N
, Decl
);
255 Mark_Rewrite_Insertion
(Decl
);
257 Opnd_Type
:= Defining_Identifier
(Decl
);
258 Set_Etype
(Opnd
, Opnd_Type
);
259 Freeze_Itype
(Opnd_Type
, N
);
261 elsif Is_Constrained
(Etype
(Opnd
)) then
262 Opnd_Type
:= Etype
(Opnd
);
265 -- For slice, use the constrained subtype created for the slice
267 elsif Nkind
(Opnd
) = N_Slice
then
268 Opnd_Type
:= Etype
(Opnd
);
270 end Set_Assignment_Type
;
272 -- Start of processing for Analyze_Assignment
275 Mark_Coextensions
(N
, Rhs
);
277 -- Analyze the target of the assignment first in case the expression
278 -- contains references to Ghost entities. The checks that verify the
279 -- proper use of a Ghost entity need to know the enclosing context.
283 -- The left hand side of an assignment may reference an entity subject
284 -- to pragma Ghost with policy Ignore. Set the mode now to ensure that
285 -- any nodes generated during analysis and expansion are properly
286 -- flagged as ignored Ghost.
291 -- Ensure that we never do an assignment on a variable marked as
292 -- as Safe_To_Reevaluate.
294 pragma Assert
(not Is_Entity_Name
(Lhs
)
295 or else Ekind
(Entity
(Lhs
)) /= E_Variable
296 or else not Is_Safe_To_Reevaluate
(Entity
(Lhs
)));
298 -- Start type analysis for assignment
302 -- In the most general case, both Lhs and Rhs can be overloaded, and we
303 -- must compute the intersection of the possible types on each side.
305 if Is_Overloaded
(Lhs
) then
312 Get_First_Interp
(Lhs
, I
, It
);
314 while Present
(It
.Typ
) loop
315 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
316 if T1
/= Any_Type
then
318 -- An explicit dereference is overloaded if the prefix
319 -- is. Try to remove the ambiguity on the prefix, the
320 -- error will be posted there if the ambiguity is real.
322 if Nkind
(Lhs
) = N_Explicit_Dereference
then
325 PI1
: Interp_Index
:= 0;
331 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
333 while Present
(PIt
.Typ
) loop
334 if Is_Access_Type
(PIt
.Typ
)
335 and then Has_Compatible_Type
336 (Rhs
, Designated_Type
(PIt
.Typ
))
340 Disambiguate
(Prefix
(Lhs
),
343 if PIt
= No_Interp
then
345 ("ambiguous left-hand side"
346 & " in assignment", Lhs
);
349 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
359 Get_Next_Interp
(PI
, PIt
);
365 ("ambiguous left-hand side in assignment", Lhs
);
373 Get_Next_Interp
(I
, It
);
377 if T1
= Any_Type
then
379 ("no valid types for left-hand side for assignment", Lhs
);
385 -- The resulting assignment type is T1, so now we will resolve the left
386 -- hand side of the assignment using this determined type.
390 -- Cases where Lhs is not a variable
392 if not Is_Variable
(Lhs
) then
394 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
402 if Ada_Version
>= Ada_2005
then
404 -- Handle chains of renamings
407 while Nkind
(Ent
) in N_Has_Entity
408 and then Present
(Entity
(Ent
))
409 and then Present
(Renamed_Object
(Entity
(Ent
)))
411 Ent
:= Renamed_Object
(Entity
(Ent
));
414 if (Nkind
(Ent
) = N_Attribute_Reference
415 and then Attribute_Name
(Ent
) = Name_Priority
)
417 -- Renamings of the attribute Priority applied to protected
418 -- objects have been previously expanded into calls to the
419 -- Get_Ceiling run-time subprogram.
422 (Nkind
(Ent
) = N_Function_Call
423 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
425 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
)))
427 -- The enclosing subprogram cannot be a protected function
430 while not (Is_Subprogram
(S
)
431 and then Convention
(S
) = Convention_Protected
)
432 and then S
/= Standard_Standard
437 if Ekind
(S
) = E_Function
438 and then Convention
(S
) = Convention_Protected
441 ("protected function cannot modify protected object",
445 -- Changes of the ceiling priority of the protected object
446 -- are only effective if the Ceiling_Locking policy is in
447 -- effect (AARM D.5.2 (5/2)).
449 if Locking_Policy
/= 'C' then
450 Error_Msg_N
("assignment to the attribute PRIORITY has " &
452 Error_Msg_N
("\since no Locking_Policy has been " &
461 Diagnose_Non_Variable_Lhs
(Lhs
);
464 -- Error of assigning to limited type. We do however allow this in
465 -- certain cases where the front end generates the assignments.
467 elsif Is_Limited_Type
(T1
)
468 and then not Assignment_OK
(Lhs
)
469 and then not Assignment_OK
(Original_Node
(Lhs
))
470 and then not Is_Value_Type
(T1
)
472 -- CPP constructors can only be called in declarations
474 if Is_CPP_Constructor_Call
(Rhs
) then
475 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
478 ("left hand of assignment must not be limited type", Lhs
);
479 Explain_Limited_Type
(T1
, Lhs
);
483 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
484 -- abstract. This is only checked when the assignment Comes_From_Source,
485 -- because in some cases the expander generates such assignments (such
486 -- in the _assign operation for an abstract type).
488 elsif Is_Abstract_Type
(T1
) and then Comes_From_Source
(N
) then
490 ("target of assignment operation must not be abstract", Lhs
);
493 -- Resolution may have updated the subtype, in case the left-hand side
494 -- is a private protected component. Use the correct subtype to avoid
495 -- scoping issues in the back-end.
499 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
500 -- type. For example:
504 -- type Acc is access P.T;
507 -- with Pkg; use Acc;
508 -- procedure Example is
511 -- A.all := B.all; -- ERROR
514 if Nkind
(Lhs
) = N_Explicit_Dereference
515 and then Ekind
(T1
) = E_Incomplete_Type
517 Error_Msg_N
("invalid use of incomplete type", Lhs
);
522 -- Now we can complete the resolution of the right hand side
524 Set_Assignment_Type
(Lhs
, T1
);
527 -- This is the point at which we check for an unset reference
529 Check_Unset_Reference
(Rhs
);
530 Check_Unprotected_Access
(Lhs
, Rhs
);
532 -- Remaining steps are skipped if Rhs was syntactically in error
541 if not Covers
(T1
, T2
) then
542 Wrong_Type
(Rhs
, Etype
(Lhs
));
547 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
548 -- types, use the non-limited view if available
550 if Nkind
(Rhs
) = N_Explicit_Dereference
551 and then Ekind
(T2
) = E_Incomplete_Type
552 and then Is_Tagged_Type
(T2
)
553 and then Present
(Non_Limited_View
(T2
))
555 T2
:= Non_Limited_View
(T2
);
558 Set_Assignment_Type
(Rhs
, T2
);
560 if Total_Errors_Detected
/= 0 then
570 if T1
= Any_Type
or else T2
= Any_Type
then
575 -- If the rhs is class-wide or dynamically tagged, then require the lhs
576 -- to be class-wide. The case where the rhs is a dynamically tagged call
577 -- to a dispatching operation with a controlling access result is
578 -- excluded from this check, since the target has an access type (and
579 -- no tag propagation occurs in that case).
581 if (Is_Class_Wide_Type
(T2
)
582 or else (Is_Dynamically_Tagged
(Rhs
)
583 and then not Is_Access_Type
(T1
)))
584 and then not Is_Class_Wide_Type
(T1
)
586 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
588 elsif Is_Class_Wide_Type
(T1
)
589 and then not Is_Class_Wide_Type
(T2
)
590 and then not Is_Tag_Indeterminate
(Rhs
)
591 and then not Is_Dynamically_Tagged
(Rhs
)
593 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
596 -- Propagate the tag from a class-wide target to the rhs when the rhs
597 -- is a tag-indeterminate call.
599 if Is_Tag_Indeterminate
(Rhs
) then
600 if Is_Class_Wide_Type
(T1
) then
601 Propagate_Tag
(Lhs
, Rhs
);
603 elsif Nkind
(Rhs
) = N_Function_Call
604 and then Is_Entity_Name
(Name
(Rhs
))
605 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
608 ("call to abstract function must be dispatching", Name
(Rhs
));
610 elsif Nkind
(Rhs
) = N_Qualified_Expression
611 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
612 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
614 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
617 ("call to abstract function must be dispatching",
618 Name
(Expression
(Rhs
)));
622 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
623 -- apply an implicit conversion of the rhs to that type to force
624 -- appropriate static and run-time accessibility checks. This applies
625 -- as well to anonymous access-to-subprogram types that are component
626 -- subtypes or formal parameters.
628 if Ada_Version
>= Ada_2005
and then Is_Access_Type
(T1
) then
629 if Is_Local_Anonymous_Access
(T1
)
630 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
632 -- Handle assignment to an Ada 2012 stand-alone object
633 -- of an anonymous access type.
635 or else (Ekind
(T1
) = E_Anonymous_Access_Type
636 and then Nkind
(Associated_Node_For_Itype
(T1
)) =
637 N_Object_Declaration
)
640 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
641 Analyze_And_Resolve
(Rhs
, T1
);
645 -- Ada 2005 (AI-231): Assignment to not null variable
647 if Ada_Version
>= Ada_2005
648 and then Can_Never_Be_Null
(T1
)
649 and then not Assignment_OK
(Lhs
)
651 -- Case where we know the right hand side is null
653 if Known_Null
(Rhs
) then
654 Apply_Compile_Time_Constraint_Error
657 "(Ada 2005) null not allowed in null-excluding objects??",
658 Reason
=> CE_Null_Not_Allowed
);
660 -- We still mark this as a possible modification, that's necessary
661 -- to reset Is_True_Constant, and desirable for xref purposes.
663 Note_Possible_Modification
(Lhs
, Sure
=> True);
666 -- If we know the right hand side is non-null, then we convert to the
667 -- target type, since we don't need a run time check in that case.
669 elsif not Can_Never_Be_Null
(T2
) then
670 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
671 Analyze_And_Resolve
(Rhs
, T1
);
675 if Is_Scalar_Type
(T1
) then
676 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
678 -- For array types, verify that lengths match. If the right hand side
679 -- is a function call that has been inlined, the assignment has been
680 -- rewritten as a block, and the constraint check will be applied to the
681 -- assignment within the block.
683 elsif Is_Array_Type
(T1
)
684 and then (Nkind
(Rhs
) /= N_Type_Conversion
685 or else Is_Constrained
(Etype
(Rhs
)))
686 and then (Nkind
(Rhs
) /= N_Function_Call
687 or else Nkind
(N
) /= N_Block_Statement
)
689 -- Assignment verifies that the length of the Lsh and Rhs are equal,
690 -- but of course the indexes do not have to match. If the right-hand
691 -- side is a type conversion to an unconstrained type, a length check
692 -- is performed on the expression itself during expansion. In rare
693 -- cases, the redundant length check is computed on an index type
694 -- with a different representation, triggering incorrect code in the
697 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
700 -- Discriminant checks are applied in the course of expansion
705 -- Note: modifications of the Lhs may only be recorded after
706 -- checks have been applied.
708 Note_Possible_Modification
(Lhs
, Sure
=> True);
710 -- ??? a real accessibility check is needed when ???
712 -- Post warning for redundant assignment or variable to itself
714 if Warn_On_Redundant_Constructs
716 -- We only warn for source constructs
718 and then Comes_From_Source
(N
)
720 -- Where the object is the same on both sides
722 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
724 -- But exclude the case where the right side was an operation that
725 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
726 -- don't want to warn in such a case, since it is reasonable to write
727 -- such expressions especially when K is defined symbolically in some
730 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
732 if Nkind
(Lhs
) in N_Has_Entity
then
733 Error_Msg_NE
-- CODEFIX
734 ("?r?useless assignment of & to itself!", N
, Entity
(Lhs
));
736 Error_Msg_N
-- CODEFIX
737 ("?r?useless assignment of object to itself!", N
);
741 -- Check for non-allowed composite assignment
743 if not Support_Composite_Assign_On_Target
744 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
745 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
747 Error_Msg_CRT
("composite assignment", N
);
750 -- Check elaboration warning for left side if not in elab code
752 if not In_Subprogram_Or_Concurrent_Unit
then
753 Check_Elab_Assign
(Lhs
);
756 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
757 -- assignment is a source assignment in the extended main source unit.
758 -- We are not interested in any reference information outside this
759 -- context, or in compiler generated assignment statements.
761 if Comes_From_Source
(N
)
762 and then In_Extended_Main_Source_Unit
(Lhs
)
764 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
767 -- RM 7.3.2 (12/3) An assignment to a view conversion (from a type
768 -- to one of its ancestors) requires an invariant check. Apply check
769 -- only if expression comes from source, otherwise it will be applied
770 -- when value is assigned to source entity.
772 if Nkind
(Lhs
) = N_Type_Conversion
773 and then Has_Invariants
(Etype
(Expression
(Lhs
)))
774 and then Comes_From_Source
(Expression
(Lhs
))
776 Insert_After
(N
, Make_Invariant_Call
(Expression
(Lhs
)));
779 -- Final step. If left side is an entity, then we may be able to reset
780 -- the current tracked values to new safe values. We only have something
781 -- to do if the left side is an entity name, and expansion has not
782 -- modified the node into something other than an assignment, and of
783 -- course we only capture values if it is safe to do so.
785 if Is_Entity_Name
(Lhs
)
786 and then Nkind
(N
) = N_Assignment_Statement
789 Ent
: constant Entity_Id
:= Entity
(Lhs
);
792 if Safe_To_Capture_Value
(N
, Ent
) then
794 -- If simple variable on left side, warn if this assignment
795 -- blots out another one (rendering it useless). We only do
796 -- this for source assignments, otherwise we can generate bogus
797 -- warnings when an assignment is rewritten as another
798 -- assignment, and gets tied up with itself.
800 if Warn_On_Modified_Unread
801 and then Is_Assignable
(Ent
)
802 and then Comes_From_Source
(N
)
803 and then In_Extended_Main_Source_Unit
(Ent
)
805 Warn_On_Useless_Assignment
(Ent
, N
);
808 -- If we are assigning an access type and the left side is an
809 -- entity, then make sure that the Is_Known_[Non_]Null flags
810 -- properly reflect the state of the entity after assignment.
812 if Is_Access_Type
(T1
) then
813 if Known_Non_Null
(Rhs
) then
814 Set_Is_Known_Non_Null
(Ent
, True);
816 elsif Known_Null
(Rhs
)
817 and then not Can_Never_Be_Null
(Ent
)
819 Set_Is_Known_Null
(Ent
, True);
822 Set_Is_Known_Null
(Ent
, False);
824 if not Can_Never_Be_Null
(Ent
) then
825 Set_Is_Known_Non_Null
(Ent
, False);
829 -- For discrete types, we may be able to set the current value
830 -- if the value is known at compile time.
832 elsif Is_Discrete_Type
(T1
)
833 and then Compile_Time_Known_Value
(Rhs
)
835 Set_Current_Value
(Ent
, Rhs
);
837 Set_Current_Value
(Ent
, Empty
);
840 -- If not safe to capture values, kill them
848 -- If assigning to an object in whole or in part, note location of
849 -- assignment in case no one references value. We only do this for
850 -- source assignments, otherwise we can generate bogus warnings when an
851 -- assignment is rewritten as another assignment, and gets tied up with
855 Ent
: constant Entity_Id
:= Get_Enclosing_Object
(Lhs
);
858 and then Safe_To_Capture_Value
(N
, Ent
)
859 and then Nkind
(N
) = N_Assignment_Statement
860 and then Warn_On_Modified_Unread
861 and then Is_Assignable
(Ent
)
862 and then Comes_From_Source
(N
)
863 and then In_Extended_Main_Source_Unit
(Ent
)
865 Set_Last_Assignment
(Ent
, Lhs
);
869 Analyze_Dimension
(N
);
870 end Analyze_Assignment
;
872 -----------------------------
873 -- Analyze_Block_Statement --
874 -----------------------------
876 procedure Analyze_Block_Statement
(N
: Node_Id
) is
877 procedure Install_Return_Entities
(Scop
: Entity_Id
);
878 -- Install all entities of return statement scope Scop in the visibility
879 -- chain except for the return object since its entity is reused in a
882 -----------------------------
883 -- Install_Return_Entities --
884 -----------------------------
886 procedure Install_Return_Entities
(Scop
: Entity_Id
) is
890 Id
:= First_Entity
(Scop
);
891 while Present
(Id
) loop
893 -- Do not install the return object
895 if not Ekind_In
(Id
, E_Constant
, E_Variable
)
896 or else not Is_Return_Object
(Id
)
903 end Install_Return_Entities
;
905 -- Local constants and variables
907 Decls
: constant List_Id
:= Declarations
(N
);
908 Id
: constant Node_Id
:= Identifier
(N
);
909 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
911 Is_BIP_Return_Statement
: Boolean;
913 -- Start of processing for Analyze_Block_Statement
916 -- In SPARK mode, we reject block statements. Note that the case of
917 -- block statements generated by the expander is fine.
919 if Nkind
(Original_Node
(N
)) = N_Block_Statement
then
920 Check_SPARK_05_Restriction
("block statement is not allowed", N
);
923 -- If no handled statement sequence is present, things are really messed
924 -- up, and we just return immediately (defence against previous errors).
927 Check_Error_Detected
;
931 -- Detect whether the block is actually a rewritten return statement of
932 -- a build-in-place function.
934 Is_BIP_Return_Statement
:=
936 and then Present
(Entity
(Id
))
937 and then Ekind
(Entity
(Id
)) = E_Return_Statement
938 and then Is_Build_In_Place_Function
939 (Return_Applies_To
(Entity
(Id
)));
941 -- Normal processing with HSS present
944 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
945 Ent
: Entity_Id
:= Empty
;
948 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
949 -- Recursively save value of this global, will be restored on exit
952 -- Initialize unblocked exit count for statements of begin block
953 -- plus one for each exception handler that is present.
955 Unblocked_Exit_Count
:= 1;
958 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
961 -- If a label is present analyze it and mark it as referenced
967 -- An error defense. If we have an identifier, but no entity, then
968 -- something is wrong. If previous errors, then just remove the
969 -- identifier and continue, otherwise raise an exception.
972 Check_Error_Detected
;
973 Set_Identifier
(N
, Empty
);
976 Set_Ekind
(Ent
, E_Block
);
977 Generate_Reference
(Ent
, N
, ' ');
978 Generate_Definition
(Ent
);
980 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
981 Set_Label_Construct
(Parent
(Ent
), N
);
986 -- If no entity set, create a label entity
989 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
990 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
994 Set_Etype
(Ent
, Standard_Void_Type
);
995 Set_Block_Node
(Ent
, Identifier
(N
));
998 -- The block served as an extended return statement. Ensure that any
999 -- entities created during the analysis and expansion of the return
1000 -- object declaration are once again visible.
1002 if Is_BIP_Return_Statement
then
1003 Install_Return_Entities
(Ent
);
1006 if Present
(Decls
) then
1007 Analyze_Declarations
(Decls
);
1009 Inspect_Deferred_Constant_Completion
(Decls
);
1013 Process_End_Label
(HSS
, 'e', Ent
);
1015 -- If exception handlers are present, then we indicate that enclosing
1016 -- scopes contain a block with handlers. We only need to mark non-
1019 if Present
(EH
) then
1022 Set_Has_Nested_Block_With_Handler
(S
);
1023 exit when Is_Overloadable
(S
)
1024 or else Ekind
(S
) = E_Package
1025 or else Is_Generic_Unit
(S
);
1030 Check_References
(Ent
);
1031 Warn_On_Useless_Assignments
(Ent
);
1034 if Unblocked_Exit_Count
= 0 then
1035 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1036 Check_Unreachable_Code
(N
);
1038 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1041 end Analyze_Block_Statement
;
1043 --------------------------------
1044 -- Analyze_Compound_Statement --
1045 --------------------------------
1047 procedure Analyze_Compound_Statement
(N
: Node_Id
) is
1049 Analyze_List
(Actions
(N
));
1050 end Analyze_Compound_Statement
;
1052 ----------------------------
1053 -- Analyze_Case_Statement --
1054 ----------------------------
1056 procedure Analyze_Case_Statement
(N
: Node_Id
) is
1058 Exp_Type
: Entity_Id
;
1059 Exp_Btype
: Entity_Id
;
1062 Others_Present
: Boolean;
1063 -- Indicates if Others was present
1065 pragma Warnings
(Off
, Last_Choice
);
1066 -- Don't care about assigned value
1068 Statements_Analyzed
: Boolean := False;
1069 -- Set True if at least some statement sequences get analyzed. If False
1070 -- on exit, means we had a serious error that prevented full analysis of
1071 -- the case statement, and as a result it is not a good idea to output
1072 -- warning messages about unreachable code.
1074 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1075 -- Recursively save value of this global, will be restored on exit
1077 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1078 -- Error routine invoked by the generic instantiation below when the
1079 -- case statement has a non static choice.
1081 procedure Process_Statements
(Alternative
: Node_Id
);
1082 -- Analyzes the statements associated with a case alternative. Needed
1083 -- by instantiation below.
1085 package Analyze_Case_Choices
is new
1086 Generic_Analyze_Choices
1087 (Process_Associated_Node
=> Process_Statements
);
1088 use Analyze_Case_Choices
;
1089 -- Instantiation of the generic choice analysis package
1091 package Check_Case_Choices
is new
1092 Generic_Check_Choices
1093 (Process_Empty_Choice
=> No_OP
,
1094 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1095 Process_Associated_Node
=> No_OP
);
1096 use Check_Case_Choices
;
1097 -- Instantiation of the generic choice processing package
1099 -----------------------------
1100 -- Non_Static_Choice_Error --
1101 -----------------------------
1103 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1105 Flag_Non_Static_Expr
1106 ("choice given in case statement is not static!", Choice
);
1107 end Non_Static_Choice_Error
;
1109 ------------------------
1110 -- Process_Statements --
1111 ------------------------
1113 procedure Process_Statements
(Alternative
: Node_Id
) is
1114 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
1118 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1119 Statements_Analyzed
:= True;
1121 -- An interesting optimization. If the case statement expression
1122 -- is a simple entity, then we can set the current value within an
1123 -- alternative if the alternative has one possible value.
1127 -- when 2 | 3 => beta
1128 -- when others => gamma
1130 -- Here we know that N is initially 1 within alpha, but for beta and
1131 -- gamma, we do not know anything more about the initial value.
1133 if Is_Entity_Name
(Exp
) then
1134 Ent
:= Entity
(Exp
);
1136 if Ekind_In
(Ent
, E_Variable
,
1140 if List_Length
(Choices
) = 1
1141 and then Nkind
(First
(Choices
)) in N_Subexpr
1142 and then Compile_Time_Known_Value
(First
(Choices
))
1144 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1147 Analyze_Statements
(Statements
(Alternative
));
1149 -- After analyzing the case, set the current value to empty
1150 -- since we won't know what it is for the next alternative
1151 -- (unless reset by this same circuit), or after the case.
1153 Set_Current_Value
(Entity
(Exp
), Empty
);
1158 -- Case where expression is not an entity name of a variable
1160 Analyze_Statements
(Statements
(Alternative
));
1161 end Process_Statements
;
1163 -- Start of processing for Analyze_Case_Statement
1166 Unblocked_Exit_Count
:= 0;
1167 Exp
:= Expression
(N
);
1170 -- The expression must be of any discrete type. In rare cases, the
1171 -- expander constructs a case statement whose expression has a private
1172 -- type whose full view is discrete. This can happen when generating
1173 -- a stream operation for a variant type after the type is frozen,
1174 -- when the partial of view of the type of the discriminant is private.
1175 -- In that case, use the full view to analyze case alternatives.
1177 if not Is_Overloaded
(Exp
)
1178 and then not Comes_From_Source
(N
)
1179 and then Is_Private_Type
(Etype
(Exp
))
1180 and then Present
(Full_View
(Etype
(Exp
)))
1181 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1183 Resolve
(Exp
, Etype
(Exp
));
1184 Exp_Type
:= Full_View
(Etype
(Exp
));
1187 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1188 Exp_Type
:= Etype
(Exp
);
1191 Check_Unset_Reference
(Exp
);
1192 Exp_Btype
:= Base_Type
(Exp_Type
);
1194 -- The expression must be of a discrete type which must be determinable
1195 -- independently of the context in which the expression occurs, but
1196 -- using the fact that the expression must be of a discrete type.
1197 -- Moreover, the type this expression must not be a character literal
1198 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1200 -- If error already reported by Resolve, nothing more to do
1202 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1205 elsif Exp_Btype
= Any_Character
then
1207 ("character literal as case expression is ambiguous", Exp
);
1210 elsif Ada_Version
= Ada_83
1211 and then (Is_Generic_Type
(Exp_Btype
)
1212 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1215 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1219 -- If the case expression is a formal object of mode in out, then treat
1220 -- it as having a nonstatic subtype by forcing use of the base type
1221 -- (which has to get passed to Check_Case_Choices below). Also use base
1222 -- type when the case expression is parenthesized.
1224 if Paren_Count
(Exp
) > 0
1225 or else (Is_Entity_Name
(Exp
)
1226 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1228 Exp_Type
:= Exp_Btype
;
1231 -- Call instantiated procedures to analyzwe and check discrete choices
1233 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1234 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1236 -- Case statement with single OTHERS alternative not allowed in SPARK
1238 if Others_Present
and then List_Length
(Alternatives
(N
)) = 1 then
1239 Check_SPARK_05_Restriction
1240 ("OTHERS as unique case alternative is not allowed", N
);
1243 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1244 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1247 -- If all our exits were blocked by unconditional transfers of control,
1248 -- then the entire CASE statement acts as an unconditional transfer of
1249 -- control, so treat it like one, and check unreachable code. Skip this
1250 -- test if we had serious errors preventing any statement analysis.
1252 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1253 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1254 Check_Unreachable_Code
(N
);
1256 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1259 -- If the expander is active it will detect the case of a statically
1260 -- determined single alternative and remove warnings for the case, but
1261 -- if we are not doing expansion, that circuit won't be active. Here we
1262 -- duplicate the effect of removing warnings in the same way, so that
1263 -- we will get the same set of warnings in -gnatc mode.
1265 if not Expander_Active
1266 and then Compile_Time_Known_Value
(Expression
(N
))
1267 and then Serious_Errors_Detected
= 0
1270 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1274 Alt
:= First
(Alternatives
(N
));
1275 while Present
(Alt
) loop
1276 if Alt
/= Chosen
then
1277 Remove_Warning_Messages
(Statements
(Alt
));
1284 end Analyze_Case_Statement
;
1286 ----------------------------
1287 -- Analyze_Exit_Statement --
1288 ----------------------------
1290 -- If the exit includes a name, it must be the name of a currently open
1291 -- loop. Otherwise there must be an innermost open loop on the stack, to
1292 -- which the statement implicitly refers.
1294 -- Additionally, in SPARK mode:
1296 -- The exit can only name the closest enclosing loop;
1298 -- An exit with a when clause must be directly contained in a loop;
1300 -- An exit without a when clause must be directly contained in an
1301 -- if-statement with no elsif or else, which is itself directly contained
1302 -- in a loop. The exit must be the last statement in the if-statement.
1304 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1305 Target
: constant Node_Id
:= Name
(N
);
1306 Cond
: constant Node_Id
:= Condition
(N
);
1307 Scope_Id
: Entity_Id
;
1313 Check_Unreachable_Code
(N
);
1316 if Present
(Target
) then
1318 U_Name
:= Entity
(Target
);
1320 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1321 Error_Msg_N
("invalid loop name in exit statement", N
);
1325 if Has_Loop_In_Inner_Open_Scopes
(U_Name
) then
1326 Check_SPARK_05_Restriction
1327 ("exit label must name the closest enclosing loop", N
);
1330 Set_Has_Exit
(U_Name
);
1337 for J
in reverse 0 .. Scope_Stack
.Last
loop
1338 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1339 Kind
:= Ekind
(Scope_Id
);
1341 if Kind
= E_Loop
and then (No
(Target
) or else Scope_Id
= U_Name
) then
1342 Set_Has_Exit
(Scope_Id
);
1345 elsif Kind
= E_Block
1346 or else Kind
= E_Loop
1347 or else Kind
= E_Return_Statement
1353 ("cannot exit from program unit or accept statement", N
);
1358 -- Verify that if present the condition is a Boolean expression
1360 if Present
(Cond
) then
1361 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1362 Check_Unset_Reference
(Cond
);
1365 -- In SPARK mode, verify that the exit statement respects the SPARK
1368 if Present
(Cond
) then
1369 if Nkind
(Parent
(N
)) /= N_Loop_Statement
then
1370 Check_SPARK_05_Restriction
1371 ("exit with when clause must be directly in loop", N
);
1375 if Nkind
(Parent
(N
)) /= N_If_Statement
then
1376 if Nkind
(Parent
(N
)) = N_Elsif_Part
then
1377 Check_SPARK_05_Restriction
1378 ("exit must be in IF without ELSIF", N
);
1380 Check_SPARK_05_Restriction
("exit must be directly in IF", N
);
1383 elsif Nkind
(Parent
(Parent
(N
))) /= N_Loop_Statement
then
1384 Check_SPARK_05_Restriction
1385 ("exit must be in IF directly in loop", N
);
1387 -- First test the presence of ELSE, so that an exit in an ELSE leads
1388 -- to an error mentioning the ELSE.
1390 elsif Present
(Else_Statements
(Parent
(N
))) then
1391 Check_SPARK_05_Restriction
("exit must be in IF without ELSE", N
);
1393 -- An exit in an ELSIF does not reach here, as it would have been
1394 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1396 elsif Present
(Elsif_Parts
(Parent
(N
))) then
1397 Check_SPARK_05_Restriction
("exit must be in IF without ELSIF", N
);
1401 -- Chain exit statement to associated loop entity
1403 Set_Next_Exit_Statement
(N
, First_Exit_Statement
(Scope_Id
));
1404 Set_First_Exit_Statement
(Scope_Id
, N
);
1406 -- Since the exit may take us out of a loop, any previous assignment
1407 -- statement is not useless, so clear last assignment indications. It
1408 -- is OK to keep other current values, since if the exit statement
1409 -- does not exit, then the current values are still valid.
1411 Kill_Current_Values
(Last_Assignment_Only
=> True);
1412 end Analyze_Exit_Statement
;
1414 ----------------------------
1415 -- Analyze_Goto_Statement --
1416 ----------------------------
1418 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1419 Label
: constant Node_Id
:= Name
(N
);
1420 Scope_Id
: Entity_Id
;
1421 Label_Scope
: Entity_Id
;
1422 Label_Ent
: Entity_Id
;
1425 Check_SPARK_05_Restriction
("goto statement is not allowed", N
);
1427 -- Actual semantic checks
1429 Check_Unreachable_Code
(N
);
1430 Kill_Current_Values
(Last_Assignment_Only
=> True);
1433 Label_Ent
:= Entity
(Label
);
1435 -- Ignore previous error
1437 if Label_Ent
= Any_Id
then
1438 Check_Error_Detected
;
1441 -- We just have a label as the target of a goto
1443 elsif Ekind
(Label_Ent
) /= E_Label
then
1444 Error_Msg_N
("target of goto statement must be a label", Label
);
1447 -- Check that the target of the goto is reachable according to Ada
1448 -- scoping rules. Note: the special gotos we generate for optimizing
1449 -- local handling of exceptions would violate these rules, but we mark
1450 -- such gotos as analyzed when built, so this code is never entered.
1452 elsif not Reachable
(Label_Ent
) then
1453 Error_Msg_N
("target of goto statement is not reachable", Label
);
1457 -- Here if goto passes initial validity checks
1459 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1461 for J
in reverse 0 .. Scope_Stack
.Last
loop
1462 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1464 if Label_Scope
= Scope_Id
1465 or else not Ekind_In
(Scope_Id
, E_Block
, E_Loop
, E_Return_Statement
)
1467 if Scope_Id
/= Label_Scope
then
1469 ("cannot exit from program unit or accept statement", N
);
1476 raise Program_Error
;
1477 end Analyze_Goto_Statement
;
1479 --------------------------
1480 -- Analyze_If_Statement --
1481 --------------------------
1483 -- A special complication arises in the analysis of if statements
1485 -- The expander has circuitry to completely delete code that it can tell
1486 -- will not be executed (as a result of compile time known conditions). In
1487 -- the analyzer, we ensure that code that will be deleted in this manner
1488 -- is analyzed but not expanded. This is obviously more efficient, but
1489 -- more significantly, difficulties arise if code is expanded and then
1490 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1491 -- generated in deleted code must be frozen from start, because the nodes
1492 -- on which they depend will not be available at the freeze point.
1494 procedure Analyze_If_Statement
(N
: Node_Id
) is
1497 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1498 -- Recursively save value of this global, will be restored on exit
1500 Save_In_Deleted_Code
: Boolean;
1502 Del
: Boolean := False;
1503 -- This flag gets set True if a True condition has been found, which
1504 -- means that remaining ELSE/ELSIF parts are deleted.
1506 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1507 -- This is applied to either the N_If_Statement node itself or to an
1508 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1509 -- statements associated with it.
1511 -----------------------
1512 -- Analyze_Cond_Then --
1513 -----------------------
1515 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1516 Cond
: constant Node_Id
:= Condition
(Cnode
);
1517 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1520 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1521 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1522 Check_Unset_Reference
(Cond
);
1523 Set_Current_Value_Condition
(Cnode
);
1525 -- If already deleting, then just analyze then statements
1528 Analyze_Statements
(Tstm
);
1530 -- Compile time known value, not deleting yet
1532 elsif Compile_Time_Known_Value
(Cond
) then
1533 Save_In_Deleted_Code
:= In_Deleted_Code
;
1535 -- If condition is True, then analyze the THEN statements and set
1536 -- no expansion for ELSE and ELSIF parts.
1538 if Is_True
(Expr_Value
(Cond
)) then
1539 Analyze_Statements
(Tstm
);
1541 Expander_Mode_Save_And_Set
(False);
1542 In_Deleted_Code
:= True;
1544 -- If condition is False, analyze THEN with expansion off
1546 else -- Is_False (Expr_Value (Cond))
1547 Expander_Mode_Save_And_Set
(False);
1548 In_Deleted_Code
:= True;
1549 Analyze_Statements
(Tstm
);
1550 Expander_Mode_Restore
;
1551 In_Deleted_Code
:= Save_In_Deleted_Code
;
1554 -- Not known at compile time, not deleting, normal analysis
1557 Analyze_Statements
(Tstm
);
1559 end Analyze_Cond_Then
;
1561 -- Start of Analyze_If_Statement
1564 -- Initialize exit count for else statements. If there is no else part,
1565 -- this count will stay non-zero reflecting the fact that the uncovered
1566 -- else case is an unblocked exit.
1568 Unblocked_Exit_Count
:= 1;
1569 Analyze_Cond_Then
(N
);
1571 -- Now to analyze the elsif parts if any are present
1573 if Present
(Elsif_Parts
(N
)) then
1574 E
:= First
(Elsif_Parts
(N
));
1575 while Present
(E
) loop
1576 Analyze_Cond_Then
(E
);
1581 if Present
(Else_Statements
(N
)) then
1582 Analyze_Statements
(Else_Statements
(N
));
1585 -- If all our exits were blocked by unconditional transfers of control,
1586 -- then the entire IF statement acts as an unconditional transfer of
1587 -- control, so treat it like one, and check unreachable code.
1589 if Unblocked_Exit_Count
= 0 then
1590 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1591 Check_Unreachable_Code
(N
);
1593 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1597 Expander_Mode_Restore
;
1598 In_Deleted_Code
:= Save_In_Deleted_Code
;
1601 if not Expander_Active
1602 and then Compile_Time_Known_Value
(Condition
(N
))
1603 and then Serious_Errors_Detected
= 0
1605 if Is_True
(Expr_Value
(Condition
(N
))) then
1606 Remove_Warning_Messages
(Else_Statements
(N
));
1608 if Present
(Elsif_Parts
(N
)) then
1609 E
:= First
(Elsif_Parts
(N
));
1610 while Present
(E
) loop
1611 Remove_Warning_Messages
(Then_Statements
(E
));
1617 Remove_Warning_Messages
(Then_Statements
(N
));
1621 -- Warn on redundant if statement that has no effect
1623 -- Note, we could also check empty ELSIF parts ???
1625 if Warn_On_Redundant_Constructs
1627 -- If statement must be from source
1629 and then Comes_From_Source
(N
)
1631 -- Condition must not have obvious side effect
1633 and then Has_No_Obvious_Side_Effects
(Condition
(N
))
1635 -- No elsif parts of else part
1637 and then No
(Elsif_Parts
(N
))
1638 and then No
(Else_Statements
(N
))
1640 -- Then must be a single null statement
1642 and then List_Length
(Then_Statements
(N
)) = 1
1644 -- Go to original node, since we may have rewritten something as
1645 -- a null statement (e.g. a case we could figure the outcome of).
1648 T
: constant Node_Id
:= First
(Then_Statements
(N
));
1649 S
: constant Node_Id
:= Original_Node
(T
);
1652 if Comes_From_Source
(S
) and then Nkind
(S
) = N_Null_Statement
then
1653 Error_Msg_N
("if statement has no effect?r?", N
);
1657 end Analyze_If_Statement
;
1659 ----------------------------------------
1660 -- Analyze_Implicit_Label_Declaration --
1661 ----------------------------------------
1663 -- An implicit label declaration is generated in the innermost enclosing
1664 -- declarative part. This is done for labels, and block and loop names.
1666 -- Note: any changes in this routine may need to be reflected in
1667 -- Analyze_Label_Entity.
1669 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1670 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1673 Set_Ekind
(Id
, E_Label
);
1674 Set_Etype
(Id
, Standard_Void_Type
);
1675 Set_Enclosing_Scope
(Id
, Current_Scope
);
1676 end Analyze_Implicit_Label_Declaration
;
1678 ------------------------------
1679 -- Analyze_Iteration_Scheme --
1680 ------------------------------
1682 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1684 Iter_Spec
: Node_Id
;
1685 Loop_Spec
: Node_Id
;
1688 -- For an infinite loop, there is no iteration scheme
1694 Cond
:= Condition
(N
);
1695 Iter_Spec
:= Iterator_Specification
(N
);
1696 Loop_Spec
:= Loop_Parameter_Specification
(N
);
1698 if Present
(Cond
) then
1699 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1700 Check_Unset_Reference
(Cond
);
1701 Set_Current_Value_Condition
(N
);
1703 elsif Present
(Iter_Spec
) then
1704 Analyze_Iterator_Specification
(Iter_Spec
);
1707 Analyze_Loop_Parameter_Specification
(Loop_Spec
);
1709 end Analyze_Iteration_Scheme
;
1711 ------------------------------------
1712 -- Analyze_Iterator_Specification --
1713 ------------------------------------
1715 procedure Analyze_Iterator_Specification
(N
: Node_Id
) is
1716 Loc
: constant Source_Ptr
:= Sloc
(N
);
1717 Def_Id
: constant Node_Id
:= Defining_Identifier
(N
);
1718 Subt
: constant Node_Id
:= Subtype_Indication
(N
);
1719 Iter_Name
: constant Node_Id
:= Name
(N
);
1725 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
);
1726 -- For an iteration over a container, if the loop carries the Reverse
1727 -- indicator, verify that the container type has an Iterate aspect that
1728 -- implements the reversible iterator interface.
1730 -----------------------------
1731 -- Check_Reverse_Iteration --
1732 -----------------------------
1734 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
) is
1736 if Reverse_Present
(N
)
1737 and then not Is_Array_Type
(Typ
)
1738 and then not Is_Reversible_Iterator
(Typ
)
1741 ("container type does not support reverse iteration", N
, Typ
);
1743 end Check_Reverse_Iteration
;
1745 -- Start of processing for Analyze_iterator_Specification
1748 Enter_Name
(Def_Id
);
1750 if Present
(Subt
) then
1753 -- Save type of subtype indication for subsequent check
1755 if Nkind
(Subt
) = N_Subtype_Indication
then
1756 Bas
:= Entity
(Subtype_Mark
(Subt
));
1758 Bas
:= Entity
(Subt
);
1762 Preanalyze_Range
(Iter_Name
);
1764 -- Set the kind of the loop variable, which is not visible within
1765 -- the iterator name.
1767 Set_Ekind
(Def_Id
, E_Variable
);
1769 -- Provide a link between the iterator variable and the container, for
1770 -- subsequent use in cross-reference and modification information.
1772 if Of_Present
(N
) then
1773 Set_Related_Expression
(Def_Id
, Iter_Name
);
1775 -- For a container, the iterator is specified through the aspect.
1777 if not Is_Array_Type
(Etype
(Iter_Name
)) then
1779 Iterator
: constant Entity_Id
:=
1780 Find_Value_Of_Aspect
1781 (Etype
(Iter_Name
), Aspect_Default_Iterator
);
1787 if No
(Iterator
) then
1788 null; -- error reported below.
1790 elsif not Is_Overloaded
(Iterator
) then
1791 Check_Reverse_Iteration
(Etype
(Iterator
));
1793 -- If Iterator is overloaded, use reversible iterator if
1794 -- one is available.
1796 elsif Is_Overloaded
(Iterator
) then
1797 Get_First_Interp
(Iterator
, I
, It
);
1798 while Present
(It
.Nam
) loop
1799 if Ekind
(It
.Nam
) = E_Function
1800 and then Is_Reversible_Iterator
(Etype
(It
.Nam
))
1802 Set_Etype
(Iterator
, It
.Typ
);
1803 Set_Entity
(Iterator
, It
.Nam
);
1807 Get_Next_Interp
(I
, It
);
1810 Check_Reverse_Iteration
(Etype
(Iterator
));
1816 -- If the domain of iteration is an expression, create a declaration for
1817 -- it, so that finalization actions are introduced outside of the loop.
1818 -- The declaration must be a renaming because the body of the loop may
1819 -- assign to elements.
1821 if not Is_Entity_Name
(Iter_Name
)
1823 -- When the context is a quantified expression, the renaming
1824 -- declaration is delayed until the expansion phase if we are
1827 and then (Nkind
(Parent
(N
)) /= N_Quantified_Expression
1828 or else Operating_Mode
= Check_Semantics
)
1830 -- Do not perform this expansion in SPARK mode, since the formal
1831 -- verification directly deals with the source form of the iterator.
1832 -- Ditto for ASIS, where the temporary may hide the transformation
1833 -- of a selected component into a prefixed function call.
1835 and then not GNATprove_Mode
1836 and then not ASIS_Mode
1839 Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Iter_Name
);
1845 -- If the domain of iteration is an array component that depends
1846 -- on a discriminant, create actual subtype for it. Pre-analysis
1847 -- does not generate the actual subtype of a selected component.
1849 if Nkind
(Iter_Name
) = N_Selected_Component
1850 and then Is_Array_Type
(Etype
(Iter_Name
))
1853 Build_Actual_Subtype_Of_Component
1854 (Etype
(Selector_Name
(Iter_Name
)), Iter_Name
);
1855 Insert_Action
(N
, Act_S
);
1857 if Present
(Act_S
) then
1858 Typ
:= Defining_Identifier
(Act_S
);
1860 Typ
:= Etype
(Iter_Name
);
1864 Typ
:= Etype
(Iter_Name
);
1866 -- Verify that the expression produces an iterator
1868 if not Of_Present
(N
) and then not Is_Iterator
(Typ
)
1869 and then not Is_Array_Type
(Typ
)
1870 and then No
(Find_Aspect
(Typ
, Aspect_Iterable
))
1873 ("expect object that implements iterator interface",
1878 -- Protect against malformed iterator
1880 if Typ
= Any_Type
then
1881 Error_Msg_N
("invalid expression in loop iterator", Iter_Name
);
1885 if not Of_Present
(N
) then
1886 Check_Reverse_Iteration
(Typ
);
1889 -- The name in the renaming declaration may be a function call.
1890 -- Indicate that it does not come from source, to suppress
1891 -- spurious warnings on renamings of parameterless functions,
1892 -- a common enough idiom in user-defined iterators.
1895 Make_Object_Renaming_Declaration
(Loc
,
1896 Defining_Identifier
=> Id
,
1897 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
1899 New_Copy_Tree
(Iter_Name
, New_Sloc
=> Loc
));
1901 Insert_Actions
(Parent
(Parent
(N
)), New_List
(Decl
));
1902 Rewrite
(Name
(N
), New_Occurrence_Of
(Id
, Loc
));
1903 Set_Etype
(Id
, Typ
);
1904 Set_Etype
(Name
(N
), Typ
);
1907 -- Container is an entity or an array with uncontrolled components, or
1908 -- else it is a container iterator given by a function call, typically
1909 -- called Iterate in the case of predefined containers, even though
1910 -- Iterate is not a reserved name. What matters is that the return type
1911 -- of the function is an iterator type.
1913 elsif Is_Entity_Name
(Iter_Name
) then
1914 Analyze
(Iter_Name
);
1916 if Nkind
(Iter_Name
) = N_Function_Call
then
1918 C
: constant Node_Id
:= Name
(Iter_Name
);
1923 if not Is_Overloaded
(Iter_Name
) then
1924 Resolve
(Iter_Name
, Etype
(C
));
1927 Get_First_Interp
(C
, I
, It
);
1928 while It
.Typ
/= Empty
loop
1929 if Reverse_Present
(N
) then
1930 if Is_Reversible_Iterator
(It
.Typ
) then
1931 Resolve
(Iter_Name
, It
.Typ
);
1935 elsif Is_Iterator
(It
.Typ
) then
1936 Resolve
(Iter_Name
, It
.Typ
);
1940 Get_Next_Interp
(I
, It
);
1945 -- Domain of iteration is not overloaded
1948 Resolve
(Iter_Name
, Etype
(Iter_Name
));
1951 if not Of_Present
(N
) then
1952 Check_Reverse_Iteration
(Etype
(Iter_Name
));
1956 -- Get base type of container, for proper retrieval of Cursor type
1957 -- and primitive operations.
1959 Typ
:= Base_Type
(Etype
(Iter_Name
));
1961 if Is_Array_Type
(Typ
) then
1962 if Of_Present
(N
) then
1963 Set_Etype
(Def_Id
, Component_Type
(Typ
));
1966 and then Base_Type
(Bas
) /= Base_Type
(Component_Type
(Typ
))
1969 ("subtype indication does not match component type", Subt
);
1972 -- Here we have a missing Range attribute
1976 ("missing Range attribute in iteration over an array", N
);
1978 -- In Ada 2012 mode, this may be an attempt at an iterator
1980 if Ada_Version
>= Ada_2012
then
1982 ("\if& is meant to designate an element of the array, use OF",
1986 -- Prevent cascaded errors
1988 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
1989 Set_Etype
(Def_Id
, Etype
(First_Index
(Typ
)));
1992 -- Check for type error in iterator
1994 elsif Typ
= Any_Type
then
1997 -- Iteration over a container
2000 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
2001 Error_Msg_Ada_2012_Feature
("container iterator", Sloc
(N
));
2005 if Of_Present
(N
) then
2006 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2008 Elt
: constant Entity_Id
:=
2009 Get_Iterable_Type_Primitive
(Typ
, Name_Element
);
2013 ("missing Element primitive for iteration", N
);
2015 Set_Etype
(Def_Id
, Etype
(Elt
));
2019 -- For a predefined container, The type of the loop variable is
2020 -- the Iterator_Element aspect of the container type.
2024 Element
: constant Entity_Id
:=
2025 Find_Value_Of_Aspect
(Typ
, Aspect_Iterator_Element
);
2028 if No
(Element
) then
2029 Error_Msg_NE
("cannot iterate over&", N
, Typ
);
2033 Set_Etype
(Def_Id
, Entity
(Element
));
2035 -- If subtype indication was given, verify that it covers
2036 -- the element type of the container.
2039 and then not Covers
(Bas
, Etype
(Def_Id
))
2042 ("subtype indication does not match element type",
2046 -- If the container has a variable indexing aspect, the
2047 -- element is a variable and is modifiable in the loop.
2049 if Has_Aspect
(Typ
, Aspect_Variable_Indexing
) then
2050 Set_Ekind
(Def_Id
, E_Variable
);
2059 -- For an iteration of the form IN, the name must denote an
2060 -- iterator, typically the result of a call to Iterate. Give a
2061 -- useful error message when the name is a container by itself.
2063 -- The type may be a formal container type, which has to have
2064 -- an Iterable aspect detailing the required primitives.
2066 if Is_Entity_Name
(Original_Node
(Name
(N
)))
2067 and then not Is_Iterator
(Typ
)
2069 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2072 elsif not Has_Aspect
(Typ
, Aspect_Iterator_Element
) then
2074 ("cannot iterate over&", Name
(N
), Typ
);
2077 ("name must be an iterator, not a container", Name
(N
));
2080 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2084 ("\to iterate directly over the elements of a container, "
2085 & "write `of &`", Name
(N
), Original_Node
(Name
(N
)));
2087 -- No point in continuing analysis of iterator spec
2093 -- The result type of Iterate function is the classwide type of
2094 -- the interface parent. We need the specific Cursor type defined
2095 -- in the container package. We obtain it by name for a predefined
2096 -- container, or through the Iterable aspect for a formal one.
2098 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2101 (Parent
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)),
2103 Ent
:= Etype
(Def_Id
);
2106 Ent
:= First_Entity
(Scope
(Typ
));
2107 while Present
(Ent
) loop
2108 if Chars
(Ent
) = Name_Cursor
then
2109 Set_Etype
(Def_Id
, Etype
(Ent
));
2119 -- A loop parameter cannot be effectively volatile. This check is
2120 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2121 -- legality check (SPARK RM 7.1.3(6)).
2123 -- Not clear whether this applies to element iterators, where the
2124 -- cursor is not an explicit entity ???
2127 and then not Of_Present
(N
)
2128 and then Is_Effectively_Volatile
(Ent
)
2130 Error_Msg_N
("loop parameter cannot be volatile", Ent
);
2132 end Analyze_Iterator_Specification
;
2138 -- Note: the semantic work required for analyzing labels (setting them as
2139 -- reachable) was done in a prepass through the statements in the block,
2140 -- so that forward gotos would be properly handled. See Analyze_Statements
2141 -- for further details. The only processing required here is to deal with
2142 -- optimizations that depend on an assumption of sequential control flow,
2143 -- since of course the occurrence of a label breaks this assumption.
2145 procedure Analyze_Label
(N
: Node_Id
) is
2146 pragma Warnings
(Off
, N
);
2148 Kill_Current_Values
;
2151 --------------------------
2152 -- Analyze_Label_Entity --
2153 --------------------------
2155 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
2157 Set_Ekind
(E
, E_Label
);
2158 Set_Etype
(E
, Standard_Void_Type
);
2159 Set_Enclosing_Scope
(E
, Current_Scope
);
2160 Set_Reachable
(E
, True);
2161 end Analyze_Label_Entity
;
2163 ------------------------------------------
2164 -- Analyze_Loop_Parameter_Specification --
2165 ------------------------------------------
2167 procedure Analyze_Loop_Parameter_Specification
(N
: Node_Id
) is
2168 Loop_Nod
: constant Node_Id
:= Parent
(Parent
(N
));
2170 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
2171 -- If the bounds are given by a 'Range reference on a function call
2172 -- that returns a controlled array, introduce an explicit declaration
2173 -- to capture the bounds, so that the function result can be finalized
2174 -- in timely fashion.
2176 procedure Check_Predicate_Use
(T
: Entity_Id
);
2177 -- Diagnose Attempt to iterate through non-static predicate. Note that
2178 -- a type with inherited predicates may have both static and dynamic
2179 -- forms. In this case it is not sufficent to check the static predicate
2180 -- function only, look for a dynamic predicate aspect as well.
2182 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean;
2183 -- N is the node for an arbitrary construct. This function searches the
2184 -- construct N to see if any expressions within it contain function
2185 -- calls that use the secondary stack, returning True if any such call
2186 -- is found, and False otherwise.
2188 procedure Process_Bounds
(R
: Node_Id
);
2189 -- If the iteration is given by a range, create temporaries and
2190 -- assignment statements block to capture the bounds and perform
2191 -- required finalization actions in case a bound includes a function
2192 -- call that uses the temporary stack. We first pre-analyze a copy of
2193 -- the range in order to determine the expected type, and analyze and
2194 -- resolve the original bounds.
2196 --------------------------------------
2197 -- Check_Controlled_Array_Attribute --
2198 --------------------------------------
2200 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
2202 if Nkind
(DS
) = N_Attribute_Reference
2203 and then Is_Entity_Name
(Prefix
(DS
))
2204 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
2205 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
2207 Is_Controlled
(Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
2208 and then Expander_Active
2211 Loc
: constant Source_Ptr
:= Sloc
(N
);
2212 Arr
: constant Entity_Id
:= Etype
(Entity
(Prefix
(DS
)));
2213 Indx
: constant Entity_Id
:=
2214 Base_Type
(Etype
(First_Index
(Arr
)));
2215 Subt
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
2220 Make_Subtype_Declaration
(Loc
,
2221 Defining_Identifier
=> Subt
,
2222 Subtype_Indication
=>
2223 Make_Subtype_Indication
(Loc
,
2224 Subtype_Mark
=> New_Occurrence_Of
(Indx
, Loc
),
2226 Make_Range_Constraint
(Loc
, Relocate_Node
(DS
))));
2227 Insert_Before
(Loop_Nod
, Decl
);
2231 Make_Attribute_Reference
(Loc
,
2232 Prefix
=> New_Occurrence_Of
(Subt
, Loc
),
2233 Attribute_Name
=> Attribute_Name
(DS
)));
2238 end Check_Controlled_Array_Attribute
;
2240 -------------------------
2241 -- Check_Predicate_Use --
2242 -------------------------
2244 procedure Check_Predicate_Use
(T
: Entity_Id
) is
2246 -- A predicated subtype is illegal in loops and related constructs
2247 -- if the predicate is not static, or if it is a non-static subtype
2248 -- of a statically predicated subtype.
2250 if Is_Discrete_Type
(T
)
2251 and then Has_Predicates
(T
)
2252 and then (not Has_Static_Predicate
(T
)
2253 or else not Is_Static_Subtype
(T
)
2254 or else Has_Dynamic_Predicate_Aspect
(T
))
2256 -- Seems a confusing message for the case of a static predicate
2257 -- with a non-static subtype???
2259 Bad_Predicated_Subtype_Use
2260 ("cannot use subtype& with non-static predicate for loop "
2261 & "iteration", Discrete_Subtype_Definition
(N
),
2262 T
, Suggest_Static
=> True);
2264 elsif Inside_A_Generic
and then Is_Generic_Formal
(T
) then
2265 Set_No_Dynamic_Predicate_On_Actual
(T
);
2267 end Check_Predicate_Use
;
2269 ------------------------------------
2270 -- Has_Call_Using_Secondary_Stack --
2271 ------------------------------------
2273 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean is
2275 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
2276 -- Check if N is a function call which uses the secondary stack
2282 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
2285 Return_Typ
: Entity_Id
;
2288 if Nkind
(N
) = N_Function_Call
then
2291 -- Call using access to subprogram with explicit dereference
2293 if Nkind
(Nam
) = N_Explicit_Dereference
then
2294 Subp
:= Etype
(Nam
);
2296 -- Call using a selected component notation or Ada 2005 object
2297 -- operation notation
2299 elsif Nkind
(Nam
) = N_Selected_Component
then
2300 Subp
:= Entity
(Selector_Name
(Nam
));
2305 Subp
:= Entity
(Nam
);
2308 Return_Typ
:= Etype
(Subp
);
2310 if Is_Composite_Type
(Return_Typ
)
2311 and then not Is_Constrained
(Return_Typ
)
2315 elsif Sec_Stack_Needed_For_Return
(Subp
) then
2320 -- Continue traversing the tree
2325 function Check_Calls
is new Traverse_Func
(Check_Call
);
2327 -- Start of processing for Has_Call_Using_Secondary_Stack
2330 return Check_Calls
(N
) = Abandon
;
2331 end Has_Call_Using_Secondary_Stack
;
2333 --------------------
2334 -- Process_Bounds --
2335 --------------------
2337 procedure Process_Bounds
(R
: Node_Id
) is
2338 Loc
: constant Source_Ptr
:= Sloc
(N
);
2341 (Original_Bound
: Node_Id
;
2342 Analyzed_Bound
: Node_Id
;
2343 Typ
: Entity_Id
) return Node_Id
;
2344 -- Capture value of bound and return captured value
2351 (Original_Bound
: Node_Id
;
2352 Analyzed_Bound
: Node_Id
;
2353 Typ
: Entity_Id
) return Node_Id
2360 -- If the bound is a constant or an object, no need for a separate
2361 -- declaration. If the bound is the result of previous expansion
2362 -- it is already analyzed and should not be modified. Note that
2363 -- the Bound will be resolved later, if needed, as part of the
2364 -- call to Make_Index (literal bounds may need to be resolved to
2367 if Analyzed
(Original_Bound
) then
2368 return Original_Bound
;
2370 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
2371 N_Character_Literal
)
2372 or else Is_Entity_Name
(Analyzed_Bound
)
2374 Analyze_And_Resolve
(Original_Bound
, Typ
);
2375 return Original_Bound
;
2378 -- Normally, the best approach is simply to generate a constant
2379 -- declaration that captures the bound. However, there is a nasty
2380 -- case where this is wrong. If the bound is complex, and has a
2381 -- possible use of the secondary stack, we need to generate a
2382 -- separate assignment statement to ensure the creation of a block
2383 -- which will release the secondary stack.
2385 -- We prefer the constant declaration, since it leaves us with a
2386 -- proper trace of the value, useful in optimizations that get rid
2387 -- of junk range checks.
2389 if not Has_Call_Using_Secondary_Stack
(Analyzed_Bound
) then
2390 Analyze_And_Resolve
(Original_Bound
, Typ
);
2392 -- Ensure that the bound is valid. This check should not be
2393 -- generated when the range belongs to a quantified expression
2394 -- as the construct is still not expanded into its final form.
2396 if Nkind
(Parent
(R
)) /= N_Loop_Parameter_Specification
2397 or else Nkind
(Parent
(Parent
(R
))) /= N_Quantified_Expression
2399 Ensure_Valid
(Original_Bound
);
2402 Force_Evaluation
(Original_Bound
);
2403 return Original_Bound
;
2406 Id
:= Make_Temporary
(Loc
, 'R', Original_Bound
);
2408 -- Here we make a declaration with a separate assignment
2409 -- statement, and insert before loop header.
2412 Make_Object_Declaration
(Loc
,
2413 Defining_Identifier
=> Id
,
2414 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
2417 Make_Assignment_Statement
(Loc
,
2418 Name
=> New_Occurrence_Of
(Id
, Loc
),
2419 Expression
=> Relocate_Node
(Original_Bound
));
2421 Insert_Actions
(Loop_Nod
, New_List
(Decl
, Assign
));
2423 -- Now that this temporary variable is initialized we decorate it
2424 -- as safe-to-reevaluate to inform to the backend that no further
2425 -- asignment will be issued and hence it can be handled as side
2426 -- effect free. Note that this decoration must be done when the
2427 -- assignment has been analyzed because otherwise it will be
2428 -- rejected (see Analyze_Assignment).
2430 Set_Is_Safe_To_Reevaluate
(Id
);
2432 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
2434 if Nkind
(Assign
) = N_Assignment_Statement
then
2435 return Expression
(Assign
);
2437 return Original_Bound
;
2441 Hi
: constant Node_Id
:= High_Bound
(R
);
2442 Lo
: constant Node_Id
:= Low_Bound
(R
);
2443 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
2448 -- Start of processing for Process_Bounds
2451 Set_Parent
(R_Copy
, Parent
(R
));
2452 Preanalyze_Range
(R_Copy
);
2453 Typ
:= Etype
(R_Copy
);
2455 -- If the type of the discrete range is Universal_Integer, then the
2456 -- bound's type must be resolved to Integer, and any object used to
2457 -- hold the bound must also have type Integer, unless the literal
2458 -- bounds are constant-folded expressions with a user-defined type.
2460 if Typ
= Universal_Integer
then
2461 if Nkind
(Lo
) = N_Integer_Literal
2462 and then Present
(Etype
(Lo
))
2463 and then Scope
(Etype
(Lo
)) /= Standard_Standard
2467 elsif Nkind
(Hi
) = N_Integer_Literal
2468 and then Present
(Etype
(Hi
))
2469 and then Scope
(Etype
(Hi
)) /= Standard_Standard
2474 Typ
:= Standard_Integer
;
2480 New_Lo
:= One_Bound
(Lo
, Low_Bound
(R_Copy
), Typ
);
2481 New_Hi
:= One_Bound
(Hi
, High_Bound
(R_Copy
), Typ
);
2483 -- Propagate staticness to loop range itself, in case the
2484 -- corresponding subtype is static.
2486 if New_Lo
/= Lo
and then Is_OK_Static_Expression
(New_Lo
) then
2487 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo
));
2490 if New_Hi
/= Hi
and then Is_OK_Static_Expression
(New_Hi
) then
2491 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi
));
2497 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(N
);
2498 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2502 -- Start of processing for Analyze_Loop_Parameter_Specification
2507 -- We always consider the loop variable to be referenced, since the loop
2508 -- may be used just for counting purposes.
2510 Generate_Reference
(Id
, N
, ' ');
2512 -- Check for the case of loop variable hiding a local variable (used
2513 -- later on to give a nice warning if the hidden variable is never
2517 H
: constant Entity_Id
:= Homonym
(Id
);
2520 and then Ekind
(H
) = E_Variable
2521 and then Is_Discrete_Type
(Etype
(H
))
2522 and then Enclosing_Dynamic_Scope
(H
) = Enclosing_Dynamic_Scope
(Id
)
2524 Set_Hiding_Loop_Variable
(H
, Id
);
2528 -- Loop parameter specification must include subtype mark in SPARK
2530 if Nkind
(DS
) = N_Range
then
2531 Check_SPARK_05_Restriction
2532 ("loop parameter specification must include subtype mark", N
);
2535 -- Analyze the subtype definition and create temporaries for the bounds.
2536 -- Do not evaluate the range when preanalyzing a quantified expression
2537 -- because bounds expressed as function calls with side effects will be
2538 -- incorrectly replicated.
2540 if Nkind
(DS
) = N_Range
2541 and then Expander_Active
2542 and then Nkind
(Parent
(N
)) /= N_Quantified_Expression
2544 Process_Bounds
(DS
);
2546 -- Either the expander not active or the range of iteration is a subtype
2547 -- indication, an entity, or a function call that yields an aggregate or
2551 DS_Copy
:= New_Copy_Tree
(DS
);
2552 Set_Parent
(DS_Copy
, Parent
(DS
));
2553 Preanalyze_Range
(DS_Copy
);
2555 -- Ada 2012: If the domain of iteration is:
2557 -- a) a function call,
2558 -- b) an identifier that is not a type,
2559 -- c) an attribute reference 'Old (within a postcondition)
2560 -- d) an unchecked conversion
2562 -- then it is an iteration over a container. It was classified as
2563 -- a loop specification by the parser, and must be rewritten now
2564 -- to activate container iteration. The last case will occur within
2565 -- an expanded inlined call, where the expansion wraps an actual in
2566 -- an unchecked conversion when needed. The expression of the
2567 -- conversion is always an object.
2569 if Nkind
(DS_Copy
) = N_Function_Call
2570 or else (Is_Entity_Name
(DS_Copy
)
2571 and then not Is_Type
(Entity
(DS_Copy
)))
2572 or else (Nkind
(DS_Copy
) = N_Attribute_Reference
2573 and then Nam_In
(Attribute_Name
(DS_Copy
),
2574 Name_Old
, Name_Loop_Entry
))
2575 or else Nkind
(DS_Copy
) = N_Unchecked_Type_Conversion
2576 or else Has_Aspect
(Etype
(DS_Copy
), Aspect_Iterable
)
2578 -- This is an iterator specification. Rewrite it as such and
2579 -- analyze it to capture function calls that may require
2580 -- finalization actions.
2583 I_Spec
: constant Node_Id
:=
2584 Make_Iterator_Specification
(Sloc
(N
),
2585 Defining_Identifier
=> Relocate_Node
(Id
),
2587 Subtype_Indication
=> Empty
,
2588 Reverse_Present
=> Reverse_Present
(N
));
2589 Scheme
: constant Node_Id
:= Parent
(N
);
2592 Set_Iterator_Specification
(Scheme
, I_Spec
);
2593 Set_Loop_Parameter_Specification
(Scheme
, Empty
);
2594 Analyze_Iterator_Specification
(I_Spec
);
2596 -- In a generic context, analyze the original domain of
2597 -- iteration, for name capture.
2599 if not Expander_Active
then
2603 -- Set kind of loop parameter, which may be used in the
2604 -- subsequent analysis of the condition in a quantified
2607 Set_Ekind
(Id
, E_Loop_Parameter
);
2611 -- Domain of iteration is not a function call, and is side-effect
2615 -- A quantified expression that appears in a pre/post condition
2616 -- is pre-analyzed several times. If the range is given by an
2617 -- attribute reference it is rewritten as a range, and this is
2618 -- done even with expansion disabled. If the type is already set
2619 -- do not reanalyze, because a range with static bounds may be
2620 -- typed Integer by default.
2622 if Nkind
(Parent
(N
)) = N_Quantified_Expression
2623 and then Present
(Etype
(DS
))
2636 -- Some additional checks if we are iterating through a type
2638 if Is_Entity_Name
(DS
)
2639 and then Present
(Entity
(DS
))
2640 and then Is_Type
(Entity
(DS
))
2642 -- The subtype indication may denote the completion of an incomplete
2643 -- type declaration.
2645 if Ekind
(Entity
(DS
)) = E_Incomplete_Type
then
2646 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
2647 Set_Etype
(DS
, Entity
(DS
));
2650 Check_Predicate_Use
(Entity
(DS
));
2653 -- Error if not discrete type
2655 if not Is_Discrete_Type
(Etype
(DS
)) then
2656 Wrong_Type
(DS
, Any_Discrete
);
2657 Set_Etype
(DS
, Any_Type
);
2660 Check_Controlled_Array_Attribute
(DS
);
2662 if Nkind
(DS
) = N_Subtype_Indication
then
2663 Check_Predicate_Use
(Entity
(Subtype_Mark
(DS
)));
2666 Make_Index
(DS
, N
, In_Iter_Schm
=> True);
2667 Set_Ekind
(Id
, E_Loop_Parameter
);
2669 -- A quantified expression which appears in a pre- or post-condition may
2670 -- be analyzed multiple times. The analysis of the range creates several
2671 -- itypes which reside in different scopes depending on whether the pre-
2672 -- or post-condition has been expanded. Update the type of the loop
2673 -- variable to reflect the proper itype at each stage of analysis.
2676 or else Etype
(Id
) = Any_Type
2678 (Present
(Etype
(Id
))
2679 and then Is_Itype
(Etype
(Id
))
2680 and then Nkind
(Parent
(Loop_Nod
)) = N_Expression_With_Actions
2681 and then Nkind
(Original_Node
(Parent
(Loop_Nod
))) =
2682 N_Quantified_Expression
)
2684 Set_Etype
(Id
, Etype
(DS
));
2687 -- Treat a range as an implicit reference to the type, to inhibit
2688 -- spurious warnings.
2690 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
2691 Set_Is_Known_Valid
(Id
, True);
2693 -- The loop is not a declarative part, so the loop variable must be
2694 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2695 -- expression because the freeze node will not be inserted into the
2696 -- tree due to flag Is_Spec_Expression being set.
2698 if Nkind
(Parent
(N
)) /= N_Quantified_Expression
then
2700 Flist
: constant List_Id
:= Freeze_Entity
(Id
, N
);
2702 if Is_Non_Empty_List
(Flist
) then
2703 Insert_Actions
(N
, Flist
);
2708 -- Case where we have a range or a subtype, get type bounds
2710 if Nkind_In
(DS
, N_Range
, N_Subtype_Indication
)
2711 and then not Error_Posted
(DS
)
2712 and then Etype
(DS
) /= Any_Type
2713 and then Is_Discrete_Type
(Etype
(DS
))
2720 if Nkind
(DS
) = N_Range
then
2721 L
:= Low_Bound
(DS
);
2722 H
:= High_Bound
(DS
);
2725 Type_Low_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2727 Type_High_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2730 -- Check for null or possibly null range and issue warning. We
2731 -- suppress such messages in generic templates and instances,
2732 -- because in practice they tend to be dubious in these cases. The
2733 -- check applies as well to rewritten array element loops where a
2734 -- null range may be detected statically.
2736 if Compile_Time_Compare
(L
, H
, Assume_Valid
=> True) = GT
then
2738 -- Suppress the warning if inside a generic template or
2739 -- instance, since in practice they tend to be dubious in these
2740 -- cases since they can result from intended parameterization.
2742 if not Inside_A_Generic
and then not In_Instance
then
2744 -- Specialize msg if invalid values could make the loop
2745 -- non-null after all.
2747 if Compile_Time_Compare
2748 (L
, H
, Assume_Valid
=> False) = GT
2750 -- Since we know the range of the loop is null, set the
2751 -- appropriate flag to remove the loop entirely during
2754 Set_Is_Null_Loop
(Loop_Nod
);
2756 if Comes_From_Source
(N
) then
2758 ("??loop range is null, loop will not execute", DS
);
2761 -- Here is where the loop could execute because of
2762 -- invalid values, so issue appropriate message and in
2763 -- this case we do not set the Is_Null_Loop flag since
2764 -- the loop may execute.
2766 elsif Comes_From_Source
(N
) then
2768 ("??loop range may be null, loop may not execute",
2771 ("??can only execute if invalid values are present",
2776 -- In either case, suppress warnings in the body of the loop,
2777 -- since it is likely that these warnings will be inappropriate
2778 -- if the loop never actually executes, which is likely.
2780 Set_Suppress_Loop_Warnings
(Loop_Nod
);
2782 -- The other case for a warning is a reverse loop where the
2783 -- upper bound is the integer literal zero or one, and the
2784 -- lower bound may exceed this value.
2786 -- For example, we have
2788 -- for J in reverse N .. 1 loop
2790 -- In practice, this is very likely to be a case of reversing
2791 -- the bounds incorrectly in the range.
2793 elsif Reverse_Present
(N
)
2794 and then Nkind
(Original_Node
(H
)) = N_Integer_Literal
2796 (Intval
(Original_Node
(H
)) = Uint_0
2798 Intval
(Original_Node
(H
)) = Uint_1
)
2800 -- Lower bound may in fact be known and known not to exceed
2801 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2803 if Compile_Time_Known_Value
(L
)
2804 and then Expr_Value
(L
) <= Expr_Value
(H
)
2808 -- Otherwise warning is warranted
2811 Error_Msg_N
("??loop range may be null", DS
);
2812 Error_Msg_N
("\??bounds may be wrong way round", DS
);
2816 -- Check if either bound is known to be outside the range of the
2817 -- loop parameter type, this is e.g. the case of a loop from
2818 -- 20..X where the type is 1..19.
2820 -- Such a loop is dubious since either it raises CE or it executes
2821 -- zero times, and that cannot be useful!
2823 if Etype
(DS
) /= Any_Type
2824 and then not Error_Posted
(DS
)
2825 and then Nkind
(DS
) = N_Subtype_Indication
2826 and then Nkind
(Constraint
(DS
)) = N_Range_Constraint
2829 LLo
: constant Node_Id
:=
2830 Low_Bound
(Range_Expression
(Constraint
(DS
)));
2831 LHi
: constant Node_Id
:=
2832 High_Bound
(Range_Expression
(Constraint
(DS
)));
2834 Bad_Bound
: Node_Id
:= Empty
;
2835 -- Suspicious loop bound
2838 -- At this stage L, H are the bounds of the type, and LLo
2839 -- Lhi are the low bound and high bound of the loop.
2841 if Compile_Time_Compare
(LLo
, L
, Assume_Valid
=> True) = LT
2843 Compile_Time_Compare
(LLo
, H
, Assume_Valid
=> True) = GT
2848 if Compile_Time_Compare
(LHi
, L
, Assume_Valid
=> True) = LT
2850 Compile_Time_Compare
(LHi
, H
, Assume_Valid
=> True) = GT
2855 if Present
(Bad_Bound
) then
2857 ("suspicious loop bound out of range of "
2858 & "loop subtype??", Bad_Bound
);
2860 ("\loop executes zero times or raises "
2861 & "Constraint_Error??", Bad_Bound
);
2866 -- This declare block is about warnings, if we get an exception while
2867 -- testing for warnings, we simply abandon the attempt silently. This
2868 -- most likely occurs as the result of a previous error, but might
2869 -- just be an obscure case we have missed. In either case, not giving
2870 -- the warning is perfectly acceptable.
2873 when others => null;
2877 -- A loop parameter cannot be effectively volatile. This check is
2878 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2879 -- legality check (SPARK RM 7.1.3(6)).
2881 if SPARK_Mode
= On
and then Is_Effectively_Volatile
(Id
) then
2882 Error_Msg_N
("loop parameter cannot be volatile", Id
);
2884 end Analyze_Loop_Parameter_Specification
;
2886 ----------------------------
2887 -- Analyze_Loop_Statement --
2888 ----------------------------
2890 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
2892 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean;
2893 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2894 -- container iteration.
2896 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean;
2897 -- Determine whether loop statement N has been wrapped in a block to
2898 -- capture finalization actions that may be generated for container
2899 -- iterators. Prevents infinite recursion when block is analyzed.
2900 -- Routine is a noop if loop is single statement within source block.
2902 ---------------------------
2903 -- Is_Container_Iterator --
2904 ---------------------------
2906 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean is
2915 elsif Present
(Condition
(Iter
)) then
2918 -- for Def_Id in [reverse] Name loop
2919 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2921 elsif Present
(Iterator_Specification
(Iter
)) then
2923 Nam
: constant Node_Id
:= Name
(Iterator_Specification
(Iter
));
2927 Nam_Copy
:= New_Copy_Tree
(Nam
);
2928 Set_Parent
(Nam_Copy
, Parent
(Nam
));
2929 Preanalyze_Range
(Nam_Copy
);
2931 -- The only two options here are iteration over a container or
2934 return not Is_Array_Type
(Etype
(Nam_Copy
));
2937 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2941 LP
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
2942 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
2946 DS_Copy
:= New_Copy_Tree
(DS
);
2947 Set_Parent
(DS_Copy
, Parent
(DS
));
2948 Preanalyze_Range
(DS_Copy
);
2950 -- Check for a call to Iterate ()
2953 Nkind
(DS_Copy
) = N_Function_Call
2954 and then Needs_Finalization
(Etype
(DS_Copy
));
2957 end Is_Container_Iterator
;
2959 -------------------------
2960 -- Is_Wrapped_In_Block --
2961 -------------------------
2963 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean is
2969 -- Check if current scope is a block that is not a transient block.
2971 if Ekind
(Current_Scope
) /= E_Block
2972 or else No
(Block_Node
(Current_Scope
))
2978 Handled_Statement_Sequence
(Parent
(Block_Node
(Current_Scope
)));
2980 -- Skip leading pragmas that may be introduced for invariant and
2981 -- predicate checks.
2983 Stat
:= First
(Statements
(HSS
));
2984 while Present
(Stat
) and then Nkind
(Stat
) = N_Pragma
loop
2985 Stat
:= Next
(Stat
);
2988 return Stat
= N
and then No
(Next
(Stat
));
2990 end Is_Wrapped_In_Block
;
2992 -- Local declarations
2994 Id
: constant Node_Id
:= Identifier
(N
);
2995 Iter
: constant Node_Id
:= Iteration_Scheme
(N
);
2996 Loc
: constant Source_Ptr
:= Sloc
(N
);
3000 -- Start of processing for Analyze_Loop_Statement
3003 if Present
(Id
) then
3005 -- Make name visible, e.g. for use in exit statements. Loop labels
3006 -- are always considered to be referenced.
3011 -- Guard against serious error (typically, a scope mismatch when
3012 -- semantic analysis is requested) by creating loop entity to
3013 -- continue analysis.
3016 if Total_Errors_Detected
/= 0 then
3017 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3019 raise Program_Error
;
3022 -- Verify that the loop name is hot hidden by an unrelated
3023 -- declaration in an inner scope.
3025 elsif Ekind
(Ent
) /= E_Label
and then Ekind
(Ent
) /= E_Loop
then
3026 Error_Msg_Sloc
:= Sloc
(Ent
);
3027 Error_Msg_N
("implicit label declaration for & is hidden#", Id
);
3029 if Present
(Homonym
(Ent
))
3030 and then Ekind
(Homonym
(Ent
)) = E_Label
3032 Set_Entity
(Id
, Ent
);
3033 Set_Ekind
(Ent
, E_Loop
);
3037 Generate_Reference
(Ent
, N
, ' ');
3038 Generate_Definition
(Ent
);
3040 -- If we found a label, mark its type. If not, ignore it, since it
3041 -- means we have a conflicting declaration, which would already
3042 -- have been diagnosed at declaration time. Set Label_Construct
3043 -- of the implicit label declaration, which is not created by the
3044 -- parser for generic units.
3046 if Ekind
(Ent
) = E_Label
then
3047 Set_Ekind
(Ent
, E_Loop
);
3049 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
3050 Set_Label_Construct
(Parent
(Ent
), N
);
3055 -- Case of no identifier present
3058 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3059 Set_Etype
(Ent
, Standard_Void_Type
);
3060 Set_Parent
(Ent
, N
);
3063 -- Iteration over a container in Ada 2012 involves the creation of a
3064 -- controlled iterator object. Wrap the loop in a block to ensure the
3065 -- timely finalization of the iterator and release of container locks.
3066 -- The same applies to the use of secondary stack when obtaining an
3069 if Ada_Version
>= Ada_2012
3070 and then Is_Container_Iterator
(Iter
)
3071 and then not Is_Wrapped_In_Block
(N
)
3074 Block_Nod
: Node_Id
;
3075 Block_Id
: Entity_Id
;
3079 Make_Block_Statement
(Loc
,
3080 Declarations
=> New_List
,
3081 Handled_Statement_Sequence
=>
3082 Make_Handled_Sequence_Of_Statements
(Loc
,
3083 Statements
=> New_List
(Relocate_Node
(N
))));
3085 Add_Block_Identifier
(Block_Nod
, Block_Id
);
3087 -- The expansion of iterator loops generates an iterator in order
3088 -- to traverse the elements of a container:
3090 -- Iter : <iterator type> := Iterate (Container)'reference;
3092 -- The iterator is controlled and returned on the secondary stack.
3093 -- The analysis of the call to Iterate establishes a transient
3094 -- scope to deal with the secondary stack management, but never
3095 -- really creates a physical block as this would kill the iterator
3096 -- too early (see Wrap_Transient_Declaration). To address this
3097 -- case, mark the generated block as needing secondary stack
3100 Set_Uses_Sec_Stack
(Block_Id
);
3102 Rewrite
(N
, Block_Nod
);
3108 -- Kill current values on entry to loop, since statements in the body of
3109 -- the loop may have been executed before the loop is entered. Similarly
3110 -- we kill values after the loop, since we do not know that the body of
3111 -- the loop was executed.
3113 Kill_Current_Values
;
3115 Analyze_Iteration_Scheme
(Iter
);
3117 -- Check for following case which merits a warning if the type E of is
3118 -- a multi-dimensional array (and no explicit subscript ranges present).
3124 and then Present
(Loop_Parameter_Specification
(Iter
))
3127 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3128 DSD
: constant Node_Id
:=
3129 Original_Node
(Discrete_Subtype_Definition
(LPS
));
3131 if Nkind
(DSD
) = N_Attribute_Reference
3132 and then Attribute_Name
(DSD
) = Name_Range
3133 and then No
(Expressions
(DSD
))
3136 Typ
: constant Entity_Id
:= Etype
(Prefix
(DSD
));
3138 if Is_Array_Type
(Typ
)
3139 and then Number_Dimensions
(Typ
) > 1
3140 and then Nkind
(Parent
(N
)) = N_Loop_Statement
3141 and then Present
(Iteration_Scheme
(Parent
(N
)))
3144 OIter
: constant Node_Id
:=
3145 Iteration_Scheme
(Parent
(N
));
3146 OLPS
: constant Node_Id
:=
3147 Loop_Parameter_Specification
(OIter
);
3148 ODSD
: constant Node_Id
:=
3149 Original_Node
(Discrete_Subtype_Definition
(OLPS
));
3151 if Nkind
(ODSD
) = N_Attribute_Reference
3152 and then Attribute_Name
(ODSD
) = Name_Range
3153 and then No
(Expressions
(ODSD
))
3154 and then Etype
(Prefix
(ODSD
)) = Typ
3156 Error_Msg_Sloc
:= Sloc
(ODSD
);
3158 ("inner range same as outer range#??", DSD
);
3167 -- Analyze the statements of the body except in the case of an Ada 2012
3168 -- iterator with the expander active. In this case the expander will do
3169 -- a rewrite of the loop into a while loop. We will then analyze the
3170 -- loop body when we analyze this while loop.
3172 -- We need to do this delay because if the container is for indefinite
3173 -- types the actual subtype of the components will only be determined
3174 -- when the cursor declaration is analyzed.
3176 -- If the expander is not active, or in SPARK mode, then we want to
3177 -- analyze the loop body now even in the Ada 2012 iterator case, since
3178 -- the rewriting will not be done. Insert the loop variable in the
3179 -- current scope, if not done when analysing the iteration scheme.
3180 -- Set its kind properly to detect improper uses in the loop body.
3183 and then Present
(Iterator_Specification
(Iter
))
3185 if not Expander_Active
then
3187 I_Spec
: constant Node_Id
:= Iterator_Specification
(Iter
);
3188 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3191 if Scope
(Id
) /= Current_Scope
then
3195 -- In an element iterator, The loop parameter is a variable if
3196 -- the domain of iteration (container or array) is a variable.
3198 if not Of_Present
(I_Spec
)
3199 or else not Is_Variable
(Name
(I_Spec
))
3201 Set_Ekind
(Id
, E_Loop_Parameter
);
3205 Analyze_Statements
(Statements
(N
));
3210 -- Pre-Ada2012 for-loops and while loops.
3212 Analyze_Statements
(Statements
(N
));
3215 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3216 -- the loop is transformed into a conditional block. Retrieve the loop.
3220 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
3221 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
3224 -- Finish up processing for the loop. We kill all current values, since
3225 -- in general we don't know if the statements in the loop have been
3226 -- executed. We could do a bit better than this with a loop that we
3227 -- know will execute at least once, but it's not worth the trouble and
3228 -- the front end is not in the business of flow tracing.
3230 Process_End_Label
(Stmt
, 'e', Ent
);
3232 Kill_Current_Values
;
3234 -- Check for infinite loop. Skip check for generated code, since it
3235 -- justs waste time and makes debugging the routine called harder.
3237 -- Note that we have to wait till the body of the loop is fully analyzed
3238 -- before making this call, since Check_Infinite_Loop_Warning relies on
3239 -- being able to use semantic visibility information to find references.
3241 if Comes_From_Source
(Stmt
) then
3242 Check_Infinite_Loop_Warning
(Stmt
);
3245 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3246 -- contains no EXIT statements within the body of the loop.
3248 if No
(Iter
) and then not Has_Exit
(Ent
) then
3249 Check_Unreachable_Code
(Stmt
);
3251 end Analyze_Loop_Statement
;
3253 ----------------------------
3254 -- Analyze_Null_Statement --
3255 ----------------------------
3257 -- Note: the semantics of the null statement is implemented by a single
3258 -- null statement, too bad everything isn't as simple as this.
3260 procedure Analyze_Null_Statement
(N
: Node_Id
) is
3261 pragma Warnings
(Off
, N
);
3264 end Analyze_Null_Statement
;
3266 ------------------------
3267 -- Analyze_Statements --
3268 ------------------------
3270 procedure Analyze_Statements
(L
: List_Id
) is
3275 -- The labels declared in the statement list are reachable from
3276 -- statements in the list. We do this as a prepass so that any goto
3277 -- statement will be properly flagged if its target is not reachable.
3278 -- This is not required, but is nice behavior.
3281 while Present
(S
) loop
3282 if Nkind
(S
) = N_Label
then
3283 Analyze
(Identifier
(S
));
3284 Lab
:= Entity
(Identifier
(S
));
3286 -- If we found a label mark it as reachable
3288 if Ekind
(Lab
) = E_Label
then
3289 Generate_Definition
(Lab
);
3290 Set_Reachable
(Lab
);
3292 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
3293 Set_Label_Construct
(Parent
(Lab
), S
);
3296 -- If we failed to find a label, it means the implicit declaration
3297 -- of the label was hidden. A for-loop parameter can do this to
3298 -- a label with the same name inside the loop, since the implicit
3299 -- label declaration is in the innermost enclosing body or block
3303 Error_Msg_Sloc
:= Sloc
(Lab
);
3305 ("implicit label declaration for & is hidden#",
3313 -- Perform semantic analysis on all statements
3315 Conditional_Statements_Begin
;
3318 while Present
(S
) loop
3321 -- Remove dimension in all statements
3323 Remove_Dimension_In_Statement
(S
);
3327 Conditional_Statements_End
;
3329 -- Make labels unreachable. Visibility is not sufficient, because labels
3330 -- in one if-branch for example are not reachable from the other branch,
3331 -- even though their declarations are in the enclosing declarative part.
3334 while Present
(S
) loop
3335 if Nkind
(S
) = N_Label
then
3336 Set_Reachable
(Entity
(Identifier
(S
)), False);
3341 end Analyze_Statements
;
3343 ----------------------------
3344 -- Check_Unreachable_Code --
3345 ----------------------------
3347 procedure Check_Unreachable_Code
(N
: Node_Id
) is
3348 Error_Node
: Node_Id
;
3352 if Is_List_Member
(N
) and then Comes_From_Source
(N
) then
3357 Nxt
:= Original_Node
(Next
(N
));
3359 -- Skip past pragmas
3361 while Nkind
(Nxt
) = N_Pragma
loop
3362 Nxt
:= Original_Node
(Next
(Nxt
));
3365 -- If a label follows us, then we never have dead code, since
3366 -- someone could branch to the label, so we just ignore it, unless
3367 -- we are in formal mode where goto statements are not allowed.
3369 if Nkind
(Nxt
) = N_Label
3370 and then not Restriction_Check_Required
(SPARK_05
)
3374 -- Otherwise see if we have a real statement following us
3377 and then Comes_From_Source
(Nxt
)
3378 and then Is_Statement
(Nxt
)
3380 -- Special very annoying exception. If we have a return that
3381 -- follows a raise, then we allow it without a warning, since
3382 -- the Ada RM annoyingly requires a useless return here.
3384 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
3385 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
3387 -- The rather strange shenanigans with the warning message
3388 -- here reflects the fact that Kill_Dead_Code is very good
3389 -- at removing warnings in deleted code, and this is one
3390 -- warning we would prefer NOT to have removed.
3394 -- If we have unreachable code, analyze and remove the
3395 -- unreachable code, since it is useless and we don't
3396 -- want to generate junk warnings.
3398 -- We skip this step if we are not in code generation mode
3399 -- or CodePeer mode.
3401 -- This is the one case where we remove dead code in the
3402 -- semantics as opposed to the expander, and we do not want
3403 -- to remove code if we are not in code generation mode,
3404 -- since this messes up the ASIS trees or loses useful
3405 -- information in the CodePeer tree.
3407 -- Note that one might react by moving the whole circuit to
3408 -- exp_ch5, but then we lose the warning in -gnatc mode.
3410 if Operating_Mode
= Generate_Code
3411 and then not CodePeer_Mode
3416 -- Quit deleting when we have nothing more to delete
3417 -- or if we hit a label (since someone could transfer
3418 -- control to a label, so we should not delete it).
3420 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
3422 -- Statement/declaration is to be deleted
3426 Kill_Dead_Code
(Nxt
);
3430 -- Now issue the warning (or error in formal mode)
3432 if Restriction_Check_Required
(SPARK_05
) then
3433 Check_SPARK_05_Restriction
3434 ("unreachable code is not allowed", Error_Node
);
3436 Error_Msg
("??unreachable code!", Sloc
(Error_Node
));
3440 -- If the unconditional transfer of control instruction is the
3441 -- last statement of a sequence, then see if our parent is one of
3442 -- the constructs for which we count unblocked exits, and if so,
3443 -- adjust the count.
3448 -- Statements in THEN part or ELSE part of IF statement
3450 if Nkind
(P
) = N_If_Statement
then
3453 -- Statements in ELSIF part of an IF statement
3455 elsif Nkind
(P
) = N_Elsif_Part
then
3457 pragma Assert
(Nkind
(P
) = N_If_Statement
);
3459 -- Statements in CASE statement alternative
3461 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
3463 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
3465 -- Statements in body of block
3467 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
3468 and then Nkind
(Parent
(P
)) = N_Block_Statement
3470 -- The original loop is now placed inside a block statement
3471 -- due to the expansion of attribute 'Loop_Entry. Return as
3472 -- this is not a "real" block for the purposes of exit
3475 if Nkind
(N
) = N_Loop_Statement
3476 and then Subject_To_Loop_Entry_Attributes
(N
)
3481 -- Statements in exception handler in a block
3483 elsif Nkind
(P
) = N_Exception_Handler
3484 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
3485 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
3489 -- None of these cases, so return
3495 -- This was one of the cases we are looking for (i.e. the
3496 -- parent construct was IF, CASE or block) so decrement count.
3498 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
3502 end Check_Unreachable_Code
;
3504 ----------------------
3505 -- Preanalyze_Range --
3506 ----------------------
3508 procedure Preanalyze_Range
(R_Copy
: Node_Id
) is
3509 Save_Analysis
: constant Boolean := Full_Analysis
;
3513 Full_Analysis
:= False;
3514 Expander_Mode_Save_And_Set
(False);
3518 if Nkind
(R_Copy
) in N_Subexpr
and then Is_Overloaded
(R_Copy
) then
3520 -- Apply preference rules for range of predefined integer types, or
3521 -- diagnose true ambiguity.
3526 Found
: Entity_Id
:= Empty
;
3529 Get_First_Interp
(R_Copy
, I
, It
);
3530 while Present
(It
.Typ
) loop
3531 if Is_Discrete_Type
(It
.Typ
) then
3535 if Scope
(Found
) = Standard_Standard
then
3538 elsif Scope
(It
.Typ
) = Standard_Standard
then
3542 -- Both of them are user-defined
3545 ("ambiguous bounds in range of iteration", R_Copy
);
3546 Error_Msg_N
("\possible interpretations:", R_Copy
);
3547 Error_Msg_NE
("\\} ", R_Copy
, Found
);
3548 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
3554 Get_Next_Interp
(I
, It
);
3559 -- Subtype mark in iteration scheme
3561 if Is_Entity_Name
(R_Copy
) and then Is_Type
(Entity
(R_Copy
)) then
3564 -- Expression in range, or Ada 2012 iterator
3566 elsif Nkind
(R_Copy
) in N_Subexpr
then
3568 Typ
:= Etype
(R_Copy
);
3570 if Is_Discrete_Type
(Typ
) then
3573 -- Check that the resulting object is an iterable container
3575 elsif Has_Aspect
(Typ
, Aspect_Iterator_Element
)
3576 or else Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
3577 or else Has_Aspect
(Typ
, Aspect_Variable_Indexing
)
3581 -- The expression may yield an implicit reference to an iterable
3582 -- container. Insert explicit dereference so that proper type is
3583 -- visible in the loop.
3585 elsif Has_Implicit_Dereference
(Etype
(R_Copy
)) then
3590 Disc
:= First_Discriminant
(Typ
);
3591 while Present
(Disc
) loop
3592 if Has_Implicit_Dereference
(Disc
) then
3593 Build_Explicit_Dereference
(R_Copy
, Disc
);
3597 Next_Discriminant
(Disc
);
3604 Expander_Mode_Restore
;
3605 Full_Analysis
:= Save_Analysis
;
3606 end Preanalyze_Range
;