1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
36 with Itypes
; use Itypes
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
44 with Restrict
; use Restrict
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Cat
; use Sem_Cat
;
48 with Sem_Ch3
; use Sem_Ch3
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_Ch13
; use Sem_Ch13
;
51 with Sem_Dim
; use Sem_Dim
;
52 with Sem_Eval
; use Sem_Eval
;
53 with Sem_Res
; use Sem_Res
;
54 with Sem_Util
; use Sem_Util
;
55 with Sem_Type
; use Sem_Type
;
56 with Sem_Warn
; use Sem_Warn
;
57 with Sinfo
; use Sinfo
;
58 with Snames
; use Snames
;
59 with Stringt
; use Stringt
;
60 with Stand
; use Stand
;
61 with Style
; use Style
;
62 with Targparm
; use Targparm
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Aggr
is
68 type Case_Bounds
is record
70 -- Low bound of choice. Once we sort the Case_Table, then entries
71 -- will be in order of ascending Choice_Lo values.
74 -- High Bound of choice. The sort does not pay any attention to the
75 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78 -- If there are duplicates or missing entries, then in the sorted
79 -- table, this records the highest value among Choice_Hi values
80 -- seen so far, including this entry.
83 -- The node of the choice
86 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
87 -- Table type used by Check_Case_Choices procedure. Entry zero is not
88 -- used (reserved for the sort). Real entries start at one.
90 -----------------------
91 -- Local Subprograms --
92 -----------------------
94 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
95 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
96 -- simple insertion sort is used since the choices in a case statement will
97 -- usually be in near sorted order.
99 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
);
100 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
101 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
102 -- the array case (the component type of the array will be used) or an
103 -- E_Component/E_Discriminant entity in the record case, in which case the
104 -- type of the component will be used for the test. If Typ is any other
105 -- kind of entity, the call is ignored. Expr is the component node in the
106 -- aggregate which is known to have a null value. A warning message will be
107 -- issued if the component is null excluding.
109 -- It would be better to pass the proper type for Typ ???
111 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
);
112 -- Check that Expr is either not limited or else is one of the cases of
113 -- expressions allowed for a limited component association (namely, an
114 -- aggregate, function call, or <> notation). Report error for violations.
115 -- Expression is also OK in an instance or inlining context, because we
116 -- have already pre-analyzed and it is known to be type correct.
118 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
);
119 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
120 -- at Level are qualified. If Level = 0, this applies to Expr directly.
121 -- Only issue errors in formal verification mode.
123 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean;
124 -- Return True of Expr is an aggregate not contained directly in another
127 ------------------------------------------------------
128 -- Subprograms used for RECORD AGGREGATE Processing --
129 ------------------------------------------------------
131 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
132 -- This procedure performs all the semantic checks required for record
133 -- aggregates. Note that for aggregates analysis and resolution go
134 -- hand in hand. Aggregate analysis has been delayed up to here and
135 -- it is done while resolving the aggregate.
137 -- N is the N_Aggregate node.
138 -- Typ is the record type for the aggregate resolution
140 -- While performing the semantic checks, this procedure builds a new
141 -- Component_Association_List where each record field appears alone in a
142 -- Component_Choice_List along with its corresponding expression. The
143 -- record fields in the Component_Association_List appear in the same order
144 -- in which they appear in the record type Typ.
146 -- Once this new Component_Association_List is built and all the semantic
147 -- checks performed, the original aggregate subtree is replaced with the
148 -- new named record aggregate just built. Note that subtree substitution is
149 -- performed with Rewrite so as to be able to retrieve the original
152 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
153 -- yields the aggregate format expected by Gigi. Typically, this kind of
154 -- tree manipulations are done in the expander. However, because the
155 -- semantic checks that need to be performed on record aggregates really go
156 -- hand in hand with the record aggregate normalization, the aggregate
157 -- subtree transformation is performed during resolution rather than
158 -- expansion. Had we decided otherwise we would have had to duplicate most
159 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
160 -- however, that all the expansion concerning aggregates for tagged records
161 -- is done in Expand_Record_Aggregate.
163 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
165 -- 1. Make sure that the record type against which the record aggregate
166 -- has to be resolved is not abstract. Furthermore if the type is a
167 -- null aggregate make sure the input aggregate N is also null.
169 -- 2. Verify that the structure of the aggregate is that of a record
170 -- aggregate. Specifically, look for component associations and ensure
171 -- that each choice list only has identifiers or the N_Others_Choice
172 -- node. Also make sure that if present, the N_Others_Choice occurs
173 -- last and by itself.
175 -- 3. If Typ contains discriminants, the values for each discriminant is
176 -- looked for. If the record type Typ has variants, we check that the
177 -- expressions corresponding to each discriminant ruling the (possibly
178 -- nested) variant parts of Typ, are static. This allows us to determine
179 -- the variant parts to which the rest of the aggregate must conform.
180 -- The names of discriminants with their values are saved in a new
181 -- association list, New_Assoc_List which is later augmented with the
182 -- names and values of the remaining components in the record type.
184 -- During this phase we also make sure that every discriminant is
185 -- assigned exactly one value. Note that when several values for a given
186 -- discriminant are found, semantic processing continues looking for
187 -- further errors. In this case it's the first discriminant value found
188 -- which we will be recorded.
190 -- IMPORTANT NOTE: For derived tagged types this procedure expects
191 -- First_Discriminant and Next_Discriminant to give the correct list
192 -- of discriminants, in the correct order.
194 -- 4. After all the discriminant values have been gathered, we can set the
195 -- Etype of the record aggregate. If Typ contains no discriminants this
196 -- is straightforward: the Etype of N is just Typ, otherwise a new
197 -- implicit constrained subtype of Typ is built to be the Etype of N.
199 -- 5. Gather the remaining record components according to the discriminant
200 -- values. This involves recursively traversing the record type
201 -- structure to see what variants are selected by the given discriminant
202 -- values. This processing is a little more convoluted if Typ is a
203 -- derived tagged types since we need to retrieve the record structure
204 -- of all the ancestors of Typ.
206 -- 6. After gathering the record components we look for their values in the
207 -- record aggregate and emit appropriate error messages should we not
208 -- find such values or should they be duplicated.
210 -- 7. We then make sure no illegal component names appear in the record
211 -- aggregate and make sure that the type of the record components
212 -- appearing in a same choice list is the same. Finally we ensure that
213 -- the others choice, if present, is used to provide the value of at
214 -- least a record component.
216 -- 8. The original aggregate node is replaced with the new named aggregate
217 -- built in steps 3 through 6, as explained earlier.
219 -- Given the complexity of record aggregate resolution, the primary goal of
220 -- this routine is clarity and simplicity rather than execution and storage
221 -- efficiency. If there are only positional components in the aggregate the
222 -- running time is linear. If there are associations the running time is
223 -- still linear as long as the order of the associations is not too far off
224 -- the order of the components in the record type. If this is not the case
225 -- the running time is at worst quadratic in the size of the association
228 procedure Check_Misspelled_Component
229 (Elements
: Elist_Id
;
230 Component
: Node_Id
);
231 -- Give possible misspelling diagnostic if Component is likely to be a
232 -- misspelling of one of the components of the Assoc_List. This is called
233 -- by Resolve_Aggr_Expr after producing an invalid component error message.
235 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
);
236 -- An optimization: determine whether a discriminated subtype has a static
237 -- constraint, and contains array components whose length is also static,
238 -- either because they are constrained by the discriminant, or because the
239 -- original component bounds are static.
241 -----------------------------------------------------
242 -- Subprograms used for ARRAY AGGREGATE Processing --
243 -----------------------------------------------------
245 function Resolve_Array_Aggregate
248 Index_Constr
: Node_Id
;
249 Component_Typ
: Entity_Id
;
250 Others_Allowed
: Boolean) return Boolean;
251 -- This procedure performs the semantic checks for an array aggregate.
252 -- True is returned if the aggregate resolution succeeds.
254 -- The procedure works by recursively checking each nested aggregate.
255 -- Specifically, after checking a sub-aggregate nested at the i-th level
256 -- we recursively check all the subaggregates at the i+1-st level (if any).
257 -- Note that for aggregates analysis and resolution go hand in hand.
258 -- Aggregate analysis has been delayed up to here and it is done while
259 -- resolving the aggregate.
261 -- N is the current N_Aggregate node to be checked.
263 -- Index is the index node corresponding to the array sub-aggregate that
264 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
265 -- corresponding index type (or subtype).
267 -- Index_Constr is the node giving the applicable index constraint if
268 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
269 -- contexts [...] that can be used to determine the bounds of the array
270 -- value specified by the aggregate". If Others_Allowed below is False
271 -- there is no applicable index constraint and this node is set to Index.
273 -- Component_Typ is the array component type.
275 -- Others_Allowed indicates whether an others choice is allowed
276 -- in the context where the top-level aggregate appeared.
278 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
280 -- 1. Make sure that the others choice, if present, is by itself and
281 -- appears last in the sub-aggregate. Check that we do not have
282 -- positional and named components in the array sub-aggregate (unless
283 -- the named association is an others choice). Finally if an others
284 -- choice is present, make sure it is allowed in the aggregate context.
286 -- 2. If the array sub-aggregate contains discrete_choices:
288 -- (A) Verify their validity. Specifically verify that:
290 -- (a) If a null range is present it must be the only possible
291 -- choice in the array aggregate.
293 -- (b) Ditto for a non static range.
295 -- (c) Ditto for a non static expression.
297 -- In addition this step analyzes and resolves each discrete_choice,
298 -- making sure that its type is the type of the corresponding Index.
299 -- If we are not at the lowest array aggregate level (in the case of
300 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
301 -- recursively on each component expression. Otherwise, resolve the
302 -- bottom level component expressions against the expected component
303 -- type ONLY IF the component corresponds to a single discrete choice
304 -- which is not an others choice (to see why read the DELAYED
305 -- COMPONENT RESOLUTION below).
307 -- (B) Determine the bounds of the sub-aggregate and lowest and
308 -- highest choice values.
310 -- 3. For positional aggregates:
312 -- (A) Loop over the component expressions either recursively invoking
313 -- Resolve_Array_Aggregate on each of these for multi-dimensional
314 -- array aggregates or resolving the bottom level component
315 -- expressions against the expected component type.
317 -- (B) Determine the bounds of the positional sub-aggregates.
319 -- 4. Try to determine statically whether the evaluation of the array
320 -- sub-aggregate raises Constraint_Error. If yes emit proper
321 -- warnings. The precise checks are the following:
323 -- (A) Check that the index range defined by aggregate bounds is
324 -- compatible with corresponding index subtype.
325 -- We also check against the base type. In fact it could be that
326 -- Low/High bounds of the base type are static whereas those of
327 -- the index subtype are not. Thus if we can statically catch
328 -- a problem with respect to the base type we are guaranteed
329 -- that the same problem will arise with the index subtype
331 -- (B) If we are dealing with a named aggregate containing an others
332 -- choice and at least one discrete choice then make sure the range
333 -- specified by the discrete choices does not overflow the
334 -- aggregate bounds. We also check against the index type and base
335 -- type bounds for the same reasons given in (A).
337 -- (C) If we are dealing with a positional aggregate with an others
338 -- choice make sure the number of positional elements specified
339 -- does not overflow the aggregate bounds. We also check against
340 -- the index type and base type bounds as mentioned in (A).
342 -- Finally construct an N_Range node giving the sub-aggregate bounds.
343 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
344 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
345 -- to build the appropriate aggregate subtype. Aggregate_Bounds
346 -- information is needed during expansion.
348 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
349 -- expressions in an array aggregate may call Duplicate_Subexpr or some
350 -- other routine that inserts code just outside the outermost aggregate.
351 -- If the array aggregate contains discrete choices or an others choice,
352 -- this may be wrong. Consider for instance the following example.
354 -- type Rec is record
358 -- type Acc_Rec is access Rec;
359 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361 -- Then the transformation of "new Rec" that occurs during resolution
362 -- entails the following code modifications
364 -- P7b : constant Acc_Rec := new Rec;
366 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368 -- This code transformation is clearly wrong, since we need to call
369 -- "new Rec" for each of the 3 array elements. To avoid this problem we
370 -- delay resolution of the components of non positional array aggregates
371 -- to the expansion phase. As an optimization, if the discrete choice
372 -- specifies a single value we do not delay resolution.
374 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Node_Id
) return Entity_Id
;
375 -- This routine returns the type or subtype of an array aggregate.
377 -- N is the array aggregate node whose type we return.
379 -- Typ is the context type in which N occurs.
381 -- This routine creates an implicit array subtype whose bounds are
382 -- those defined by the aggregate. When this routine is invoked
383 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
384 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
385 -- sub-aggregate bounds. When building the aggregate itype, this function
386 -- traverses the array aggregate N collecting such Aggregate_Bounds and
387 -- constructs the proper array aggregate itype.
389 -- Note that in the case of multidimensional aggregates each inner
390 -- sub-aggregate corresponding to a given array dimension, may provide a
391 -- different bounds. If it is possible to determine statically that
392 -- some sub-aggregates corresponding to the same index do not have the
393 -- same bounds, then a warning is emitted. If such check is not possible
394 -- statically (because some sub-aggregate bounds are dynamic expressions)
395 -- then this job is left to the expander. In all cases the particular
396 -- bounds that this function will chose for a given dimension is the first
397 -- N_Range node for a sub-aggregate corresponding to that dimension.
399 -- Note that the Raises_Constraint_Error flag of an array aggregate
400 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
401 -- is set in Resolve_Array_Aggregate but the aggregate is not
402 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
403 -- first construct the proper itype for the aggregate (Gigi needs
404 -- this). After constructing the proper itype we will eventually replace
405 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
406 -- Of course in cases such as:
408 -- type Arr is array (integer range <>) of Integer;
409 -- A : Arr := (positive range -1 .. 2 => 0);
411 -- The bounds of the aggregate itype are cooked up to look reasonable
412 -- (in this particular case the bounds will be 1 .. 2).
414 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
415 -- A string literal can appear in a context in which a one dimensional
416 -- array of characters is expected. This procedure simply rewrites the
417 -- string as an aggregate, prior to resolution.
419 ------------------------
420 -- Array_Aggr_Subtype --
421 ------------------------
423 function Array_Aggr_Subtype
425 Typ
: Entity_Id
) return Entity_Id
427 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
428 -- Number of aggregate index dimensions
430 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
431 -- Constrained N_Range of each index dimension in our aggregate itype
433 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
434 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
435 -- Low and High bounds for each index dimension in our aggregate itype
437 Is_Fully_Positional
: Boolean := True;
439 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
440 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
441 -- to (sub-)aggregate N. This procedure collects and removes the side
442 -- effects of the constrained N_Range nodes corresponding to each index
443 -- dimension of our aggregate itype. These N_Range nodes are collected
444 -- in Aggr_Range above.
446 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
447 -- bounds of each index dimension. If, when collecting, two bounds
448 -- corresponding to the same dimension are static and found to differ,
449 -- then emit a warning, and mark N as raising Constraint_Error.
451 -------------------------
452 -- Collect_Aggr_Bounds --
453 -------------------------
455 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
456 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
457 -- The aggregate range node of this specific sub-aggregate
459 This_Low
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
460 This_High
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
461 -- The aggregate bounds of this specific sub-aggregate
467 Remove_Side_Effects
(This_Low
, Variable_Ref
=> True);
468 Remove_Side_Effects
(This_High
, Variable_Ref
=> True);
470 -- Collect the first N_Range for a given dimension that you find.
471 -- For a given dimension they must be all equal anyway.
473 if No
(Aggr_Range
(Dim
)) then
474 Aggr_Low
(Dim
) := This_Low
;
475 Aggr_High
(Dim
) := This_High
;
476 Aggr_Range
(Dim
) := This_Range
;
479 if Compile_Time_Known_Value
(This_Low
) then
480 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
481 Aggr_Low
(Dim
) := This_Low
;
483 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
484 Set_Raises_Constraint_Error
(N
);
485 Error_Msg_Warn
:= SPARK_Mode
/= On
;
486 Error_Msg_N
("sub-aggregate low bound mismatch<<", N
);
487 Error_Msg_N
("\Constraint_Error [<<", N
);
491 if Compile_Time_Known_Value
(This_High
) then
492 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
493 Aggr_High
(Dim
) := This_High
;
496 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
498 Set_Raises_Constraint_Error
(N
);
499 Error_Msg_Warn
:= SPARK_Mode
/= On
;
500 Error_Msg_N
("sub-aggregate high bound mismatch<<", N
);
501 Error_Msg_N
("\Constraint_Error [<<", N
);
506 if Dim
< Aggr_Dimension
then
508 -- Process positional components
510 if Present
(Expressions
(N
)) then
511 Expr
:= First
(Expressions
(N
));
512 while Present
(Expr
) loop
513 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
518 -- Process component associations
520 if Present
(Component_Associations
(N
)) then
521 Is_Fully_Positional
:= False;
523 Assoc
:= First
(Component_Associations
(N
));
524 while Present
(Assoc
) loop
525 Expr
:= Expression
(Assoc
);
526 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
531 end Collect_Aggr_Bounds
;
533 -- Array_Aggr_Subtype variables
536 -- The final itype of the overall aggregate
538 Index_Constraints
: constant List_Id
:= New_List
;
539 -- The list of index constraints of the aggregate itype
541 -- Start of processing for Array_Aggr_Subtype
544 -- Make sure that the list of index constraints is properly attached to
545 -- the tree, and then collect the aggregate bounds.
547 Set_Parent
(Index_Constraints
, N
);
548 Collect_Aggr_Bounds
(N
, 1);
550 -- Build the list of constrained indexes of our aggregate itype
552 for J
in 1 .. Aggr_Dimension
loop
553 Create_Index
: declare
554 Index_Base
: constant Entity_Id
:=
555 Base_Type
(Etype
(Aggr_Range
(J
)));
556 Index_Typ
: Entity_Id
;
559 -- Construct the Index subtype, and associate it with the range
560 -- construct that generates it.
563 Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), Aggr_Range
(J
));
565 Set_Etype
(Index_Typ
, Index_Base
);
567 if Is_Character_Type
(Index_Base
) then
568 Set_Is_Character_Type
(Index_Typ
);
571 Set_Size_Info
(Index_Typ
, (Index_Base
));
572 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
573 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
574 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
576 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
577 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
580 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
582 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
586 -- Now build the Itype
588 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
590 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
591 Set_Convention
(Itype
, Convention
(Typ
));
592 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
593 Set_Etype
(Itype
, Base_Type
(Typ
));
594 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
595 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
596 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
598 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
599 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
601 Set_First_Index
(Itype
, First
(Index_Constraints
));
602 Set_Is_Constrained
(Itype
, True);
603 Set_Is_Internal
(Itype
, True);
605 -- A simple optimization: purely positional aggregates of static
606 -- components should be passed to gigi unexpanded whenever possible, and
607 -- regardless of the staticness of the bounds themselves. Subsequent
608 -- checks in exp_aggr verify that type is not packed, etc.
610 Set_Size_Known_At_Compile_Time
613 and then Comes_From_Source
(N
)
614 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
616 -- We always need a freeze node for a packed array subtype, so that we
617 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
618 -- expansion is disabled, the packed array subtype is not built, and we
619 -- must not generate a freeze node for the type, or else it will appear
620 -- incomplete to gigi.
623 and then not In_Spec_Expression
624 and then Expander_Active
626 Freeze_Itype
(Itype
, N
);
630 end Array_Aggr_Subtype
;
632 --------------------------------
633 -- Check_Misspelled_Component --
634 --------------------------------
636 procedure Check_Misspelled_Component
637 (Elements
: Elist_Id
;
640 Max_Suggestions
: constant := 2;
642 Nr_Of_Suggestions
: Natural := 0;
643 Suggestion_1
: Entity_Id
:= Empty
;
644 Suggestion_2
: Entity_Id
:= Empty
;
645 Component_Elmt
: Elmt_Id
;
648 -- All the components of List are matched against Component and a count
649 -- is maintained of possible misspellings. When at the end of the the
650 -- analysis there are one or two (not more) possible misspellings,
651 -- these misspellings will be suggested as possible correction.
653 Component_Elmt
:= First_Elmt
(Elements
);
654 while Nr_Of_Suggestions
<= Max_Suggestions
655 and then Present
(Component_Elmt
)
657 if Is_Bad_Spelling_Of
658 (Chars
(Node
(Component_Elmt
)),
661 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
663 case Nr_Of_Suggestions
is
664 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
665 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
670 Next_Elmt
(Component_Elmt
);
673 -- Report at most two suggestions
675 if Nr_Of_Suggestions
= 1 then
676 Error_Msg_NE
-- CODEFIX
677 ("\possible misspelling of&", Component
, Suggestion_1
);
679 elsif Nr_Of_Suggestions
= 2 then
680 Error_Msg_Node_2
:= Suggestion_2
;
681 Error_Msg_NE
-- CODEFIX
682 ("\possible misspelling of& or&", Component
, Suggestion_1
);
684 end Check_Misspelled_Component
;
686 ----------------------------------------
687 -- Check_Expr_OK_In_Limited_Aggregate --
688 ----------------------------------------
690 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
) is
692 if Is_Limited_Type
(Etype
(Expr
))
693 and then Comes_From_Source
(Expr
)
695 if In_Instance_Body
or else In_Inlined_Body
then
698 elsif not OK_For_Limited_Init
(Etype
(Expr
), Expr
) then
700 ("initialization not allowed for limited types", Expr
);
701 Explain_Limited_Type
(Etype
(Expr
), Expr
);
704 end Check_Expr_OK_In_Limited_Aggregate
;
706 -------------------------------
707 -- Check_Qualified_Aggregate --
708 -------------------------------
710 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
) is
716 if Nkind
(Parent
(Expr
)) /= N_Qualified_Expression
then
717 Check_SPARK_05_Restriction
("aggregate should be qualified", Expr
);
721 Comp_Expr
:= First
(Expressions
(Expr
));
722 while Present
(Comp_Expr
) loop
723 if Nkind
(Comp_Expr
) = N_Aggregate
then
724 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
727 Comp_Expr
:= Next
(Comp_Expr
);
730 Comp_Assn
:= First
(Component_Associations
(Expr
));
731 while Present
(Comp_Assn
) loop
732 Comp_Expr
:= Expression
(Comp_Assn
);
734 if Nkind
(Comp_Expr
) = N_Aggregate
then
735 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
738 Comp_Assn
:= Next
(Comp_Assn
);
741 end Check_Qualified_Aggregate
;
743 ----------------------------------------
744 -- Check_Static_Discriminated_Subtype --
745 ----------------------------------------
747 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
) is
748 Disc
: constant Entity_Id
:= First_Discriminant
(T
);
753 if Has_Record_Rep_Clause
(T
) then
756 elsif Present
(Next_Discriminant
(Disc
)) then
759 elsif Nkind
(V
) /= N_Integer_Literal
then
763 Comp
:= First_Component
(T
);
764 while Present
(Comp
) loop
765 if Is_Scalar_Type
(Etype
(Comp
)) then
768 elsif Is_Private_Type
(Etype
(Comp
))
769 and then Present
(Full_View
(Etype
(Comp
)))
770 and then Is_Scalar_Type
(Full_View
(Etype
(Comp
)))
774 elsif Is_Array_Type
(Etype
(Comp
)) then
775 if Is_Bit_Packed_Array
(Etype
(Comp
)) then
779 Ind
:= First_Index
(Etype
(Comp
));
780 while Present
(Ind
) loop
781 if Nkind
(Ind
) /= N_Range
782 or else Nkind
(Low_Bound
(Ind
)) /= N_Integer_Literal
783 or else Nkind
(High_Bound
(Ind
)) /= N_Integer_Literal
795 Next_Component
(Comp
);
798 -- On exit, all components have statically known sizes
800 Set_Size_Known_At_Compile_Time
(T
);
801 end Check_Static_Discriminated_Subtype
;
803 -------------------------
804 -- Is_Others_Aggregate --
805 -------------------------
807 function Is_Others_Aggregate
(Aggr
: Node_Id
) return Boolean is
809 return No
(Expressions
(Aggr
))
811 Nkind
(First
(Choices
(First
(Component_Associations
(Aggr
))))) =
813 end Is_Others_Aggregate
;
815 ----------------------------
816 -- Is_Top_Level_Aggregate --
817 ----------------------------
819 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean is
821 return Nkind
(Parent
(Expr
)) /= N_Aggregate
822 and then (Nkind
(Parent
(Expr
)) /= N_Component_Association
823 or else Nkind
(Parent
(Parent
(Expr
))) /= N_Aggregate
);
824 end Is_Top_Level_Aggregate
;
826 --------------------------------
827 -- Make_String_Into_Aggregate --
828 --------------------------------
830 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
831 Exprs
: constant List_Id
:= New_List
;
832 Loc
: constant Source_Ptr
:= Sloc
(N
);
833 Str
: constant String_Id
:= Strval
(N
);
834 Strlen
: constant Nat
:= String_Length
(Str
);
842 for J
in 1 .. Strlen
loop
843 C
:= Get_String_Char
(Str
, J
);
844 Set_Character_Literal_Name
(C
);
847 Make_Character_Literal
(P
,
849 Char_Literal_Value
=> UI_From_CC
(C
));
850 Set_Etype
(C_Node
, Any_Character
);
851 Append_To
(Exprs
, C_Node
);
854 -- Something special for wide strings???
857 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
858 Set_Analyzed
(New_N
);
859 Set_Etype
(New_N
, Any_Composite
);
862 end Make_String_Into_Aggregate
;
864 -----------------------
865 -- Resolve_Aggregate --
866 -----------------------
868 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
869 Loc
: constant Source_Ptr
:= Sloc
(N
);
870 Pkind
: constant Node_Kind
:= Nkind
(Parent
(N
));
872 Aggr_Subtyp
: Entity_Id
;
873 -- The actual aggregate subtype. This is not necessarily the same as Typ
874 -- which is the subtype of the context in which the aggregate was found.
877 -- Ignore junk empty aggregate resulting from parser error
879 if No
(Expressions
(N
))
880 and then No
(Component_Associations
(N
))
881 and then not Null_Record_Present
(N
)
886 -- If the aggregate has box-initialized components, its type must be
887 -- frozen so that initialization procedures can properly be called
888 -- in the resolution that follows. The replacement of boxes with
889 -- initialization calls is properly an expansion activity but it must
890 -- be done during resolution.
893 and then Present
(Component_Associations
(N
))
899 Comp
:= First
(Component_Associations
(N
));
900 while Present
(Comp
) loop
901 if Box_Present
(Comp
) then
902 Insert_Actions
(N
, Freeze_Entity
(Typ
, N
));
911 -- An unqualified aggregate is restricted in SPARK to:
913 -- An aggregate item inside an aggregate for a multi-dimensional array
915 -- An expression being assigned to an unconstrained array, but only if
916 -- the aggregate specifies a value for OTHERS only.
918 if Nkind
(Parent
(N
)) = N_Qualified_Expression
then
919 if Is_Array_Type
(Typ
) then
920 Check_Qualified_Aggregate
(Number_Dimensions
(Typ
), N
);
922 Check_Qualified_Aggregate
(1, N
);
925 if Is_Array_Type
(Typ
)
926 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
927 and then not Is_Constrained
(Etype
(Name
(Parent
(N
))))
929 if not Is_Others_Aggregate
(N
) then
930 Check_SPARK_05_Restriction
931 ("array aggregate should have only OTHERS", N
);
934 elsif Is_Top_Level_Aggregate
(N
) then
935 Check_SPARK_05_Restriction
("aggregate should be qualified", N
);
937 -- The legality of this unqualified aggregate is checked by calling
938 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
939 -- unless one of these already causes an error to be issued.
946 -- Check for aggregates not allowed in configurable run-time mode.
947 -- We allow all cases of aggregates that do not come from source, since
948 -- these are all assumed to be small (e.g. bounds of a string literal).
949 -- We also allow aggregates of types we know to be small.
951 if not Support_Aggregates_On_Target
952 and then Comes_From_Source
(N
)
953 and then (not Known_Static_Esize
(Typ
) or else Esize
(Typ
) > 64)
955 Error_Msg_CRT
("aggregate", N
);
958 -- Ada 2005 (AI-287): Limited aggregates allowed
960 -- In an instance, ignore aggregate subcomponents tnat may be limited,
961 -- because they originate in view conflicts. If the original aggregate
962 -- is legal and the actuals are legal, the aggregate itself is legal.
964 if Is_Limited_Type
(Typ
)
965 and then Ada_Version
< Ada_2005
966 and then not In_Instance
968 Error_Msg_N
("aggregate type cannot be limited", N
);
969 Explain_Limited_Type
(Typ
, N
);
971 elsif Is_Class_Wide_Type
(Typ
) then
972 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
974 elsif Typ
= Any_String
975 or else Typ
= Any_Composite
977 Error_Msg_N
("no unique type for aggregate", N
);
978 Set_Etype
(N
, Any_Composite
);
980 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
981 Error_Msg_N
("null record forbidden in array aggregate", N
);
983 elsif Is_Record_Type
(Typ
) then
984 Resolve_Record_Aggregate
(N
, Typ
);
986 elsif Is_Array_Type
(Typ
) then
988 -- First a special test, for the case of a positional aggregate
989 -- of characters which can be replaced by a string literal.
991 -- Do not perform this transformation if this was a string literal to
992 -- start with, whose components needed constraint checks, or if the
993 -- component type is non-static, because it will require those checks
994 -- and be transformed back into an aggregate.
996 if Number_Dimensions
(Typ
) = 1
997 and then Is_Standard_Character_Type
(Component_Type
(Typ
))
998 and then No
(Component_Associations
(N
))
999 and then not Is_Limited_Composite
(Typ
)
1000 and then not Is_Private_Composite
(Typ
)
1001 and then not Is_Bit_Packed_Array
(Typ
)
1002 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
1003 and then Is_OK_Static_Subtype
(Component_Type
(Typ
))
1009 Expr
:= First
(Expressions
(N
));
1010 while Present
(Expr
) loop
1011 exit when Nkind
(Expr
) /= N_Character_Literal
;
1018 Expr
:= First
(Expressions
(N
));
1019 while Present
(Expr
) loop
1020 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
1024 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
1026 Analyze_And_Resolve
(N
, Typ
);
1032 -- Here if we have a real aggregate to deal with
1034 Array_Aggregate
: declare
1035 Aggr_Resolved
: Boolean;
1037 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
1038 -- This is the unconstrained array type, which is the type against
1039 -- which the aggregate is to be resolved. Typ itself is the array
1040 -- type of the context which may not be the same subtype as the
1041 -- subtype for the final aggregate.
1044 -- In the following we determine whether an OTHERS choice is
1045 -- allowed inside the array aggregate. The test checks the context
1046 -- in which the array aggregate occurs. If the context does not
1047 -- permit it, or the aggregate type is unconstrained, an OTHERS
1048 -- choice is not allowed (except that it is always allowed on the
1049 -- right-hand side of an assignment statement; in this case the
1050 -- constrainedness of the type doesn't matter).
1052 -- If expansion is disabled (generic context, or semantics-only
1053 -- mode) actual subtypes cannot be constructed, and the type of an
1054 -- object may be its unconstrained nominal type. However, if the
1055 -- context is an assignment, we assume that OTHERS is allowed,
1056 -- because the target of the assignment will have a constrained
1057 -- subtype when fully compiled.
1059 -- Note that there is no node for Explicit_Actual_Parameter.
1060 -- To test for this context we therefore have to test for node
1061 -- N_Parameter_Association which itself appears only if there is a
1062 -- formal parameter. Consequently we also need to test for
1063 -- N_Procedure_Call_Statement or N_Function_Call.
1065 -- The context may be an N_Reference node, created by expansion.
1066 -- Legality of the others clause was established in the source,
1067 -- so the context is legal.
1069 Set_Etype
(N
, Aggr_Typ
); -- May be overridden later on
1071 if Pkind
= N_Assignment_Statement
1072 or else (Is_Constrained
(Typ
)
1074 (Pkind
= N_Parameter_Association
or else
1075 Pkind
= N_Function_Call
or else
1076 Pkind
= N_Procedure_Call_Statement
or else
1077 Pkind
= N_Generic_Association
or else
1078 Pkind
= N_Formal_Object_Declaration
or else
1079 Pkind
= N_Simple_Return_Statement
or else
1080 Pkind
= N_Object_Declaration
or else
1081 Pkind
= N_Component_Declaration
or else
1082 Pkind
= N_Parameter_Specification
or else
1083 Pkind
= N_Qualified_Expression
or else
1084 Pkind
= N_Reference
or else
1085 Pkind
= N_Aggregate
or else
1086 Pkind
= N_Extension_Aggregate
or else
1087 Pkind
= N_Component_Association
))
1090 Resolve_Array_Aggregate
1092 Index
=> First_Index
(Aggr_Typ
),
1093 Index_Constr
=> First_Index
(Typ
),
1094 Component_Typ
=> Component_Type
(Typ
),
1095 Others_Allowed
=> True);
1097 elsif not Expander_Active
1098 and then Pkind
= N_Assignment_Statement
1101 Resolve_Array_Aggregate
1103 Index
=> First_Index
(Aggr_Typ
),
1104 Index_Constr
=> First_Index
(Typ
),
1105 Component_Typ
=> Component_Type
(Typ
),
1106 Others_Allowed
=> True);
1110 Resolve_Array_Aggregate
1112 Index
=> First_Index
(Aggr_Typ
),
1113 Index_Constr
=> First_Index
(Aggr_Typ
),
1114 Component_Typ
=> Component_Type
(Typ
),
1115 Others_Allowed
=> False);
1118 if not Aggr_Resolved
then
1120 -- A parenthesized expression may have been intended as an
1121 -- aggregate, leading to a type error when analyzing the
1122 -- component. This can also happen for a nested component
1123 -- (see Analyze_Aggr_Expr).
1125 if Paren_Count
(N
) > 0 then
1127 ("positional aggregate cannot have one component", N
);
1130 Aggr_Subtyp
:= Any_Composite
;
1133 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1136 Set_Etype
(N
, Aggr_Subtyp
);
1137 end Array_Aggregate
;
1139 elsif Is_Private_Type
(Typ
)
1140 and then Present
(Full_View
(Typ
))
1141 and then (In_Inlined_Body
or In_Instance_Body
)
1142 and then Is_Composite_Type
(Full_View
(Typ
))
1144 Resolve
(N
, Full_View
(Typ
));
1147 Error_Msg_N
("illegal context for aggregate", N
);
1150 -- If we can determine statically that the evaluation of the aggregate
1151 -- raises Constraint_Error, then replace the aggregate with an
1152 -- N_Raise_Constraint_Error node, but set the Etype to the right
1153 -- aggregate subtype. Gigi needs this.
1155 if Raises_Constraint_Error
(N
) then
1156 Aggr_Subtyp
:= Etype
(N
);
1158 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Range_Check_Failed
));
1159 Set_Raises_Constraint_Error
(N
);
1160 Set_Etype
(N
, Aggr_Subtyp
);
1164 Check_Function_Writable_Actuals
(N
);
1165 end Resolve_Aggregate
;
1167 -----------------------------
1168 -- Resolve_Array_Aggregate --
1169 -----------------------------
1171 function Resolve_Array_Aggregate
1174 Index_Constr
: Node_Id
;
1175 Component_Typ
: Entity_Id
;
1176 Others_Allowed
: Boolean) return Boolean
1178 Loc
: constant Source_Ptr
:= Sloc
(N
);
1180 Failure
: constant Boolean := False;
1181 Success
: constant Boolean := True;
1183 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1184 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1185 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1186 -- The type of the index corresponding to the array sub-aggregate along
1187 -- with its low and upper bounds.
1189 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1190 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1191 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1192 -- Ditto for the base type
1194 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1195 -- Creates a new expression node where Val is added to expression To.
1196 -- Tries to constant fold whenever possible. To must be an already
1197 -- analyzed expression.
1199 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1200 -- Checks that AH (the upper bound of an array aggregate) is less than
1201 -- or equal to BH (the upper bound of the index base type). If the check
1202 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1203 -- set, and AH is replaced with a duplicate of BH.
1205 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1206 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1207 -- warning if not and sets the Raises_Constraint_Error flag in N.
1209 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1210 -- Checks that range L .. H contains at least Len elements. Emits a
1211 -- warning if not and sets the Raises_Constraint_Error flag in N.
1213 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1214 -- Returns True if range L .. H is dynamic or null
1216 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1217 -- Given expression node From, this routine sets OK to False if it
1218 -- cannot statically evaluate From. Otherwise it stores this static
1219 -- value into Value.
1221 function Resolve_Aggr_Expr
1223 Single_Elmt
: Boolean) return Boolean;
1224 -- Resolves aggregate expression Expr. Returns False if resolution
1225 -- fails. If Single_Elmt is set to False, the expression Expr may be
1226 -- used to initialize several array aggregate elements (this can happen
1227 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1228 -- In this event we do not resolve Expr unless expansion is disabled.
1229 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1231 -- NOTE: In the case of "... => <>", we pass the in the
1232 -- N_Component_Association node as Expr, since there is no Expression in
1233 -- that case, and we need a Sloc for the error message.
1239 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1245 if Raises_Constraint_Error
(To
) then
1249 -- First test if we can do constant folding
1251 if Compile_Time_Known_Value
(To
)
1252 or else Nkind
(To
) = N_Integer_Literal
1254 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1255 Set_Is_Static_Expression
(Expr_Pos
);
1256 Set_Etype
(Expr_Pos
, Etype
(To
));
1257 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1259 if not Is_Enumeration_Type
(Index_Typ
) then
1262 -- If we are dealing with enumeration return
1263 -- Index_Typ'Val (Expr_Pos)
1267 Make_Attribute_Reference
1269 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1270 Attribute_Name
=> Name_Val
,
1271 Expressions
=> New_List
(Expr_Pos
));
1277 -- If we are here no constant folding possible
1279 if not Is_Enumeration_Type
(Index_Base
) then
1282 Left_Opnd
=> Duplicate_Subexpr
(To
),
1283 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1285 -- If we are dealing with enumeration return
1286 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1290 Make_Attribute_Reference
1292 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1293 Attribute_Name
=> Name_Pos
,
1294 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1298 Left_Opnd
=> To_Pos
,
1299 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1302 Make_Attribute_Reference
1304 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1305 Attribute_Name
=> Name_Val
,
1306 Expressions
=> New_List
(Expr_Pos
));
1308 -- If the index type has a non standard representation, the
1309 -- attributes 'Val and 'Pos expand into function calls and the
1310 -- resulting expression is considered non-safe for reevaluation
1311 -- by the backend. Relocate it into a constant temporary in order
1312 -- to make it safe for reevaluation.
1314 if Has_Non_Standard_Rep
(Etype
(N
)) then
1319 Def_Id
:= Make_Temporary
(Loc
, 'R', Expr
);
1320 Set_Etype
(Def_Id
, Index_Typ
);
1322 Make_Object_Declaration
(Loc
,
1323 Defining_Identifier
=> Def_Id
,
1324 Object_Definition
=>
1325 New_Occurrence_Of
(Index_Typ
, Loc
),
1326 Constant_Present
=> True,
1327 Expression
=> Relocate_Node
(Expr
)));
1329 Expr
:= New_Occurrence_Of
(Def_Id
, Loc
);
1341 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1349 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1350 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1352 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1353 Set_Raises_Constraint_Error
(N
);
1354 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1355 Error_Msg_N
("upper bound out of range<<", AH
);
1356 Error_Msg_N
("\Constraint_Error [<<", AH
);
1358 -- You need to set AH to BH or else in the case of enumerations
1359 -- indexes we will not be able to resolve the aggregate bounds.
1361 AH
:= Duplicate_Subexpr
(BH
);
1369 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1380 pragma Warnings
(Off
, OK_AL
);
1381 pragma Warnings
(Off
, OK_AH
);
1384 if Raises_Constraint_Error
(N
)
1385 or else Dynamic_Or_Null_Range
(AL
, AH
)
1390 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1391 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1393 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1394 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1396 if OK_L
and then Val_L
> Val_AL
then
1397 Set_Raises_Constraint_Error
(N
);
1398 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1399 Error_Msg_N
("lower bound of aggregate out of range<<", N
);
1400 Error_Msg_N
("\Constraint_Error [<<", N
);
1403 if OK_H
and then Val_H
< Val_AH
then
1404 Set_Raises_Constraint_Error
(N
);
1405 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1406 Error_Msg_N
("upper bound of aggregate out of range<<", N
);
1407 Error_Msg_N
("\Constraint_Error [<<", N
);
1415 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1425 if Raises_Constraint_Error
(N
) then
1429 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1430 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1432 if not OK_L
or else not OK_H
then
1436 -- If null range length is zero
1438 if Val_L
> Val_H
then
1439 Range_Len
:= Uint_0
;
1441 Range_Len
:= Val_H
- Val_L
+ 1;
1444 if Range_Len
< Len
then
1445 Set_Raises_Constraint_Error
(N
);
1446 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1447 Error_Msg_N
("too many elements<<", N
);
1448 Error_Msg_N
("\Constraint_Error [<<", N
);
1452 ---------------------------
1453 -- Dynamic_Or_Null_Range --
1454 ---------------------------
1456 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1464 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1465 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1467 return not OK_L
or else not OK_H
1468 or else not Is_OK_Static_Expression
(L
)
1469 or else not Is_OK_Static_Expression
(H
)
1470 or else Val_L
> Val_H
;
1471 end Dynamic_Or_Null_Range
;
1477 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1481 if Compile_Time_Known_Value
(From
) then
1482 Value
:= Expr_Value
(From
);
1484 -- If expression From is something like Some_Type'Val (10) then
1487 elsif Nkind
(From
) = N_Attribute_Reference
1488 and then Attribute_Name
(From
) = Name_Val
1489 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1491 Value
:= Expr_Value
(First
(Expressions
(From
)));
1498 -----------------------
1499 -- Resolve_Aggr_Expr --
1500 -----------------------
1502 function Resolve_Aggr_Expr
1504 Single_Elmt
: Boolean) return Boolean
1506 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1507 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1508 -- Index is the current index corresponding to the expression
1510 Resolution_OK
: Boolean := True;
1511 -- Set to False if resolution of the expression failed
1514 -- Defend against previous errors
1516 if Nkind
(Expr
) = N_Error
1517 or else Error_Posted
(Expr
)
1522 -- If the array type against which we are resolving the aggregate
1523 -- has several dimensions, the expressions nested inside the
1524 -- aggregate must be further aggregates (or strings).
1526 if Present
(Nxt_Ind
) then
1527 if Nkind
(Expr
) /= N_Aggregate
then
1529 -- A string literal can appear where a one-dimensional array
1530 -- of characters is expected. If the literal looks like an
1531 -- operator, it is still an operator symbol, which will be
1532 -- transformed into a string when analyzed.
1534 if Is_Character_Type
(Component_Typ
)
1535 and then No
(Next_Index
(Nxt_Ind
))
1536 and then Nkind_In
(Expr
, N_String_Literal
, N_Operator_Symbol
)
1538 -- A string literal used in a multidimensional array
1539 -- aggregate in place of the final one-dimensional
1540 -- aggregate must not be enclosed in parentheses.
1542 if Paren_Count
(Expr
) /= 0 then
1543 Error_Msg_N
("no parenthesis allowed here", Expr
);
1546 Make_String_Into_Aggregate
(Expr
);
1549 Error_Msg_N
("nested array aggregate expected", Expr
);
1551 -- If the expression is parenthesized, this may be
1552 -- a missing component association for a 1-aggregate.
1554 if Paren_Count
(Expr
) > 0 then
1556 ("\if single-component aggregate is intended, "
1557 & "write e.g. (1 ='> ...)", Expr
);
1564 -- If it's "... => <>", nothing to resolve
1566 if Nkind
(Expr
) = N_Component_Association
then
1567 pragma Assert
(Box_Present
(Expr
));
1571 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1572 -- Required to check the null-exclusion attribute (if present).
1573 -- This value may be overridden later on.
1575 Set_Etype
(Expr
, Etype
(N
));
1577 Resolution_OK
:= Resolve_Array_Aggregate
1578 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1581 -- If it's "... => <>", nothing to resolve
1583 if Nkind
(Expr
) = N_Component_Association
then
1584 pragma Assert
(Box_Present
(Expr
));
1588 -- Do not resolve the expressions of discrete or others choices
1589 -- unless the expression covers a single component, or the
1590 -- expander is inactive.
1592 -- In SPARK mode, expressions that can perform side-effects will
1593 -- be recognized by the gnat2why back-end, and the whole
1594 -- subprogram will be ignored. So semantic analysis can be
1595 -- performed safely.
1598 or else not Expander_Active
1599 or else In_Spec_Expression
1601 Analyze_And_Resolve
(Expr
, Component_Typ
);
1602 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
1603 Check_Non_Static_Context
(Expr
);
1604 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1605 Check_Unset_Reference
(Expr
);
1609 -- If an aggregate component has a type with predicates, an explicit
1610 -- predicate check must be applied, as for an assignment statement,
1611 -- because the aggegate might not be expanded into individual
1612 -- component assignments.
1614 if Present
(Predicate_Function
(Component_Typ
)) then
1615 Apply_Predicate_Check
(Expr
, Component_Typ
);
1618 if Raises_Constraint_Error
(Expr
)
1619 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1621 Set_Raises_Constraint_Error
(N
);
1624 -- If the expression has been marked as requiring a range check,
1625 -- then generate it here. It's a bit odd to be generating such
1626 -- checks in the analyzer, but harmless since Generate_Range_Check
1627 -- does nothing (other than making sure Do_Range_Check is set) if
1628 -- the expander is not active.
1630 if Do_Range_Check
(Expr
) then
1631 Generate_Range_Check
(Expr
, Component_Typ
, CE_Range_Check_Failed
);
1634 return Resolution_OK
;
1635 end Resolve_Aggr_Expr
;
1637 -- Variables local to Resolve_Array_Aggregate
1644 Delete_Choice
: Boolean;
1645 -- Used when replacing a subtype choice with predicate by a list
1647 Aggr_Low
: Node_Id
:= Empty
;
1648 Aggr_High
: Node_Id
:= Empty
;
1649 -- The actual low and high bounds of this sub-aggregate
1651 Choices_Low
: Node_Id
:= Empty
;
1652 Choices_High
: Node_Id
:= Empty
;
1653 -- The lowest and highest discrete choices values for a named aggregate
1655 Nb_Elements
: Uint
:= Uint_0
;
1656 -- The number of elements in a positional aggregate
1658 Others_Present
: Boolean := False;
1660 Nb_Choices
: Nat
:= 0;
1661 -- Contains the overall number of named choices in this sub-aggregate
1663 Nb_Discrete_Choices
: Nat
:= 0;
1664 -- The overall number of discrete choices (not counting others choice)
1666 Case_Table_Size
: Nat
;
1667 -- Contains the size of the case table needed to sort aggregate choices
1669 -- Start of processing for Resolve_Array_Aggregate
1672 -- Ignore junk empty aggregate resulting from parser error
1674 if No
(Expressions
(N
))
1675 and then No
(Component_Associations
(N
))
1676 and then not Null_Record_Present
(N
)
1681 -- STEP 1: make sure the aggregate is correctly formatted
1683 if Present
(Component_Associations
(N
)) then
1684 Assoc
:= First
(Component_Associations
(N
));
1685 while Present
(Assoc
) loop
1686 Choice
:= First
(Choices
(Assoc
));
1687 Delete_Choice
:= False;
1688 while Present
(Choice
) loop
1689 if Nkind
(Choice
) = N_Others_Choice
then
1690 Others_Present
:= True;
1692 if Choice
/= First
(Choices
(Assoc
))
1693 or else Present
(Next
(Choice
))
1696 ("OTHERS must appear alone in a choice list", Choice
);
1700 if Present
(Next
(Assoc
)) then
1702 ("OTHERS must appear last in an aggregate", Choice
);
1706 if Ada_Version
= Ada_83
1707 and then Assoc
/= First
(Component_Associations
(N
))
1708 and then Nkind_In
(Parent
(N
), N_Assignment_Statement
,
1709 N_Object_Declaration
)
1712 ("(Ada 83) illegal context for OTHERS choice", N
);
1715 elsif Is_Entity_Name
(Choice
) then
1719 E
: constant Entity_Id
:= Entity
(Choice
);
1725 if Is_Type
(E
) and then Has_Predicates
(E
) then
1726 Freeze_Before
(N
, E
);
1728 if Has_Dynamic_Predicate_Aspect
(E
) then
1730 ("subtype& has dynamic predicate, not allowed "
1731 & "in aggregate choice", Choice
, E
);
1733 elsif not Is_OK_Static_Subtype
(E
) then
1735 ("non-static subtype& has predicate, not allowed "
1736 & "in aggregate choice", Choice
, E
);
1739 -- If the subtype has a static predicate, replace the
1740 -- original choice with the list of individual values
1741 -- covered by the predicate.
1743 if Present
(Static_Discrete_Predicate
(E
)) then
1744 Delete_Choice
:= True;
1747 P
:= First
(Static_Discrete_Predicate
(E
));
1748 while Present
(P
) loop
1750 Set_Sloc
(C
, Sloc
(Choice
));
1751 Append_To
(New_Cs
, C
);
1755 Insert_List_After
(Choice
, New_Cs
);
1761 Nb_Choices
:= Nb_Choices
+ 1;
1764 C
: constant Node_Id
:= Choice
;
1769 if Delete_Choice
then
1771 Nb_Choices
:= Nb_Choices
- 1;
1772 Delete_Choice
:= False;
1781 -- At this point we know that the others choice, if present, is by
1782 -- itself and appears last in the aggregate. Check if we have mixed
1783 -- positional and discrete associations (other than the others choice).
1785 if Present
(Expressions
(N
))
1786 and then (Nb_Choices
> 1
1787 or else (Nb_Choices
= 1 and then not Others_Present
))
1790 ("named association cannot follow positional association",
1791 First
(Choices
(First
(Component_Associations
(N
)))));
1795 -- Test for the validity of an others choice if present
1797 if Others_Present
and then not Others_Allowed
then
1799 ("OTHERS choice not allowed here",
1800 First
(Choices
(First
(Component_Associations
(N
)))));
1804 -- Protect against cascaded errors
1806 if Etype
(Index_Typ
) = Any_Type
then
1810 -- STEP 2: Process named components
1812 if No
(Expressions
(N
)) then
1813 if Others_Present
then
1814 Case_Table_Size
:= Nb_Choices
- 1;
1816 Case_Table_Size
:= Nb_Choices
;
1822 -- Denote the lowest and highest values in an aggregate choice
1824 S_Low
: Node_Id
:= Empty
;
1825 S_High
: Node_Id
:= Empty
;
1826 -- if a choice in an aggregate is a subtype indication these
1827 -- denote the lowest and highest values of the subtype
1829 Table
: Case_Table_Type
(0 .. Case_Table_Size
);
1830 -- Used to sort all the different choice values. Entry zero is
1831 -- reserved for sorting purposes.
1833 Single_Choice
: Boolean;
1834 -- Set to true every time there is a single discrete choice in a
1835 -- discrete association
1837 Prev_Nb_Discrete_Choices
: Nat
;
1838 -- Used to keep track of the number of discrete choices in the
1839 -- current association.
1841 Errors_Posted_On_Choices
: Boolean := False;
1842 -- Keeps track of whether any choices have semantic errors
1844 function Empty_Range
(A
: Node_Id
) return Boolean;
1845 -- If an association covers an empty range, some warnings on the
1846 -- expression of the association can be disabled.
1852 function Empty_Range
(A
: Node_Id
) return Boolean is
1853 R
: constant Node_Id
:= First
(Choices
(A
));
1855 return No
(Next
(R
))
1856 and then Nkind
(R
) = N_Range
1857 and then Compile_Time_Compare
1858 (Low_Bound
(R
), High_Bound
(R
), False) = GT
;
1861 -- Start of processing for Step_2
1864 -- STEP 2 (A): Check discrete choices validity
1866 Assoc
:= First
(Component_Associations
(N
));
1867 while Present
(Assoc
) loop
1868 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
1869 Choice
:= First
(Choices
(Assoc
));
1873 if Nkind
(Choice
) = N_Others_Choice
then
1874 Single_Choice
:= False;
1877 -- Test for subtype mark without constraint
1879 elsif Is_Entity_Name
(Choice
) and then
1880 Is_Type
(Entity
(Choice
))
1882 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
1884 ("invalid subtype mark in aggregate choice",
1889 -- Case of subtype indication
1891 elsif Nkind
(Choice
) = N_Subtype_Indication
then
1892 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
1894 if Has_Dynamic_Predicate_Aspect
1895 (Entity
(Subtype_Mark
(Choice
)))
1898 ("subtype& has dynamic predicate, "
1899 & "not allowed in aggregate choice",
1900 Choice
, Entity
(Subtype_Mark
(Choice
)));
1903 -- Does the subtype indication evaluation raise CE?
1905 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
1906 Get_Index_Bounds
(Choice
, Low
, High
);
1907 Check_Bounds
(S_Low
, S_High
, Low
, High
);
1909 -- Case of range or expression
1912 Resolve
(Choice
, Index_Base
);
1913 Check_Unset_Reference
(Choice
);
1914 Check_Non_Static_Context
(Choice
);
1916 -- If semantic errors were posted on the choice, then
1917 -- record that for possible early return from later
1918 -- processing (see handling of enumeration choices).
1920 if Error_Posted
(Choice
) then
1921 Errors_Posted_On_Choices
:= True;
1924 -- Do not range check a choice. This check is redundant
1925 -- since this test is already done when we check that the
1926 -- bounds of the array aggregate are within range.
1928 Set_Do_Range_Check
(Choice
, False);
1930 -- In SPARK, the choice must be static
1932 if not (Is_OK_Static_Expression
(Choice
)
1933 or else (Nkind
(Choice
) = N_Range
1934 and then Is_OK_Static_Range
(Choice
)))
1936 Check_SPARK_05_Restriction
1937 ("choice should be static", Choice
);
1941 -- If we could not resolve the discrete choice stop here
1943 if Etype
(Choice
) = Any_Type
then
1946 -- If the discrete choice raises CE get its original bounds
1948 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
1949 Set_Raises_Constraint_Error
(N
);
1950 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
1952 -- Otherwise get its bounds as usual
1955 Get_Index_Bounds
(Choice
, Low
, High
);
1958 if (Dynamic_Or_Null_Range
(Low
, High
)
1959 or else (Nkind
(Choice
) = N_Subtype_Indication
1961 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
1962 and then Nb_Choices
/= 1
1965 ("dynamic or empty choice in aggregate "
1966 & "must be the only choice", Choice
);
1970 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
1971 Table
(Nb_Discrete_Choices
).Lo
:= Low
;
1972 Table
(Nb_Discrete_Choices
).Hi
:= High
;
1973 Table
(Nb_Discrete_Choices
).Choice
:= Choice
;
1979 -- Check if we have a single discrete choice and whether
1980 -- this discrete choice specifies a single value.
1983 (Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1)
1984 and then (Low
= High
);
1990 -- Ada 2005 (AI-231)
1992 if Ada_Version
>= Ada_2005
1993 and then Known_Null
(Expression
(Assoc
))
1994 and then not Empty_Range
(Assoc
)
1996 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
1999 -- Ada 2005 (AI-287): In case of default initialized component
2000 -- we delay the resolution to the expansion phase.
2002 if Box_Present
(Assoc
) then
2004 -- Ada 2005 (AI-287): In case of default initialization of a
2005 -- component the expander will generate calls to the
2006 -- corresponding initialization subprogram. We need to call
2007 -- Resolve_Aggr_Expr to check the rules about
2010 if not Resolve_Aggr_Expr
2011 (Assoc
, Single_Elmt
=> Single_Choice
)
2016 elsif not Resolve_Aggr_Expr
2017 (Expression
(Assoc
), Single_Elmt
=> Single_Choice
)
2021 -- Check incorrect use of dynamically tagged expression
2023 -- We differentiate here two cases because the expression may
2024 -- not be decorated. For example, the analysis and resolution
2025 -- of the expression associated with the others choice will be
2026 -- done later with the full aggregate. In such case we
2027 -- duplicate the expression tree to analyze the copy and
2028 -- perform the required check.
2030 elsif not Present
(Etype
(Expression
(Assoc
))) then
2032 Save_Analysis
: constant Boolean := Full_Analysis
;
2033 Expr
: constant Node_Id
:=
2034 New_Copy_Tree
(Expression
(Assoc
));
2037 Expander_Mode_Save_And_Set
(False);
2038 Full_Analysis
:= False;
2040 -- Analyze the expression, making sure it is properly
2041 -- attached to the tree before we do the analysis.
2043 Set_Parent
(Expr
, Parent
(Expression
(Assoc
)));
2046 -- If the expression is a literal, propagate this info
2047 -- to the expression in the association, to enable some
2048 -- optimizations downstream.
2050 if Is_Entity_Name
(Expr
)
2051 and then Present
(Entity
(Expr
))
2052 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
2055 (Expression
(Assoc
), Component_Typ
);
2058 Full_Analysis
:= Save_Analysis
;
2059 Expander_Mode_Restore
;
2061 if Is_Tagged_Type
(Etype
(Expr
)) then
2062 Check_Dynamically_Tagged_Expression
2064 Typ
=> Component_Type
(Etype
(N
)),
2069 elsif Is_Tagged_Type
(Etype
(Expression
(Assoc
))) then
2070 Check_Dynamically_Tagged_Expression
2071 (Expr
=> Expression
(Assoc
),
2072 Typ
=> Component_Type
(Etype
(N
)),
2079 -- If aggregate contains more than one choice then these must be
2080 -- static. Check for duplicate and missing values.
2082 -- Note: there is duplicated code here wrt Check_Choice_Set in
2083 -- the body of Sem_Case, and it is possible we could just reuse
2084 -- that procedure. To be checked ???
2086 if Nb_Discrete_Choices
> 1 then
2087 Check_Choices
: declare
2089 -- Location of choice for messages
2093 -- High end of one range and Low end of the next. Should be
2094 -- contiguous if there is no hole in the list of values.
2098 -- End points of duplicated range
2100 Missing_Or_Duplicates
: Boolean := False;
2101 -- Set True if missing or duplicate choices found
2103 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
);
2104 -- Output continuation message with a representation of the
2105 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2106 -- choice node where the message is to be posted.
2108 ------------------------
2109 -- Output_Bad_Choices --
2110 ------------------------
2112 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
) is
2114 -- Enumeration type case
2116 if Is_Enumeration_Type
(Index_Typ
) then
2118 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Lo
, Loc
));
2120 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Hi
, Loc
));
2123 Error_Msg_N
("\\ %!", C
);
2125 Error_Msg_N
("\\ % .. %!", C
);
2128 -- Integer types case
2131 Error_Msg_Uint_1
:= Lo
;
2132 Error_Msg_Uint_2
:= Hi
;
2135 Error_Msg_N
("\\ ^!", C
);
2137 Error_Msg_N
("\\ ^ .. ^!", C
);
2140 end Output_Bad_Choices
;
2142 -- Start of processing for Check_Choices
2145 Sort_Case_Table
(Table
);
2147 -- First we do a quick linear loop to find out if we have
2148 -- any duplicates or missing entries (usually we have a
2149 -- legal aggregate, so this will get us out quickly).
2151 for J
in 1 .. Nb_Discrete_Choices
- 1 loop
2152 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2153 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
2156 or else (Lo_Val
> Hi_Val
+ 1
2157 and then not Others_Present
)
2159 Missing_Or_Duplicates
:= True;
2164 -- If we have missing or duplicate entries, first fill in
2165 -- the Highest entries to make life easier in the following
2166 -- loops to detect bad entries.
2168 if Missing_Or_Duplicates
then
2169 Table
(1).Highest
:= Expr_Value
(Table
(1).Hi
);
2171 for J
in 2 .. Nb_Discrete_Choices
loop
2172 Table
(J
).Highest
:=
2174 (Table
(J
- 1).Highest
, Expr_Value
(Table
(J
).Hi
));
2177 -- Loop through table entries to find duplicate indexes
2179 for J
in 2 .. Nb_Discrete_Choices
loop
2180 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2181 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2183 -- Case where we have duplicates (the lower bound of
2184 -- this choice is less than or equal to the highest
2185 -- high bound found so far).
2187 if Lo_Val
<= Table
(J
- 1).Highest
then
2189 -- We move backwards looking for duplicates. We can
2190 -- abandon this loop as soon as we reach a choice
2191 -- highest value that is less than Lo_Val.
2193 for K
in reverse 1 .. J
- 1 loop
2194 exit when Table
(K
).Highest
< Lo_Val
;
2196 -- Here we may have duplicates between entries
2197 -- for K and J. Get range of duplicates.
2200 UI_Max
(Lo_Val
, Expr_Value
(Table
(K
).Lo
));
2202 UI_Min
(Hi_Val
, Expr_Value
(Table
(K
).Hi
));
2204 -- Nothing to do if duplicate range is null
2206 if Lo_Dup
> Hi_Dup
then
2209 -- Otherwise place proper message
2212 -- We place message on later choice, with a
2213 -- line reference to the earlier choice.
2215 if Sloc
(Table
(J
).Choice
) <
2216 Sloc
(Table
(K
).Choice
)
2218 Choice
:= Table
(K
).Choice
;
2219 Error_Msg_Sloc
:= Sloc
(Table
(J
).Choice
);
2221 Choice
:= Table
(J
).Choice
;
2222 Error_Msg_Sloc
:= Sloc
(Table
(K
).Choice
);
2225 if Lo_Dup
= Hi_Dup
then
2227 ("index value in array aggregate "
2228 & "duplicates the one given#!", Choice
);
2231 ("index values in array aggregate "
2232 & "duplicate those given#!", Choice
);
2235 Output_Bad_Choices
(Lo_Dup
, Hi_Dup
, Choice
);
2241 -- Loop through entries in table to find missing indexes.
2242 -- Not needed if others, since missing impossible.
2244 if not Others_Present
then
2245 for J
in 2 .. Nb_Discrete_Choices
loop
2246 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2247 Hi_Val
:= Table
(J
- 1).Highest
;
2249 if Lo_Val
> Hi_Val
+ 1 then
2252 Error_Node
: Node_Id
;
2255 -- If the choice is the bound of a range in
2256 -- a subtype indication, it is not in the
2257 -- source lists for the aggregate itself, so
2258 -- post the error on the aggregate. Otherwise
2259 -- post it on choice itself.
2261 Choice
:= Table
(J
).Choice
;
2263 if Is_List_Member
(Choice
) then
2264 Error_Node
:= Choice
;
2269 if Hi_Val
+ 1 = Lo_Val
- 1 then
2271 ("missing index value "
2272 & "in array aggregate!", Error_Node
);
2275 ("missing index values "
2276 & "in array aggregate!", Error_Node
);
2280 (Hi_Val
+ 1, Lo_Val
- 1, Error_Node
);
2286 -- If either missing or duplicate values, return failure
2288 Set_Etype
(N
, Any_Composite
);
2294 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2296 if Nb_Discrete_Choices
> 0 then
2297 Choices_Low
:= Table
(1).Lo
;
2298 Choices_High
:= Table
(Nb_Discrete_Choices
).Hi
;
2301 -- If Others is present, then bounds of aggregate come from the
2302 -- index constraint (not the choices in the aggregate itself).
2304 if Others_Present
then
2305 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2307 -- No others clause present
2310 -- Special processing if others allowed and not present. This
2311 -- means that the bounds of the aggregate come from the index
2312 -- constraint (and the length must match).
2314 if Others_Allowed
then
2315 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2317 -- If others allowed, and no others present, then the array
2318 -- should cover all index values. If it does not, we will
2319 -- get a length check warning, but there is two cases where
2320 -- an additional warning is useful:
2322 -- If we have no positional components, and the length is
2323 -- wrong (which we can tell by others being allowed with
2324 -- missing components), and the index type is an enumeration
2325 -- type, then issue appropriate warnings about these missing
2326 -- components. They are only warnings, since the aggregate
2327 -- is fine, it's just the wrong length. We skip this check
2328 -- for standard character types (since there are no literals
2329 -- and it is too much trouble to concoct them), and also if
2330 -- any of the bounds have values that are not known at
2333 -- Another case warranting a warning is when the length
2334 -- is right, but as above we have an index type that is
2335 -- an enumeration, and the bounds do not match. This is a
2336 -- case where dubious sliding is allowed and we generate a
2337 -- warning that the bounds do not match.
2339 if No
(Expressions
(N
))
2340 and then Nkind
(Index
) = N_Range
2341 and then Is_Enumeration_Type
(Etype
(Index
))
2342 and then not Is_Standard_Character_Type
(Etype
(Index
))
2343 and then Compile_Time_Known_Value
(Aggr_Low
)
2344 and then Compile_Time_Known_Value
(Aggr_High
)
2345 and then Compile_Time_Known_Value
(Choices_Low
)
2346 and then Compile_Time_Known_Value
(Choices_High
)
2348 -- If any of the expressions or range bounds in choices
2349 -- have semantic errors, then do not attempt further
2350 -- resolution, to prevent cascaded errors.
2352 if Errors_Posted_On_Choices
then
2357 ALo
: constant Node_Id
:= Expr_Value_E
(Aggr_Low
);
2358 AHi
: constant Node_Id
:= Expr_Value_E
(Aggr_High
);
2359 CLo
: constant Node_Id
:= Expr_Value_E
(Choices_Low
);
2360 CHi
: constant Node_Id
:= Expr_Value_E
(Choices_High
);
2365 -- Warning case 1, missing values at start/end. Only
2366 -- do the check if the number of entries is too small.
2368 if (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2370 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2373 ("missing index value(s) in array aggregate??",
2376 -- Output missing value(s) at start
2378 if Chars
(ALo
) /= Chars
(CLo
) then
2381 if Chars
(ALo
) = Chars
(Ent
) then
2382 Error_Msg_Name_1
:= Chars
(ALo
);
2383 Error_Msg_N
("\ %??", N
);
2385 Error_Msg_Name_1
:= Chars
(ALo
);
2386 Error_Msg_Name_2
:= Chars
(Ent
);
2387 Error_Msg_N
("\ % .. %??", N
);
2391 -- Output missing value(s) at end
2393 if Chars
(AHi
) /= Chars
(CHi
) then
2396 if Chars
(AHi
) = Chars
(Ent
) then
2397 Error_Msg_Name_1
:= Chars
(Ent
);
2398 Error_Msg_N
("\ %??", N
);
2400 Error_Msg_Name_1
:= Chars
(Ent
);
2401 Error_Msg_Name_2
:= Chars
(AHi
);
2402 Error_Msg_N
("\ % .. %??", N
);
2406 -- Warning case 2, dubious sliding. The First_Subtype
2407 -- test distinguishes between a constrained type where
2408 -- sliding is not allowed (so we will get a warning
2409 -- later that Constraint_Error will be raised), and
2410 -- the unconstrained case where sliding is permitted.
2412 elsif (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2414 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2415 and then Chars
(ALo
) /= Chars
(CLo
)
2417 not Is_Constrained
(First_Subtype
(Etype
(N
)))
2420 ("bounds of aggregate do not match target??", N
);
2426 -- If no others, aggregate bounds come from aggregate
2428 Aggr_Low
:= Choices_Low
;
2429 Aggr_High
:= Choices_High
;
2433 -- STEP 3: Process positional components
2436 -- STEP 3 (A): Process positional elements
2438 Expr
:= First
(Expressions
(N
));
2439 Nb_Elements
:= Uint_0
;
2440 while Present
(Expr
) loop
2441 Nb_Elements
:= Nb_Elements
+ 1;
2443 -- Ada 2005 (AI-231)
2445 if Ada_Version
>= Ada_2005
and then Known_Null
(Expr
) then
2446 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
2449 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
2453 -- Check incorrect use of dynamically tagged expression
2455 if Is_Tagged_Type
(Etype
(Expr
)) then
2456 Check_Dynamically_Tagged_Expression
2458 Typ
=> Component_Type
(Etype
(N
)),
2465 if Others_Present
then
2466 Assoc
:= Last
(Component_Associations
(N
));
2468 -- Ada 2005 (AI-231)
2470 if Ada_Version
>= Ada_2005
and then Known_Null
(Assoc
) then
2471 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2474 -- Ada 2005 (AI-287): In case of default initialized component,
2475 -- we delay the resolution to the expansion phase.
2477 if Box_Present
(Assoc
) then
2479 -- Ada 2005 (AI-287): In case of default initialization of a
2480 -- component the expander will generate calls to the
2481 -- corresponding initialization subprogram. We need to call
2482 -- Resolve_Aggr_Expr to check the rules about
2485 if not Resolve_Aggr_Expr
(Assoc
, Single_Elmt
=> False) then
2489 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
2490 Single_Elmt
=> False)
2494 -- Check incorrect use of dynamically tagged expression. The
2495 -- expression of the others choice has not been resolved yet.
2496 -- In order to diagnose the semantic error we create a duplicate
2497 -- tree to analyze it and perform the check.
2501 Save_Analysis
: constant Boolean := Full_Analysis
;
2502 Expr
: constant Node_Id
:=
2503 New_Copy_Tree
(Expression
(Assoc
));
2506 Expander_Mode_Save_And_Set
(False);
2507 Full_Analysis
:= False;
2509 Full_Analysis
:= Save_Analysis
;
2510 Expander_Mode_Restore
;
2512 if Is_Tagged_Type
(Etype
(Expr
)) then
2513 Check_Dynamically_Tagged_Expression
2515 Typ
=> Component_Type
(Etype
(N
)),
2522 -- STEP 3 (B): Compute the aggregate bounds
2524 if Others_Present
then
2525 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2528 if Others_Allowed
then
2529 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Discard
);
2531 Aggr_Low
:= Index_Typ_Low
;
2534 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
2535 Check_Bound
(Index_Base_High
, Aggr_High
);
2539 -- STEP 4: Perform static aggregate checks and save the bounds
2543 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
2544 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
2548 if Others_Present
and then Nb_Discrete_Choices
> 0 then
2549 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
2550 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
2551 Choices_Low
, Choices_High
);
2552 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
2553 Choices_Low
, Choices_High
);
2557 elsif Others_Present
and then Nb_Elements
> 0 then
2558 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
2559 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
2560 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
2563 if Raises_Constraint_Error
(Aggr_Low
)
2564 or else Raises_Constraint_Error
(Aggr_High
)
2566 Set_Raises_Constraint_Error
(N
);
2569 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
2571 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2572 -- since the addition node returned by Add is not yet analyzed. Attach
2573 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2574 -- analyzed when it is a literal bound whose type must be properly set.
2576 if Others_Present
or else Nb_Discrete_Choices
> 0 then
2577 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
2579 if Etype
(Aggr_High
) = Universal_Integer
then
2580 Set_Analyzed
(Aggr_High
, False);
2584 -- If the aggregate already has bounds attached to it, it means this is
2585 -- a positional aggregate created as an optimization by
2586 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2589 if Present
(Aggregate_Bounds
(N
)) and then not Others_Allowed
then
2590 Aggr_Low
:= Low_Bound
(Aggregate_Bounds
(N
));
2591 Aggr_High
:= High_Bound
(Aggregate_Bounds
(N
));
2594 Set_Aggregate_Bounds
2595 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
2597 -- The bounds may contain expressions that must be inserted upwards.
2598 -- Attach them fully to the tree. After analysis, remove side effects
2599 -- from upper bound, if still needed.
2601 Set_Parent
(Aggregate_Bounds
(N
), N
);
2602 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
2603 Check_Unset_Reference
(Aggregate_Bounds
(N
));
2605 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
2607 (Aggregate_Bounds
(N
),
2608 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
2611 -- Check the dimensions of each component in the array aggregate
2613 Analyze_Dimension_Array_Aggregate
(N
, Component_Typ
);
2616 end Resolve_Array_Aggregate
;
2618 ---------------------------------
2619 -- Resolve_Extension_Aggregate --
2620 ---------------------------------
2622 -- There are two cases to consider:
2624 -- a) If the ancestor part is a type mark, the components needed are the
2625 -- difference between the components of the expected type and the
2626 -- components of the given type mark.
2628 -- b) If the ancestor part is an expression, it must be unambiguous, and
2629 -- once we have its type we can also compute the needed components as in
2630 -- the previous case. In both cases, if the ancestor type is not the
2631 -- immediate ancestor, we have to build this ancestor recursively.
2633 -- In both cases, discriminants of the ancestor type do not play a role in
2634 -- the resolution of the needed components, because inherited discriminants
2635 -- cannot be used in a type extension. As a result we can compute
2636 -- independently the list of components of the ancestor type and of the
2639 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2640 A
: constant Node_Id
:= Ancestor_Part
(N
);
2645 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean;
2646 -- If the type is limited, verify that the ancestor part is a legal
2647 -- expression (aggregate or function call, including 'Input)) that does
2648 -- not require a copy, as specified in 7.5(2).
2650 function Valid_Ancestor_Type
return Boolean;
2651 -- Verify that the type of the ancestor part is a non-private ancestor
2652 -- of the expected type, which must be a type extension.
2654 ----------------------------
2655 -- Valid_Limited_Ancestor --
2656 ----------------------------
2658 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean is
2660 if Is_Entity_Name
(Anc
) and then Is_Type
(Entity
(Anc
)) then
2663 -- The ancestor must be a call or an aggregate, but a call may
2664 -- have been expanded into a temporary, so check original node.
2666 elsif Nkind_In
(Anc
, N_Aggregate
,
2667 N_Extension_Aggregate
,
2672 elsif Nkind
(Original_Node
(Anc
)) = N_Function_Call
then
2675 elsif Nkind
(Anc
) = N_Attribute_Reference
2676 and then Attribute_Name
(Anc
) = Name_Input
2680 elsif Nkind
(Anc
) = N_Qualified_Expression
then
2681 return Valid_Limited_Ancestor
(Expression
(Anc
));
2686 end Valid_Limited_Ancestor
;
2688 -------------------------
2689 -- Valid_Ancestor_Type --
2690 -------------------------
2692 function Valid_Ancestor_Type
return Boolean is
2693 Imm_Type
: Entity_Id
;
2696 Imm_Type
:= Base_Type
(Typ
);
2697 while Is_Derived_Type
(Imm_Type
) loop
2698 if Etype
(Imm_Type
) = Base_Type
(A_Type
) then
2701 -- The base type of the parent type may appear as a private
2702 -- extension if it is declared as such in a parent unit of the
2703 -- current one. For consistency of the subsequent analysis use
2704 -- the partial view for the ancestor part.
2706 elsif Is_Private_Type
(Etype
(Imm_Type
))
2707 and then Present
(Full_View
(Etype
(Imm_Type
)))
2708 and then Base_Type
(A_Type
) = Full_View
(Etype
(Imm_Type
))
2710 A_Type
:= Etype
(Imm_Type
);
2713 -- The parent type may be a private extension. The aggregate is
2714 -- legal if the type of the aggregate is an extension of it that
2715 -- is not a private extension.
2717 elsif Is_Private_Type
(A_Type
)
2718 and then not Is_Private_Type
(Imm_Type
)
2719 and then Present
(Full_View
(A_Type
))
2720 and then Base_Type
(Full_View
(A_Type
)) = Etype
(Imm_Type
)
2725 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
2729 -- If previous loop did not find a proper ancestor, report error
2731 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
2733 end Valid_Ancestor_Type
;
2735 -- Start of processing for Resolve_Extension_Aggregate
2738 -- Analyze the ancestor part and account for the case where it is a
2739 -- parameterless function call.
2742 Check_Parameterless_Call
(A
);
2744 -- In SPARK, the ancestor part cannot be a type mark
2746 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
2747 Check_SPARK_05_Restriction
("ancestor part cannot be a type mark", A
);
2749 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2750 -- must not have unknown discriminants.
2752 if Has_Unknown_Discriminants
(Root_Type
(Typ
)) then
2754 ("aggregate not available for type& whose ancestor "
2755 & "has unknown discriminants", N
, Typ
);
2759 if not Is_Tagged_Type
(Typ
) then
2760 Error_Msg_N
("type of extension aggregate must be tagged", N
);
2763 elsif Is_Limited_Type
(Typ
) then
2765 -- Ada 2005 (AI-287): Limited aggregates are allowed
2767 if Ada_Version
< Ada_2005
then
2768 Error_Msg_N
("aggregate type cannot be limited", N
);
2769 Explain_Limited_Type
(Typ
, N
);
2772 elsif Valid_Limited_Ancestor
(A
) then
2777 ("limited ancestor part must be aggregate or function call", A
);
2780 elsif Is_Class_Wide_Type
(Typ
) then
2781 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
2785 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
2786 A_Type
:= Get_Full_View
(Entity
(A
));
2788 if Valid_Ancestor_Type
then
2789 Set_Entity
(A
, A_Type
);
2790 Set_Etype
(A
, A_Type
);
2792 Validate_Ancestor_Part
(N
);
2793 Resolve_Record_Aggregate
(N
, Typ
);
2796 elsif Nkind
(A
) /= N_Aggregate
then
2797 if Is_Overloaded
(A
) then
2800 Get_First_Interp
(A
, I
, It
);
2801 while Present
(It
.Typ
) loop
2803 -- Only consider limited interpretations in the Ada 2005 case
2805 if Is_Tagged_Type
(It
.Typ
)
2806 and then (Ada_Version
>= Ada_2005
2807 or else not Is_Limited_Type
(It
.Typ
))
2809 if A_Type
/= Any_Type
then
2810 Error_Msg_N
("cannot resolve expression", A
);
2817 Get_Next_Interp
(I
, It
);
2820 if A_Type
= Any_Type
then
2821 if Ada_Version
>= Ada_2005
then
2823 ("ancestor part must be of a tagged type", A
);
2826 ("ancestor part must be of a nonlimited tagged type", A
);
2833 A_Type
:= Etype
(A
);
2836 if Valid_Ancestor_Type
then
2837 Resolve
(A
, A_Type
);
2838 Check_Unset_Reference
(A
);
2839 Check_Non_Static_Context
(A
);
2841 -- The aggregate is illegal if the ancestor expression is a call
2842 -- to a function with a limited unconstrained result, unless the
2843 -- type of the aggregate is a null extension. This restriction
2844 -- was added in AI05-67 to simplify implementation.
2846 if Nkind
(A
) = N_Function_Call
2847 and then Is_Limited_Type
(A_Type
)
2848 and then not Is_Null_Extension
(Typ
)
2849 and then not Is_Constrained
(A_Type
)
2852 ("type of limited ancestor part must be constrained", A
);
2854 -- Reject the use of CPP constructors that leave objects partially
2855 -- initialized. For example:
2857 -- type CPP_Root is tagged limited record ...
2858 -- pragma Import (CPP, CPP_Root);
2860 -- type CPP_DT is new CPP_Root and Iface ...
2861 -- pragma Import (CPP, CPP_DT);
2863 -- type Ada_DT is new CPP_DT with ...
2865 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2867 -- Using the constructor of CPP_Root the slots of the dispatch
2868 -- table of CPP_DT cannot be set, and the secondary tag of
2869 -- CPP_DT is unknown.
2871 elsif Nkind
(A
) = N_Function_Call
2872 and then Is_CPP_Constructor_Call
(A
)
2873 and then Enclosing_CPP_Parent
(Typ
) /= A_Type
2876 ("??must use 'C'P'P constructor for type &", A
,
2877 Enclosing_CPP_Parent
(Typ
));
2879 -- The following call is not needed if the previous warning
2880 -- is promoted to an error.
2882 Resolve_Record_Aggregate
(N
, Typ
);
2884 elsif Is_Class_Wide_Type
(Etype
(A
))
2885 and then Nkind
(Original_Node
(A
)) = N_Function_Call
2887 -- If the ancestor part is a dispatching call, it appears
2888 -- statically to be a legal ancestor, but it yields any member
2889 -- of the class, and it is not possible to determine whether
2890 -- it is an ancestor of the extension aggregate (much less
2891 -- which ancestor). It is not possible to determine the
2892 -- components of the extension part.
2894 -- This check implements AI-306, which in fact was motivated by
2895 -- an AdaCore query to the ARG after this test was added.
2897 Error_Msg_N
("ancestor part must be statically tagged", A
);
2899 Resolve_Record_Aggregate
(N
, Typ
);
2904 Error_Msg_N
("no unique type for this aggregate", A
);
2907 Check_Function_Writable_Actuals
(N
);
2908 end Resolve_Extension_Aggregate
;
2910 ------------------------------
2911 -- Resolve_Record_Aggregate --
2912 ------------------------------
2914 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2916 -- N_Component_Association node belonging to the input aggregate N
2919 Positional_Expr
: Node_Id
;
2920 Component
: Entity_Id
;
2921 Component_Elmt
: Elmt_Id
;
2923 Components
: constant Elist_Id
:= New_Elmt_List
;
2924 -- Components is the list of the record components whose value must be
2925 -- provided in the aggregate. This list does include discriminants.
2927 New_Assoc_List
: constant List_Id
:= New_List
;
2928 New_Assoc
: Node_Id
;
2929 -- New_Assoc_List is the newly built list of N_Component_Association
2930 -- nodes. New_Assoc is one such N_Component_Association node in it.
2931 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2932 -- they are used to iterate over two different N_Component_Association
2935 Others_Etype
: Entity_Id
:= Empty
;
2936 -- This variable is used to save the Etype of the last record component
2937 -- that takes its value from the others choice. Its purpose is:
2939 -- (a) make sure the others choice is useful
2941 -- (b) make sure the type of all the components whose value is
2942 -- subsumed by the others choice are the same.
2944 -- This variable is updated as a side effect of function Get_Value.
2946 Is_Box_Present
: Boolean := False;
2947 Others_Box
: Boolean := False;
2948 -- Ada 2005 (AI-287): Variables used in case of default initialization
2949 -- to provide a functionality similar to Others_Etype. Box_Present
2950 -- indicates that the component takes its default initialization;
2951 -- Others_Box indicates that at least one component takes its default
2952 -- initialization. Similar to Others_Etype, they are also updated as a
2953 -- side effect of function Get_Value.
2955 procedure Add_Association
2956 (Component
: Entity_Id
;
2958 Assoc_List
: List_Id
;
2959 Is_Box_Present
: Boolean := False);
2960 -- Builds a new N_Component_Association node which associates Component
2961 -- to expression Expr and adds it to the association list being built,
2962 -- either New_Assoc_List, or the association being built for an inner
2965 function Discr_Present
(Discr
: Entity_Id
) return Boolean;
2966 -- If aggregate N is a regular aggregate this routine will return True.
2967 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2968 -- whose value may already have been specified by N's ancestor part.
2969 -- This routine checks whether this is indeed the case and if so returns
2970 -- False, signaling that no value for Discr should appear in N's
2971 -- aggregate part. Also, in this case, the routine appends to
2972 -- New_Assoc_List the discriminant value specified in the ancestor part.
2974 -- If the aggregate is in a context with expansion delayed, it will be
2975 -- reanalyzed. The inherited discriminant values must not be reinserted
2976 -- in the component list to prevent spurious errors, but they must be
2977 -- present on first analysis to build the proper subtype indications.
2978 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
2983 Consider_Others_Choice
: Boolean := False)
2985 -- Given a record component stored in parameter Compon, this function
2986 -- returns its value as it appears in the list From, which is a list
2987 -- of N_Component_Association nodes.
2989 -- If no component association has a choice for the searched component,
2990 -- the value provided by the others choice is returned, if there is one,
2991 -- and Consider_Others_Choice is set to true. Otherwise Empty is
2992 -- returned. If there is more than one component association giving a
2993 -- value for the searched record component, an error message is emitted
2994 -- and the first found value is returned.
2996 -- If Consider_Others_Choice is set and the returned expression comes
2997 -- from the others choice, then Others_Etype is set as a side effect.
2998 -- An error message is emitted if the components taking their value from
2999 -- the others choice do not have same type.
3001 function New_Copy_Tree_And_Copy_Dimensions
3003 Map
: Elist_Id
:= No_Elist
;
3004 New_Sloc
: Source_Ptr
:= No_Location
;
3005 New_Scope
: Entity_Id
:= Empty
) return Node_Id
;
3006 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3007 -- also copies the dimensions of Source to the returned node.
3009 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
);
3010 -- Analyzes and resolves expression Expr against the Etype of the
3011 -- Component. This routine also applies all appropriate checks to Expr.
3012 -- It finally saves a Expr in the newly created association list that
3013 -- will be attached to the final record aggregate. Note that if the
3014 -- Parent pointer of Expr is not set then Expr was produced with a
3015 -- New_Copy_Tree or some such.
3017 ---------------------
3018 -- Add_Association --
3019 ---------------------
3021 procedure Add_Association
3022 (Component
: Entity_Id
;
3024 Assoc_List
: List_Id
;
3025 Is_Box_Present
: Boolean := False)
3028 Choice_List
: constant List_Id
:= New_List
;
3029 New_Assoc
: Node_Id
;
3032 -- If this is a box association the expression is missing, so
3033 -- use the Sloc of the aggregate itself for the new association.
3035 if Present
(Expr
) then
3041 Append
(New_Occurrence_Of
(Component
, Loc
), Choice_List
);
3043 Make_Component_Association
(Loc
,
3044 Choices
=> Choice_List
,
3046 Box_Present
=> Is_Box_Present
);
3047 Append
(New_Assoc
, Assoc_List
);
3048 end Add_Association
;
3054 function Discr_Present
(Discr
: Entity_Id
) return Boolean is
3055 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
3060 Comp_Assoc
: Node_Id
;
3061 Discr_Expr
: Node_Id
;
3063 Ancestor_Typ
: Entity_Id
;
3064 Orig_Discr
: Entity_Id
;
3066 D_Val
: Elmt_Id
:= No_Elmt
; -- stop junk warning
3068 Ancestor_Is_Subtyp
: Boolean;
3071 if Regular_Aggr
then
3075 -- Check whether inherited discriminant values have already been
3076 -- inserted in the aggregate. This will be the case if we are
3077 -- re-analyzing an aggregate whose expansion was delayed.
3079 if Present
(Component_Associations
(N
)) then
3080 Comp_Assoc
:= First
(Component_Associations
(N
));
3081 while Present
(Comp_Assoc
) loop
3082 if Inherited_Discriminant
(Comp_Assoc
) then
3090 Ancestor
:= Ancestor_Part
(N
);
3091 Ancestor_Typ
:= Etype
(Ancestor
);
3092 Loc
:= Sloc
(Ancestor
);
3094 -- For a private type with unknown discriminants, use the underlying
3095 -- record view if it is available.
3097 if Has_Unknown_Discriminants
(Ancestor_Typ
)
3098 and then Present
(Full_View
(Ancestor_Typ
))
3099 and then Present
(Underlying_Record_View
(Full_View
(Ancestor_Typ
)))
3101 Ancestor_Typ
:= Underlying_Record_View
(Full_View
(Ancestor_Typ
));
3104 Ancestor_Is_Subtyp
:=
3105 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
3107 -- If the ancestor part has no discriminants clearly N's aggregate
3108 -- part must provide a value for Discr.
3110 if not Has_Discriminants
(Ancestor_Typ
) then
3113 -- If the ancestor part is an unconstrained subtype mark then the
3114 -- Discr must be present in N's aggregate part.
3116 elsif Ancestor_Is_Subtyp
3117 and then not Is_Constrained
(Entity
(Ancestor
))
3122 -- Now look to see if Discr was specified in the ancestor part
3124 if Ancestor_Is_Subtyp
then
3125 D_Val
:= First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
3128 Orig_Discr
:= Original_Record_Component
(Discr
);
3130 D
:= First_Discriminant
(Ancestor_Typ
);
3131 while Present
(D
) loop
3133 -- If Ancestor has already specified Disc value then insert its
3134 -- value in the final aggregate.
3136 if Original_Record_Component
(D
) = Orig_Discr
then
3137 if Ancestor_Is_Subtyp
then
3138 Discr_Expr
:= New_Copy_Tree
(Node
(D_Val
));
3141 Make_Selected_Component
(Loc
,
3142 Prefix
=> Duplicate_Subexpr
(Ancestor
),
3143 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
));
3146 Resolve_Aggr_Expr
(Discr_Expr
, Discr
);
3147 Set_Inherited_Discriminant
(Last
(New_Assoc_List
));
3151 Next_Discriminant
(D
);
3153 if Ancestor_Is_Subtyp
then
3168 Consider_Others_Choice
: Boolean := False)
3171 Typ
: constant Entity_Id
:= Etype
(Compon
);
3173 Expr
: Node_Id
:= Empty
;
3174 Selector_Name
: Node_Id
;
3177 Is_Box_Present
:= False;
3183 Assoc
:= First
(From
);
3184 while Present
(Assoc
) loop
3185 Selector_Name
:= First
(Choices
(Assoc
));
3186 while Present
(Selector_Name
) loop
3187 if Nkind
(Selector_Name
) = N_Others_Choice
then
3188 if Consider_Others_Choice
and then No
(Expr
) then
3190 -- We need to duplicate the expression for each
3191 -- successive component covered by the others choice.
3192 -- This is redundant if the others_choice covers only
3193 -- one component (small optimization possible???), but
3194 -- indispensable otherwise, because each one must be
3195 -- expanded individually to preserve side-effects.
3197 -- Ada 2005 (AI-287): In case of default initialization
3198 -- of components, we duplicate the corresponding default
3199 -- expression (from the record type declaration). The
3200 -- copy must carry the sloc of the association (not the
3201 -- original expression) to prevent spurious elaboration
3202 -- checks when the default includes function calls.
3204 if Box_Present
(Assoc
) then
3206 Is_Box_Present
:= True;
3208 if Expander_Active
then
3210 New_Copy_Tree_And_Copy_Dimensions
3211 (Expression
(Parent
(Compon
)),
3212 New_Sloc
=> Sloc
(Assoc
));
3214 return Expression
(Parent
(Compon
));
3218 if Present
(Others_Etype
)
3219 and then Base_Type
(Others_Etype
) /= Base_Type
(Typ
)
3221 -- If the components are of an anonymous access
3222 -- type they are distinct, but this is legal in
3223 -- Ada 2012 as long as designated types match.
3225 if (Ekind
(Typ
) = E_Anonymous_Access_Type
3226 or else Ekind
(Typ
) =
3227 E_Anonymous_Access_Subprogram_Type
)
3228 and then Designated_Type
(Typ
) =
3229 Designated_Type
(Others_Etype
)
3234 ("components in OTHERS choice must "
3235 & "have same type", Selector_Name
);
3239 Others_Etype
:= Typ
;
3241 -- Copy expression so that it is resolved
3242 -- independently for each component, This is needed
3243 -- for accessibility checks on compoents of anonymous
3244 -- access types, even in compile_only mode.
3246 if not Inside_A_Generic
then
3248 -- In ASIS mode, preanalyze the expression in an
3249 -- others association before making copies for
3250 -- separate resolution and accessibility checks.
3251 -- This ensures that the type of the expression is
3252 -- available to ASIS in all cases, in particular if
3253 -- the expression is itself an aggregate.
3256 Preanalyze_And_Resolve
(Expression
(Assoc
), Typ
);
3260 New_Copy_Tree_And_Copy_Dimensions
3261 (Expression
(Assoc
));
3264 return Expression
(Assoc
);
3269 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
3272 -- Ada 2005 (AI-231)
3274 if Ada_Version
>= Ada_2005
3275 and then Known_Null
(Expression
(Assoc
))
3277 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
3280 -- We need to duplicate the expression when several
3281 -- components are grouped together with a "|" choice.
3282 -- For instance "filed1 | filed2 => Expr"
3284 -- Ada 2005 (AI-287)
3286 if Box_Present
(Assoc
) then
3287 Is_Box_Present
:= True;
3289 -- Duplicate the default expression of the component
3290 -- from the record type declaration, so a new copy
3291 -- can be attached to the association.
3293 -- Note that we always copy the default expression,
3294 -- even when the association has a single choice, in
3295 -- order to create a proper association for the
3296 -- expanded aggregate.
3298 -- Component may have no default, in which case the
3299 -- expression is empty and the component is default-
3300 -- initialized, but an association for the component
3301 -- exists, and it is not covered by an others clause.
3303 -- Scalar and private types have no initialization
3304 -- procedure, so they remain uninitialized. If the
3305 -- target of the aggregate is a constant this
3306 -- deserves a warning.
3308 if No
(Expression
(Parent
(Compon
)))
3309 and then not Has_Non_Null_Base_Init_Proc
(Typ
)
3310 and then not Has_Aspect
(Typ
, Aspect_Default_Value
)
3311 and then not Is_Concurrent_Type
(Typ
)
3312 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3313 and then Constant_Present
(Parent
(N
))
3315 Error_Msg_Node_2
:= Typ
;
3317 ("component&? of type& is uninitialized",
3318 Assoc
, Selector_Name
);
3320 -- An additional reminder if the component type
3321 -- is a generic formal.
3323 if Is_Generic_Type
(Base_Type
(Typ
)) then
3325 ("\instance should provide actual type with "
3326 & "initialization for&", Assoc
, Typ
);
3331 New_Copy_Tree_And_Copy_Dimensions
3332 (Expression
(Parent
(Compon
)));
3335 if Present
(Next
(Selector_Name
)) then
3336 Expr
:= New_Copy_Tree_And_Copy_Dimensions
3337 (Expression
(Assoc
));
3339 Expr
:= Expression
(Assoc
);
3343 Generate_Reference
(Compon
, Selector_Name
, 'm');
3347 ("more than one value supplied for &",
3348 Selector_Name
, Compon
);
3353 Next
(Selector_Name
);
3362 ---------------------------------------
3363 -- New_Copy_Tree_And_Copy_Dimensions --
3364 ---------------------------------------
3366 function New_Copy_Tree_And_Copy_Dimensions
3368 Map
: Elist_Id
:= No_Elist
;
3369 New_Sloc
: Source_Ptr
:= No_Location
;
3370 New_Scope
: Entity_Id
:= Empty
) return Node_Id
3372 New_Copy
: constant Node_Id
:=
3373 New_Copy_Tree
(Source
, Map
, New_Sloc
, New_Scope
);
3376 -- Move the dimensions of Source to New_Copy
3378 Copy_Dimensions
(Source
, New_Copy
);
3380 end New_Copy_Tree_And_Copy_Dimensions
;
3382 -----------------------
3383 -- Resolve_Aggr_Expr --
3384 -----------------------
3386 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
) is
3387 Expr_Type
: Entity_Id
:= Empty
;
3388 New_C
: Entity_Id
:= Component
;
3391 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
3392 -- If the expression is an aggregate (possibly qualified) then its
3393 -- expansion is delayed until the enclosing aggregate is expanded
3394 -- into assignments. In that case, do not generate checks on the
3395 -- expression, because they will be generated later, and will other-
3396 -- wise force a copy (to remove side-effects) that would leave a
3397 -- dynamic-sized aggregate in the code, something that gigi cannot
3401 -- Set to True if the resolved Expr node needs to be relocated when
3402 -- attached to the newly created association list. This node need not
3403 -- be relocated if its parent pointer is not set. In fact in this
3404 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3405 -- True then we have analyzed the expression node in the original
3406 -- aggregate and hence it needs to be relocated when moved over to
3407 -- the new association list.
3409 ---------------------------
3410 -- Has_Expansion_Delayed --
3411 ---------------------------
3413 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
3414 Kind
: constant Node_Kind
:= Nkind
(Expr
);
3416 return (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
)
3417 and then Present
(Etype
(Expr
))
3418 and then Is_Record_Type
(Etype
(Expr
))
3419 and then Expansion_Delayed
(Expr
))
3420 or else (Kind
= N_Qualified_Expression
3421 and then Has_Expansion_Delayed
(Expression
(Expr
)));
3422 end Has_Expansion_Delayed
;
3424 -- Start of processing for Resolve_Aggr_Expr
3427 -- If the type of the component is elementary or the type of the
3428 -- aggregate does not contain discriminants, use the type of the
3429 -- component to resolve Expr.
3431 if Is_Elementary_Type
(Etype
(Component
))
3432 or else not Has_Discriminants
(Etype
(N
))
3434 Expr_Type
:= Etype
(Component
);
3436 -- Otherwise we have to pick up the new type of the component from
3437 -- the new constrained subtype of the aggregate. In fact components
3438 -- which are of a composite type might be constrained by a
3439 -- discriminant, and we want to resolve Expr against the subtype were
3440 -- all discriminant occurrences are replaced with their actual value.
3443 New_C
:= First_Component
(Etype
(N
));
3444 while Present
(New_C
) loop
3445 if Chars
(New_C
) = Chars
(Component
) then
3446 Expr_Type
:= Etype
(New_C
);
3450 Next_Component
(New_C
);
3453 pragma Assert
(Present
(Expr_Type
));
3455 -- For each range in an array type where a discriminant has been
3456 -- replaced with the constraint, check that this range is within
3457 -- the range of the base type. This checks is done in the init
3458 -- proc for regular objects, but has to be done here for
3459 -- aggregates since no init proc is called for them.
3461 if Is_Array_Type
(Expr_Type
) then
3464 -- Range of the current constrained index in the array
3466 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
3467 -- Range corresponding to the range Index above in the
3468 -- original unconstrained record type. The bounds of this
3469 -- range may be governed by discriminants.
3471 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
3472 -- Range corresponding to the range Index above for the
3473 -- unconstrained array type. This range is needed to apply
3477 Index
:= First_Index
(Expr_Type
);
3478 while Present
(Index
) loop
3479 if Depends_On_Discriminant
(Orig_Index
) then
3480 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
3484 Next_Index
(Orig_Index
);
3485 Next_Index
(Unconstr_Index
);
3491 -- If the Parent pointer of Expr is not set, Expr is an expression
3492 -- duplicated by New_Tree_Copy (this happens for record aggregates
3493 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3494 -- Such a duplicated expression must be attached to the tree
3495 -- before analysis and resolution to enforce the rule that a tree
3496 -- fragment should never be analyzed or resolved unless it is
3497 -- attached to the current compilation unit.
3499 if No
(Parent
(Expr
)) then
3500 Set_Parent
(Expr
, N
);
3506 Analyze_And_Resolve
(Expr
, Expr_Type
);
3507 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
3508 Check_Non_Static_Context
(Expr
);
3509 Check_Unset_Reference
(Expr
);
3511 -- Check wrong use of class-wide types
3513 if Is_Class_Wide_Type
(Etype
(Expr
)) then
3514 Error_Msg_N
("dynamically tagged expression not allowed", Expr
);
3517 if not Has_Expansion_Delayed
(Expr
) then
3518 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
3521 -- If an aggregate component has a type with predicates, an explicit
3522 -- predicate check must be applied, as for an assignment statement,
3523 -- because the aggegate might not be expanded into individual
3524 -- component assignments.
3526 if Present
(Predicate_Function
(Expr_Type
)) then
3527 Apply_Predicate_Check
(Expr
, Expr_Type
);
3530 if Raises_Constraint_Error
(Expr
) then
3531 Set_Raises_Constraint_Error
(N
);
3534 -- If the expression has been marked as requiring a range check, then
3535 -- generate it here. It's a bit odd to be generating such checks in
3536 -- the analyzer, but harmless since Generate_Range_Check does nothing
3537 -- (other than making sure Do_Range_Check is set) if the expander is
3540 if Do_Range_Check
(Expr
) then
3541 Generate_Range_Check
(Expr
, Expr_Type
, CE_Range_Check_Failed
);
3545 New_Expr
:= Relocate_Node
(Expr
);
3547 -- Since New_Expr is not gonna be analyzed later on, we need to
3548 -- propagate here the dimensions form Expr to New_Expr.
3550 Copy_Dimensions
(Expr
, New_Expr
);
3556 Add_Association
(New_C
, New_Expr
, New_Assoc_List
);
3557 end Resolve_Aggr_Expr
;
3559 -- Start of processing for Resolve_Record_Aggregate
3562 -- A record aggregate is restricted in SPARK:
3564 -- Each named association can have only a single choice.
3565 -- OTHERS cannot be used.
3566 -- Positional and named associations cannot be mixed.
3568 if Present
(Component_Associations
(N
))
3569 and then Present
(First
(Component_Associations
(N
)))
3572 if Present
(Expressions
(N
)) then
3573 Check_SPARK_05_Restriction
3574 ("named association cannot follow positional one",
3575 First
(Choices
(First
(Component_Associations
(N
)))));
3582 Assoc
:= First
(Component_Associations
(N
));
3583 while Present
(Assoc
) loop
3584 if List_Length
(Choices
(Assoc
)) > 1 then
3585 Check_SPARK_05_Restriction
3586 ("component association in record aggregate must "
3587 & "contain a single choice", Assoc
);
3590 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
then
3591 Check_SPARK_05_Restriction
3592 ("record aggregate cannot contain OTHERS", Assoc
);
3595 Assoc
:= Next
(Assoc
);
3600 -- We may end up calling Duplicate_Subexpr on expressions that are
3601 -- attached to New_Assoc_List. For this reason we need to attach it
3602 -- to the tree by setting its parent pointer to N. This parent point
3603 -- will change in STEP 8 below.
3605 Set_Parent
(New_Assoc_List
, N
);
3607 -- STEP 1: abstract type and null record verification
3609 if Is_Abstract_Type
(Typ
) then
3610 Error_Msg_N
("type of aggregate cannot be abstract", N
);
3613 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
3617 elsif Present
(First_Entity
(Typ
))
3618 and then Null_Record_Present
(N
)
3619 and then not Is_Tagged_Type
(Typ
)
3621 Error_Msg_N
("record aggregate cannot be null", N
);
3624 -- If the type has no components, then the aggregate should either
3625 -- have "null record", or in Ada 2005 it could instead have a single
3626 -- component association given by "others => <>". For Ada 95 we flag an
3627 -- error at this point, but for Ada 2005 we proceed with checking the
3628 -- associations below, which will catch the case where it's not an
3629 -- aggregate with "others => <>". Note that the legality of a <>
3630 -- aggregate for a null record type was established by AI05-016.
3632 elsif No
(First_Entity
(Typ
))
3633 and then Ada_Version
< Ada_2005
3635 Error_Msg_N
("record aggregate must be null", N
);
3639 -- STEP 2: Verify aggregate structure
3642 Selector_Name
: Node_Id
;
3643 Bad_Aggregate
: Boolean := False;
3646 if Present
(Component_Associations
(N
)) then
3647 Assoc
:= First
(Component_Associations
(N
));
3652 while Present
(Assoc
) loop
3653 Selector_Name
:= First
(Choices
(Assoc
));
3654 while Present
(Selector_Name
) loop
3655 if Nkind
(Selector_Name
) = N_Identifier
then
3658 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
3659 if Selector_Name
/= First
(Choices
(Assoc
))
3660 or else Present
(Next
(Selector_Name
))
3663 ("OTHERS must appear alone in a choice list",
3667 elsif Present
(Next
(Assoc
)) then
3669 ("OTHERS must appear last in an aggregate",
3673 -- (Ada 2005): If this is an association with a box,
3674 -- indicate that the association need not represent
3677 elsif Box_Present
(Assoc
) then
3683 ("selector name should be identifier or OTHERS",
3685 Bad_Aggregate
:= True;
3688 Next
(Selector_Name
);
3694 if Bad_Aggregate
then
3699 -- STEP 3: Find discriminant Values
3702 Discrim
: Entity_Id
;
3703 Missing_Discriminants
: Boolean := False;
3706 if Present
(Expressions
(N
)) then
3707 Positional_Expr
:= First
(Expressions
(N
));
3709 Positional_Expr
:= Empty
;
3712 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3713 -- must not have unknown discriminants.
3715 if Is_Derived_Type
(Typ
)
3716 and then Has_Unknown_Discriminants
(Root_Type
(Typ
))
3717 and then Nkind
(N
) /= N_Extension_Aggregate
3720 ("aggregate not available for type& whose ancestor "
3721 & "has unknown discriminants ", N
, Typ
);
3724 if Has_Unknown_Discriminants
(Typ
)
3725 and then Present
(Underlying_Record_View
(Typ
))
3727 Discrim
:= First_Discriminant
(Underlying_Record_View
(Typ
));
3728 elsif Has_Discriminants
(Typ
) then
3729 Discrim
:= First_Discriminant
(Typ
);
3734 -- First find the discriminant values in the positional components
3736 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
3737 if Discr_Present
(Discrim
) then
3738 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
3740 -- Ada 2005 (AI-231)
3742 if Ada_Version
>= Ada_2005
3743 and then Known_Null
(Positional_Expr
)
3745 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
3748 Next
(Positional_Expr
);
3751 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
3753 ("more than one value supplied for discriminant&",
3757 Next_Discriminant
(Discrim
);
3760 -- Find remaining discriminant values if any among named components
3762 while Present
(Discrim
) loop
3763 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
3765 if not Discr_Present
(Discrim
) then
3766 if Present
(Expr
) then
3768 ("more than one value supplied for discriminant &",
3772 elsif No
(Expr
) then
3774 ("no value supplied for discriminant &", N
, Discrim
);
3775 Missing_Discriminants
:= True;
3778 Resolve_Aggr_Expr
(Expr
, Discrim
);
3781 Next_Discriminant
(Discrim
);
3784 if Missing_Discriminants
then
3788 -- At this point and until the beginning of STEP 6, New_Assoc_List
3789 -- contains only the discriminants and their values.
3793 -- STEP 4: Set the Etype of the record aggregate
3795 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3796 -- routine should really be exported in sem_util or some such and used
3797 -- in sem_ch3 and here rather than have a copy of the code which is a
3798 -- maintenance nightmare.
3800 -- ??? Performance WARNING. The current implementation creates a new
3801 -- itype for all aggregates whose base type is discriminated. This means
3802 -- that for record aggregates nested inside an array aggregate we will
3803 -- create a new itype for each record aggregate if the array component
3804 -- type has discriminants. For large aggregates this may be a problem.
3805 -- What should be done in this case is to reuse itypes as much as
3808 if Has_Discriminants
(Typ
)
3809 or else (Has_Unknown_Discriminants
(Typ
)
3810 and then Present
(Underlying_Record_View
(Typ
)))
3812 Build_Constrained_Itype
: declare
3813 Loc
: constant Source_Ptr
:= Sloc
(N
);
3815 Subtyp_Decl
: Node_Id
;
3818 C
: constant List_Id
:= New_List
;
3821 New_Assoc
:= First
(New_Assoc_List
);
3822 while Present
(New_Assoc
) loop
3823 Append
(Duplicate_Subexpr
(Expression
(New_Assoc
)), To
=> C
);
3827 if Has_Unknown_Discriminants
(Typ
)
3828 and then Present
(Underlying_Record_View
(Typ
))
3831 Make_Subtype_Indication
(Loc
,
3833 New_Occurrence_Of
(Underlying_Record_View
(Typ
), Loc
),
3835 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3838 Make_Subtype_Indication
(Loc
,
3840 New_Occurrence_Of
(Base_Type
(Typ
), Loc
),
3842 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3845 Def_Id
:= Create_Itype
(Ekind
(Typ
), N
);
3848 Make_Subtype_Declaration
(Loc
,
3849 Defining_Identifier
=> Def_Id
,
3850 Subtype_Indication
=> Indic
);
3851 Set_Parent
(Subtyp_Decl
, Parent
(N
));
3853 -- Itypes must be analyzed with checks off (see itypes.ads)
3855 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
3857 Set_Etype
(N
, Def_Id
);
3858 Check_Static_Discriminated_Subtype
3859 (Def_Id
, Expression
(First
(New_Assoc_List
)));
3860 end Build_Constrained_Itype
;
3866 -- STEP 5: Get remaining components according to discriminant values
3869 Record_Def
: Node_Id
;
3870 Parent_Typ
: Entity_Id
;
3871 Root_Typ
: Entity_Id
;
3872 Parent_Typ_List
: Elist_Id
;
3873 Parent_Elmt
: Elmt_Id
;
3874 Errors_Found
: Boolean := False;
3877 function Find_Private_Ancestor
return Entity_Id
;
3878 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3879 -- derived from a private view. Whether the aggregate is legal
3880 -- depends on the current visibility of the type as well as that
3881 -- of the parent of the ancestor.
3883 ---------------------------
3884 -- Find_Private_Ancestor --
3885 ---------------------------
3887 function Find_Private_Ancestor
return Entity_Id
is
3893 if Has_Private_Ancestor
(Par
)
3894 and then not Has_Private_Ancestor
(Etype
(Base_Type
(Par
)))
3898 elsif not Is_Derived_Type
(Par
) then
3902 Par
:= Etype
(Base_Type
(Par
));
3905 end Find_Private_Ancestor
;
3907 -- Start of processing for Step_5
3910 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
3911 Parent_Typ_List
:= New_Elmt_List
;
3913 -- If this is an extension aggregate, the component list must
3914 -- include all components that are not in the given ancestor type.
3915 -- Otherwise, the component list must include components of all
3916 -- ancestors, starting with the root.
3918 if Nkind
(N
) = N_Extension_Aggregate
then
3919 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
3922 -- AI05-0115: check legality of aggregate for type with
3923 -- aa private ancestor.
3925 Root_Typ
:= Root_Type
(Typ
);
3926 if Has_Private_Ancestor
(Typ
) then
3928 Ancestor
: constant Entity_Id
:=
3929 Find_Private_Ancestor
;
3930 Ancestor_Unit
: constant Entity_Id
:=
3931 Cunit_Entity
(Get_Source_Unit
(Ancestor
));
3932 Parent_Unit
: constant Entity_Id
:=
3934 (Get_Source_Unit
(Base_Type
(Etype
(Ancestor
))));
3936 -- Check whether we are in a scope that has full view
3937 -- over the private ancestor and its parent. This can
3938 -- only happen if the derivation takes place in a child
3939 -- unit of the unit that declares the parent, and we are
3940 -- in the private part or body of that child unit, else
3941 -- the aggregate is illegal.
3943 if Is_Child_Unit
(Ancestor_Unit
)
3944 and then Scope
(Ancestor_Unit
) = Parent_Unit
3945 and then In_Open_Scopes
(Scope
(Ancestor
))
3947 (In_Private_Part
(Scope
(Ancestor
))
3948 or else In_Package_Body
(Scope
(Ancestor
)))
3954 ("type of aggregate has private ancestor&!",
3956 Error_Msg_N
("must use extension aggregate!", N
);
3962 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
3964 -- If we don't get a full declaration, then we have some error
3965 -- which will get signalled later so skip this part. Otherwise
3966 -- gather components of root that apply to the aggregate type.
3967 -- We use the base type in case there is an applicable stored
3968 -- constraint that renames the discriminants of the root.
3970 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
3971 Record_Def
:= Type_Definition
(Dnode
);
3974 Component_List
(Record_Def
),
3975 Governed_By
=> New_Assoc_List
,
3977 Report_Errors
=> Errors_Found
);
3979 if Errors_Found
then
3981 ("discriminant controlling variant part is not static",
3988 Parent_Typ
:= Base_Type
(Typ
);
3989 while Parent_Typ
/= Root_Typ
loop
3990 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
3991 Parent_Typ
:= Etype
(Parent_Typ
);
3993 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
3994 N_Private_Type_Declaration
3995 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
3996 N_Private_Extension_Declaration
3998 if Nkind
(N
) /= N_Extension_Aggregate
then
4000 ("type of aggregate has private ancestor&!",
4002 Error_Msg_N
("must use extension aggregate!", N
);
4005 elsif Parent_Typ
/= Root_Typ
then
4007 ("ancestor part of aggregate must be private type&",
4008 Ancestor_Part
(N
), Parent_Typ
);
4012 -- The current view of ancestor part may be a private type,
4013 -- while the context type is always non-private.
4015 elsif Is_Private_Type
(Root_Typ
)
4016 and then Present
(Full_View
(Root_Typ
))
4017 and then Nkind
(N
) = N_Extension_Aggregate
4019 exit when Base_Type
(Full_View
(Root_Typ
)) = Parent_Typ
;
4023 -- Now collect components from all other ancestors, beginning
4024 -- with the current type. If the type has unknown discriminants
4025 -- use the component list of the Underlying_Record_View, which
4026 -- needs to be used for the subsequent expansion of the aggregate
4027 -- into assignments.
4029 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
4030 while Present
(Parent_Elmt
) loop
4031 Parent_Typ
:= Node
(Parent_Elmt
);
4033 if Has_Unknown_Discriminants
(Parent_Typ
)
4034 and then Present
(Underlying_Record_View
(Typ
))
4036 Parent_Typ
:= Underlying_Record_View
(Parent_Typ
);
4039 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
4040 Gather_Components
(Empty
,
4041 Component_List
(Record_Extension_Part
(Record_Def
)),
4042 Governed_By
=> New_Assoc_List
,
4044 Report_Errors
=> Errors_Found
);
4046 Next_Elmt
(Parent_Elmt
);
4049 -- Typ is not a derived tagged type
4052 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
4054 if Null_Present
(Record_Def
) then
4057 elsif not Has_Unknown_Discriminants
(Typ
) then
4060 Component_List
(Record_Def
),
4061 Governed_By
=> New_Assoc_List
,
4063 Report_Errors
=> Errors_Found
);
4067 (Base_Type
(Underlying_Record_View
(Typ
)),
4068 Component_List
(Record_Def
),
4069 Governed_By
=> New_Assoc_List
,
4071 Report_Errors
=> Errors_Found
);
4075 if Errors_Found
then
4080 -- STEP 6: Find component Values
4083 Component_Elmt
:= First_Elmt
(Components
);
4085 -- First scan the remaining positional associations in the aggregate.
4086 -- Remember that at this point Positional_Expr contains the current
4087 -- positional association if any is left after looking for discriminant
4088 -- values in step 3.
4090 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
4091 Component
:= Node
(Component_Elmt
);
4092 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
4094 -- Ada 2005 (AI-231)
4096 if Ada_Version
>= Ada_2005
and then Known_Null
(Positional_Expr
) then
4097 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
4100 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
4102 ("more than one value supplied for Component &", N
, Component
);
4105 Next
(Positional_Expr
);
4106 Next_Elmt
(Component_Elmt
);
4109 if Present
(Positional_Expr
) then
4111 ("too many components for record aggregate", Positional_Expr
);
4114 -- Now scan for the named arguments of the aggregate
4116 while Present
(Component_Elmt
) loop
4117 Component
:= Node
(Component_Elmt
);
4118 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
4120 -- Note: The previous call to Get_Value sets the value of the
4121 -- variable Is_Box_Present.
4123 -- Ada 2005 (AI-287): Handle components with default initialization.
4124 -- Note: This feature was originally added to Ada 2005 for limited
4125 -- but it was finally allowed with any type.
4127 if Is_Box_Present
then
4128 Check_Box_Component
: declare
4129 Ctyp
: constant Entity_Id
:= Etype
(Component
);
4132 -- If there is a default expression for the aggregate, copy
4133 -- it into a new association. This copy must modify the scopes
4134 -- of internal types that may be attached to the expression
4135 -- (e.g. index subtypes of arrays) because in general the type
4136 -- declaration and the aggregate appear in different scopes,
4137 -- and the backend requires the scope of the type to match the
4138 -- point at which it is elaborated.
4140 -- If the component has an initialization procedure (IP) we
4141 -- pass the component to the expander, which will generate
4142 -- the call to such IP.
4144 -- If the component has discriminants, their values must
4145 -- be taken from their subtype. This is indispensable for
4146 -- constraints that are given by the current instance of an
4147 -- enclosing type, to allow the expansion of the aggregate to
4148 -- replace the reference to the current instance by the target
4149 -- object of the aggregate.
4151 if Present
(Parent
(Component
))
4153 Nkind
(Parent
(Component
)) = N_Component_Declaration
4154 and then Present
(Expression
(Parent
(Component
)))
4157 New_Copy_Tree_And_Copy_Dimensions
4158 (Expression
(Parent
(Component
)),
4159 New_Scope
=> Current_Scope
,
4160 New_Sloc
=> Sloc
(N
));
4163 (Component
=> Component
,
4165 Assoc_List
=> New_Assoc_List
);
4166 Set_Has_Self_Reference
(N
);
4168 -- A box-defaulted access component gets the value null. Also
4169 -- included are components of private types whose underlying
4170 -- type is an access type. In either case set the type of the
4171 -- literal, for subsequent use in semantic checks.
4173 elsif Present
(Underlying_Type
(Ctyp
))
4174 and then Is_Access_Type
(Underlying_Type
(Ctyp
))
4176 if not Is_Private_Type
(Ctyp
) then
4177 Expr
:= Make_Null
(Sloc
(N
));
4178 Set_Etype
(Expr
, Ctyp
);
4180 (Component
=> Component
,
4182 Assoc_List
=> New_Assoc_List
);
4184 -- If the component's type is private with an access type as
4185 -- its underlying type then we have to create an unchecked
4186 -- conversion to satisfy type checking.
4190 Qual_Null
: constant Node_Id
:=
4191 Make_Qualified_Expression
(Sloc
(N
),
4194 (Underlying_Type
(Ctyp
), Sloc
(N
)),
4195 Expression
=> Make_Null
(Sloc
(N
)));
4197 Convert_Null
: constant Node_Id
:=
4198 Unchecked_Convert_To
4202 Analyze_And_Resolve
(Convert_Null
, Ctyp
);
4204 (Component
=> Component
,
4205 Expr
=> Convert_Null
,
4206 Assoc_List
=> New_Assoc_List
);
4210 -- Ada 2012: If component is scalar with default value, use it
4212 elsif Is_Scalar_Type
(Ctyp
)
4213 and then Has_Default_Aspect
(Ctyp
)
4216 (Component
=> Component
,
4217 Expr
=> Default_Aspect_Value
4218 (First_Subtype
(Underlying_Type
(Ctyp
))),
4219 Assoc_List
=> New_Assoc_List
);
4221 elsif Has_Non_Null_Base_Init_Proc
(Ctyp
)
4222 or else not Expander_Active
4224 if Is_Record_Type
(Ctyp
)
4225 and then Has_Discriminants
(Ctyp
)
4226 and then not Is_Private_Type
(Ctyp
)
4228 -- We build a partially initialized aggregate with the
4229 -- values of the discriminants and box initialization
4230 -- for the rest, if other components are present.
4232 -- The type of the aggregate is the known subtype of
4233 -- the component. The capture of discriminants must
4234 -- be recursive because subcomponents may be constrained
4235 -- (transitively) by discriminants of enclosing types.
4236 -- For a private type with discriminants, a call to the
4237 -- initialization procedure will be generated, and no
4238 -- subaggregate is needed.
4240 Capture_Discriminants
: declare
4241 Loc
: constant Source_Ptr
:= Sloc
(N
);
4244 procedure Add_Discriminant_Values
4245 (New_Aggr
: Node_Id
;
4246 Assoc_List
: List_Id
);
4247 -- The constraint to a component may be given by a
4248 -- discriminant of the enclosing type, in which case
4249 -- we have to retrieve its value, which is part of the
4250 -- enclosing aggregate. Assoc_List provides the
4251 -- discriminant associations of the current type or
4252 -- of some enclosing record.
4254 procedure Propagate_Discriminants
4256 Assoc_List
: List_Id
);
4257 -- Nested components may themselves be discriminated
4258 -- types constrained by outer discriminants, whose
4259 -- values must be captured before the aggregate is
4260 -- expanded into assignments.
4262 -----------------------------
4263 -- Add_Discriminant_Values --
4264 -----------------------------
4266 procedure Add_Discriminant_Values
4267 (New_Aggr
: Node_Id
;
4268 Assoc_List
: List_Id
)
4272 Discr_Elmt
: Elmt_Id
;
4273 Discr_Val
: Node_Id
;
4277 Discr
:= First_Discriminant
(Etype
(New_Aggr
));
4280 (Discriminant_Constraint
(Etype
(New_Aggr
)));
4281 while Present
(Discr_Elmt
) loop
4282 Discr_Val
:= Node
(Discr_Elmt
);
4284 -- If the constraint is given by a discriminant
4285 -- it is a discriminant of an enclosing record,
4286 -- and its value has already been placed in the
4287 -- association list.
4289 if Is_Entity_Name
(Discr_Val
)
4291 Ekind
(Entity
(Discr_Val
)) = E_Discriminant
4293 Val
:= Entity
(Discr_Val
);
4295 Assoc
:= First
(Assoc_List
);
4296 while Present
(Assoc
) loop
4298 (Entity
(First
(Choices
(Assoc
))))
4300 Entity
(First
(Choices
(Assoc
))) = Val
4302 Discr_Val
:= Expression
(Assoc
);
4311 (Discr
, New_Copy_Tree
(Discr_Val
),
4312 Component_Associations
(New_Aggr
));
4314 -- If the discriminant constraint is a current
4315 -- instance, mark the current aggregate so that
4316 -- the self-reference can be expanded later.
4317 -- The constraint may refer to the subtype of
4318 -- aggregate, so use base type for comparison.
4320 if Nkind
(Discr_Val
) = N_Attribute_Reference
4321 and then Is_Entity_Name
(Prefix
(Discr_Val
))
4322 and then Is_Type
(Entity
(Prefix
(Discr_Val
)))
4323 and then Base_Type
(Etype
(N
)) =
4324 Entity
(Prefix
(Discr_Val
))
4326 Set_Has_Self_Reference
(N
);
4329 Next_Elmt
(Discr_Elmt
);
4330 Next_Discriminant
(Discr
);
4332 end Add_Discriminant_Values
;
4334 -----------------------------
4335 -- Propagate_Discriminants --
4336 -----------------------------
4338 procedure Propagate_Discriminants
4340 Assoc_List
: List_Id
)
4342 Aggr_Type
: constant Entity_Id
:=
4343 Base_Type
(Etype
(Aggr
));
4344 Def_Node
: constant Node_Id
:=
4346 (Declaration_Node
(Aggr_Type
));
4349 Comp_Elmt
: Elmt_Id
;
4350 Components
: constant Elist_Id
:= New_Elmt_List
;
4351 Needs_Box
: Boolean := False;
4354 procedure Process_Component
(Comp
: Entity_Id
);
4355 -- Add one component with a box association to the
4356 -- inner aggregate, and recurse if component is
4357 -- itself composite.
4359 -----------------------
4360 -- Process_Component --
4361 -----------------------
4363 procedure Process_Component
(Comp
: Entity_Id
) is
4364 T
: constant Entity_Id
:= Etype
(Comp
);
4368 if Is_Record_Type
(T
)
4369 and then Has_Discriminants
(T
)
4372 Make_Aggregate
(Loc
, New_List
, New_List
);
4373 Set_Etype
(New_Aggr
, T
);
4376 Component_Associations
(Aggr
));
4378 -- Collect discriminant values and recurse
4380 Add_Discriminant_Values
4381 (New_Aggr
, Assoc_List
);
4382 Propagate_Discriminants
4383 (New_Aggr
, Assoc_List
);
4388 end Process_Component
;
4390 -- Start of processing for Propagate_Discriminants
4393 -- The component type may be a variant type, so
4394 -- collect the components that are ruled by the
4395 -- known values of the discriminants. Their values
4396 -- have already been inserted into the component
4397 -- list of the current aggregate.
4399 if Nkind
(Def_Node
) = N_Record_Definition
4400 and then Present
(Component_List
(Def_Node
))
4403 (Variant_Part
(Component_List
(Def_Node
)))
4405 Gather_Components
(Aggr_Type
,
4406 Component_List
(Def_Node
),
4407 Governed_By
=> Component_Associations
(Aggr
),
4409 Report_Errors
=> Errors
);
4411 Comp_Elmt
:= First_Elmt
(Components
);
4412 while Present
(Comp_Elmt
) loop
4413 if Ekind
(Node
(Comp_Elmt
)) /= E_Discriminant
4415 Process_Component
(Node
(Comp_Elmt
));
4418 Next_Elmt
(Comp_Elmt
);
4421 -- No variant part, iterate over all components
4424 Comp
:= First_Component
(Etype
(Aggr
));
4425 while Present
(Comp
) loop
4426 Process_Component
(Comp
);
4427 Next_Component
(Comp
);
4432 Append_To
(Component_Associations
(Aggr
),
4433 Make_Component_Association
(Loc
,
4435 New_List
(Make_Others_Choice
(Loc
)),
4436 Expression
=> Empty
,
4437 Box_Present
=> True));
4439 end Propagate_Discriminants
;
4441 -- Start of processing for Capture_Discriminants
4444 Expr
:= Make_Aggregate
(Loc
, New_List
, New_List
);
4445 Set_Etype
(Expr
, Ctyp
);
4447 -- If the enclosing type has discriminants, they have
4448 -- been collected in the aggregate earlier, and they
4449 -- may appear as constraints of subcomponents.
4451 -- Similarly if this component has discriminants, they
4452 -- might in turn be propagated to their components.
4454 if Has_Discriminants
(Typ
) then
4455 Add_Discriminant_Values
(Expr
, New_Assoc_List
);
4456 Propagate_Discriminants
(Expr
, New_Assoc_List
);
4458 elsif Has_Discriminants
(Ctyp
) then
4459 Add_Discriminant_Values
4460 (Expr
, Component_Associations
(Expr
));
4461 Propagate_Discriminants
4462 (Expr
, Component_Associations
(Expr
));
4469 -- If the type has additional components, create
4470 -- an OTHERS box association for them.
4472 Comp
:= First_Component
(Ctyp
);
4473 while Present
(Comp
) loop
4474 if Ekind
(Comp
) = E_Component
then
4475 if not Is_Record_Type
(Etype
(Comp
)) then
4477 (Component_Associations
(Expr
),
4478 Make_Component_Association
(Loc
,
4481 Make_Others_Choice
(Loc
)),
4482 Expression
=> Empty
,
4483 Box_Present
=> True));
4488 Next_Component
(Comp
);
4494 (Component
=> Component
,
4496 Assoc_List
=> New_Assoc_List
);
4497 end Capture_Discriminants
;
4501 (Component
=> Component
,
4503 Assoc_List
=> New_Assoc_List
,
4504 Is_Box_Present
=> True);
4507 -- Otherwise we only need to resolve the expression if the
4508 -- component has partially initialized values (required to
4509 -- expand the corresponding assignments and run-time checks).
4511 elsif Present
(Expr
)
4512 and then Is_Partially_Initialized_Type
(Ctyp
)
4514 Resolve_Aggr_Expr
(Expr
, Component
);
4516 end Check_Box_Component
;
4518 elsif No
(Expr
) then
4520 -- Ignore hidden components associated with the position of the
4521 -- interface tags: these are initialized dynamically.
4523 if not Present
(Related_Type
(Component
)) then
4525 ("no value supplied for component &!", N
, Component
);
4529 Resolve_Aggr_Expr
(Expr
, Component
);
4532 Next_Elmt
(Component_Elmt
);
4535 -- STEP 7: check for invalid components + check type in choice list
4542 -- Type of first component in choice list
4545 if Present
(Component_Associations
(N
)) then
4546 Assoc
:= First
(Component_Associations
(N
));
4551 Verification
: while Present
(Assoc
) loop
4552 Selectr
:= First
(Choices
(Assoc
));
4555 if Nkind
(Selectr
) = N_Others_Choice
then
4557 -- Ada 2005 (AI-287): others choice may have expression or box
4559 if No
(Others_Etype
) and then not Others_Box
then
4561 ("OTHERS must represent at least one component", Selectr
);
4567 while Present
(Selectr
) loop
4568 New_Assoc
:= First
(New_Assoc_List
);
4569 while Present
(New_Assoc
) loop
4570 Component
:= First
(Choices
(New_Assoc
));
4572 if Chars
(Selectr
) = Chars
(Component
) then
4574 Check_Identifier
(Selectr
, Entity
(Component
));
4583 -- If no association, this is not a legal component of the type
4584 -- in question, unless its association is provided with a box.
4586 if No
(New_Assoc
) then
4587 if Box_Present
(Parent
(Selectr
)) then
4589 -- This may still be a bogus component with a box. Scan
4590 -- list of components to verify that a component with
4591 -- that name exists.
4597 C
:= First_Component
(Typ
);
4598 while Present
(C
) loop
4599 if Chars
(C
) = Chars
(Selectr
) then
4601 -- If the context is an extension aggregate,
4602 -- the component must not be inherited from
4603 -- the ancestor part of the aggregate.
4605 if Nkind
(N
) /= N_Extension_Aggregate
4607 Scope
(Original_Record_Component
(C
)) /=
4608 Etype
(Ancestor_Part
(N
))
4618 Error_Msg_Node_2
:= Typ
;
4619 Error_Msg_N
("& is not a component of}", Selectr
);
4623 elsif Chars
(Selectr
) /= Name_uTag
4624 and then Chars
(Selectr
) /= Name_uParent
4626 if not Has_Discriminants
(Typ
) then
4627 Error_Msg_Node_2
:= Typ
;
4628 Error_Msg_N
("& is not a component of}", Selectr
);
4631 ("& is not a component of the aggregate subtype",
4635 Check_Misspelled_Component
(Components
, Selectr
);
4638 elsif No
(Typech
) then
4639 Typech
:= Base_Type
(Etype
(Component
));
4641 -- AI05-0199: In Ada 2012, several components of anonymous
4642 -- access types can appear in a choice list, as long as the
4643 -- designated types match.
4645 elsif Typech
/= Base_Type
(Etype
(Component
)) then
4646 if Ada_Version
>= Ada_2012
4647 and then Ekind
(Typech
) = E_Anonymous_Access_Type
4649 Ekind
(Etype
(Component
)) = E_Anonymous_Access_Type
4650 and then Base_Type
(Designated_Type
(Typech
)) =
4651 Base_Type
(Designated_Type
(Etype
(Component
)))
4653 Subtypes_Statically_Match
(Typech
, (Etype
(Component
)))
4657 elsif not Box_Present
(Parent
(Selectr
)) then
4659 ("components in choice list must have same type",
4668 end loop Verification
;
4671 -- STEP 8: replace the original aggregate
4674 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
4677 Set_Expressions
(New_Aggregate
, No_List
);
4678 Set_Etype
(New_Aggregate
, Etype
(N
));
4679 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
4681 Rewrite
(N
, New_Aggregate
);
4684 -- Check the dimensions of the components in the record aggregate
4686 Analyze_Dimension_Extension_Or_Record_Aggregate
(N
);
4687 end Resolve_Record_Aggregate
;
4689 -----------------------------
4690 -- Check_Can_Never_Be_Null --
4691 -----------------------------
4693 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
) is
4694 Comp_Typ
: Entity_Id
;
4698 (Ada_Version
>= Ada_2005
4699 and then Present
(Expr
)
4700 and then Known_Null
(Expr
));
4703 when E_Array_Type
=>
4704 Comp_Typ
:= Component_Type
(Typ
);
4708 Comp_Typ
:= Etype
(Typ
);
4714 if Can_Never_Be_Null
(Comp_Typ
) then
4716 -- Here we know we have a constraint error. Note that we do not use
4717 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4718 -- seem the more natural approach. That's because in some cases the
4719 -- components are rewritten, and the replacement would be missed.
4720 -- We do not mark the whole aggregate as raising a constraint error,
4721 -- because the association may be a null array range.
4724 ("(Ada 2005) null not allowed in null-excluding component??", Expr
);
4726 ("\Constraint_Error will be raised at run time??", Expr
);
4729 Make_Raise_Constraint_Error
4730 (Sloc
(Expr
), Reason
=> CE_Access_Check_Failed
));
4731 Set_Etype
(Expr
, Comp_Typ
);
4732 Set_Analyzed
(Expr
);
4734 end Check_Can_Never_Be_Null
;
4736 ---------------------
4737 -- Sort_Case_Table --
4738 ---------------------
4740 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
4741 U
: constant Int
:= Case_Table
'Last;
4749 T
:= Case_Table
(K
+ 1);
4753 and then Expr_Value
(Case_Table
(J
- 1).Lo
) > Expr_Value
(T
.Lo
)
4755 Case_Table
(J
) := Case_Table
(J
- 1);
4759 Case_Table
(J
) := T
;
4762 end Sort_Case_Table
;