1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Freeze
; use Freeze
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
45 with Rtsfind
; use Rtsfind
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Case
; use Sem_Case
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Prag
; use Sem_Prag
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Sinput
; use Sinput
;
61 with Snames
; use Snames
;
62 with Stand
; use Stand
;
63 with Sinfo
; use Sinfo
;
64 with Stringt
; use Stringt
;
65 with Targparm
; use Targparm
;
66 with Ttypes
; use Ttypes
;
67 with Tbuild
; use Tbuild
;
68 with Urealp
; use Urealp
;
69 with Warnsw
; use Warnsw
;
71 with GNAT
.Heap_Sort_G
;
73 package body Sem_Ch13
is
75 SSU
: constant Pos
:= System_Storage_Unit
;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks
(N
: Node_Id
);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
137 function Is_Predicate_Static
139 Nam
: Name_Id
) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
169 Nam
: TSS_Name_Type
);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
185 procedure Resolve_Iterable_Operation
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
197 Biased
: Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry
is record
219 Eloc
: Source_Ptr
; -- node used for posting warnings
220 Source
: Entity_Id
; -- source type for unchecked conversion
221 Target
: Entity_Id
; -- target type for unchecked conversion
222 Act_Unit
: Entity_Id
; -- actual function instantiated
225 package Unchecked_Conversions
is new Table
.Table
(
226 Table_Component_Type
=> UC_Entry
,
227 Table_Index_Type
=> Int
,
228 Table_Low_Bound
=> 1,
230 Table_Increment
=> 200,
231 Table_Name
=> "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record
is record
251 -- The address clause
254 -- The entity of the object overlaying Y
257 -- The entity of the object being overlaid
260 -- Whether the address is offset within Y
263 package Address_Clause_Checks
is new Table
.Table
(
264 Table_Component_Type
=> Address_Clause_Check_Record
,
265 Table_Index_Type
=> Int
,
266 Table_Low_Bound
=> 1,
268 Table_Increment
=> 200,
269 Table_Name
=> "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version
< Ada_2005
then
287 Comp
:= First_Component_Or_Discriminant
(R
);
288 while Present
(Comp
) loop
289 CC
:= Component_Clause
(Comp
);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
300 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
301 CSZ
: constant Uint
:= Esize
(Comp
);
302 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
303 Pos
: constant Node_Id
:= Position
(CLC
);
304 FB
: constant Node_Id
:= First_Bit
(CLC
);
306 Storage_Unit_Offset
: constant Uint
:=
307 CFB
/ System_Storage_Unit
;
309 Start_Bit
: constant Uint
:=
310 CFB
mod System_Storage_Unit
;
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit
+ CSZ
> System_Storage_Unit
then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit
mod System_Storage_Unit
= 0
320 and then CSZ
mod System_Storage_Unit
= 0
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC
);
326 if Bytes_Big_Endian
then
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC
);
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC
);
336 -- Do not allow non-contiguous field
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC
);
343 ("\caused by non-standard Bit_Order "
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC
);
350 -- Case where field fits in one storage unit
353 -- Give warning if suspicious component clause
355 if Intval
(FB
) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos
);
362 Intval
(Pos
) + Intval
(FB
) /
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos
);
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
390 (Storage_Unit_Offset
* System_Storage_Unit
) +
391 (System_Storage_Unit
- 1) -
392 (Start_Bit
+ CSZ
- 1));
394 Set_Normalized_First_Bit
396 Component_Bit_Offset
(Comp
) mod
397 System_Storage_Unit
);
402 Next_Component_Or_Discriminant
(Comp
);
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
412 Max_Machine_Scalar_Size
: constant Uint
:=
414 (Standard_Long_Long_Integer_Size
);
415 -- We use this as the maximum machine scalar size
418 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
429 Comp
:= First_Component_Or_Discriminant
(R
);
430 while Present
(Comp
) loop
431 CC
:= Component_Clause
(Comp
);
435 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
436 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
439 -- Case of component with last bit >= max machine scalar
441 if Lbit
>= Max_Machine_Scalar_Size
then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order
then
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC
);
455 if Bytes_Big_Endian
then
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC
);
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC
);
466 -- Give error message for RM 13.5.1(10) violation
470 ("machine scalar rules not followed for&",
471 First_Bit
(CC
), Comp
);
473 Error_Msg_Uint_1
:= Lbit
;
474 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
476 ("\last bit (^) exceeds maximum machine "
480 if (Lbit
+ 1) mod SSU
/= 0 then
481 Error_Msg_Uint_1
:= SSU
;
483 ("\and is not a multiple of Storage_Unit (^) "
488 Error_Msg_Uint_1
:= Fbit
;
490 ("\and first bit (^) is non-zero "
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
500 Num_CC
:= Num_CC
+ 1;
505 Next_Component_Or_Discriminant
(Comp
);
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
514 Comps
: array (0 .. Num_CC
) of Entity_Id
;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
519 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move
(From
: Natural; To
: Natural);
523 -- Move routine for Sort
525 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
534 -- Maximum last bit value of any component in this set
537 -- Corresponding machine scalar size
543 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
545 return Position
(Component_Clause
(Comps
(Op1
))) <
546 Position
(Component_Clause
(Comps
(Op2
)));
553 procedure CP_Move
(From
: Natural; To
: Natural) is
555 Comps
(To
) := Comps
(From
);
558 -- Start of processing for Sort_CC
561 -- Collect the machine scalar relevant component clauses
564 Comp
:= First_Component_Or_Discriminant
(R
);
565 while Present
(Comp
) loop
567 CC
: constant Node_Id
:= Component_Clause
(Comp
);
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
578 and then not Error_Posted
(Last_Bit
(CC
))
579 and then Static_Integer
(Last_Bit
(CC
)) <
580 Max_Machine_Scalar_Size
582 Num_CC
:= Num_CC
+ 1;
583 Comps
(Num_CC
) := Comp
;
587 Next_Component_Or_Discriminant
(Comp
);
590 -- Sort by ascending position number
592 Sorting
.Sort
(Num_CC
);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
600 while Stop
< Num_CC
loop
605 (Last_Bit
(Component_Clause
(Comps
(Start
))));
606 while Stop
< Num_CC
loop
608 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
610 (Position
(Component_Clause
(Comps
(Stop
))))
618 (Component_Clause
(Comps
(Stop
)))));
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS
:= Max_Machine_Scalar_Size
;
635 and then (MSS
/ 2) >= SSU
636 and then (MSS
/ 2) > MaxL
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
646 -- First_Bit .. Last_Bit Component_Bit_Offset
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C
in Start
.. Stop
loop
663 Comp
: constant Entity_Id
:= Comps
(C
);
664 CC
: constant Node_Id
:= Component_Clause
(Comp
);
666 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
667 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
668 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
669 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
672 if Warn_On_Reverse_Bit_Order
then
673 Error_Msg_Uint_1
:= MSS
;
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit
(CC
));
677 Error_Msg_Uint_1
:= NFB
;
678 Error_Msg_Uint_2
:= NLB
;
680 if Bytes_Big_Endian
then
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
691 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
692 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
699 end Adjust_Record_For_Reverse_Bit_Order
;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment
(Typ
)
713 and then not Has_Alignment_Clause
(Typ
)
714 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
716 Init_Alignment
(Typ
);
718 end Alignment_Check_For_Size_Change
;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
729 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
766 Ent
: constant Entity_Id
:= Entity
(ASN
);
767 Expr
: constant Node_Id
:= Expression
(ASN
);
768 Id
: constant Node_Id
:= Identifier
(ASN
);
771 Error_Msg_Name_1
:= Chars
(Id
);
773 if not Is_Type
(Ent
) then
774 Error_Msg_N
("aspect% can only apply to a type", Id
);
777 elsif not Is_First_Subtype
(Ent
) then
778 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
781 elsif A_Id
= Aspect_Default_Value
782 and then not Is_Scalar_Type
(Ent
)
784 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
787 elsif A_Id
= Aspect_Default_Component_Value
then
788 if not Is_Array_Type
(Ent
) then
789 Error_Msg_N
("aspect% can only be applied to array type", Id
);
792 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
793 Error_Msg_N
("aspect% requires scalar components", Id
);
798 Set_Has_Default_Aspect
(Base_Type
(Ent
));
800 if Is_Scalar_Type
(Ent
) then
801 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
803 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
805 end Analyze_Aspect_Default_Value
;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
812 P
: constant Entity_Id
:= Entity
(ASN
);
813 -- Entithy for parent type
816 -- Item from Rep_Item chain
821 -- Loop through delayed aspects for the parent type
824 while Present
(N
) loop
825 if Nkind
(N
) = N_Aspect_Specification
then
826 exit when Entity
(N
) /= P
;
828 if Is_Delayed_Aspect
(N
) then
829 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
842 when Aspect_Alignment
=>
843 if not Has_Alignment_Clause
(E
) then
844 Set_Alignment
(E
, Alignment
(P
));
849 when Aspect_Atomic
=>
850 if Is_Atomic
(P
) then
856 when Aspect_Atomic_Components
=>
857 if Has_Atomic_Components
(P
) then
858 Set_Has_Atomic_Components
(Base_Type
(E
));
863 when Aspect_Bit_Order
=>
864 if Is_Record_Type
(E
)
865 and then No
(Get_Attribute_Definition_Clause
866 (E
, Attribute_Bit_Order
))
867 and then Reverse_Bit_Order
(P
)
869 Set_Reverse_Bit_Order
(Base_Type
(E
));
874 when Aspect_Component_Size
=>
876 and then not Has_Component_Size_Clause
(E
)
879 (Base_Type
(E
), Component_Size
(P
));
884 when Aspect_Machine_Radix
=>
885 if Is_Decimal_Fixed_Point_Type
(E
)
886 and then not Has_Machine_Radix_Clause
(E
)
888 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size
=>
894 if not Has_Size_Clause
(E
)
896 No
(Get_Attribute_Definition_Clause
897 (E
, Attribute_Object_Size
))
899 Set_Esize
(E
, Esize
(P
));
905 if not Is_Packed
(E
) then
906 Set_Is_Packed
(Base_Type
(E
));
908 if Is_Bit_Packed_Array
(P
) then
909 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
910 Set_Packed_Array_Impl_Type
911 (E
, Packed_Array_Impl_Type
(P
));
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order
=>
918 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
919 and then No
(Get_Attribute_Definition_Clause
920 (E
, Attribute_Scalar_Storage_Order
))
921 and then Reverse_Storage_Order
(P
)
923 Set_Reverse_Storage_Order
(Base_Type
(E
));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
929 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
935 if Is_Fixed_Point_Type
(E
)
936 and then not Has_Small_Clause
(E
)
938 Set_Small_Value
(E
, Small_Value
(P
));
943 when Aspect_Storage_Size
=>
944 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
945 and then not Has_Storage_Size_Clause
(E
)
947 Set_Storage_Size_Variable
948 (Base_Type
(E
), Storage_Size_Variable
(P
));
953 when Aspect_Value_Size
=>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
963 when Aspect_Volatile
=>
964 if Is_Volatile
(P
) then
968 -- Volatile_Components
970 when Aspect_Volatile_Components
=>
971 if Has_Volatile_Components
(P
) then
972 Set_Has_Volatile_Components
(Base_Type
(E
));
975 -- That should be all the Rep Aspects
978 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
985 N
:= Next_Rep_Item
(N
);
987 end Inherit_Delayed_Rep_Aspects
;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
994 Ident
: constant Node_Id
:= Identifier
(ASN
);
995 A_Name
: constant Name_Id
:= Chars
(Ident
);
996 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
997 Ent
: constant Entity_Id
:= Entity
(ASN
);
998 Expr
: constant Node_Id
:= Expression
(ASN
);
999 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1003 procedure Check_False_Aspect_For_Derived_Type
;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type
is
1016 -- We are only checking derived types
1018 if not Is_Derived_Type
(E
) then
1022 Par
:= Nearest_Ancestor
(E
);
1025 when Aspect_Atomic | Aspect_Shared
=>
1026 if not Is_Atomic
(Par
) then
1030 when Aspect_Atomic_Components
=>
1031 if not Has_Atomic_Components
(Par
) then
1035 when Aspect_Discard_Names
=>
1036 if not Discard_Names
(Par
) then
1041 if not Is_Packed
(Par
) then
1045 when Aspect_Unchecked_Union
=>
1046 if not Is_Unchecked_Union
(Par
) then
1050 when Aspect_Volatile
=>
1051 if not Is_Volatile
(Par
) then
1055 when Aspect_Volatile_Components
=>
1056 if not Has_Volatile_Components
(Par
) then
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1
:= A_Name
;
1068 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1070 end Check_False_Aspect_For_Derived_Type
;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False
(Static_Boolean
(Expr
)) then
1080 Check_False_Aspect_For_Derived_Type
;
1085 Pragma_Argument_Associations
=> New_List
(
1086 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1087 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))),
1089 Pragma_Identifier
=>
1090 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)));
1092 Set_From_Aspect_Specification
(Prag
, True);
1093 Set_Corresponding_Aspect
(Prag
, ASN
);
1094 Set_Aspect_Rep_Item
(ASN
, Prag
);
1095 Set_Is_Delayed_Aspect
(Prag
);
1096 Set_Parent
(Prag
, ASN
);
1098 end Make_Pragma_From_Boolean_Aspect
;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1109 -- Look for aspect specification entries for this entity
1111 ASN
:= First_Rep_Item
(E
);
1112 while Present
(ASN
) loop
1113 if Nkind
(ASN
) = N_Aspect_Specification
then
1114 exit when Entity
(ASN
) /= E
;
1116 if Is_Delayed_Aspect
(ASN
) then
1117 A_Id
:= Get_Aspect_Id
(ASN
);
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freeze point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects
=>
1126 Make_Pragma_From_Boolean_Aspect
(ASN
);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value
=>
1133 Analyze_Aspect_Default_Value
(ASN
);
1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element
=>
1142 Analyze
(Expression
(ASN
));
1144 if Etype
(Expression
(ASN
)) = Any_Type
then
1146 ("\aspect must be fully defined before & is frozen",
1150 when Aspect_Iterable
=>
1151 Validate_Iterable_Aspect
(E
, ASN
);
1157 Ritem
:= Aspect_Rep_Item
(ASN
);
1159 if Present
(Ritem
) then
1165 Next_Rep_Item
(ASN
);
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1173 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1174 Inherit_Delayed_Rep_Aspects
(ASN
);
1176 end Analyze_Aspects_At_Freeze_Point
;
1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1182 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1183 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1184 -- Establish linkages between an aspect and its corresponding
1187 procedure Insert_After_SPARK_Mode
1191 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1192 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1193 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1194 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1197 procedure Insert_Pragma
(Prag
: Node_Id
);
1198 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1199 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1200 -- Insert pragma Prag such that it mimics the placement of a source
1201 -- pragma of the same kind.
1203 -- procedure Proc (Formal : ...) with Global => ...;
1205 -- procedure Proc (Formal : ...);
1206 -- pragma Global (...);
1212 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1214 Set_Aspect_Rep_Item
(Asp
, Prag
);
1215 Set_Corresponding_Aspect
(Prag
, Asp
);
1216 Set_From_Aspect_Specification
(Prag
);
1217 Set_Parent
(Prag
, Asp
);
1220 -----------------------------
1221 -- Insert_After_SPARK_Mode --
1222 -----------------------------
1224 procedure Insert_After_SPARK_Mode
1229 Decl
: Node_Id
:= Ins_Nod
;
1235 and then Nkind
(Decl
) = N_Pragma
1236 and then Pragma_Name
(Decl
) = Name_SPARK_Mode
1238 Decl
:= Next
(Decl
);
1241 if Present
(Decl
) then
1242 Insert_Before
(Decl
, Prag
);
1244 -- Aitem acts as the last declaration
1247 Append_To
(Decls
, Prag
);
1249 end Insert_After_SPARK_Mode
;
1255 procedure Insert_Pragma
(Prag
: Node_Id
) is
1260 if Nkind
(N
) = N_Subprogram_Body
then
1261 if Present
(Declarations
(N
)) then
1263 -- Skip other internally generated pragmas from aspects to find
1264 -- the proper insertion point. As a result the order of pragmas
1265 -- is the same as the order of aspects.
1267 -- As precondition pragmas generated from conjuncts in the
1268 -- precondition aspect are presented in reverse order to
1269 -- Insert_Pragma, insert them in the correct order here by not
1270 -- skipping previously inserted precondition pragmas when the
1271 -- current pragma is a precondition.
1273 Decl
:= First
(Declarations
(N
));
1274 while Present
(Decl
) loop
1275 if Nkind
(Decl
) = N_Pragma
1276 and then From_Aspect_Specification
(Decl
)
1277 and then not (Get_Pragma_Id
(Decl
) = Pragma_Precondition
1279 Get_Pragma_Id
(Prag
) = Pragma_Precondition
)
1287 if Present
(Decl
) then
1288 Insert_Before
(Decl
, Prag
);
1290 Append
(Prag
, Declarations
(N
));
1293 Set_Declarations
(N
, New_List
(Prag
));
1296 -- When the context is a library unit, the pragma is added to the
1297 -- Pragmas_After list.
1299 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1300 Aux
:= Aux_Decls_Node
(Parent
(N
));
1302 if No
(Pragmas_After
(Aux
)) then
1303 Set_Pragmas_After
(Aux
, New_List
);
1306 Prepend
(Prag
, Pragmas_After
(Aux
));
1311 Insert_After
(N
, Prag
);
1321 L
: constant List_Id
:= Aspect_Specifications
(N
);
1323 Ins_Node
: Node_Id
:= N
;
1324 -- Insert pragmas/attribute definition clause after this node when no
1325 -- delayed analysis is required.
1327 -- Start of processing for Analyze_Aspect_Specifications
1329 -- The general processing involves building an attribute definition
1330 -- clause or a pragma node that corresponds to the aspect. Then in order
1331 -- to delay the evaluation of this aspect to the freeze point, we attach
1332 -- the corresponding pragma/attribute definition clause to the aspect
1333 -- specification node, which is then placed in the Rep Item chain. In
1334 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1335 -- and we evaluate the rep item at the freeze point. When the aspect
1336 -- doesn't have a corresponding pragma/attribute definition clause, then
1337 -- its analysis is simply delayed at the freeze point.
1339 -- Some special cases don't require delay analysis, thus the aspect is
1340 -- analyzed right now.
1342 -- Note that there is a special handling for Pre, Post, Test_Case,
1343 -- Contract_Cases aspects. In these cases, we do not have to worry
1344 -- about delay issues, since the pragmas themselves deal with delay
1345 -- of visibility for the expression analysis. Thus, we just insert
1346 -- the pragma after the node N.
1349 pragma Assert
(Present
(L
));
1351 -- Loop through aspects
1353 Aspect
:= First
(L
);
1354 Aspect_Loop
: while Present
(Aspect
) loop
1355 Analyze_One_Aspect
: declare
1356 Expr
: constant Node_Id
:= Expression
(Aspect
);
1357 Id
: constant Node_Id
:= Identifier
(Aspect
);
1358 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1359 Nam
: constant Name_Id
:= Chars
(Id
);
1360 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1363 Delay_Required
: Boolean;
1364 -- Set False if delay is not required
1366 Eloc
: Source_Ptr
:= No_Location
;
1367 -- Source location of expression, modified when we split PPC's. It
1368 -- is set below when Expr is present.
1370 procedure Analyze_Aspect_External_Or_Link_Name
;
1371 -- Perform analysis of the External_Name or Link_Name aspects
1373 procedure Analyze_Aspect_Implicit_Dereference
;
1374 -- Perform analysis of the Implicit_Dereference aspects
1376 procedure Make_Aitem_Pragma
1377 (Pragma_Argument_Associations
: List_Id
;
1378 Pragma_Name
: Name_Id
);
1379 -- This is a wrapper for Make_Pragma used for converting aspects
1380 -- to pragmas. It takes care of Sloc (set from Loc) and building
1381 -- the pragma identifier from the given name. In addition the
1382 -- flags Class_Present and Split_PPC are set from the aspect
1383 -- node, as well as Is_Ignored. This routine also sets the
1384 -- From_Aspect_Specification in the resulting pragma node to
1385 -- True, and sets Corresponding_Aspect to point to the aspect.
1386 -- The resulting pragma is assigned to Aitem.
1388 ------------------------------------------
1389 -- Analyze_Aspect_External_Or_Link_Name --
1390 ------------------------------------------
1392 procedure Analyze_Aspect_External_Or_Link_Name
is
1394 -- Verify that there is an Import/Export aspect defined for the
1395 -- entity. The processing of that aspect in turn checks that
1396 -- there is a Convention aspect declared. The pragma is
1397 -- constructed when processing the Convention aspect.
1404 while Present
(A
) loop
1405 exit when Nam_In
(Chars
(Identifier
(A
)), Name_Export
,
1412 ("missing Import/Export for Link/External name",
1416 end Analyze_Aspect_External_Or_Link_Name
;
1418 -----------------------------------------
1419 -- Analyze_Aspect_Implicit_Dereference --
1420 -----------------------------------------
1422 procedure Analyze_Aspect_Implicit_Dereference
is
1424 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1426 ("aspect must apply to a type with discriminants", N
);
1433 Disc
:= First_Discriminant
(E
);
1434 while Present
(Disc
) loop
1435 if Chars
(Expr
) = Chars
(Disc
)
1436 and then Ekind
(Etype
(Disc
)) =
1437 E_Anonymous_Access_Type
1439 Set_Has_Implicit_Dereference
(E
);
1440 Set_Has_Implicit_Dereference
(Disc
);
1444 Next_Discriminant
(Disc
);
1447 -- Error if no proper access discriminant.
1450 ("not an access discriminant of&", Expr
, E
);
1453 end Analyze_Aspect_Implicit_Dereference
;
1455 -----------------------
1456 -- Make_Aitem_Pragma --
1457 -----------------------
1459 procedure Make_Aitem_Pragma
1460 (Pragma_Argument_Associations
: List_Id
;
1461 Pragma_Name
: Name_Id
)
1463 Args
: List_Id
:= Pragma_Argument_Associations
;
1466 -- We should never get here if aspect was disabled
1468 pragma Assert
(not Is_Disabled
(Aspect
));
1470 -- Certain aspects allow for an optional name or expression. Do
1471 -- not generate a pragma with empty argument association list.
1473 if No
(Args
) or else No
(Expression
(First
(Args
))) then
1481 Pragma_Argument_Associations
=> Args
,
1482 Pragma_Identifier
=>
1483 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
1484 Class_Present
=> Class_Present
(Aspect
),
1485 Split_PPC
=> Split_PPC
(Aspect
));
1487 -- Set additional semantic fields
1489 if Is_Ignored
(Aspect
) then
1490 Set_Is_Ignored
(Aitem
);
1491 elsif Is_Checked
(Aspect
) then
1492 Set_Is_Checked
(Aitem
);
1495 Set_Corresponding_Aspect
(Aitem
, Aspect
);
1496 Set_From_Aspect_Specification
(Aitem
, True);
1497 end Make_Aitem_Pragma
;
1499 -- Start of processing for Analyze_One_Aspect
1502 -- Skip aspect if already analyzed, to avoid looping in some cases
1504 if Analyzed
(Aspect
) then
1508 -- Skip looking at aspect if it is totally disabled. Just mark it
1509 -- as such for later reference in the tree. This also sets the
1510 -- Is_Ignored and Is_Checked flags appropriately.
1512 Check_Applicable_Policy
(Aspect
);
1514 if Is_Disabled
(Aspect
) then
1518 -- Set the source location of expression, used in the case of
1519 -- a failed precondition/postcondition or invariant. Note that
1520 -- the source location of the expression is not usually the best
1521 -- choice here. For example, it gets located on the last AND
1522 -- keyword in a chain of boolean expressiond AND'ed together.
1523 -- It is best to put the message on the first character of the
1524 -- assertion, which is the effect of the First_Node call here.
1526 if Present
(Expr
) then
1527 Eloc
:= Sloc
(First_Node
(Expr
));
1530 -- Check restriction No_Implementation_Aspect_Specifications
1532 if Implementation_Defined_Aspect
(A_Id
) then
1534 (No_Implementation_Aspect_Specifications
, Aspect
);
1537 -- Check restriction No_Specification_Of_Aspect
1539 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
1541 -- Mark aspect analyzed (actual analysis is delayed till later)
1543 Set_Analyzed
(Aspect
);
1544 Set_Entity
(Aspect
, E
);
1545 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
1547 -- Check for duplicate aspect. Note that the Comes_From_Source
1548 -- test allows duplicate Pre/Post's that we generate internally
1549 -- to escape being flagged here.
1551 if No_Duplicates_Allowed
(A_Id
) then
1553 while Anod
/= Aspect
loop
1554 if Comes_From_Source
(Aspect
)
1555 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
1557 Error_Msg_Name_1
:= Nam
;
1558 Error_Msg_Sloc
:= Sloc
(Anod
);
1560 -- Case of same aspect specified twice
1562 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
1563 if not Class_Present
(Anod
) then
1565 ("aspect% for & previously given#",
1569 ("aspect `%''Class` for & previously given#",
1579 -- Check some general restrictions on language defined aspects
1581 if not Implementation_Defined_Aspect
(A_Id
) then
1582 Error_Msg_Name_1
:= Nam
;
1584 -- Not allowed for renaming declarations
1586 if Nkind
(N
) in N_Renaming_Declaration
then
1588 ("aspect % not allowed for renaming declaration",
1592 -- Not allowed for formal type declarations
1594 if Nkind
(N
) = N_Formal_Type_Declaration
then
1596 ("aspect % not allowed for formal type declaration",
1601 -- Copy expression for later processing by the procedures
1602 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1604 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
1606 -- Set Delay_Required as appropriate to aspect
1608 case Aspect_Delay
(A_Id
) is
1609 when Always_Delay
=>
1610 Delay_Required
:= True;
1613 Delay_Required
:= False;
1617 -- If expression has the form of an integer literal, then
1618 -- do not delay, since we know the value cannot change.
1619 -- This optimization catches most rep clause cases.
1621 -- For Boolean aspects, don't delay if no expression
1623 if A_Id
in Boolean_Aspects
and then No
(Expr
) then
1624 Delay_Required
:= False;
1626 -- For non-Boolean aspects, don't delay if integer literal
1628 elsif A_Id
not in Boolean_Aspects
1629 and then Present
(Expr
)
1630 and then Nkind
(Expr
) = N_Integer_Literal
1632 Delay_Required
:= False;
1634 -- All other cases are delayed
1637 Delay_Required
:= True;
1638 Set_Has_Delayed_Rep_Aspects
(E
);
1642 -- Processing based on specific aspect
1646 -- No_Aspect should be impossible
1649 raise Program_Error
;
1651 -- Case 1: Aspects corresponding to attribute definition
1654 when Aspect_Address |
1657 Aspect_Component_Size |
1658 Aspect_Constant_Indexing |
1659 Aspect_Default_Iterator |
1660 Aspect_Dispatching_Domain |
1661 Aspect_External_Tag |
1664 Aspect_Iterator_Element |
1665 Aspect_Machine_Radix |
1666 Aspect_Object_Size |
1669 Aspect_Scalar_Storage_Order |
1672 Aspect_Simple_Storage_Pool |
1673 Aspect_Storage_Pool |
1674 Aspect_Stream_Size |
1676 Aspect_Variable_Indexing |
1679 -- Indexing aspects apply only to tagged type
1681 if (A_Id
= Aspect_Constant_Indexing
1683 A_Id
= Aspect_Variable_Indexing
)
1684 and then not (Is_Type
(E
)
1685 and then Is_Tagged_Type
(E
))
1688 ("indexing aspect can only apply to a tagged type",
1693 -- For the case of aspect Address, we don't consider that we
1694 -- know the entity is never set in the source, since it is
1695 -- is likely aliasing is occurring.
1697 -- Note: one might think that the analysis of the resulting
1698 -- attribute definition clause would take care of that, but
1699 -- that's not the case since it won't be from source.
1701 if A_Id
= Aspect_Address
then
1702 Set_Never_Set_In_Source
(E
, False);
1705 -- Correctness of the profile of a stream operation is
1706 -- verified at the freeze point, but we must detect the
1707 -- illegal specification of this aspect for a subtype now,
1708 -- to prevent malformed rep_item chains.
1710 if A_Id
= Aspect_Input
or else
1711 A_Id
= Aspect_Output
or else
1712 A_Id
= Aspect_Read
or else
1715 if not Is_First_Subtype
(E
) then
1717 ("local name must be a first subtype", Aspect
);
1720 -- If stream aspect applies to the class-wide type,
1721 -- the generated attribute definition applies to the
1722 -- class-wide type as well.
1724 elsif Class_Present
(Aspect
) then
1726 Make_Attribute_Reference
(Loc
,
1728 Attribute_Name
=> Name_Class
);
1732 -- Construct the attribute definition clause
1735 Make_Attribute_Definition_Clause
(Loc
,
1737 Chars
=> Chars
(Id
),
1738 Expression
=> Relocate_Node
(Expr
));
1740 -- If the address is specified, then we treat the entity as
1741 -- referenced, to avoid spurious warnings. This is analogous
1742 -- to what is done with an attribute definition clause, but
1743 -- here we don't want to generate a reference because this
1744 -- is the point of definition of the entity.
1746 if A_Id
= Aspect_Address
then
1750 -- Case 2: Aspects corresponding to pragmas
1752 -- Case 2a: Aspects corresponding to pragmas with two
1753 -- arguments, where the first argument is a local name
1754 -- referring to the entity, and the second argument is the
1755 -- aspect definition expression.
1757 -- Linker_Section/Suppress/Unsuppress
1759 when Aspect_Linker_Section |
1761 Aspect_Unsuppress
=>
1764 (Pragma_Argument_Associations
=> New_List
(
1765 Make_Pragma_Argument_Association
(Loc
,
1766 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1767 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1768 Expression
=> Relocate_Node
(Expr
))),
1769 Pragma_Name
=> Chars
(Id
));
1773 -- Corresponds to pragma Implemented, construct the pragma
1775 when Aspect_Synchronization
=>
1777 (Pragma_Argument_Associations
=> New_List
(
1778 Make_Pragma_Argument_Association
(Loc
,
1779 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1780 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1781 Expression
=> Relocate_Node
(Expr
))),
1782 Pragma_Name
=> Name_Implemented
);
1786 when Aspect_Attach_Handler
=>
1788 (Pragma_Argument_Associations
=> New_List
(
1789 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1791 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1792 Expression
=> Relocate_Node
(Expr
))),
1793 Pragma_Name
=> Name_Attach_Handler
);
1795 -- We need to insert this pragma into the tree to get proper
1796 -- processing and to look valid from a placement viewpoint.
1798 Insert_Pragma
(Aitem
);
1801 -- Dynamic_Predicate, Predicate, Static_Predicate
1803 when Aspect_Dynamic_Predicate |
1805 Aspect_Static_Predicate
=>
1807 -- These aspects apply only to subtypes
1809 if not Is_Type
(E
) then
1811 ("predicate can only be specified for a subtype",
1815 elsif Is_Incomplete_Type
(E
) then
1817 ("predicate cannot apply to incomplete view", Aspect
);
1821 -- Construct the pragma (always a pragma Predicate, with
1822 -- flags recording whether it is static/dynamic). We also
1823 -- set flags recording this in the type itself.
1826 (Pragma_Argument_Associations
=> New_List
(
1827 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1829 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1830 Expression
=> Relocate_Node
(Expr
))),
1831 Pragma_Name
=> Name_Predicate
);
1833 -- Mark type has predicates, and remember what kind of
1834 -- aspect lead to this predicate (we need this to access
1835 -- the right set of check policies later on).
1837 Set_Has_Predicates
(E
);
1839 if A_Id
= Aspect_Dynamic_Predicate
then
1840 Set_Has_Dynamic_Predicate_Aspect
(E
);
1841 elsif A_Id
= Aspect_Static_Predicate
then
1842 Set_Has_Static_Predicate_Aspect
(E
);
1845 -- If the type is private, indicate that its completion
1846 -- has a freeze node, because that is the one that will
1847 -- be visible at freeze time.
1849 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
1850 Set_Has_Predicates
(Full_View
(E
));
1852 if A_Id
= Aspect_Dynamic_Predicate
then
1853 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
1854 elsif A_Id
= Aspect_Static_Predicate
then
1855 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
1858 Set_Has_Delayed_Aspects
(Full_View
(E
));
1859 Ensure_Freeze_Node
(Full_View
(E
));
1862 -- Case 2b: Aspects corresponding to pragmas with two
1863 -- arguments, where the second argument is a local name
1864 -- referring to the entity, and the first argument is the
1865 -- aspect definition expression.
1869 when Aspect_Convention
=>
1871 -- The aspect may be part of the specification of an import
1872 -- or export pragma. Scan the aspect list to gather the
1873 -- other components, if any. The name of the generated
1874 -- pragma is one of Convention/Import/Export.
1877 Args
: constant List_Id
:= New_List
(
1878 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1879 Expression
=> Relocate_Node
(Expr
)),
1880 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1881 Expression
=> Ent
));
1883 Imp_Exp_Seen
: Boolean := False;
1884 -- Flag set when aspect Import or Export has been seen
1886 Imp_Seen
: Boolean := False;
1887 -- Flag set when aspect Import has been seen
1891 Extern_Arg
: Node_Id
;
1896 Extern_Arg
:= Empty
;
1898 Prag_Nam
:= Chars
(Id
);
1901 while Present
(Asp
) loop
1902 Asp_Nam
:= Chars
(Identifier
(Asp
));
1904 -- Aspects Import and Export take precedence over
1905 -- aspect Convention. As a result the generated pragma
1906 -- must carry the proper interfacing aspect's name.
1908 if Nam_In
(Asp_Nam
, Name_Import
, Name_Export
) then
1909 if Imp_Exp_Seen
then
1910 Error_Msg_N
("conflicting", Asp
);
1912 Imp_Exp_Seen
:= True;
1914 if Asp_Nam
= Name_Import
then
1919 Prag_Nam
:= Asp_Nam
;
1921 -- Aspect External_Name adds an extra argument to the
1922 -- generated pragma.
1924 elsif Asp_Nam
= Name_External_Name
then
1926 Make_Pragma_Argument_Association
(Loc
,
1928 Expression
=> Relocate_Node
(Expression
(Asp
)));
1930 -- Aspect Link_Name adds an extra argument to the
1931 -- generated pragma.
1933 elsif Asp_Nam
= Name_Link_Name
then
1935 Make_Pragma_Argument_Association
(Loc
,
1937 Expression
=> Relocate_Node
(Expression
(Asp
)));
1943 -- Assemble the full argument list
1945 if Present
(Extern_Arg
) then
1946 Append_To
(Args
, Extern_Arg
);
1949 if Present
(Link_Arg
) then
1950 Append_To
(Args
, Link_Arg
);
1954 (Pragma_Argument_Associations
=> Args
,
1955 Pragma_Name
=> Prag_Nam
);
1957 -- Store the generated pragma Import in the related
1960 if Imp_Seen
and then Is_Subprogram
(E
) then
1961 Set_Import_Pragma
(E
, Aitem
);
1965 -- CPU, Interrupt_Priority, Priority
1967 -- These three aspects can be specified for a subprogram spec
1968 -- or body, in which case we analyze the expression and export
1969 -- the value of the aspect.
1971 -- Previously, we generated an equivalent pragma for bodies
1972 -- (note that the specs cannot contain these pragmas). The
1973 -- pragma was inserted ahead of local declarations, rather than
1974 -- after the body. This leads to a certain duplication between
1975 -- the processing performed for the aspect and the pragma, but
1976 -- given the straightforward handling required it is simpler
1977 -- to duplicate than to translate the aspect in the spec into
1978 -- a pragma in the declarative part of the body.
1981 Aspect_Interrupt_Priority |
1984 if Nkind_In
(N
, N_Subprogram_Body
,
1985 N_Subprogram_Declaration
)
1987 -- Analyze the aspect expression
1989 Analyze_And_Resolve
(Expr
, Standard_Integer
);
1991 -- Interrupt_Priority aspect not allowed for main
1992 -- subprograms. ARM D.1 does not forbid this explicitly,
1993 -- but ARM J.15.11 (6/3) does not permit pragma
1994 -- Interrupt_Priority for subprograms.
1996 if A_Id
= Aspect_Interrupt_Priority
then
1998 ("Interrupt_Priority aspect cannot apply to "
1999 & "subprogram", Expr
);
2001 -- The expression must be static
2003 elsif not Is_OK_Static_Expression
(Expr
) then
2004 Flag_Non_Static_Expr
2005 ("aspect requires static expression!", Expr
);
2007 -- Check whether this is the main subprogram. Issue a
2008 -- warning only if it is obviously not a main program
2009 -- (when it has parameters or when the subprogram is
2010 -- within a package).
2012 elsif Present
(Parameter_Specifications
2013 (Specification
(N
)))
2014 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2016 -- See ARM D.1 (14/3) and D.16 (12/3)
2019 ("aspect applied to subprogram other than the "
2020 & "main subprogram has no effect??", Expr
);
2022 -- Otherwise check in range and export the value
2024 -- For the CPU aspect
2026 elsif A_Id
= Aspect_CPU
then
2027 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2029 -- Value is correct so we export the value to make
2030 -- it available at execution time.
2033 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2037 ("main subprogram CPU is out of range", Expr
);
2040 -- For the Priority aspect
2042 elsif A_Id
= Aspect_Priority
then
2043 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2045 -- Value is correct so we export the value to make
2046 -- it available at execution time.
2049 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2051 -- Ignore pragma if Relaxed_RM_Semantics to support
2052 -- other targets/non GNAT compilers.
2054 elsif not Relaxed_RM_Semantics
then
2056 ("main subprogram priority is out of range",
2061 -- Load an arbitrary entity from System.Tasking.Stages
2062 -- or System.Tasking.Restricted.Stages (depending on
2063 -- the supported profile) to make sure that one of these
2064 -- packages is implicitly with'ed, since we need to have
2065 -- the tasking run time active for the pragma Priority to
2066 -- have any effect. Previously we with'ed the package
2067 -- System.Tasking, but this package does not trigger the
2068 -- required initialization of the run-time library.
2071 Discard
: Entity_Id
;
2073 if Restricted_Profile
then
2074 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2076 Discard
:= RTE
(RE_Activate_Tasks
);
2080 -- Handling for these Aspects in subprograms is complete
2087 -- Pass the aspect as an attribute
2090 Make_Attribute_Definition_Clause
(Loc
,
2092 Chars
=> Chars
(Id
),
2093 Expression
=> Relocate_Node
(Expr
));
2098 when Aspect_Warnings
=>
2100 (Pragma_Argument_Associations
=> New_List
(
2101 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2102 Expression
=> Relocate_Node
(Expr
)),
2103 Make_Pragma_Argument_Association
(Loc
,
2104 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2105 Pragma_Name
=> Chars
(Id
));
2107 -- Case 2c: Aspects corresponding to pragmas with three
2110 -- Invariant aspects have a first argument that references the
2111 -- entity, a second argument that is the expression and a third
2112 -- argument that is an appropriate message.
2114 -- Invariant, Type_Invariant
2116 when Aspect_Invariant |
2117 Aspect_Type_Invariant
=>
2119 -- Analysis of the pragma will verify placement legality:
2120 -- an invariant must apply to a private type, or appear in
2121 -- the private part of a spec and apply to a completion.
2124 (Pragma_Argument_Associations
=> New_List
(
2125 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2127 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2128 Expression
=> Relocate_Node
(Expr
))),
2129 Pragma_Name
=> Name_Invariant
);
2131 -- Add message unless exception messages are suppressed
2133 if not Opt
.Exception_Locations_Suppressed
then
2134 Append_To
(Pragma_Argument_Associations
(Aitem
),
2135 Make_Pragma_Argument_Association
(Eloc
,
2136 Chars
=> Name_Message
,
2138 Make_String_Literal
(Eloc
,
2139 Strval
=> "failed invariant from "
2140 & Build_Location_String
(Eloc
))));
2143 -- For Invariant case, insert immediately after the entity
2144 -- declaration. We do not have to worry about delay issues
2145 -- since the pragma processing takes care of this.
2147 Delay_Required
:= False;
2149 -- Case 2d : Aspects that correspond to a pragma with one
2154 -- Aspect Abstract_State introduces implicit declarations for
2155 -- all state abstraction entities it defines. To emulate this
2156 -- behavior, insert the pragma at the beginning of the visible
2157 -- declarations of the related package so that it is analyzed
2160 when Aspect_Abstract_State
=> Abstract_State
: declare
2161 Context
: Node_Id
:= N
;
2166 -- When aspect Abstract_State appears on a generic package,
2167 -- it is propageted to the package instance. The context in
2168 -- this case is the instance spec.
2170 if Nkind
(Context
) = N_Package_Instantiation
then
2171 Context
:= Instance_Spec
(Context
);
2174 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2175 N_Package_Declaration
)
2178 (Pragma_Argument_Associations
=> New_List
(
2179 Make_Pragma_Argument_Association
(Loc
,
2180 Expression
=> Relocate_Node
(Expr
))),
2181 Pragma_Name
=> Name_Abstract_State
);
2182 Decorate
(Aspect
, Aitem
);
2184 Decls
:= Visible_Declarations
(Specification
(Context
));
2186 -- In general pragma Abstract_State must be at the top
2187 -- of the existing visible declarations to emulate its
2188 -- source counterpart. The only exception to this is a
2189 -- generic instance in which case the pragma must be
2190 -- inserted after the association renamings.
2192 if Present
(Decls
) then
2193 Decl
:= First
(Decls
);
2195 -- The visible declarations of a generic instance have
2196 -- the following structure:
2198 -- <renamings of generic formals>
2199 -- <renamings of internally-generated spec and body>
2200 -- <first source declaration>
2202 -- The pragma must be inserted before the first source
2203 -- declaration, skip the instance "header".
2205 if Is_Generic_Instance
(Defining_Entity
(Context
)) then
2206 while Present
(Decl
)
2207 and then not Comes_From_Source
(Decl
)
2209 Decl
:= Next
(Decl
);
2213 -- When aspects Abstract_State, Ghost,
2214 -- Initial_Condition and Initializes are out of order,
2215 -- ensure that pragma SPARK_Mode is always at the top
2216 -- of the declarations to properly enabled/suppress
2219 Insert_After_SPARK_Mode
2224 -- Otherwise the pragma forms a new declarative list
2227 Set_Visible_Declarations
2228 (Specification
(Context
), New_List
(Aitem
));
2233 ("aspect & must apply to a package declaration",
2240 -- Aspect Default_Internal_Condition is never delayed because
2241 -- it is equivalent to a source pragma which appears after the
2242 -- related private type. To deal with forward references, the
2243 -- generated pragma is stored in the rep chain of the related
2244 -- private type as types do not carry contracts. The pragma is
2245 -- wrapped inside of a procedure at the freeze point of the
2246 -- private type's full view.
2248 when Aspect_Default_Initial_Condition
=>
2250 (Pragma_Argument_Associations
=> New_List
(
2251 Make_Pragma_Argument_Association
(Loc
,
2252 Expression
=> Relocate_Node
(Expr
))),
2254 Name_Default_Initial_Condition
);
2256 Decorate
(Aspect
, Aitem
);
2257 Insert_Pragma
(Aitem
);
2260 -- Default_Storage_Pool
2262 when Aspect_Default_Storage_Pool
=>
2264 (Pragma_Argument_Associations
=> New_List
(
2265 Make_Pragma_Argument_Association
(Loc
,
2266 Expression
=> Relocate_Node
(Expr
))),
2268 Name_Default_Storage_Pool
);
2270 Decorate
(Aspect
, Aitem
);
2271 Insert_Pragma
(Aitem
);
2276 -- Aspect Depends is never delayed because it is equivalent to
2277 -- a source pragma which appears after the related subprogram.
2278 -- To deal with forward references, the generated pragma is
2279 -- stored in the contract of the related subprogram and later
2280 -- analyzed at the end of the declarative region. See routine
2281 -- Analyze_Depends_In_Decl_Part for details.
2283 when Aspect_Depends
=>
2285 (Pragma_Argument_Associations
=> New_List
(
2286 Make_Pragma_Argument_Association
(Loc
,
2287 Expression
=> Relocate_Node
(Expr
))),
2288 Pragma_Name
=> Name_Depends
);
2290 Decorate
(Aspect
, Aitem
);
2291 Insert_Pragma
(Aitem
);
2294 -- Aspect Extensions_Visible is never delayed because it is
2295 -- equivalent to a source pragma which appears after the
2296 -- related subprogram.
2298 when Aspect_Extensions_Visible
=>
2300 (Pragma_Argument_Associations
=> New_List
(
2301 Make_Pragma_Argument_Association
(Loc
,
2302 Expression
=> Relocate_Node
(Expr
))),
2303 Pragma_Name
=> Name_Extensions_Visible
);
2305 Decorate
(Aspect
, Aitem
);
2306 Insert_Pragma
(Aitem
);
2309 -- Aspect Ghost is never delayed because it is equivalent to a
2310 -- source pragma which appears at the top of [generic] package
2311 -- declarations or after an object, a [generic] subprogram, or
2312 -- a type declaration.
2314 when Aspect_Ghost
=> Ghost
: declare
2319 (Pragma_Argument_Associations
=> New_List
(
2320 Make_Pragma_Argument_Association
(Loc
,
2321 Expression
=> Relocate_Node
(Expr
))),
2322 Pragma_Name
=> Name_Ghost
);
2324 Decorate
(Aspect
, Aitem
);
2326 -- When the aspect applies to a [generic] package, insert
2327 -- the pragma at the top of the visible declarations. This
2328 -- emulates the placement of a source pragma.
2330 if Nkind_In
(N
, N_Generic_Package_Declaration
,
2331 N_Package_Declaration
)
2333 Decls
:= Visible_Declarations
(Specification
(N
));
2337 Set_Visible_Declarations
(N
, Decls
);
2340 -- When aspects Abstract_State, Ghost, Initial_Condition
2341 -- and Initializes are out of order, ensure that pragma
2342 -- SPARK_Mode is always at the top of the declarations to
2343 -- properly enabled/suppress errors.
2345 Insert_After_SPARK_Mode
2347 Ins_Nod
=> First
(Decls
),
2350 -- Otherwise the context is an object, [generic] subprogram
2351 -- or type declaration.
2354 Insert_Pragma
(Aitem
);
2362 -- Aspect Global is never delayed because it is equivalent to
2363 -- a source pragma which appears after the related subprogram.
2364 -- To deal with forward references, the generated pragma is
2365 -- stored in the contract of the related subprogram and later
2366 -- analyzed at the end of the declarative region. See routine
2367 -- Analyze_Global_In_Decl_Part for details.
2369 when Aspect_Global
=>
2371 (Pragma_Argument_Associations
=> New_List
(
2372 Make_Pragma_Argument_Association
(Loc
,
2373 Expression
=> Relocate_Node
(Expr
))),
2374 Pragma_Name
=> Name_Global
);
2376 Decorate
(Aspect
, Aitem
);
2377 Insert_Pragma
(Aitem
);
2380 -- Initial_Condition
2382 -- Aspect Initial_Condition is never delayed because it is
2383 -- equivalent to a source pragma which appears after the
2384 -- related package. To deal with forward references, the
2385 -- generated pragma is stored in the contract of the related
2386 -- package and later analyzed at the end of the declarative
2387 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2390 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2391 Context
: Node_Id
:= N
;
2395 -- When aspect Initial_Condition appears on a generic
2396 -- package, it is propageted to the package instance. The
2397 -- context in this case is the instance spec.
2399 if Nkind
(Context
) = N_Package_Instantiation
then
2400 Context
:= Instance_Spec
(Context
);
2403 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2404 N_Package_Declaration
)
2406 Decls
:= Visible_Declarations
(Specification
(Context
));
2409 (Pragma_Argument_Associations
=> New_List
(
2410 Make_Pragma_Argument_Association
(Loc
,
2411 Expression
=> Relocate_Node
(Expr
))),
2413 Name_Initial_Condition
);
2414 Decorate
(Aspect
, Aitem
);
2418 Set_Visible_Declarations
(Context
, Decls
);
2421 -- When aspects Abstract_State, Ghost, Initial_Condition
2422 -- and Initializes are out of order, ensure that pragma
2423 -- SPARK_Mode is always at the top of the declarations to
2424 -- properly enabled/suppress errors.
2426 Insert_After_SPARK_Mode
2428 Ins_Nod
=> First
(Decls
),
2433 ("aspect & must apply to a package declaration",
2438 end Initial_Condition
;
2442 -- Aspect Initializes is never delayed because it is equivalent
2443 -- to a source pragma appearing after the related package. To
2444 -- deal with forward references, the generated pragma is stored
2445 -- in the contract of the related package and later analyzed at
2446 -- the end of the declarative region. For details, see routine
2447 -- Analyze_Initializes_In_Decl_Part.
2449 when Aspect_Initializes
=> Initializes
: declare
2450 Context
: Node_Id
:= N
;
2454 -- When aspect Initializes appears on a generic package,
2455 -- it is propageted to the package instance. The context
2456 -- in this case is the instance spec.
2458 if Nkind
(Context
) = N_Package_Instantiation
then
2459 Context
:= Instance_Spec
(Context
);
2462 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2463 N_Package_Declaration
)
2465 Decls
:= Visible_Declarations
(Specification
(Context
));
2468 (Pragma_Argument_Associations
=> New_List
(
2469 Make_Pragma_Argument_Association
(Loc
,
2470 Expression
=> Relocate_Node
(Expr
))),
2471 Pragma_Name
=> Name_Initializes
);
2472 Decorate
(Aspect
, Aitem
);
2476 Set_Visible_Declarations
(Context
, Decls
);
2479 -- When aspects Abstract_State, Ghost, Initial_Condition
2480 -- and Initializes are out of order, ensure that pragma
2481 -- SPARK_Mode is always at the top of the declarations to
2482 -- properly enabled/suppress errors.
2484 Insert_After_SPARK_Mode
2486 Ins_Nod
=> First
(Decls
),
2491 ("aspect & must apply to a package declaration",
2500 when Aspect_Obsolescent
=> declare
2508 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2509 Expression
=> Relocate_Node
(Expr
)));
2513 (Pragma_Argument_Associations
=> Args
,
2514 Pragma_Name
=> Chars
(Id
));
2519 when Aspect_Part_Of
=>
2520 if Nkind_In
(N
, N_Object_Declaration
,
2521 N_Package_Instantiation
)
2524 (Pragma_Argument_Associations
=> New_List
(
2525 Make_Pragma_Argument_Association
(Loc
,
2526 Expression
=> Relocate_Node
(Expr
))),
2527 Pragma_Name
=> Name_Part_Of
);
2531 ("aspect & must apply to a variable or package "
2532 & "instantiation", Aspect
, Id
);
2537 when Aspect_SPARK_Mode
=> SPARK_Mode
: declare
2542 (Pragma_Argument_Associations
=> New_List
(
2543 Make_Pragma_Argument_Association
(Loc
,
2544 Expression
=> Relocate_Node
(Expr
))),
2545 Pragma_Name
=> Name_SPARK_Mode
);
2547 -- When the aspect appears on a package or a subprogram
2548 -- body, insert the generated pragma at the top of the body
2549 -- declarations to emulate the behavior of a source pragma.
2551 if Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
2552 Decorate
(Aspect
, Aitem
);
2554 Decls
:= Declarations
(N
);
2558 Set_Declarations
(N
, Decls
);
2561 Prepend_To
(Decls
, Aitem
);
2564 -- When the aspect is associated with a [generic] package
2565 -- declaration, insert the generated pragma at the top of
2566 -- the visible declarations to emulate the behavior of a
2569 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
2570 N_Package_Declaration
)
2572 Decorate
(Aspect
, Aitem
);
2574 Decls
:= Visible_Declarations
(Specification
(N
));
2578 Set_Visible_Declarations
(Specification
(N
), Decls
);
2581 Prepend_To
(Decls
, Aitem
);
2588 -- Aspect Refined_Depends is never delayed because it is
2589 -- equivalent to a source pragma which appears in the
2590 -- declarations of the related subprogram body. To deal with
2591 -- forward references, the generated pragma is stored in the
2592 -- contract of the related subprogram body and later analyzed
2593 -- at the end of the declarative region. For details, see
2594 -- routine Analyze_Refined_Depends_In_Decl_Part.
2596 when Aspect_Refined_Depends
=>
2598 (Pragma_Argument_Associations
=> New_List
(
2599 Make_Pragma_Argument_Association
(Loc
,
2600 Expression
=> Relocate_Node
(Expr
))),
2601 Pragma_Name
=> Name_Refined_Depends
);
2603 Decorate
(Aspect
, Aitem
);
2604 Insert_Pragma
(Aitem
);
2609 -- Aspect Refined_Global is never delayed because it is
2610 -- equivalent to a source pragma which appears in the
2611 -- declarations of the related subprogram body. To deal with
2612 -- forward references, the generated pragma is stored in the
2613 -- contract of the related subprogram body and later analyzed
2614 -- at the end of the declarative region. For details, see
2615 -- routine Analyze_Refined_Global_In_Decl_Part.
2617 when Aspect_Refined_Global
=>
2619 (Pragma_Argument_Associations
=> New_List
(
2620 Make_Pragma_Argument_Association
(Loc
,
2621 Expression
=> Relocate_Node
(Expr
))),
2622 Pragma_Name
=> Name_Refined_Global
);
2624 Decorate
(Aspect
, Aitem
);
2625 Insert_Pragma
(Aitem
);
2630 when Aspect_Refined_Post
=>
2632 (Pragma_Argument_Associations
=> New_List
(
2633 Make_Pragma_Argument_Association
(Loc
,
2634 Expression
=> Relocate_Node
(Expr
))),
2635 Pragma_Name
=> Name_Refined_Post
);
2639 when Aspect_Refined_State
=> Refined_State
: declare
2643 -- The corresponding pragma for Refined_State is inserted in
2644 -- the declarations of the related package body. This action
2645 -- synchronizes both the source and from-aspect versions of
2648 if Nkind
(N
) = N_Package_Body
then
2649 Decls
:= Declarations
(N
);
2652 (Pragma_Argument_Associations
=> New_List
(
2653 Make_Pragma_Argument_Association
(Loc
,
2654 Expression
=> Relocate_Node
(Expr
))),
2655 Pragma_Name
=> Name_Refined_State
);
2656 Decorate
(Aspect
, Aitem
);
2660 Set_Declarations
(N
, Decls
);
2663 -- Pragma Refined_State must be inserted after pragma
2664 -- SPARK_Mode in the tree. This ensures that any error
2665 -- messages dependent on SPARK_Mode will be properly
2666 -- enabled/suppressed.
2668 Insert_After_SPARK_Mode
2670 Ins_Nod
=> First
(Decls
),
2675 ("aspect & must apply to a package body", Aspect
, Id
);
2681 -- Relative_Deadline
2683 when Aspect_Relative_Deadline
=>
2685 (Pragma_Argument_Associations
=> New_List
(
2686 Make_Pragma_Argument_Association
(Loc
,
2687 Expression
=> Relocate_Node
(Expr
))),
2688 Pragma_Name
=> Name_Relative_Deadline
);
2690 -- If the aspect applies to a task, the corresponding pragma
2691 -- must appear within its declarations, not after.
2693 if Nkind
(N
) = N_Task_Type_Declaration
then
2699 if No
(Task_Definition
(N
)) then
2700 Set_Task_Definition
(N
,
2701 Make_Task_Definition
(Loc
,
2702 Visible_Declarations
=> New_List
,
2703 End_Label
=> Empty
));
2706 Def
:= Task_Definition
(N
);
2707 V
:= Visible_Declarations
(Def
);
2708 if not Is_Empty_List
(V
) then
2709 Insert_Before
(First
(V
), Aitem
);
2712 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
2719 -- Case 2e: Annotate aspect
2721 when Aspect_Annotate
=>
2728 -- The argument can be a single identifier
2730 if Nkind
(Expr
) = N_Identifier
then
2732 -- One level of parens is allowed
2734 if Paren_Count
(Expr
) > 1 then
2735 Error_Msg_F
("extra parentheses ignored", Expr
);
2738 Set_Paren_Count
(Expr
, 0);
2740 -- Add the single item to the list
2742 Args
:= New_List
(Expr
);
2744 -- Otherwise we must have an aggregate
2746 elsif Nkind
(Expr
) = N_Aggregate
then
2748 -- Must be positional
2750 if Present
(Component_Associations
(Expr
)) then
2752 ("purely positional aggregate required", Expr
);
2756 -- Must not be parenthesized
2758 if Paren_Count
(Expr
) /= 0 then
2759 Error_Msg_F
("extra parentheses ignored", Expr
);
2762 -- List of arguments is list of aggregate expressions
2764 Args
:= Expressions
(Expr
);
2766 -- Anything else is illegal
2769 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
2773 -- Prepare pragma arguments
2776 Arg
:= First
(Args
);
2777 while Present
(Arg
) loop
2779 Make_Pragma_Argument_Association
(Sloc
(Arg
),
2780 Expression
=> Relocate_Node
(Arg
)));
2785 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2786 Chars
=> Name_Entity
,
2787 Expression
=> Ent
));
2790 (Pragma_Argument_Associations
=> Pargs
,
2791 Pragma_Name
=> Name_Annotate
);
2794 -- Case 3 : Aspects that don't correspond to pragma/attribute
2795 -- definition clause.
2797 -- Case 3a: The aspects listed below don't correspond to
2798 -- pragmas/attributes but do require delayed analysis.
2800 -- Default_Value can only apply to a scalar type
2802 when Aspect_Default_Value
=>
2803 if not Is_Scalar_Type
(E
) then
2805 ("aspect Default_Value must apply to a scalar type", N
);
2810 -- Default_Component_Value can only apply to an array type
2811 -- with scalar components.
2813 when Aspect_Default_Component_Value
=>
2814 if not (Is_Array_Type
(E
)
2815 and then Is_Scalar_Type
(Component_Type
(E
)))
2817 Error_Msg_N
("aspect Default_Component_Value can only "
2818 & "apply to an array of scalar components", N
);
2823 -- Case 3b: The aspects listed below don't correspond to
2824 -- pragmas/attributes and don't need delayed analysis.
2826 -- Implicit_Dereference
2828 -- For Implicit_Dereference, External_Name and Link_Name, only
2829 -- the legality checks are done during the analysis, thus no
2830 -- delay is required.
2832 when Aspect_Implicit_Dereference
=>
2833 Analyze_Aspect_Implicit_Dereference
;
2836 -- External_Name, Link_Name
2838 when Aspect_External_Name |
2840 Analyze_Aspect_External_Or_Link_Name
;
2845 when Aspect_Dimension
=>
2846 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
2851 when Aspect_Dimension_System
=>
2852 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
2855 -- Case 4: Aspects requiring special handling
2857 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2858 -- pragmas take care of the delay.
2862 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2863 -- with a first argument that is the expression, and a second
2864 -- argument that is an informative message if the test fails.
2865 -- This is inserted right after the declaration, to get the
2866 -- required pragma placement. The processing for the pragmas
2867 -- takes care of the required delay.
2869 when Pre_Post_Aspects
=> Pre_Post
: declare
2873 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
2874 Pname
:= Name_Precondition
;
2876 Pname
:= Name_Postcondition
;
2879 -- If the expressions is of the form A and then B, then
2880 -- we generate separate Pre/Post aspects for the separate
2881 -- clauses. Since we allow multiple pragmas, there is no
2882 -- problem in allowing multiple Pre/Post aspects internally.
2883 -- These should be treated in reverse order (B first and
2884 -- A second) since they are later inserted just after N in
2885 -- the order they are treated. This way, the pragma for A
2886 -- ends up preceding the pragma for B, which may have an
2887 -- importance for the error raised (either constraint error
2888 -- or precondition error).
2890 -- We do not do this for Pre'Class, since we have to put
2891 -- these conditions together in a complex OR expression.
2893 -- We do not do this in ASIS mode, as ASIS relies on the
2894 -- original node representing the complete expression, when
2895 -- retrieving it through the source aspect table.
2898 and then (Pname
= Name_Postcondition
2899 or else not Class_Present
(Aspect
))
2901 while Nkind
(Expr
) = N_And_Then
loop
2902 Insert_After
(Aspect
,
2903 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
2904 Identifier
=> Identifier
(Aspect
),
2905 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
2906 Class_Present
=> Class_Present
(Aspect
),
2907 Split_PPC
=> True));
2908 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
2909 Eloc
:= Sloc
(Expr
);
2913 -- Build the precondition/postcondition pragma
2915 -- Add note about why we do NOT need Copy_Tree here???
2918 (Pragma_Argument_Associations
=> New_List
(
2919 Make_Pragma_Argument_Association
(Eloc
,
2920 Chars
=> Name_Check
,
2921 Expression
=> Relocate_Node
(Expr
))),
2922 Pragma_Name
=> Pname
);
2924 -- Add message unless exception messages are suppressed
2926 if not Opt
.Exception_Locations_Suppressed
then
2927 Append_To
(Pragma_Argument_Associations
(Aitem
),
2928 Make_Pragma_Argument_Association
(Eloc
,
2929 Chars
=> Name_Message
,
2931 Make_String_Literal
(Eloc
,
2933 & Get_Name_String
(Pname
)
2935 & Build_Location_String
(Eloc
))));
2938 Set_Is_Delayed_Aspect
(Aspect
);
2940 -- For Pre/Post cases, insert immediately after the entity
2941 -- declaration, since that is the required pragma placement.
2942 -- Note that for these aspects, we do not have to worry
2943 -- about delay issues, since the pragmas themselves deal
2944 -- with delay of visibility for the expression analysis.
2946 Insert_Pragma
(Aitem
);
2953 when Aspect_Test_Case
=> Test_Case
: declare
2955 Comp_Expr
: Node_Id
;
2956 Comp_Assn
: Node_Id
;
2962 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2963 Error_Msg_Name_1
:= Nam
;
2964 Error_Msg_N
("incorrect placement of aspect `%`", E
);
2968 if Nkind
(Expr
) /= N_Aggregate
then
2969 Error_Msg_Name_1
:= Nam
;
2971 ("wrong syntax for aspect `%` for &", Id
, E
);
2975 -- Make pragma expressions refer to the original aspect
2976 -- expressions through the Original_Node link. This is used
2977 -- in semantic analysis for ASIS mode, so that the original
2978 -- expression also gets analyzed.
2980 Comp_Expr
:= First
(Expressions
(Expr
));
2981 while Present
(Comp_Expr
) loop
2982 New_Expr
:= Relocate_Node
(Comp_Expr
);
2984 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
2985 Expression
=> New_Expr
));
2989 Comp_Assn
:= First
(Component_Associations
(Expr
));
2990 while Present
(Comp_Assn
) loop
2991 if List_Length
(Choices
(Comp_Assn
)) /= 1
2993 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
2995 Error_Msg_Name_1
:= Nam
;
2997 ("wrong syntax for aspect `%` for &", Id
, E
);
3002 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
3003 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
3005 Relocate_Node
(Expression
(Comp_Assn
))));
3009 -- Build the test-case pragma
3012 (Pragma_Argument_Associations
=> Args
,
3013 Pragma_Name
=> Nam
);
3018 when Aspect_Contract_Cases
=>
3020 (Pragma_Argument_Associations
=> New_List
(
3021 Make_Pragma_Argument_Association
(Loc
,
3022 Expression
=> Relocate_Node
(Expr
))),
3023 Pragma_Name
=> Nam
);
3025 Decorate
(Aspect
, Aitem
);
3026 Insert_Pragma
(Aitem
);
3029 -- Case 5: Special handling for aspects with an optional
3030 -- boolean argument.
3032 -- In the general case, the corresponding pragma cannot be
3033 -- generated yet because the evaluation of the boolean needs
3034 -- to be delayed till the freeze point.
3036 when Boolean_Aspects |
3037 Library_Unit_Aspects
=>
3039 Set_Is_Boolean_Aspect
(Aspect
);
3041 -- Lock_Free aspect only apply to protected objects
3043 if A_Id
= Aspect_Lock_Free
then
3044 if Ekind
(E
) /= E_Protected_Type
then
3045 Error_Msg_Name_1
:= Nam
;
3047 ("aspect % only applies to a protected object",
3051 -- Set the Uses_Lock_Free flag to True if there is no
3052 -- expression or if the expression is True. The
3053 -- evaluation of this aspect should be delayed to the
3054 -- freeze point (why???)
3057 or else Is_True
(Static_Boolean
(Expr
))
3059 Set_Uses_Lock_Free
(E
);
3062 Record_Rep_Item
(E
, Aspect
);
3067 elsif A_Id
= Aspect_Import
or else A_Id
= Aspect_Export
then
3069 -- For the case of aspects Import and Export, we don't
3070 -- consider that we know the entity is never set in the
3071 -- source, since it is is likely modified outside the
3074 -- Note: one might think that the analysis of the
3075 -- resulting pragma would take care of that, but
3076 -- that's not the case since it won't be from source.
3078 if Ekind
(E
) = E_Variable
then
3079 Set_Never_Set_In_Source
(E
, False);
3082 -- In older versions of Ada the corresponding pragmas
3083 -- specified a Convention. In Ada 2012 the convention is
3084 -- specified as a separate aspect, and it is optional,
3085 -- given that it defaults to Convention_Ada. The code
3086 -- that verifed that there was a matching convention
3089 -- Resolve the expression of an Import or Export here,
3090 -- and require it to be of type Boolean and static. This
3091 -- is not quite right, because in general this should be
3092 -- delayed, but that seems tricky for these, because
3093 -- normally Boolean aspects are replaced with pragmas at
3094 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3095 -- but in the case of these aspects we can't generate
3096 -- a simple pragma with just the entity name. ???
3098 if not Present
(Expr
)
3099 or else Is_True
(Static_Boolean
(Expr
))
3101 if A_Id
= Aspect_Import
then
3102 Set_Is_Imported
(E
);
3104 -- An imported entity cannot have an explicit
3107 if Nkind
(N
) = N_Object_Declaration
3108 and then Present
(Expression
(N
))
3111 ("imported entities cannot be initialized "
3112 & "(RM B.1(24))", Expression
(N
));
3115 elsif A_Id
= Aspect_Export
then
3116 Set_Is_Exported
(E
);
3123 -- Library unit aspects require special handling in the case
3124 -- of a package declaration, the pragma needs to be inserted
3125 -- in the list of declarations for the associated package.
3126 -- There is no issue of visibility delay for these aspects.
3128 if A_Id
in Library_Unit_Aspects
3130 Nkind_In
(N
, N_Package_Declaration
,
3131 N_Generic_Package_Declaration
)
3132 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3134 -- Aspect is legal on a local instantiation of a library-
3135 -- level generic unit.
3137 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3140 ("incorrect context for library unit aspect&", Id
);
3144 -- External property aspects are Boolean by nature, but
3145 -- their pragmas must contain two arguments, the second
3146 -- being the optional Boolean expression.
3148 if A_Id
= Aspect_Async_Readers
or else
3149 A_Id
= Aspect_Async_Writers
or else
3150 A_Id
= Aspect_Effective_Reads
or else
3151 A_Id
= Aspect_Effective_Writes
3157 -- The first argument of the external property pragma
3158 -- is the related object.
3162 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3163 Expression
=> Ent
));
3165 -- The second argument is the optional Boolean
3166 -- expression which must be propagated even if it
3167 -- evaluates to False as this has special semantic
3170 if Present
(Expr
) then
3172 Make_Pragma_Argument_Association
(Loc
,
3173 Expression
=> Relocate_Node
(Expr
)));
3177 (Pragma_Argument_Associations
=> Args
,
3178 Pragma_Name
=> Nam
);
3181 -- Cases where we do not delay, includes all cases where the
3182 -- expression is missing other than the above cases.
3184 elsif not Delay_Required
or else No
(Expr
) then
3186 (Pragma_Argument_Associations
=> New_List
(
3187 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3188 Expression
=> Ent
)),
3189 Pragma_Name
=> Chars
(Id
));
3190 Delay_Required
:= False;
3192 -- In general cases, the corresponding pragma/attribute
3193 -- definition clause will be inserted later at the freezing
3194 -- point, and we do not need to build it now.
3202 -- This is special because for access types we need to generate
3203 -- an attribute definition clause. This also works for single
3204 -- task declarations, but it does not work for task type
3205 -- declarations, because we have the case where the expression
3206 -- references a discriminant of the task type. That can't use
3207 -- an attribute definition clause because we would not have
3208 -- visibility on the discriminant. For that case we must
3209 -- generate a pragma in the task definition.
3211 when Aspect_Storage_Size
=>
3215 if Ekind
(E
) = E_Task_Type
then
3217 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3220 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3222 -- If no task definition, create one
3224 if No
(Task_Definition
(Decl
)) then
3225 Set_Task_Definition
(Decl
,
3226 Make_Task_Definition
(Loc
,
3227 Visible_Declarations
=> Empty_List
,
3228 End_Label
=> Empty
));
3231 -- Create a pragma and put it at the start of the task
3232 -- definition for the task type declaration.
3235 (Pragma_Argument_Associations
=> New_List
(
3236 Make_Pragma_Argument_Association
(Loc
,
3237 Expression
=> Relocate_Node
(Expr
))),
3238 Pragma_Name
=> Name_Storage_Size
);
3242 Visible_Declarations
(Task_Definition
(Decl
)));
3246 -- All other cases, generate attribute definition
3250 Make_Attribute_Definition_Clause
(Loc
,
3252 Chars
=> Chars
(Id
),
3253 Expression
=> Relocate_Node
(Expr
));
3257 -- Attach the corresponding pragma/attribute definition clause to
3258 -- the aspect specification node.
3260 if Present
(Aitem
) then
3261 Set_From_Aspect_Specification
(Aitem
);
3264 -- In the context of a compilation unit, we directly put the
3265 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3266 -- node (no delay is required here) except for aspects on a
3267 -- subprogram body (see below) and a generic package, for which we
3268 -- need to introduce the pragma before building the generic copy
3269 -- (see sem_ch12), and for package instantiations, where the
3270 -- library unit pragmas are better handled early.
3272 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3273 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3276 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3279 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3281 -- For a Boolean aspect, create the corresponding pragma if
3282 -- no expression or if the value is True.
3284 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3285 if Is_True
(Static_Boolean
(Expr
)) then
3287 (Pragma_Argument_Associations
=> New_List
(
3288 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3289 Expression
=> Ent
)),
3290 Pragma_Name
=> Chars
(Id
));
3292 Set_From_Aspect_Specification
(Aitem
, True);
3293 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3300 -- If the aspect is on a subprogram body (relevant aspect
3301 -- is Inline), add the pragma in front of the declarations.
3303 if Nkind
(N
) = N_Subprogram_Body
then
3304 if No
(Declarations
(N
)) then
3305 Set_Declarations
(N
, New_List
);
3308 Prepend
(Aitem
, Declarations
(N
));
3310 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3311 if No
(Visible_Declarations
(Specification
(N
))) then
3312 Set_Visible_Declarations
(Specification
(N
), New_List
);
3316 Visible_Declarations
(Specification
(N
)));
3318 elsif Nkind
(N
) = N_Package_Instantiation
then
3320 Spec
: constant Node_Id
:=
3321 Specification
(Instance_Spec
(N
));
3323 if No
(Visible_Declarations
(Spec
)) then
3324 Set_Visible_Declarations
(Spec
, New_List
);
3327 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3331 if No
(Pragmas_After
(Aux
)) then
3332 Set_Pragmas_After
(Aux
, New_List
);
3335 Append
(Aitem
, Pragmas_After
(Aux
));
3342 -- The evaluation of the aspect is delayed to the freezing point.
3343 -- The pragma or attribute clause if there is one is then attached
3344 -- to the aspect specification which is put in the rep item list.
3346 if Delay_Required
then
3347 if Present
(Aitem
) then
3348 Set_Is_Delayed_Aspect
(Aitem
);
3349 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3350 Set_Parent
(Aitem
, Aspect
);
3353 Set_Is_Delayed_Aspect
(Aspect
);
3355 -- In the case of Default_Value, link the aspect to base type
3356 -- as well, even though it appears on a first subtype. This is
3357 -- mandated by the semantics of the aspect. Do not establish
3358 -- the link when processing the base type itself as this leads
3359 -- to a rep item circularity. Verify that we are dealing with
3360 -- a scalar type to prevent cascaded errors.
3362 if A_Id
= Aspect_Default_Value
3363 and then Is_Scalar_Type
(E
)
3364 and then Base_Type
(E
) /= E
3366 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3367 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3370 Set_Has_Delayed_Aspects
(E
);
3371 Record_Rep_Item
(E
, Aspect
);
3373 -- When delay is not required and the context is a package or a
3374 -- subprogram body, insert the pragma in the body declarations.
3376 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3377 if No
(Declarations
(N
)) then
3378 Set_Declarations
(N
, New_List
);
3381 -- The pragma is added before source declarations
3383 Prepend_To
(Declarations
(N
), Aitem
);
3385 -- When delay is not required and the context is not a compilation
3386 -- unit, we simply insert the pragma/attribute definition clause
3390 Insert_After
(Ins_Node
, Aitem
);
3393 end Analyze_One_Aspect
;
3397 end loop Aspect_Loop
;
3399 if Has_Delayed_Aspects
(E
) then
3400 Ensure_Freeze_Node
(E
);
3402 end Analyze_Aspect_Specifications
;
3404 -----------------------
3405 -- Analyze_At_Clause --
3406 -----------------------
3408 -- An at clause is replaced by the corresponding Address attribute
3409 -- definition clause that is the preferred approach in Ada 95.
3411 procedure Analyze_At_Clause
(N
: Node_Id
) is
3412 CS
: constant Boolean := Comes_From_Source
(N
);
3415 -- This is an obsolescent feature
3417 Check_Restriction
(No_Obsolescent_Features
, N
);
3419 if Warn_On_Obsolescent_Feature
then
3421 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
3423 ("\?j?use address attribute definition clause instead", N
);
3426 -- Rewrite as address clause
3429 Make_Attribute_Definition_Clause
(Sloc
(N
),
3430 Name
=> Identifier
(N
),
3431 Chars
=> Name_Address
,
3432 Expression
=> Expression
(N
)));
3434 -- We preserve Comes_From_Source, since logically the clause still comes
3435 -- from the source program even though it is changed in form.
3437 Set_Comes_From_Source
(N
, CS
);
3439 -- Analyze rewritten clause
3441 Analyze_Attribute_Definition_Clause
(N
);
3442 end Analyze_At_Clause
;
3444 -----------------------------------------
3445 -- Analyze_Attribute_Definition_Clause --
3446 -----------------------------------------
3448 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
3449 Loc
: constant Source_Ptr
:= Sloc
(N
);
3450 Nam
: constant Node_Id
:= Name
(N
);
3451 Attr
: constant Name_Id
:= Chars
(N
);
3452 Expr
: constant Node_Id
:= Expression
(N
);
3453 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
3456 -- The entity of Nam after it is analyzed. In the case of an incomplete
3457 -- type, this is the underlying type.
3460 -- The underlying entity to which the attribute applies. Generally this
3461 -- is the Underlying_Type of Ent, except in the case where the clause
3462 -- applies to full view of incomplete type or private type in which case
3463 -- U_Ent is just a copy of Ent.
3465 FOnly
: Boolean := False;
3466 -- Reset to True for subtype specific attribute (Alignment, Size)
3467 -- and for stream attributes, i.e. those cases where in the call to
3468 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3469 -- are checked. Note that the case of stream attributes is not clear
3470 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3471 -- Storage_Size for derived task types, but that is also clearly
3474 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
3475 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3476 -- definition clauses.
3478 function Duplicate_Clause
return Boolean;
3479 -- This routine checks if the aspect for U_Ent being given by attribute
3480 -- definition clause N is for an aspect that has already been specified,
3481 -- and if so gives an error message. If there is a duplicate, True is
3482 -- returned, otherwise if there is no error, False is returned.
3484 procedure Check_Indexing_Functions
;
3485 -- Check that the function in Constant_Indexing or Variable_Indexing
3486 -- attribute has the proper type structure. If the name is overloaded,
3487 -- check that some interpretation is legal.
3489 procedure Check_Iterator_Functions
;
3490 -- Check that there is a single function in Default_Iterator attribute
3491 -- has the proper type structure.
3493 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
3494 -- Common legality check for the previous two
3496 -----------------------------------
3497 -- Analyze_Stream_TSS_Definition --
3498 -----------------------------------
3500 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
3501 Subp
: Entity_Id
:= Empty
;
3506 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
3507 -- True for Read attribute, false for other attributes
3509 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
3510 -- Return true if the entity is a subprogram with an appropriate
3511 -- profile for the attribute being defined.
3513 ----------------------
3514 -- Has_Good_Profile --
3515 ----------------------
3517 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
3519 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
3520 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
3521 (False => E_Procedure
, True => E_Function
);
3525 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
3529 F
:= First_Formal
(Subp
);
3532 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
3533 or else Designated_Type
(Etype
(F
)) /=
3534 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
3539 if not Is_Function
then
3543 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
3544 (False => E_In_Parameter
,
3545 True => E_Out_Parameter
);
3547 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
3554 -- If the attribute specification comes from an aspect
3555 -- specification for a class-wide stream, the parameter must be
3556 -- a class-wide type of the entity to which the aspect applies.
3558 if From_Aspect_Specification
(N
)
3559 and then Class_Present
(Parent
(N
))
3560 and then Is_Class_Wide_Type
(Typ
)
3566 Typ
:= Etype
(Subp
);
3569 -- Verify that the prefix of the attribute and the local name for
3570 -- the type of the formal match, or one is the class-wide of the
3571 -- other, in the case of a class-wide stream operation.
3573 if Base_Type
(Typ
) = Base_Type
(Ent
)
3574 or else (Is_Class_Wide_Type
(Typ
)
3575 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
3576 or else (Is_Class_Wide_Type
(Ent
)
3577 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
3584 if Present
((Next_Formal
(F
)))
3588 elsif not Is_Scalar_Type
(Typ
)
3589 and then not Is_First_Subtype
(Typ
)
3590 and then not Is_Class_Wide_Type
(Typ
)
3597 end Has_Good_Profile
;
3599 -- Start of processing for Analyze_Stream_TSS_Definition
3604 if not Is_Type
(U_Ent
) then
3605 Error_Msg_N
("local name must be a subtype", Nam
);
3608 elsif not Is_First_Subtype
(U_Ent
) then
3609 Error_Msg_N
("local name must be a first subtype", Nam
);
3613 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
3615 -- If Pnam is present, it can be either inherited from an ancestor
3616 -- type (in which case it is legal to redefine it for this type), or
3617 -- be a previous definition of the attribute for the same type (in
3618 -- which case it is illegal).
3620 -- In the first case, it will have been analyzed already, and we
3621 -- can check that its profile does not match the expected profile
3622 -- for a stream attribute of U_Ent. In the second case, either Pnam
3623 -- has been analyzed (and has the expected profile), or it has not
3624 -- been analyzed yet (case of a type that has not been frozen yet
3625 -- and for which the stream attribute has been set using Set_TSS).
3628 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
3630 Error_Msg_Sloc
:= Sloc
(Pnam
);
3631 Error_Msg_Name_1
:= Attr
;
3632 Error_Msg_N
("% attribute already defined #", Nam
);
3638 if Is_Entity_Name
(Expr
) then
3639 if not Is_Overloaded
(Expr
) then
3640 if Has_Good_Profile
(Entity
(Expr
)) then
3641 Subp
:= Entity
(Expr
);
3645 Get_First_Interp
(Expr
, I
, It
);
3646 while Present
(It
.Nam
) loop
3647 if Has_Good_Profile
(It
.Nam
) then
3652 Get_Next_Interp
(I
, It
);
3657 if Present
(Subp
) then
3658 if Is_Abstract_Subprogram
(Subp
) then
3659 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
3662 -- A stream subprogram for an interface type must be a null
3663 -- procedure (RM 13.13.2 (38/3)).
3665 elsif Is_Interface
(U_Ent
)
3666 and then not Is_Class_Wide_Type
(U_Ent
)
3667 and then not Inside_A_Generic
3669 (Ekind
(Subp
) = E_Function
3673 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
3676 ("stream subprogram for interface type "
3677 & "must be null procedure", Expr
);
3680 Set_Entity
(Expr
, Subp
);
3681 Set_Etype
(Expr
, Etype
(Subp
));
3683 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
3686 Error_Msg_Name_1
:= Attr
;
3687 Error_Msg_N
("incorrect expression for% attribute", Expr
);
3689 end Analyze_Stream_TSS_Definition
;
3691 ------------------------------
3692 -- Check_Indexing_Functions --
3693 ------------------------------
3695 procedure Check_Indexing_Functions
is
3696 Indexing_Found
: Boolean := False;
3698 procedure Check_One_Function
(Subp
: Entity_Id
);
3699 -- Check one possible interpretation. Sets Indexing_Found True if a
3700 -- legal indexing function is found.
3702 procedure Illegal_Indexing
(Msg
: String);
3703 -- Diagnose illegal indexing function if not overloaded. In the
3704 -- overloaded case indicate that no legal interpretation exists.
3706 ------------------------
3707 -- Check_One_Function --
3708 ------------------------
3710 procedure Check_One_Function
(Subp
: Entity_Id
) is
3711 Default_Element
: Node_Id
;
3712 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
3715 if not Is_Overloadable
(Subp
) then
3716 Illegal_Indexing
("illegal indexing function for type&");
3719 elsif Scope
(Subp
) /= Scope
(Ent
) then
3720 if Nkind
(Expr
) = N_Expanded_Name
then
3722 -- Indexing function can't be declared elsewhere
3725 ("indexing function must be declared in scope of type&");
3730 elsif No
(First_Formal
(Subp
)) then
3732 ("Indexing requires a function that applies to type&");
3735 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
3737 ("indexing function must have at least two parameters");
3740 elsif Is_Derived_Type
(Ent
) then
3741 if (Attr
= Name_Constant_Indexing
3743 (Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
)))
3745 (Attr
= Name_Variable_Indexing
3747 (Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
)))
3749 if Debug_Flag_Dot_XX
then
3754 ("indexing function already inherited "
3755 & "from parent type");
3761 if not Check_Primitive_Function
(Subp
) then
3763 ("Indexing aspect requires a function that applies to type&");
3767 -- If partial declaration exists, verify that it is not tagged.
3769 if Ekind
(Current_Scope
) = E_Package
3770 and then Has_Private_Declaration
(Ent
)
3771 and then From_Aspect_Specification
(N
)
3773 List_Containing
(Parent
(Ent
)) =
3774 Private_Declarations
3775 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
3776 and then Nkind
(N
) = N_Attribute_Definition_Clause
3783 First
(Visible_Declarations
3785 (Unit_Declaration_Node
(Current_Scope
))));
3787 while Present
(Decl
) loop
3788 if Nkind
(Decl
) = N_Private_Type_Declaration
3789 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
3790 and then Tagged_Present
(Decl
)
3791 and then No
(Aspect_Specifications
(Decl
))
3794 ("Indexing aspect cannot be specified on full view "
3795 & "if partial view is tagged");
3804 -- An indexing function must return either the default element of
3805 -- the container, or a reference type. For variable indexing it
3806 -- must be the latter.
3809 Find_Value_Of_Aspect
3810 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
3812 if Present
(Default_Element
) then
3813 Analyze
(Default_Element
);
3815 if Is_Entity_Name
(Default_Element
)
3816 and then not Covers
(Entity
(Default_Element
), Ret_Type
)
3820 ("wrong return type for indexing function");
3825 -- For variable_indexing the return type must be a reference type
3827 if Attr
= Name_Variable_Indexing
then
3828 if not Has_Implicit_Dereference
(Ret_Type
) then
3830 ("variable indexing must return a reference type");
3833 elsif Is_Access_Constant
3834 (Etype
(First_Discriminant
(Ret_Type
)))
3837 ("variable indexing must return an access to variable");
3842 if Has_Implicit_Dereference
(Ret_Type
)
3844 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
3847 ("constant indexing must return an access to constant");
3850 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
3851 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
3854 ("constant indexing must apply to an access to constant");
3859 -- All checks succeeded.
3861 Indexing_Found
:= True;
3862 end Check_One_Function
;
3864 -----------------------
3865 -- Illegal_Indexing --
3866 -----------------------
3868 procedure Illegal_Indexing
(Msg
: String) is
3870 Error_Msg_NE
(Msg
, N
, Ent
);
3871 end Illegal_Indexing
;
3873 -- Start of processing for Check_Indexing_Functions
3882 if not Is_Overloaded
(Expr
) then
3883 Check_One_Function
(Entity
(Expr
));
3891 Indexing_Found
:= False;
3892 Get_First_Interp
(Expr
, I
, It
);
3893 while Present
(It
.Nam
) loop
3895 -- Note that analysis will have added the interpretation
3896 -- that corresponds to the dereference. We only check the
3897 -- subprogram itself.
3899 if Is_Overloadable
(It
.Nam
) then
3900 Check_One_Function
(It
.Nam
);
3903 Get_Next_Interp
(I
, It
);
3908 if not Indexing_Found
and then not Error_Posted
(N
) then
3910 ("aspect Indexing requires a local function that "
3911 & "applies to type&", Expr
, Ent
);
3913 end Check_Indexing_Functions
;
3915 ------------------------------
3916 -- Check_Iterator_Functions --
3917 ------------------------------
3919 procedure Check_Iterator_Functions
is
3920 Default
: Entity_Id
;
3922 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
3923 -- Check one possible interpretation for validity
3925 ----------------------------
3926 -- Valid_Default_Iterator --
3927 ----------------------------
3929 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
3933 if not Check_Primitive_Function
(Subp
) then
3936 Formal
:= First_Formal
(Subp
);
3939 -- False if any subsequent formal has no default expression
3941 Formal
:= Next_Formal
(Formal
);
3942 while Present
(Formal
) loop
3943 if No
(Expression
(Parent
(Formal
))) then
3947 Next_Formal
(Formal
);
3950 -- True if all subsequent formals have default expressions
3953 end Valid_Default_Iterator
;
3955 -- Start of processing for Check_Iterator_Functions
3960 if not Is_Entity_Name
(Expr
) then
3961 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
3964 if not Is_Overloaded
(Expr
) then
3965 if not Check_Primitive_Function
(Entity
(Expr
)) then
3967 ("aspect Indexing requires a function that applies to type&",
3968 Entity
(Expr
), Ent
);
3971 if not Valid_Default_Iterator
(Entity
(Expr
)) then
3972 Error_Msg_N
("improper function for default iterator", Expr
);
3982 Get_First_Interp
(Expr
, I
, It
);
3983 while Present
(It
.Nam
) loop
3984 if not Check_Primitive_Function
(It
.Nam
)
3985 or else not Valid_Default_Iterator
(It
.Nam
)
3989 elsif Present
(Default
) then
3990 Error_Msg_N
("default iterator must be unique", Expr
);
3996 Get_Next_Interp
(I
, It
);
4000 if Present
(Default
) then
4001 Set_Entity
(Expr
, Default
);
4002 Set_Is_Overloaded
(Expr
, False);
4005 end Check_Iterator_Functions
;
4007 -------------------------------
4008 -- Check_Primitive_Function --
4009 -------------------------------
4011 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4015 if Ekind
(Subp
) /= E_Function
then
4019 if No
(First_Formal
(Subp
)) then
4022 Ctrl
:= Etype
(First_Formal
(Subp
));
4025 -- Type of formal may be the class-wide type, an access to such,
4026 -- or an incomplete view.
4029 or else Ctrl
= Class_Wide_Type
(Ent
)
4031 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4032 and then (Designated_Type
(Ctrl
) = Ent
4034 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4036 (Ekind
(Ctrl
) = E_Incomplete_Type
4037 and then Full_View
(Ctrl
) = Ent
)
4045 end Check_Primitive_Function
;
4047 ----------------------
4048 -- Duplicate_Clause --
4049 ----------------------
4051 function Duplicate_Clause
return Boolean is
4055 -- Nothing to do if this attribute definition clause comes from
4056 -- an aspect specification, since we could not be duplicating an
4057 -- explicit clause, and we dealt with the case of duplicated aspects
4058 -- in Analyze_Aspect_Specifications.
4060 if From_Aspect_Specification
(N
) then
4064 -- Otherwise current clause may duplicate previous clause, or a
4065 -- previously given pragma or aspect specification for the same
4068 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4071 Error_Msg_Name_1
:= Chars
(N
);
4072 Error_Msg_Sloc
:= Sloc
(A
);
4074 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4079 end Duplicate_Clause
;
4081 -- Start of processing for Analyze_Attribute_Definition_Clause
4084 -- The following code is a defense against recursion. Not clear that
4085 -- this can happen legitimately, but perhaps some error situations can
4086 -- cause it, and we did see this recursion during testing.
4088 if Analyzed
(N
) then
4091 Set_Analyzed
(N
, True);
4094 -- Ignore some selected attributes in CodePeer mode since they are not
4095 -- relevant in this context.
4097 if CodePeer_Mode
then
4100 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4101 -- internal representation of types by implicitly packing them.
4103 when Attribute_Component_Size
=>
4104 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4112 -- Process Ignore_Rep_Clauses option
4114 if Ignore_Rep_Clauses
then
4117 -- The following should be ignored. They do not affect legality
4118 -- and may be target dependent. The basic idea of -gnatI is to
4119 -- ignore any rep clauses that may be target dependent but do not
4120 -- affect legality (except possibly to be rejected because they
4121 -- are incompatible with the compilation target).
4123 when Attribute_Alignment |
4124 Attribute_Bit_Order |
4125 Attribute_Component_Size |
4126 Attribute_Machine_Radix |
4127 Attribute_Object_Size |
4130 Attribute_Stream_Size |
4131 Attribute_Value_Size
=>
4132 Kill_Rep_Clause
(N
);
4135 -- The following should not be ignored, because in the first place
4136 -- they are reasonably portable, and should not cause problems
4137 -- in compiling code from another target, and also they do affect
4138 -- legality, e.g. failing to provide a stream attribute for a type
4139 -- may make a program illegal.
4141 when Attribute_External_Tag |
4145 Attribute_Simple_Storage_Pool |
4146 Attribute_Storage_Pool |
4147 Attribute_Storage_Size |
4151 -- We do not do anything here with address clauses, they will be
4152 -- removed by Freeze later on, but for now, it works better to
4153 -- keep then in the tree.
4155 when Attribute_Address
=>
4158 -- Other cases are errors ("attribute& cannot be set with
4159 -- definition clause"), which will be caught below.
4167 Ent
:= Entity
(Nam
);
4169 if Rep_Item_Too_Early
(Ent
, N
) then
4173 -- Rep clause applies to full view of incomplete type or private type if
4174 -- we have one (if not, this is a premature use of the type). However,
4175 -- certain semantic checks need to be done on the specified entity (i.e.
4176 -- the private view), so we save it in Ent.
4178 if Is_Private_Type
(Ent
)
4179 and then Is_Derived_Type
(Ent
)
4180 and then not Is_Tagged_Type
(Ent
)
4181 and then No
(Full_View
(Ent
))
4183 -- If this is a private type whose completion is a derivation from
4184 -- another private type, there is no full view, and the attribute
4185 -- belongs to the type itself, not its underlying parent.
4189 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4191 -- The attribute applies to the full view, set the entity of the
4192 -- attribute definition accordingly.
4194 Ent
:= Underlying_Type
(Ent
);
4196 Set_Entity
(Nam
, Ent
);
4199 U_Ent
:= Underlying_Type
(Ent
);
4202 -- Avoid cascaded error
4204 if Etype
(Nam
) = Any_Type
then
4207 -- Must be declared in current scope or in case of an aspect
4208 -- specification, must be visible in current scope.
4210 elsif Scope
(Ent
) /= Current_Scope
4212 not (From_Aspect_Specification
(N
)
4213 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4215 Error_Msg_N
("entity must be declared in this scope", Nam
);
4218 -- Must not be a source renaming (we do have some cases where the
4219 -- expander generates a renaming, and those cases are OK, in such
4220 -- cases any attribute applies to the renamed object as well).
4222 elsif Is_Object
(Ent
)
4223 and then Present
(Renamed_Object
(Ent
))
4225 -- Case of renamed object from source, this is an error
4227 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4228 Get_Name_String
(Chars
(N
));
4229 Error_Msg_Strlen
:= Name_Len
;
4230 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4232 ("~ clause not allowed for a renaming declaration "
4233 & "(RM 13.1(6))", Nam
);
4236 -- For the case of a compiler generated renaming, the attribute
4237 -- definition clause applies to the renamed object created by the
4238 -- expander. The easiest general way to handle this is to create a
4239 -- copy of the attribute definition clause for this object.
4241 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4243 Make_Attribute_Definition_Clause
(Loc
,
4245 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4247 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4249 -- If the renamed object is not an entity, it must be a dereference
4250 -- of an unconstrained function call, and we must introduce a new
4251 -- declaration to capture the expression. This is needed in the case
4252 -- of 'Alignment, where the original declaration must be rewritten.
4256 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4260 -- If no underlying entity, use entity itself, applies to some
4261 -- previously detected error cases ???
4263 elsif No
(U_Ent
) then
4266 -- Cannot specify for a subtype (exception Object/Value_Size)
4268 elsif Is_Type
(U_Ent
)
4269 and then not Is_First_Subtype
(U_Ent
)
4270 and then Id
/= Attribute_Object_Size
4271 and then Id
/= Attribute_Value_Size
4272 and then not From_At_Mod
(N
)
4274 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4278 Set_Entity
(N
, U_Ent
);
4279 Check_Restriction_No_Use_Of_Attribute
(N
);
4281 -- Switch on particular attribute
4289 -- Address attribute definition clause
4291 when Attribute_Address
=> Address
: begin
4293 -- A little error check, catch for X'Address use X'Address;
4295 if Nkind
(Nam
) = N_Identifier
4296 and then Nkind
(Expr
) = N_Attribute_Reference
4297 and then Attribute_Name
(Expr
) = Name_Address
4298 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4299 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4302 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4306 -- Not that special case, carry on with analysis of expression
4308 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4310 -- Even when ignoring rep clauses we need to indicate that the
4311 -- entity has an address clause and thus it is legal to declare
4312 -- it imported. Freeze will get rid of the address clause later.
4314 if Ignore_Rep_Clauses
then
4315 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4316 Record_Rep_Item
(U_Ent
, N
);
4322 if Duplicate_Clause
then
4325 -- Case of address clause for subprogram
4327 elsif Is_Subprogram
(U_Ent
) then
4328 if Has_Homonym
(U_Ent
) then
4330 ("address clause cannot be given " &
4331 "for overloaded subprogram",
4336 -- For subprograms, all address clauses are permitted, and we
4337 -- mark the subprogram as having a deferred freeze so that Gigi
4338 -- will not elaborate it too soon.
4340 -- Above needs more comments, what is too soon about???
4342 Set_Has_Delayed_Freeze
(U_Ent
);
4344 -- Case of address clause for entry
4346 elsif Ekind
(U_Ent
) = E_Entry
then
4347 if Nkind
(Parent
(N
)) = N_Task_Body
then
4349 ("entry address must be specified in task spec", Nam
);
4353 -- For entries, we require a constant address
4355 Check_Constant_Address_Clause
(Expr
, U_Ent
);
4357 -- Special checks for task types
4359 if Is_Task_Type
(Scope
(U_Ent
))
4360 and then Comes_From_Source
(Scope
(U_Ent
))
4363 ("??entry address declared for entry in task type", N
);
4365 ("\??only one task can be declared of this type", N
);
4368 -- Entry address clauses are obsolescent
4370 Check_Restriction
(No_Obsolescent_Features
, N
);
4372 if Warn_On_Obsolescent_Feature
then
4374 ("?j?attaching interrupt to task entry is an " &
4375 "obsolescent feature (RM J.7.1)", N
);
4377 ("\?j?use interrupt procedure instead", N
);
4380 -- Case of an address clause for a controlled object which we
4381 -- consider to be erroneous.
4383 elsif Is_Controlled
(Etype
(U_Ent
))
4384 or else Has_Controlled_Component
(Etype
(U_Ent
))
4387 ("??controlled object& must not be overlaid", Nam
, U_Ent
);
4389 ("\??Program_Error will be raised at run time", Nam
);
4390 Insert_Action
(Declaration_Node
(U_Ent
),
4391 Make_Raise_Program_Error
(Loc
,
4392 Reason
=> PE_Overlaid_Controlled_Object
));
4395 -- Case of address clause for a (non-controlled) object
4397 elsif Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4399 Expr
: constant Node_Id
:= Expression
(N
);
4404 -- Exported variables cannot have an address clause, because
4405 -- this cancels the effect of the pragma Export.
4407 if Is_Exported
(U_Ent
) then
4409 ("cannot export object with address clause", Nam
);
4413 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
4415 -- Overlaying controlled objects is erroneous
4418 and then (Has_Controlled_Component
(Etype
(O_Ent
))
4419 or else Is_Controlled
(Etype
(O_Ent
)))
4422 ("??cannot overlay with controlled object", Expr
);
4424 ("\??Program_Error will be raised at run time", Expr
);
4425 Insert_Action
(Declaration_Node
(U_Ent
),
4426 Make_Raise_Program_Error
(Loc
,
4427 Reason
=> PE_Overlaid_Controlled_Object
));
4430 elsif Present
(O_Ent
)
4431 and then Ekind
(U_Ent
) = E_Constant
4432 and then not Is_Constant_Object
(O_Ent
)
4434 Error_Msg_N
("??constant overlays a variable", Expr
);
4436 -- Imported variables can have an address clause, but then
4437 -- the import is pretty meaningless except to suppress
4438 -- initializations, so we do not need such variables to
4439 -- be statically allocated (and in fact it causes trouble
4440 -- if the address clause is a local value).
4442 elsif Is_Imported
(U_Ent
) then
4443 Set_Is_Statically_Allocated
(U_Ent
, False);
4446 -- We mark a possible modification of a variable with an
4447 -- address clause, since it is likely aliasing is occurring.
4449 Note_Possible_Modification
(Nam
, Sure
=> False);
4451 -- Here we are checking for explicit overlap of one variable
4452 -- by another, and if we find this then mark the overlapped
4453 -- variable as also being volatile to prevent unwanted
4454 -- optimizations. This is a significant pessimization so
4455 -- avoid it when there is an offset, i.e. when the object
4456 -- is composite; they cannot be optimized easily anyway.
4459 and then Is_Object
(O_Ent
)
4462 -- The following test is an expedient solution to what
4463 -- is really a problem in CodePeer. Suppressing the
4464 -- Set_Treat_As_Volatile call here prevents later
4465 -- generation (in some cases) of trees that CodePeer
4466 -- should, but currently does not, handle correctly.
4467 -- This test should probably be removed when CodePeer
4468 -- is improved, just because we want the tree CodePeer
4469 -- analyzes to match the tree for which we generate code
4470 -- as closely as is practical. ???
4472 and then not CodePeer_Mode
4474 -- ??? O_Ent might not be in current unit
4476 Set_Treat_As_Volatile
(O_Ent
);
4479 -- Legality checks on the address clause for initialized
4480 -- objects is deferred until the freeze point, because
4481 -- a subsequent pragma might indicate that the object
4482 -- is imported and thus not initialized. Also, the address
4483 -- clause might involve entities that have yet to be
4486 Set_Has_Delayed_Freeze
(U_Ent
);
4488 -- If an initialization call has been generated for this
4489 -- object, it needs to be deferred to after the freeze node
4490 -- we have just now added, otherwise GIGI will see a
4491 -- reference to the variable (as actual to the IP call)
4492 -- before its definition.
4495 Init_Call
: constant Node_Id
:=
4496 Remove_Init_Call
(U_Ent
, N
);
4499 if Present
(Init_Call
) then
4500 Append_Freeze_Action
(U_Ent
, Init_Call
);
4502 -- Reset Initialization_Statements pointer so that
4503 -- if there is a pragma Import further down, it can
4504 -- clear any default initialization.
4506 Set_Initialization_Statements
(U_Ent
, Init_Call
);
4510 if Is_Exported
(U_Ent
) then
4512 ("& cannot be exported if an address clause is given",
4515 ("\define and export a variable "
4516 & "that holds its address instead", Nam
);
4519 -- Entity has delayed freeze, so we will generate an
4520 -- alignment check at the freeze point unless suppressed.
4522 if not Range_Checks_Suppressed
(U_Ent
)
4523 and then not Alignment_Checks_Suppressed
(U_Ent
)
4525 Set_Check_Address_Alignment
(N
);
4528 -- Kill the size check code, since we are not allocating
4529 -- the variable, it is somewhere else.
4531 Kill_Size_Check_Code
(U_Ent
);
4533 -- If the address clause is of the form:
4535 -- for Y'Address use X'Address
4539 -- Const : constant Address := X'Address;
4541 -- for Y'Address use Const;
4543 -- then we make an entry in the table for checking the size
4544 -- and alignment of the overlaying variable. We defer this
4545 -- check till after code generation to take full advantage
4546 -- of the annotation done by the back end.
4548 -- If the entity has a generic type, the check will be
4549 -- performed in the instance if the actual type justifies
4550 -- it, and we do not insert the clause in the table to
4551 -- prevent spurious warnings.
4553 -- Note: we used to test Comes_From_Source and only give
4554 -- this warning for source entities, but we have removed
4555 -- this test. It really seems bogus to generate overlays
4556 -- that would trigger this warning in generated code.
4557 -- Furthermore, by removing the test, we handle the
4558 -- aspect case properly.
4560 if Address_Clause_Overlay_Warnings
4561 and then Present
(O_Ent
)
4562 and then Is_Object
(O_Ent
)
4564 if not Is_Generic_Type
(Etype
(U_Ent
)) then
4565 Address_Clause_Checks
.Append
((N
, U_Ent
, O_Ent
, Off
));
4568 -- If variable overlays a constant view, and we are
4569 -- warning on overlays, then mark the variable as
4570 -- overlaying a constant (we will give warnings later
4571 -- if this variable is assigned).
4573 if Is_Constant_Object
(O_Ent
)
4574 and then Ekind
(U_Ent
) = E_Variable
4576 Set_Overlays_Constant
(U_Ent
);
4581 -- Not a valid entity for an address clause
4584 Error_Msg_N
("address cannot be given for &", Nam
);
4592 -- Alignment attribute definition clause
4594 when Attribute_Alignment
=> Alignment
: declare
4595 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
4596 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
4601 if not Is_Type
(U_Ent
)
4602 and then Ekind
(U_Ent
) /= E_Variable
4603 and then Ekind
(U_Ent
) /= E_Constant
4605 Error_Msg_N
("alignment cannot be given for &", Nam
);
4607 elsif Duplicate_Clause
then
4610 elsif Align
/= No_Uint
then
4611 Set_Has_Alignment_Clause
(U_Ent
);
4613 -- Tagged type case, check for attempt to set alignment to a
4614 -- value greater than Max_Align, and reset if so.
4616 if Is_Tagged_Type
(U_Ent
) and then Align
> Max_Align
then
4618 ("alignment for & set to Maximum_Aligment??", Nam
);
4619 Set_Alignment
(U_Ent
, Max_Align
);
4624 Set_Alignment
(U_Ent
, Align
);
4627 -- For an array type, U_Ent is the first subtype. In that case,
4628 -- also set the alignment of the anonymous base type so that
4629 -- other subtypes (such as the itypes for aggregates of the
4630 -- type) also receive the expected alignment.
4632 if Is_Array_Type
(U_Ent
) then
4633 Set_Alignment
(Base_Type
(U_Ent
), Align
);
4642 -- Bit_Order attribute definition clause
4644 when Attribute_Bit_Order
=> Bit_Order
: declare
4646 if not Is_Record_Type
(U_Ent
) then
4648 ("Bit_Order can only be defined for record type", Nam
);
4650 elsif Duplicate_Clause
then
4654 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
4656 if Etype
(Expr
) = Any_Type
then
4659 elsif not Is_OK_Static_Expression
(Expr
) then
4660 Flag_Non_Static_Expr
4661 ("Bit_Order requires static expression!", Expr
);
4664 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
4665 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
4671 --------------------
4672 -- Component_Size --
4673 --------------------
4675 -- Component_Size attribute definition clause
4677 when Attribute_Component_Size
=> Component_Size_Case
: declare
4678 Csize
: constant Uint
:= Static_Integer
(Expr
);
4682 New_Ctyp
: Entity_Id
;
4686 if not Is_Array_Type
(U_Ent
) then
4687 Error_Msg_N
("component size requires array type", Nam
);
4691 Btype
:= Base_Type
(U_Ent
);
4692 Ctyp
:= Component_Type
(Btype
);
4694 if Duplicate_Clause
then
4697 elsif Rep_Item_Too_Early
(Btype
, N
) then
4700 elsif Csize
/= No_Uint
then
4701 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
4703 -- For the biased case, build a declaration for a subtype that
4704 -- will be used to represent the biased subtype that reflects
4705 -- the biased representation of components. We need the subtype
4706 -- to get proper conversions on referencing elements of the
4707 -- array. Note: component size clauses are ignored in VM mode.
4709 if VM_Target
= No_VM
then
4712 Make_Defining_Identifier
(Loc
,
4714 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
4717 Make_Subtype_Declaration
(Loc
,
4718 Defining_Identifier
=> New_Ctyp
,
4719 Subtype_Indication
=>
4720 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
4722 Set_Parent
(Decl
, N
);
4723 Analyze
(Decl
, Suppress
=> All_Checks
);
4725 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
4726 Set_Esize
(New_Ctyp
, Csize
);
4727 Set_RM_Size
(New_Ctyp
, Csize
);
4728 Init_Alignment
(New_Ctyp
);
4729 Set_Is_Itype
(New_Ctyp
, True);
4730 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
4732 Set_Component_Type
(Btype
, New_Ctyp
);
4733 Set_Biased
(New_Ctyp
, N
, "component size clause");
4736 Set_Component_Size
(Btype
, Csize
);
4738 -- For VM case, we ignore component size clauses
4741 -- Give a warning unless we are in GNAT mode, in which case
4742 -- the warning is suppressed since it is not useful.
4744 if not GNAT_Mode
then
4746 ("component size ignored in this configuration??", N
);
4750 -- Deal with warning on overridden size
4752 if Warn_On_Overridden_Size
4753 and then Has_Size_Clause
(Ctyp
)
4754 and then RM_Size
(Ctyp
) /= Csize
4757 ("component size overrides size clause for&?S?", N
, Ctyp
);
4760 Set_Has_Component_Size_Clause
(Btype
, True);
4761 Set_Has_Non_Standard_Rep
(Btype
, True);
4763 end Component_Size_Case
;
4765 -----------------------
4766 -- Constant_Indexing --
4767 -----------------------
4769 when Attribute_Constant_Indexing
=>
4770 Check_Indexing_Functions
;
4776 when Attribute_CPU
=> CPU
:
4778 -- CPU attribute definition clause not allowed except from aspect
4781 if From_Aspect_Specification
(N
) then
4782 if not Is_Task_Type
(U_Ent
) then
4783 Error_Msg_N
("CPU can only be defined for task", Nam
);
4785 elsif Duplicate_Clause
then
4789 -- The expression must be analyzed in the special manner
4790 -- described in "Handling of Default and Per-Object
4791 -- Expressions" in sem.ads.
4793 -- The visibility to the discriminants must be restored
4795 Push_Scope_And_Install_Discriminants
(U_Ent
);
4796 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
4797 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4799 if not Is_OK_Static_Expression
(Expr
) then
4800 Check_Restriction
(Static_Priorities
, Expr
);
4806 ("attribute& cannot be set with definition clause", N
);
4810 ----------------------
4811 -- Default_Iterator --
4812 ----------------------
4814 when Attribute_Default_Iterator
=> Default_Iterator
: declare
4819 if not Is_Tagged_Type
(U_Ent
) then
4821 ("aspect Default_Iterator applies to tagged type", Nam
);
4824 Check_Iterator_Functions
;
4828 if not Is_Entity_Name
(Expr
)
4829 or else Ekind
(Entity
(Expr
)) /= E_Function
4831 Error_Msg_N
("aspect Iterator must be a function", Expr
);
4833 Func
:= Entity
(Expr
);
4836 -- The type of the first parameter must be T, T'class, or a
4837 -- corresponding access type (5.5.1 (8/3)
4839 if No
(First_Formal
(Func
)) then
4842 Typ
:= Etype
(First_Formal
(Func
));
4846 or else Typ
= Class_Wide_Type
(U_Ent
)
4847 or else (Is_Access_Type
(Typ
)
4848 and then Designated_Type
(Typ
) = U_Ent
)
4849 or else (Is_Access_Type
(Typ
)
4850 and then Designated_Type
(Typ
) =
4851 Class_Wide_Type
(U_Ent
))
4857 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
4859 end Default_Iterator
;
4861 ------------------------
4862 -- Dispatching_Domain --
4863 ------------------------
4865 when Attribute_Dispatching_Domain
=> Dispatching_Domain
:
4867 -- Dispatching_Domain attribute definition clause not allowed
4868 -- except from aspect specification.
4870 if From_Aspect_Specification
(N
) then
4871 if not Is_Task_Type
(U_Ent
) then
4873 ("Dispatching_Domain can only be defined for task", Nam
);
4875 elsif Duplicate_Clause
then
4879 -- The expression must be analyzed in the special manner
4880 -- described in "Handling of Default and Per-Object
4881 -- Expressions" in sem.ads.
4883 -- The visibility to the discriminants must be restored
4885 Push_Scope_And_Install_Discriminants
(U_Ent
);
4887 Preanalyze_Spec_Expression
4888 (Expr
, RTE
(RE_Dispatching_Domain
));
4890 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4895 ("attribute& cannot be set with definition clause", N
);
4897 end Dispatching_Domain
;
4903 when Attribute_External_Tag
=> External_Tag
:
4905 if not Is_Tagged_Type
(U_Ent
) then
4906 Error_Msg_N
("should be a tagged type", Nam
);
4909 if Duplicate_Clause
then
4913 Analyze_And_Resolve
(Expr
, Standard_String
);
4915 if not Is_OK_Static_Expression
(Expr
) then
4916 Flag_Non_Static_Expr
4917 ("static string required for tag name!", Nam
);
4920 if VM_Target
/= No_VM
then
4921 Error_Msg_Name_1
:= Attr
;
4923 ("% attribute unsupported in this configuration", Nam
);
4926 if not Is_Library_Level_Entity
(U_Ent
) then
4928 ("??non-unique external tag supplied for &", N
, U_Ent
);
4930 ("\??same external tag applies to all "
4931 & "subprogram calls", N
);
4933 ("\??corresponding internal tag cannot be obtained", N
);
4938 --------------------------
4939 -- Implicit_Dereference --
4940 --------------------------
4942 when Attribute_Implicit_Dereference
=>
4944 -- Legality checks already performed at the point of the type
4945 -- declaration, aspect is not delayed.
4953 when Attribute_Input
=>
4954 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
4955 Set_Has_Specified_Stream_Input
(Ent
);
4957 ------------------------
4958 -- Interrupt_Priority --
4959 ------------------------
4961 when Attribute_Interrupt_Priority
=> Interrupt_Priority
:
4963 -- Interrupt_Priority attribute definition clause not allowed
4964 -- except from aspect specification.
4966 if From_Aspect_Specification
(N
) then
4967 if not Is_Concurrent_Type
(U_Ent
) then
4969 ("Interrupt_Priority can only be defined for task "
4970 & "and protected object", Nam
);
4972 elsif Duplicate_Clause
then
4976 -- The expression must be analyzed in the special manner
4977 -- described in "Handling of Default and Per-Object
4978 -- Expressions" in sem.ads.
4980 -- The visibility to the discriminants must be restored
4982 Push_Scope_And_Install_Discriminants
(U_Ent
);
4984 Preanalyze_Spec_Expression
4985 (Expr
, RTE
(RE_Interrupt_Priority
));
4987 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4992 ("attribute& cannot be set with definition clause", N
);
4994 end Interrupt_Priority
;
5000 when Attribute_Iterable
=>
5003 if Nkind
(Expr
) /= N_Aggregate
then
5004 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5011 Assoc
:= First
(Component_Associations
(Expr
));
5012 while Present
(Assoc
) loop
5013 if not Is_Entity_Name
(Expression
(Assoc
)) then
5014 Error_Msg_N
("value must be a function", Assoc
);
5021 ----------------------
5022 -- Iterator_Element --
5023 ----------------------
5025 when Attribute_Iterator_Element
=>
5028 if not Is_Entity_Name
(Expr
)
5029 or else not Is_Type
(Entity
(Expr
))
5031 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5038 -- Machine radix attribute definition clause
5040 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5041 Radix
: constant Uint
:= Static_Integer
(Expr
);
5044 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5045 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5047 elsif Duplicate_Clause
then
5050 elsif Radix
/= No_Uint
then
5051 Set_Has_Machine_Radix_Clause
(U_Ent
);
5052 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5056 elsif Radix
= 10 then
5057 Set_Machine_Radix_10
(U_Ent
);
5059 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5068 -- Object_Size attribute definition clause
5070 when Attribute_Object_Size
=> Object_Size
: declare
5071 Size
: constant Uint
:= Static_Integer
(Expr
);
5074 pragma Warnings
(Off
, Biased
);
5077 if not Is_Type
(U_Ent
) then
5078 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5080 elsif Duplicate_Clause
then
5084 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5086 if Is_Scalar_Type
(U_Ent
) then
5087 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5088 and then UI_Mod
(Size
, 64) /= 0
5091 ("Object_Size must be 8, 16, 32, or multiple of 64",
5095 elsif Size
mod 8 /= 0 then
5096 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5099 Set_Esize
(U_Ent
, Size
);
5100 Set_Has_Object_Size_Clause
(U_Ent
);
5101 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5109 when Attribute_Output
=>
5110 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5111 Set_Has_Specified_Stream_Output
(Ent
);
5117 when Attribute_Priority
=> Priority
:
5119 -- Priority attribute definition clause not allowed except from
5120 -- aspect specification.
5122 if From_Aspect_Specification
(N
) then
5123 if not (Is_Concurrent_Type
(U_Ent
)
5124 or else Ekind
(U_Ent
) = E_Procedure
)
5127 ("Priority can only be defined for task and protected "
5130 elsif Duplicate_Clause
then
5134 -- The expression must be analyzed in the special manner
5135 -- described in "Handling of Default and Per-Object
5136 -- Expressions" in sem.ads.
5138 -- The visibility to the discriminants must be restored
5140 Push_Scope_And_Install_Discriminants
(U_Ent
);
5141 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5142 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5144 if not Is_OK_Static_Expression
(Expr
) then
5145 Check_Restriction
(Static_Priorities
, Expr
);
5151 ("attribute& cannot be set with definition clause", N
);
5159 when Attribute_Read
=>
5160 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5161 Set_Has_Specified_Stream_Read
(Ent
);
5163 --------------------------
5164 -- Scalar_Storage_Order --
5165 --------------------------
5167 -- Scalar_Storage_Order attribute definition clause
5169 when Attribute_Scalar_Storage_Order
=> Scalar_Storage_Order
: declare
5171 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5173 ("Scalar_Storage_Order can only be defined for "
5174 & "record or array type", Nam
);
5176 elsif Duplicate_Clause
then
5180 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5182 if Etype
(Expr
) = Any_Type
then
5185 elsif not Is_OK_Static_Expression
(Expr
) then
5186 Flag_Non_Static_Expr
5187 ("Scalar_Storage_Order requires static expression!", Expr
);
5189 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5191 -- Here for the case of a non-default (i.e. non-confirming)
5192 -- Scalar_Storage_Order attribute definition.
5194 if Support_Nondefault_SSO_On_Target
then
5195 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5198 ("non-default Scalar_Storage_Order "
5199 & "not supported on target", Expr
);
5203 -- Clear SSO default indications since explicit setting of the
5204 -- order overrides the defaults.
5206 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5207 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5209 end Scalar_Storage_Order
;
5215 -- Size attribute definition clause
5217 when Attribute_Size
=> Size
: declare
5218 Size
: constant Uint
:= Static_Integer
(Expr
);
5225 if Duplicate_Clause
then
5228 elsif not Is_Type
(U_Ent
)
5229 and then Ekind
(U_Ent
) /= E_Variable
5230 and then Ekind
(U_Ent
) /= E_Constant
5232 Error_Msg_N
("size cannot be given for &", Nam
);
5234 elsif Is_Array_Type
(U_Ent
)
5235 and then not Is_Constrained
(U_Ent
)
5238 ("size cannot be given for unconstrained array", Nam
);
5240 elsif Size
/= No_Uint
then
5241 if VM_Target
/= No_VM
and then not GNAT_Mode
then
5243 -- Size clause is not handled properly on VM targets.
5244 -- Display a warning unless we are in GNAT mode, in which
5245 -- case this is useless.
5248 ("size clauses are ignored in this configuration??", N
);
5251 if Is_Type
(U_Ent
) then
5254 Etyp
:= Etype
(U_Ent
);
5257 -- Check size, note that Gigi is in charge of checking that the
5258 -- size of an array or record type is OK. Also we do not check
5259 -- the size in the ordinary fixed-point case, since it is too
5260 -- early to do so (there may be subsequent small clause that
5261 -- affects the size). We can check the size if a small clause
5262 -- has already been given.
5264 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5265 or else Has_Small_Clause
(U_Ent
)
5267 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5268 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5271 -- For types set RM_Size and Esize if possible
5273 if Is_Type
(U_Ent
) then
5274 Set_RM_Size
(U_Ent
, Size
);
5276 -- For elementary types, increase Object_Size to power of 2,
5277 -- but not less than a storage unit in any case (normally
5278 -- this means it will be byte addressable).
5280 -- For all other types, nothing else to do, we leave Esize
5281 -- (object size) unset, the back end will set it from the
5282 -- size and alignment in an appropriate manner.
5284 -- In both cases, we check whether the alignment must be
5285 -- reset in the wake of the size change.
5287 if Is_Elementary_Type
(U_Ent
) then
5288 if Size
<= System_Storage_Unit
then
5289 Init_Esize
(U_Ent
, System_Storage_Unit
);
5290 elsif Size
<= 16 then
5291 Init_Esize
(U_Ent
, 16);
5292 elsif Size
<= 32 then
5293 Init_Esize
(U_Ent
, 32);
5295 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5298 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5300 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5303 -- For objects, set Esize only
5306 if Is_Elementary_Type
(Etyp
) then
5307 if Size
/= System_Storage_Unit
5309 Size
/= System_Storage_Unit
* 2
5311 Size
/= System_Storage_Unit
* 4
5313 Size
/= System_Storage_Unit
* 8
5315 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5316 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5318 ("size for primitive object must be a power of 2"
5319 & " in the range ^-^", N
);
5323 Set_Esize
(U_Ent
, Size
);
5326 Set_Has_Size_Clause
(U_Ent
);
5334 -- Small attribute definition clause
5336 when Attribute_Small
=> Small
: declare
5337 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
5341 Analyze_And_Resolve
(Expr
, Any_Real
);
5343 if Etype
(Expr
) = Any_Type
then
5346 elsif not Is_OK_Static_Expression
(Expr
) then
5347 Flag_Non_Static_Expr
5348 ("small requires static expression!", Expr
);
5352 Small
:= Expr_Value_R
(Expr
);
5354 if Small
<= Ureal_0
then
5355 Error_Msg_N
("small value must be greater than zero", Expr
);
5361 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
5363 ("small requires an ordinary fixed point type", Nam
);
5365 elsif Has_Small_Clause
(U_Ent
) then
5366 Error_Msg_N
("small already given for &", Nam
);
5368 elsif Small
> Delta_Value
(U_Ent
) then
5370 ("small value must not be greater than delta value", Nam
);
5373 Set_Small_Value
(U_Ent
, Small
);
5374 Set_Small_Value
(Implicit_Base
, Small
);
5375 Set_Has_Small_Clause
(U_Ent
);
5376 Set_Has_Small_Clause
(Implicit_Base
);
5377 Set_Has_Non_Standard_Rep
(Implicit_Base
);
5385 -- Storage_Pool attribute definition clause
5387 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool
=> declare
5392 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
5394 ("storage pool cannot be given for access-to-subprogram type",
5399 Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
5402 ("storage pool can only be given for access types", Nam
);
5405 elsif Is_Derived_Type
(U_Ent
) then
5407 ("storage pool cannot be given for a derived access type",
5410 elsif Duplicate_Clause
then
5413 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
5414 Error_Msg_N
("storage pool already given for &", Nam
);
5418 -- Check for Storage_Size previously given
5421 SS
: constant Node_Id
:=
5422 Get_Attribute_Definition_Clause
5423 (U_Ent
, Attribute_Storage_Size
);
5425 if Present
(SS
) then
5426 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
5430 -- Storage_Pool case
5432 if Id
= Attribute_Storage_Pool
then
5434 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
5436 -- In the Simple_Storage_Pool case, we allow a variable of any
5437 -- simple storage pool type, so we Resolve without imposing an
5441 Analyze_And_Resolve
(Expr
);
5443 if not Present
(Get_Rep_Pragma
5444 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
5447 ("expression must be of a simple storage pool type", Expr
);
5451 if not Denotes_Variable
(Expr
) then
5452 Error_Msg_N
("storage pool must be a variable", Expr
);
5456 if Nkind
(Expr
) = N_Type_Conversion
then
5457 T
:= Etype
(Expression
(Expr
));
5462 -- The Stack_Bounded_Pool is used internally for implementing
5463 -- access types with a Storage_Size. Since it only work properly
5464 -- when used on one specific type, we need to check that it is not
5465 -- hijacked improperly:
5467 -- type T is access Integer;
5468 -- for T'Storage_Size use n;
5469 -- type Q is access Float;
5470 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5472 if RTE_Available
(RE_Stack_Bounded_Pool
)
5473 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
5475 Error_Msg_N
("non-shareable internal Pool", Expr
);
5479 -- If the argument is a name that is not an entity name, then
5480 -- we construct a renaming operation to define an entity of
5481 -- type storage pool.
5483 if not Is_Entity_Name
(Expr
)
5484 and then Is_Object_Reference
(Expr
)
5486 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
5489 Rnode
: constant Node_Id
:=
5490 Make_Object_Renaming_Declaration
(Loc
,
5491 Defining_Identifier
=> Pool
,
5493 New_Occurrence_Of
(Etype
(Expr
), Loc
),
5497 -- If the attribute definition clause comes from an aspect
5498 -- clause, then insert the renaming before the associated
5499 -- entity's declaration, since the attribute clause has
5500 -- not yet been appended to the declaration list.
5502 if From_Aspect_Specification
(N
) then
5503 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
5505 Insert_Before
(N
, Rnode
);
5509 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5512 elsif Is_Entity_Name
(Expr
) then
5513 Pool
:= Entity
(Expr
);
5515 -- If pool is a renamed object, get original one. This can
5516 -- happen with an explicit renaming, and within instances.
5518 while Present
(Renamed_Object
(Pool
))
5519 and then Is_Entity_Name
(Renamed_Object
(Pool
))
5521 Pool
:= Entity
(Renamed_Object
(Pool
));
5524 if Present
(Renamed_Object
(Pool
))
5525 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
5526 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
5528 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
5531 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5533 elsif Nkind
(Expr
) = N_Type_Conversion
5534 and then Is_Entity_Name
(Expression
(Expr
))
5535 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
5537 Pool
:= Entity
(Expression
(Expr
));
5538 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5541 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
5550 -- Storage_Size attribute definition clause
5552 when Attribute_Storage_Size
=> Storage_Size
: declare
5553 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
5556 if Is_Task_Type
(U_Ent
) then
5558 -- Check obsolescent (but never obsolescent if from aspect)
5560 if not From_Aspect_Specification
(N
) then
5561 Check_Restriction
(No_Obsolescent_Features
, N
);
5563 if Warn_On_Obsolescent_Feature
then
5565 ("?j?storage size clause for task is an " &
5566 "obsolescent feature (RM J.9)", N
);
5567 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
5574 if not Is_Access_Type
(U_Ent
)
5575 and then Ekind
(U_Ent
) /= E_Task_Type
5577 Error_Msg_N
("storage size cannot be given for &", Nam
);
5579 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
5581 ("storage size cannot be given for a derived access type",
5584 elsif Duplicate_Clause
then
5588 Analyze_And_Resolve
(Expr
, Any_Integer
);
5590 if Is_Access_Type
(U_Ent
) then
5592 -- Check for Storage_Pool previously given
5595 SP
: constant Node_Id
:=
5596 Get_Attribute_Definition_Clause
5597 (U_Ent
, Attribute_Storage_Pool
);
5600 if Present
(SP
) then
5601 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
5605 -- Special case of for x'Storage_Size use 0
5607 if Is_OK_Static_Expression
(Expr
)
5608 and then Expr_Value
(Expr
) = 0
5610 Set_No_Pool_Assigned
(Btype
);
5614 Set_Has_Storage_Size_Clause
(Btype
);
5622 when Attribute_Stream_Size
=> Stream_Size
: declare
5623 Size
: constant Uint
:= Static_Integer
(Expr
);
5626 if Ada_Version
<= Ada_95
then
5627 Check_Restriction
(No_Implementation_Attributes
, N
);
5630 if Duplicate_Clause
then
5633 elsif Is_Elementary_Type
(U_Ent
) then
5634 if Size
/= System_Storage_Unit
5636 Size
/= System_Storage_Unit
* 2
5638 Size
/= System_Storage_Unit
* 4
5640 Size
/= System_Storage_Unit
* 8
5642 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5644 ("stream size for elementary type must be a"
5645 & " power of 2 and at least ^", N
);
5647 elsif RM_Size
(U_Ent
) > Size
then
5648 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
5650 ("stream size for elementary type must be a"
5651 & " power of 2 and at least ^", N
);
5654 Set_Has_Stream_Size_Clause
(U_Ent
);
5657 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
5665 -- Value_Size attribute definition clause
5667 when Attribute_Value_Size
=> Value_Size
: declare
5668 Size
: constant Uint
:= Static_Integer
(Expr
);
5672 if not Is_Type
(U_Ent
) then
5673 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
5675 elsif Duplicate_Clause
then
5678 elsif Is_Array_Type
(U_Ent
)
5679 and then not Is_Constrained
(U_Ent
)
5682 ("Value_Size cannot be given for unconstrained array", Nam
);
5685 if Is_Elementary_Type
(U_Ent
) then
5686 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5687 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
5690 Set_RM_Size
(U_Ent
, Size
);
5694 -----------------------
5695 -- Variable_Indexing --
5696 -----------------------
5698 when Attribute_Variable_Indexing
=>
5699 Check_Indexing_Functions
;
5705 when Attribute_Write
=>
5706 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
5707 Set_Has_Specified_Stream_Write
(Ent
);
5709 -- All other attributes cannot be set
5713 ("attribute& cannot be set with definition clause", N
);
5716 -- The test for the type being frozen must be performed after any
5717 -- expression the clause has been analyzed since the expression itself
5718 -- might cause freezing that makes the clause illegal.
5720 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
5723 end Analyze_Attribute_Definition_Clause
;
5725 ----------------------------
5726 -- Analyze_Code_Statement --
5727 ----------------------------
5729 procedure Analyze_Code_Statement
(N
: Node_Id
) is
5730 HSS
: constant Node_Id
:= Parent
(N
);
5731 SBody
: constant Node_Id
:= Parent
(HSS
);
5732 Subp
: constant Entity_Id
:= Current_Scope
;
5739 -- Analyze and check we get right type, note that this implements the
5740 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5741 -- is the only way that Asm_Insn could possibly be visible.
5743 Analyze_And_Resolve
(Expression
(N
));
5745 if Etype
(Expression
(N
)) = Any_Type
then
5747 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
5748 Error_Msg_N
("incorrect type for code statement", N
);
5752 Check_Code_Statement
(N
);
5754 -- Make sure we appear in the handled statement sequence of a
5755 -- subprogram (RM 13.8(3)).
5757 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
5758 or else Nkind
(SBody
) /= N_Subprogram_Body
5761 ("code statement can only appear in body of subprogram", N
);
5765 -- Do remaining checks (RM 13.8(3)) if not already done
5767 if not Is_Machine_Code_Subprogram
(Subp
) then
5768 Set_Is_Machine_Code_Subprogram
(Subp
);
5770 -- No exception handlers allowed
5772 if Present
(Exception_Handlers
(HSS
)) then
5774 ("exception handlers not permitted in machine code subprogram",
5775 First
(Exception_Handlers
(HSS
)));
5778 -- No declarations other than use clauses and pragmas (we allow
5779 -- certain internally generated declarations as well).
5781 Decl
:= First
(Declarations
(SBody
));
5782 while Present
(Decl
) loop
5783 DeclO
:= Original_Node
(Decl
);
5784 if Comes_From_Source
(DeclO
)
5785 and not Nkind_In
(DeclO
, N_Pragma
,
5786 N_Use_Package_Clause
,
5788 N_Implicit_Label_Declaration
)
5791 ("this declaration not allowed in machine code subprogram",
5798 -- No statements other than code statements, pragmas, and labels.
5799 -- Again we allow certain internally generated statements.
5801 -- In Ada 2012, qualified expressions are names, and the code
5802 -- statement is initially parsed as a procedure call.
5804 Stmt
:= First
(Statements
(HSS
));
5805 while Present
(Stmt
) loop
5806 StmtO
:= Original_Node
(Stmt
);
5808 -- A procedure call transformed into a code statement is OK.
5810 if Ada_Version
>= Ada_2012
5811 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
5812 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
5816 elsif Comes_From_Source
(StmtO
)
5817 and then not Nkind_In
(StmtO
, N_Pragma
,
5822 ("this statement is not allowed in machine code subprogram",
5829 end Analyze_Code_Statement
;
5831 -----------------------------------------------
5832 -- Analyze_Enumeration_Representation_Clause --
5833 -----------------------------------------------
5835 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
5836 Ident
: constant Node_Id
:= Identifier
(N
);
5837 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
5838 Enumtype
: Entity_Id
;
5845 Err
: Boolean := False;
5846 -- Set True to avoid cascade errors and crashes on incorrect source code
5848 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
5849 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
5850 -- Allowed range of universal integer (= allowed range of enum lit vals)
5854 -- Minimum and maximum values of entries
5857 -- Pointer to node for literal providing max value
5860 if Ignore_Rep_Clauses
then
5861 Kill_Rep_Clause
(N
);
5865 -- Ignore enumeration rep clauses by default in CodePeer mode,
5866 -- unless -gnatd.I is specified, as a work around for potential false
5867 -- positive messages.
5869 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
5873 -- First some basic error checks
5876 Enumtype
:= Entity
(Ident
);
5878 if Enumtype
= Any_Type
5879 or else Rep_Item_Too_Early
(Enumtype
, N
)
5883 Enumtype
:= Underlying_Type
(Enumtype
);
5886 if not Is_Enumeration_Type
(Enumtype
) then
5888 ("enumeration type required, found}",
5889 Ident
, First_Subtype
(Enumtype
));
5893 -- Ignore rep clause on generic actual type. This will already have
5894 -- been flagged on the template as an error, and this is the safest
5895 -- way to ensure we don't get a junk cascaded message in the instance.
5897 if Is_Generic_Actual_Type
(Enumtype
) then
5900 -- Type must be in current scope
5902 elsif Scope
(Enumtype
) /= Current_Scope
then
5903 Error_Msg_N
("type must be declared in this scope", Ident
);
5906 -- Type must be a first subtype
5908 elsif not Is_First_Subtype
(Enumtype
) then
5909 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
5912 -- Ignore duplicate rep clause
5914 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
5915 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
5918 -- Don't allow rep clause for standard [wide_[wide_]]character
5920 elsif Is_Standard_Character_Type
(Enumtype
) then
5921 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
5924 -- Check that the expression is a proper aggregate (no parentheses)
5926 elsif Paren_Count
(Aggr
) /= 0 then
5928 ("extra parentheses surrounding aggregate not allowed",
5932 -- All tests passed, so set rep clause in place
5935 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
5936 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
5939 -- Now we process the aggregate. Note that we don't use the normal
5940 -- aggregate code for this purpose, because we don't want any of the
5941 -- normal expansion activities, and a number of special semantic
5942 -- rules apply (including the component type being any integer type)
5944 Elit
:= First_Literal
(Enumtype
);
5946 -- First the positional entries if any
5948 if Present
(Expressions
(Aggr
)) then
5949 Expr
:= First
(Expressions
(Aggr
));
5950 while Present
(Expr
) loop
5952 Error_Msg_N
("too many entries in aggregate", Expr
);
5956 Val
:= Static_Integer
(Expr
);
5958 -- Err signals that we found some incorrect entries processing
5959 -- the list. The final checks for completeness and ordering are
5960 -- skipped in this case.
5962 if Val
= No_Uint
then
5965 elsif Val
< Lo
or else Hi
< Val
then
5966 Error_Msg_N
("value outside permitted range", Expr
);
5970 Set_Enumeration_Rep
(Elit
, Val
);
5971 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
5977 -- Now process the named entries if present
5979 if Present
(Component_Associations
(Aggr
)) then
5980 Assoc
:= First
(Component_Associations
(Aggr
));
5981 while Present
(Assoc
) loop
5982 Choice
:= First
(Choices
(Assoc
));
5984 if Present
(Next
(Choice
)) then
5986 ("multiple choice not allowed here", Next
(Choice
));
5990 if Nkind
(Choice
) = N_Others_Choice
then
5991 Error_Msg_N
("others choice not allowed here", Choice
);
5994 elsif Nkind
(Choice
) = N_Range
then
5996 -- ??? should allow zero/one element range here
5998 Error_Msg_N
("range not allowed here", Choice
);
6002 Analyze_And_Resolve
(Choice
, Enumtype
);
6004 if Error_Posted
(Choice
) then
6009 if Is_Entity_Name
(Choice
)
6010 and then Is_Type
(Entity
(Choice
))
6012 Error_Msg_N
("subtype name not allowed here", Choice
);
6015 -- ??? should allow static subtype with zero/one entry
6017 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6018 if not Is_OK_Static_Expression
(Choice
) then
6019 Flag_Non_Static_Expr
6020 ("non-static expression used for choice!", Choice
);
6024 Elit
:= Expr_Value_E
(Choice
);
6026 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6028 Sloc
(Enumeration_Rep_Expr
(Elit
));
6030 ("representation for& previously given#",
6035 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6037 Expr
:= Expression
(Assoc
);
6038 Val
:= Static_Integer
(Expr
);
6040 if Val
= No_Uint
then
6043 elsif Val
< Lo
or else Hi
< Val
then
6044 Error_Msg_N
("value outside permitted range", Expr
);
6048 Set_Enumeration_Rep
(Elit
, Val
);
6058 -- Aggregate is fully processed. Now we check that a full set of
6059 -- representations was given, and that they are in range and in order.
6060 -- These checks are only done if no other errors occurred.
6066 Elit
:= First_Literal
(Enumtype
);
6067 while Present
(Elit
) loop
6068 if No
(Enumeration_Rep_Expr
(Elit
)) then
6069 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6072 Val
:= Enumeration_Rep
(Elit
);
6074 if Min
= No_Uint
then
6078 if Val
/= No_Uint
then
6079 if Max
/= No_Uint
and then Val
<= Max
then
6081 ("enumeration value for& not ordered!",
6082 Enumeration_Rep_Expr
(Elit
), Elit
);
6085 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6089 -- If there is at least one literal whose representation is not
6090 -- equal to the Pos value, then note that this enumeration type
6091 -- has a non-standard representation.
6093 if Val
/= Enumeration_Pos
(Elit
) then
6094 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6101 -- Now set proper size information
6104 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6107 if Has_Size_Clause
(Enumtype
) then
6109 -- All OK, if size is OK now
6111 if RM_Size
(Enumtype
) >= Minsize
then
6115 -- Try if we can get by with biasing
6118 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6120 -- Error message if even biasing does not work
6122 if RM_Size
(Enumtype
) < Minsize
then
6123 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6124 Error_Msg_Uint_2
:= Max
;
6126 ("previously given size (^) is too small "
6127 & "for this value (^)", Max_Node
);
6129 -- If biasing worked, indicate that we now have biased rep
6133 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6138 Set_RM_Size
(Enumtype
, Minsize
);
6139 Set_Enum_Esize
(Enumtype
);
6142 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6143 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6144 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6148 -- We repeat the too late test in case it froze itself
6150 if Rep_Item_Too_Late
(Enumtype
, N
) then
6153 end Analyze_Enumeration_Representation_Clause
;
6155 ----------------------------
6156 -- Analyze_Free_Statement --
6157 ----------------------------
6159 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6161 Analyze
(Expression
(N
));
6162 end Analyze_Free_Statement
;
6164 ---------------------------
6165 -- Analyze_Freeze_Entity --
6166 ---------------------------
6168 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6170 Freeze_Entity_Checks
(N
);
6171 end Analyze_Freeze_Entity
;
6173 -----------------------------------
6174 -- Analyze_Freeze_Generic_Entity --
6175 -----------------------------------
6177 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6179 Freeze_Entity_Checks
(N
);
6180 end Analyze_Freeze_Generic_Entity
;
6182 ------------------------------------------
6183 -- Analyze_Record_Representation_Clause --
6184 ------------------------------------------
6186 -- Note: we check as much as we can here, but we can't do any checks
6187 -- based on the position values (e.g. overlap checks) until freeze time
6188 -- because especially in Ada 2005 (machine scalar mode), the processing
6189 -- for non-standard bit order can substantially change the positions.
6190 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6191 -- for the remainder of this processing.
6193 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6194 Ident
: constant Node_Id
:= Identifier
(N
);
6199 Hbit
: Uint
:= Uint_0
;
6203 Rectype
: Entity_Id
;
6206 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6207 -- True if Comp is an inherited component in a record extension
6213 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6214 Comp_Base
: Entity_Id
;
6217 if Ekind
(Rectype
) = E_Record_Subtype
then
6218 Comp_Base
:= Original_Record_Component
(Comp
);
6223 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6228 Is_Record_Extension
: Boolean;
6229 -- True if Rectype is a record extension
6231 CR_Pragma
: Node_Id
:= Empty
;
6232 -- Points to N_Pragma node if Complete_Representation pragma present
6234 -- Start of processing for Analyze_Record_Representation_Clause
6237 if Ignore_Rep_Clauses
then
6238 Kill_Rep_Clause
(N
);
6243 Rectype
:= Entity
(Ident
);
6245 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6248 Rectype
:= Underlying_Type
(Rectype
);
6251 -- First some basic error checks
6253 if not Is_Record_Type
(Rectype
) then
6255 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6258 elsif Scope
(Rectype
) /= Current_Scope
then
6259 Error_Msg_N
("type must be declared in this scope", N
);
6262 elsif not Is_First_Subtype
(Rectype
) then
6263 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6266 elsif Has_Record_Rep_Clause
(Rectype
) then
6267 Error_Msg_N
("duplicate record rep clause ignored", N
);
6270 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6274 -- We know we have a first subtype, now possibly go the the anonymous
6275 -- base type to determine whether Rectype is a record extension.
6277 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6278 Is_Record_Extension
:=
6279 Nkind
(Recdef
) = N_Derived_Type_Definition
6280 and then Present
(Record_Extension_Part
(Recdef
));
6282 if Present
(Mod_Clause
(N
)) then
6284 Loc
: constant Source_Ptr
:= Sloc
(N
);
6285 M
: constant Node_Id
:= Mod_Clause
(N
);
6286 P
: constant List_Id
:= Pragmas_Before
(M
);
6290 pragma Warnings
(Off
, Mod_Val
);
6293 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6295 if Warn_On_Obsolescent_Feature
then
6297 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6299 ("\?j?use alignment attribute definition clause instead", N
);
6306 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6307 -- the Mod clause into an alignment clause anyway, so that the
6308 -- back-end can compute and back-annotate properly the size and
6309 -- alignment of types that may include this record.
6311 -- This seems dubious, this destroys the source tree in a manner
6312 -- not detectable by ASIS ???
6314 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
6316 Make_Attribute_Definition_Clause
(Loc
,
6317 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
6318 Chars
=> Name_Alignment
,
6319 Expression
=> Relocate_Node
(Expression
(M
)));
6321 Set_From_At_Mod
(AtM_Nod
);
6322 Insert_After
(N
, AtM_Nod
);
6323 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
6324 Set_Mod_Clause
(N
, Empty
);
6327 -- Get the alignment value to perform error checking
6329 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
6334 -- For untagged types, clear any existing component clauses for the
6335 -- type. If the type is derived, this is what allows us to override
6336 -- a rep clause for the parent. For type extensions, the representation
6337 -- of the inherited components is inherited, so we want to keep previous
6338 -- component clauses for completeness.
6340 if not Is_Tagged_Type
(Rectype
) then
6341 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6342 while Present
(Comp
) loop
6343 Set_Component_Clause
(Comp
, Empty
);
6344 Next_Component_Or_Discriminant
(Comp
);
6348 -- All done if no component clauses
6350 CC
:= First
(Component_Clauses
(N
));
6356 -- A representation like this applies to the base type
6358 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
6359 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
6360 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
6362 -- Process the component clauses
6364 while Present
(CC
) loop
6368 if Nkind
(CC
) = N_Pragma
then
6371 -- The only pragma of interest is Complete_Representation
6373 if Pragma_Name
(CC
) = Name_Complete_Representation
then
6377 -- Processing for real component clause
6380 Posit
:= Static_Integer
(Position
(CC
));
6381 Fbit
:= Static_Integer
(First_Bit
(CC
));
6382 Lbit
:= Static_Integer
(Last_Bit
(CC
));
6385 and then Fbit
/= No_Uint
6386 and then Lbit
/= No_Uint
6390 ("position cannot be negative", Position
(CC
));
6394 ("first bit cannot be negative", First_Bit
(CC
));
6396 -- The Last_Bit specified in a component clause must not be
6397 -- less than the First_Bit minus one (RM-13.5.1(10)).
6399 elsif Lbit
< Fbit
- 1 then
6401 ("last bit cannot be less than first bit minus one",
6404 -- Values look OK, so find the corresponding record component
6405 -- Even though the syntax allows an attribute reference for
6406 -- implementation-defined components, GNAT does not allow the
6407 -- tag to get an explicit position.
6409 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
6410 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
6411 Error_Msg_N
("position of tag cannot be specified", CC
);
6413 Error_Msg_N
("illegal component name", CC
);
6417 Comp
:= First_Entity
(Rectype
);
6418 while Present
(Comp
) loop
6419 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6425 -- Maybe component of base type that is absent from
6426 -- statically constrained first subtype.
6428 Comp
:= First_Entity
(Base_Type
(Rectype
));
6429 while Present
(Comp
) loop
6430 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6437 ("component clause is for non-existent field", CC
);
6439 -- Ada 2012 (AI05-0026): Any name that denotes a
6440 -- discriminant of an object of an unchecked union type
6441 -- shall not occur within a record_representation_clause.
6443 -- The general restriction of using record rep clauses on
6444 -- Unchecked_Union types has now been lifted. Since it is
6445 -- possible to introduce a record rep clause which mentions
6446 -- the discriminant of an Unchecked_Union in non-Ada 2012
6447 -- code, this check is applied to all versions of the
6450 elsif Ekind
(Comp
) = E_Discriminant
6451 and then Is_Unchecked_Union
(Rectype
)
6454 ("cannot reference discriminant of unchecked union",
6455 Component_Name
(CC
));
6457 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
6459 ("component clause not allowed for inherited "
6460 & "component&", CC
, Comp
);
6462 elsif Present
(Component_Clause
(Comp
)) then
6464 -- Diagnose duplicate rep clause, or check consistency
6465 -- if this is an inherited component. In a double fault,
6466 -- there may be a duplicate inconsistent clause for an
6467 -- inherited component.
6469 if Scope
(Original_Record_Component
(Comp
)) = Rectype
6470 or else Parent
(Component_Clause
(Comp
)) = N
6472 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
6473 Error_Msg_N
("component clause previously given#", CC
);
6477 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
6479 if Intval
(Position
(Rep1
)) /=
6480 Intval
(Position
(CC
))
6481 or else Intval
(First_Bit
(Rep1
)) /=
6482 Intval
(First_Bit
(CC
))
6483 or else Intval
(Last_Bit
(Rep1
)) /=
6484 Intval
(Last_Bit
(CC
))
6487 ("component clause inconsistent "
6488 & "with representation of ancestor", CC
);
6490 elsif Warn_On_Redundant_Constructs
then
6492 ("?r?redundant confirming component clause "
6493 & "for component!", CC
);
6498 -- Normal case where this is the first component clause we
6499 -- have seen for this entity, so set it up properly.
6502 -- Make reference for field in record rep clause and set
6503 -- appropriate entity field in the field identifier.
6506 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
6507 Set_Entity
(Component_Name
(CC
), Comp
);
6509 -- Update Fbit and Lbit to the actual bit number
6511 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
6512 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
6514 if Has_Size_Clause
(Rectype
)
6515 and then RM_Size
(Rectype
) <= Lbit
6518 ("bit number out of range of specified size",
6521 Set_Component_Clause
(Comp
, CC
);
6522 Set_Component_Bit_Offset
(Comp
, Fbit
);
6523 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
6524 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
6525 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
6527 if Warn_On_Overridden_Size
6528 and then Has_Size_Clause
(Etype
(Comp
))
6529 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
6532 ("?S?component size overrides size clause for&",
6533 Component_Name
(CC
), Etype
(Comp
));
6536 -- This information is also set in the corresponding
6537 -- component of the base type, found by accessing the
6538 -- Original_Record_Component link if it is present.
6540 Ocomp
:= Original_Record_Component
(Comp
);
6547 (Component_Name
(CC
),
6553 (Comp
, First_Node
(CC
), "component clause", Biased
);
6555 if Present
(Ocomp
) then
6556 Set_Component_Clause
(Ocomp
, CC
);
6557 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
6558 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
6559 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
6560 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
6562 Set_Normalized_Position_Max
6563 (Ocomp
, Normalized_Position
(Ocomp
));
6565 -- Note: we don't use Set_Biased here, because we
6566 -- already gave a warning above if needed, and we
6567 -- would get a duplicate for the same name here.
6569 Set_Has_Biased_Representation
6570 (Ocomp
, Has_Biased_Representation
(Comp
));
6573 if Esize
(Comp
) < 0 then
6574 Error_Msg_N
("component size is negative", CC
);
6585 -- Check missing components if Complete_Representation pragma appeared
6587 if Present
(CR_Pragma
) then
6588 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6589 while Present
(Comp
) loop
6590 if No
(Component_Clause
(Comp
)) then
6592 ("missing component clause for &", CR_Pragma
, Comp
);
6595 Next_Component_Or_Discriminant
(Comp
);
6598 -- Give missing components warning if required
6600 elsif Warn_On_Unrepped_Components
then
6602 Num_Repped_Components
: Nat
:= 0;
6603 Num_Unrepped_Components
: Nat
:= 0;
6606 -- First count number of repped and unrepped components
6608 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6609 while Present
(Comp
) loop
6610 if Present
(Component_Clause
(Comp
)) then
6611 Num_Repped_Components
:= Num_Repped_Components
+ 1;
6613 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
6616 Next_Component_Or_Discriminant
(Comp
);
6619 -- We are only interested in the case where there is at least one
6620 -- unrepped component, and at least half the components have rep
6621 -- clauses. We figure that if less than half have them, then the
6622 -- partial rep clause is really intentional. If the component
6623 -- type has no underlying type set at this point (as for a generic
6624 -- formal type), we don't know enough to give a warning on the
6627 if Num_Unrepped_Components
> 0
6628 and then Num_Unrepped_Components
< Num_Repped_Components
6630 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6631 while Present
(Comp
) loop
6632 if No
(Component_Clause
(Comp
))
6633 and then Comes_From_Source
(Comp
)
6634 and then Present
(Underlying_Type
(Etype
(Comp
)))
6635 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
6636 or else Size_Known_At_Compile_Time
6637 (Underlying_Type
(Etype
(Comp
))))
6638 and then not Has_Warnings_Off
(Rectype
)
6640 -- Ignore discriminant in unchecked union, since it is
6641 -- not there, and cannot have a component clause.
6643 and then (not Is_Unchecked_Union
(Rectype
)
6644 or else Ekind
(Comp
) /= E_Discriminant
)
6646 Error_Msg_Sloc
:= Sloc
(Comp
);
6648 ("?C?no component clause given for & declared #",
6652 Next_Component_Or_Discriminant
(Comp
);
6657 end Analyze_Record_Representation_Clause
;
6659 -------------------------------------
6660 -- Build_Discrete_Static_Predicate --
6661 -------------------------------------
6663 procedure Build_Discrete_Static_Predicate
6668 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
6670 Non_Static
: exception;
6671 -- Raised if something non-static is found
6673 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
6675 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
6676 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
6677 -- Low bound and high bound value of base type of Typ
6681 -- Bounds for constructing the static predicate. We use the bound of the
6682 -- subtype if it is static, otherwise the corresponding base type bound.
6683 -- Note: a non-static subtype can have a static predicate.
6688 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6689 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6692 type RList
is array (Nat
range <>) of REnt
;
6693 -- A list of ranges. The ranges are sorted in increasing order, and are
6694 -- disjoint (there is a gap of at least one value between each range in
6695 -- the table). A value is in the set of ranges in Rlist if it lies
6696 -- within one of these ranges.
6698 False_Range
: constant RList
:=
6699 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
6700 -- An empty set of ranges represents a range list that can never be
6701 -- satisfied, since there are no ranges in which the value could lie,
6702 -- so it does not lie in any of them. False_Range is a canonical value
6703 -- for this empty set, but general processing should test for an Rlist
6704 -- with length zero (see Is_False predicate), since other null ranges
6705 -- may appear which must be treated as False.
6707 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
6708 -- Range representing True, value must be in the base range
6710 function "and" (Left
: RList
; Right
: RList
) return RList
;
6711 -- And's together two range lists, returning a range list. This is a set
6712 -- intersection operation.
6714 function "or" (Left
: RList
; Right
: RList
) return RList
;
6715 -- Or's together two range lists, returning a range list. This is a set
6718 function "not" (Right
: RList
) return RList
;
6719 -- Returns complement of a given range list, i.e. a range list
6720 -- representing all the values in TLo .. THi that are not in the input
6723 function Build_Val
(V
: Uint
) return Node_Id
;
6724 -- Return an analyzed N_Identifier node referencing this value, suitable
6725 -- for use as an entry in the Static_Discrte_Predicate list. This node
6726 -- is typed with the base type.
6728 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
6729 -- Return an analyzed N_Range node referencing this range, suitable for
6730 -- use as an entry in the Static_Discrete_Predicate list. This node is
6731 -- typed with the base type.
6733 function Get_RList
(Exp
: Node_Id
) return RList
;
6734 -- This is a recursive routine that converts the given expression into a
6735 -- list of ranges, suitable for use in building the static predicate.
6737 function Is_False
(R
: RList
) return Boolean;
6738 pragma Inline
(Is_False
);
6739 -- Returns True if the given range list is empty, and thus represents a
6740 -- False list of ranges that can never be satisfied.
6742 function Is_True
(R
: RList
) return Boolean;
6743 -- Returns True if R trivially represents the True predicate by having a
6744 -- single range from BLo to BHi.
6746 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
6747 pragma Inline
(Is_Type_Ref
);
6748 -- Returns if True if N is a reference to the type for the predicate in
6749 -- the expression (i.e. if it is an identifier whose Chars field matches
6750 -- the Nam given in the call). N must not be parenthesized, if the type
6751 -- name appears in parens, this routine will return False.
6753 function Lo_Val
(N
: Node_Id
) return Uint
;
6754 -- Given an entry from a Static_Discrete_Predicate list that is either
6755 -- a static expression or static range, gets either the expression value
6756 -- or the low bound of the range.
6758 function Hi_Val
(N
: Node_Id
) return Uint
;
6759 -- Given an entry from a Static_Discrete_Predicate list that is either
6760 -- a static expression or static range, gets either the expression value
6761 -- or the high bound of the range.
6763 function Membership_Entry
(N
: Node_Id
) return RList
;
6764 -- Given a single membership entry (range, value, or subtype), returns
6765 -- the corresponding range list. Raises Static_Error if not static.
6767 function Membership_Entries
(N
: Node_Id
) return RList
;
6768 -- Given an element on an alternatives list of a membership operation,
6769 -- returns the range list corresponding to this entry and all following
6770 -- entries (i.e. returns the "or" of this list of values).
6772 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
6773 -- Given a type, if it has a static predicate, then return the predicate
6774 -- as a range list, otherwise raise Non_Static.
6780 function "and" (Left
: RList
; Right
: RList
) return RList
is
6782 -- First range of result
6784 SLeft
: Nat
:= Left
'First;
6785 -- Start of rest of left entries
6787 SRight
: Nat
:= Right
'First;
6788 -- Start of rest of right entries
6791 -- If either range is True, return the other
6793 if Is_True
(Left
) then
6795 elsif Is_True
(Right
) then
6799 -- If either range is False, return False
6801 if Is_False
(Left
) or else Is_False
(Right
) then
6805 -- Loop to remove entries at start that are disjoint, and thus just
6806 -- get discarded from the result entirely.
6809 -- If no operands left in either operand, result is false
6811 if SLeft
> Left
'Last or else SRight
> Right
'Last then
6814 -- Discard first left operand entry if disjoint with right
6816 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
6819 -- Discard first right operand entry if disjoint with left
6821 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
6822 SRight
:= SRight
+ 1;
6824 -- Otherwise we have an overlapping entry
6831 -- Now we have two non-null operands, and first entries overlap. The
6832 -- first entry in the result will be the overlapping part of these
6835 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6836 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
6838 -- Now we can remove the entry that ended at a lower value, since its
6839 -- contribution is entirely contained in Fent.
6841 if Left (SLeft).Hi <= Right (SRight).Hi then
6844 SRight := SRight + 1;
6847 -- Compute result by concatenating this first entry with the "and" of
6848 -- the remaining parts of the left and right operands. Note that if
6849 -- either of these is empty, "and" will yield empty, so that we will
6850 -- end up with just Fent, which is what we want in that case.
6853 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6860 function "not" (Right : RList) return RList is
6862 -- Return True if False range
6864 if Is_False (Right) then
6868 -- Return False if True range
6870 if Is_True (Right) then
6874 -- Here if not trivial case
6877 Result : RList (1 .. Right'Length + 1);
6878 -- May need one more entry for gap at beginning and end
6881 -- Number of entries stored in Result
6886 if Right (Right'First).Lo > TLo then
6888 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
6891 -- Gaps between ranges
6893 for J
in Right
'First .. Right
'Last - 1 loop
6895 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6900 if Right (Right'Last).Hi < THi then
6902 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
6905 return Result
(1 .. Count
);
6913 function "or" (Left
: RList
; Right
: RList
) return RList
is
6915 -- First range of result
6917 SLeft
: Nat
:= Left
'First;
6918 -- Start of rest of left entries
6920 SRight
: Nat
:= Right
'First;
6921 -- Start of rest of right entries
6924 -- If either range is True, return True
6926 if Is_True
(Left
) or else Is_True
(Right
) then
6930 -- If either range is False (empty), return the other
6932 if Is_False
(Left
) then
6934 elsif Is_False
(Right
) then
6938 -- Initialize result first entry from left or right operand depending
6939 -- on which starts with the lower range.
6941 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
6942 FEnt
:= Left
(SLeft
);
6945 FEnt
:= Right
(SRight
);
6946 SRight
:= SRight
+ 1;
6949 -- This loop eats ranges from left and right operands that are
6950 -- contiguous with the first range we are gathering.
6953 -- Eat first entry in left operand if contiguous or overlapped by
6954 -- gathered first operand of result.
6956 if SLeft
<= Left
'Last
6957 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
6959 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
6962 -- Eat first entry in right operand if contiguous or overlapped by
6963 -- gathered right operand of result.
6965 elsif SRight
<= Right
'Last
6966 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
6968 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
6969 SRight
:= SRight
+ 1;
6971 -- All done if no more entries to eat
6978 -- Obtain result as the first entry we just computed, concatenated
6979 -- to the "or" of the remaining results (if one operand is empty,
6980 -- this will just concatenate with the other
6983 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
6990 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
6995 Low_Bound
=> Build_Val
(Lo
),
6996 High_Bound
=> Build_Val
(Hi
));
6997 Set_Etype
(Result
, Btyp
);
6998 Set_Analyzed
(Result
);
7006 function Build_Val
(V
: Uint
) return Node_Id
is
7010 if Is_Enumeration_Type
(Typ
) then
7011 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7013 Result
:= Make_Integer_Literal
(Loc
, V
);
7016 Set_Etype
(Result
, Btyp
);
7017 Set_Is_Static_Expression
(Result
);
7018 Set_Analyzed
(Result
);
7026 function Get_RList
(Exp
: Node_Id
) return RList
is
7031 -- Static expression can only be true or false
7033 if Is_OK_Static_Expression
(Exp
) then
7034 if Expr_Value
(Exp
) = 0 then
7041 -- Otherwise test node type
7049 when N_Op_And | N_And_Then
=>
7050 return Get_RList
(Left_Opnd
(Exp
))
7052 Get_RList
(Right_Opnd
(Exp
));
7056 when N_Op_Or | N_Or_Else
=>
7057 return Get_RList
(Left_Opnd
(Exp
))
7059 Get_RList
(Right_Opnd
(Exp
));
7064 return not Get_RList
(Right_Opnd
(Exp
));
7066 -- Comparisons of type with static value
7068 when N_Op_Compare
=>
7070 -- Type is left operand
7072 if Is_Type_Ref
(Left_Opnd
(Exp
))
7073 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7075 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7077 -- Typ is right operand
7079 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7080 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7082 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7084 -- Invert sense of comparison
7087 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7088 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7089 when N_Op_Ge
=> Op
:= N_Op_Le
;
7090 when N_Op_Le
=> Op
:= N_Op_Ge
;
7091 when others => null;
7094 -- Other cases are non-static
7100 -- Construct range according to comparison operation
7104 return RList
'(1 => REnt'(Val
, Val
));
7107 return RList
'(1 => REnt'(Val
, BHi
));
7110 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7113 return RList
'(1 => REnt'(BLo
, Val
));
7116 return RList
'(1 => REnt'(BLo
, Val
- 1));
7119 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7122 raise Program_Error;
7128 if not Is_Type_Ref (Left_Opnd (Exp)) then
7132 if Present (Right_Opnd (Exp)) then
7133 return Membership_Entry (Right_Opnd (Exp));
7135 return Membership_Entries (First (Alternatives (Exp)));
7138 -- Negative membership (NOT IN)
7141 if not Is_Type_Ref (Left_Opnd (Exp)) then
7145 if Present (Right_Opnd (Exp)) then
7146 return not Membership_Entry (Right_Opnd (Exp));
7148 return not Membership_Entries (First (Alternatives (Exp)));
7151 -- Function call, may be call to static predicate
7153 when N_Function_Call =>
7154 if Is_Entity_Name (Name (Exp)) then
7156 Ent : constant Entity_Id := Entity (Name (Exp));
7158 if Is_Predicate_Function (Ent)
7160 Is_Predicate_Function_M (Ent)
7162 return Stat_Pred (Etype (First_Formal (Ent)));
7167 -- Other function call cases are non-static
7171 -- Qualified expression, dig out the expression
7173 when N_Qualified_Expression =>
7174 return Get_RList (Expression (Exp));
7176 when N_Case_Expression =>
7183 if not Is_Entity_Name (Expression (Expr))
7184 or else Etype (Expression (Expr)) /= Typ
7187 ("expression must denaote subtype", Expression (Expr));
7191 -- Collect discrete choices in all True alternatives
7193 Choices := New_List;
7194 Alt := First (Alternatives (Exp));
7195 while Present (Alt) loop
7196 Dep := Expression (Alt);
7198 if not Is_OK_Static_Expression (Dep) then
7201 elsif Is_True (Expr_Value (Dep)) then
7202 Append_List_To (Choices,
7203 New_Copy_List (Discrete_Choices (Alt)));
7209 return Membership_Entries (First (Choices));
7212 -- Expression with actions: if no actions, dig out expression
7214 when N_Expression_With_Actions =>
7215 if Is_Empty_List (Actions (Exp)) then
7216 return Get_RList (Expression (Exp));
7224 return (Get_RList (Left_Opnd (Exp))
7225 and not Get_RList (Right_Opnd (Exp)))
7226 or (Get_RList (Right_Opnd (Exp))
7227 and not Get_RList (Left_Opnd (Exp)));
7229 -- Any other node type is non-static
7240 function Hi_Val (N : Node_Id) return Uint is
7242 if Is_OK_Static_Expression (N) then
7243 return Expr_Value (N);
7245 pragma Assert (Nkind (N) = N_Range);
7246 return Expr_Value (High_Bound (N));
7254 function Is_False (R : RList) return Boolean is
7256 return R'Length = 0;
7263 function Is_True (R : RList) return Boolean is
7266 and then R (R'First).Lo = BLo
7267 and then R (R'First).Hi = BHi;
7274 function Is_Type_Ref (N : Node_Id) return Boolean is
7276 return Nkind (N) = N_Identifier
7277 and then Chars (N) = Nam
7278 and then Paren_Count (N) = 0;
7285 function Lo_Val (N : Node_Id) return Uint is
7287 if Is_OK_Static_Expression (N) then
7288 return Expr_Value (N);
7290 pragma Assert (Nkind (N) = N_Range);
7291 return Expr_Value (Low_Bound (N));
7295 ------------------------
7296 -- Membership_Entries --
7297 ------------------------
7299 function Membership_Entries (N : Node_Id) return RList is
7301 if No (Next (N)) then
7302 return Membership_Entry (N);
7304 return Membership_Entry (N) or Membership_Entries (Next (N));
7306 end Membership_Entries;
7308 ----------------------
7309 -- Membership_Entry --
7310 ----------------------
7312 function Membership_Entry (N : Node_Id) return RList is
7320 if Nkind (N) = N_Range then
7321 if not Is_OK_Static_Expression (Low_Bound (N))
7323 not Is_OK_Static_Expression (High_Bound (N))
7327 SLo := Expr_Value (Low_Bound (N));
7328 SHi := Expr_Value (High_Bound (N));
7329 return RList'(1 => REnt
'(SLo, SHi));
7332 -- Static expression case
7334 elsif Is_OK_Static_Expression (N) then
7335 Val := Expr_Value (N);
7336 return RList'(1 => REnt
'(Val, Val));
7338 -- Identifier (other than static expression) case
7340 else pragma Assert (Nkind (N) = N_Identifier);
7344 if Is_Type (Entity (N)) then
7346 -- If type has predicates, process them
7348 if Has_Predicates (Entity (N)) then
7349 return Stat_Pred (Entity (N));
7351 -- For static subtype without predicates, get range
7353 elsif Is_OK_Static_Subtype (Entity (N)) then
7354 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7355 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7356 return RList'(1 => REnt
'(SLo, SHi));
7358 -- Any other type makes us non-static
7364 -- Any other kind of identifier in predicate (e.g. a non-static
7365 -- expression value) means this is not a static predicate.
7371 end Membership_Entry;
7377 function Stat_Pred (Typ : Entity_Id) return RList is
7379 -- Not static if type does not have static predicates
7381 if not Has_Static_Predicate (Typ) then
7385 -- Otherwise we convert the predicate list to a range list
7388 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7389 Result : RList (1 .. List_Length (Spred));
7393 P := First (Static_Discrete_Predicate (Typ));
7394 for J in Result'Range loop
7395 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
7403 -- Start of processing for Build_Discrete_Static_Predicate
7406 -- Establish bounds for the predicate
7408 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
7409 TLo
:= Expr_Value
(Type_Low_Bound
(Typ
));
7414 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
7415 THi
:= Expr_Value
(Type_High_Bound
(Typ
));
7420 -- Analyze the expression to see if it is a static predicate
7423 Ranges
: constant RList
:= Get_RList
(Expr
);
7424 -- Range list from expression if it is static
7429 -- Convert range list into a form for the static predicate. In the
7430 -- Ranges array, we just have raw ranges, these must be converted
7431 -- to properly typed and analyzed static expressions or range nodes.
7433 -- Note: here we limit ranges to the ranges of the subtype, so that
7434 -- a predicate is always false for values outside the subtype. That
7435 -- seems fine, such values are invalid anyway, and considering them
7436 -- to fail the predicate seems allowed and friendly, and furthermore
7437 -- simplifies processing for case statements and loops.
7441 for J
in Ranges
'Range loop
7443 Lo
: Uint
:= Ranges
(J
).Lo
;
7444 Hi
: Uint
:= Ranges
(J
).Hi
;
7447 -- Ignore completely out of range entry
7449 if Hi
< TLo
or else Lo
> THi
then
7452 -- Otherwise process entry
7455 -- Adjust out of range value to subtype range
7465 -- Convert range into required form
7467 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
7472 -- Processing was successful and all entries were static, so now we
7473 -- can store the result as the predicate list.
7475 Set_Static_Discrete_Predicate
(Typ
, Plist
);
7477 -- The processing for static predicates put the expression into
7478 -- canonical form as a series of ranges. It also eliminated
7479 -- duplicates and collapsed and combined ranges. We might as well
7480 -- replace the alternatives list of the right operand of the
7481 -- membership test with the static predicate list, which will
7482 -- usually be more efficient.
7485 New_Alts
: constant List_Id
:= New_List
;
7490 Old_Node
:= First
(Plist
);
7491 while Present
(Old_Node
) loop
7492 New_Node
:= New_Copy
(Old_Node
);
7494 if Nkind
(New_Node
) = N_Range
then
7495 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
7496 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
7499 Append_To
(New_Alts
, New_Node
);
7503 -- If empty list, replace by False
7505 if Is_Empty_List
(New_Alts
) then
7506 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
7508 -- Else replace by set membership test
7513 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
7514 Right_Opnd
=> Empty
,
7515 Alternatives
=> New_Alts
));
7517 -- Resolve new expression in function context
7519 Install_Formals
(Predicate_Function
(Typ
));
7520 Push_Scope
(Predicate_Function
(Typ
));
7521 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
7527 -- If non-static, return doing nothing
7532 end Build_Discrete_Static_Predicate
;
7534 -------------------------------------------
7535 -- Build_Invariant_Procedure_Declaration --
7536 -------------------------------------------
7538 function Build_Invariant_Procedure_Declaration
7539 (Typ
: Entity_Id
) return Node_Id
7541 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7542 Object_Entity
: constant Entity_Id
:=
7543 Make_Defining_Identifier
(Loc
, New_Internal_Name
('I'));
7548 Set_Etype
(Object_Entity
, Typ
);
7550 -- Check for duplicate definiations.
7552 if Has_Invariants
(Typ
) and then Present
(Invariant_Procedure
(Typ
)) then
7557 Make_Defining_Identifier
(Loc
,
7558 Chars
=> New_External_Name
(Chars
(Typ
), "Invariant"));
7559 Set_Has_Invariants
(Typ
);
7560 Set_Ekind
(SId
, E_Procedure
);
7561 Set_Etype
(SId
, Standard_Void_Type
);
7562 Set_Is_Invariant_Procedure
(SId
);
7563 Set_Invariant_Procedure
(Typ
, SId
);
7566 Make_Procedure_Specification
(Loc
,
7567 Defining_Unit_Name
=> SId
,
7568 Parameter_Specifications
=> New_List
(
7569 Make_Parameter_Specification
(Loc
,
7570 Defining_Identifier
=> Object_Entity
,
7571 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))));
7573 return Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
7574 end Build_Invariant_Procedure_Declaration
;
7576 -------------------------------
7577 -- Build_Invariant_Procedure --
7578 -------------------------------
7580 -- The procedure that is constructed here has the form
7582 -- procedure typInvariant (Ixxx : typ) is
7584 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7585 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7587 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7589 -- end typInvariant;
7591 procedure Build_Invariant_Procedure
(Typ
: Entity_Id
; N
: Node_Id
) is
7592 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7600 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7601 -- if we come from a Type_Invariant aspect, we make sure to build the
7602 -- Check pragma with the right name, so that Check_Policy works right.
7604 Visible_Decls
: constant List_Id
:= Visible_Declarations
(N
);
7605 Private_Decls
: constant List_Id
:= Private_Declarations
(N
);
7607 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean);
7608 -- Appends statements to Stmts for any invariants in the rep item chain
7609 -- of the given type. If Inherit is False, then we only process entries
7610 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7611 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7612 -- "inherited" to the exception message and generating an informational
7613 -- message about the inheritance of an invariant.
7615 Object_Name
: Name_Id
;
7616 -- Name for argument of invariant procedure
7618 Object_Entity
: Node_Id
;
7619 -- The entity of the formal for the procedure
7621 --------------------
7622 -- Add_Invariants --
7623 --------------------
7625 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean) is
7635 procedure Replace_Type_Reference
(N
: Node_Id
);
7636 -- Replace a single occurrence N of the subtype name with a reference
7637 -- to the formal of the predicate function. N can be an identifier
7638 -- referencing the subtype, or a selected component, representing an
7639 -- appropriately qualified occurrence of the subtype name.
7641 procedure Replace_Type_References
is
7642 new Replace_Type_References_Generic
(Replace_Type_Reference
);
7643 -- Traverse an expression replacing all occurrences of the subtype
7644 -- name with appropriate references to the object that is the formal
7645 -- parameter of the predicate function. Note that we must ensure
7646 -- that the type and entity information is properly set in the
7647 -- replacement node, since we will do a Preanalyze call of this
7648 -- expression without proper visibility of the procedure argument.
7650 ----------------------------
7651 -- Replace_Type_Reference --
7652 ----------------------------
7654 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7655 -- regarding handling of Sloc and Comes_From_Source.
7657 procedure Replace_Type_Reference
(N
: Node_Id
) is
7660 -- Add semantic information to node to be rewritten, for ASIS
7661 -- navigation needs.
7663 if Nkind
(N
) = N_Identifier
then
7667 elsif Nkind
(N
) = N_Selected_Component
then
7668 Analyze
(Prefix
(N
));
7669 Set_Entity
(Selector_Name
(N
), T
);
7670 Set_Etype
(Selector_Name
(N
), T
);
7673 -- Invariant'Class, replace with T'Class (obj)
7674 -- In ASIS mode, an inherited item is analyzed already, and the
7675 -- replacement has been done, so do not repeat transformation
7676 -- to prevent ill-formed tree.
7678 if Class_Present
(Ritem
) then
7680 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
7681 and then Attribute_Name
(Parent
(N
)) = Name_Class
7687 Make_Type_Conversion
(Sloc
(N
),
7689 Make_Attribute_Reference
(Sloc
(N
),
7690 Prefix
=> New_Occurrence_Of
(T
, Sloc
(N
)),
7691 Attribute_Name
=> Name_Class
),
7693 Make_Identifier
(Sloc
(N
), Object_Name
)));
7695 Set_Entity
(Expression
(N
), Object_Entity
);
7696 Set_Etype
(Expression
(N
), Typ
);
7699 -- Invariant, replace with obj
7702 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
7703 Set_Entity
(N
, Object_Entity
);
7707 Set_Comes_From_Source
(N
, True);
7708 end Replace_Type_Reference
;
7710 -- Start of processing for Add_Invariants
7713 Ritem
:= First_Rep_Item
(T
);
7714 while Present
(Ritem
) loop
7715 if Nkind
(Ritem
) = N_Pragma
7716 and then Pragma_Name
(Ritem
) = Name_Invariant
7718 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
7719 Arg2
:= Next
(Arg1
);
7720 Arg3
:= Next
(Arg2
);
7722 Arg1
:= Get_Pragma_Arg
(Arg1
);
7723 Arg2
:= Get_Pragma_Arg
(Arg2
);
7725 -- For Inherit case, ignore Invariant, process only Class case
7728 if not Class_Present
(Ritem
) then
7732 -- For Inherit false, process only item for right type
7735 if Entity
(Arg1
) /= Typ
then
7741 Stmts
:= Empty_List
;
7744 Exp
:= New_Copy_Tree
(Arg2
);
7746 -- Preserve sloc of original pragma Invariant
7748 Loc
:= Sloc
(Ritem
);
7750 -- We need to replace any occurrences of the name of the type
7751 -- with references to the object, converted to type'Class in
7752 -- the case of Invariant'Class aspects.
7754 Replace_Type_References
(Exp
, T
);
7756 -- If this invariant comes from an aspect, find the aspect
7757 -- specification, and replace the saved expression because
7758 -- we need the subtype references replaced for the calls to
7759 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7760 -- and Check_Aspect_At_End_Of_Declarations.
7762 if From_Aspect_Specification
(Ritem
) then
7767 -- Loop to find corresponding aspect, note that this
7768 -- must be present given the pragma is marked delayed.
7770 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7771 -- this loop does nothing. Furthermore, why isn't this
7772 -- simply Corresponding_Aspect ???
7774 Aitem
:= Next_Rep_Item
(Ritem
);
7775 while Present
(Aitem
) loop
7776 if Nkind
(Aitem
) = N_Aspect_Specification
7777 and then Aspect_Rep_Item
(Aitem
) = Ritem
7780 (Identifier
(Aitem
), New_Copy_Tree
(Exp
));
7784 Aitem
:= Next_Rep_Item
(Aitem
);
7789 -- Now we need to preanalyze the expression to properly capture
7790 -- the visibility in the visible part. The expression will not
7791 -- be analyzed for real until the body is analyzed, but that is
7792 -- at the end of the private part and has the wrong visibility.
7794 Set_Parent
(Exp
, N
);
7795 Preanalyze_Assert_Expression
(Exp
, Any_Boolean
);
7797 -- A class-wide invariant may be inherited in a separate unit,
7798 -- where the corresponding expression cannot be resolved by
7799 -- visibility, because it refers to a local function. Propagate
7800 -- semantic information to the original representation item, to
7801 -- be used when an invariant procedure for a derived type is
7804 -- Unclear how to handle class-wide invariants that are not
7805 -- function calls ???
7808 and then Class_Present
(Ritem
)
7809 and then Nkind
(Exp
) = N_Function_Call
7810 and then Nkind
(Arg2
) = N_Indexed_Component
7813 Make_Function_Call
(Loc
,
7815 New_Occurrence_Of
(Entity
(Name
(Exp
)), Loc
),
7816 Parameter_Associations
=>
7817 New_Copy_List
(Expressions
(Arg2
))));
7820 -- In ASIS mode, even if assertions are not enabled, we must
7821 -- analyze the original expression in the aspect specification
7822 -- because it is part of the original tree.
7824 if ASIS_Mode
and then From_Aspect_Specification
(Ritem
) then
7826 Inv
: constant Node_Id
:=
7827 Expression
(Corresponding_Aspect
(Ritem
));
7829 Replace_Type_References
(Inv
, T
);
7830 Preanalyze_Assert_Expression
(Inv
, Standard_Boolean
);
7834 -- Get name to be used for Check pragma
7836 if not From_Aspect_Specification
(Ritem
) then
7837 Nam
:= Name_Invariant
;
7839 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Ritem
)));
7842 -- Build first two arguments for Check pragma
7846 Make_Pragma_Argument_Association
(Loc
,
7847 Expression
=> Make_Identifier
(Loc
, Chars
=> Nam
)),
7848 Make_Pragma_Argument_Association
(Loc
,
7849 Expression
=> Exp
));
7851 -- Add message if present in Invariant pragma
7853 if Present
(Arg3
) then
7854 Str
:= Strval
(Get_Pragma_Arg
(Arg3
));
7856 -- If inherited case, and message starts "failed invariant",
7857 -- change it to be "failed inherited invariant".
7860 String_To_Name_Buffer
(Str
);
7862 if Name_Buffer
(1 .. 16) = "failed invariant" then
7863 Insert_Str_In_Name_Buffer
("inherited ", 8);
7864 Str
:= String_From_Name_Buffer
;
7869 Make_Pragma_Argument_Association
(Loc
,
7870 Expression
=> Make_String_Literal
(Loc
, Str
)));
7873 -- Add Check pragma to list of statements
7877 Pragma_Identifier
=>
7878 Make_Identifier
(Loc
, Name_Check
),
7879 Pragma_Argument_Associations
=> Assoc
));
7881 -- If Inherited case and option enabled, output info msg. Note
7882 -- that we know this is a case of Invariant'Class.
7884 if Inherit
and Opt
.List_Inherited_Aspects
then
7885 Error_Msg_Sloc
:= Sloc
(Ritem
);
7887 ("info: & inherits `Invariant''Class` aspect from #?L?",
7893 Next_Rep_Item
(Ritem
);
7897 -- Start of processing for Build_Invariant_Procedure
7905 -- If the aspect specification exists for some view of the type, the
7906 -- declaration for the procedure has been created.
7908 if Has_Invariants
(Typ
) then
7909 SId
:= Invariant_Procedure
(Typ
);
7912 -- If the body is already present, nothing to do. This will occur when
7913 -- the type is already frozen, which is the case when the invariant
7914 -- appears in a private part, and the freezing takes place before the
7915 -- final pass over full declarations.
7917 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
7919 if Present
(SId
) then
7920 PDecl
:= Unit_Declaration_Node
(SId
);
7923 and then Nkind
(PDecl
) = N_Subprogram_Declaration
7924 and then Present
(Corresponding_Body
(PDecl
))
7930 PDecl
:= Build_Invariant_Procedure_Declaration
(Typ
);
7933 -- Recover formal of procedure, for use in the calls to invariant
7934 -- functions (including inherited ones).
7938 (First
(Parameter_Specifications
(Specification
(PDecl
))));
7939 Object_Name
:= Chars
(Object_Entity
);
7941 -- Add invariants for the current type
7943 Add_Invariants
(Typ
, Inherit
=> False);
7945 -- Add invariants for parent types
7948 Current_Typ
: Entity_Id
;
7949 Parent_Typ
: Entity_Id
;
7954 Parent_Typ
:= Etype
(Current_Typ
);
7956 if Is_Private_Type
(Parent_Typ
)
7957 and then Present
(Full_View
(Base_Type
(Parent_Typ
)))
7959 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
7962 exit when Parent_Typ
= Current_Typ
;
7964 Current_Typ
:= Parent_Typ
;
7965 Add_Invariants
(Current_Typ
, Inherit
=> True);
7969 -- Add invariants of progenitors
7971 if Is_Tagged_Type
(Typ
) and then not Is_Interface
(Typ
) then
7973 Ifaces_List
: Elist_Id
;
7978 Collect_Interfaces
(Typ
, Ifaces_List
);
7980 AI
:= First_Elmt
(Ifaces_List
);
7981 while Present
(AI
) loop
7984 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
7985 Add_Invariants
(Iface
, Inherit
=> True);
7993 -- Build the procedure if we generated at least one Check pragma
7995 if Stmts
/= No_List
then
7996 Spec
:= Copy_Separate_Tree
(Specification
(PDecl
));
7999 Make_Subprogram_Body
(Loc
,
8000 Specification
=> Spec
,
8001 Declarations
=> Empty_List
,
8002 Handled_Statement_Sequence
=>
8003 Make_Handled_Sequence_Of_Statements
(Loc
,
8004 Statements
=> Stmts
));
8006 -- Insert procedure declaration and spec at the appropriate points.
8007 -- If declaration is already analyzed, it was processed by the
8008 -- generated pragma.
8010 if Present
(Private_Decls
) then
8012 -- The spec goes at the end of visible declarations, but they have
8013 -- already been analyzed, so we need to explicitly do the analyze.
8015 if not Analyzed
(PDecl
) then
8016 Append_To
(Visible_Decls
, PDecl
);
8020 -- The body goes at the end of the private declarations, which we
8021 -- have not analyzed yet, so we do not need to perform an explicit
8022 -- analyze call. We skip this if there are no private declarations
8023 -- (this is an error that will be caught elsewhere);
8025 Append_To
(Private_Decls
, PBody
);
8027 -- If the invariant appears on the full view of a type, the
8028 -- analysis of the private part is complete, and we must
8029 -- analyze the new body explicitly.
8031 if In_Private_Part
(Current_Scope
) then
8035 -- If there are no private declarations this may be an error that
8036 -- will be diagnosed elsewhere. However, if this is a non-private
8037 -- type that inherits invariants, it needs no completion and there
8038 -- may be no private part. In this case insert invariant procedure
8039 -- at end of current declarative list, and analyze at once, given
8040 -- that the type is about to be frozen.
8042 elsif not Is_Private_Type
(Typ
) then
8043 Append_To
(Visible_Decls
, PDecl
);
8044 Append_To
(Visible_Decls
, PBody
);
8049 end Build_Invariant_Procedure
;
8051 -------------------------------
8052 -- Build_Predicate_Functions --
8053 -------------------------------
8055 -- The procedures that are constructed here have the form:
8057 -- function typPredicate (Ixxx : typ) return Boolean is
8060 -- exp1 and then exp2 and then ...
8061 -- and then typ1Predicate (typ1 (Ixxx))
8062 -- and then typ2Predicate (typ2 (Ixxx))
8064 -- end typPredicate;
8066 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8067 -- this is the point at which these expressions get analyzed, providing the
8068 -- required delay, and typ1, typ2, are entities from which predicates are
8069 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8070 -- use this function even if checks are off, e.g. for membership tests.
8072 -- If the expression has at least one Raise_Expression, then we also build
8073 -- the typPredicateM version of the function, in which any occurrence of a
8074 -- Raise_Expression is converted to "return False".
8076 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8077 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8080 -- This is the expression for the result of the function. It is
8081 -- is build by connecting the component predicates with AND THEN.
8084 -- This is the corresponding return expression for the Predicate_M
8085 -- function. It differs in that raise expressions are marked for
8086 -- special expansion (see Process_REs).
8088 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
8089 -- Name for argument of Predicate procedure. Note that we use the same
8090 -- name for both predicate functions. That way the reference within the
8091 -- predicate expression is the same in both functions.
8093 Object_Entity
: constant Entity_Id
:=
8094 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8095 -- Entity for argument of Predicate procedure
8097 Object_Entity_M
: constant Entity_Id
:=
8098 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8099 -- Entity for argument of Predicate_M procedure
8101 Raise_Expression_Present
: Boolean := False;
8102 -- Set True if Expr has at least one Raise_Expression
8104 procedure Add_Call
(T
: Entity_Id
);
8105 -- Includes a call to the predicate function for type T in Expr if T
8106 -- has predicates and Predicate_Function (T) is non-empty.
8108 procedure Add_Predicates
;
8109 -- Appends expressions for any Predicate pragmas in the rep item chain
8110 -- Typ to Expr. Note that we look only at items for this exact entity.
8111 -- Inheritance of predicates for the parent type is done by calling the
8112 -- Predicate_Function of the parent type, using Add_Call above.
8114 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8115 -- Used in Test_REs, tests one node for being a raise expression, and if
8116 -- so sets Raise_Expression_Present True.
8118 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8119 -- Tests to see if Expr contains any raise expressions
8121 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8122 -- Used in Process REs, tests if node N is a raise expression, and if
8123 -- so, marks it to be converted to return False.
8125 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8126 -- Marks any raise expressions in Expr_M to return False
8132 procedure Add_Call
(T
: Entity_Id
) is
8136 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8137 Set_Has_Predicates
(Typ
);
8139 -- Build the call to the predicate function of T
8143 (T
, Convert_To
(T
, Make_Identifier
(Loc
, Object_Name
)));
8145 -- Add call to evolving expression, using AND THEN if needed
8152 Make_And_Then
(Sloc
(Expr
),
8153 Left_Opnd
=> Relocate_Node
(Expr
),
8157 -- Output info message on inheritance if required. Note we do not
8158 -- give this information for generic actual types, since it is
8159 -- unwelcome noise in that case in instantiations. We also
8160 -- generally suppress the message in instantiations, and also
8161 -- if it involves internal names.
8163 if Opt
.List_Inherited_Aspects
8164 and then not Is_Generic_Actual_Type
(Typ
)
8165 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8166 and then not Is_Internal_Name
(Chars
(T
))
8167 and then not Is_Internal_Name
(Chars
(Typ
))
8169 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8170 Error_Msg_Node_2
:= T
;
8171 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8176 --------------------
8177 -- Add_Predicates --
8178 --------------------
8180 procedure Add_Predicates
is
8185 procedure Replace_Type_Reference
(N
: Node_Id
);
8186 -- Replace a single occurrence N of the subtype name with a reference
8187 -- to the formal of the predicate function. N can be an identifier
8188 -- referencing the subtype, or a selected component, representing an
8189 -- appropriately qualified occurrence of the subtype name.
8191 procedure Replace_Type_References
is
8192 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8193 -- Traverse an expression changing every occurrence of an identifier
8194 -- whose name matches the name of the subtype with a reference to
8195 -- the formal parameter of the predicate function.
8197 ----------------------------
8198 -- Replace_Type_Reference --
8199 ----------------------------
8201 procedure Replace_Type_Reference
(N
: Node_Id
) is
8203 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8204 -- Use the Sloc of the usage name, not the defining name
8207 Set_Entity
(N
, Object_Entity
);
8209 -- We want to treat the node as if it comes from source, so that
8210 -- ASIS will not ignore it
8212 Set_Comes_From_Source
(N
, True);
8213 end Replace_Type_Reference
;
8215 -- Start of processing for Add_Predicates
8218 Ritem
:= First_Rep_Item
(Typ
);
8219 while Present
(Ritem
) loop
8220 if Nkind
(Ritem
) = N_Pragma
8221 and then Pragma_Name
(Ritem
) = Name_Predicate
8223 -- Acquire arguments
8225 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
8226 Arg2
:= Next
(Arg1
);
8228 Arg1
:= Get_Pragma_Arg
(Arg1
);
8229 Arg2
:= Get_Pragma_Arg
(Arg2
);
8231 -- See if this predicate pragma is for the current type or for
8232 -- its full view. A predicate on a private completion is placed
8233 -- on the partial view beause this is the visible entity that
8236 if Entity
(Arg1
) = Typ
8237 or else Full_View
(Entity
(Arg1
)) = Typ
8239 -- We have a match, this entry is for our subtype
8241 -- We need to replace any occurrences of the name of the
8242 -- type with references to the object.
8244 Replace_Type_References
(Arg2
, Typ
);
8246 -- If this predicate comes from an aspect, find the aspect
8247 -- specification, and replace the saved expression because
8248 -- we need the subtype references replaced for the calls to
8249 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8250 -- and Check_Aspect_At_End_Of_Declarations.
8252 if From_Aspect_Specification
(Ritem
) then
8257 -- Loop to find corresponding aspect, note that this
8258 -- must be present given the pragma is marked delayed.
8260 Aitem
:= Next_Rep_Item
(Ritem
);
8262 if Nkind
(Aitem
) = N_Aspect_Specification
8263 and then Aspect_Rep_Item
(Aitem
) = Ritem
8266 (Identifier
(Aitem
), New_Copy_Tree
(Arg2
));
8270 Aitem
:= Next_Rep_Item
(Aitem
);
8275 -- Now we can add the expression
8278 Expr
:= Relocate_Node
(Arg2
);
8280 -- There already was a predicate, so add to it
8285 Left_Opnd
=> Relocate_Node
(Expr
),
8286 Right_Opnd
=> Relocate_Node
(Arg2
));
8291 Next_Rep_Item
(Ritem
);
8299 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8301 if Nkind
(N
) = N_Raise_Expression
then
8302 Set_Convert_To_Return_False
(N
);
8313 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8315 if Nkind
(N
) = N_Raise_Expression
then
8316 Raise_Expression_Present
:= True;
8323 -- Start of processing for Build_Predicate_Functions
8326 -- Return if already built or if type does not have predicates
8328 if not Has_Predicates
(Typ
)
8329 or else Present
(Predicate_Function
(Typ
))
8334 -- Prepare to construct predicate expression
8338 -- Add Predicates for the current type
8342 -- Add predicates for ancestor if present
8345 Atyp
: constant Entity_Id
:= Nearest_Ancestor
(Typ
);
8347 if Present
(Atyp
) then
8352 -- Case where predicates are present
8354 if Present
(Expr
) then
8356 -- Test for raise expression present
8360 -- If raise expression is present, capture a copy of Expr for use
8361 -- in building the predicateM function version later on. For this
8362 -- copy we replace references to Object_Entity by Object_Entity_M.
8364 if Raise_Expression_Present
then
8366 Map
: constant Elist_Id
:= New_Elmt_List
;
8367 New_V
: Entity_Id
:= Empty
;
8369 -- The unanalyzed expression will be copied and appear in
8370 -- both functions. Normally expressions do not declare new
8371 -- entities, but quantified expressions do, so we need to
8372 -- create new entities for their bound variables, to prevent
8373 -- multiple definitions in gigi.
8375 function Reset_Loop_Variable
(N
: Node_Id
)
8376 return Traverse_Result
;
8378 procedure Collect_Loop_Variables
is
8379 new Traverse_Proc
(Reset_Loop_Variable
);
8381 ------------------------
8382 -- Reset_Loop_Variable --
8383 ------------------------
8385 function Reset_Loop_Variable
(N
: Node_Id
)
8386 return Traverse_Result
8389 if Nkind
(N
) = N_Iterator_Specification
then
8390 New_V
:= Make_Defining_Identifier
8391 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8393 Set_Defining_Identifier
(N
, New_V
);
8397 end Reset_Loop_Variable
;
8400 Append_Elmt
(Object_Entity
, Map
);
8401 Append_Elmt
(Object_Entity_M
, Map
);
8402 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8403 Collect_Loop_Variables
(Expr_M
);
8407 -- Build the main predicate function
8410 SId
: constant Entity_Id
:=
8411 Make_Defining_Identifier
(Loc
,
8412 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8413 -- The entity for the the function spec
8415 SIdB
: constant Entity_Id
:=
8416 Make_Defining_Identifier
(Loc
,
8417 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8418 -- The entity for the function body
8425 -- Build function declaration
8427 Set_Ekind
(SId
, E_Function
);
8428 Set_Is_Internal
(SId
);
8429 Set_Is_Predicate_Function
(SId
);
8430 Set_Predicate_Function
(Typ
, SId
);
8432 -- The predicate function is shared between views of a type
8434 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8435 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8439 Make_Function_Specification
(Loc
,
8440 Defining_Unit_Name
=> SId
,
8441 Parameter_Specifications
=> New_List
(
8442 Make_Parameter_Specification
(Loc
,
8443 Defining_Identifier
=> Object_Entity
,
8444 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8445 Result_Definition
=>
8446 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8449 Make_Subprogram_Declaration
(Loc
,
8450 Specification
=> Spec
);
8452 -- Build function body
8455 Make_Function_Specification
(Loc
,
8456 Defining_Unit_Name
=> SIdB
,
8457 Parameter_Specifications
=> New_List
(
8458 Make_Parameter_Specification
(Loc
,
8459 Defining_Identifier
=>
8460 Make_Defining_Identifier
(Loc
, Object_Name
),
8462 New_Occurrence_Of
(Typ
, Loc
))),
8463 Result_Definition
=>
8464 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8467 Make_Subprogram_Body
(Loc
,
8468 Specification
=> Spec
,
8469 Declarations
=> Empty_List
,
8470 Handled_Statement_Sequence
=>
8471 Make_Handled_Sequence_Of_Statements
(Loc
,
8472 Statements
=> New_List
(
8473 Make_Simple_Return_Statement
(Loc
,
8474 Expression
=> Expr
))));
8476 -- Insert declaration before freeze node and body after
8478 Insert_Before_And_Analyze
(N
, FDecl
);
8479 Insert_After_And_Analyze
(N
, FBody
);
8482 -- Test for raise expressions present and if so build M version
8484 if Raise_Expression_Present
then
8486 SId
: constant Entity_Id
:=
8487 Make_Defining_Identifier
(Loc
,
8488 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8489 -- The entity for the the function spec
8491 SIdB
: constant Entity_Id
:=
8492 Make_Defining_Identifier
(Loc
,
8493 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8494 -- The entity for the function body
8502 -- Mark any raise expressions for special expansion
8504 Process_REs
(Expr_M
);
8506 -- Build function declaration
8508 Set_Ekind
(SId
, E_Function
);
8509 Set_Is_Predicate_Function_M
(SId
);
8510 Set_Predicate_Function_M
(Typ
, SId
);
8512 -- The predicate function is shared between views of a type
8514 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8515 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8519 Make_Function_Specification
(Loc
,
8520 Defining_Unit_Name
=> SId
,
8521 Parameter_Specifications
=> New_List
(
8522 Make_Parameter_Specification
(Loc
,
8523 Defining_Identifier
=> Object_Entity_M
,
8524 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8525 Result_Definition
=>
8526 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8529 Make_Subprogram_Declaration
(Loc
,
8530 Specification
=> Spec
);
8532 -- Build function body
8535 Make_Function_Specification
(Loc
,
8536 Defining_Unit_Name
=> SIdB
,
8537 Parameter_Specifications
=> New_List
(
8538 Make_Parameter_Specification
(Loc
,
8539 Defining_Identifier
=>
8540 Make_Defining_Identifier
(Loc
, Object_Name
),
8542 New_Occurrence_Of
(Typ
, Loc
))),
8543 Result_Definition
=>
8544 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8546 -- Build the body, we declare the boolean expression before
8547 -- doing the return, because we are not really confident of
8548 -- what happens if a return appears within a return.
8551 Make_Defining_Identifier
(Loc
,
8552 Chars
=> New_Internal_Name
('B'));
8555 Make_Subprogram_Body
(Loc
,
8556 Specification
=> Spec
,
8558 Declarations
=> New_List
(
8559 Make_Object_Declaration
(Loc
,
8560 Defining_Identifier
=> BTemp
,
8561 Constant_Present
=> True,
8562 Object_Definition
=>
8563 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8564 Expression
=> Expr_M
)),
8566 Handled_Statement_Sequence
=>
8567 Make_Handled_Sequence_Of_Statements
(Loc
,
8568 Statements
=> New_List
(
8569 Make_Simple_Return_Statement
(Loc
,
8570 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8572 -- Insert declaration before freeze node and body after
8574 Insert_Before_And_Analyze
(N
, FDecl
);
8575 Insert_After_And_Analyze
(N
, FBody
);
8579 -- See if we have a static predicate. Note that the answer may be
8580 -- yes even if we have an explicit Dynamic_Predicate present.
8587 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8590 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8593 -- Case where we have a predicate-static aspect
8597 -- We don't set Has_Static_Predicate_Aspect, since we can have
8598 -- any of the three cases (Predicate, Dynamic_Predicate, or
8599 -- Static_Predicate) generating a predicate with an expression
8600 -- that is predicate-static. We just indicate that we have a
8601 -- predicate that can be treated as static.
8603 Set_Has_Static_Predicate
(Typ
);
8605 -- For discrete subtype, build the static predicate list
8607 if Is_Discrete_Type
(Typ
) then
8608 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
8610 -- If we don't get a static predicate list, it means that we
8611 -- have a case where this is not possible, most typically in
8612 -- the case where we inherit a dynamic predicate. We do not
8613 -- consider this an error, we just leave the predicate as
8614 -- dynamic. But if we do succeed in building the list, then
8615 -- we mark the predicate as static.
8617 if No
(Static_Discrete_Predicate
(Typ
)) then
8618 Set_Has_Static_Predicate
(Typ
, False);
8621 -- For real or string subtype, save predicate expression
8623 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
8624 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
8627 -- Case of dynamic predicate (expression is not predicate-static)
8630 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8631 -- is only set if we have an explicit Dynamic_Predicate aspect
8632 -- given. Here we may simply have a Predicate aspect where the
8633 -- expression happens not to be predicate-static.
8635 -- Emit an error when the predicate is categorized as static
8636 -- but its expression is not predicate-static.
8638 -- First a little fiddling to get a nice location for the
8639 -- message. If the expression is of the form (A and then B),
8640 -- then use the left operand for the Sloc. This avoids getting
8641 -- confused by a call to a higher-level predicate with a less
8642 -- convenient source location.
8645 while Nkind
(EN
) = N_And_Then
loop
8646 EN
:= Left_Opnd
(EN
);
8649 -- Now post appropriate message
8651 if Has_Static_Predicate_Aspect
(Typ
) then
8652 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
8654 ("expression is not predicate-static (RM 3.2.4(16-22))",
8658 ("static predicate requires scalar or string type", EN
);
8664 end Build_Predicate_Functions
;
8666 -----------------------------------------
8667 -- Check_Aspect_At_End_Of_Declarations --
8668 -----------------------------------------
8670 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
8671 Ent
: constant Entity_Id
:= Entity
(ASN
);
8672 Ident
: constant Node_Id
:= Identifier
(ASN
);
8673 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8675 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
8676 -- Expression to be analyzed at end of declarations
8678 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
8679 -- Expression from call to Check_Aspect_At_Freeze_Point
8681 T
: constant Entity_Id
:= Etype
(Freeze_Expr
);
8682 -- Type required for preanalyze call
8685 -- Set False if error
8687 -- On entry to this procedure, Entity (Ident) contains a copy of the
8688 -- original expression from the aspect, saved for this purpose, and
8689 -- but Expression (Ident) is a preanalyzed copy of the expression,
8690 -- preanalyzed just after the freeze point.
8692 procedure Check_Overloaded_Name
;
8693 -- For aspects whose expression is simply a name, this routine checks if
8694 -- the name is overloaded or not. If so, it verifies there is an
8695 -- interpretation that matches the entity obtained at the freeze point,
8696 -- otherwise the compiler complains.
8698 ---------------------------
8699 -- Check_Overloaded_Name --
8700 ---------------------------
8702 procedure Check_Overloaded_Name
is
8704 if not Is_Overloaded
(End_Decl_Expr
) then
8705 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
8706 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
8712 Index
: Interp_Index
;
8716 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
8717 while Present
(It
.Typ
) loop
8718 if It
.Nam
= Entity
(Freeze_Expr
) then
8723 Get_Next_Interp
(Index
, It
);
8727 end Check_Overloaded_Name
;
8729 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8732 -- Case of aspects Dimension, Dimension_System and Synchronization
8734 if A_Id
= Aspect_Synchronization
then
8737 -- Case of stream attributes, just have to compare entities. However,
8738 -- the expression is just a name (possibly overloaded), and there may
8739 -- be stream operations declared for unrelated types, so we just need
8740 -- to verify that one of these interpretations is the one available at
8741 -- at the freeze point.
8743 elsif A_Id
= Aspect_Input
or else
8744 A_Id
= Aspect_Output
or else
8745 A_Id
= Aspect_Read
or else
8748 Analyze
(End_Decl_Expr
);
8749 Check_Overloaded_Name
;
8751 elsif A_Id
= Aspect_Variable_Indexing
or else
8752 A_Id
= Aspect_Constant_Indexing
or else
8753 A_Id
= Aspect_Default_Iterator
or else
8754 A_Id
= Aspect_Iterator_Element
8756 -- Make type unfrozen before analysis, to prevent spurious errors
8757 -- about late attributes.
8759 Set_Is_Frozen
(Ent
, False);
8760 Analyze
(End_Decl_Expr
);
8761 Set_Is_Frozen
(Ent
, True);
8763 -- If the end of declarations comes before any other freeze
8764 -- point, the Freeze_Expr is not analyzed: no check needed.
8766 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
8767 Check_Overloaded_Name
;
8775 -- Indicate that the expression comes from an aspect specification,
8776 -- which is used in subsequent analysis even if expansion is off.
8778 Set_Parent
(End_Decl_Expr
, ASN
);
8780 -- In a generic context the aspect expressions have not been
8781 -- preanalyzed, so do it now. There are no conformance checks
8782 -- to perform in this case.
8785 Check_Aspect_At_Freeze_Point
(ASN
);
8788 -- The default values attributes may be defined in the private part,
8789 -- and the analysis of the expression may take place when only the
8790 -- partial view is visible. The expression must be scalar, so use
8791 -- the full view to resolve.
8793 elsif (A_Id
= Aspect_Default_Value
8795 A_Id
= Aspect_Default_Component_Value
)
8796 and then Is_Private_Type
(T
)
8798 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
8801 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
8804 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
8807 -- Output error message if error. Force error on aspect specification
8808 -- even if there is an error on the expression itself.
8812 ("!visibility of aspect for& changes after freeze point",
8815 ("info: & is frozen here, aspects evaluated at this point??",
8816 Freeze_Node
(Ent
), Ent
);
8818 end Check_Aspect_At_End_Of_Declarations
;
8820 ----------------------------------
8821 -- Check_Aspect_At_Freeze_Point --
8822 ----------------------------------
8824 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
8825 Ident
: constant Node_Id
:= Identifier
(ASN
);
8826 -- Identifier (use Entity field to save expression)
8828 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8830 T
: Entity_Id
:= Empty
;
8831 -- Type required for preanalyze call
8834 -- On entry to this procedure, Entity (Ident) contains a copy of the
8835 -- original expression from the aspect, saved for this purpose.
8837 -- On exit from this procedure Entity (Ident) is unchanged, still
8838 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8839 -- of the expression, preanalyzed just after the freeze point.
8841 -- Make a copy of the expression to be preanalyzed
8843 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
8845 -- Find type for preanalyze call
8849 -- No_Aspect should be impossible
8852 raise Program_Error
;
8854 -- Aspects taking an optional boolean argument
8856 when Boolean_Aspects |
8857 Library_Unit_Aspects
=>
8859 T
:= Standard_Boolean
;
8861 -- Aspects corresponding to attribute definition clauses
8863 when Aspect_Address
=>
8864 T
:= RTE
(RE_Address
);
8866 when Aspect_Attach_Handler
=>
8867 T
:= RTE
(RE_Interrupt_ID
);
8869 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order
=>
8870 T
:= RTE
(RE_Bit_Order
);
8872 when Aspect_Convention
=>
8876 T
:= RTE
(RE_CPU_Range
);
8878 -- Default_Component_Value is resolved with the component type
8880 when Aspect_Default_Component_Value
=>
8881 T
:= Component_Type
(Entity
(ASN
));
8883 when Aspect_Default_Storage_Pool
=>
8884 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
8886 -- Default_Value is resolved with the type entity in question
8888 when Aspect_Default_Value
=>
8891 when Aspect_Dispatching_Domain
=>
8892 T
:= RTE
(RE_Dispatching_Domain
);
8894 when Aspect_External_Tag
=>
8895 T
:= Standard_String
;
8897 when Aspect_External_Name
=>
8898 T
:= Standard_String
;
8900 when Aspect_Link_Name
=>
8901 T
:= Standard_String
;
8903 when Aspect_Priority | Aspect_Interrupt_Priority
=>
8904 T
:= Standard_Integer
;
8906 when Aspect_Relative_Deadline
=>
8907 T
:= RTE
(RE_Time_Span
);
8909 when Aspect_Small
=>
8910 T
:= Universal_Real
;
8912 -- For a simple storage pool, we have to retrieve the type of the
8913 -- pool object associated with the aspect's corresponding attribute
8914 -- definition clause.
8916 when Aspect_Simple_Storage_Pool
=>
8917 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
8919 when Aspect_Storage_Pool
=>
8920 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
8922 when Aspect_Alignment |
8923 Aspect_Component_Size |
8924 Aspect_Machine_Radix |
8925 Aspect_Object_Size |
8927 Aspect_Storage_Size |
8928 Aspect_Stream_Size |
8929 Aspect_Value_Size
=>
8932 when Aspect_Linker_Section
=>
8933 T
:= Standard_String
;
8935 when Aspect_Synchronization
=>
8938 -- Special case, the expression of these aspects is just an entity
8939 -- that does not need any resolution, so just analyze.
8948 Analyze
(Expression
(ASN
));
8951 -- Same for Iterator aspects, where the expression is a function
8952 -- name. Legality rules are checked separately.
8954 when Aspect_Constant_Indexing |
8955 Aspect_Default_Iterator |
8956 Aspect_Iterator_Element |
8957 Aspect_Variable_Indexing
=>
8958 Analyze
(Expression
(ASN
));
8961 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8963 when Aspect_Iterable
=>
8967 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
8972 if Cursor
= Any_Type
then
8976 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
8977 while Present
(Assoc
) loop
8978 Expr
:= Expression
(Assoc
);
8981 if not Error_Posted
(Expr
) then
8982 Resolve_Iterable_Operation
8983 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
8992 -- Invariant/Predicate take boolean expressions
8994 when Aspect_Dynamic_Predicate |
8997 Aspect_Static_Predicate |
8998 Aspect_Type_Invariant
=>
8999 T
:= Standard_Boolean
;
9001 -- Here is the list of aspects that don't require delay analysis
9003 when Aspect_Abstract_State |
9005 Aspect_Contract_Cases |
9006 Aspect_Default_Initial_Condition |
9009 Aspect_Dimension_System |
9010 Aspect_Extensions_Visible |
9013 Aspect_Implicit_Dereference |
9014 Aspect_Initial_Condition |
9015 Aspect_Initializes |
9016 Aspect_Obsolescent |
9019 Aspect_Postcondition |
9021 Aspect_Precondition |
9022 Aspect_Refined_Depends |
9023 Aspect_Refined_Global |
9024 Aspect_Refined_Post |
9025 Aspect_Refined_State |
9028 raise Program_Error
;
9032 -- Do the preanalyze call
9034 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
9035 end Check_Aspect_At_Freeze_Point
;
9037 -----------------------------------
9038 -- Check_Constant_Address_Clause --
9039 -----------------------------------
9041 procedure Check_Constant_Address_Clause
9045 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9046 -- Checks that the given node N represents a name whose 'Address is
9047 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9048 -- address value is the same at the point of declaration of U_Ent and at
9049 -- the time of elaboration of the address clause.
9051 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9052 -- Checks that Nod meets the requirements for a constant address clause
9053 -- in the sense of the enclosing procedure.
9055 procedure Check_List_Constants
(Lst
: List_Id
);
9056 -- Check that all elements of list Lst meet the requirements for a
9057 -- constant address clause in the sense of the enclosing procedure.
9059 -------------------------------
9060 -- Check_At_Constant_Address --
9061 -------------------------------
9063 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9065 if Is_Entity_Name
(Nod
) then
9066 if Present
(Address_Clause
(Entity
((Nod
)))) then
9068 ("invalid address clause for initialized object &!",
9071 ("address for& cannot" &
9072 " depend on another address clause! (RM 13.1(22))!",
9075 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9076 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9079 ("invalid address clause for initialized object &!",
9081 Error_Msg_Node_2
:= U_Ent
;
9083 ("\& must be defined before & (RM 13.1(22))!",
9087 elsif Nkind
(Nod
) = N_Selected_Component
then
9089 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9092 if (Is_Record_Type
(T
)
9093 and then Has_Discriminants
(T
))
9096 and then Is_Record_Type
(Designated_Type
(T
))
9097 and then Has_Discriminants
(Designated_Type
(T
)))
9100 ("invalid address clause for initialized object &!",
9103 ("\address cannot depend on component" &
9104 " of discriminated record (RM 13.1(22))!",
9107 Check_At_Constant_Address
(Prefix
(Nod
));
9111 elsif Nkind
(Nod
) = N_Indexed_Component
then
9112 Check_At_Constant_Address
(Prefix
(Nod
));
9113 Check_List_Constants
(Expressions
(Nod
));
9116 Check_Expr_Constants
(Nod
);
9118 end Check_At_Constant_Address
;
9120 --------------------------
9121 -- Check_Expr_Constants --
9122 --------------------------
9124 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9125 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9126 Ent
: Entity_Id
:= Empty
;
9129 if Nkind
(Nod
) in N_Has_Etype
9130 and then Etype
(Nod
) = Any_Type
9136 when N_Empty | N_Error
=>
9139 when N_Identifier | N_Expanded_Name
=>
9140 Ent
:= Entity
(Nod
);
9142 -- We need to look at the original node if it is different
9143 -- from the node, since we may have rewritten things and
9144 -- substituted an identifier representing the rewrite.
9146 if Original_Node
(Nod
) /= Nod
then
9147 Check_Expr_Constants
(Original_Node
(Nod
));
9149 -- If the node is an object declaration without initial
9150 -- value, some code has been expanded, and the expression
9151 -- is not constant, even if the constituents might be
9152 -- acceptable, as in A'Address + offset.
9154 if Ekind
(Ent
) = E_Variable
9156 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9158 No
(Expression
(Declaration_Node
(Ent
)))
9161 ("invalid address clause for initialized object &!",
9164 -- If entity is constant, it may be the result of expanding
9165 -- a check. We must verify that its declaration appears
9166 -- before the object in question, else we also reject the
9169 elsif Ekind
(Ent
) = E_Constant
9170 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9171 and then Sloc
(Ent
) > Loc_U_Ent
9174 ("invalid address clause for initialized object &!",
9181 -- Otherwise look at the identifier and see if it is OK
9183 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9184 or else Is_Type
(Ent
)
9188 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9190 -- This is the case where we must have Ent defined before
9191 -- U_Ent. Clearly if they are in different units this
9192 -- requirement is met since the unit containing Ent is
9193 -- already processed.
9195 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9198 -- Otherwise location of Ent must be before the location
9199 -- of U_Ent, that's what prior defined means.
9201 elsif Sloc
(Ent
) < Loc_U_Ent
then
9206 ("invalid address clause for initialized object &!",
9208 Error_Msg_Node_2
:= U_Ent
;
9210 ("\& must be defined before & (RM 13.1(22))!",
9214 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9215 Check_Expr_Constants
(Original_Node
(Nod
));
9219 ("invalid address clause for initialized object &!",
9222 if Comes_From_Source
(Ent
) then
9224 ("\reference to variable& not allowed"
9225 & " (RM 13.1(22))!", Nod
, Ent
);
9228 ("non-static expression not allowed"
9229 & " (RM 13.1(22))!", Nod
);
9233 when N_Integer_Literal
=>
9235 -- If this is a rewritten unchecked conversion, in a system
9236 -- where Address is an integer type, always use the base type
9237 -- for a literal value. This is user-friendly and prevents
9238 -- order-of-elaboration issues with instances of unchecked
9241 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9242 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9245 when N_Real_Literal |
9247 N_Character_Literal
=>
9251 Check_Expr_Constants
(Low_Bound
(Nod
));
9252 Check_Expr_Constants
(High_Bound
(Nod
));
9254 when N_Explicit_Dereference
=>
9255 Check_Expr_Constants
(Prefix
(Nod
));
9257 when N_Indexed_Component
=>
9258 Check_Expr_Constants
(Prefix
(Nod
));
9259 Check_List_Constants
(Expressions
(Nod
));
9262 Check_Expr_Constants
(Prefix
(Nod
));
9263 Check_Expr_Constants
(Discrete_Range
(Nod
));
9265 when N_Selected_Component
=>
9266 Check_Expr_Constants
(Prefix
(Nod
));
9268 when N_Attribute_Reference
=>
9269 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9271 Name_Unchecked_Access
,
9272 Name_Unrestricted_Access
)
9274 Check_At_Constant_Address
(Prefix
(Nod
));
9277 Check_Expr_Constants
(Prefix
(Nod
));
9278 Check_List_Constants
(Expressions
(Nod
));
9282 Check_List_Constants
(Component_Associations
(Nod
));
9283 Check_List_Constants
(Expressions
(Nod
));
9285 when N_Component_Association
=>
9286 Check_Expr_Constants
(Expression
(Nod
));
9288 when N_Extension_Aggregate
=>
9289 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9290 Check_List_Constants
(Component_Associations
(Nod
));
9291 Check_List_Constants
(Expressions
(Nod
));
9296 when N_Binary_Op | N_Short_Circuit | N_Membership_Test
=>
9297 Check_Expr_Constants
(Left_Opnd
(Nod
));
9298 Check_Expr_Constants
(Right_Opnd
(Nod
));
9301 Check_Expr_Constants
(Right_Opnd
(Nod
));
9303 when N_Type_Conversion |
9304 N_Qualified_Expression |
9306 N_Unchecked_Type_Conversion
=>
9307 Check_Expr_Constants
(Expression
(Nod
));
9309 when N_Function_Call
=>
9310 if not Is_Pure
(Entity
(Name
(Nod
))) then
9312 ("invalid address clause for initialized object &!",
9316 ("\function & is not pure (RM 13.1(22))!",
9317 Nod
, Entity
(Name
(Nod
)));
9320 Check_List_Constants
(Parameter_Associations
(Nod
));
9323 when N_Parameter_Association
=>
9324 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9328 ("invalid address clause for initialized object &!",
9331 ("\must be constant defined before& (RM 13.1(22))!",
9334 end Check_Expr_Constants
;
9336 --------------------------
9337 -- Check_List_Constants --
9338 --------------------------
9340 procedure Check_List_Constants
(Lst
: List_Id
) is
9344 if Present
(Lst
) then
9345 Nod1
:= First
(Lst
);
9346 while Present
(Nod1
) loop
9347 Check_Expr_Constants
(Nod1
);
9351 end Check_List_Constants
;
9353 -- Start of processing for Check_Constant_Address_Clause
9356 -- If rep_clauses are to be ignored, no need for legality checks. In
9357 -- particular, no need to pester user about rep clauses that violate the
9358 -- rule on constant addresses, given that these clauses will be removed
9359 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9360 -- we want to relax these checks.
9362 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9363 Check_Expr_Constants
(Expr
);
9365 end Check_Constant_Address_Clause
;
9367 ---------------------------
9368 -- Check_Pool_Size_Clash --
9369 ---------------------------
9371 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9375 -- We need to find out which one came first. Note that in the case of
9376 -- aspects mixed with pragmas there are cases where the processing order
9377 -- is reversed, which is why we do the check here.
9379 if Sloc
(SP
) < Sloc
(SS
) then
9380 Error_Msg_Sloc
:= Sloc
(SP
);
9382 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9385 Error_Msg_Sloc
:= Sloc
(SS
);
9387 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9391 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9392 end Check_Pool_Size_Clash
;
9394 ----------------------------------------
9395 -- Check_Record_Representation_Clause --
9396 ----------------------------------------
9398 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9399 Loc
: constant Source_Ptr
:= Sloc
(N
);
9400 Ident
: constant Node_Id
:= Identifier
(N
);
9401 Rectype
: Entity_Id
;
9406 Hbit
: Uint
:= Uint_0
;
9410 Max_Bit_So_Far
: Uint
;
9411 -- Records the maximum bit position so far. If all field positions
9412 -- are monotonically increasing, then we can skip the circuit for
9413 -- checking for overlap, since no overlap is possible.
9415 Tagged_Parent
: Entity_Id
:= Empty
;
9416 -- This is set in the case of a derived tagged type for which we have
9417 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9418 -- positioned by record representation clauses). In this case we must
9419 -- check for overlap between components of this tagged type, and the
9420 -- components of its parent. Tagged_Parent will point to this parent
9421 -- type. For all other cases Tagged_Parent is left set to Empty.
9423 Parent_Last_Bit
: Uint
;
9424 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9425 -- last bit position for any field in the parent type. We only need to
9426 -- check overlap for fields starting below this point.
9428 Overlap_Check_Required
: Boolean;
9429 -- Used to keep track of whether or not an overlap check is required
9431 Overlap_Detected
: Boolean := False;
9432 -- Set True if an overlap is detected
9434 Ccount
: Natural := 0;
9435 -- Number of component clauses in record rep clause
9437 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9438 -- Given two entities for record components or discriminants, checks
9439 -- if they have overlapping component clauses and issues errors if so.
9441 procedure Find_Component
;
9442 -- Finds component entity corresponding to current component clause (in
9443 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9444 -- start/stop bits for the field. If there is no matching component or
9445 -- if the matching component does not have a component clause, then
9446 -- that's an error and Comp is set to Empty, but no error message is
9447 -- issued, since the message was already given. Comp is also set to
9448 -- Empty if the current "component clause" is in fact a pragma.
9450 -----------------------------
9451 -- Check_Component_Overlap --
9452 -----------------------------
9454 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9455 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9456 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9459 if Present
(CC1
) and then Present
(CC2
) then
9461 -- Exclude odd case where we have two tag components in the same
9462 -- record, both at location zero. This seems a bit strange, but
9463 -- it seems to happen in some circumstances, perhaps on an error.
9465 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9469 -- Here we check if the two fields overlap
9472 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9473 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9474 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9475 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
9478 if E2
<= S1
or else E1
<= S2
then
9481 Error_Msg_Node_2
:= Component_Name
(CC2
);
9482 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
9483 Error_Msg_Node_1
:= Component_Name
(CC1
);
9485 ("component& overlaps & #", Component_Name
(CC1
));
9486 Overlap_Detected
:= True;
9490 end Check_Component_Overlap
;
9492 --------------------
9493 -- Find_Component --
9494 --------------------
9496 procedure Find_Component
is
9498 procedure Search_Component
(R
: Entity_Id
);
9499 -- Search components of R for a match. If found, Comp is set
9501 ----------------------
9502 -- Search_Component --
9503 ----------------------
9505 procedure Search_Component
(R
: Entity_Id
) is
9507 Comp
:= First_Component_Or_Discriminant
(R
);
9508 while Present
(Comp
) loop
9510 -- Ignore error of attribute name for component name (we
9511 -- already gave an error message for this, so no need to
9514 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
9517 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
9520 Next_Component_Or_Discriminant
(Comp
);
9522 end Search_Component
;
9524 -- Start of processing for Find_Component
9527 -- Return with Comp set to Empty if we have a pragma
9529 if Nkind
(CC
) = N_Pragma
then
9534 -- Search current record for matching component
9536 Search_Component
(Rectype
);
9538 -- If not found, maybe component of base type discriminant that is
9539 -- absent from statically constrained first subtype.
9542 Search_Component
(Base_Type
(Rectype
));
9545 -- If no component, or the component does not reference the component
9546 -- clause in question, then there was some previous error for which
9547 -- we already gave a message, so just return with Comp Empty.
9549 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
9550 Check_Error_Detected
;
9553 -- Normal case where we have a component clause
9556 Fbit
:= Component_Bit_Offset
(Comp
);
9557 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
9561 -- Start of processing for Check_Record_Representation_Clause
9565 Rectype
:= Entity
(Ident
);
9567 if Rectype
= Any_Type
then
9570 Rectype
:= Underlying_Type
(Rectype
);
9573 -- See if we have a fully repped derived tagged type
9576 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
9579 if Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
9580 Tagged_Parent
:= PS
;
9582 -- Find maximum bit of any component of the parent type
9584 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
9585 Pcomp
:= First_Entity
(Tagged_Parent
);
9586 while Present
(Pcomp
) loop
9587 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
9588 if Component_Bit_Offset
(Pcomp
) /= No_Uint
9589 and then Known_Static_Esize
(Pcomp
)
9594 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
9597 Next_Entity
(Pcomp
);
9603 -- All done if no component clauses
9605 CC
:= First
(Component_Clauses
(N
));
9611 -- If a tag is present, then create a component clause that places it
9612 -- at the start of the record (otherwise gigi may place it after other
9613 -- fields that have rep clauses).
9615 Fent
:= First_Entity
(Rectype
);
9617 if Nkind
(Fent
) = N_Defining_Identifier
9618 and then Chars
(Fent
) = Name_uTag
9620 Set_Component_Bit_Offset
(Fent
, Uint_0
);
9621 Set_Normalized_Position
(Fent
, Uint_0
);
9622 Set_Normalized_First_Bit
(Fent
, Uint_0
);
9623 Set_Normalized_Position_Max
(Fent
, Uint_0
);
9624 Init_Esize
(Fent
, System_Address_Size
);
9626 Set_Component_Clause
(Fent
,
9627 Make_Component_Clause
(Loc
,
9628 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
9630 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
9631 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
9633 Make_Integer_Literal
(Loc
,
9634 UI_From_Int
(System_Address_Size
))));
9636 Ccount
:= Ccount
+ 1;
9639 Max_Bit_So_Far
:= Uint_Minus_1
;
9640 Overlap_Check_Required
:= False;
9642 -- Process the component clauses
9644 while Present
(CC
) loop
9647 if Present
(Comp
) then
9648 Ccount
:= Ccount
+ 1;
9650 -- We need a full overlap check if record positions non-monotonic
9652 if Fbit
<= Max_Bit_So_Far
then
9653 Overlap_Check_Required
:= True;
9656 Max_Bit_So_Far
:= Lbit
;
9658 -- Check bit position out of range of specified size
9660 if Has_Size_Clause
(Rectype
)
9661 and then RM_Size
(Rectype
) <= Lbit
9664 ("bit number out of range of specified size",
9667 -- Check for overlap with tag component
9670 if Is_Tagged_Type
(Rectype
)
9671 and then Fbit
< System_Address_Size
9674 ("component overlaps tag field of&",
9675 Component_Name
(CC
), Rectype
);
9676 Overlap_Detected
:= True;
9684 -- Check parent overlap if component might overlap parent field
9686 if Present
(Tagged_Parent
) and then Fbit
<= Parent_Last_Bit
then
9687 Pcomp
:= First_Component_Or_Discriminant
(Tagged_Parent
);
9688 while Present
(Pcomp
) loop
9689 if not Is_Tag
(Pcomp
)
9690 and then Chars
(Pcomp
) /= Name_uParent
9692 Check_Component_Overlap
(Comp
, Pcomp
);
9695 Next_Component_Or_Discriminant
(Pcomp
);
9703 -- Now that we have processed all the component clauses, check for
9704 -- overlap. We have to leave this till last, since the components can
9705 -- appear in any arbitrary order in the representation clause.
9707 -- We do not need this check if all specified ranges were monotonic,
9708 -- as recorded by Overlap_Check_Required being False at this stage.
9710 -- This first section checks if there are any overlapping entries at
9711 -- all. It does this by sorting all entries and then seeing if there are
9712 -- any overlaps. If there are none, then that is decisive, but if there
9713 -- are overlaps, they may still be OK (they may result from fields in
9714 -- different variants).
9716 if Overlap_Check_Required
then
9717 Overlap_Check1
: declare
9719 OC_Fbit
: array (0 .. Ccount
) of Uint
;
9720 -- First-bit values for component clauses, the value is the offset
9721 -- of the first bit of the field from start of record. The zero
9722 -- entry is for use in sorting.
9724 OC_Lbit
: array (0 .. Ccount
) of Uint
;
9725 -- Last-bit values for component clauses, the value is the offset
9726 -- of the last bit of the field from start of record. The zero
9727 -- entry is for use in sorting.
9729 OC_Count
: Natural := 0;
9730 -- Count of entries in OC_Fbit and OC_Lbit
9732 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
9733 -- Compare routine for Sort
9735 procedure OC_Move
(From
: Natural; To
: Natural);
9736 -- Move routine for Sort
9738 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
9744 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
9746 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
9753 procedure OC_Move
(From
: Natural; To
: Natural) is
9755 OC_Fbit
(To
) := OC_Fbit
(From
);
9756 OC_Lbit
(To
) := OC_Lbit
(From
);
9759 -- Start of processing for Overlap_Check
9762 CC
:= First
(Component_Clauses
(N
));
9763 while Present
(CC
) loop
9765 -- Exclude component clause already marked in error
9767 if not Error_Posted
(CC
) then
9770 if Present
(Comp
) then
9771 OC_Count
:= OC_Count
+ 1;
9772 OC_Fbit
(OC_Count
) := Fbit
;
9773 OC_Lbit
(OC_Count
) := Lbit
;
9780 Sorting
.Sort
(OC_Count
);
9782 Overlap_Check_Required
:= False;
9783 for J
in 1 .. OC_Count
- 1 loop
9784 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
9785 Overlap_Check_Required
:= True;
9792 -- If Overlap_Check_Required is still True, then we have to do the full
9793 -- scale overlap check, since we have at least two fields that do
9794 -- overlap, and we need to know if that is OK since they are in
9795 -- different variant, or whether we have a definite problem.
9797 if Overlap_Check_Required
then
9798 Overlap_Check2
: declare
9799 C1_Ent
, C2_Ent
: Entity_Id
;
9800 -- Entities of components being checked for overlap
9803 -- Component_List node whose Component_Items are being checked
9806 -- Component declaration for component being checked
9809 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
9811 -- Loop through all components in record. For each component check
9812 -- for overlap with any of the preceding elements on the component
9813 -- list containing the component and also, if the component is in
9814 -- a variant, check against components outside the case structure.
9815 -- This latter test is repeated recursively up the variant tree.
9817 Main_Component_Loop
: while Present
(C1_Ent
) loop
9818 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
9819 goto Continue_Main_Component_Loop
;
9822 -- Skip overlap check if entity has no declaration node. This
9823 -- happens with discriminants in constrained derived types.
9824 -- Possibly we are missing some checks as a result, but that
9825 -- does not seem terribly serious.
9827 if No
(Declaration_Node
(C1_Ent
)) then
9828 goto Continue_Main_Component_Loop
;
9831 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
9833 -- Loop through component lists that need checking. Check the
9834 -- current component list and all lists in variants above us.
9836 Component_List_Loop
: loop
9838 -- If derived type definition, go to full declaration
9839 -- If at outer level, check discriminants if there are any.
9841 if Nkind
(Clist
) = N_Derived_Type_Definition
then
9842 Clist
:= Parent
(Clist
);
9845 -- Outer level of record definition, check discriminants
9847 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
9848 N_Private_Type_Declaration
)
9850 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
9852 First_Discriminant
(Defining_Identifier
(Clist
));
9853 while Present
(C2_Ent
) loop
9854 exit when C1_Ent
= C2_Ent
;
9855 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9856 Next_Discriminant
(C2_Ent
);
9860 -- Record extension case
9862 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
9865 -- Otherwise check one component list
9868 Citem
:= First
(Component_Items
(Clist
));
9869 while Present
(Citem
) loop
9870 if Nkind
(Citem
) = N_Component_Declaration
then
9871 C2_Ent
:= Defining_Identifier
(Citem
);
9872 exit when C1_Ent
= C2_Ent
;
9873 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9880 -- Check for variants above us (the parent of the Clist can
9881 -- be a variant, in which case its parent is a variant part,
9882 -- and the parent of the variant part is a component list
9883 -- whose components must all be checked against the current
9884 -- component for overlap).
9886 if Nkind
(Parent
(Clist
)) = N_Variant
then
9887 Clist
:= Parent
(Parent
(Parent
(Clist
)));
9889 -- Check for possible discriminant part in record, this
9890 -- is treated essentially as another level in the
9891 -- recursion. For this case the parent of the component
9892 -- list is the record definition, and its parent is the
9893 -- full type declaration containing the discriminant
9896 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
9897 Clist
:= Parent
(Parent
((Clist
)));
9899 -- If neither of these two cases, we are at the top of
9903 exit Component_List_Loop
;
9905 end loop Component_List_Loop
;
9907 <<Continue_Main_Component_Loop
>>
9908 Next_Entity
(C1_Ent
);
9910 end loop Main_Component_Loop
;
9914 -- The following circuit deals with warning on record holes (gaps). We
9915 -- skip this check if overlap was detected, since it makes sense for the
9916 -- programmer to fix this illegality before worrying about warnings.
9918 if not Overlap_Detected
and Warn_On_Record_Holes
then
9919 Record_Hole_Check
: declare
9920 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
9921 -- Full declaration of record type
9923 procedure Check_Component_List
9927 -- Check component list CL for holes. The starting bit should be
9928 -- Sbit. which is zero for the main record component list and set
9929 -- appropriately for recursive calls for variants. DS is set to
9930 -- a list of discriminant specifications to be included in the
9931 -- consideration of components. It is No_List if none to consider.
9933 --------------------------
9934 -- Check_Component_List --
9935 --------------------------
9937 procedure Check_Component_List
9945 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
9947 if DS
/= No_List
then
9948 Compl
:= Compl
+ Integer (List_Length
(DS
));
9952 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
9953 -- Gather components (zero entry is for sort routine)
9955 Ncomps
: Natural := 0;
9956 -- Number of entries stored in Comps (starting at Comps (1))
9959 -- One component item or discriminant specification
9962 -- Starting bit for next component
9970 function Lt
(Op1
, Op2
: Natural) return Boolean;
9971 -- Compare routine for Sort
9973 procedure Move
(From
: Natural; To
: Natural);
9974 -- Move routine for Sort
9976 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
9982 function Lt
(Op1
, Op2
: Natural) return Boolean is
9984 return Component_Bit_Offset
(Comps
(Op1
))
9986 Component_Bit_Offset
(Comps
(Op2
));
9993 procedure Move
(From
: Natural; To
: Natural) is
9995 Comps
(To
) := Comps
(From
);
9999 -- Gather discriminants into Comp
10001 if DS
/= No_List
then
10002 Citem
:= First
(DS
);
10003 while Present
(Citem
) loop
10004 if Nkind
(Citem
) = N_Discriminant_Specification
then
10006 Ent
: constant Entity_Id
:=
10007 Defining_Identifier
(Citem
);
10009 if Ekind
(Ent
) = E_Discriminant
then
10010 Ncomps
:= Ncomps
+ 1;
10011 Comps
(Ncomps
) := Ent
;
10020 -- Gather component entities into Comp
10022 Citem
:= First
(Component_Items
(CL
));
10023 while Present
(Citem
) loop
10024 if Nkind
(Citem
) = N_Component_Declaration
then
10025 Ncomps
:= Ncomps
+ 1;
10026 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
10032 -- Now sort the component entities based on the first bit.
10033 -- Note we already know there are no overlapping components.
10035 Sorting
.Sort
(Ncomps
);
10037 -- Loop through entries checking for holes
10040 for J
in 1 .. Ncomps
loop
10042 Error_Msg_Uint_1
:= Component_Bit_Offset
(CEnt
) - Nbit
;
10044 if Error_Msg_Uint_1
> 0 then
10046 ("?H?^-bit gap before component&",
10047 Component_Name
(Component_Clause
(CEnt
)), CEnt
);
10050 Nbit
:= Component_Bit_Offset
(CEnt
) + Esize
(CEnt
);
10053 -- Process variant parts recursively if present
10055 if Present
(Variant_Part
(CL
)) then
10056 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10057 while Present
(Variant
) loop
10058 Check_Component_List
10059 (Component_List
(Variant
), Nbit
, No_List
);
10064 end Check_Component_List
;
10066 -- Start of processing for Record_Hole_Check
10073 if Is_Tagged_Type
(Rectype
) then
10074 Sbit
:= UI_From_Int
(System_Address_Size
);
10079 if Nkind
(Decl
) = N_Full_Type_Declaration
10080 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10082 Check_Component_List
10083 (Component_List
(Type_Definition
(Decl
)),
10085 Discriminant_Specifications
(Decl
));
10088 end Record_Hole_Check
;
10091 -- For records that have component clauses for all components, and whose
10092 -- size is less than or equal to 32, we need to know the size in the
10093 -- front end to activate possible packed array processing where the
10094 -- component type is a record.
10096 -- At this stage Hbit + 1 represents the first unused bit from all the
10097 -- component clauses processed, so if the component clauses are
10098 -- complete, then this is the length of the record.
10100 -- For records longer than System.Storage_Unit, and for those where not
10101 -- all components have component clauses, the back end determines the
10102 -- length (it may for example be appropriate to round up the size
10103 -- to some convenient boundary, based on alignment considerations, etc).
10105 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10107 -- Nothing to do if at least one component has no component clause
10109 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10110 while Present
(Comp
) loop
10111 exit when No
(Component_Clause
(Comp
));
10112 Next_Component_Or_Discriminant
(Comp
);
10115 -- If we fall out of loop, all components have component clauses
10116 -- and so we can set the size to the maximum value.
10119 Set_RM_Size
(Rectype
, Hbit
+ 1);
10122 end Check_Record_Representation_Clause
;
10128 procedure Check_Size
10132 Biased
: out Boolean)
10134 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10140 -- Reject patently improper size values.
10142 if Is_Elementary_Type
(T
)
10143 and then Siz
> UI_From_Int
(Int
'Last)
10145 Error_Msg_N
("Size value too large for elementary type", N
);
10147 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10149 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10153 -- Dismiss generic types
10155 if Is_Generic_Type
(T
)
10157 Is_Generic_Type
(UT
)
10159 Is_Generic_Type
(Root_Type
(UT
))
10163 -- Guard against previous errors
10165 elsif No
(UT
) or else UT
= Any_Type
then
10166 Check_Error_Detected
;
10169 -- Check case of bit packed array
10171 elsif Is_Array_Type
(UT
)
10172 and then Known_Static_Component_Size
(UT
)
10173 and then Is_Bit_Packed_Array
(UT
)
10181 Asiz
:= Component_Size
(UT
);
10182 Indx
:= First_Index
(UT
);
10184 Ityp
:= Etype
(Indx
);
10186 -- If non-static bound, then we are not in the business of
10187 -- trying to check the length, and indeed an error will be
10188 -- issued elsewhere, since sizes of non-static array types
10189 -- cannot be set implicitly or explicitly.
10191 if not Is_OK_Static_Subtype
(Ityp
) then
10195 -- Otherwise accumulate next dimension
10197 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10198 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10202 exit when No
(Indx
);
10205 if Asiz
<= Siz
then
10209 Error_Msg_Uint_1
:= Asiz
;
10211 ("size for& too small, minimum allowed is ^", N
, T
);
10212 Set_Esize
(T
, Asiz
);
10213 Set_RM_Size
(T
, Asiz
);
10217 -- All other composite types are ignored
10219 elsif Is_Composite_Type
(UT
) then
10222 -- For fixed-point types, don't check minimum if type is not frozen,
10223 -- since we don't know all the characteristics of the type that can
10224 -- affect the size (e.g. a specified small) till freeze time.
10226 elsif Is_Fixed_Point_Type
(UT
)
10227 and then not Is_Frozen
(UT
)
10231 -- Cases for which a minimum check is required
10234 -- Ignore if specified size is correct for the type
10236 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10240 -- Otherwise get minimum size
10242 M
:= UI_From_Int
(Minimum_Size
(UT
));
10246 -- Size is less than minimum size, but one possibility remains
10247 -- that we can manage with the new size if we bias the type.
10249 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10252 Error_Msg_Uint_1
:= M
;
10254 ("size for& too small, minimum allowed is ^", N
, T
);
10256 Set_RM_Size
(T
, M
);
10264 --------------------------
10265 -- Freeze_Entity_Checks --
10266 --------------------------
10268 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10269 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10270 -- Inspect the primitive operations of type Typ and hide all pairs of
10271 -- implicitly declared non-overridden non-fully conformant homographs
10272 -- (Ada RM 8.3 12.3/2).
10274 -------------------------------------
10275 -- Hide_Non_Overridden_Subprograms --
10276 -------------------------------------
10278 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10279 procedure Hide_Matching_Homographs
10280 (Subp_Id
: Entity_Id
;
10281 Start_Elmt
: Elmt_Id
);
10282 -- Inspect a list of primitive operations starting with Start_Elmt
10283 -- and find matching implicitly declared non-overridden non-fully
10284 -- conformant homographs of Subp_Id. If found, all matches along
10285 -- with Subp_Id are hidden from all visibility.
10287 function Is_Non_Overridden_Or_Null_Procedure
10288 (Subp_Id
: Entity_Id
) return Boolean;
10289 -- Determine whether subprogram Subp_Id is implicitly declared non-
10290 -- overridden subprogram or an implicitly declared null procedure.
10292 ------------------------------
10293 -- Hide_Matching_Homographs --
10294 ------------------------------
10296 procedure Hide_Matching_Homographs
10297 (Subp_Id
: Entity_Id
;
10298 Start_Elmt
: Elmt_Id
)
10301 Prim_Elmt
: Elmt_Id
;
10304 Prim_Elmt
:= Start_Elmt
;
10305 while Present
(Prim_Elmt
) loop
10306 Prim
:= Node
(Prim_Elmt
);
10308 -- The current primitive is implicitly declared non-overridden
10309 -- non-fully conformant homograph of Subp_Id. Both subprograms
10310 -- must be hidden from visibility.
10312 if Chars
(Prim
) = Chars
(Subp_Id
)
10313 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10314 and then not Fully_Conformant
(Prim
, Subp_Id
)
10316 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10317 Set_Is_Immediately_Visible
(Prim
, False);
10318 Set_Is_Potentially_Use_Visible
(Prim
, False);
10320 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10321 Set_Is_Immediately_Visible
(Subp_Id
, False);
10322 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10325 Next_Elmt
(Prim_Elmt
);
10327 end Hide_Matching_Homographs
;
10329 -----------------------------------------
10330 -- Is_Non_Overridden_Or_Null_Procedure --
10331 -----------------------------------------
10333 function Is_Non_Overridden_Or_Null_Procedure
10334 (Subp_Id
: Entity_Id
) return Boolean
10336 Alias_Id
: Entity_Id
;
10339 -- The subprogram is inherited (implicitly declared), it does not
10340 -- override and does not cover a primitive of an interface.
10342 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10343 and then Present
(Alias
(Subp_Id
))
10344 and then No
(Interface_Alias
(Subp_Id
))
10345 and then No
(Overridden_Operation
(Subp_Id
))
10347 Alias_Id
:= Alias
(Subp_Id
);
10349 if Requires_Overriding
(Alias_Id
) then
10352 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10353 and then Null_Present
(Parent
(Alias_Id
))
10360 end Is_Non_Overridden_Or_Null_Procedure
;
10364 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10366 Prim_Elmt
: Elmt_Id
;
10368 -- Start of processing for Hide_Non_Overridden_Subprograms
10371 -- Inspect the list of primitives looking for non-overridden
10374 if Present
(Prim_Ops
) then
10375 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10376 while Present
(Prim_Elmt
) loop
10377 Prim
:= Node
(Prim_Elmt
);
10378 Next_Elmt
(Prim_Elmt
);
10380 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10381 Hide_Matching_Homographs
10383 Start_Elmt
=> Prim_Elmt
);
10387 end Hide_Non_Overridden_Subprograms
;
10389 ---------------------
10390 -- Local variables --
10391 ---------------------
10393 E
: constant Entity_Id
:= Entity
(N
);
10395 Non_Generic_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10396 -- True in non-generic case. Some of the processing here is skipped
10397 -- for the generic case since it is not needed. Basically in the
10398 -- generic case, we only need to do stuff that might generate error
10399 -- messages or warnings.
10401 -- Start of processing for Freeze_Entity_Checks
10404 -- Remember that we are processing a freezing entity. Required to
10405 -- ensure correct decoration of internal entities associated with
10406 -- interfaces (see New_Overloaded_Entity).
10408 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10410 -- For tagged types covering interfaces add internal entities that link
10411 -- the primitives of the interfaces with the primitives that cover them.
10412 -- Note: These entities were originally generated only when generating
10413 -- code because their main purpose was to provide support to initialize
10414 -- the secondary dispatch tables. They are now generated also when
10415 -- compiling with no code generation to provide ASIS the relationship
10416 -- between interface primitives and tagged type primitives. They are
10417 -- also used to locate primitives covering interfaces when processing
10418 -- generics (see Derive_Subprograms).
10420 -- This is not needed in the generic case
10422 if Ada_Version
>= Ada_2005
10423 and then Non_Generic_Case
10424 and then Ekind
(E
) = E_Record_Type
10425 and then Is_Tagged_Type
(E
)
10426 and then not Is_Interface
(E
)
10427 and then Has_Interfaces
(E
)
10429 -- This would be a good common place to call the routine that checks
10430 -- overriding of interface primitives (and thus factorize calls to
10431 -- Check_Abstract_Overriding located at different contexts in the
10432 -- compiler). However, this is not possible because it causes
10433 -- spurious errors in case of late overriding.
10435 Add_Internal_Interface_Entities
(E
);
10438 -- After all forms of overriding have been resolved, a tagged type may
10439 -- be left with a set of implicitly declared and possibly erroneous
10440 -- abstract subprograms, null procedures and subprograms that require
10441 -- overriding. If this set contains fully conformat homographs, then one
10442 -- is chosen arbitrarily (already done during resolution), otherwise all
10443 -- remaining non-fully conformant homographs are hidden from visibility
10444 -- (Ada RM 8.3 12.3/2).
10446 if Is_Tagged_Type
(E
) then
10447 Hide_Non_Overridden_Subprograms
(E
);
10452 if Ekind
(E
) = E_Record_Type
10453 and then Is_CPP_Class
(E
)
10454 and then Is_Tagged_Type
(E
)
10455 and then Tagged_Type_Expansion
10457 if CPP_Num_Prims
(E
) = 0 then
10459 -- If the CPP type has user defined components then it must import
10460 -- primitives from C++. This is required because if the C++ class
10461 -- has no primitives then the C++ compiler does not added the _tag
10462 -- component to the type.
10464 if First_Entity
(E
) /= Last_Entity
(E
) then
10466 ("'C'P'P type must import at least one primitive from C++??",
10471 -- Check that all its primitives are abstract or imported from C++.
10472 -- Check also availability of the C++ constructor.
10475 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
10477 Error_Reported
: Boolean := False;
10481 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10482 while Present
(Elmt
) loop
10483 Prim
:= Node
(Elmt
);
10485 if Comes_From_Source
(Prim
) then
10486 if Is_Abstract_Subprogram
(Prim
) then
10489 elsif not Is_Imported
(Prim
)
10490 or else Convention
(Prim
) /= Convention_CPP
10493 ("primitives of 'C'P'P types must be imported from C++ "
10494 & "or abstract??", Prim
);
10496 elsif not Has_Constructors
10497 and then not Error_Reported
10499 Error_Msg_Name_1
:= Chars
(E
);
10501 ("??'C'P'P constructor required for type %", Prim
);
10502 Error_Reported
:= True;
10511 -- Check Ada derivation of CPP type
10513 if Expander_Active
-- why? losing errors in -gnatc mode???
10514 and then Present
(Etype
(E
)) -- defend against errors
10515 and then Tagged_Type_Expansion
10516 and then Ekind
(E
) = E_Record_Type
10517 and then Etype
(E
) /= E
10518 and then Is_CPP_Class
(Etype
(E
))
10519 and then CPP_Num_Prims
(Etype
(E
)) > 0
10520 and then not Is_CPP_Class
(E
)
10521 and then not Has_CPP_Constructors
(Etype
(E
))
10523 -- If the parent has C++ primitives but it has no constructor then
10524 -- check that all the primitives are overridden in this derivation;
10525 -- otherwise the constructor of the parent is needed to build the
10533 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10534 while Present
(Elmt
) loop
10535 Prim
:= Node
(Elmt
);
10537 if not Is_Abstract_Subprogram
(Prim
)
10538 and then No
(Interface_Alias
(Prim
))
10539 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
10541 Error_Msg_Name_1
:= Chars
(Etype
(E
));
10543 ("'C'P'P constructor required for parent type %", E
);
10552 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
10554 -- If we have a type with predicates, build predicate function. This
10555 -- is not needed in the generic case, and is not needed within TSS
10556 -- subprograms and other predefined primitives.
10558 if Non_Generic_Case
10559 and then Is_Type
(E
)
10560 and then Has_Predicates
(E
)
10561 and then not Within_Internal_Subprogram
10563 Build_Predicate_Functions
(E
, N
);
10566 -- If type has delayed aspects, this is where we do the preanalysis at
10567 -- the freeze point, as part of the consistent visibility check. Note
10568 -- that this must be done after calling Build_Predicate_Functions or
10569 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10570 -- the subtype name in the saved expression so that they will not cause
10571 -- trouble in the preanalysis.
10573 -- This is also not needed in the generic case
10575 if Non_Generic_Case
10576 and then Has_Delayed_Aspects
(E
)
10577 and then Scope
(E
) = Current_Scope
10579 -- Retrieve the visibility to the discriminants in order to properly
10580 -- analyze the aspects.
10582 Push_Scope_And_Install_Discriminants
(E
);
10588 -- Look for aspect specification entries for this entity
10590 Ritem
:= First_Rep_Item
(E
);
10591 while Present
(Ritem
) loop
10592 if Nkind
(Ritem
) = N_Aspect_Specification
10593 and then Entity
(Ritem
) = E
10594 and then Is_Delayed_Aspect
(Ritem
)
10596 Check_Aspect_At_Freeze_Point
(Ritem
);
10599 Next_Rep_Item
(Ritem
);
10603 Uninstall_Discriminants_And_Pop_Scope
(E
);
10606 -- For a record type, deal with variant parts. This has to be delayed
10607 -- to this point, because of the issue of statically predicated
10608 -- subtypes, which we have to ensure are frozen before checking
10609 -- choices, since we need to have the static choice list set.
10611 if Is_Record_Type
(E
) then
10612 Check_Variant_Part
: declare
10613 D
: constant Node_Id
:= Declaration_Node
(E
);
10618 Others_Present
: Boolean;
10619 pragma Warnings
(Off
, Others_Present
);
10620 -- Indicates others present, not used in this case
10622 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
10623 -- Error routine invoked by the generic instantiation below when
10624 -- the variant part has a non static choice.
10626 procedure Process_Declarations
(Variant
: Node_Id
);
10627 -- Processes declarations associated with a variant. We analyzed
10628 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10629 -- but we still need the recursive call to Check_Choices for any
10630 -- nested variant to get its choices properly processed. This is
10631 -- also where we expand out the choices if expansion is active.
10633 package Variant_Choices_Processing
is new
10634 Generic_Check_Choices
10635 (Process_Empty_Choice
=> No_OP
,
10636 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
10637 Process_Associated_Node
=> Process_Declarations
);
10638 use Variant_Choices_Processing
;
10640 -----------------------------
10641 -- Non_Static_Choice_Error --
10642 -----------------------------
10644 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
10646 Flag_Non_Static_Expr
10647 ("choice given in variant part is not static!", Choice
);
10648 end Non_Static_Choice_Error
;
10650 --------------------------
10651 -- Process_Declarations --
10652 --------------------------
10654 procedure Process_Declarations
(Variant
: Node_Id
) is
10655 CL
: constant Node_Id
:= Component_List
(Variant
);
10659 -- Check for static predicate present in this variant
10661 if Has_SP_Choice
(Variant
) then
10663 -- Here we expand. You might expect to find this call in
10664 -- Expand_N_Variant_Part, but that is called when we first
10665 -- see the variant part, and we cannot do this expansion
10666 -- earlier than the freeze point, since for statically
10667 -- predicated subtypes, the predicate is not known till
10668 -- the freeze point.
10670 -- Furthermore, we do this expansion even if the expander
10671 -- is not active, because other semantic processing, e.g.
10672 -- for aggregates, requires the expanded list of choices.
10674 -- If the expander is not active, then we can't just clobber
10675 -- the list since it would invalidate the ASIS -gnatct tree.
10676 -- So we have to rewrite the variant part with a Rewrite
10677 -- call that replaces it with a copy and clobber the copy.
10679 if not Expander_Active
then
10681 NewV
: constant Node_Id
:= New_Copy
(Variant
);
10683 Set_Discrete_Choices
10684 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
10685 Rewrite
(Variant
, NewV
);
10689 Expand_Static_Predicates_In_Choices
(Variant
);
10692 -- We don't need to worry about the declarations in the variant
10693 -- (since they were analyzed by Analyze_Choices when we first
10694 -- encountered the variant), but we do need to take care of
10695 -- expansion of any nested variants.
10697 if not Null_Present
(CL
) then
10698 VP
:= Variant_Part
(CL
);
10700 if Present
(VP
) then
10702 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10705 end Process_Declarations
;
10707 -- Start of processing for Check_Variant_Part
10710 -- Find component list
10714 if Nkind
(D
) = N_Full_Type_Declaration
then
10715 T
:= Type_Definition
(D
);
10717 if Nkind
(T
) = N_Record_Definition
then
10718 C
:= Component_List
(T
);
10720 elsif Nkind
(T
) = N_Derived_Type_Definition
10721 and then Present
(Record_Extension_Part
(T
))
10723 C
:= Component_List
(Record_Extension_Part
(T
));
10727 -- Case of variant part present
10729 if Present
(C
) and then Present
(Variant_Part
(C
)) then
10730 VP
:= Variant_Part
(C
);
10735 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10737 -- If the last variant does not contain the Others choice,
10738 -- replace it with an N_Others_Choice node since Gigi always
10739 -- wants an Others. Note that we do not bother to call Analyze
10740 -- on the modified variant part, since its only effect would be
10741 -- to compute the Others_Discrete_Choices node laboriously, and
10742 -- of course we already know the list of choices corresponding
10743 -- to the others choice (it's the list we're replacing).
10745 -- We only want to do this if the expander is active, since
10746 -- we do not want to clobber the ASIS tree.
10748 if Expander_Active
then
10750 Last_Var
: constant Node_Id
:=
10751 Last_Non_Pragma
(Variants
(VP
));
10753 Others_Node
: Node_Id
;
10756 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
10759 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
10760 Set_Others_Discrete_Choices
10761 (Others_Node
, Discrete_Choices
(Last_Var
));
10762 Set_Discrete_Choices
10763 (Last_Var
, New_List
(Others_Node
));
10768 end Check_Variant_Part
;
10770 end Freeze_Entity_Checks
;
10772 -------------------------
10773 -- Get_Alignment_Value --
10774 -------------------------
10776 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
10777 Align
: constant Uint
:= Static_Integer
(Expr
);
10780 if Align
= No_Uint
then
10783 elsif Align
<= 0 then
10784 Error_Msg_N
("alignment value must be positive", Expr
);
10788 for J
in Int
range 0 .. 64 loop
10790 M
: constant Uint
:= Uint_2
** J
;
10793 exit when M
= Align
;
10797 ("alignment value must be power of 2", Expr
);
10805 end Get_Alignment_Value
;
10807 -------------------------------------
10808 -- Inherit_Aspects_At_Freeze_Point --
10809 -------------------------------------
10811 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
10812 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10813 (Rep_Item
: Node_Id
) return Boolean;
10814 -- This routine checks if Rep_Item is either a pragma or an aspect
10815 -- specification node whose correponding pragma (if any) is present in
10816 -- the Rep Item chain of the entity it has been specified to.
10818 --------------------------------------------------
10819 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10820 --------------------------------------------------
10822 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10823 (Rep_Item
: Node_Id
) return Boolean
10827 Nkind
(Rep_Item
) = N_Pragma
10828 or else Present_In_Rep_Item
10829 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
10830 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
10832 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10835 -- A representation item is either subtype-specific (Size and Alignment
10836 -- clauses) or type-related (all others). Subtype-specific aspects may
10837 -- differ for different subtypes of the same type (RM 13.1.8).
10839 -- A derived type inherits each type-related representation aspect of
10840 -- its parent type that was directly specified before the declaration of
10841 -- the derived type (RM 13.1.15).
10843 -- A derived subtype inherits each subtype-specific representation
10844 -- aspect of its parent subtype that was directly specified before the
10845 -- declaration of the derived type (RM 13.1.15).
10847 -- The general processing involves inheriting a representation aspect
10848 -- from a parent type whenever the first rep item (aspect specification,
10849 -- attribute definition clause, pragma) corresponding to the given
10850 -- representation aspect in the rep item chain of Typ, if any, isn't
10851 -- directly specified to Typ but to one of its parents.
10853 -- ??? Note that, for now, just a limited number of representation
10854 -- aspects have been inherited here so far. Many of them are
10855 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10856 -- a non- exhaustive list of aspects that likely also need to
10857 -- be moved to this routine: Alignment, Component_Alignment,
10858 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
10859 -- Preelaborable_Initialization, RM_Size and Small.
10861 -- In addition, Convention must be propagated from base type to subtype,
10862 -- because the subtype may have been declared on an incomplete view.
10864 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
10870 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
10871 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
10872 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10873 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
10875 Set_Is_Ada_2005_Only
(Typ
);
10880 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
10881 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
10882 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10883 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
10885 Set_Is_Ada_2012_Only
(Typ
);
10890 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
10891 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
10892 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10893 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
10895 Set_Is_Atomic
(Typ
);
10896 Set_Treat_As_Volatile
(Typ
);
10897 Set_Is_Volatile
(Typ
);
10902 if Is_Record_Type
(Typ
)
10903 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
10905 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
10908 -- Default_Component_Value
10910 if Is_Array_Type
(Typ
)
10911 and then Is_Base_Type
(Typ
)
10912 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
10913 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
10915 Set_Default_Aspect_Component_Value
(Typ
,
10916 Default_Aspect_Component_Value
10917 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
10922 if Is_Scalar_Type
(Typ
)
10923 and then Is_Base_Type
(Typ
)
10924 and then Has_Rep_Item
(Typ
, Name_Default_Value
, False)
10925 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
10927 Set_Default_Aspect_Value
(Typ
,
10928 Default_Aspect_Value
10929 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
10934 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
10935 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
10936 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10937 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
10939 Set_Discard_Names
(Typ
);
10944 if not Has_Rep_Item
(Typ
, Name_Invariant
, False)
10945 and then Has_Rep_Item
(Typ
, Name_Invariant
)
10946 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10947 (Get_Rep_Item
(Typ
, Name_Invariant
))
10949 Set_Has_Invariants
(Typ
);
10951 if Class_Present
(Get_Rep_Item
(Typ
, Name_Invariant
)) then
10952 Set_Has_Inheritable_Invariants
(Typ
);
10955 -- If we have a subtype with invariants, whose base type does not have
10956 -- invariants, copy these invariants to the base type. This happens for
10957 -- the case of implicit base types created for scalar and array types.
10959 elsif Has_Invariants
(Typ
)
10960 and then not Has_Invariants
(Base_Type
(Typ
))
10962 Set_Has_Invariants
(Base_Type
(Typ
));
10963 Set_Invariant_Procedure
(Base_Type
(Typ
), Invariant_Procedure
(Typ
));
10968 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
10969 and then Has_Rep_Item
(Typ
, Name_Volatile
)
10970 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10971 (Get_Rep_Item
(Typ
, Name_Volatile
))
10973 Set_Treat_As_Volatile
(Typ
);
10974 Set_Is_Volatile
(Typ
);
10977 -- Inheritance for derived types only
10979 if Is_Derived_Type
(Typ
) then
10981 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10982 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
10985 -- Atomic_Components
10987 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
10988 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
10989 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10990 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
10992 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
10995 -- Volatile_Components
10997 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
10998 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
10999 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11000 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
11002 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
11005 -- Finalize_Storage_Only
11007 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
11008 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
11010 Set_Finalize_Storage_Only
(Bas_Typ
);
11013 -- Universal_Aliasing
11015 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
11016 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
11017 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11018 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
11020 Set_Universal_Aliasing
(Imp_Bas_Typ
);
11025 if Is_Record_Type
(Typ
) then
11026 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
11027 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
11029 Set_Reverse_Bit_Order
(Bas_Typ
,
11030 Reverse_Bit_Order
(Entity
(Name
11031 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
11035 -- Scalar_Storage_Order
11037 -- Note: the aspect is specified on a first subtype, but recorded
11038 -- in a flag of the base type!
11040 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11041 and then Typ
= Bas_Typ
11043 -- For a type extension, always inherit from parent; otherwise
11044 -- inherit if no default applies. Note: we do not check for
11045 -- an explicit rep item on the parent type when inheriting,
11046 -- because the parent SSO may itself have been set by default.
11048 if not Has_Rep_Item
(First_Subtype
(Typ
),
11049 Name_Scalar_Storage_Order
, False)
11050 and then (Is_Tagged_Type
(Bas_Typ
)
11051 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11053 SSO_Set_High_By_Default
(Bas_Typ
)))
11055 Set_Reverse_Storage_Order
(Bas_Typ
,
11056 Reverse_Storage_Order
11057 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11059 -- Clear default SSO indications, since the inherited aspect
11060 -- which was set explicitly overrides the default.
11062 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11063 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11068 end Inherit_Aspects_At_Freeze_Point
;
11074 procedure Initialize
is
11076 Address_Clause_Checks
.Init
;
11077 Unchecked_Conversions
.Init
;
11079 if VM_Target
/= No_VM
or else AAMP_On_Target
then
11080 Independence_Checks
.Init
;
11084 ---------------------------
11085 -- Install_Discriminants --
11086 ---------------------------
11088 procedure Install_Discriminants
(E
: Entity_Id
) is
11092 Disc
:= First_Discriminant
(E
);
11093 while Present
(Disc
) loop
11094 Prev
:= Current_Entity
(Disc
);
11095 Set_Current_Entity
(Disc
);
11096 Set_Is_Immediately_Visible
(Disc
);
11097 Set_Homonym
(Disc
, Prev
);
11098 Next_Discriminant
(Disc
);
11100 end Install_Discriminants
;
11102 -------------------------
11103 -- Is_Operational_Item --
11104 -------------------------
11106 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11108 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11113 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11115 return Id
= Attribute_Input
11116 or else Id
= Attribute_Output
11117 or else Id
= Attribute_Read
11118 or else Id
= Attribute_Write
11119 or else Id
= Attribute_External_Tag
;
11122 end Is_Operational_Item
;
11124 -------------------------
11125 -- Is_Predicate_Static --
11126 -------------------------
11128 -- Note: the basic legality of the expression has already been checked, so
11129 -- we don't need to worry about cases or ranges on strings for example.
11131 function Is_Predicate_Static
11133 Nam
: Name_Id
) return Boolean
11135 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11136 -- Given a list of case expression alternatives, returns True if all
11137 -- the alternatives are static (have all static choices, and a static
11140 function All_Static_Choices
(L
: List_Id
) return Boolean;
11141 -- Returns true if all elements of the list are OK static choices
11142 -- as defined below for Is_Static_Choice. Used for case expression
11143 -- alternatives and for the right operand of a membership test. An
11144 -- others_choice is static if the corresponding expression is static.
11145 -- The staticness of the bounds is checked separately.
11147 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11148 -- Returns True if N represents a static choice (static subtype, or
11149 -- static subtype indication, or static expression, or static range).
11151 -- Note that this is a bit more inclusive than we actually need
11152 -- (in particular membership tests do not allow the use of subtype
11153 -- indications). But that doesn't matter, we have already checked
11154 -- that the construct is legal to get this far.
11156 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11157 pragma Inline
(Is_Type_Ref
);
11158 -- Returns True if N is a reference to the type for the predicate in the
11159 -- expression (i.e. if it is an identifier whose Chars field matches the
11160 -- Nam given in the call). N must not be parenthesized, if the type name
11161 -- appears in parens, this routine will return False.
11163 ----------------------------------
11164 -- All_Static_Case_Alternatives --
11165 ----------------------------------
11167 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11172 while Present
(N
) loop
11173 if not (All_Static_Choices
(Discrete_Choices
(N
))
11174 and then Is_OK_Static_Expression
(Expression
(N
)))
11183 end All_Static_Case_Alternatives
;
11185 ------------------------
11186 -- All_Static_Choices --
11187 ------------------------
11189 function All_Static_Choices
(L
: List_Id
) return Boolean is
11194 while Present
(N
) loop
11195 if not Is_Static_Choice
(N
) then
11203 end All_Static_Choices
;
11205 ----------------------
11206 -- Is_Static_Choice --
11207 ----------------------
11209 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11211 return Nkind
(N
) = N_Others_Choice
11212 or else Is_OK_Static_Expression
(N
)
11213 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11214 and then Is_OK_Static_Subtype
(Entity
(N
)))
11215 or else (Nkind
(N
) = N_Subtype_Indication
11216 and then Is_OK_Static_Subtype
(Entity
(N
)))
11217 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11218 end Is_Static_Choice
;
11224 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11226 return Nkind
(N
) = N_Identifier
11227 and then Chars
(N
) = Nam
11228 and then Paren_Count
(N
) = 0;
11231 -- Start of processing for Is_Predicate_Static
11234 -- Predicate_Static means one of the following holds. Numbers are the
11235 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11237 -- 16: A static expression
11239 if Is_OK_Static_Expression
(Expr
) then
11242 -- 17: A membership test whose simple_expression is the current
11243 -- instance, and whose membership_choice_list meets the requirements
11244 -- for a static membership test.
11246 elsif Nkind
(Expr
) in N_Membership_Test
11247 and then ((Present
(Right_Opnd
(Expr
))
11248 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11250 (Present
(Alternatives
(Expr
))
11251 and then All_Static_Choices
(Alternatives
(Expr
))))
11255 -- 18. A case_expression whose selecting_expression is the current
11256 -- instance, and whose dependent expressions are static expressions.
11258 elsif Nkind
(Expr
) = N_Case_Expression
11259 and then Is_Type_Ref
(Expression
(Expr
))
11260 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11264 -- 19. A call to a predefined equality or ordering operator, where one
11265 -- operand is the current instance, and the other is a static
11268 -- Note: the RM is clearly wrong here in not excluding string types.
11269 -- Without this exclusion, we would allow expressions like X > "ABC"
11270 -- to be considered as predicate-static, which is clearly not intended,
11271 -- since the idea is for predicate-static to be a subset of normal
11272 -- static expressions (and "DEF" > "ABC" is not a static expression).
11274 -- However, we do allow internally generated (not from source) equality
11275 -- and inequality operations to be valid on strings (this helps deal
11276 -- with cases where we transform A in "ABC" to A = "ABC).
11278 elsif Nkind
(Expr
) in N_Op_Compare
11279 and then ((not Is_String_Type
(Etype
(Left_Opnd
(Expr
))))
11280 or else (Nkind_In
(Expr
, N_Op_Eq
, N_Op_Ne
)
11281 and then not Comes_From_Source
(Expr
)))
11282 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11283 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11285 (Is_Type_Ref
(Right_Opnd
(Expr
))
11286 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11290 -- 20. A call to a predefined boolean logical operator, where each
11291 -- operand is predicate-static.
11293 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11294 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11295 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11297 (Nkind
(Expr
) = N_Op_Not
11298 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11302 -- 21. A short-circuit control form where both operands are
11303 -- predicate-static.
11305 elsif Nkind
(Expr
) in N_Short_Circuit
11306 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11307 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11311 -- 22. A parenthesized predicate-static expression. This does not
11312 -- require any special test, since we just ignore paren levels in
11313 -- all the cases above.
11315 -- One more test that is an implementation artifact caused by the fact
11316 -- that we are analyzing not the original expression, but the generated
11317 -- expression in the body of the predicate function. This can include
11318 -- references to inherited predicates, so that the expression we are
11319 -- processing looks like:
11321 -- expression and then xxPredicate (typ (Inns))
11323 -- Where the call is to a Predicate function for an inherited predicate.
11324 -- We simply ignore such a call, which could be to either a dynamic or
11325 -- a static predicate. Note that if the parent predicate is dynamic then
11326 -- eventually this type will be marked as dynamic, but you are allowed
11327 -- to specify a static predicate for a subtype which is inheriting a
11328 -- dynamic predicate, so the static predicate validation here ignores
11329 -- the inherited predicate even if it is dynamic.
11331 elsif Nkind
(Expr
) = N_Function_Call
11332 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11336 -- That's an exhaustive list of tests, all other cases are not
11337 -- predicate-static, so we return False.
11342 end Is_Predicate_Static
;
11344 ---------------------
11345 -- Kill_Rep_Clause --
11346 ---------------------
11348 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11350 pragma Assert
(Ignore_Rep_Clauses
);
11352 -- Note: we use Replace rather than Rewrite, because we don't want
11353 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11354 -- rep clause that is being replaced.
11356 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11358 -- The null statement must be marked as not coming from source. This is
11359 -- so that ASIS ignores it, and also the back end does not expect bogus
11360 -- "from source" null statements in weird places (e.g. in declarative
11361 -- regions where such null statements are not allowed).
11363 Set_Comes_From_Source
(N
, False);
11364 end Kill_Rep_Clause
;
11370 function Minimum_Size
11372 Biased
: Boolean := False) return Nat
11374 Lo
: Uint
:= No_Uint
;
11375 Hi
: Uint
:= No_Uint
;
11376 LoR
: Ureal
:= No_Ureal
;
11377 HiR
: Ureal
:= No_Ureal
;
11378 LoSet
: Boolean := False;
11379 HiSet
: Boolean := False;
11382 Ancest
: Entity_Id
;
11383 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11386 -- If bad type, return 0
11388 if T
= Any_Type
then
11391 -- For generic types, just return zero. There cannot be any legitimate
11392 -- need to know such a size, but this routine may be called with a
11393 -- generic type as part of normal processing.
11395 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11398 -- Access types (cannot have size smaller than System.Address)
11400 elsif Is_Access_Type
(T
) then
11401 return System_Address_Size
;
11403 -- Floating-point types
11405 elsif Is_Floating_Point_Type
(T
) then
11406 return UI_To_Int
(Esize
(R_Typ
));
11410 elsif Is_Discrete_Type
(T
) then
11412 -- The following loop is looking for the nearest compile time known
11413 -- bounds following the ancestor subtype chain. The idea is to find
11414 -- the most restrictive known bounds information.
11418 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11423 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
11424 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
11431 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
11432 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
11438 Ancest
:= Ancestor_Subtype
(Ancest
);
11440 if No
(Ancest
) then
11441 Ancest
:= Base_Type
(T
);
11443 if Is_Generic_Type
(Ancest
) then
11449 -- Fixed-point types. We can't simply use Expr_Value to get the
11450 -- Corresponding_Integer_Value values of the bounds, since these do not
11451 -- get set till the type is frozen, and this routine can be called
11452 -- before the type is frozen. Similarly the test for bounds being static
11453 -- needs to include the case where we have unanalyzed real literals for
11454 -- the same reason.
11456 elsif Is_Fixed_Point_Type
(T
) then
11458 -- The following loop is looking for the nearest compile time known
11459 -- bounds following the ancestor subtype chain. The idea is to find
11460 -- the most restrictive known bounds information.
11464 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11468 -- Note: In the following two tests for LoSet and HiSet, it may
11469 -- seem redundant to test for N_Real_Literal here since normally
11470 -- one would assume that the test for the value being known at
11471 -- compile time includes this case. However, there is a glitch.
11472 -- If the real literal comes from folding a non-static expression,
11473 -- then we don't consider any non- static expression to be known
11474 -- at compile time if we are in configurable run time mode (needed
11475 -- in some cases to give a clearer definition of what is and what
11476 -- is not accepted). So the test is indeed needed. Without it, we
11477 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11480 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
11481 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
11483 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
11490 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
11491 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
11493 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
11499 Ancest
:= Ancestor_Subtype
(Ancest
);
11501 if No
(Ancest
) then
11502 Ancest
:= Base_Type
(T
);
11504 if Is_Generic_Type
(Ancest
) then
11510 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
11511 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
11513 -- No other types allowed
11516 raise Program_Error
;
11519 -- Fall through with Hi and Lo set. Deal with biased case
11522 and then not Is_Fixed_Point_Type
(T
)
11523 and then not (Is_Enumeration_Type
(T
)
11524 and then Has_Non_Standard_Rep
(T
)))
11525 or else Has_Biased_Representation
(T
)
11531 -- Signed case. Note that we consider types like range 1 .. -1 to be
11532 -- signed for the purpose of computing the size, since the bounds have
11533 -- to be accommodated in the base type.
11535 if Lo
< 0 or else Hi
< 0 then
11539 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11540 -- Note that we accommodate the case where the bounds cross. This
11541 -- can happen either because of the way the bounds are declared
11542 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11556 -- If both bounds are positive, make sure that both are represen-
11557 -- table in the case where the bounds are crossed. This can happen
11558 -- either because of the way the bounds are declared, or because of
11559 -- the algorithm in Freeze_Fixed_Point_Type.
11565 -- S = size, (can accommodate 0 .. (2**size - 1))
11568 while Hi
>= Uint_2
** S
loop
11576 ---------------------------
11577 -- New_Stream_Subprogram --
11578 ---------------------------
11580 procedure New_Stream_Subprogram
11584 Nam
: TSS_Name_Type
)
11586 Loc
: constant Source_Ptr
:= Sloc
(N
);
11587 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
11588 Subp_Id
: Entity_Id
;
11589 Subp_Decl
: Node_Id
;
11593 Defer_Declaration
: constant Boolean :=
11594 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
11595 -- For a tagged type, there is a declaration for each stream attribute
11596 -- at the freeze point, and we must generate only a completion of this
11597 -- declaration. We do the same for private types, because the full view
11598 -- might be tagged. Otherwise we generate a declaration at the point of
11599 -- the attribute definition clause.
11601 function Build_Spec
return Node_Id
;
11602 -- Used for declaration and renaming declaration, so that this is
11603 -- treated as a renaming_as_body.
11609 function Build_Spec
return Node_Id
is
11610 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
11613 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
11616 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
11618 -- S : access Root_Stream_Type'Class
11620 Formals
:= New_List
(
11621 Make_Parameter_Specification
(Loc
,
11622 Defining_Identifier
=>
11623 Make_Defining_Identifier
(Loc
, Name_S
),
11625 Make_Access_Definition
(Loc
,
11627 New_Occurrence_Of
(
11628 Designated_Type
(Etype
(F
)), Loc
))));
11630 if Nam
= TSS_Stream_Input
then
11632 Make_Function_Specification
(Loc
,
11633 Defining_Unit_Name
=> Subp_Id
,
11634 Parameter_Specifications
=> Formals
,
11635 Result_Definition
=> T_Ref
);
11639 Append_To
(Formals
,
11640 Make_Parameter_Specification
(Loc
,
11641 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
11642 Out_Present
=> Out_P
,
11643 Parameter_Type
=> T_Ref
));
11646 Make_Procedure_Specification
(Loc
,
11647 Defining_Unit_Name
=> Subp_Id
,
11648 Parameter_Specifications
=> Formals
);
11654 -- Start of processing for New_Stream_Subprogram
11657 F
:= First_Formal
(Subp
);
11659 if Ekind
(Subp
) = E_Procedure
then
11660 Etyp
:= Etype
(Next_Formal
(F
));
11662 Etyp
:= Etype
(Subp
);
11665 -- Prepare subprogram declaration and insert it as an action on the
11666 -- clause node. The visibility for this entity is used to test for
11667 -- visibility of the attribute definition clause (in the sense of
11668 -- 8.3(23) as amended by AI-195).
11670 if not Defer_Declaration
then
11672 Make_Subprogram_Declaration
(Loc
,
11673 Specification
=> Build_Spec
);
11675 -- For a tagged type, there is always a visible declaration for each
11676 -- stream TSS (it is a predefined primitive operation), and the
11677 -- completion of this declaration occurs at the freeze point, which is
11678 -- not always visible at places where the attribute definition clause is
11679 -- visible. So, we create a dummy entity here for the purpose of
11680 -- tracking the visibility of the attribute definition clause itself.
11684 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
11686 Make_Object_Declaration
(Loc
,
11687 Defining_Identifier
=> Subp_Id
,
11688 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
11691 Insert_Action
(N
, Subp_Decl
);
11692 Set_Entity
(N
, Subp_Id
);
11695 Make_Subprogram_Renaming_Declaration
(Loc
,
11696 Specification
=> Build_Spec
,
11697 Name
=> New_Occurrence_Of
(Subp
, Loc
));
11699 if Defer_Declaration
then
11700 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
11702 Insert_Action
(N
, Subp_Decl
);
11703 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
11705 end New_Stream_Subprogram
;
11707 ------------------------------------------
11708 -- Push_Scope_And_Install_Discriminants --
11709 ------------------------------------------
11711 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
11713 if Has_Discriminants
(E
) then
11716 -- Make discriminants visible for type declarations and protected
11717 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11719 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
11720 Install_Discriminants
(E
);
11723 end Push_Scope_And_Install_Discriminants
;
11725 ------------------------
11726 -- Rep_Item_Too_Early --
11727 ------------------------
11729 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
11731 -- Cannot apply non-operational rep items to generic types
11733 if Is_Operational_Item
(N
) then
11737 and then Is_Generic_Type
(Root_Type
(T
))
11739 Error_Msg_N
("representation item not allowed for generic type", N
);
11743 -- Otherwise check for incomplete type
11745 if Is_Incomplete_Or_Private_Type
(T
)
11746 and then No
(Underlying_Type
(T
))
11748 (Nkind
(N
) /= N_Pragma
11749 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
11752 ("representation item must be after full type declaration", N
);
11755 -- If the type has incomplete components, a representation clause is
11756 -- illegal but stream attributes and Convention pragmas are correct.
11758 elsif Has_Private_Component
(T
) then
11759 if Nkind
(N
) = N_Pragma
then
11764 ("representation item must appear after type is fully defined",
11771 end Rep_Item_Too_Early
;
11773 -----------------------
11774 -- Rep_Item_Too_Late --
11775 -----------------------
11777 function Rep_Item_Too_Late
11780 FOnly
: Boolean := False) return Boolean
11783 Parent_Type
: Entity_Id
;
11785 procedure No_Type_Rep_Item
;
11786 -- Output message indicating that no type-related aspects can be
11787 -- specified due to some property of the parent type.
11789 procedure Too_Late
;
11790 -- Output message for an aspect being specified too late
11792 -- Note that neither of the above errors is considered a serious one,
11793 -- since the effect is simply that we ignore the representation clause
11795 -- Is this really true? In any case if we make this change we must
11796 -- document the requirement in the spec of Rep_Item_Too_Late that
11797 -- if True is returned, then the rep item must be completely ignored???
11799 ----------------------
11800 -- No_Type_Rep_Item --
11801 ----------------------
11803 procedure No_Type_Rep_Item
is
11805 Error_Msg_N
("|type-related representation item not permitted!", N
);
11806 end No_Type_Rep_Item
;
11812 procedure Too_Late
is
11814 -- Other compilers seem more relaxed about rep items appearing too
11815 -- late. Since analysis tools typically don't care about rep items
11816 -- anyway, no reason to be too strict about this.
11818 if not Relaxed_RM_Semantics
then
11819 Error_Msg_N
("|representation item appears too late!", N
);
11823 -- Start of processing for Rep_Item_Too_Late
11826 -- First make sure entity is not frozen (RM 13.1(9))
11830 -- Exclude imported types, which may be frozen if they appear in a
11831 -- representation clause for a local type.
11833 and then not From_Limited_With
(T
)
11835 -- Exclude generated entities (not coming from source). The common
11836 -- case is when we generate a renaming which prematurely freezes the
11837 -- renamed internal entity, but we still want to be able to set copies
11838 -- of attribute values such as Size/Alignment.
11840 and then Comes_From_Source
(T
)
11843 S
:= First_Subtype
(T
);
11845 if Present
(Freeze_Node
(S
)) then
11846 if not Relaxed_RM_Semantics
then
11848 ("??no more representation items for }", Freeze_Node
(S
), S
);
11854 -- Check for case of untagged derived type whose parent either has
11855 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11856 -- this case we do not output a Too_Late message, since there is no
11857 -- earlier point where the rep item could be placed to make it legal.
11861 and then Is_Derived_Type
(T
)
11862 and then not Is_Tagged_Type
(T
)
11864 Parent_Type
:= Etype
(Base_Type
(T
));
11866 if Has_Primitive_Operations
(Parent_Type
) then
11869 if not Relaxed_RM_Semantics
then
11871 ("\parent type & has primitive operations!", N
, Parent_Type
);
11876 elsif Is_By_Reference_Type
(Parent_Type
) then
11879 if not Relaxed_RM_Semantics
then
11881 ("\parent type & is a by reference type!", N
, Parent_Type
);
11888 -- No error, but one more warning to consider. The RM (surprisingly)
11889 -- allows this pattern:
11892 -- primitive operations for S
11893 -- type R is new S;
11894 -- rep clause for S
11896 -- Meaning that calls on the primitive operations of S for values of
11897 -- type R may require possibly expensive implicit conversion operations.
11898 -- This is not an error, but is worth a warning.
11900 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
11902 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
11906 and then Has_Primitive_Operations
(Base_Type
(T
))
11908 -- For now, do not generate this warning for the case of aspect
11909 -- specification using Ada 2012 syntax, since we get wrong
11910 -- messages we do not understand. The whole business of derived
11911 -- types and rep items seems a bit confused when aspects are
11912 -- used, since the aspects are not evaluated till freeze time.
11914 and then not From_Aspect_Specification
(N
)
11916 Error_Msg_Sloc
:= Sloc
(DTL
);
11918 ("representation item for& appears after derived type "
11919 & "declaration#??", N
);
11921 ("\may result in implicit conversions for primitive "
11922 & "operations of&??", N
, T
);
11924 ("\to change representations when called with arguments "
11925 & "of type&??", N
, DTL
);
11930 -- No error, link item into head of chain of rep items for the entity,
11931 -- but avoid chaining if we have an overloadable entity, and the pragma
11932 -- is one that can apply to multiple overloaded entities.
11934 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
11936 Pname
: constant Name_Id
:= Pragma_Name
(N
);
11938 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
11939 Name_External
, Name_Interface
)
11946 Record_Rep_Item
(T
, N
);
11948 end Rep_Item_Too_Late
;
11950 -------------------------------------
11951 -- Replace_Type_References_Generic --
11952 -------------------------------------
11954 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
11955 TName
: constant Name_Id
:= Chars
(T
);
11957 function Replace_Node
(N
: Node_Id
) return Traverse_Result
;
11958 -- Processes a single node in the traversal procedure below, checking
11959 -- if node N should be replaced, and if so, doing the replacement.
11961 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Node
);
11962 -- This instantiation provides the body of Replace_Type_References
11968 function Replace_Node
(N
: Node_Id
) return Traverse_Result
is
11973 -- Case of identifier
11975 if Nkind
(N
) = N_Identifier
then
11977 -- If not the type name, check whether it is a reference to
11978 -- some other type, which must be frozen before the predicate
11979 -- function is analyzed, i.e. before the freeze node of the
11980 -- type to which the predicate applies.
11982 if Chars
(N
) /= TName
then
11983 if Present
(Current_Entity
(N
))
11984 and then Is_Type
(Current_Entity
(N
))
11986 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
11991 -- Otherwise do the replacement and we are done with this node
11994 Replace_Type_Reference
(N
);
11998 -- Case of selected component (which is what a qualification
11999 -- looks like in the unanalyzed tree, which is what we have.
12001 elsif Nkind
(N
) = N_Selected_Component
then
12003 -- If selector name is not our type, keeping going (we might
12004 -- still have an occurrence of the type in the prefix).
12006 if Nkind
(Selector_Name
(N
)) /= N_Identifier
12007 or else Chars
(Selector_Name
(N
)) /= TName
12011 -- Selector name is our type, check qualification
12014 -- Loop through scopes and prefixes, doing comparison
12016 S
:= Current_Scope
;
12019 -- Continue if no more scopes or scope with no name
12021 if No
(S
) or else Nkind
(S
) not in N_Has_Chars
then
12025 -- Do replace if prefix is an identifier matching the
12026 -- scope that we are currently looking at.
12028 if Nkind
(P
) = N_Identifier
12029 and then Chars
(P
) = Chars
(S
)
12031 Replace_Type_Reference
(N
);
12035 -- Go check scope above us if prefix is itself of the
12036 -- form of a selected component, whose selector matches
12037 -- the scope we are currently looking at.
12039 if Nkind
(P
) = N_Selected_Component
12040 and then Nkind
(Selector_Name
(P
)) = N_Identifier
12041 and then Chars
(Selector_Name
(P
)) = Chars
(S
)
12046 -- For anything else, we don't have a match, so keep on
12047 -- going, there are still some weird cases where we may
12048 -- still have a replacement within the prefix.
12056 -- Continue for any other node kind
12064 Replace_Type_Refs
(N
);
12065 end Replace_Type_References_Generic
;
12067 -------------------------
12068 -- Same_Representation --
12069 -------------------------
12071 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
12072 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
12073 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
12076 -- A quick check, if base types are the same, then we definitely have
12077 -- the same representation, because the subtype specific representation
12078 -- attributes (Size and Alignment) do not affect representation from
12079 -- the point of view of this test.
12081 if Base_Type
(T1
) = Base_Type
(T2
) then
12084 elsif Is_Private_Type
(Base_Type
(T2
))
12085 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
12090 -- Tagged types never have differing representations
12092 if Is_Tagged_Type
(T1
) then
12096 -- Representations are definitely different if conventions differ
12098 if Convention
(T1
) /= Convention
(T2
) then
12102 -- Representations are different if component alignments or scalar
12103 -- storage orders differ.
12105 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
12107 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
12109 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
12110 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
12115 -- For arrays, the only real issue is component size. If we know the
12116 -- component size for both arrays, and it is the same, then that's
12117 -- good enough to know we don't have a change of representation.
12119 if Is_Array_Type
(T1
) then
12120 if Known_Component_Size
(T1
)
12121 and then Known_Component_Size
(T2
)
12122 and then Component_Size
(T1
) = Component_Size
(T2
)
12124 if VM_Target
= No_VM
then
12127 -- In VM targets the representation of arrays with aliased
12128 -- components differs from arrays with non-aliased components
12131 return Has_Aliased_Components
(Base_Type
(T1
))
12133 Has_Aliased_Components
(Base_Type
(T2
));
12138 -- Types definitely have same representation if neither has non-standard
12139 -- representation since default representations are always consistent.
12140 -- If only one has non-standard representation, and the other does not,
12141 -- then we consider that they do not have the same representation. They
12142 -- might, but there is no way of telling early enough.
12144 if Has_Non_Standard_Rep
(T1
) then
12145 if not Has_Non_Standard_Rep
(T2
) then
12149 return not Has_Non_Standard_Rep
(T2
);
12152 -- Here the two types both have non-standard representation, and we need
12153 -- to determine if they have the same non-standard representation.
12155 -- For arrays, we simply need to test if the component sizes are the
12156 -- same. Pragma Pack is reflected in modified component sizes, so this
12157 -- check also deals with pragma Pack.
12159 if Is_Array_Type
(T1
) then
12160 return Component_Size
(T1
) = Component_Size
(T2
);
12162 -- Tagged types always have the same representation, because it is not
12163 -- possible to specify different representations for common fields.
12165 elsif Is_Tagged_Type
(T1
) then
12168 -- Case of record types
12170 elsif Is_Record_Type
(T1
) then
12172 -- Packed status must conform
12174 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
12177 -- Otherwise we must check components. Typ2 maybe a constrained
12178 -- subtype with fewer components, so we compare the components
12179 -- of the base types.
12182 Record_Case
: declare
12183 CD1
, CD2
: Entity_Id
;
12185 function Same_Rep
return Boolean;
12186 -- CD1 and CD2 are either components or discriminants. This
12187 -- function tests whether they have the same representation.
12193 function Same_Rep
return Boolean is
12195 if No
(Component_Clause
(CD1
)) then
12196 return No
(Component_Clause
(CD2
));
12198 -- Note: at this point, component clauses have been
12199 -- normalized to the default bit order, so that the
12200 -- comparison of Component_Bit_Offsets is meaningful.
12203 Present
(Component_Clause
(CD2
))
12205 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
12207 Esize
(CD1
) = Esize
(CD2
);
12211 -- Start of processing for Record_Case
12214 if Has_Discriminants
(T1
) then
12216 -- The number of discriminants may be different if the
12217 -- derived type has fewer (constrained by values). The
12218 -- invisible discriminants retain the representation of
12219 -- the original, so the discrepancy does not per se
12220 -- indicate a different representation.
12222 CD1
:= First_Discriminant
(T1
);
12223 CD2
:= First_Discriminant
(T2
);
12224 while Present
(CD1
) and then Present
(CD2
) loop
12225 if not Same_Rep
then
12228 Next_Discriminant
(CD1
);
12229 Next_Discriminant
(CD2
);
12234 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
12235 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
12236 while Present
(CD1
) loop
12237 if not Same_Rep
then
12240 Next_Component
(CD1
);
12241 Next_Component
(CD2
);
12249 -- For enumeration types, we must check each literal to see if the
12250 -- representation is the same. Note that we do not permit enumeration
12251 -- representation clauses for Character and Wide_Character, so these
12252 -- cases were already dealt with.
12254 elsif Is_Enumeration_Type
(T1
) then
12255 Enumeration_Case
: declare
12256 L1
, L2
: Entity_Id
;
12259 L1
:= First_Literal
(T1
);
12260 L2
:= First_Literal
(T2
);
12261 while Present
(L1
) loop
12262 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
12271 end Enumeration_Case
;
12273 -- Any other types have the same representation for these purposes
12278 end Same_Representation
;
12280 --------------------------------
12281 -- Resolve_Iterable_Operation --
12282 --------------------------------
12284 procedure Resolve_Iterable_Operation
12286 Cursor
: Entity_Id
;
12295 if not Is_Overloaded
(N
) then
12296 if not Is_Entity_Name
(N
)
12297 or else Ekind
(Entity
(N
)) /= E_Function
12298 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
12299 or else No
(First_Formal
(Entity
(N
)))
12300 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
12302 Error_Msg_N
("iterable primitive must be local function name "
12303 & "whose first formal is an iterable type", N
);
12308 F1
:= First_Formal
(Ent
);
12309 if Nam
= Name_First
then
12311 -- First (Container) => Cursor
12313 if Etype
(Ent
) /= Cursor
then
12314 Error_Msg_N
("primitive for First must yield a curosr", N
);
12317 elsif Nam
= Name_Next
then
12319 -- Next (Container, Cursor) => Cursor
12321 F2
:= Next_Formal
(F1
);
12323 if Etype
(F2
) /= Cursor
12324 or else Etype
(Ent
) /= Cursor
12325 or else Present
(Next_Formal
(F2
))
12327 Error_Msg_N
("no match for Next iterable primitive", N
);
12330 elsif Nam
= Name_Has_Element
then
12332 -- Has_Element (Container, Cursor) => Boolean
12334 F2
:= Next_Formal
(F1
);
12335 if Etype
(F2
) /= Cursor
12336 or else Etype
(Ent
) /= Standard_Boolean
12337 or else Present
(Next_Formal
(F2
))
12339 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
12342 elsif Nam
= Name_Element
then
12343 F2
:= Next_Formal
(F1
);
12346 or else Etype
(F2
) /= Cursor
12347 or else Present
(Next_Formal
(F2
))
12349 Error_Msg_N
("no match for Element iterable primitive", N
);
12354 raise Program_Error
;
12358 -- Overloaded case: find subprogram with proper signature.
12359 -- Caller will report error if no match is found.
12366 Get_First_Interp
(N
, I
, It
);
12367 while Present
(It
.Typ
) loop
12368 if Ekind
(It
.Nam
) = E_Function
12369 and then Scope
(It
.Nam
) = Scope
(Typ
)
12370 and then Etype
(First_Formal
(It
.Nam
)) = Typ
12372 F1
:= First_Formal
(It
.Nam
);
12374 if Nam
= Name_First
then
12375 if Etype
(It
.Nam
) = Cursor
12376 and then No
(Next_Formal
(F1
))
12378 Set_Entity
(N
, It
.Nam
);
12382 elsif Nam
= Name_Next
then
12383 F2
:= Next_Formal
(F1
);
12386 and then No
(Next_Formal
(F2
))
12387 and then Etype
(F2
) = Cursor
12388 and then Etype
(It
.Nam
) = Cursor
12390 Set_Entity
(N
, It
.Nam
);
12394 elsif Nam
= Name_Has_Element
then
12395 F2
:= Next_Formal
(F1
);
12398 and then No
(Next_Formal
(F2
))
12399 and then Etype
(F2
) = Cursor
12400 and then Etype
(It
.Nam
) = Standard_Boolean
12402 Set_Entity
(N
, It
.Nam
);
12403 F2
:= Next_Formal
(F1
);
12407 elsif Nam
= Name_Element
then
12408 F2
:= Next_Formal
(F1
);
12411 and then No
(Next_Formal
(F2
))
12412 and then Etype
(F2
) = Cursor
12414 Set_Entity
(N
, It
.Nam
);
12420 Get_Next_Interp
(I
, It
);
12424 end Resolve_Iterable_Operation
;
12430 procedure Set_Biased
12434 Biased
: Boolean := True)
12438 Set_Has_Biased_Representation
(E
);
12440 if Warn_On_Biased_Representation
then
12442 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
12447 --------------------
12448 -- Set_Enum_Esize --
12449 --------------------
12451 procedure Set_Enum_Esize
(T
: Entity_Id
) is
12457 Init_Alignment
(T
);
12459 -- Find the minimum standard size (8,16,32,64) that fits
12461 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
12462 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
12465 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
12466 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12468 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
12471 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
12474 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
12479 if Hi
< Uint_2
**08 then
12480 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12482 elsif Hi
< Uint_2
**16 then
12485 elsif Hi
< Uint_2
**32 then
12488 else pragma Assert
(Hi
< Uint_2
**63);
12493 -- That minimum is the proper size unless we have a foreign convention
12494 -- and the size required is 32 or less, in which case we bump the size
12495 -- up to 32. This is required for C and C++ and seems reasonable for
12496 -- all other foreign conventions.
12498 if Has_Foreign_Convention
(T
)
12499 and then Esize
(T
) < Standard_Integer_Size
12501 -- Don't do this if Short_Enums on target
12503 and then not Target_Short_Enums
12505 Init_Esize
(T
, Standard_Integer_Size
);
12507 Init_Esize
(T
, Sz
);
12509 end Set_Enum_Esize
;
12511 -----------------------------
12512 -- Uninstall_Discriminants --
12513 -----------------------------
12515 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
12521 -- Discriminants have been made visible for type declarations and
12522 -- protected type declarations, not for subtype declarations.
12524 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12525 Disc
:= First_Discriminant
(E
);
12526 while Present
(Disc
) loop
12527 if Disc
/= Current_Entity
(Disc
) then
12528 Prev
:= Current_Entity
(Disc
);
12529 while Present
(Prev
)
12530 and then Present
(Homonym
(Prev
))
12531 and then Homonym
(Prev
) /= Disc
12533 Prev
:= Homonym
(Prev
);
12539 Set_Is_Immediately_Visible
(Disc
, False);
12541 Outer
:= Homonym
(Disc
);
12542 while Present
(Outer
) and then Scope
(Outer
) = E
loop
12543 Outer
:= Homonym
(Outer
);
12546 -- Reset homonym link of other entities, but do not modify link
12547 -- between entities in current scope, so that the back-end can
12548 -- have a proper count of local overloadings.
12551 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
12553 elsif Scope
(Prev
) /= Scope
(Disc
) then
12554 Set_Homonym
(Prev
, Outer
);
12557 Next_Discriminant
(Disc
);
12560 end Uninstall_Discriminants
;
12562 -------------------------------------------
12563 -- Uninstall_Discriminants_And_Pop_Scope --
12564 -------------------------------------------
12566 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
12568 if Has_Discriminants
(E
) then
12569 Uninstall_Discriminants
(E
);
12572 end Uninstall_Discriminants_And_Pop_Scope
;
12574 ------------------------------
12575 -- Validate_Address_Clauses --
12576 ------------------------------
12578 procedure Validate_Address_Clauses
is
12580 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
12582 ACCR
: Address_Clause_Check_Record
12583 renames Address_Clause_Checks
.Table
(J
);
12587 X_Alignment
: Uint
;
12588 Y_Alignment
: Uint
;
12594 -- Skip processing of this entry if warning already posted
12596 if not Address_Warning_Posted
(ACCR
.N
) then
12597 Expr
:= Original_Node
(Expression
(ACCR
.N
));
12601 X_Alignment
:= Alignment
(ACCR
.X
);
12602 Y_Alignment
:= Alignment
(ACCR
.Y
);
12604 -- Similarly obtain sizes
12606 X_Size
:= Esize
(ACCR
.X
);
12607 Y_Size
:= Esize
(ACCR
.Y
);
12609 -- Check for large object overlaying smaller one
12612 and then X_Size
> Uint_0
12613 and then X_Size
> Y_Size
12616 ("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
12618 ("\??program execution may be erroneous", ACCR
.N
);
12619 Error_Msg_Uint_1
:= X_Size
;
12621 ("\??size of & is ^", ACCR
.N
, ACCR
.X
);
12622 Error_Msg_Uint_1
:= Y_Size
;
12624 ("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
12626 -- Check for inadequate alignment, both of the base object
12627 -- and of the offset, if any.
12629 -- Note: we do not check the alignment if we gave a size
12630 -- warning, since it would likely be redundant.
12632 elsif Y_Alignment
/= Uint_0
12633 and then (Y_Alignment
< X_Alignment
12636 Nkind
(Expr
) = N_Attribute_Reference
12638 Attribute_Name
(Expr
) = Name_Address
12640 Has_Compatible_Alignment
12641 (ACCR
.X
, Prefix
(Expr
))
12642 /= Known_Compatible
))
12645 ("??specified address for& may be inconsistent "
12646 & "with alignment", ACCR
.N
, ACCR
.X
);
12648 ("\??program execution may be erroneous (RM 13.3(27))",
12650 Error_Msg_Uint_1
:= X_Alignment
;
12652 ("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
12653 Error_Msg_Uint_1
:= Y_Alignment
;
12655 ("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
12656 if Y_Alignment
>= X_Alignment
then
12658 ("\??but offset is not multiple of alignment", ACCR
.N
);
12664 end Validate_Address_Clauses
;
12666 ---------------------------
12667 -- Validate_Independence --
12668 ---------------------------
12670 procedure Validate_Independence
is
12671 SU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
12679 procedure Check_Array_Type
(Atyp
: Entity_Id
);
12680 -- Checks if the array type Atyp has independent components, and
12681 -- if not, outputs an appropriate set of error messages.
12683 procedure No_Independence
;
12684 -- Output message that independence cannot be guaranteed
12686 function OK_Component
(C
: Entity_Id
) return Boolean;
12687 -- Checks one component to see if it is independently accessible, and
12688 -- if so yields True, otherwise yields False if independent access
12689 -- cannot be guaranteed. This is a conservative routine, it only
12690 -- returns True if it knows for sure, it returns False if it knows
12691 -- there is a problem, or it cannot be sure there is no problem.
12693 procedure Reason_Bad_Component
(C
: Entity_Id
);
12694 -- Outputs continuation message if a reason can be determined for
12695 -- the component C being bad.
12697 ----------------------
12698 -- Check_Array_Type --
12699 ----------------------
12701 procedure Check_Array_Type
(Atyp
: Entity_Id
) is
12702 Ctyp
: constant Entity_Id
:= Component_Type
(Atyp
);
12705 -- OK if no alignment clause, no pack, and no component size
12707 if not Has_Component_Size_Clause
(Atyp
)
12708 and then not Has_Alignment_Clause
(Atyp
)
12709 and then not Is_Packed
(Atyp
)
12714 -- Case of component size is greater than or equal to 64 and the
12715 -- alignment of the array is at least as large as the alignment
12716 -- of the component. We are definitely OK in this situation.
12718 if Known_Component_Size
(Atyp
)
12719 and then Component_Size
(Atyp
) >= 64
12720 and then Known_Alignment
(Atyp
)
12721 and then Known_Alignment
(Ctyp
)
12722 and then Alignment
(Atyp
) >= Alignment
(Ctyp
)
12727 -- Check actual component size
12729 if not Known_Component_Size
(Atyp
)
12730 or else not (Addressable
(Component_Size
(Atyp
))
12731 and then Component_Size
(Atyp
) < 64)
12732 or else Component_Size
(Atyp
) mod Esize
(Ctyp
) /= 0
12736 -- Bad component size, check reason
12738 if Has_Component_Size_Clause
(Atyp
) then
12739 P
:= Get_Attribute_Definition_Clause
12740 (Atyp
, Attribute_Component_Size
);
12742 if Present
(P
) then
12743 Error_Msg_Sloc
:= Sloc
(P
);
12744 Error_Msg_N
("\because of Component_Size clause#", N
);
12749 if Is_Packed
(Atyp
) then
12750 P
:= Get_Rep_Pragma
(Atyp
, Name_Pack
);
12752 if Present
(P
) then
12753 Error_Msg_Sloc
:= Sloc
(P
);
12754 Error_Msg_N
("\because of pragma Pack#", N
);
12759 -- No reason found, just return
12764 -- Array type is OK independence-wise
12767 end Check_Array_Type
;
12769 ---------------------
12770 -- No_Independence --
12771 ---------------------
12773 procedure No_Independence
is
12775 if Pragma_Name
(N
) = Name_Independent
then
12776 Error_Msg_NE
("independence cannot be guaranteed for&", N
, E
);
12779 ("independent components cannot be guaranteed for&", N
, E
);
12781 end No_Independence
;
12787 function OK_Component
(C
: Entity_Id
) return Boolean is
12788 Rec
: constant Entity_Id
:= Scope
(C
);
12789 Ctyp
: constant Entity_Id
:= Etype
(C
);
12792 -- OK if no component clause, no Pack, and no alignment clause
12794 if No
(Component_Clause
(C
))
12795 and then not Is_Packed
(Rec
)
12796 and then not Has_Alignment_Clause
(Rec
)
12801 -- Here we look at the actual component layout. A component is
12802 -- addressable if its size is a multiple of the Esize of the
12803 -- component type, and its starting position in the record has
12804 -- appropriate alignment, and the record itself has appropriate
12805 -- alignment to guarantee the component alignment.
12807 -- Make sure sizes are static, always assume the worst for any
12808 -- cases where we cannot check static values.
12810 if not (Known_Static_Esize
(C
)
12812 Known_Static_Esize
(Ctyp
))
12817 -- Size of component must be addressable or greater than 64 bits
12818 -- and a multiple of bytes.
12820 if not Addressable
(Esize
(C
)) and then Esize
(C
) < Uint_64
then
12824 -- Check size is proper multiple
12826 if Esize
(C
) mod Esize
(Ctyp
) /= 0 then
12830 -- Check alignment of component is OK
12832 if not Known_Component_Bit_Offset
(C
)
12833 or else Component_Bit_Offset
(C
) < Uint_0
12834 or else Component_Bit_Offset
(C
) mod Esize
(Ctyp
) /= 0
12839 -- Check alignment of record type is OK
12841 if not Known_Alignment
(Rec
)
12842 or else (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12847 -- All tests passed, component is addressable
12852 --------------------------
12853 -- Reason_Bad_Component --
12854 --------------------------
12856 procedure Reason_Bad_Component
(C
: Entity_Id
) is
12857 Rec
: constant Entity_Id
:= Scope
(C
);
12858 Ctyp
: constant Entity_Id
:= Etype
(C
);
12861 -- If component clause present assume that's the problem
12863 if Present
(Component_Clause
(C
)) then
12864 Error_Msg_Sloc
:= Sloc
(Component_Clause
(C
));
12865 Error_Msg_N
("\because of Component_Clause#", N
);
12869 -- If pragma Pack clause present, assume that's the problem
12871 if Is_Packed
(Rec
) then
12872 P
:= Get_Rep_Pragma
(Rec
, Name_Pack
);
12874 if Present
(P
) then
12875 Error_Msg_Sloc
:= Sloc
(P
);
12876 Error_Msg_N
("\because of pragma Pack#", N
);
12881 -- See if record has bad alignment clause
12883 if Has_Alignment_Clause
(Rec
)
12884 and then Known_Alignment
(Rec
)
12885 and then (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12887 P
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Alignment
);
12889 if Present
(P
) then
12890 Error_Msg_Sloc
:= Sloc
(P
);
12891 Error_Msg_N
("\because of Alignment clause#", N
);
12895 -- Couldn't find a reason, so return without a message
12898 end Reason_Bad_Component
;
12900 -- Start of processing for Validate_Independence
12903 for J
in Independence_Checks
.First
.. Independence_Checks
.Last
loop
12904 N
:= Independence_Checks
.Table
(J
).N
;
12905 E
:= Independence_Checks
.Table
(J
).E
;
12906 IC
:= Pragma_Name
(N
) = Name_Independent_Components
;
12908 -- Deal with component case
12910 if Ekind
(E
) = E_Discriminant
or else Ekind
(E
) = E_Component
then
12911 if not OK_Component
(E
) then
12913 Reason_Bad_Component
(E
);
12918 -- Deal with record with Independent_Components
12920 if IC
and then Is_Record_Type
(E
) then
12921 Comp
:= First_Component_Or_Discriminant
(E
);
12922 while Present
(Comp
) loop
12923 if not OK_Component
(Comp
) then
12925 Reason_Bad_Component
(Comp
);
12929 Next_Component_Or_Discriminant
(Comp
);
12933 -- Deal with address clause case
12935 if Is_Object
(E
) then
12936 Addr
:= Address_Clause
(E
);
12938 if Present
(Addr
) then
12940 Error_Msg_Sloc
:= Sloc
(Addr
);
12941 Error_Msg_N
("\because of Address clause#", N
);
12946 -- Deal with independent components for array type
12948 if IC
and then Is_Array_Type
(E
) then
12949 Check_Array_Type
(E
);
12952 -- Deal with independent components for array object
12954 if IC
and then Is_Object
(E
) and then Is_Array_Type
(Etype
(E
)) then
12955 Check_Array_Type
(Etype
(E
));
12960 end Validate_Independence
;
12962 ------------------------------
12963 -- Validate_Iterable_Aspect --
12964 ------------------------------
12966 procedure Validate_Iterable_Aspect
(Typ
: Entity_Id
; ASN
: Node_Id
) is
12971 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, Typ
);
12973 First_Id
: Entity_Id
;
12974 Next_Id
: Entity_Id
;
12975 Has_Element_Id
: Entity_Id
;
12976 Element_Id
: Entity_Id
;
12979 -- If previous error aspect is unusable
12981 if Cursor
= Any_Type
then
12987 Has_Element_Id
:= Empty
;
12988 Element_Id
:= Empty
;
12990 -- Each expression must resolve to a function with the proper signature
12992 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
12993 while Present
(Assoc
) loop
12994 Expr
:= Expression
(Assoc
);
12997 Prim
:= First
(Choices
(Assoc
));
12999 if Nkind
(Prim
) /= N_Identifier
or else Present
(Next
(Prim
)) then
13000 Error_Msg_N
("illegal name in association", Prim
);
13002 elsif Chars
(Prim
) = Name_First
then
13003 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_First
);
13004 First_Id
:= Entity
(Expr
);
13006 elsif Chars
(Prim
) = Name_Next
then
13007 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Next
);
13008 Next_Id
:= Entity
(Expr
);
13010 elsif Chars
(Prim
) = Name_Has_Element
then
13011 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Has_Element
);
13012 Has_Element_Id
:= Entity
(Expr
);
13014 elsif Chars
(Prim
) = Name_Element
then
13015 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Element
);
13016 Element_Id
:= Entity
(Expr
);
13019 Error_Msg_N
("invalid name for iterable function", Prim
);
13025 if No
(First_Id
) then
13026 Error_Msg_N
("match for First primitive not found", ASN
);
13028 elsif No
(Next_Id
) then
13029 Error_Msg_N
("match for Next primitive not found", ASN
);
13031 elsif No
(Has_Element_Id
) then
13032 Error_Msg_N
("match for Has_Element primitive not found", ASN
);
13034 elsif No
(Element_Id
) then
13037 end Validate_Iterable_Aspect
;
13039 -----------------------------------
13040 -- Validate_Unchecked_Conversion --
13041 -----------------------------------
13043 procedure Validate_Unchecked_Conversion
13045 Act_Unit
: Entity_Id
)
13047 Source
: Entity_Id
;
13048 Target
: Entity_Id
;
13052 -- Obtain source and target types. Note that we call Ancestor_Subtype
13053 -- here because the processing for generic instantiation always makes
13054 -- subtypes, and we want the original frozen actual types.
13056 -- If we are dealing with private types, then do the check on their
13057 -- fully declared counterparts if the full declarations have been
13058 -- encountered (they don't have to be visible, but they must exist).
13060 Source
:= Ancestor_Subtype
(Etype
(First_Formal
(Act_Unit
)));
13062 if Is_Private_Type
(Source
)
13063 and then Present
(Underlying_Type
(Source
))
13065 Source
:= Underlying_Type
(Source
);
13068 Target
:= Ancestor_Subtype
(Etype
(Act_Unit
));
13070 -- If either type is generic, the instantiation happens within a generic
13071 -- unit, and there is nothing to check. The proper check will happen
13072 -- when the enclosing generic is instantiated.
13074 if Is_Generic_Type
(Source
) or else Is_Generic_Type
(Target
) then
13078 if Is_Private_Type
(Target
)
13079 and then Present
(Underlying_Type
(Target
))
13081 Target
:= Underlying_Type
(Target
);
13084 -- Source may be unconstrained array, but not target
13086 if Is_Array_Type
(Target
) and then not Is_Constrained
(Target
) then
13088 ("unchecked conversion to unconstrained array not allowed", N
);
13092 -- Warn if conversion between two different convention pointers
13094 if Is_Access_Type
(Target
)
13095 and then Is_Access_Type
(Source
)
13096 and then Convention
(Target
) /= Convention
(Source
)
13097 and then Warn_On_Unchecked_Conversion
13099 -- Give warnings for subprogram pointers only on most targets
13101 if Is_Access_Subprogram_Type
(Target
)
13102 or else Is_Access_Subprogram_Type
(Source
)
13105 ("?z?conversion between pointers with different conventions!",
13110 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13111 -- warning when compiling GNAT-related sources.
13113 if Warn_On_Unchecked_Conversion
13114 and then not In_Predefined_Unit
(N
)
13115 and then RTU_Loaded
(Ada_Calendar
)
13116 and then (Chars
(Source
) = Name_Time
13118 Chars
(Target
) = Name_Time
)
13120 -- If Ada.Calendar is loaded and the name of one of the operands is
13121 -- Time, there is a good chance that this is Ada.Calendar.Time.
13124 Calendar_Time
: constant Entity_Id
:= Full_View
(RTE
(RO_CA_Time
));
13126 pragma Assert
(Present
(Calendar_Time
));
13128 if Source
= Calendar_Time
or else Target
= Calendar_Time
then
13130 ("?z?representation of 'Time values may change between "
13131 & "'G'N'A'T versions", N
);
13136 -- Make entry in unchecked conversion table for later processing by
13137 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13138 -- (using values set by the back-end where possible). This is only done
13139 -- if the appropriate warning is active.
13141 if Warn_On_Unchecked_Conversion
then
13142 Unchecked_Conversions
.Append
13143 (New_Val
=> UC_Entry
'(Eloc => Sloc (N),
13146 Act_Unit => Act_Unit));
13148 -- If both sizes are known statically now, then back end annotation
13149 -- is not required to do a proper check but if either size is not
13150 -- known statically, then we need the annotation.
13152 if Known_Static_RM_Size (Source)
13154 Known_Static_RM_Size (Target)
13158 Back_Annotate_Rep_Info := True;
13162 -- If unchecked conversion to access type, and access type is declared
13163 -- in the same unit as the unchecked conversion, then set the flag
13164 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13166 if Is_Access_Type (Target) and then
13167 In_Same_Source_Unit (Target, N)
13169 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13172 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13173 -- the back end needs to perform special validation checks.
13175 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13176 -- have full expansion and the back end is called ???
13179 Make_Validate_Unchecked_Conversion (Sloc (N));
13180 Set_Source_Type (Vnode, Source);
13181 Set_Target_Type (Vnode, Target);
13183 -- If the unchecked conversion node is in a list, just insert before it.
13184 -- If not we have some strange case, not worth bothering about.
13186 if Is_List_Member (N) then
13187 Insert_After (N, Vnode);
13189 end Validate_Unchecked_Conversion;
13191 ------------------------------------
13192 -- Validate_Unchecked_Conversions --
13193 ------------------------------------
13195 procedure Validate_Unchecked_Conversions is
13197 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13199 T : UC_Entry renames Unchecked_Conversions.Table (N);
13201 Eloc : constant Source_Ptr := T.Eloc;
13202 Source : constant Entity_Id := T.Source;
13203 Target : constant Entity_Id := T.Target;
13204 Act_Unit : constant Entity_Id := T.Act_Unit;
13210 -- Skip if function marked as warnings off
13212 if Warnings_Off (Act_Unit) then
13216 -- This validation check, which warns if we have unequal sizes for
13217 -- unchecked conversion, and thus potentially implementation
13218 -- dependent semantics, is one of the few occasions on which we
13219 -- use the official RM size instead of Esize. See description in
13220 -- Einfo "Handling of Type'Size Values" for details.
13222 if Serious_Errors_Detected = 0
13223 and then Known_Static_RM_Size (Source)
13224 and then Known_Static_RM_Size (Target)
13226 -- Don't do the check if warnings off for either type, note the
13227 -- deliberate use of OR here instead of OR ELSE to get the flag
13228 -- Warnings_Off_Used set for both types if appropriate.
13230 and then not (Has_Warnings_Off (Source)
13232 Has_Warnings_Off (Target))
13234 Source_Siz := RM_Size (Source);
13235 Target_Siz := RM_Size (Target);
13237 if Source_Siz /= Target_Siz then
13239 ("?z?types for unchecked conversion have different sizes!",
13242 if All_Errors_Mode then
13243 Error_Msg_Name_1 := Chars (Source);
13244 Error_Msg_Uint_1 := Source_Siz;
13245 Error_Msg_Name_2 := Chars (Target);
13246 Error_Msg_Uint_2 := Target_Siz;
13247 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13249 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13251 if Is_Discrete_Type (Source)
13253 Is_Discrete_Type (Target)
13255 if Source_Siz > Target_Siz then
13257 ("\?z?^ high order bits of source will "
13258 & "be ignored!", Eloc);
13260 elsif Is_Unsigned_Type (Source) then
13262 ("\?z?source will be extended with ^ high order "
13263 & "zero bits!", Eloc);
13267 ("\?z?source will be extended with ^ high order "
13268 & "sign bits!", Eloc);
13271 elsif Source_Siz < Target_Siz then
13272 if Is_Discrete_Type (Target) then
13273 if Bytes_Big_Endian then
13275 ("\?z?target value will include ^ undefined "
13276 & "low order bits!", Eloc);
13279 ("\?z?target value will include ^ undefined "
13280 & "high order bits!", Eloc);
13285 ("\?z?^ trailing bits of target value will be "
13286 & "undefined!", Eloc);
13289 else pragma Assert (Source_Siz > Target_Siz);
13291 ("\?z?^ trailing bits of source will be ignored!",
13298 -- If both types are access types, we need to check the alignment.
13299 -- If the alignment of both is specified, we can do it here.
13301 if Serious_Errors_Detected = 0
13302 and then Is_Access_Type (Source)
13303 and then Is_Access_Type (Target)
13304 and then Target_Strict_Alignment
13305 and then Present (Designated_Type (Source))
13306 and then Present (Designated_Type (Target))
13309 D_Source : constant Entity_Id := Designated_Type (Source);
13310 D_Target : constant Entity_Id := Designated_Type (Target);
13313 if Known_Alignment (D_Source)
13315 Known_Alignment (D_Target)
13318 Source_Align : constant Uint := Alignment (D_Source);
13319 Target_Align : constant Uint := Alignment (D_Target);
13322 if Source_Align < Target_Align
13323 and then not Is_Tagged_Type (D_Source)
13325 -- Suppress warning if warnings suppressed on either
13326 -- type or either designated type. Note the use of
13327 -- OR here instead of OR ELSE. That is intentional,
13328 -- we would like to set flag Warnings_Off_Used in
13329 -- all types for which warnings are suppressed.
13331 and then not (Has_Warnings_Off (D_Source)
13333 Has_Warnings_Off (D_Target)
13335 Has_Warnings_Off (Source)
13337 Has_Warnings_Off (Target))
13339 Error_Msg_Uint_1 := Target_Align;
13340 Error_Msg_Uint_2 := Source_Align;
13341 Error_Msg_Node_1 := D_Target;
13342 Error_Msg_Node_2 := D_Source;
13344 ("?z?alignment of & (^) is stricter than "
13345 & "alignment of & (^)!", Eloc);
13347 ("\?z?resulting access value may have invalid "
13348 & "alignment!", Eloc);
13359 end Validate_Unchecked_Conversions;