1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
91 #include "coretypes.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
99 #include "insn-config.h"
102 #include "alloc-pool.h"
108 #include "tree-pass.h"
109 #include "tree-flow.h"
114 #include "diagnostic.h"
115 #include "pointer-set.h"
118 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
119 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
120 Currently the value is the same as IDENTIFIER_NODE, which has such
121 a property. If this compile time assertion ever fails, make sure that
122 the new tree code that equals (int) VALUE has the same property. */
123 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
125 /* Type of micro operation. */
126 enum micro_operation_type
128 MO_USE
, /* Use location (REG or MEM). */
129 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
130 or the variable is not trackable. */
131 MO_VAL_USE
, /* Use location which is associated with a value. */
132 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
133 MO_VAL_SET
, /* Set location associated with a value. */
134 MO_SET
, /* Set location. */
135 MO_COPY
, /* Copy the same portion of a variable from one
136 location to another. */
137 MO_CLOBBER
, /* Clobber location. */
138 MO_CALL
, /* Call insn. */
139 MO_ADJUST
/* Adjust stack pointer. */
143 static const char * const ATTRIBUTE_UNUSED
144 micro_operation_type_name
[] = {
157 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
158 Notes emitted as AFTER_CALL are to take effect during the call,
159 rather than after the call. */
162 EMIT_NOTE_BEFORE_INSN
,
163 EMIT_NOTE_AFTER_INSN
,
164 EMIT_NOTE_AFTER_CALL_INSN
167 /* Structure holding information about micro operation. */
168 typedef struct micro_operation_def
170 /* Type of micro operation. */
171 enum micro_operation_type type
;
173 /* The instruction which the micro operation is in, for MO_USE,
174 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
175 instruction or note in the original flow (before any var-tracking
176 notes are inserted, to simplify emission of notes), for MO_SET
181 /* Location. For MO_SET and MO_COPY, this is the SET that
182 performs the assignment, if known, otherwise it is the target
183 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
184 CONCAT of the VALUE and the LOC associated with it. For
185 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
186 associated with it. */
189 /* Stack adjustment. */
190 HOST_WIDE_INT adjust
;
194 DEF_VEC_O(micro_operation
);
195 DEF_VEC_ALLOC_O(micro_operation
,heap
);
197 /* A declaration of a variable, or an RTL value being handled like a
199 typedef void *decl_or_value
;
201 /* Structure for passing some other parameters to function
202 emit_note_insn_var_location. */
203 typedef struct emit_note_data_def
205 /* The instruction which the note will be emitted before/after. */
208 /* Where the note will be emitted (before/after insn)? */
209 enum emit_note_where where
;
211 /* The variables and values active at this point. */
215 /* Description of location of a part of a variable. The content of a physical
216 register is described by a chain of these structures.
217 The chains are pretty short (usually 1 or 2 elements) and thus
218 chain is the best data structure. */
219 typedef struct attrs_def
221 /* Pointer to next member of the list. */
222 struct attrs_def
*next
;
224 /* The rtx of register. */
227 /* The declaration corresponding to LOC. */
230 /* Offset from start of DECL. */
231 HOST_WIDE_INT offset
;
234 /* Structure holding a refcounted hash table. If refcount > 1,
235 it must be first unshared before modified. */
236 typedef struct shared_hash_def
238 /* Reference count. */
241 /* Actual hash table. */
245 /* Structure holding the IN or OUT set for a basic block. */
246 typedef struct dataflow_set_def
248 /* Adjustment of stack offset. */
249 HOST_WIDE_INT stack_adjust
;
251 /* Attributes for registers (lists of attrs). */
252 attrs regs
[FIRST_PSEUDO_REGISTER
];
254 /* Variable locations. */
257 /* Vars that is being traversed. */
258 shared_hash traversed_vars
;
261 /* The structure (one for each basic block) containing the information
262 needed for variable tracking. */
263 typedef struct variable_tracking_info_def
265 /* The vector of micro operations. */
266 VEC(micro_operation
, heap
) *mos
;
268 /* The IN and OUT set for dataflow analysis. */
272 /* The permanent-in dataflow set for this block. This is used to
273 hold values for which we had to compute entry values. ??? This
274 should probably be dynamically allocated, to avoid using more
275 memory in non-debug builds. */
278 /* Has the block been visited in DFS? */
281 /* Has the block been flooded in VTA? */
284 } *variable_tracking_info
;
286 /* Structure for chaining the locations. */
287 typedef struct location_chain_def
289 /* Next element in the chain. */
290 struct location_chain_def
*next
;
292 /* The location (REG, MEM or VALUE). */
295 /* The "value" stored in this location. */
299 enum var_init_status init
;
302 /* Structure describing one part of variable. */
303 typedef struct variable_part_def
305 /* Chain of locations of the part. */
306 location_chain loc_chain
;
308 /* Location which was last emitted to location list. */
311 /* The offset in the variable. */
312 HOST_WIDE_INT offset
;
315 /* Maximum number of location parts. */
316 #define MAX_VAR_PARTS 16
318 /* Structure describing where the variable is located. */
319 typedef struct variable_def
321 /* The declaration of the variable, or an RTL value being handled
322 like a declaration. */
325 /* Reference count. */
328 /* Number of variable parts. */
331 /* True if this variable changed (any of its) cur_loc fields
332 during the current emit_notes_for_changes resp.
333 emit_notes_for_differences call. */
334 bool cur_loc_changed
;
336 /* True if this variable_def struct is currently in the
337 changed_variables hash table. */
338 bool in_changed_variables
;
340 /* The variable parts. */
341 variable_part var_part
[1];
343 typedef const struct variable_def
*const_variable
;
345 /* Structure for chaining backlinks from referenced VALUEs to
346 DVs that are referencing them. */
347 typedef struct value_chain_def
349 /* Next value_chain entry. */
350 struct value_chain_def
*next
;
352 /* The declaration of the variable, or an RTL value
353 being handled like a declaration, whose var_parts[0].loc_chain
354 references the VALUE owning this value_chain. */
357 /* Reference count. */
360 typedef const struct value_chain_def
*const_value_chain
;
362 /* Pointer to the BB's information specific to variable tracking pass. */
363 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
365 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
366 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
368 /* Alloc pool for struct attrs_def. */
369 static alloc_pool attrs_pool
;
371 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
372 static alloc_pool var_pool
;
374 /* Alloc pool for struct variable_def with a single var_part entry. */
375 static alloc_pool valvar_pool
;
377 /* Alloc pool for struct location_chain_def. */
378 static alloc_pool loc_chain_pool
;
380 /* Alloc pool for struct shared_hash_def. */
381 static alloc_pool shared_hash_pool
;
383 /* Alloc pool for struct value_chain_def. */
384 static alloc_pool value_chain_pool
;
386 /* Changed variables, notes will be emitted for them. */
387 static htab_t changed_variables
;
389 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
390 static htab_t value_chains
;
392 /* Shall notes be emitted? */
393 static bool emit_notes
;
395 /* Empty shared hashtable. */
396 static shared_hash empty_shared_hash
;
398 /* Scratch register bitmap used by cselib_expand_value_rtx. */
399 static bitmap scratch_regs
= NULL
;
401 /* Variable used to tell whether cselib_process_insn called our hook. */
402 static bool cselib_hook_called
;
404 /* Local function prototypes. */
405 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
407 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
409 static bool vt_stack_adjustments (void);
410 static rtx
compute_cfa_pointer (HOST_WIDE_INT
);
411 static hashval_t
variable_htab_hash (const void *);
412 static int variable_htab_eq (const void *, const void *);
413 static void variable_htab_free (void *);
415 static void init_attrs_list_set (attrs
*);
416 static void attrs_list_clear (attrs
*);
417 static attrs
attrs_list_member (attrs
, decl_or_value
, HOST_WIDE_INT
);
418 static void attrs_list_insert (attrs
*, decl_or_value
, HOST_WIDE_INT
, rtx
);
419 static void attrs_list_copy (attrs
*, attrs
);
420 static void attrs_list_union (attrs
*, attrs
);
422 static void **unshare_variable (dataflow_set
*set
, void **slot
, variable var
,
423 enum var_init_status
);
424 static int vars_copy_1 (void **, void *);
425 static void vars_copy (htab_t
, htab_t
);
426 static tree
var_debug_decl (tree
);
427 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
428 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
429 enum var_init_status
, rtx
);
430 static void var_reg_delete (dataflow_set
*, rtx
, bool);
431 static void var_regno_delete (dataflow_set
*, int);
432 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
433 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
434 enum var_init_status
, rtx
);
435 static void var_mem_delete (dataflow_set
*, rtx
, bool);
437 static void dataflow_set_init (dataflow_set
*);
438 static void dataflow_set_clear (dataflow_set
*);
439 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
440 static int variable_union_info_cmp_pos (const void *, const void *);
441 static int variable_union (void **, void *);
442 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
443 static location_chain
find_loc_in_1pdv (rtx
, variable
, htab_t
);
444 static bool canon_value_cmp (rtx
, rtx
);
445 static int loc_cmp (rtx
, rtx
);
446 static bool variable_part_different_p (variable_part
*, variable_part
*);
447 static bool onepart_variable_different_p (variable
, variable
);
448 static bool variable_different_p (variable
, variable
);
449 static int dataflow_set_different_1 (void **, void *);
450 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
451 static void dataflow_set_destroy (dataflow_set
*);
453 static bool contains_symbol_ref (rtx
);
454 static bool track_expr_p (tree
, bool);
455 static bool same_variable_part_p (rtx
, tree
, HOST_WIDE_INT
);
456 static int add_uses (rtx
*, void *);
457 static void add_uses_1 (rtx
*, void *);
458 static void add_stores (rtx
, const_rtx
, void *);
459 static bool compute_bb_dataflow (basic_block
);
460 static bool vt_find_locations (void);
462 static void dump_attrs_list (attrs
);
463 static int dump_var_slot (void **, void *);
464 static void dump_var (variable
);
465 static void dump_vars (htab_t
);
466 static void dump_dataflow_set (dataflow_set
*);
467 static void dump_dataflow_sets (void);
469 static void variable_was_changed (variable
, dataflow_set
*);
470 static void **set_slot_part (dataflow_set
*, rtx
, void **,
471 decl_or_value
, HOST_WIDE_INT
,
472 enum var_init_status
, rtx
);
473 static void set_variable_part (dataflow_set
*, rtx
,
474 decl_or_value
, HOST_WIDE_INT
,
475 enum var_init_status
, rtx
, enum insert_option
);
476 static void **clobber_slot_part (dataflow_set
*, rtx
,
477 void **, HOST_WIDE_INT
, rtx
);
478 static void clobber_variable_part (dataflow_set
*, rtx
,
479 decl_or_value
, HOST_WIDE_INT
, rtx
);
480 static void **delete_slot_part (dataflow_set
*, rtx
, void **, HOST_WIDE_INT
);
481 static void delete_variable_part (dataflow_set
*, rtx
,
482 decl_or_value
, HOST_WIDE_INT
);
483 static int emit_note_insn_var_location (void **, void *);
484 static void emit_notes_for_changes (rtx
, enum emit_note_where
, shared_hash
);
485 static int emit_notes_for_differences_1 (void **, void *);
486 static int emit_notes_for_differences_2 (void **, void *);
487 static void emit_notes_for_differences (rtx
, dataflow_set
*, dataflow_set
*);
488 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
489 static void vt_emit_notes (void);
491 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
492 static void vt_add_function_parameters (void);
493 static bool vt_initialize (void);
494 static void vt_finalize (void);
496 /* Given a SET, calculate the amount of stack adjustment it contains
497 PRE- and POST-modifying stack pointer.
498 This function is similar to stack_adjust_offset. */
501 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
504 rtx src
= SET_SRC (pattern
);
505 rtx dest
= SET_DEST (pattern
);
508 if (dest
== stack_pointer_rtx
)
510 /* (set (reg sp) (plus (reg sp) (const_int))) */
511 code
= GET_CODE (src
);
512 if (! (code
== PLUS
|| code
== MINUS
)
513 || XEXP (src
, 0) != stack_pointer_rtx
514 || !CONST_INT_P (XEXP (src
, 1)))
518 *post
+= INTVAL (XEXP (src
, 1));
520 *post
-= INTVAL (XEXP (src
, 1));
522 else if (MEM_P (dest
))
524 /* (set (mem (pre_dec (reg sp))) (foo)) */
525 src
= XEXP (dest
, 0);
526 code
= GET_CODE (src
);
532 if (XEXP (src
, 0) == stack_pointer_rtx
)
534 rtx val
= XEXP (XEXP (src
, 1), 1);
535 /* We handle only adjustments by constant amount. */
536 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
539 if (code
== PRE_MODIFY
)
540 *pre
-= INTVAL (val
);
542 *post
-= INTVAL (val
);
548 if (XEXP (src
, 0) == stack_pointer_rtx
)
550 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
556 if (XEXP (src
, 0) == stack_pointer_rtx
)
558 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
564 if (XEXP (src
, 0) == stack_pointer_rtx
)
566 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
572 if (XEXP (src
, 0) == stack_pointer_rtx
)
574 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
585 /* Given an INSN, calculate the amount of stack adjustment it contains
586 PRE- and POST-modifying stack pointer. */
589 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
597 pattern
= PATTERN (insn
);
598 if (RTX_FRAME_RELATED_P (insn
))
600 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
602 pattern
= XEXP (expr
, 0);
605 if (GET_CODE (pattern
) == SET
)
606 stack_adjust_offset_pre_post (pattern
, pre
, post
);
607 else if (GET_CODE (pattern
) == PARALLEL
608 || GET_CODE (pattern
) == SEQUENCE
)
612 /* There may be stack adjustments inside compound insns. Search
614 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
615 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
616 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
620 /* Compute stack adjustments for all blocks by traversing DFS tree.
621 Return true when the adjustments on all incoming edges are consistent.
622 Heavily borrowed from pre_and_rev_post_order_compute. */
625 vt_stack_adjustments (void)
627 edge_iterator
*stack
;
630 /* Initialize entry block. */
631 VTI (ENTRY_BLOCK_PTR
)->visited
= true;
632 VTI (ENTRY_BLOCK_PTR
)->in
.stack_adjust
= INCOMING_FRAME_SP_OFFSET
;
633 VTI (ENTRY_BLOCK_PTR
)->out
.stack_adjust
= INCOMING_FRAME_SP_OFFSET
;
635 /* Allocate stack for back-tracking up CFG. */
636 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
639 /* Push the first edge on to the stack. */
640 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
648 /* Look at the edge on the top of the stack. */
650 src
= ei_edge (ei
)->src
;
651 dest
= ei_edge (ei
)->dest
;
653 /* Check if the edge destination has been visited yet. */
654 if (!VTI (dest
)->visited
)
657 HOST_WIDE_INT pre
, post
, offset
;
658 VTI (dest
)->visited
= true;
659 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
661 if (dest
!= EXIT_BLOCK_PTR
)
662 for (insn
= BB_HEAD (dest
);
663 insn
!= NEXT_INSN (BB_END (dest
));
664 insn
= NEXT_INSN (insn
))
667 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
668 offset
+= pre
+ post
;
671 VTI (dest
)->out
.stack_adjust
= offset
;
673 if (EDGE_COUNT (dest
->succs
) > 0)
674 /* Since the DEST node has been visited for the first
675 time, check its successors. */
676 stack
[sp
++] = ei_start (dest
->succs
);
680 /* Check whether the adjustments on the edges are the same. */
681 if (VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
687 if (! ei_one_before_end_p (ei
))
688 /* Go to the next edge. */
689 ei_next (&stack
[sp
- 1]);
691 /* Return to previous level if there are no more edges. */
700 /* Compute a CFA-based value for the stack pointer. */
703 compute_cfa_pointer (HOST_WIDE_INT adjustment
)
707 #ifdef FRAME_POINTER_CFA_OFFSET
708 adjustment
-= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
709 cfa
= plus_constant (frame_pointer_rtx
, adjustment
);
711 adjustment
-= ARG_POINTER_CFA_OFFSET (current_function_decl
);
712 cfa
= plus_constant (arg_pointer_rtx
, adjustment
);
718 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
719 or -1 if the replacement shouldn't be done. */
720 static HOST_WIDE_INT hard_frame_pointer_adjustment
= -1;
722 /* Data for adjust_mems callback. */
724 struct adjust_mem_data
727 enum machine_mode mem_mode
;
728 HOST_WIDE_INT stack_adjust
;
732 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
733 transformation of wider mode arithmetics to narrower mode,
734 -1 if it is suitable and subexpressions shouldn't be
735 traversed and 0 if it is suitable and subexpressions should
736 be traversed. Called through for_each_rtx. */
739 use_narrower_mode_test (rtx
*loc
, void *data
)
741 rtx subreg
= (rtx
) data
;
743 if (CONSTANT_P (*loc
))
745 switch (GET_CODE (*loc
))
748 if (cselib_lookup (*loc
, GET_MODE (SUBREG_REG (subreg
)), 0))
756 if (for_each_rtx (&XEXP (*loc
, 0), use_narrower_mode_test
, data
))
765 /* Transform X into narrower mode MODE from wider mode WMODE. */
768 use_narrower_mode (rtx x
, enum machine_mode mode
, enum machine_mode wmode
)
772 return lowpart_subreg (mode
, x
, wmode
);
773 switch (GET_CODE (x
))
776 return lowpart_subreg (mode
, x
, wmode
);
780 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
781 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
782 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
784 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
785 return simplify_gen_binary (ASHIFT
, mode
, op0
, XEXP (x
, 1));
791 /* Helper function for adjusting used MEMs. */
794 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
796 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
797 rtx mem
, addr
= loc
, tem
;
798 enum machine_mode mem_mode_save
;
800 switch (GET_CODE (loc
))
803 /* Don't do any sp or fp replacements outside of MEM addresses. */
804 if (amd
->mem_mode
== VOIDmode
)
806 if (loc
== stack_pointer_rtx
807 && !frame_pointer_needed
)
808 return compute_cfa_pointer (amd
->stack_adjust
);
809 else if (loc
== hard_frame_pointer_rtx
810 && frame_pointer_needed
811 && hard_frame_pointer_adjustment
!= -1)
812 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
818 mem
= targetm
.delegitimize_address (mem
);
819 if (mem
!= loc
&& !MEM_P (mem
))
820 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
823 addr
= XEXP (mem
, 0);
824 mem_mode_save
= amd
->mem_mode
;
825 amd
->mem_mode
= GET_MODE (mem
);
826 store_save
= amd
->store
;
828 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
829 amd
->store
= store_save
;
830 amd
->mem_mode
= mem_mode_save
;
832 addr
= targetm
.delegitimize_address (addr
);
833 if (addr
!= XEXP (mem
, 0))
834 mem
= replace_equiv_address_nv (mem
, addr
);
836 mem
= avoid_constant_pool_reference (mem
);
840 addr
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
841 GEN_INT (GET_CODE (loc
) == PRE_INC
842 ? GET_MODE_SIZE (amd
->mem_mode
)
843 : -GET_MODE_SIZE (amd
->mem_mode
)));
847 addr
= XEXP (loc
, 0);
848 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
849 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
850 tem
= gen_rtx_PLUS (GET_MODE (loc
), XEXP (loc
, 0),
851 GEN_INT ((GET_CODE (loc
) == PRE_INC
852 || GET_CODE (loc
) == POST_INC
)
853 ? GET_MODE_SIZE (amd
->mem_mode
)
854 : -GET_MODE_SIZE (amd
->mem_mode
)));
855 amd
->side_effects
= alloc_EXPR_LIST (0,
856 gen_rtx_SET (VOIDmode
,
862 addr
= XEXP (loc
, 1);
865 addr
= XEXP (loc
, 0);
866 gcc_assert (amd
->mem_mode
!= VOIDmode
);
867 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
868 amd
->side_effects
= alloc_EXPR_LIST (0,
869 gen_rtx_SET (VOIDmode
,
875 /* First try without delegitimization of whole MEMs and
876 avoid_constant_pool_reference, which is more likely to succeed. */
877 store_save
= amd
->store
;
879 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
881 amd
->store
= store_save
;
882 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
883 if (mem
== SUBREG_REG (loc
))
888 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
889 GET_MODE (SUBREG_REG (loc
)),
893 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
894 GET_MODE (SUBREG_REG (loc
)),
897 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
899 if (MAY_HAVE_DEBUG_INSNS
900 && GET_CODE (tem
) == SUBREG
901 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
902 || GET_CODE (SUBREG_REG (tem
)) == MINUS
903 || GET_CODE (SUBREG_REG (tem
)) == MULT
904 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
905 && GET_MODE_CLASS (GET_MODE (tem
)) == MODE_INT
906 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem
))) == MODE_INT
907 && GET_MODE_SIZE (GET_MODE (tem
))
908 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem
)))
909 && subreg_lowpart_p (tem
)
910 && !for_each_rtx (&SUBREG_REG (tem
), use_narrower_mode_test
, tem
))
911 return use_narrower_mode (SUBREG_REG (tem
), GET_MODE (tem
),
912 GET_MODE (SUBREG_REG (tem
)));
920 /* Helper function for replacement of uses. */
923 adjust_mem_uses (rtx
*x
, void *data
)
925 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
927 validate_change (NULL_RTX
, x
, new_x
, true);
930 /* Helper function for replacement of stores. */
933 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
937 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
939 if (new_dest
!= SET_DEST (expr
))
941 rtx xexpr
= CONST_CAST_RTX (expr
);
942 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
947 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
948 replace them with their value in the insn and add the side-effects
949 as other sets to the insn. */
952 adjust_insn (basic_block bb
, rtx insn
)
954 struct adjust_mem_data amd
;
956 amd
.mem_mode
= VOIDmode
;
957 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
958 amd
.side_effects
= NULL_RTX
;
961 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
964 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
966 /* For read-only MEMs containing some constant, prefer those
968 set
= single_set (insn
);
969 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
971 rtx note
= find_reg_equal_equiv_note (insn
);
973 if (note
&& CONSTANT_P (XEXP (note
, 0)))
974 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
977 if (amd
.side_effects
)
979 rtx
*pat
, new_pat
, s
;
982 pat
= &PATTERN (insn
);
983 if (GET_CODE (*pat
) == COND_EXEC
)
984 pat
= &COND_EXEC_CODE (*pat
);
985 if (GET_CODE (*pat
) == PARALLEL
)
986 oldn
= XVECLEN (*pat
, 0);
989 for (s
= amd
.side_effects
, newn
= 0; s
; newn
++)
991 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
992 if (GET_CODE (*pat
) == PARALLEL
)
993 for (i
= 0; i
< oldn
; i
++)
994 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
996 XVECEXP (new_pat
, 0, 0) = *pat
;
997 for (s
= amd
.side_effects
, i
= oldn
; i
< oldn
+ newn
; i
++, s
= XEXP (s
, 1))
998 XVECEXP (new_pat
, 0, i
) = XEXP (s
, 0);
999 free_EXPR_LIST_list (&amd
.side_effects
);
1000 validate_change (NULL_RTX
, pat
, new_pat
, true);
1004 /* Return true if a decl_or_value DV is a DECL or NULL. */
1006 dv_is_decl_p (decl_or_value dv
)
1008 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
1011 /* Return true if a decl_or_value is a VALUE rtl. */
1013 dv_is_value_p (decl_or_value dv
)
1015 return dv
&& !dv_is_decl_p (dv
);
1018 /* Return the decl in the decl_or_value. */
1020 dv_as_decl (decl_or_value dv
)
1022 #ifdef ENABLE_CHECKING
1023 gcc_assert (dv_is_decl_p (dv
));
1028 /* Return the value in the decl_or_value. */
1030 dv_as_value (decl_or_value dv
)
1032 #ifdef ENABLE_CHECKING
1033 gcc_assert (dv_is_value_p (dv
));
1038 /* Return the opaque pointer in the decl_or_value. */
1039 static inline void *
1040 dv_as_opaque (decl_or_value dv
)
1045 /* Return true if a decl_or_value must not have more than one variable
1048 dv_onepart_p (decl_or_value dv
)
1052 if (!MAY_HAVE_DEBUG_INSNS
)
1055 if (dv_is_value_p (dv
))
1058 decl
= dv_as_decl (dv
);
1063 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1066 return (target_for_debug_bind (decl
) != NULL_TREE
);
1069 /* Return the variable pool to be used for dv, depending on whether it
1070 can have multiple parts or not. */
1071 static inline alloc_pool
1072 dv_pool (decl_or_value dv
)
1074 return dv_onepart_p (dv
) ? valvar_pool
: var_pool
;
1077 /* Build a decl_or_value out of a decl. */
1078 static inline decl_or_value
1079 dv_from_decl (tree decl
)
1083 #ifdef ENABLE_CHECKING
1084 gcc_assert (dv_is_decl_p (dv
));
1089 /* Build a decl_or_value out of a value. */
1090 static inline decl_or_value
1091 dv_from_value (rtx value
)
1095 #ifdef ENABLE_CHECKING
1096 gcc_assert (dv_is_value_p (dv
));
1101 extern void debug_dv (decl_or_value dv
);
1104 debug_dv (decl_or_value dv
)
1106 if (dv_is_value_p (dv
))
1107 debug_rtx (dv_as_value (dv
));
1109 debug_generic_stmt (dv_as_decl (dv
));
1112 typedef unsigned int dvuid
;
1114 /* Return the uid of DV. */
1117 dv_uid (decl_or_value dv
)
1119 if (dv_is_value_p (dv
))
1120 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
1122 return DECL_UID (dv_as_decl (dv
));
1125 /* Compute the hash from the uid. */
1127 static inline hashval_t
1128 dv_uid2hash (dvuid uid
)
1133 /* The hash function for a mask table in a shared_htab chain. */
1135 static inline hashval_t
1136 dv_htab_hash (decl_or_value dv
)
1138 return dv_uid2hash (dv_uid (dv
));
1141 /* The hash function for variable_htab, computes the hash value
1142 from the declaration of variable X. */
1145 variable_htab_hash (const void *x
)
1147 const_variable
const v
= (const_variable
) x
;
1149 return dv_htab_hash (v
->dv
);
1152 /* Compare the declaration of variable X with declaration Y. */
1155 variable_htab_eq (const void *x
, const void *y
)
1157 const_variable
const v
= (const_variable
) x
;
1158 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
1160 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
1163 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1166 variable_htab_free (void *elem
)
1169 variable var
= (variable
) elem
;
1170 location_chain node
, next
;
1172 gcc_assert (var
->refcount
> 0);
1175 if (var
->refcount
> 0)
1178 for (i
= 0; i
< var
->n_var_parts
; i
++)
1180 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1183 pool_free (loc_chain_pool
, node
);
1185 var
->var_part
[i
].loc_chain
= NULL
;
1187 pool_free (dv_pool (var
->dv
), var
);
1190 /* The hash function for value_chains htab, computes the hash value
1194 value_chain_htab_hash (const void *x
)
1196 const_value_chain
const v
= (const_value_chain
) x
;
1198 return dv_htab_hash (v
->dv
);
1201 /* Compare the VALUE X with VALUE Y. */
1204 value_chain_htab_eq (const void *x
, const void *y
)
1206 const_value_chain
const v
= (const_value_chain
) x
;
1207 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
1209 return dv_as_opaque (v
->dv
) == dv_as_opaque (dv
);
1212 /* Initialize the set (array) SET of attrs to empty lists. */
1215 init_attrs_list_set (attrs
*set
)
1219 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1223 /* Make the list *LISTP empty. */
1226 attrs_list_clear (attrs
*listp
)
1230 for (list
= *listp
; list
; list
= next
)
1233 pool_free (attrs_pool
, list
);
1238 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1241 attrs_list_member (attrs list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1243 for (; list
; list
= list
->next
)
1244 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1249 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1252 attrs_list_insert (attrs
*listp
, decl_or_value dv
,
1253 HOST_WIDE_INT offset
, rtx loc
)
1257 list
= (attrs
) pool_alloc (attrs_pool
);
1260 list
->offset
= offset
;
1261 list
->next
= *listp
;
1265 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1268 attrs_list_copy (attrs
*dstp
, attrs src
)
1272 attrs_list_clear (dstp
);
1273 for (; src
; src
= src
->next
)
1275 n
= (attrs
) pool_alloc (attrs_pool
);
1278 n
->offset
= src
->offset
;
1284 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1287 attrs_list_union (attrs
*dstp
, attrs src
)
1289 for (; src
; src
= src
->next
)
1291 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1292 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1296 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1300 attrs_list_mpdv_union (attrs
*dstp
, attrs src
, attrs src2
)
1302 gcc_assert (!*dstp
);
1303 for (; src
; src
= src
->next
)
1305 if (!dv_onepart_p (src
->dv
))
1306 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1308 for (src
= src2
; src
; src
= src
->next
)
1310 if (!dv_onepart_p (src
->dv
)
1311 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1312 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1316 /* Shared hashtable support. */
1318 /* Return true if VARS is shared. */
1321 shared_hash_shared (shared_hash vars
)
1323 return vars
->refcount
> 1;
1326 /* Return the hash table for VARS. */
1328 static inline htab_t
1329 shared_hash_htab (shared_hash vars
)
1334 /* Return true if VAR is shared, or maybe because VARS is shared. */
1337 shared_var_p (variable var
, shared_hash vars
)
1339 /* Don't count an entry in the changed_variables table as a duplicate. */
1340 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1341 || shared_hash_shared (vars
));
1344 /* Copy variables into a new hash table. */
1347 shared_hash_unshare (shared_hash vars
)
1349 shared_hash new_vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
1350 gcc_assert (vars
->refcount
> 1);
1351 new_vars
->refcount
= 1;
1353 = htab_create (htab_elements (vars
->htab
) + 3, variable_htab_hash
,
1354 variable_htab_eq
, variable_htab_free
);
1355 vars_copy (new_vars
->htab
, vars
->htab
);
1360 /* Increment reference counter on VARS and return it. */
1362 static inline shared_hash
1363 shared_hash_copy (shared_hash vars
)
1369 /* Decrement reference counter and destroy hash table if not shared
1373 shared_hash_destroy (shared_hash vars
)
1375 gcc_assert (vars
->refcount
> 0);
1376 if (--vars
->refcount
== 0)
1378 htab_delete (vars
->htab
);
1379 pool_free (shared_hash_pool
, vars
);
1383 /* Unshare *PVARS if shared and return slot for DV. If INS is
1384 INSERT, insert it if not already present. */
1386 static inline void **
1387 shared_hash_find_slot_unshare_1 (shared_hash
*pvars
, decl_or_value dv
,
1388 hashval_t dvhash
, enum insert_option ins
)
1390 if (shared_hash_shared (*pvars
))
1391 *pvars
= shared_hash_unshare (*pvars
);
1392 return htab_find_slot_with_hash (shared_hash_htab (*pvars
), dv
, dvhash
, ins
);
1395 static inline void **
1396 shared_hash_find_slot_unshare (shared_hash
*pvars
, decl_or_value dv
,
1397 enum insert_option ins
)
1399 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1402 /* Return slot for DV, if it is already present in the hash table.
1403 If it is not present, insert it only VARS is not shared, otherwise
1406 static inline void **
1407 shared_hash_find_slot_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1409 return htab_find_slot_with_hash (shared_hash_htab (vars
), dv
, dvhash
,
1410 shared_hash_shared (vars
)
1411 ? NO_INSERT
: INSERT
);
1414 static inline void **
1415 shared_hash_find_slot (shared_hash vars
, decl_or_value dv
)
1417 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1420 /* Return slot for DV only if it is already present in the hash table. */
1422 static inline void **
1423 shared_hash_find_slot_noinsert_1 (shared_hash vars
, decl_or_value dv
,
1426 return htab_find_slot_with_hash (shared_hash_htab (vars
), dv
, dvhash
,
1430 static inline void **
1431 shared_hash_find_slot_noinsert (shared_hash vars
, decl_or_value dv
)
1433 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1436 /* Return variable for DV or NULL if not already present in the hash
1439 static inline variable
1440 shared_hash_find_1 (shared_hash vars
, decl_or_value dv
, hashval_t dvhash
)
1442 return (variable
) htab_find_with_hash (shared_hash_htab (vars
), dv
, dvhash
);
1445 static inline variable
1446 shared_hash_find (shared_hash vars
, decl_or_value dv
)
1448 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1451 /* Return true if TVAL is better than CVAL as a canonival value. We
1452 choose lowest-numbered VALUEs, using the RTX address as a
1453 tie-breaker. The idea is to arrange them into a star topology,
1454 such that all of them are at most one step away from the canonical
1455 value, and the canonical value has backlinks to all of them, in
1456 addition to all the actual locations. We don't enforce this
1457 topology throughout the entire dataflow analysis, though.
1461 canon_value_cmp (rtx tval
, rtx cval
)
1464 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1467 static bool dst_can_be_shared
;
1469 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1472 unshare_variable (dataflow_set
*set
, void **slot
, variable var
,
1473 enum var_init_status initialized
)
1478 new_var
= (variable
) pool_alloc (dv_pool (var
->dv
));
1479 new_var
->dv
= var
->dv
;
1480 new_var
->refcount
= 1;
1482 new_var
->n_var_parts
= var
->n_var_parts
;
1483 new_var
->cur_loc_changed
= var
->cur_loc_changed
;
1484 var
->cur_loc_changed
= false;
1485 new_var
->in_changed_variables
= false;
1487 if (! flag_var_tracking_uninit
)
1488 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1490 for (i
= 0; i
< var
->n_var_parts
; i
++)
1492 location_chain node
;
1493 location_chain
*nextp
;
1495 new_var
->var_part
[i
].offset
= var
->var_part
[i
].offset
;
1496 nextp
= &new_var
->var_part
[i
].loc_chain
;
1497 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1499 location_chain new_lc
;
1501 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
1502 new_lc
->next
= NULL
;
1503 if (node
->init
> initialized
)
1504 new_lc
->init
= node
->init
;
1506 new_lc
->init
= initialized
;
1507 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1508 new_lc
->set_src
= node
->set_src
;
1510 new_lc
->set_src
= NULL
;
1511 new_lc
->loc
= node
->loc
;
1514 nextp
= &new_lc
->next
;
1517 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1520 dst_can_be_shared
= false;
1521 if (shared_hash_shared (set
->vars
))
1522 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1523 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1524 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1526 if (var
->in_changed_variables
)
1529 = htab_find_slot_with_hash (changed_variables
, var
->dv
,
1530 dv_htab_hash (var
->dv
), NO_INSERT
);
1531 gcc_assert (*cslot
== (void *) var
);
1532 var
->in_changed_variables
= false;
1533 variable_htab_free (var
);
1535 new_var
->in_changed_variables
= true;
1540 /* Add a variable from *SLOT to hash table DATA and increase its reference
1544 vars_copy_1 (void **slot
, void *data
)
1546 htab_t dst
= (htab_t
) data
;
1550 src
= (variable
) *slot
;
1553 dstp
= htab_find_slot_with_hash (dst
, src
->dv
,
1554 dv_htab_hash (src
->dv
),
1558 /* Continue traversing the hash table. */
1562 /* Copy all variables from hash table SRC to hash table DST. */
1565 vars_copy (htab_t dst
, htab_t src
)
1567 htab_traverse_noresize (src
, vars_copy_1
, dst
);
1570 /* Map a decl to its main debug decl. */
1573 var_debug_decl (tree decl
)
1575 if (decl
&& DECL_P (decl
)
1576 && DECL_DEBUG_EXPR_IS_FROM (decl
) && DECL_DEBUG_EXPR (decl
)
1577 && DECL_P (DECL_DEBUG_EXPR (decl
)))
1578 decl
= DECL_DEBUG_EXPR (decl
);
1583 /* Set the register LOC to contain DV, OFFSET. */
1586 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1587 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1588 enum insert_option iopt
)
1591 bool decl_p
= dv_is_decl_p (dv
);
1594 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1596 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1597 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1598 && node
->offset
== offset
)
1601 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1602 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1605 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1608 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1611 tree decl
= REG_EXPR (loc
);
1612 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1614 var_reg_decl_set (set
, loc
, initialized
,
1615 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1618 static enum var_init_status
1619 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1623 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1625 if (! flag_var_tracking_uninit
)
1626 return VAR_INIT_STATUS_INITIALIZED
;
1628 var
= shared_hash_find (set
->vars
, dv
);
1631 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1633 location_chain nextp
;
1634 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1635 if (rtx_equal_p (nextp
->loc
, loc
))
1637 ret_val
= nextp
->init
;
1646 /* Delete current content of register LOC in dataflow set SET and set
1647 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1648 MODIFY is true, any other live copies of the same variable part are
1649 also deleted from the dataflow set, otherwise the variable part is
1650 assumed to be copied from another location holding the same
1654 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1655 enum var_init_status initialized
, rtx set_src
)
1657 tree decl
= REG_EXPR (loc
);
1658 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1662 decl
= var_debug_decl (decl
);
1664 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1665 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1667 nextp
= &set
->regs
[REGNO (loc
)];
1668 for (node
= *nextp
; node
; node
= next
)
1671 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1673 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1674 pool_free (attrs_pool
, node
);
1680 nextp
= &node
->next
;
1684 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1685 var_reg_set (set
, loc
, initialized
, set_src
);
1688 /* Delete the association of register LOC in dataflow set SET with any
1689 variables that aren't onepart. If CLOBBER is true, also delete any
1690 other live copies of the same variable part, and delete the
1691 association with onepart dvs too. */
1694 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1696 attrs
*nextp
= &set
->regs
[REGNO (loc
)];
1701 tree decl
= REG_EXPR (loc
);
1702 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
1704 decl
= var_debug_decl (decl
);
1706 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1709 for (node
= *nextp
; node
; node
= next
)
1712 if (clobber
|| !dv_onepart_p (node
->dv
))
1714 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1715 pool_free (attrs_pool
, node
);
1719 nextp
= &node
->next
;
1723 /* Delete content of register with number REGNO in dataflow set SET. */
1726 var_regno_delete (dataflow_set
*set
, int regno
)
1728 attrs
*reg
= &set
->regs
[regno
];
1731 for (node
= *reg
; node
; node
= next
)
1734 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1735 pool_free (attrs_pool
, node
);
1740 /* Set the location of DV, OFFSET as the MEM LOC. */
1743 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1744 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1745 enum insert_option iopt
)
1747 if (dv_is_decl_p (dv
))
1748 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1750 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1753 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1755 Adjust the address first if it is stack pointer based. */
1758 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1761 tree decl
= MEM_EXPR (loc
);
1762 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1764 var_mem_decl_set (set
, loc
, initialized
,
1765 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1768 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1769 dataflow set SET to LOC. If MODIFY is true, any other live copies
1770 of the same variable part are also deleted from the dataflow set,
1771 otherwise the variable part is assumed to be copied from another
1772 location holding the same part.
1773 Adjust the address first if it is stack pointer based. */
1776 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1777 enum var_init_status initialized
, rtx set_src
)
1779 tree decl
= MEM_EXPR (loc
);
1780 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1782 decl
= var_debug_decl (decl
);
1784 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1785 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1788 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
1789 var_mem_set (set
, loc
, initialized
, set_src
);
1792 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1793 true, also delete any other live copies of the same variable part.
1794 Adjust the address first if it is stack pointer based. */
1797 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1799 tree decl
= MEM_EXPR (loc
);
1800 HOST_WIDE_INT offset
= INT_MEM_OFFSET (loc
);
1802 decl
= var_debug_decl (decl
);
1804 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1805 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
1808 /* Bind a value to a location it was just stored in. If MODIFIED
1809 holds, assume the location was modified, detaching it from any
1810 values bound to it. */
1813 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
, bool modified
)
1815 cselib_val
*v
= CSELIB_VAL_PTR (val
);
1817 gcc_assert (cselib_preserved_value_p (v
));
1821 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
1822 print_inline_rtx (dump_file
, val
, 0);
1823 fprintf (dump_file
, " stored in ");
1824 print_inline_rtx (dump_file
, loc
, 0);
1827 struct elt_loc_list
*l
;
1828 for (l
= v
->locs
; l
; l
= l
->next
)
1830 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
1831 print_inline_rtx (dump_file
, l
->loc
, 0);
1834 fprintf (dump_file
, "\n");
1840 var_regno_delete (set
, REGNO (loc
));
1841 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1842 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1844 else if (MEM_P (loc
))
1845 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1846 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1848 set_variable_part (set
, loc
, dv_from_value (val
), 0,
1849 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1852 /* Reset this node, detaching all its equivalences. Return the slot
1853 in the variable hash table that holds dv, if there is one. */
1856 val_reset (dataflow_set
*set
, decl_or_value dv
)
1858 variable var
= shared_hash_find (set
->vars
, dv
) ;
1859 location_chain node
;
1862 if (!var
|| !var
->n_var_parts
)
1865 gcc_assert (var
->n_var_parts
== 1);
1868 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1869 if (GET_CODE (node
->loc
) == VALUE
1870 && canon_value_cmp (node
->loc
, cval
))
1873 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1874 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
1876 /* Redirect the equivalence link to the new canonical
1877 value, or simply remove it if it would point at
1880 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
1881 0, node
->init
, node
->set_src
, NO_INSERT
);
1882 delete_variable_part (set
, dv_as_value (dv
),
1883 dv_from_value (node
->loc
), 0);
1888 decl_or_value cdv
= dv_from_value (cval
);
1890 /* Keep the remaining values connected, accummulating links
1891 in the canonical value. */
1892 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
1894 if (node
->loc
== cval
)
1896 else if (GET_CODE (node
->loc
) == REG
)
1897 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
1898 node
->set_src
, NO_INSERT
);
1899 else if (GET_CODE (node
->loc
) == MEM
)
1900 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
1901 node
->set_src
, NO_INSERT
);
1903 set_variable_part (set
, node
->loc
, cdv
, 0,
1904 node
->init
, node
->set_src
, NO_INSERT
);
1908 /* We remove this last, to make sure that the canonical value is not
1909 removed to the point of requiring reinsertion. */
1911 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
1913 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
1915 /* ??? Should we make sure there aren't other available values or
1916 variables whose values involve this one other than by
1917 equivalence? E.g., at the very least we should reset MEMs, those
1918 shouldn't be too hard to find cselib-looking up the value as an
1919 address, then locating the resulting value in our own hash
1923 /* Find the values in a given location and map the val to another
1924 value, if it is unique, or add the location as one holding the
1928 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx insn
)
1930 decl_or_value dv
= dv_from_value (val
);
1932 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1935 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
1937 fprintf (dump_file
, "head: ");
1938 print_inline_rtx (dump_file
, val
, 0);
1939 fputs (" is at ", dump_file
);
1940 print_inline_rtx (dump_file
, loc
, 0);
1941 fputc ('\n', dump_file
);
1944 val_reset (set
, dv
);
1948 attrs node
, found
= NULL
;
1950 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1951 if (dv_is_value_p (node
->dv
)
1952 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
1956 /* Map incoming equivalences. ??? Wouldn't it be nice if
1957 we just started sharing the location lists? Maybe a
1958 circular list ending at the value itself or some
1960 set_variable_part (set
, dv_as_value (node
->dv
),
1961 dv_from_value (val
), node
->offset
,
1962 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1963 set_variable_part (set
, val
, node
->dv
, node
->offset
,
1964 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1967 /* If we didn't find any equivalence, we need to remember that
1968 this value is held in the named register. */
1970 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1971 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1973 else if (MEM_P (loc
))
1974 /* ??? Merge equivalent MEMs. */
1975 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
1976 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
1978 /* ??? Merge equivalent expressions. */
1979 set_variable_part (set
, loc
, dv_from_value (val
), 0,
1980 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
1983 /* Initialize dataflow set SET to be empty.
1984 VARS_SIZE is the initial size of hash table VARS. */
1987 dataflow_set_init (dataflow_set
*set
)
1989 init_attrs_list_set (set
->regs
);
1990 set
->vars
= shared_hash_copy (empty_shared_hash
);
1991 set
->stack_adjust
= 0;
1992 set
->traversed_vars
= NULL
;
1995 /* Delete the contents of dataflow set SET. */
1998 dataflow_set_clear (dataflow_set
*set
)
2002 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2003 attrs_list_clear (&set
->regs
[i
]);
2005 shared_hash_destroy (set
->vars
);
2006 set
->vars
= shared_hash_copy (empty_shared_hash
);
2009 /* Copy the contents of dataflow set SRC to DST. */
2012 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2016 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2017 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2019 shared_hash_destroy (dst
->vars
);
2020 dst
->vars
= shared_hash_copy (src
->vars
);
2021 dst
->stack_adjust
= src
->stack_adjust
;
2024 /* Information for merging lists of locations for a given offset of variable.
2026 struct variable_union_info
2028 /* Node of the location chain. */
2031 /* The sum of positions in the input chains. */
2034 /* The position in the chain of DST dataflow set. */
2038 /* Buffer for location list sorting and its allocated size. */
2039 static struct variable_union_info
*vui_vec
;
2040 static int vui_allocated
;
2042 /* Compare function for qsort, order the structures by POS element. */
2045 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2047 const struct variable_union_info
*const i1
=
2048 (const struct variable_union_info
*) n1
;
2049 const struct variable_union_info
*const i2
=
2050 ( const struct variable_union_info
*) n2
;
2052 if (i1
->pos
!= i2
->pos
)
2053 return i1
->pos
- i2
->pos
;
2055 return (i1
->pos_dst
- i2
->pos_dst
);
2058 /* Compute union of location parts of variable *SLOT and the same variable
2059 from hash table DATA. Compute "sorted" union of the location chains
2060 for common offsets, i.e. the locations of a variable part are sorted by
2061 a priority where the priority is the sum of the positions in the 2 chains
2062 (if a location is only in one list the position in the second list is
2063 defined to be larger than the length of the chains).
2064 When we are updating the location parts the newest location is in the
2065 beginning of the chain, so when we do the described "sorted" union
2066 we keep the newest locations in the beginning. */
2069 variable_union (void **slot
, void *data
)
2073 dataflow_set
*set
= (dataflow_set
*) data
;
2076 src
= (variable
) *slot
;
2077 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2078 if (!dstp
|| !*dstp
)
2082 dst_can_be_shared
= false;
2084 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2088 /* Continue traversing the hash table. */
2092 dst
= (variable
) *dstp
;
2094 gcc_assert (src
->n_var_parts
);
2096 /* We can combine one-part variables very efficiently, because their
2097 entries are in canonical order. */
2098 if (dv_onepart_p (src
->dv
))
2100 location_chain
*nodep
, dnode
, snode
;
2102 gcc_assert (src
->n_var_parts
== 1);
2103 gcc_assert (dst
->n_var_parts
== 1);
2105 snode
= src
->var_part
[0].loc_chain
;
2108 restart_onepart_unshared
:
2109 nodep
= &dst
->var_part
[0].loc_chain
;
2115 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2119 location_chain nnode
;
2121 if (shared_var_p (dst
, set
->vars
))
2123 dstp
= unshare_variable (set
, dstp
, dst
,
2124 VAR_INIT_STATUS_INITIALIZED
);
2125 dst
= (variable
)*dstp
;
2126 goto restart_onepart_unshared
;
2129 *nodep
= nnode
= (location_chain
) pool_alloc (loc_chain_pool
);
2130 nnode
->loc
= snode
->loc
;
2131 nnode
->init
= snode
->init
;
2132 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2133 nnode
->set_src
= NULL
;
2135 nnode
->set_src
= snode
->set_src
;
2136 nnode
->next
= dnode
;
2139 #ifdef ENABLE_CHECKING
2141 gcc_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2145 snode
= snode
->next
;
2147 nodep
= &dnode
->next
;
2154 /* Count the number of location parts, result is K. */
2155 for (i
= 0, j
= 0, k
= 0;
2156 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2158 if (src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
2163 else if (src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
2168 k
+= src
->n_var_parts
- i
;
2169 k
+= dst
->n_var_parts
- j
;
2171 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2172 thus there are at most MAX_VAR_PARTS different offsets. */
2173 gcc_assert (dv_onepart_p (dst
->dv
) ? k
== 1 : k
<= MAX_VAR_PARTS
);
2175 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2177 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2178 dst
= (variable
)*dstp
;
2181 i
= src
->n_var_parts
- 1;
2182 j
= dst
->n_var_parts
- 1;
2183 dst
->n_var_parts
= k
;
2185 for (k
--; k
>= 0; k
--)
2187 location_chain node
, node2
;
2189 if (i
>= 0 && j
>= 0
2190 && src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
2192 /* Compute the "sorted" union of the chains, i.e. the locations which
2193 are in both chains go first, they are sorted by the sum of
2194 positions in the chains. */
2197 struct variable_union_info
*vui
;
2199 /* If DST is shared compare the location chains.
2200 If they are different we will modify the chain in DST with
2201 high probability so make a copy of DST. */
2202 if (shared_var_p (dst
, set
->vars
))
2204 for (node
= src
->var_part
[i
].loc_chain
,
2205 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2206 node
= node
->next
, node2
= node2
->next
)
2208 if (!((REG_P (node2
->loc
)
2209 && REG_P (node
->loc
)
2210 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2211 || rtx_equal_p (node2
->loc
, node
->loc
)))
2213 if (node2
->init
< node
->init
)
2214 node2
->init
= node
->init
;
2220 dstp
= unshare_variable (set
, dstp
, dst
,
2221 VAR_INIT_STATUS_UNKNOWN
);
2222 dst
= (variable
)*dstp
;
2227 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2230 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2235 /* The most common case, much simpler, no qsort is needed. */
2236 location_chain dstnode
= dst
->var_part
[j
].loc_chain
;
2237 dst
->var_part
[k
].loc_chain
= dstnode
;
2238 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
2240 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2241 if (!((REG_P (dstnode
->loc
)
2242 && REG_P (node
->loc
)
2243 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2244 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2246 location_chain new_node
;
2248 /* Copy the location from SRC. */
2249 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2250 new_node
->loc
= node
->loc
;
2251 new_node
->init
= node
->init
;
2252 if (!node
->set_src
|| MEM_P (node
->set_src
))
2253 new_node
->set_src
= NULL
;
2255 new_node
->set_src
= node
->set_src
;
2256 node2
->next
= new_node
;
2263 if (src_l
+ dst_l
> vui_allocated
)
2265 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2266 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2271 /* Fill in the locations from DST. */
2272 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2273 node
= node
->next
, jj
++)
2276 vui
[jj
].pos_dst
= jj
;
2278 /* Pos plus value larger than a sum of 2 valid positions. */
2279 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2282 /* Fill in the locations from SRC. */
2284 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2285 node
= node
->next
, ii
++)
2287 /* Find location from NODE. */
2288 for (jj
= 0; jj
< dst_l
; jj
++)
2290 if ((REG_P (vui
[jj
].lc
->loc
)
2291 && REG_P (node
->loc
)
2292 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2293 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2295 vui
[jj
].pos
= jj
+ ii
;
2299 if (jj
>= dst_l
) /* The location has not been found. */
2301 location_chain new_node
;
2303 /* Copy the location from SRC. */
2304 new_node
= (location_chain
) pool_alloc (loc_chain_pool
);
2305 new_node
->loc
= node
->loc
;
2306 new_node
->init
= node
->init
;
2307 if (!node
->set_src
|| MEM_P (node
->set_src
))
2308 new_node
->set_src
= NULL
;
2310 new_node
->set_src
= node
->set_src
;
2311 vui
[n
].lc
= new_node
;
2312 vui
[n
].pos_dst
= src_l
+ dst_l
;
2313 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
2320 /* Special case still very common case. For dst_l == 2
2321 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2322 vui[i].pos == i + src_l + dst_l. */
2323 if (vui
[0].pos
> vui
[1].pos
)
2325 /* Order should be 1, 0, 2... */
2326 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
2327 vui
[1].lc
->next
= vui
[0].lc
;
2330 vui
[0].lc
->next
= vui
[2].lc
;
2331 vui
[n
- 1].lc
->next
= NULL
;
2334 vui
[0].lc
->next
= NULL
;
2339 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
2340 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
2342 /* Order should be 0, 2, 1, 3... */
2343 vui
[0].lc
->next
= vui
[2].lc
;
2344 vui
[2].lc
->next
= vui
[1].lc
;
2347 vui
[1].lc
->next
= vui
[3].lc
;
2348 vui
[n
- 1].lc
->next
= NULL
;
2351 vui
[1].lc
->next
= NULL
;
2356 /* Order should be 0, 1, 2... */
2358 vui
[n
- 1].lc
->next
= NULL
;
2361 for (; ii
< n
; ii
++)
2362 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
2366 qsort (vui
, n
, sizeof (struct variable_union_info
),
2367 variable_union_info_cmp_pos
);
2369 /* Reconnect the nodes in sorted order. */
2370 for (ii
= 1; ii
< n
; ii
++)
2371 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
2372 vui
[n
- 1].lc
->next
= NULL
;
2373 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
2376 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
2381 else if ((i
>= 0 && j
>= 0
2382 && src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
2385 dst
->var_part
[k
] = dst
->var_part
[j
];
2388 else if ((i
>= 0 && j
>= 0
2389 && src
->var_part
[i
].offset
> dst
->var_part
[j
].offset
)
2392 location_chain
*nextp
;
2394 /* Copy the chain from SRC. */
2395 nextp
= &dst
->var_part
[k
].loc_chain
;
2396 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2398 location_chain new_lc
;
2400 new_lc
= (location_chain
) pool_alloc (loc_chain_pool
);
2401 new_lc
->next
= NULL
;
2402 new_lc
->init
= node
->init
;
2403 if (!node
->set_src
|| MEM_P (node
->set_src
))
2404 new_lc
->set_src
= NULL
;
2406 new_lc
->set_src
= node
->set_src
;
2407 new_lc
->loc
= node
->loc
;
2410 nextp
= &new_lc
->next
;
2413 dst
->var_part
[k
].offset
= src
->var_part
[i
].offset
;
2416 dst
->var_part
[k
].cur_loc
= NULL
;
2419 if (flag_var_tracking_uninit
)
2420 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
2422 location_chain node
, node2
;
2423 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2424 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
2425 if (rtx_equal_p (node
->loc
, node2
->loc
))
2427 if (node
->init
> node2
->init
)
2428 node2
->init
= node
->init
;
2432 /* Continue traversing the hash table. */
2436 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2439 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
2443 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2444 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
2446 if (dst
->vars
== empty_shared_hash
)
2448 shared_hash_destroy (dst
->vars
);
2449 dst
->vars
= shared_hash_copy (src
->vars
);
2452 htab_traverse (shared_hash_htab (src
->vars
), variable_union
, dst
);
2455 /* Whether the value is currently being expanded. */
2456 #define VALUE_RECURSED_INTO(x) \
2457 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2458 /* Whether the value is in changed_variables hash table. */
2459 #define VALUE_CHANGED(x) \
2460 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2461 /* Whether the decl is in changed_variables hash table. */
2462 #define DECL_CHANGED(x) TREE_VISITED (x)
2464 /* Record that DV has been added into resp. removed from changed_variables
2468 set_dv_changed (decl_or_value dv
, bool newv
)
2470 if (dv_is_value_p (dv
))
2471 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
2473 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
2476 /* Return true if DV is present in changed_variables hash table. */
2479 dv_changed_p (decl_or_value dv
)
2481 return (dv_is_value_p (dv
)
2482 ? VALUE_CHANGED (dv_as_value (dv
))
2483 : DECL_CHANGED (dv_as_decl (dv
)));
2486 /* Return a location list node whose loc is rtx_equal to LOC, in the
2487 location list of a one-part variable or value VAR, or in that of
2488 any values recursively mentioned in the location lists. */
2490 static location_chain
2491 find_loc_in_1pdv (rtx loc
, variable var
, htab_t vars
)
2493 location_chain node
;
2498 gcc_assert (dv_onepart_p (var
->dv
));
2500 if (!var
->n_var_parts
)
2503 gcc_assert (var
->var_part
[0].offset
== 0);
2505 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2506 if (rtx_equal_p (loc
, node
->loc
))
2508 else if (GET_CODE (node
->loc
) == VALUE
2509 && !VALUE_RECURSED_INTO (node
->loc
))
2511 decl_or_value dv
= dv_from_value (node
->loc
);
2512 variable var
= (variable
)
2513 htab_find_with_hash (vars
, dv
, dv_htab_hash (dv
));
2517 location_chain where
;
2518 VALUE_RECURSED_INTO (node
->loc
) = true;
2519 if ((where
= find_loc_in_1pdv (loc
, var
, vars
)))
2521 VALUE_RECURSED_INTO (node
->loc
) = false;
2524 VALUE_RECURSED_INTO (node
->loc
) = false;
2531 /* Hash table iteration argument passed to variable_merge. */
2534 /* The set in which the merge is to be inserted. */
2536 /* The set that we're iterating in. */
2538 /* The set that may contain the other dv we are to merge with. */
2540 /* Number of onepart dvs in src. */
2541 int src_onepart_cnt
;
2544 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2545 loc_cmp order, and it is maintained as such. */
2548 insert_into_intersection (location_chain
*nodep
, rtx loc
,
2549 enum var_init_status status
)
2551 location_chain node
;
2554 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
2555 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
2557 node
->init
= MIN (node
->init
, status
);
2563 node
= (location_chain
) pool_alloc (loc_chain_pool
);
2566 node
->set_src
= NULL
;
2567 node
->init
= status
;
2568 node
->next
= *nodep
;
2572 /* Insert in DEST the intersection the locations present in both
2573 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2574 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2578 intersect_loc_chains (rtx val
, location_chain
*dest
, struct dfset_merge
*dsm
,
2579 location_chain s1node
, variable s2var
)
2581 dataflow_set
*s1set
= dsm
->cur
;
2582 dataflow_set
*s2set
= dsm
->src
;
2583 location_chain found
;
2585 for (; s1node
; s1node
= s1node
->next
)
2587 if (s1node
->loc
== val
)
2590 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
2591 shared_hash_htab (s2set
->vars
))))
2593 insert_into_intersection (dest
, s1node
->loc
,
2594 MIN (s1node
->init
, found
->init
));
2598 if (GET_CODE (s1node
->loc
) == VALUE
2599 && !VALUE_RECURSED_INTO (s1node
->loc
))
2601 decl_or_value dv
= dv_from_value (s1node
->loc
);
2602 variable svar
= shared_hash_find (s1set
->vars
, dv
);
2605 if (svar
->n_var_parts
== 1)
2607 VALUE_RECURSED_INTO (s1node
->loc
) = true;
2608 intersect_loc_chains (val
, dest
, dsm
,
2609 svar
->var_part
[0].loc_chain
,
2611 VALUE_RECURSED_INTO (s1node
->loc
) = false;
2616 /* ??? if the location is equivalent to any location in src,
2617 searched recursively
2619 add to dst the values needed to represent the equivalence
2621 telling whether locations S is equivalent to another dv's
2624 for each location D in the list
2626 if S and D satisfy rtx_equal_p, then it is present
2628 else if D is a value, recurse without cycles
2630 else if S and D have the same CODE and MODE
2632 for each operand oS and the corresponding oD
2634 if oS and oD are not equivalent, then S an D are not equivalent
2636 else if they are RTX vectors
2638 if any vector oS element is not equivalent to its respective oD,
2639 then S and D are not equivalent
2647 /* Return -1 if X should be before Y in a location list for a 1-part
2648 variable, 1 if Y should be before X, and 0 if they're equivalent
2649 and should not appear in the list. */
2652 loc_cmp (rtx x
, rtx y
)
2655 RTX_CODE code
= GET_CODE (x
);
2665 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2666 if (REGNO (x
) == REGNO (y
))
2668 else if (REGNO (x
) < REGNO (y
))
2681 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2682 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
2688 if (GET_CODE (x
) == VALUE
)
2690 if (GET_CODE (y
) != VALUE
)
2692 /* Don't assert the modes are the same, that is true only
2693 when not recursing. (subreg:QI (value:SI 1:1) 0)
2694 and (subreg:QI (value:DI 2:2) 0) can be compared,
2695 even when the modes are different. */
2696 if (canon_value_cmp (x
, y
))
2702 if (GET_CODE (y
) == VALUE
)
2705 if (GET_CODE (x
) == GET_CODE (y
))
2706 /* Compare operands below. */;
2707 else if (GET_CODE (x
) < GET_CODE (y
))
2712 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
2714 if (GET_CODE (x
) == DEBUG_EXPR
)
2716 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
2717 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
2719 #ifdef ENABLE_CHECKING
2720 gcc_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
2721 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
2726 fmt
= GET_RTX_FORMAT (code
);
2727 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2731 if (XWINT (x
, i
) == XWINT (y
, i
))
2733 else if (XWINT (x
, i
) < XWINT (y
, i
))
2740 if (XINT (x
, i
) == XINT (y
, i
))
2742 else if (XINT (x
, i
) < XINT (y
, i
))
2749 /* Compare the vector length first. */
2750 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
2751 /* Compare the vectors elements. */;
2752 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
2757 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2758 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
2759 XVECEXP (y
, i
, j
))))
2764 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
2770 if (XSTR (x
, i
) == XSTR (y
, i
))
2776 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
2784 /* These are just backpointers, so they don't matter. */
2791 /* It is believed that rtx's at this level will never
2792 contain anything but integers and other rtx's,
2793 except for within LABEL_REFs and SYMBOL_REFs. */
2801 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2802 from VALUE to DVP. */
2805 add_value_chain (rtx
*loc
, void *dvp
)
2807 decl_or_value dv
, ldv
;
2808 value_chain vc
, nvc
;
2811 if (GET_CODE (*loc
) == VALUE
)
2812 ldv
= dv_from_value (*loc
);
2813 else if (GET_CODE (*loc
) == DEBUG_EXPR
)
2814 ldv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc
));
2818 if (dv_as_opaque (ldv
) == dvp
)
2821 dv
= (decl_or_value
) dvp
;
2822 slot
= htab_find_slot_with_hash (value_chains
, ldv
, dv_htab_hash (ldv
),
2826 vc
= (value_chain
) pool_alloc (value_chain_pool
);
2830 *slot
= (void *) vc
;
2834 for (vc
= ((value_chain
) *slot
)->next
; vc
; vc
= vc
->next
)
2835 if (dv_as_opaque (vc
->dv
) == dv_as_opaque (dv
))
2843 vc
= (value_chain
) *slot
;
2844 nvc
= (value_chain
) pool_alloc (value_chain_pool
);
2846 nvc
->next
= vc
->next
;
2852 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2853 from those VALUEs to DVP. */
2856 add_value_chains (decl_or_value dv
, rtx loc
)
2858 if (GET_CODE (loc
) == VALUE
|| GET_CODE (loc
) == DEBUG_EXPR
)
2860 add_value_chain (&loc
, dv_as_opaque (dv
));
2866 loc
= XEXP (loc
, 0);
2867 for_each_rtx (&loc
, add_value_chain
, dv_as_opaque (dv
));
2870 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2871 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2872 that is something we never can express in .debug_info and can prevent
2873 reverse ops from being used. */
2876 add_cselib_value_chains (decl_or_value dv
)
2878 struct elt_loc_list
**l
;
2880 for (l
= &CSELIB_VAL_PTR (dv_as_value (dv
))->locs
; *l
;)
2881 if (GET_CODE ((*l
)->loc
) == ASM_OPERANDS
)
2885 for_each_rtx (&(*l
)->loc
, add_value_chain
, dv_as_opaque (dv
));
2890 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2891 from VALUE to DVP. */
2894 remove_value_chain (rtx
*loc
, void *dvp
)
2896 decl_or_value dv
, ldv
;
2900 if (GET_CODE (*loc
) == VALUE
)
2901 ldv
= dv_from_value (*loc
);
2902 else if (GET_CODE (*loc
) == DEBUG_EXPR
)
2903 ldv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc
));
2907 if (dv_as_opaque (ldv
) == dvp
)
2910 dv
= (decl_or_value
) dvp
;
2911 slot
= htab_find_slot_with_hash (value_chains
, ldv
, dv_htab_hash (ldv
),
2913 for (vc
= (value_chain
) *slot
; vc
->next
; vc
= vc
->next
)
2914 if (dv_as_opaque (vc
->next
->dv
) == dv_as_opaque (dv
))
2916 value_chain dvc
= vc
->next
;
2917 gcc_assert (dvc
->refcount
> 0);
2918 if (--dvc
->refcount
== 0)
2920 vc
->next
= dvc
->next
;
2921 pool_free (value_chain_pool
, dvc
);
2922 if (vc
->next
== NULL
&& vc
== (value_chain
) *slot
)
2924 pool_free (value_chain_pool
, vc
);
2925 htab_clear_slot (value_chains
, slot
);
2933 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
2934 from those VALUEs to DVP. */
2937 remove_value_chains (decl_or_value dv
, rtx loc
)
2939 if (GET_CODE (loc
) == VALUE
|| GET_CODE (loc
) == DEBUG_EXPR
)
2941 remove_value_chain (&loc
, dv_as_opaque (dv
));
2947 loc
= XEXP (loc
, 0);
2948 for_each_rtx (&loc
, remove_value_chain
, dv_as_opaque (dv
));
2952 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
2956 remove_cselib_value_chains (decl_or_value dv
)
2958 struct elt_loc_list
*l
;
2960 for (l
= CSELIB_VAL_PTR (dv_as_value (dv
))->locs
; l
; l
= l
->next
)
2961 for_each_rtx (&l
->loc
, remove_value_chain
, dv_as_opaque (dv
));
2964 /* Check the order of entries in one-part variables. */
2967 canonicalize_loc_order_check (void **slot
, void *data ATTRIBUTE_UNUSED
)
2969 variable var
= (variable
) *slot
;
2970 decl_or_value dv
= var
->dv
;
2971 location_chain node
, next
;
2973 #ifdef ENABLE_RTL_CHECKING
2975 for (i
= 0; i
< var
->n_var_parts
; i
++)
2976 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
2977 gcc_assert (!var
->cur_loc_changed
&& !var
->in_changed_variables
);
2980 if (!dv_onepart_p (dv
))
2983 gcc_assert (var
->n_var_parts
== 1);
2984 node
= var
->var_part
[0].loc_chain
;
2987 while ((next
= node
->next
))
2989 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
2997 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
2998 more likely to be chosen as canonical for an equivalence set.
2999 Ensure less likely values can reach more likely neighbors, making
3000 the connections bidirectional. */
3003 canonicalize_values_mark (void **slot
, void *data
)
3005 dataflow_set
*set
= (dataflow_set
*)data
;
3006 variable var
= (variable
) *slot
;
3007 decl_or_value dv
= var
->dv
;
3009 location_chain node
;
3011 if (!dv_is_value_p (dv
))
3014 gcc_assert (var
->n_var_parts
== 1);
3016 val
= dv_as_value (dv
);
3018 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3019 if (GET_CODE (node
->loc
) == VALUE
)
3021 if (canon_value_cmp (node
->loc
, val
))
3022 VALUE_RECURSED_INTO (val
) = true;
3025 decl_or_value odv
= dv_from_value (node
->loc
);
3026 void **oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3028 oslot
= set_slot_part (set
, val
, oslot
, odv
, 0,
3029 node
->init
, NULL_RTX
);
3031 VALUE_RECURSED_INTO (node
->loc
) = true;
3038 /* Remove redundant entries from equivalence lists in onepart
3039 variables, canonicalizing equivalence sets into star shapes. */
3042 canonicalize_values_star (void **slot
, void *data
)
3044 dataflow_set
*set
= (dataflow_set
*)data
;
3045 variable var
= (variable
) *slot
;
3046 decl_or_value dv
= var
->dv
;
3047 location_chain node
;
3054 if (!dv_onepart_p (dv
))
3057 gcc_assert (var
->n_var_parts
== 1);
3059 if (dv_is_value_p (dv
))
3061 cval
= dv_as_value (dv
);
3062 if (!VALUE_RECURSED_INTO (cval
))
3064 VALUE_RECURSED_INTO (cval
) = false;
3074 gcc_assert (var
->n_var_parts
== 1);
3076 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3077 if (GET_CODE (node
->loc
) == VALUE
)
3080 if (VALUE_RECURSED_INTO (node
->loc
))
3082 if (canon_value_cmp (node
->loc
, cval
))
3091 if (!has_marks
|| dv_is_decl_p (dv
))
3094 /* Keep it marked so that we revisit it, either after visiting a
3095 child node, or after visiting a new parent that might be
3097 VALUE_RECURSED_INTO (val
) = true;
3099 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3100 if (GET_CODE (node
->loc
) == VALUE
3101 && VALUE_RECURSED_INTO (node
->loc
))
3105 VALUE_RECURSED_INTO (cval
) = false;
3106 dv
= dv_from_value (cval
);
3107 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3110 gcc_assert (dv_is_decl_p (var
->dv
));
3111 /* The canonical value was reset and dropped.
3113 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3116 var
= (variable
)*slot
;
3117 gcc_assert (dv_is_value_p (var
->dv
));
3118 if (var
->n_var_parts
== 0)
3120 gcc_assert (var
->n_var_parts
== 1);
3124 VALUE_RECURSED_INTO (val
) = false;
3129 /* Push values to the canonical one. */
3130 cdv
= dv_from_value (cval
);
3131 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3133 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3134 if (node
->loc
!= cval
)
3136 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3137 node
->init
, NULL_RTX
);
3138 if (GET_CODE (node
->loc
) == VALUE
)
3140 decl_or_value ndv
= dv_from_value (node
->loc
);
3142 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3145 if (canon_value_cmp (node
->loc
, val
))
3147 /* If it could have been a local minimum, it's not any more,
3148 since it's now neighbor to cval, so it may have to push
3149 to it. Conversely, if it wouldn't have prevailed over
3150 val, then whatever mark it has is fine: if it was to
3151 push, it will now push to a more canonical node, but if
3152 it wasn't, then it has already pushed any values it might
3154 VALUE_RECURSED_INTO (node
->loc
) = true;
3155 /* Make sure we visit node->loc by ensuring we cval is
3157 VALUE_RECURSED_INTO (cval
) = true;
3159 else if (!VALUE_RECURSED_INTO (node
->loc
))
3160 /* If we have no need to "recurse" into this node, it's
3161 already "canonicalized", so drop the link to the old
3163 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3165 else if (GET_CODE (node
->loc
) == REG
)
3167 attrs list
= set
->regs
[REGNO (node
->loc
)], *listp
;
3169 /* Change an existing attribute referring to dv so that it
3170 refers to cdv, removing any duplicate this might
3171 introduce, and checking that no previous duplicates
3172 existed, all in a single pass. */
3176 if (list
->offset
== 0
3177 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3178 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3185 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3188 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3193 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3195 *listp
= list
->next
;
3196 pool_free (attrs_pool
, list
);
3201 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3204 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3206 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3211 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3213 *listp
= list
->next
;
3214 pool_free (attrs_pool
, list
);
3219 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3228 if (list
->offset
== 0
3229 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3230 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3240 cslot
= set_slot_part (set
, val
, cslot
, cdv
, 0,
3241 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3243 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3245 /* Variable may have been unshared. */
3246 var
= (variable
)*slot
;
3247 gcc_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3248 && var
->var_part
[0].loc_chain
->next
== NULL
);
3250 if (VALUE_RECURSED_INTO (cval
))
3251 goto restart_with_cval
;
3256 /* Bind one-part variables to the canonical value in an equivalence
3257 set. Not doing this causes dataflow convergence failure in rare
3258 circumstances, see PR42873. Unfortunately we can't do this
3259 efficiently as part of canonicalize_values_star, since we may not
3260 have determined or even seen the canonical value of a set when we
3261 get to a variable that references another member of the set. */
3264 canonicalize_vars_star (void **slot
, void *data
)
3266 dataflow_set
*set
= (dataflow_set
*)data
;
3267 variable var
= (variable
) *slot
;
3268 decl_or_value dv
= var
->dv
;
3269 location_chain node
;
3274 location_chain cnode
;
3276 if (!dv_onepart_p (dv
) || dv_is_value_p (dv
))
3279 gcc_assert (var
->n_var_parts
== 1);
3281 node
= var
->var_part
[0].loc_chain
;
3283 if (GET_CODE (node
->loc
) != VALUE
)
3286 gcc_assert (!node
->next
);
3289 /* Push values to the canonical one. */
3290 cdv
= dv_from_value (cval
);
3291 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3294 cvar
= (variable
)*cslot
;
3295 gcc_assert (cvar
->n_var_parts
== 1);
3297 cnode
= cvar
->var_part
[0].loc_chain
;
3299 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3300 that are not “more canonical” than it. */
3301 if (GET_CODE (cnode
->loc
) != VALUE
3302 || !canon_value_cmp (cnode
->loc
, cval
))
3305 /* CVAL was found to be non-canonical. Change the variable to point
3306 to the canonical VALUE. */
3307 gcc_assert (!cnode
->next
);
3310 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3311 node
->init
, node
->set_src
);
3312 slot
= clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3317 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3318 corresponding entry in DSM->src. Multi-part variables are combined
3319 with variable_union, whereas onepart dvs are combined with
3323 variable_merge_over_cur (void **s1slot
, void *data
)
3325 struct dfset_merge
*dsm
= (struct dfset_merge
*)data
;
3326 dataflow_set
*dst
= dsm
->dst
;
3328 variable s1var
= (variable
) *s1slot
;
3329 variable s2var
, dvar
= NULL
;
3330 decl_or_value dv
= s1var
->dv
;
3331 bool onepart
= dv_onepart_p (dv
);
3334 location_chain node
, *nodep
;
3336 /* If the incoming onepart variable has an empty location list, then
3337 the intersection will be just as empty. For other variables,
3338 it's always union. */
3339 gcc_assert (s1var
->n_var_parts
);
3340 gcc_assert (s1var
->var_part
[0].loc_chain
);
3343 return variable_union (s1slot
, dst
);
3345 gcc_assert (s1var
->n_var_parts
== 1);
3346 gcc_assert (s1var
->var_part
[0].offset
== 0);
3348 dvhash
= dv_htab_hash (dv
);
3349 if (dv_is_value_p (dv
))
3350 val
= dv_as_value (dv
);
3354 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
3357 dst_can_be_shared
= false;
3361 dsm
->src_onepart_cnt
--;
3362 gcc_assert (s2var
->var_part
[0].loc_chain
);
3363 gcc_assert (s2var
->n_var_parts
== 1);
3364 gcc_assert (s2var
->var_part
[0].offset
== 0);
3366 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3369 dvar
= (variable
)*dstslot
;
3370 gcc_assert (dvar
->refcount
== 1);
3371 gcc_assert (dvar
->n_var_parts
== 1);
3372 gcc_assert (dvar
->var_part
[0].offset
== 0);
3373 nodep
= &dvar
->var_part
[0].loc_chain
;
3381 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
3383 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
3385 *dstslot
= dvar
= s2var
;
3390 dst_can_be_shared
= false;
3392 intersect_loc_chains (val
, nodep
, dsm
,
3393 s1var
->var_part
[0].loc_chain
, s2var
);
3399 dvar
= (variable
) pool_alloc (dv_pool (dv
));
3402 dvar
->n_var_parts
= 1;
3403 dvar
->cur_loc_changed
= false;
3404 dvar
->in_changed_variables
= false;
3405 dvar
->var_part
[0].offset
= 0;
3406 dvar
->var_part
[0].loc_chain
= node
;
3407 dvar
->var_part
[0].cur_loc
= NULL
;
3410 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
3412 gcc_assert (!*dstslot
);
3420 nodep
= &dvar
->var_part
[0].loc_chain
;
3421 while ((node
= *nodep
))
3423 location_chain
*nextp
= &node
->next
;
3425 if (GET_CODE (node
->loc
) == REG
)
3429 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
3430 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
3431 && dv_is_value_p (list
->dv
))
3435 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
3437 /* If this value became canonical for another value that had
3438 this register, we want to leave it alone. */
3439 else if (dv_as_value (list
->dv
) != val
)
3441 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
3443 node
->init
, NULL_RTX
);
3444 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
3446 /* Since nextp points into the removed node, we can't
3447 use it. The pointer to the next node moved to nodep.
3448 However, if the variable we're walking is unshared
3449 during our walk, we'll keep walking the location list
3450 of the previously-shared variable, in which case the
3451 node won't have been removed, and we'll want to skip
3452 it. That's why we test *nodep here. */
3458 /* Canonicalization puts registers first, so we don't have to
3464 if (dvar
!= (variable
)*dstslot
)
3465 dvar
= (variable
)*dstslot
;
3466 nodep
= &dvar
->var_part
[0].loc_chain
;
3470 /* Mark all referenced nodes for canonicalization, and make sure
3471 we have mutual equivalence links. */
3472 VALUE_RECURSED_INTO (val
) = true;
3473 for (node
= *nodep
; node
; node
= node
->next
)
3474 if (GET_CODE (node
->loc
) == VALUE
)
3476 VALUE_RECURSED_INTO (node
->loc
) = true;
3477 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
3478 node
->init
, NULL
, INSERT
);
3481 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3482 gcc_assert (*dstslot
== dvar
);
3483 canonicalize_values_star (dstslot
, dst
);
3484 #ifdef ENABLE_CHECKING
3486 == shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
));
3488 dvar
= (variable
)*dstslot
;
3492 bool has_value
= false, has_other
= false;
3494 /* If we have one value and anything else, we're going to
3495 canonicalize this, so make sure all values have an entry in
3496 the table and are marked for canonicalization. */
3497 for (node
= *nodep
; node
; node
= node
->next
)
3499 if (GET_CODE (node
->loc
) == VALUE
)
3501 /* If this was marked during register canonicalization,
3502 we know we have to canonicalize values. */
3517 if (has_value
&& has_other
)
3519 for (node
= *nodep
; node
; node
= node
->next
)
3521 if (GET_CODE (node
->loc
) == VALUE
)
3523 decl_or_value dv
= dv_from_value (node
->loc
);
3526 if (shared_hash_shared (dst
->vars
))
3527 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
3529 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
3533 variable var
= (variable
) pool_alloc (dv_pool (dv
));
3536 var
->n_var_parts
= 1;
3537 var
->cur_loc_changed
= false;
3538 var
->in_changed_variables
= false;
3539 var
->var_part
[0].offset
= 0;
3540 var
->var_part
[0].loc_chain
= NULL
;
3541 var
->var_part
[0].cur_loc
= NULL
;
3545 VALUE_RECURSED_INTO (node
->loc
) = true;
3549 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
3550 gcc_assert (*dstslot
== dvar
);
3551 canonicalize_values_star (dstslot
, dst
);
3552 #ifdef ENABLE_CHECKING
3554 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
3557 dvar
= (variable
)*dstslot
;
3561 if (!onepart_variable_different_p (dvar
, s2var
))
3563 variable_htab_free (dvar
);
3564 *dstslot
= dvar
= s2var
;
3567 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
3569 variable_htab_free (dvar
);
3570 *dstslot
= dvar
= s1var
;
3572 dst_can_be_shared
= false;
3575 dst_can_be_shared
= false;
3580 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3581 multi-part variable. Unions of multi-part variables and
3582 intersections of one-part ones will be handled in
3583 variable_merge_over_cur(). */
3586 variable_merge_over_src (void **s2slot
, void *data
)
3588 struct dfset_merge
*dsm
= (struct dfset_merge
*)data
;
3589 dataflow_set
*dst
= dsm
->dst
;
3590 variable s2var
= (variable
) *s2slot
;
3591 decl_or_value dv
= s2var
->dv
;
3592 bool onepart
= dv_onepart_p (dv
);
3596 void **dstp
= shared_hash_find_slot (dst
->vars
, dv
);
3602 dsm
->src_onepart_cnt
++;
3606 /* Combine dataflow set information from SRC2 into DST, using PDST
3607 to carry over information across passes. */
3610 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
3612 dataflow_set cur
= *dst
;
3613 dataflow_set
*src1
= &cur
;
3614 struct dfset_merge dsm
;
3616 size_t src1_elems
, src2_elems
;
3618 src1_elems
= htab_elements (shared_hash_htab (src1
->vars
));
3619 src2_elems
= htab_elements (shared_hash_htab (src2
->vars
));
3620 dataflow_set_init (dst
);
3621 dst
->stack_adjust
= cur
.stack_adjust
;
3622 shared_hash_destroy (dst
->vars
);
3623 dst
->vars
= (shared_hash
) pool_alloc (shared_hash_pool
);
3624 dst
->vars
->refcount
= 1;
3626 = htab_create (MAX (src1_elems
, src2_elems
), variable_htab_hash
,
3627 variable_htab_eq
, variable_htab_free
);
3629 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3630 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
3635 dsm
.src_onepart_cnt
= 0;
3637 htab_traverse (shared_hash_htab (dsm
.src
->vars
), variable_merge_over_src
,
3639 htab_traverse (shared_hash_htab (dsm
.cur
->vars
), variable_merge_over_cur
,
3642 if (dsm
.src_onepart_cnt
)
3643 dst_can_be_shared
= false;
3645 dataflow_set_destroy (src1
);
3648 /* Mark register equivalences. */
3651 dataflow_set_equiv_regs (dataflow_set
*set
)
3656 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3658 rtx canon
[NUM_MACHINE_MODES
];
3660 memset (canon
, 0, sizeof (canon
));
3662 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
3663 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
3665 rtx val
= dv_as_value (list
->dv
);
3666 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
3669 if (canon_value_cmp (val
, cval
))
3673 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
3674 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
3676 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
3681 if (dv_is_value_p (list
->dv
))
3683 rtx val
= dv_as_value (list
->dv
);
3688 VALUE_RECURSED_INTO (val
) = true;
3689 set_variable_part (set
, val
, dv_from_value (cval
), 0,
3690 VAR_INIT_STATUS_INITIALIZED
,
3694 VALUE_RECURSED_INTO (cval
) = true;
3695 set_variable_part (set
, cval
, list
->dv
, 0,
3696 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
3699 for (listp
= &set
->regs
[i
]; (list
= *listp
);
3700 listp
= list
? &list
->next
: listp
)
3701 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
3703 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
3709 if (dv_is_value_p (list
->dv
))
3711 rtx val
= dv_as_value (list
->dv
);
3712 if (!VALUE_RECURSED_INTO (val
))
3716 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
3717 canonicalize_values_star (slot
, set
);
3724 /* Remove any redundant values in the location list of VAR, which must
3725 be unshared and 1-part. */
3728 remove_duplicate_values (variable var
)
3730 location_chain node
, *nodep
;
3732 gcc_assert (dv_onepart_p (var
->dv
));
3733 gcc_assert (var
->n_var_parts
== 1);
3734 gcc_assert (var
->refcount
== 1);
3736 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
3738 if (GET_CODE (node
->loc
) == VALUE
)
3740 if (VALUE_RECURSED_INTO (node
->loc
))
3742 /* Remove duplicate value node. */
3743 *nodep
= node
->next
;
3744 pool_free (loc_chain_pool
, node
);
3748 VALUE_RECURSED_INTO (node
->loc
) = true;
3750 nodep
= &node
->next
;
3753 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3754 if (GET_CODE (node
->loc
) == VALUE
)
3756 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
3757 VALUE_RECURSED_INTO (node
->loc
) = false;
3762 /* Hash table iteration argument passed to variable_post_merge. */
3763 struct dfset_post_merge
3765 /* The new input set for the current block. */
3767 /* Pointer to the permanent input set for the current block, or
3769 dataflow_set
**permp
;
3772 /* Create values for incoming expressions associated with one-part
3773 variables that don't have value numbers for them. */
3776 variable_post_merge_new_vals (void **slot
, void *info
)
3778 struct dfset_post_merge
*dfpm
= (struct dfset_post_merge
*)info
;
3779 dataflow_set
*set
= dfpm
->set
;
3780 variable var
= (variable
)*slot
;
3781 location_chain node
;
3783 if (!dv_onepart_p (var
->dv
) || !var
->n_var_parts
)
3786 gcc_assert (var
->n_var_parts
== 1);
3788 if (dv_is_decl_p (var
->dv
))
3790 bool check_dupes
= false;
3793 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3795 if (GET_CODE (node
->loc
) == VALUE
)
3796 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
3797 else if (GET_CODE (node
->loc
) == REG
)
3799 attrs att
, *attp
, *curp
= NULL
;
3801 if (var
->refcount
!= 1)
3803 slot
= unshare_variable (set
, slot
, var
,
3804 VAR_INIT_STATUS_INITIALIZED
);
3805 var
= (variable
)*slot
;
3809 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
3811 if (att
->offset
== 0
3812 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
3814 if (dv_is_value_p (att
->dv
))
3816 rtx cval
= dv_as_value (att
->dv
);
3821 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
3829 if ((*curp
)->offset
== 0
3830 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
3831 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
3834 curp
= &(*curp
)->next
;
3845 *dfpm
->permp
= XNEW (dataflow_set
);
3846 dataflow_set_init (*dfpm
->permp
);
3849 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
3850 att
; att
= att
->next
)
3851 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
3853 gcc_assert (att
->offset
== 0);
3854 gcc_assert (dv_is_value_p (att
->dv
));
3855 val_reset (set
, att
->dv
);
3862 cval
= dv_as_value (cdv
);
3866 /* Create a unique value to hold this register,
3867 that ought to be found and reused in
3868 subsequent rounds. */
3870 gcc_assert (!cselib_lookup (node
->loc
,
3871 GET_MODE (node
->loc
), 0));
3872 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1);
3873 cselib_preserve_value (v
);
3874 cselib_invalidate_rtx (node
->loc
);
3876 cdv
= dv_from_value (cval
);
3879 "Created new value %u:%u for reg %i\n",
3880 v
->uid
, v
->hash
, REGNO (node
->loc
));
3883 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
3884 VAR_INIT_STATUS_INITIALIZED
,
3885 cdv
, 0, NULL
, INSERT
);
3891 /* Remove attribute referring to the decl, which now
3892 uses the value for the register, already existing or
3893 to be added when we bring perm in. */
3896 pool_free (attrs_pool
, att
);
3901 remove_duplicate_values (var
);
3907 /* Reset values in the permanent set that are not associated with the
3908 chosen expression. */
3911 variable_post_merge_perm_vals (void **pslot
, void *info
)
3913 struct dfset_post_merge
*dfpm
= (struct dfset_post_merge
*)info
;
3914 dataflow_set
*set
= dfpm
->set
;
3915 variable pvar
= (variable
)*pslot
, var
;
3916 location_chain pnode
;
3920 gcc_assert (dv_is_value_p (pvar
->dv
));
3921 gcc_assert (pvar
->n_var_parts
== 1);
3922 pnode
= pvar
->var_part
[0].loc_chain
;
3924 gcc_assert (!pnode
->next
);
3925 gcc_assert (REG_P (pnode
->loc
));
3929 var
= shared_hash_find (set
->vars
, dv
);
3932 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
3934 val_reset (set
, dv
);
3937 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
3938 if (att
->offset
== 0
3939 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
3940 && dv_is_value_p (att
->dv
))
3943 /* If there is a value associated with this register already, create
3945 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
3947 rtx cval
= dv_as_value (att
->dv
);
3948 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
3949 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
3954 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
3956 variable_union (pslot
, set
);
3962 /* Just checking stuff and registering register attributes for
3966 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
3968 struct dfset_post_merge dfpm
;
3973 htab_traverse (shared_hash_htab (set
->vars
), variable_post_merge_new_vals
,
3976 htab_traverse (shared_hash_htab ((*permp
)->vars
),
3977 variable_post_merge_perm_vals
, &dfpm
);
3978 htab_traverse (shared_hash_htab (set
->vars
), canonicalize_values_star
, set
);
3979 htab_traverse (shared_hash_htab (set
->vars
), canonicalize_vars_star
, set
);
3982 /* Return a node whose loc is a MEM that refers to EXPR in the
3983 location list of a one-part variable or value VAR, or in that of
3984 any values recursively mentioned in the location lists. */
3986 static location_chain
3987 find_mem_expr_in_1pdv (tree expr
, rtx val
, htab_t vars
)
3989 location_chain node
;
3992 location_chain where
= NULL
;
3997 gcc_assert (GET_CODE (val
) == VALUE
);
3999 gcc_assert (!VALUE_RECURSED_INTO (val
));
4001 dv
= dv_from_value (val
);
4002 var
= (variable
) htab_find_with_hash (vars
, dv
, dv_htab_hash (dv
));
4007 gcc_assert (dv_onepart_p (var
->dv
));
4009 if (!var
->n_var_parts
)
4012 gcc_assert (var
->var_part
[0].offset
== 0);
4014 VALUE_RECURSED_INTO (val
) = true;
4016 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4017 if (MEM_P (node
->loc
) && MEM_EXPR (node
->loc
) == expr
4018 && MEM_OFFSET (node
->loc
) == 0)
4023 else if (GET_CODE (node
->loc
) == VALUE
4024 && !VALUE_RECURSED_INTO (node
->loc
)
4025 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4028 VALUE_RECURSED_INTO (val
) = false;
4033 /* Return TRUE if the value of MEM may vary across a call. */
4036 mem_dies_at_call (rtx mem
)
4038 tree expr
= MEM_EXPR (mem
);
4044 decl
= get_base_address (expr
);
4052 return (may_be_aliased (decl
)
4053 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4056 /* Remove all MEMs from the location list of a hash table entry for a
4057 one-part variable, except those whose MEM attributes map back to
4058 the variable itself, directly or within a VALUE. */
4061 dataflow_set_preserve_mem_locs (void **slot
, void *data
)
4063 dataflow_set
*set
= (dataflow_set
*) data
;
4064 variable var
= (variable
) *slot
;
4066 if (dv_is_decl_p (var
->dv
) && dv_onepart_p (var
->dv
))
4068 tree decl
= dv_as_decl (var
->dv
);
4069 location_chain loc
, *locp
;
4070 bool changed
= false;
4072 if (!var
->n_var_parts
)
4075 gcc_assert (var
->n_var_parts
== 1);
4077 if (shared_var_p (var
, set
->vars
))
4079 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4081 /* We want to remove dying MEMs that doesn't refer to
4083 if (GET_CODE (loc
->loc
) == MEM
4084 && (MEM_EXPR (loc
->loc
) != decl
4085 || MEM_OFFSET (loc
->loc
))
4086 && !mem_dies_at_call (loc
->loc
))
4088 /* We want to move here MEMs that do refer to DECL. */
4089 else if (GET_CODE (loc
->loc
) == VALUE
4090 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4091 shared_hash_htab (set
->vars
)))
4098 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4099 var
= (variable
)*slot
;
4100 gcc_assert (var
->n_var_parts
== 1);
4103 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4106 rtx old_loc
= loc
->loc
;
4107 if (GET_CODE (old_loc
) == VALUE
)
4109 location_chain mem_node
4110 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4111 shared_hash_htab (set
->vars
));
4113 /* ??? This picks up only one out of multiple MEMs that
4114 refer to the same variable. Do we ever need to be
4115 concerned about dealing with more than one, or, given
4116 that they should all map to the same variable
4117 location, their addresses will have been merged and
4118 they will be regarded as equivalent? */
4121 loc
->loc
= mem_node
->loc
;
4122 loc
->set_src
= mem_node
->set_src
;
4123 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4127 if (GET_CODE (loc
->loc
) != MEM
4128 || (MEM_EXPR (loc
->loc
) == decl
4129 && MEM_OFFSET (loc
->loc
) == 0)
4130 || !mem_dies_at_call (loc
->loc
))
4132 if (old_loc
!= loc
->loc
&& emit_notes
)
4134 if (old_loc
== var
->var_part
[0].cur_loc
)
4137 var
->var_part
[0].cur_loc
= NULL
;
4138 var
->cur_loc_changed
= true;
4140 add_value_chains (var
->dv
, loc
->loc
);
4141 remove_value_chains (var
->dv
, old_loc
);
4149 remove_value_chains (var
->dv
, old_loc
);
4150 if (old_loc
== var
->var_part
[0].cur_loc
)
4153 var
->var_part
[0].cur_loc
= NULL
;
4154 var
->cur_loc_changed
= true;
4158 pool_free (loc_chain_pool
, loc
);
4161 if (!var
->var_part
[0].loc_chain
)
4167 variable_was_changed (var
, set
);
4173 /* Remove all MEMs from the location list of a hash table entry for a
4177 dataflow_set_remove_mem_locs (void **slot
, void *data
)
4179 dataflow_set
*set
= (dataflow_set
*) data
;
4180 variable var
= (variable
) *slot
;
4182 if (dv_is_value_p (var
->dv
))
4184 location_chain loc
, *locp
;
4185 bool changed
= false;
4187 gcc_assert (var
->n_var_parts
== 1);
4189 if (shared_var_p (var
, set
->vars
))
4191 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4192 if (GET_CODE (loc
->loc
) == MEM
4193 && mem_dies_at_call (loc
->loc
))
4199 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4200 var
= (variable
)*slot
;
4201 gcc_assert (var
->n_var_parts
== 1);
4204 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4207 if (GET_CODE (loc
->loc
) != MEM
4208 || !mem_dies_at_call (loc
->loc
))
4215 remove_value_chains (var
->dv
, loc
->loc
);
4217 /* If we have deleted the location which was last emitted
4218 we have to emit new location so add the variable to set
4219 of changed variables. */
4220 if (var
->var_part
[0].cur_loc
== loc
->loc
)
4223 var
->var_part
[0].cur_loc
= NULL
;
4224 var
->cur_loc_changed
= true;
4226 pool_free (loc_chain_pool
, loc
);
4229 if (!var
->var_part
[0].loc_chain
)
4235 variable_was_changed (var
, set
);
4241 /* Remove all variable-location information about call-clobbered
4242 registers, as well as associations between MEMs and VALUEs. */
4245 dataflow_set_clear_at_call (dataflow_set
*set
)
4249 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
4250 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, r
))
4251 var_regno_delete (set
, r
);
4253 if (MAY_HAVE_DEBUG_INSNS
)
4255 set
->traversed_vars
= set
->vars
;
4256 htab_traverse (shared_hash_htab (set
->vars
),
4257 dataflow_set_preserve_mem_locs
, set
);
4258 set
->traversed_vars
= set
->vars
;
4259 htab_traverse (shared_hash_htab (set
->vars
), dataflow_set_remove_mem_locs
,
4261 set
->traversed_vars
= NULL
;
4265 /* Flag whether two dataflow sets being compared contain different data. */
4267 dataflow_set_different_value
;
4270 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4272 location_chain lc1
, lc2
;
4274 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4276 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4278 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4280 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4283 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4292 /* Return true if one-part variables VAR1 and VAR2 are different.
4293 They must be in canonical order. */
4296 onepart_variable_different_p (variable var1
, variable var2
)
4298 location_chain lc1
, lc2
;
4303 gcc_assert (var1
->n_var_parts
== 1);
4304 gcc_assert (var2
->n_var_parts
== 1);
4306 lc1
= var1
->var_part
[0].loc_chain
;
4307 lc2
= var2
->var_part
[0].loc_chain
;
4314 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4323 /* Return true if variables VAR1 and VAR2 are different. */
4326 variable_different_p (variable var1
, variable var2
)
4333 if (var1
->n_var_parts
!= var2
->n_var_parts
)
4336 for (i
= 0; i
< var1
->n_var_parts
; i
++)
4338 if (var1
->var_part
[i
].offset
!= var2
->var_part
[i
].offset
)
4340 /* One-part values have locations in a canonical order. */
4341 if (i
== 0 && var1
->var_part
[i
].offset
== 0 && dv_onepart_p (var1
->dv
))
4343 gcc_assert (var1
->n_var_parts
== 1);
4344 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4345 return onepart_variable_different_p (var1
, var2
);
4347 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
4349 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
4355 /* Compare variable *SLOT with the same variable in hash table DATA
4356 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
4359 dataflow_set_different_1 (void **slot
, void *data
)
4361 htab_t htab
= (htab_t
) data
;
4362 variable var1
, var2
;
4364 var1
= (variable
) *slot
;
4365 var2
= (variable
) htab_find_with_hash (htab
, var1
->dv
,
4366 dv_htab_hash (var1
->dv
));
4369 dataflow_set_different_value
= true;
4371 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4373 fprintf (dump_file
, "dataflow difference found: removal of:\n");
4377 /* Stop traversing the hash table. */
4381 if (variable_different_p (var1
, var2
))
4383 dataflow_set_different_value
= true;
4385 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4387 fprintf (dump_file
, "dataflow difference found: old and new follow:\n");
4392 /* Stop traversing the hash table. */
4396 /* Continue traversing the hash table. */
4400 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4403 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
4405 if (old_set
->vars
== new_set
->vars
)
4408 if (htab_elements (shared_hash_htab (old_set
->vars
))
4409 != htab_elements (shared_hash_htab (new_set
->vars
)))
4412 dataflow_set_different_value
= false;
4414 htab_traverse (shared_hash_htab (old_set
->vars
), dataflow_set_different_1
,
4415 shared_hash_htab (new_set
->vars
));
4416 /* No need to traverse the second hashtab, if both have the same number
4417 of elements and the second one had all entries found in the first one,
4418 then it can't have any extra entries. */
4419 return dataflow_set_different_value
;
4422 /* Free the contents of dataflow set SET. */
4425 dataflow_set_destroy (dataflow_set
*set
)
4429 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4430 attrs_list_clear (&set
->regs
[i
]);
4432 shared_hash_destroy (set
->vars
);
4436 /* Return true if RTL X contains a SYMBOL_REF. */
4439 contains_symbol_ref (rtx x
)
4448 code
= GET_CODE (x
);
4449 if (code
== SYMBOL_REF
)
4452 fmt
= GET_RTX_FORMAT (code
);
4453 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4457 if (contains_symbol_ref (XEXP (x
, i
)))
4460 else if (fmt
[i
] == 'E')
4463 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4464 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
4472 /* Shall EXPR be tracked? */
4475 track_expr_p (tree expr
, bool need_rtl
)
4480 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
4481 return DECL_RTL_SET_P (expr
);
4483 /* If EXPR is not a parameter or a variable do not track it. */
4484 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
4487 /* It also must have a name... */
4488 if (!DECL_NAME (expr
) && need_rtl
)
4491 /* ... and a RTL assigned to it. */
4492 decl_rtl
= DECL_RTL_IF_SET (expr
);
4493 if (!decl_rtl
&& need_rtl
)
4496 /* If this expression is really a debug alias of some other declaration, we
4497 don't need to track this expression if the ultimate declaration is
4500 if (DECL_DEBUG_EXPR_IS_FROM (realdecl
) && DECL_DEBUG_EXPR (realdecl
))
4502 realdecl
= DECL_DEBUG_EXPR (realdecl
);
4503 /* ??? We don't yet know how to emit DW_OP_piece for variable
4504 that has been SRA'ed. */
4505 if (!DECL_P (realdecl
))
4509 /* Do not track EXPR if REALDECL it should be ignored for debugging
4511 if (DECL_IGNORED_P (realdecl
))
4514 /* Do not track global variables until we are able to emit correct location
4516 if (TREE_STATIC (realdecl
))
4519 /* When the EXPR is a DECL for alias of some variable (see example)
4520 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4521 DECL_RTL contains SYMBOL_REF.
4524 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4527 if (decl_rtl
&& MEM_P (decl_rtl
)
4528 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
4531 /* If RTX is a memory it should not be very large (because it would be
4532 an array or struct). */
4533 if (decl_rtl
&& MEM_P (decl_rtl
))
4535 /* Do not track structures and arrays. */
4536 if (GET_MODE (decl_rtl
) == BLKmode
4537 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
4539 if (MEM_SIZE (decl_rtl
)
4540 && INTVAL (MEM_SIZE (decl_rtl
)) > MAX_VAR_PARTS
)
4544 DECL_CHANGED (expr
) = 0;
4545 DECL_CHANGED (realdecl
) = 0;
4549 /* Determine whether a given LOC refers to the same variable part as
4553 same_variable_part_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
)
4556 HOST_WIDE_INT offset2
;
4558 if (! DECL_P (expr
))
4563 expr2
= REG_EXPR (loc
);
4564 offset2
= REG_OFFSET (loc
);
4566 else if (MEM_P (loc
))
4568 expr2
= MEM_EXPR (loc
);
4569 offset2
= INT_MEM_OFFSET (loc
);
4574 if (! expr2
|| ! DECL_P (expr2
))
4577 expr
= var_debug_decl (expr
);
4578 expr2
= var_debug_decl (expr2
);
4580 return (expr
== expr2
&& offset
== offset2
);
4583 /* LOC is a REG or MEM that we would like to track if possible.
4584 If EXPR is null, we don't know what expression LOC refers to,
4585 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4586 LOC is an lvalue register.
4588 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4589 is something we can track. When returning true, store the mode of
4590 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4591 from EXPR in *OFFSET_OUT (if nonnull). */
4594 track_loc_p (rtx loc
, tree expr
, HOST_WIDE_INT offset
, bool store_reg_p
,
4595 enum machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
4597 enum machine_mode mode
;
4599 if (expr
== NULL
|| !track_expr_p (expr
, true))
4602 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4603 whole subreg, but only the old inner part is really relevant. */
4604 mode
= GET_MODE (loc
);
4605 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
4607 enum machine_mode pseudo_mode
;
4609 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
4610 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (pseudo_mode
))
4612 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
4617 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4618 Do the same if we are storing to a register and EXPR occupies
4619 the whole of register LOC; in that case, the whole of EXPR is
4620 being changed. We exclude complex modes from the second case
4621 because the real and imaginary parts are represented as separate
4622 pseudo registers, even if the whole complex value fits into one
4624 if ((GET_MODE_SIZE (mode
) > GET_MODE_SIZE (DECL_MODE (expr
))
4626 && !COMPLEX_MODE_P (DECL_MODE (expr
))
4627 && hard_regno_nregs
[REGNO (loc
)][DECL_MODE (expr
)] == 1))
4628 && offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
) == 0)
4630 mode
= DECL_MODE (expr
);
4634 if (offset
< 0 || offset
>= MAX_VAR_PARTS
)
4640 *offset_out
= offset
;
4644 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4645 want to track. When returning nonnull, make sure that the attributes
4646 on the returned value are updated. */
4649 var_lowpart (enum machine_mode mode
, rtx loc
)
4651 unsigned int offset
, reg_offset
, regno
;
4653 if (!REG_P (loc
) && !MEM_P (loc
))
4656 if (GET_MODE (loc
) == mode
)
4659 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
4662 return adjust_address_nv (loc
, mode
, offset
);
4664 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
4665 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
4667 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
4670 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
4671 hard_frame_pointer_rtx is being mapped to it. */
4672 static rtx cfa_base_rtx
;
4674 /* Carry information about uses and stores while walking rtx. */
4676 struct count_use_info
4678 /* The insn where the RTX is. */
4681 /* The basic block where insn is. */
4684 /* The array of n_sets sets in the insn, as determined by cselib. */
4685 struct cselib_set
*sets
;
4688 /* True if we're counting stores, false otherwise. */
4692 /* Find a VALUE corresponding to X. */
4694 static inline cselib_val
*
4695 find_use_val (rtx x
, enum machine_mode mode
, struct count_use_info
*cui
)
4701 /* This is called after uses are set up and before stores are
4702 processed bycselib, so it's safe to look up srcs, but not
4703 dsts. So we look up expressions that appear in srcs or in
4704 dest expressions, but we search the sets array for dests of
4708 for (i
= 0; i
< cui
->n_sets
; i
++)
4709 if (cui
->sets
[i
].dest
== x
)
4710 return cui
->sets
[i
].src_elt
;
4713 return cselib_lookup (x
, mode
, 0);
4719 /* Helper function to get mode of MEM's address. */
4721 static inline enum machine_mode
4722 get_address_mode (rtx mem
)
4724 enum machine_mode mode
= GET_MODE (XEXP (mem
, 0));
4725 if (mode
!= VOIDmode
)
4727 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
4730 /* Replace all registers and addresses in an expression with VALUE
4731 expressions that map back to them, unless the expression is a
4732 register. If no mapping is or can be performed, returns NULL. */
4735 replace_expr_with_values (rtx loc
)
4739 else if (MEM_P (loc
))
4741 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
4742 get_address_mode (loc
), 0);
4744 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
4749 return cselib_subst_to_values (loc
);
4752 /* Determine what kind of micro operation to choose for a USE. Return
4753 MO_CLOBBER if no micro operation is to be generated. */
4755 static enum micro_operation_type
4756 use_type (rtx loc
, struct count_use_info
*cui
, enum machine_mode
*modep
)
4760 if (cui
&& cui
->sets
)
4762 if (GET_CODE (loc
) == VAR_LOCATION
)
4764 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
4766 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
4767 if (! VAR_LOC_UNKNOWN_P (ploc
))
4769 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1);
4771 /* ??? flag_float_store and volatile mems are never
4772 given values, but we could in theory use them for
4774 gcc_assert (val
|| 1);
4782 if (REG_P (loc
) || MEM_P (loc
))
4785 *modep
= GET_MODE (loc
);
4789 || (find_use_val (loc
, GET_MODE (loc
), cui
)
4790 && cselib_lookup (XEXP (loc
, 0),
4791 get_address_mode (loc
), 0)))
4796 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
4798 if (val
&& !cselib_preserved_value_p (val
))
4806 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
4808 if (loc
== cfa_base_rtx
)
4810 expr
= REG_EXPR (loc
);
4813 return MO_USE_NO_VAR
;
4814 else if (target_for_debug_bind (var_debug_decl (expr
)))
4816 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
4817 false, modep
, NULL
))
4820 return MO_USE_NO_VAR
;
4822 else if (MEM_P (loc
))
4824 expr
= MEM_EXPR (loc
);
4828 else if (target_for_debug_bind (var_debug_decl (expr
)))
4830 else if (track_loc_p (loc
, expr
, INT_MEM_OFFSET (loc
),
4831 false, modep
, NULL
))
4840 /* Log to OUT information about micro-operation MOPT involving X in
4844 log_op_type (rtx x
, basic_block bb
, rtx insn
,
4845 enum micro_operation_type mopt
, FILE *out
)
4847 fprintf (out
, "bb %i op %i insn %i %s ",
4848 bb
->index
, VEC_length (micro_operation
, VTI (bb
)->mos
),
4849 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
4850 print_inline_rtx (out
, x
, 2);
4854 /* Tell whether the CONCAT used to holds a VALUE and its location
4855 needs value resolution, i.e., an attempt of mapping the location
4856 back to other incoming values. */
4857 #define VAL_NEEDS_RESOLUTION(x) \
4858 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4859 /* Whether the location in the CONCAT is a tracked expression, that
4860 should also be handled like a MO_USE. */
4861 #define VAL_HOLDS_TRACK_EXPR(x) \
4862 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4863 /* Whether the location in the CONCAT should be handled like a MO_COPY
4865 #define VAL_EXPR_IS_COPIED(x) \
4866 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4867 /* Whether the location in the CONCAT should be handled like a
4868 MO_CLOBBER as well. */
4869 #define VAL_EXPR_IS_CLOBBERED(x) \
4870 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4871 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4872 a reverse operation that should be handled afterwards. */
4873 #define VAL_EXPR_HAS_REVERSE(x) \
4874 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4876 /* All preserved VALUEs. */
4877 static VEC (rtx
, heap
) *preserved_values
;
4879 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4882 preserve_value (cselib_val
*val
)
4884 cselib_preserve_value (val
);
4885 VEC_safe_push (rtx
, heap
, preserved_values
, val
->val_rtx
);
4888 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4889 any rtxes not suitable for CONST use not replaced by VALUEs
4893 non_suitable_const (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
4898 switch (GET_CODE (*x
))
4909 return !MEM_READONLY_P (*x
);
4915 /* Add uses (register and memory references) LOC which will be tracked
4916 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
4919 add_uses (rtx
*ploc
, void *data
)
4922 enum machine_mode mode
= VOIDmode
;
4923 struct count_use_info
*cui
= (struct count_use_info
*)data
;
4924 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
4926 if (type
!= MO_CLOBBER
)
4928 basic_block bb
= cui
->bb
;
4932 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
4933 mo
.insn
= cui
->insn
;
4935 if (type
== MO_VAL_LOC
)
4938 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
4941 gcc_assert (cui
->sets
);
4944 && !REG_P (XEXP (vloc
, 0))
4945 && !MEM_P (XEXP (vloc
, 0))
4946 && (GET_CODE (XEXP (vloc
, 0)) != PLUS
4947 || XEXP (XEXP (vloc
, 0), 0) != cfa_base_rtx
4948 || !CONST_INT_P (XEXP (XEXP (vloc
, 0), 1))))
4951 enum machine_mode address_mode
= get_address_mode (mloc
);
4953 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0);
4955 if (val
&& !cselib_preserved_value_p (val
))
4957 micro_operation moa
;
4958 preserve_value (val
);
4959 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
4960 moa
.type
= MO_VAL_USE
;
4961 moa
.insn
= cui
->insn
;
4962 moa
.u
.loc
= gen_rtx_CONCAT (address_mode
,
4963 val
->val_rtx
, mloc
);
4964 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4965 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
4966 moa
.type
, dump_file
);
4967 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
4971 if (CONSTANT_P (vloc
)
4972 && (GET_CODE (vloc
) != CONST
4973 || for_each_rtx (&vloc
, non_suitable_const
, NULL
)))
4974 /* For constants don't look up any value. */;
4975 else if (!VAR_LOC_UNKNOWN_P (vloc
)
4976 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
4978 enum machine_mode mode2
;
4979 enum micro_operation_type type2
;
4980 rtx nloc
= replace_expr_with_values (vloc
);
4984 oloc
= shallow_copy_rtx (oloc
);
4985 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
4988 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
4990 type2
= use_type (vloc
, 0, &mode2
);
4992 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
4993 || type2
== MO_CLOBBER
);
4995 if (type2
== MO_CLOBBER
4996 && !cselib_preserved_value_p (val
))
4998 VAL_NEEDS_RESOLUTION (oloc
) = 1;
4999 preserve_value (val
);
5002 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5004 oloc
= shallow_copy_rtx (oloc
);
5005 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5010 else if (type
== MO_VAL_USE
)
5012 enum machine_mode mode2
= VOIDmode
;
5013 enum micro_operation_type type2
;
5014 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5015 rtx vloc
, oloc
= loc
, nloc
;
5017 gcc_assert (cui
->sets
);
5020 && !REG_P (XEXP (oloc
, 0))
5021 && !MEM_P (XEXP (oloc
, 0))
5022 && (GET_CODE (XEXP (oloc
, 0)) != PLUS
5023 || XEXP (XEXP (oloc
, 0), 0) != cfa_base_rtx
5024 || !CONST_INT_P (XEXP (XEXP (oloc
, 0), 1))))
5027 enum machine_mode address_mode
= get_address_mode (mloc
);
5029 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0);
5031 if (val
&& !cselib_preserved_value_p (val
))
5033 micro_operation moa
;
5034 preserve_value (val
);
5035 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
5036 moa
.type
= MO_VAL_USE
;
5037 moa
.insn
= cui
->insn
;
5038 moa
.u
.loc
= gen_rtx_CONCAT (address_mode
,
5039 val
->val_rtx
, mloc
);
5040 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5041 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
5042 moa
.type
, dump_file
);
5043 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
5047 type2
= use_type (loc
, 0, &mode2
);
5049 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5050 || type2
== MO_CLOBBER
);
5052 if (type2
== MO_USE
)
5053 vloc
= var_lowpart (mode2
, loc
);
5057 /* The loc of a MO_VAL_USE may have two forms:
5059 (concat val src): val is at src, a value-based
5062 (concat (concat val use) src): same as above, with use as
5063 the MO_USE tracked value, if it differs from src.
5067 nloc
= replace_expr_with_values (loc
);
5072 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5074 oloc
= val
->val_rtx
;
5076 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5078 if (type2
== MO_USE
)
5079 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5080 if (!cselib_preserved_value_p (val
))
5082 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5083 preserve_value (val
);
5087 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5090 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5091 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5097 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5100 add_uses_1 (rtx
*x
, void *cui
)
5102 for_each_rtx (x
, add_uses
, cui
);
5105 /* Attempt to reverse the EXPR operation in the debug info. Say for
5106 reg1 = reg2 + 6 even when reg2 is no longer live we
5107 can express its value as VAL - 6. */
5110 reverse_op (rtx val
, const_rtx expr
)
5116 if (GET_CODE (expr
) != SET
)
5119 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5122 src
= SET_SRC (expr
);
5123 switch (GET_CODE (src
))
5137 if (!REG_P (XEXP (src
, 0)) || !SCALAR_INT_MODE_P (GET_MODE (src
)))
5140 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0);
5141 if (!v
|| !cselib_preserved_value_p (v
))
5144 switch (GET_CODE (src
))
5148 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5150 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5154 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5166 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5168 arg
= XEXP (src
, 1);
5169 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5171 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5172 if (arg
== NULL_RTX
)
5174 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5177 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5179 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5180 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5181 breaks a lot of routines during var-tracking. */
5182 ret
= gen_rtx_fmt_ee (PLUS
, GET_MODE (val
), val
, const0_rtx
);
5188 return gen_rtx_CONCAT (GET_MODE (v
->val_rtx
), v
->val_rtx
, ret
);
5191 /* Add stores (register and memory references) LOC which will be tracked
5192 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5193 CUIP->insn is instruction which the LOC is part of. */
5196 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5198 enum machine_mode mode
= VOIDmode
, mode2
;
5199 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5200 basic_block bb
= cui
->bb
;
5202 rtx oloc
= loc
, nloc
, src
= NULL
;
5203 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5204 bool track_p
= false;
5206 bool resolve
, preserve
;
5209 if (type
== MO_CLOBBER
)
5216 gcc_assert (loc
!= cfa_base_rtx
);
5217 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5218 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5219 || GET_CODE (expr
) == CLOBBER
)
5221 mo
.type
= MO_CLOBBER
;
5226 if (GET_CODE (expr
) == SET
&& SET_DEST (expr
) == loc
)
5227 src
= var_lowpart (mode2
, SET_SRC (expr
));
5228 loc
= var_lowpart (mode2
, loc
);
5237 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5238 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
5245 mo
.insn
= cui
->insn
;
5247 else if (MEM_P (loc
)
5248 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5251 if (MEM_P (loc
) && type
== MO_VAL_SET
5252 && !REG_P (XEXP (loc
, 0))
5253 && !MEM_P (XEXP (loc
, 0))
5254 && (GET_CODE (XEXP (loc
, 0)) != PLUS
5255 || XEXP (XEXP (loc
, 0), 0) != cfa_base_rtx
5256 || !CONST_INT_P (XEXP (XEXP (loc
, 0), 1))))
5259 enum machine_mode address_mode
= get_address_mode (mloc
);
5260 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
5263 if (val
&& !cselib_preserved_value_p (val
))
5265 preserve_value (val
);
5266 mo
.type
= MO_VAL_USE
;
5267 mloc
= cselib_subst_to_values (XEXP (mloc
, 0));
5268 mo
.u
.loc
= gen_rtx_CONCAT (address_mode
, val
->val_rtx
, mloc
);
5269 mo
.insn
= cui
->insn
;
5270 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5271 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
,
5272 mo
.type
, dump_file
);
5273 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5277 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
5279 mo
.type
= MO_CLOBBER
;
5280 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
5284 if (GET_CODE (expr
) == SET
&& SET_DEST (expr
) == loc
)
5285 src
= var_lowpart (mode2
, SET_SRC (expr
));
5286 loc
= var_lowpart (mode2
, loc
);
5295 rtx xexpr
= gen_rtx_SET (VOIDmode
, loc
, src
);
5296 if (same_variable_part_p (SET_SRC (xexpr
),
5298 INT_MEM_OFFSET (loc
)))
5305 mo
.insn
= cui
->insn
;
5310 if (type
!= MO_VAL_SET
)
5311 goto log_and_return
;
5313 v
= find_use_val (oloc
, mode
, cui
);
5316 goto log_and_return
;
5318 resolve
= preserve
= !cselib_preserved_value_p (v
);
5320 nloc
= replace_expr_with_values (oloc
);
5324 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
5326 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0);
5328 gcc_assert (oval
!= v
);
5329 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
5331 if (!cselib_preserved_value_p (oval
))
5333 micro_operation moa
;
5335 preserve_value (oval
);
5337 moa
.type
= MO_VAL_USE
;
5338 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
5339 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
5340 moa
.insn
= cui
->insn
;
5342 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5343 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
5344 moa
.type
, dump_file
);
5345 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &moa
);
5350 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
5352 nloc
= replace_expr_with_values (SET_SRC (expr
));
5354 /* Avoid the mode mismatch between oexpr and expr. */
5355 if (!nloc
&& mode
!= mode2
)
5357 nloc
= SET_SRC (expr
);
5358 gcc_assert (oloc
== SET_DEST (expr
));
5362 oloc
= gen_rtx_SET (GET_MODE (mo
.u
.loc
), oloc
, nloc
);
5365 if (oloc
== SET_DEST (mo
.u
.loc
))
5366 /* No point in duplicating. */
5368 if (!REG_P (SET_SRC (mo
.u
.loc
)))
5374 if (GET_CODE (mo
.u
.loc
) == SET
5375 && oloc
== SET_DEST (mo
.u
.loc
))
5376 /* No point in duplicating. */
5382 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
5384 if (mo
.u
.loc
!= oloc
)
5385 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
5387 /* The loc of a MO_VAL_SET may have various forms:
5389 (concat val dst): dst now holds val
5391 (concat val (set dst src)): dst now holds val, copied from src
5393 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5394 after replacing mems and non-top-level regs with values.
5396 (concat (concat val dstv) (set dst src)): dst now holds val,
5397 copied from src. dstv is a value-based representation of dst, if
5398 it differs from dst. If resolution is needed, src is a REG, and
5399 its mode is the same as that of val.
5401 (concat (concat val (set dstv srcv)) (set dst src)): src
5402 copied to dst, holding val. dstv and srcv are value-based
5403 representations of dst and src, respectively.
5407 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
5409 reverse
= reverse_op (v
->val_rtx
, expr
);
5412 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, reverse
);
5413 VAL_EXPR_HAS_REVERSE (loc
) = 1;
5420 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
5423 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
5426 if (mo
.type
== MO_CLOBBER
)
5427 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
5428 if (mo
.type
== MO_COPY
)
5429 VAL_EXPR_IS_COPIED (loc
) = 1;
5431 mo
.type
= MO_VAL_SET
;
5434 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5435 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5436 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5439 /* Callback for cselib_record_sets_hook, that records as micro
5440 operations uses and stores in an insn after cselib_record_sets has
5441 analyzed the sets in an insn, but before it modifies the stored
5442 values in the internal tables, unless cselib_record_sets doesn't
5443 call it directly (perhaps because we're not doing cselib in the
5444 first place, in which case sets and n_sets will be 0). */
5447 add_with_sets (rtx insn
, struct cselib_set
*sets
, int n_sets
)
5449 basic_block bb
= BLOCK_FOR_INSN (insn
);
5451 struct count_use_info cui
;
5452 micro_operation
*mos
;
5454 cselib_hook_called
= true;
5459 cui
.n_sets
= n_sets
;
5461 n1
= VEC_length (micro_operation
, VTI (bb
)->mos
);
5462 cui
.store_p
= false;
5463 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
5464 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5465 mos
= VEC_address (micro_operation
, VTI (bb
)->mos
);
5467 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5471 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
5473 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
5485 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5488 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
5490 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
5508 mo
.u
.loc
= NULL_RTX
;
5510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5511 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
5512 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
, &mo
);
5515 n1
= VEC_length (micro_operation
, VTI (bb
)->mos
);
5516 /* This will record NEXT_INSN (insn), such that we can
5517 insert notes before it without worrying about any
5518 notes that MO_USEs might emit after the insn. */
5520 note_stores (PATTERN (insn
), add_stores
, &cui
);
5521 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5522 mos
= VEC_address (micro_operation
, VTI (bb
)->mos
);
5524 /* Order the MO_VAL_USEs first (note_stores does nothing
5525 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5526 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5529 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
5531 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
5543 n2
= VEC_length (micro_operation
, VTI (bb
)->mos
) - 1;
5546 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
5548 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
5561 static enum var_init_status
5562 find_src_status (dataflow_set
*in
, rtx src
)
5564 tree decl
= NULL_TREE
;
5565 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
5567 if (! flag_var_tracking_uninit
)
5568 status
= VAR_INIT_STATUS_INITIALIZED
;
5570 if (src
&& REG_P (src
))
5571 decl
= var_debug_decl (REG_EXPR (src
));
5572 else if (src
&& MEM_P (src
))
5573 decl
= var_debug_decl (MEM_EXPR (src
));
5576 status
= get_init_value (in
, src
, dv_from_decl (decl
));
5581 /* SRC is the source of an assignment. Use SET to try to find what
5582 was ultimately assigned to SRC. Return that value if known,
5583 otherwise return SRC itself. */
5586 find_src_set_src (dataflow_set
*set
, rtx src
)
5588 tree decl
= NULL_TREE
; /* The variable being copied around. */
5589 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
5591 location_chain nextp
;
5595 if (src
&& REG_P (src
))
5596 decl
= var_debug_decl (REG_EXPR (src
));
5597 else if (src
&& MEM_P (src
))
5598 decl
= var_debug_decl (MEM_EXPR (src
));
5602 decl_or_value dv
= dv_from_decl (decl
);
5604 var
= shared_hash_find (set
->vars
, dv
);
5608 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
5609 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
5610 nextp
= nextp
->next
)
5611 if (rtx_equal_p (nextp
->loc
, src
))
5613 set_src
= nextp
->set_src
;
5623 /* Compute the changes of variable locations in the basic block BB. */
5626 compute_bb_dataflow (basic_block bb
)
5629 micro_operation
*mo
;
5631 dataflow_set old_out
;
5632 dataflow_set
*in
= &VTI (bb
)->in
;
5633 dataflow_set
*out
= &VTI (bb
)->out
;
5635 dataflow_set_init (&old_out
);
5636 dataflow_set_copy (&old_out
, out
);
5637 dataflow_set_copy (out
, in
);
5639 for (i
= 0; VEC_iterate (micro_operation
, VTI (bb
)->mos
, i
, mo
); i
++)
5641 rtx insn
= mo
->insn
;
5646 dataflow_set_clear_at_call (out
);
5651 rtx loc
= mo
->u
.loc
;
5654 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
5655 else if (MEM_P (loc
))
5656 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
5662 rtx loc
= mo
->u
.loc
;
5666 if (GET_CODE (loc
) == CONCAT
)
5668 val
= XEXP (loc
, 0);
5669 vloc
= XEXP (loc
, 1);
5677 var
= PAT_VAR_LOCATION_DECL (vloc
);
5679 clobber_variable_part (out
, NULL_RTX
,
5680 dv_from_decl (var
), 0, NULL_RTX
);
5683 if (VAL_NEEDS_RESOLUTION (loc
))
5684 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
5685 set_variable_part (out
, val
, dv_from_decl (var
), 0,
5686 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
5689 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
5690 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
5691 dv_from_decl (var
), 0,
5692 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
5699 rtx loc
= mo
->u
.loc
;
5700 rtx val
, vloc
, uloc
;
5702 vloc
= uloc
= XEXP (loc
, 1);
5703 val
= XEXP (loc
, 0);
5705 if (GET_CODE (val
) == CONCAT
)
5707 uloc
= XEXP (val
, 1);
5708 val
= XEXP (val
, 0);
5711 if (VAL_NEEDS_RESOLUTION (loc
))
5712 val_resolve (out
, val
, vloc
, insn
);
5714 val_store (out
, val
, uloc
, insn
, false);
5716 if (VAL_HOLDS_TRACK_EXPR (loc
))
5718 if (GET_CODE (uloc
) == REG
)
5719 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
5721 else if (GET_CODE (uloc
) == MEM
)
5722 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
5730 rtx loc
= mo
->u
.loc
;
5731 rtx val
, vloc
, uloc
, reverse
= NULL_RTX
;
5734 if (VAL_EXPR_HAS_REVERSE (loc
))
5736 reverse
= XEXP (loc
, 1);
5737 vloc
= XEXP (loc
, 0);
5739 uloc
= XEXP (vloc
, 1);
5740 val
= XEXP (vloc
, 0);
5743 if (GET_CODE (val
) == CONCAT
)
5745 vloc
= XEXP (val
, 1);
5746 val
= XEXP (val
, 0);
5749 if (GET_CODE (vloc
) == SET
)
5751 rtx vsrc
= SET_SRC (vloc
);
5753 gcc_assert (val
!= vsrc
);
5754 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
5756 vloc
= SET_DEST (vloc
);
5758 if (VAL_NEEDS_RESOLUTION (loc
))
5759 val_resolve (out
, val
, vsrc
, insn
);
5761 else if (VAL_NEEDS_RESOLUTION (loc
))
5763 gcc_assert (GET_CODE (uloc
) == SET
5764 && GET_CODE (SET_SRC (uloc
)) == REG
);
5765 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
5768 if (VAL_HOLDS_TRACK_EXPR (loc
))
5770 if (VAL_EXPR_IS_CLOBBERED (loc
))
5773 var_reg_delete (out
, uloc
, true);
5774 else if (MEM_P (uloc
))
5775 var_mem_delete (out
, uloc
, true);
5779 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
5781 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
5783 if (GET_CODE (uloc
) == SET
)
5785 set_src
= SET_SRC (uloc
);
5786 uloc
= SET_DEST (uloc
);
5791 if (flag_var_tracking_uninit
)
5793 status
= find_src_status (in
, set_src
);
5795 if (status
== VAR_INIT_STATUS_UNKNOWN
)
5796 status
= find_src_status (out
, set_src
);
5799 set_src
= find_src_set_src (in
, set_src
);
5803 var_reg_delete_and_set (out
, uloc
, !copied_p
,
5805 else if (MEM_P (uloc
))
5806 var_mem_delete_and_set (out
, uloc
, !copied_p
,
5810 else if (REG_P (uloc
))
5811 var_regno_delete (out
, REGNO (uloc
));
5813 val_store (out
, val
, vloc
, insn
, true);
5816 val_store (out
, XEXP (reverse
, 0), XEXP (reverse
, 1),
5823 rtx loc
= mo
->u
.loc
;
5826 if (GET_CODE (loc
) == SET
)
5828 set_src
= SET_SRC (loc
);
5829 loc
= SET_DEST (loc
);
5833 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
5835 else if (MEM_P (loc
))
5836 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
5843 rtx loc
= mo
->u
.loc
;
5844 enum var_init_status src_status
;
5847 if (GET_CODE (loc
) == SET
)
5849 set_src
= SET_SRC (loc
);
5850 loc
= SET_DEST (loc
);
5853 if (! flag_var_tracking_uninit
)
5854 src_status
= VAR_INIT_STATUS_INITIALIZED
;
5857 src_status
= find_src_status (in
, set_src
);
5859 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
5860 src_status
= find_src_status (out
, set_src
);
5863 set_src
= find_src_set_src (in
, set_src
);
5866 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
5867 else if (MEM_P (loc
))
5868 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
5874 rtx loc
= mo
->u
.loc
;
5877 var_reg_delete (out
, loc
, false);
5878 else if (MEM_P (loc
))
5879 var_mem_delete (out
, loc
, false);
5885 rtx loc
= mo
->u
.loc
;
5888 var_reg_delete (out
, loc
, true);
5889 else if (MEM_P (loc
))
5890 var_mem_delete (out
, loc
, true);
5895 out
->stack_adjust
+= mo
->u
.adjust
;
5900 if (MAY_HAVE_DEBUG_INSNS
)
5902 dataflow_set_equiv_regs (out
);
5903 htab_traverse (shared_hash_htab (out
->vars
), canonicalize_values_mark
,
5905 htab_traverse (shared_hash_htab (out
->vars
), canonicalize_values_star
,
5908 htab_traverse (shared_hash_htab (out
->vars
),
5909 canonicalize_loc_order_check
, out
);
5912 changed
= dataflow_set_different (&old_out
, out
);
5913 dataflow_set_destroy (&old_out
);
5917 /* Find the locations of variables in the whole function. */
5920 vt_find_locations (void)
5922 fibheap_t worklist
, pending
, fibheap_swap
;
5923 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
5930 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
5931 bool success
= true;
5933 /* Compute reverse completion order of depth first search of the CFG
5934 so that the data-flow runs faster. */
5935 rc_order
= XNEWVEC (int, n_basic_blocks
- NUM_FIXED_BLOCKS
);
5936 bb_order
= XNEWVEC (int, last_basic_block
);
5937 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
5938 for (i
= 0; i
< n_basic_blocks
- NUM_FIXED_BLOCKS
; i
++)
5939 bb_order
[rc_order
[i
]] = i
;
5942 worklist
= fibheap_new ();
5943 pending
= fibheap_new ();
5944 visited
= sbitmap_alloc (last_basic_block
);
5945 in_worklist
= sbitmap_alloc (last_basic_block
);
5946 in_pending
= sbitmap_alloc (last_basic_block
);
5947 sbitmap_zero (in_worklist
);
5950 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
5951 sbitmap_ones (in_pending
);
5953 while (success
&& !fibheap_empty (pending
))
5955 fibheap_swap
= pending
;
5957 worklist
= fibheap_swap
;
5958 sbitmap_swap
= in_pending
;
5959 in_pending
= in_worklist
;
5960 in_worklist
= sbitmap_swap
;
5962 sbitmap_zero (visited
);
5964 while (!fibheap_empty (worklist
))
5966 bb
= (basic_block
) fibheap_extract_min (worklist
);
5967 RESET_BIT (in_worklist
, bb
->index
);
5968 if (!TEST_BIT (visited
, bb
->index
))
5972 int oldinsz
, oldoutsz
;
5974 SET_BIT (visited
, bb
->index
);
5976 if (VTI (bb
)->in
.vars
)
5979 -= (htab_size (shared_hash_htab (VTI (bb
)->in
.vars
))
5980 + htab_size (shared_hash_htab (VTI (bb
)->out
.vars
)));
5982 = htab_elements (shared_hash_htab (VTI (bb
)->in
.vars
));
5984 = htab_elements (shared_hash_htab (VTI (bb
)->out
.vars
));
5987 oldinsz
= oldoutsz
= 0;
5989 if (MAY_HAVE_DEBUG_INSNS
)
5991 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
5992 bool first
= true, adjust
= false;
5994 /* Calculate the IN set as the intersection of
5995 predecessor OUT sets. */
5997 dataflow_set_clear (in
);
5998 dst_can_be_shared
= true;
6000 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6001 if (!VTI (e
->src
)->flooded
)
6002 gcc_assert (bb_order
[bb
->index
]
6003 <= bb_order
[e
->src
->index
]);
6006 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
6007 first_out
= &VTI (e
->src
)->out
;
6012 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
6018 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
6020 /* Merge and merge_adjust should keep entries in
6022 htab_traverse (shared_hash_htab (in
->vars
),
6023 canonicalize_loc_order_check
,
6026 if (dst_can_be_shared
)
6028 shared_hash_destroy (in
->vars
);
6029 in
->vars
= shared_hash_copy (first_out
->vars
);
6033 VTI (bb
)->flooded
= true;
6037 /* Calculate the IN set as union of predecessor OUT sets. */
6038 dataflow_set_clear (&VTI (bb
)->in
);
6039 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6040 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
6043 changed
= compute_bb_dataflow (bb
);
6044 htabsz
+= (htab_size (shared_hash_htab (VTI (bb
)->in
.vars
))
6045 + htab_size (shared_hash_htab (VTI (bb
)->out
.vars
)));
6047 if (htabmax
&& htabsz
> htabmax
)
6049 if (MAY_HAVE_DEBUG_INSNS
)
6050 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
6051 "variable tracking size limit exceeded with "
6052 "-fvar-tracking-assignments, retrying without");
6054 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
6055 "variable tracking size limit exceeded");
6062 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6064 if (e
->dest
== EXIT_BLOCK_PTR
)
6067 if (TEST_BIT (visited
, e
->dest
->index
))
6069 if (!TEST_BIT (in_pending
, e
->dest
->index
))
6071 /* Send E->DEST to next round. */
6072 SET_BIT (in_pending
, e
->dest
->index
);
6073 fibheap_insert (pending
,
6074 bb_order
[e
->dest
->index
],
6078 else if (!TEST_BIT (in_worklist
, e
->dest
->index
))
6080 /* Add E->DEST to current round. */
6081 SET_BIT (in_worklist
, e
->dest
->index
);
6082 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
6090 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6092 (int)htab_elements (shared_hash_htab (VTI (bb
)->in
.vars
)),
6094 (int)htab_elements (shared_hash_htab (VTI (bb
)->out
.vars
)),
6096 (int)worklist
->nodes
, (int)pending
->nodes
, htabsz
);
6098 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6100 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
6101 dump_dataflow_set (&VTI (bb
)->in
);
6102 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
6103 dump_dataflow_set (&VTI (bb
)->out
);
6109 if (success
&& MAY_HAVE_DEBUG_INSNS
)
6111 gcc_assert (VTI (bb
)->flooded
);
6114 fibheap_delete (worklist
);
6115 fibheap_delete (pending
);
6116 sbitmap_free (visited
);
6117 sbitmap_free (in_worklist
);
6118 sbitmap_free (in_pending
);
6123 /* Print the content of the LIST to dump file. */
6126 dump_attrs_list (attrs list
)
6128 for (; list
; list
= list
->next
)
6130 if (dv_is_decl_p (list
->dv
))
6131 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
6133 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
6134 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
6136 fprintf (dump_file
, "\n");
6139 /* Print the information about variable *SLOT to dump file. */
6142 dump_var_slot (void **slot
, void *data ATTRIBUTE_UNUSED
)
6144 variable var
= (variable
) *slot
;
6148 /* Continue traversing the hash table. */
6152 /* Print the information about variable VAR to dump file. */
6155 dump_var (variable var
)
6158 location_chain node
;
6160 if (dv_is_decl_p (var
->dv
))
6162 const_tree decl
= dv_as_decl (var
->dv
);
6164 if (DECL_NAME (decl
))
6166 fprintf (dump_file
, " name: %s",
6167 IDENTIFIER_POINTER (DECL_NAME (decl
)));
6168 if (dump_flags
& TDF_UID
)
6169 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
6171 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
6172 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
6174 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
6175 fprintf (dump_file
, "\n");
6179 fputc (' ', dump_file
);
6180 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
6183 for (i
= 0; i
< var
->n_var_parts
; i
++)
6185 fprintf (dump_file
, " offset %ld\n",
6186 (long) var
->var_part
[i
].offset
);
6187 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
6189 fprintf (dump_file
, " ");
6190 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
6191 fprintf (dump_file
, "[uninit]");
6192 print_rtl_single (dump_file
, node
->loc
);
6197 /* Print the information about variables from hash table VARS to dump file. */
6200 dump_vars (htab_t vars
)
6202 if (htab_elements (vars
) > 0)
6204 fprintf (dump_file
, "Variables:\n");
6205 htab_traverse (vars
, dump_var_slot
, NULL
);
6209 /* Print the dataflow set SET to dump file. */
6212 dump_dataflow_set (dataflow_set
*set
)
6216 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
6218 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
6222 fprintf (dump_file
, "Reg %d:", i
);
6223 dump_attrs_list (set
->regs
[i
]);
6226 dump_vars (shared_hash_htab (set
->vars
));
6227 fprintf (dump_file
, "\n");
6230 /* Print the IN and OUT sets for each basic block to dump file. */
6233 dump_dataflow_sets (void)
6239 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
6240 fprintf (dump_file
, "IN:\n");
6241 dump_dataflow_set (&VTI (bb
)->in
);
6242 fprintf (dump_file
, "OUT:\n");
6243 dump_dataflow_set (&VTI (bb
)->out
);
6247 /* Add variable VAR to the hash table of changed variables and
6248 if it has no locations delete it from SET's hash table. */
6251 variable_was_changed (variable var
, dataflow_set
*set
)
6253 hashval_t hash
= dv_htab_hash (var
->dv
);
6258 bool old_cur_loc_changed
= false;
6260 /* Remember this decl or VALUE has been added to changed_variables. */
6261 set_dv_changed (var
->dv
, true);
6263 slot
= htab_find_slot_with_hash (changed_variables
,
6269 variable old_var
= (variable
) *slot
;
6270 gcc_assert (old_var
->in_changed_variables
);
6271 old_var
->in_changed_variables
= false;
6272 old_cur_loc_changed
= old_var
->cur_loc_changed
;
6273 variable_htab_free (*slot
);
6275 if (set
&& var
->n_var_parts
== 0)
6279 empty_var
= (variable
) pool_alloc (dv_pool (var
->dv
));
6280 empty_var
->dv
= var
->dv
;
6281 empty_var
->refcount
= 1;
6282 empty_var
->n_var_parts
= 0;
6283 empty_var
->cur_loc_changed
= true;
6284 empty_var
->in_changed_variables
= true;
6291 var
->in_changed_variables
= true;
6292 /* If within processing one uop a variable is deleted
6293 and then readded, we need to assume it has changed. */
6294 if (old_cur_loc_changed
)
6295 var
->cur_loc_changed
= true;
6302 if (var
->n_var_parts
== 0)
6307 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
6310 if (shared_hash_shared (set
->vars
))
6311 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
6313 htab_clear_slot (shared_hash_htab (set
->vars
), slot
);
6319 /* Look for the index in VAR->var_part corresponding to OFFSET.
6320 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6321 referenced int will be set to the index that the part has or should
6322 have, if it should be inserted. */
6325 find_variable_location_part (variable var
, HOST_WIDE_INT offset
,
6326 int *insertion_point
)
6330 /* Find the location part. */
6332 high
= var
->n_var_parts
;
6335 pos
= (low
+ high
) / 2;
6336 if (var
->var_part
[pos
].offset
< offset
)
6343 if (insertion_point
)
6344 *insertion_point
= pos
;
6346 if (pos
< var
->n_var_parts
&& var
->var_part
[pos
].offset
== offset
)
6353 set_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6354 decl_or_value dv
, HOST_WIDE_INT offset
,
6355 enum var_init_status initialized
, rtx set_src
)
6358 location_chain node
, next
;
6359 location_chain
*nextp
;
6361 bool onepart
= dv_onepart_p (dv
);
6363 gcc_assert (offset
== 0 || !onepart
);
6364 gcc_assert (loc
!= dv_as_opaque (dv
));
6366 var
= (variable
) *slot
;
6368 if (! flag_var_tracking_uninit
)
6369 initialized
= VAR_INIT_STATUS_INITIALIZED
;
6373 /* Create new variable information. */
6374 var
= (variable
) pool_alloc (dv_pool (dv
));
6377 var
->n_var_parts
= 1;
6378 var
->cur_loc_changed
= false;
6379 var
->in_changed_variables
= false;
6380 var
->var_part
[0].offset
= offset
;
6381 var
->var_part
[0].loc_chain
= NULL
;
6382 var
->var_part
[0].cur_loc
= NULL
;
6385 nextp
= &var
->var_part
[0].loc_chain
;
6391 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
6395 if (GET_CODE (loc
) == VALUE
)
6397 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6398 nextp
= &node
->next
)
6399 if (GET_CODE (node
->loc
) == VALUE
)
6401 if (node
->loc
== loc
)
6406 if (canon_value_cmp (node
->loc
, loc
))
6414 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
6422 else if (REG_P (loc
))
6424 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6425 nextp
= &node
->next
)
6426 if (REG_P (node
->loc
))
6428 if (REGNO (node
->loc
) < REGNO (loc
))
6432 if (REGNO (node
->loc
) == REGNO (loc
))
6445 else if (MEM_P (loc
))
6447 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6448 nextp
= &node
->next
)
6449 if (REG_P (node
->loc
))
6451 else if (MEM_P (node
->loc
))
6453 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
6465 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
6466 nextp
= &node
->next
)
6467 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
6475 if (shared_var_p (var
, set
->vars
))
6477 slot
= unshare_variable (set
, slot
, var
, initialized
);
6478 var
= (variable
)*slot
;
6479 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
6480 nextp
= &(*nextp
)->next
)
6482 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
6489 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
6491 pos
= find_variable_location_part (var
, offset
, &inspos
);
6495 node
= var
->var_part
[pos
].loc_chain
;
6498 && ((REG_P (node
->loc
) && REG_P (loc
)
6499 && REGNO (node
->loc
) == REGNO (loc
))
6500 || rtx_equal_p (node
->loc
, loc
)))
6502 /* LOC is in the beginning of the chain so we have nothing
6504 if (node
->init
< initialized
)
6505 node
->init
= initialized
;
6506 if (set_src
!= NULL
)
6507 node
->set_src
= set_src
;
6513 /* We have to make a copy of a shared variable. */
6514 if (shared_var_p (var
, set
->vars
))
6516 slot
= unshare_variable (set
, slot
, var
, initialized
);
6517 var
= (variable
)*slot
;
6523 /* We have not found the location part, new one will be created. */
6525 /* We have to make a copy of the shared variable. */
6526 if (shared_var_p (var
, set
->vars
))
6528 slot
= unshare_variable (set
, slot
, var
, initialized
);
6529 var
= (variable
)*slot
;
6532 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6533 thus there are at most MAX_VAR_PARTS different offsets. */
6534 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
6535 && (!var
->n_var_parts
|| !dv_onepart_p (var
->dv
)));
6537 /* We have to move the elements of array starting at index
6538 inspos to the next position. */
6539 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
6540 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
6543 var
->var_part
[pos
].offset
= offset
;
6544 var
->var_part
[pos
].loc_chain
= NULL
;
6545 var
->var_part
[pos
].cur_loc
= NULL
;
6548 /* Delete the location from the list. */
6549 nextp
= &var
->var_part
[pos
].loc_chain
;
6550 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
6553 if ((REG_P (node
->loc
) && REG_P (loc
)
6554 && REGNO (node
->loc
) == REGNO (loc
))
6555 || rtx_equal_p (node
->loc
, loc
))
6557 /* Save these values, to assign to the new node, before
6558 deleting this one. */
6559 if (node
->init
> initialized
)
6560 initialized
= node
->init
;
6561 if (node
->set_src
!= NULL
&& set_src
== NULL
)
6562 set_src
= node
->set_src
;
6563 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
6565 var
->var_part
[pos
].cur_loc
= NULL
;
6566 var
->cur_loc_changed
= true;
6568 pool_free (loc_chain_pool
, node
);
6573 nextp
= &node
->next
;
6576 nextp
= &var
->var_part
[pos
].loc_chain
;
6579 /* Add the location to the beginning. */
6580 node
= (location_chain
) pool_alloc (loc_chain_pool
);
6582 node
->init
= initialized
;
6583 node
->set_src
= set_src
;
6584 node
->next
= *nextp
;
6587 if (onepart
&& emit_notes
)
6588 add_value_chains (var
->dv
, loc
);
6590 /* If no location was emitted do so. */
6591 if (var
->var_part
[pos
].cur_loc
== NULL
)
6592 variable_was_changed (var
, set
);
6597 /* Set the part of variable's location in the dataflow set SET. The
6598 variable part is specified by variable's declaration in DV and
6599 offset OFFSET and the part's location by LOC. IOPT should be
6600 NO_INSERT if the variable is known to be in SET already and the
6601 variable hash table must not be resized, and INSERT otherwise. */
6604 set_variable_part (dataflow_set
*set
, rtx loc
,
6605 decl_or_value dv
, HOST_WIDE_INT offset
,
6606 enum var_init_status initialized
, rtx set_src
,
6607 enum insert_option iopt
)
6611 if (iopt
== NO_INSERT
)
6612 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6615 slot
= shared_hash_find_slot (set
->vars
, dv
);
6617 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
6619 slot
= set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
6622 /* Remove all recorded register locations for the given variable part
6623 from dataflow set SET, except for those that are identical to loc.
6624 The variable part is specified by variable's declaration or value
6625 DV and offset OFFSET. */
6628 clobber_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6629 HOST_WIDE_INT offset
, rtx set_src
)
6631 variable var
= (variable
) *slot
;
6632 int pos
= find_variable_location_part (var
, offset
, NULL
);
6636 location_chain node
, next
;
6638 /* Remove the register locations from the dataflow set. */
6639 next
= var
->var_part
[pos
].loc_chain
;
6640 for (node
= next
; node
; node
= next
)
6643 if (node
->loc
!= loc
6644 && (!flag_var_tracking_uninit
6647 || !rtx_equal_p (set_src
, node
->set_src
)))
6649 if (REG_P (node
->loc
))
6654 /* Remove the variable part from the register's
6655 list, but preserve any other variable parts
6656 that might be regarded as live in that same
6658 anextp
= &set
->regs
[REGNO (node
->loc
)];
6659 for (anode
= *anextp
; anode
; anode
= anext
)
6661 anext
= anode
->next
;
6662 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
6663 && anode
->offset
== offset
)
6665 pool_free (attrs_pool
, anode
);
6669 anextp
= &anode
->next
;
6673 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
6681 /* Remove all recorded register locations for the given variable part
6682 from dataflow set SET, except for those that are identical to loc.
6683 The variable part is specified by variable's declaration or value
6684 DV and offset OFFSET. */
6687 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
6688 HOST_WIDE_INT offset
, rtx set_src
)
6692 if (!dv_as_opaque (dv
)
6693 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
6696 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6700 slot
= clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
6703 /* Delete the part of variable's location from dataflow set SET. The
6704 variable part is specified by its SET->vars slot SLOT and offset
6705 OFFSET and the part's location by LOC. */
6708 delete_slot_part (dataflow_set
*set
, rtx loc
, void **slot
,
6709 HOST_WIDE_INT offset
)
6711 variable var
= (variable
) *slot
;
6712 int pos
= find_variable_location_part (var
, offset
, NULL
);
6716 location_chain node
, next
;
6717 location_chain
*nextp
;
6720 if (shared_var_p (var
, set
->vars
))
6722 /* If the variable contains the location part we have to
6723 make a copy of the variable. */
6724 for (node
= var
->var_part
[pos
].loc_chain
; node
;
6727 if ((REG_P (node
->loc
) && REG_P (loc
)
6728 && REGNO (node
->loc
) == REGNO (loc
))
6729 || rtx_equal_p (node
->loc
, loc
))
6731 slot
= unshare_variable (set
, slot
, var
,
6732 VAR_INIT_STATUS_UNKNOWN
);
6733 var
= (variable
)*slot
;
6739 /* Delete the location part. */
6741 nextp
= &var
->var_part
[pos
].loc_chain
;
6742 for (node
= *nextp
; node
; node
= next
)
6745 if ((REG_P (node
->loc
) && REG_P (loc
)
6746 && REGNO (node
->loc
) == REGNO (loc
))
6747 || rtx_equal_p (node
->loc
, loc
))
6749 if (emit_notes
&& pos
== 0 && dv_onepart_p (var
->dv
))
6750 remove_value_chains (var
->dv
, node
->loc
);
6751 /* If we have deleted the location which was last emitted
6752 we have to emit new location so add the variable to set
6753 of changed variables. */
6754 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
6757 var
->var_part
[pos
].cur_loc
= NULL
;
6758 var
->cur_loc_changed
= true;
6760 pool_free (loc_chain_pool
, node
);
6765 nextp
= &node
->next
;
6768 if (var
->var_part
[pos
].loc_chain
== NULL
)
6773 var
->cur_loc_changed
= true;
6774 while (pos
< var
->n_var_parts
)
6776 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
6781 variable_was_changed (var
, set
);
6787 /* Delete the part of variable's location from dataflow set SET. The
6788 variable part is specified by variable's declaration or value DV
6789 and offset OFFSET and the part's location by LOC. */
6792 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
6793 HOST_WIDE_INT offset
)
6795 void **slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
6799 slot
= delete_slot_part (set
, loc
, slot
, offset
);
6802 /* Structure for passing some other parameters to function
6803 vt_expand_loc_callback. */
6804 struct expand_loc_callback_data
6806 /* The variables and values active at this point. */
6809 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
6810 Non-NULL should be returned if vt_expand_loc would return
6811 non-NULL in that case, NULL otherwise. cur_loc_changed should be
6812 computed and cur_loc recomputed when possible (but just once
6813 per emit_notes_for_changes call). */
6816 /* True if expansion of subexpressions had to recompute some
6817 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
6818 whose cur_loc has been already recomputed during current
6819 emit_notes_for_changes call. */
6820 bool cur_loc_changed
;
6823 /* Callback for cselib_expand_value, that looks for expressions
6824 holding the value in the var-tracking hash tables. Return X for
6825 standard processing, anything else is to be used as-is. */
6828 vt_expand_loc_callback (rtx x
, bitmap regs
, int max_depth
, void *data
)
6830 struct expand_loc_callback_data
*elcd
6831 = (struct expand_loc_callback_data
*) data
;
6832 bool dummy
= elcd
->dummy
;
6833 bool cur_loc_changed
= elcd
->cur_loc_changed
;
6837 rtx result
, subreg
, xret
;
6839 switch (GET_CODE (x
))
6844 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
6846 vt_expand_loc_callback
, data
))
6852 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
6854 vt_expand_loc_callback
, data
);
6859 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
6860 GET_MODE (SUBREG_REG (x
)),
6863 /* Invalid SUBREGs are ok in debug info. ??? We could try
6864 alternate expansions for the VALUE as well. */
6866 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
6871 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
6876 dv
= dv_from_value (x
);
6884 if (VALUE_RECURSED_INTO (x
))
6887 var
= (variable
) htab_find_with_hash (elcd
->vars
, dv
, dv_htab_hash (dv
));
6891 if (dummy
&& dv_changed_p (dv
))
6892 elcd
->cur_loc_changed
= true;
6896 if (var
->n_var_parts
== 0)
6899 elcd
->cur_loc_changed
= true;
6903 gcc_assert (var
->n_var_parts
== 1);
6905 VALUE_RECURSED_INTO (x
) = true;
6908 if (var
->var_part
[0].cur_loc
)
6912 if (cselib_dummy_expand_value_rtx_cb (var
->var_part
[0].cur_loc
, regs
,
6914 vt_expand_loc_callback
, data
))
6918 result
= cselib_expand_value_rtx_cb (var
->var_part
[0].cur_loc
, regs
,
6920 vt_expand_loc_callback
, data
);
6922 set_dv_changed (dv
, false);
6924 if (!result
&& dv_changed_p (dv
))
6926 set_dv_changed (dv
, false);
6927 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
6928 if (loc
->loc
== var
->var_part
[0].cur_loc
)
6932 elcd
->cur_loc_changed
= cur_loc_changed
;
6933 if (cselib_dummy_expand_value_rtx_cb (loc
->loc
, regs
, max_depth
,
6934 vt_expand_loc_callback
,
6943 result
= cselib_expand_value_rtx_cb (loc
->loc
, regs
, max_depth
,
6944 vt_expand_loc_callback
, data
);
6948 if (dummy
&& (result
|| var
->var_part
[0].cur_loc
))
6949 var
->cur_loc_changed
= true;
6950 var
->var_part
[0].cur_loc
= loc
? loc
->loc
: NULL_RTX
;
6954 if (var
->cur_loc_changed
)
6955 elcd
->cur_loc_changed
= true;
6956 else if (!result
&& var
->var_part
[0].cur_loc
== NULL_RTX
)
6957 elcd
->cur_loc_changed
= cur_loc_changed
;
6960 VALUE_RECURSED_INTO (x
) = false;
6967 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
6971 vt_expand_loc (rtx loc
, htab_t vars
)
6973 struct expand_loc_callback_data data
;
6975 if (!MAY_HAVE_DEBUG_INSNS
)
6980 data
.cur_loc_changed
= false;
6981 loc
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, 5,
6982 vt_expand_loc_callback
, &data
);
6984 if (loc
&& MEM_P (loc
))
6985 loc
= targetm
.delegitimize_address (loc
);
6989 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
6990 would succeed or not, without actually allocating new rtxes. */
6993 vt_expand_loc_dummy (rtx loc
, htab_t vars
, bool *pcur_loc_changed
)
6995 struct expand_loc_callback_data data
;
6998 gcc_assert (MAY_HAVE_DEBUG_INSNS
);
7001 data
.cur_loc_changed
= false;
7002 ret
= cselib_dummy_expand_value_rtx_cb (loc
, scratch_regs
, 5,
7003 vt_expand_loc_callback
, &data
);
7004 *pcur_loc_changed
= data
.cur_loc_changed
;
7008 #ifdef ENABLE_RTL_CHECKING
7009 /* Used to verify that cur_loc_changed updating is safe. */
7010 static struct pointer_map_t
*emitted_notes
;
7013 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7014 additional parameters: WHERE specifies whether the note shall be emitted
7015 before or after instruction INSN. */
7018 emit_note_insn_var_location (void **varp
, void *data
)
7020 variable var
= (variable
) *varp
;
7021 rtx insn
= ((emit_note_data
*)data
)->insn
;
7022 enum emit_note_where where
= ((emit_note_data
*)data
)->where
;
7023 htab_t vars
= ((emit_note_data
*)data
)->vars
;
7025 int i
, j
, n_var_parts
;
7027 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
7028 HOST_WIDE_INT last_limit
;
7029 tree type_size_unit
;
7030 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
7031 rtx loc
[MAX_VAR_PARTS
];
7035 if (dv_is_value_p (var
->dv
))
7036 goto value_or_debug_decl
;
7038 decl
= dv_as_decl (var
->dv
);
7040 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7041 goto value_or_debug_decl
;
7046 if (!MAY_HAVE_DEBUG_INSNS
)
7048 for (i
= 0; i
< var
->n_var_parts
; i
++)
7049 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
7051 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
7052 var
->cur_loc_changed
= true;
7054 if (var
->n_var_parts
== 0)
7055 var
->cur_loc_changed
= true;
7057 #ifndef ENABLE_RTL_CHECKING
7058 if (!var
->cur_loc_changed
)
7061 for (i
= 0; i
< var
->n_var_parts
; i
++)
7063 enum machine_mode mode
, wider_mode
;
7066 if (last_limit
< var
->var_part
[i
].offset
)
7071 else if (last_limit
> var
->var_part
[i
].offset
)
7073 offsets
[n_var_parts
] = var
->var_part
[i
].offset
;
7074 if (!var
->var_part
[i
].cur_loc
)
7079 loc2
= vt_expand_loc (var
->var_part
[i
].cur_loc
, vars
);
7085 loc
[n_var_parts
] = loc2
;
7086 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
7087 if (mode
== VOIDmode
&& dv_onepart_p (var
->dv
))
7088 mode
= DECL_MODE (decl
);
7089 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7090 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
7092 initialized
= lc
->init
;
7096 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
7098 /* Attempt to merge adjacent registers or memory. */
7099 wider_mode
= GET_MODE_WIDER_MODE (mode
);
7100 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
7101 if (last_limit
<= var
->var_part
[j
].offset
)
7103 if (j
< var
->n_var_parts
7104 && wider_mode
!= VOIDmode
7105 && var
->var_part
[j
].cur_loc
7106 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
7107 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
7108 && last_limit
== var
->var_part
[j
].offset
7109 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
7110 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
7114 if (REG_P (loc
[n_var_parts
])
7115 && hard_regno_nregs
[REGNO (loc
[n_var_parts
])][mode
] * 2
7116 == hard_regno_nregs
[REGNO (loc
[n_var_parts
])][wider_mode
]
7117 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
7120 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
7121 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
7123 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
7124 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
7127 if (!REG_P (new_loc
)
7128 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
7131 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
7134 else if (MEM_P (loc
[n_var_parts
])
7135 && GET_CODE (XEXP (loc2
, 0)) == PLUS
7136 && REG_P (XEXP (XEXP (loc2
, 0), 0))
7137 && CONST_INT_P (XEXP (XEXP (loc2
, 0), 1)))
7139 if ((REG_P (XEXP (loc
[n_var_parts
], 0))
7140 && rtx_equal_p (XEXP (loc
[n_var_parts
], 0),
7141 XEXP (XEXP (loc2
, 0), 0))
7142 && INTVAL (XEXP (XEXP (loc2
, 0), 1))
7143 == GET_MODE_SIZE (mode
))
7144 || (GET_CODE (XEXP (loc
[n_var_parts
], 0)) == PLUS
7145 && CONST_INT_P (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
7146 && rtx_equal_p (XEXP (XEXP (loc
[n_var_parts
], 0), 0),
7147 XEXP (XEXP (loc2
, 0), 0))
7148 && INTVAL (XEXP (XEXP (loc
[n_var_parts
], 0), 1))
7149 + GET_MODE_SIZE (mode
)
7150 == INTVAL (XEXP (XEXP (loc2
, 0), 1))))
7151 new_loc
= adjust_address_nv (loc
[n_var_parts
],
7157 loc
[n_var_parts
] = new_loc
;
7159 last_limit
= offsets
[n_var_parts
] + GET_MODE_SIZE (mode
);
7165 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (decl
));
7166 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
7169 if (! flag_var_tracking_uninit
)
7170 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7174 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
,
7176 else if (n_var_parts
== 1)
7180 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
7181 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
7185 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
,
7188 else if (n_var_parts
)
7192 for (i
= 0; i
< n_var_parts
; i
++)
7194 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
7196 parallel
= gen_rtx_PARALLEL (VOIDmode
,
7197 gen_rtvec_v (n_var_parts
, loc
));
7198 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
7199 parallel
, (int) initialized
);
7202 #ifdef ENABLE_RTL_CHECKING
7205 void **note_slot
= pointer_map_insert (emitted_notes
, decl
);
7206 rtx pnote
= (rtx
) *note_slot
;
7207 if (!var
->cur_loc_changed
&& (pnote
|| PAT_VAR_LOCATION_LOC (note_vl
)))
7210 gcc_assert (rtx_equal_p (PAT_VAR_LOCATION_LOC (pnote
),
7211 PAT_VAR_LOCATION_LOC (note_vl
)));
7213 *note_slot
= (void *) note_vl
;
7215 if (!var
->cur_loc_changed
)
7219 if (where
!= EMIT_NOTE_BEFORE_INSN
)
7221 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
7222 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
7223 NOTE_DURING_CALL_P (note
) = true;
7226 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
7227 NOTE_VAR_LOCATION (note
) = note_vl
;
7230 set_dv_changed (var
->dv
, false);
7231 var
->cur_loc_changed
= false;
7232 gcc_assert (var
->in_changed_variables
);
7233 var
->in_changed_variables
= false;
7234 htab_clear_slot (changed_variables
, varp
);
7236 /* Continue traversing the hash table. */
7239 value_or_debug_decl
:
7240 if (dv_changed_p (var
->dv
) && var
->n_var_parts
)
7243 bool cur_loc_changed
;
7245 if (var
->var_part
[0].cur_loc
7246 && vt_expand_loc_dummy (var
->var_part
[0].cur_loc
, vars
,
7249 for (lc
= var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7250 if (lc
->loc
!= var
->var_part
[0].cur_loc
7251 && vt_expand_loc_dummy (lc
->loc
, vars
, &cur_loc_changed
))
7253 var
->var_part
[0].cur_loc
= lc
? lc
->loc
: NULL_RTX
;
7258 DEF_VEC_P (variable
);
7259 DEF_VEC_ALLOC_P (variable
, heap
);
7261 /* Stack of variable_def pointers that need processing with
7262 check_changed_vars_2. */
7264 static VEC (variable
, heap
) *changed_variables_stack
;
7266 /* VALUEs with no variables that need set_dv_changed (val, false)
7267 called before check_changed_vars_3. */
7269 static VEC (rtx
, heap
) *changed_values_stack
;
7271 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7274 check_changed_vars_0 (decl_or_value dv
, htab_t htab
)
7277 = (value_chain
) htab_find_with_hash (value_chains
, dv
, dv_htab_hash (dv
));
7281 for (vc
= vc
->next
; vc
; vc
= vc
->next
)
7282 if (!dv_changed_p (vc
->dv
))
7285 = (variable
) htab_find_with_hash (htab
, vc
->dv
,
7286 dv_htab_hash (vc
->dv
));
7289 set_dv_changed (vc
->dv
, true);
7290 VEC_safe_push (variable
, heap
, changed_variables_stack
, vcvar
);
7292 else if (dv_is_value_p (vc
->dv
))
7294 set_dv_changed (vc
->dv
, true);
7295 VEC_safe_push (rtx
, heap
, changed_values_stack
,
7296 dv_as_value (vc
->dv
));
7297 check_changed_vars_0 (vc
->dv
, htab
);
7302 /* Populate changed_variables_stack with variable_def pointers
7303 that need variable_was_changed called on them. */
7306 check_changed_vars_1 (void **slot
, void *data
)
7308 variable var
= (variable
) *slot
;
7309 htab_t htab
= (htab_t
) data
;
7311 if (dv_is_value_p (var
->dv
)
7312 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7313 check_changed_vars_0 (var
->dv
, htab
);
7317 /* Add VAR to changed_variables and also for VALUEs add recursively
7318 all DVs that aren't in changed_variables yet but reference the
7319 VALUE from its loc_chain. */
7322 check_changed_vars_2 (variable var
, htab_t htab
)
7324 variable_was_changed (var
, NULL
);
7325 if (dv_is_value_p (var
->dv
)
7326 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7327 check_changed_vars_0 (var
->dv
, htab
);
7330 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7331 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7332 it needs and are also in changed variables) and track whether
7333 cur_loc (or anything it uses to compute location) had to change
7334 during the current emit_notes_for_changes call. */
7337 check_changed_vars_3 (void **slot
, void *data
)
7339 variable var
= (variable
) *slot
;
7340 htab_t vars
= (htab_t
) data
;
7343 bool cur_loc_changed
;
7345 if (dv_is_value_p (var
->dv
)
7346 || TREE_CODE (dv_as_decl (var
->dv
)) == DEBUG_EXPR_DECL
)
7349 for (i
= 0; i
< var
->n_var_parts
; i
++)
7351 if (var
->var_part
[i
].cur_loc
7352 && vt_expand_loc_dummy (var
->var_part
[i
].cur_loc
, vars
,
7355 if (cur_loc_changed
)
7356 var
->cur_loc_changed
= true;
7359 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7360 if (lc
->loc
!= var
->var_part
[i
].cur_loc
7361 && vt_expand_loc_dummy (lc
->loc
, vars
, &cur_loc_changed
))
7363 if (lc
|| var
->var_part
[i
].cur_loc
)
7364 var
->cur_loc_changed
= true;
7365 var
->var_part
[i
].cur_loc
= lc
? lc
->loc
: NULL_RTX
;
7367 if (var
->n_var_parts
== 0)
7368 var
->cur_loc_changed
= true;
7372 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7373 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7374 shall be emitted before of after instruction INSN. */
7377 emit_notes_for_changes (rtx insn
, enum emit_note_where where
,
7380 emit_note_data data
;
7381 htab_t htab
= shared_hash_htab (vars
);
7383 if (!htab_elements (changed_variables
))
7386 if (MAY_HAVE_DEBUG_INSNS
)
7388 /* Unfortunately this has to be done in two steps, because
7389 we can't traverse a hashtab into which we are inserting
7390 through variable_was_changed. */
7391 htab_traverse (changed_variables
, check_changed_vars_1
, htab
);
7392 while (VEC_length (variable
, changed_variables_stack
) > 0)
7393 check_changed_vars_2 (VEC_pop (variable
, changed_variables_stack
),
7395 while (VEC_length (rtx
, changed_values_stack
) > 0)
7396 set_dv_changed (dv_from_value (VEC_pop (rtx
, changed_values_stack
)),
7398 htab_traverse (changed_variables
, check_changed_vars_3
, htab
);
7405 htab_traverse (changed_variables
, emit_note_insn_var_location
, &data
);
7408 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7409 same variable in hash table DATA or is not there at all. */
7412 emit_notes_for_differences_1 (void **slot
, void *data
)
7414 htab_t new_vars
= (htab_t
) data
;
7415 variable old_var
, new_var
;
7417 old_var
= (variable
) *slot
;
7418 new_var
= (variable
) htab_find_with_hash (new_vars
, old_var
->dv
,
7419 dv_htab_hash (old_var
->dv
));
7423 /* Variable has disappeared. */
7426 empty_var
= (variable
) pool_alloc (dv_pool (old_var
->dv
));
7427 empty_var
->dv
= old_var
->dv
;
7428 empty_var
->refcount
= 0;
7429 empty_var
->n_var_parts
= 0;
7430 empty_var
->cur_loc_changed
= false;
7431 empty_var
->in_changed_variables
= false;
7432 if (dv_onepart_p (old_var
->dv
))
7436 gcc_assert (old_var
->n_var_parts
== 1);
7437 for (lc
= old_var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7438 remove_value_chains (old_var
->dv
, lc
->loc
);
7440 variable_was_changed (empty_var
, NULL
);
7441 /* Continue traversing the hash table. */
7444 if (variable_different_p (old_var
, new_var
))
7446 if (dv_onepart_p (old_var
->dv
))
7448 location_chain lc1
, lc2
;
7450 gcc_assert (old_var
->n_var_parts
== 1);
7451 gcc_assert (new_var
->n_var_parts
== 1);
7452 lc1
= old_var
->var_part
[0].loc_chain
;
7453 lc2
= new_var
->var_part
[0].loc_chain
;
7456 && ((REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
7457 || rtx_equal_p (lc1
->loc
, lc2
->loc
)))
7462 for (; lc2
; lc2
= lc2
->next
)
7463 add_value_chains (old_var
->dv
, lc2
->loc
);
7464 for (; lc1
; lc1
= lc1
->next
)
7465 remove_value_chains (old_var
->dv
, lc1
->loc
);
7467 variable_was_changed (new_var
, NULL
);
7469 /* Update cur_loc. */
7470 if (old_var
!= new_var
)
7473 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
7475 new_var
->var_part
[i
].cur_loc
= NULL
;
7476 if (old_var
->n_var_parts
!= new_var
->n_var_parts
7477 || old_var
->var_part
[i
].offset
!= new_var
->var_part
[i
].offset
)
7478 new_var
->cur_loc_changed
= true;
7479 else if (old_var
->var_part
[i
].cur_loc
!= NULL
)
7482 rtx cur_loc
= old_var
->var_part
[i
].cur_loc
;
7484 for (lc
= new_var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
7485 if (lc
->loc
== cur_loc
7486 || rtx_equal_p (cur_loc
, lc
->loc
))
7488 new_var
->var_part
[i
].cur_loc
= lc
->loc
;
7492 new_var
->cur_loc_changed
= true;
7497 /* Continue traversing the hash table. */
7501 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7505 emit_notes_for_differences_2 (void **slot
, void *data
)
7507 htab_t old_vars
= (htab_t
) data
;
7508 variable old_var
, new_var
;
7510 new_var
= (variable
) *slot
;
7511 old_var
= (variable
) htab_find_with_hash (old_vars
, new_var
->dv
,
7512 dv_htab_hash (new_var
->dv
));
7516 /* Variable has appeared. */
7517 if (dv_onepart_p (new_var
->dv
))
7521 gcc_assert (new_var
->n_var_parts
== 1);
7522 for (lc
= new_var
->var_part
[0].loc_chain
; lc
; lc
= lc
->next
)
7523 add_value_chains (new_var
->dv
, lc
->loc
);
7525 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
7526 new_var
->var_part
[i
].cur_loc
= NULL
;
7527 variable_was_changed (new_var
, NULL
);
7530 /* Continue traversing the hash table. */
7534 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7538 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
7539 dataflow_set
*new_set
)
7541 htab_traverse (shared_hash_htab (old_set
->vars
),
7542 emit_notes_for_differences_1
,
7543 shared_hash_htab (new_set
->vars
));
7544 htab_traverse (shared_hash_htab (new_set
->vars
),
7545 emit_notes_for_differences_2
,
7546 shared_hash_htab (old_set
->vars
));
7547 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
7550 /* Emit the notes for changes of location parts in the basic block BB. */
7553 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
7556 micro_operation
*mo
;
7558 dataflow_set_clear (set
);
7559 dataflow_set_copy (set
, &VTI (bb
)->in
);
7561 for (i
= 0; VEC_iterate (micro_operation
, VTI (bb
)->mos
, i
, mo
); i
++)
7563 rtx insn
= mo
->insn
;
7568 dataflow_set_clear_at_call (set
);
7569 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
7574 rtx loc
= mo
->u
.loc
;
7577 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
7579 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
7581 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7587 rtx loc
= mo
->u
.loc
;
7591 if (GET_CODE (loc
) == CONCAT
)
7593 val
= XEXP (loc
, 0);
7594 vloc
= XEXP (loc
, 1);
7602 var
= PAT_VAR_LOCATION_DECL (vloc
);
7604 clobber_variable_part (set
, NULL_RTX
,
7605 dv_from_decl (var
), 0, NULL_RTX
);
7608 if (VAL_NEEDS_RESOLUTION (loc
))
7609 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
7610 set_variable_part (set
, val
, dv_from_decl (var
), 0,
7611 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
7614 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
7615 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
7616 dv_from_decl (var
), 0,
7617 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
7620 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7626 rtx loc
= mo
->u
.loc
;
7627 rtx val
, vloc
, uloc
;
7629 vloc
= uloc
= XEXP (loc
, 1);
7630 val
= XEXP (loc
, 0);
7632 if (GET_CODE (val
) == CONCAT
)
7634 uloc
= XEXP (val
, 1);
7635 val
= XEXP (val
, 0);
7638 if (VAL_NEEDS_RESOLUTION (loc
))
7639 val_resolve (set
, val
, vloc
, insn
);
7641 val_store (set
, val
, uloc
, insn
, false);
7643 if (VAL_HOLDS_TRACK_EXPR (loc
))
7645 if (GET_CODE (uloc
) == REG
)
7646 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
7648 else if (GET_CODE (uloc
) == MEM
)
7649 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
7653 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
7659 rtx loc
= mo
->u
.loc
;
7660 rtx val
, vloc
, uloc
, reverse
= NULL_RTX
;
7663 if (VAL_EXPR_HAS_REVERSE (loc
))
7665 reverse
= XEXP (loc
, 1);
7666 vloc
= XEXP (loc
, 0);
7668 uloc
= XEXP (vloc
, 1);
7669 val
= XEXP (vloc
, 0);
7672 if (GET_CODE (val
) == CONCAT
)
7674 vloc
= XEXP (val
, 1);
7675 val
= XEXP (val
, 0);
7678 if (GET_CODE (vloc
) == SET
)
7680 rtx vsrc
= SET_SRC (vloc
);
7682 gcc_assert (val
!= vsrc
);
7683 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
7685 vloc
= SET_DEST (vloc
);
7687 if (VAL_NEEDS_RESOLUTION (loc
))
7688 val_resolve (set
, val
, vsrc
, insn
);
7690 else if (VAL_NEEDS_RESOLUTION (loc
))
7692 gcc_assert (GET_CODE (uloc
) == SET
7693 && GET_CODE (SET_SRC (uloc
)) == REG
);
7694 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
7697 if (VAL_HOLDS_TRACK_EXPR (loc
))
7699 if (VAL_EXPR_IS_CLOBBERED (loc
))
7702 var_reg_delete (set
, uloc
, true);
7703 else if (MEM_P (uloc
))
7704 var_mem_delete (set
, uloc
, true);
7708 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
7710 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
7712 if (GET_CODE (uloc
) == SET
)
7714 set_src
= SET_SRC (uloc
);
7715 uloc
= SET_DEST (uloc
);
7720 status
= find_src_status (set
, set_src
);
7722 set_src
= find_src_set_src (set
, set_src
);
7726 var_reg_delete_and_set (set
, uloc
, !copied_p
,
7728 else if (MEM_P (uloc
))
7729 var_mem_delete_and_set (set
, uloc
, !copied_p
,
7733 else if (REG_P (uloc
))
7734 var_regno_delete (set
, REGNO (uloc
));
7736 val_store (set
, val
, vloc
, insn
, true);
7739 val_store (set
, XEXP (reverse
, 0), XEXP (reverse
, 1),
7742 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7749 rtx loc
= mo
->u
.loc
;
7752 if (GET_CODE (loc
) == SET
)
7754 set_src
= SET_SRC (loc
);
7755 loc
= SET_DEST (loc
);
7759 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
7762 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
7765 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7772 rtx loc
= mo
->u
.loc
;
7773 enum var_init_status src_status
;
7776 if (GET_CODE (loc
) == SET
)
7778 set_src
= SET_SRC (loc
);
7779 loc
= SET_DEST (loc
);
7782 src_status
= find_src_status (set
, set_src
);
7783 set_src
= find_src_set_src (set
, set_src
);
7786 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
7788 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
7790 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7797 rtx loc
= mo
->u
.loc
;
7800 var_reg_delete (set
, loc
, false);
7802 var_mem_delete (set
, loc
, false);
7804 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
7810 rtx loc
= mo
->u
.loc
;
7813 var_reg_delete (set
, loc
, true);
7815 var_mem_delete (set
, loc
, true);
7817 emit_notes_for_changes (NEXT_INSN (insn
), EMIT_NOTE_BEFORE_INSN
,
7823 set
->stack_adjust
+= mo
->u
.adjust
;
7829 /* Emit notes for the whole function. */
7832 vt_emit_notes (void)
7837 #ifdef ENABLE_RTL_CHECKING
7838 emitted_notes
= pointer_map_create ();
7840 gcc_assert (!htab_elements (changed_variables
));
7842 /* Free memory occupied by the out hash tables, as they aren't used
7845 dataflow_set_clear (&VTI (bb
)->out
);
7847 /* Enable emitting notes by functions (mainly by set_variable_part and
7848 delete_variable_part). */
7851 if (MAY_HAVE_DEBUG_INSNS
)
7856 for (i
= 0; VEC_iterate (rtx
, preserved_values
, i
, val
); i
++)
7857 add_cselib_value_chains (dv_from_value (val
));
7858 changed_variables_stack
= VEC_alloc (variable
, heap
, 40);
7859 changed_values_stack
= VEC_alloc (rtx
, heap
, 40);
7862 dataflow_set_init (&cur
);
7866 /* Emit the notes for changes of variable locations between two
7867 subsequent basic blocks. */
7868 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
7870 /* Emit the notes for the changes in the basic block itself. */
7871 emit_notes_in_bb (bb
, &cur
);
7873 /* Free memory occupied by the in hash table, we won't need it
7875 dataflow_set_clear (&VTI (bb
)->in
);
7877 #ifdef ENABLE_CHECKING
7878 htab_traverse (shared_hash_htab (cur
.vars
),
7879 emit_notes_for_differences_1
,
7880 shared_hash_htab (empty_shared_hash
));
7881 if (MAY_HAVE_DEBUG_INSNS
)
7886 for (i
= 0; VEC_iterate (rtx
, preserved_values
, i
, val
); i
++)
7887 remove_cselib_value_chains (dv_from_value (val
));
7888 gcc_assert (htab_elements (value_chains
) == 0);
7891 dataflow_set_destroy (&cur
);
7893 if (MAY_HAVE_DEBUG_INSNS
)
7895 VEC_free (variable
, heap
, changed_variables_stack
);
7896 VEC_free (rtx
, heap
, changed_values_stack
);
7899 #ifdef ENABLE_RTL_CHECKING
7900 pointer_map_destroy (emitted_notes
);
7905 /* If there is a declaration and offset associated with register/memory RTL
7906 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
7909 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
7913 if (REG_ATTRS (rtl
))
7915 *declp
= REG_EXPR (rtl
);
7916 *offsetp
= REG_OFFSET (rtl
);
7920 else if (MEM_P (rtl
))
7922 if (MEM_ATTRS (rtl
))
7924 *declp
= MEM_EXPR (rtl
);
7925 *offsetp
= INT_MEM_OFFSET (rtl
);
7932 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
7935 vt_add_function_parameters (void)
7939 for (parm
= DECL_ARGUMENTS (current_function_decl
);
7940 parm
; parm
= TREE_CHAIN (parm
))
7942 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
7943 rtx incoming
= DECL_INCOMING_RTL (parm
);
7945 enum machine_mode mode
;
7946 HOST_WIDE_INT offset
;
7950 if (TREE_CODE (parm
) != PARM_DECL
)
7953 if (!DECL_NAME (parm
))
7956 if (!decl_rtl
|| !incoming
)
7959 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
7962 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
7964 if (REG_P (incoming
) || MEM_P (incoming
))
7966 /* This means argument is passed by invisible reference. */
7969 incoming
= gen_rtx_MEM (GET_MODE (decl_rtl
), incoming
);
7973 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
7975 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
7976 GET_MODE (decl_rtl
));
7985 /* Assume that DECL_RTL was a pseudo that got spilled to
7986 memory. The spill slot sharing code will force the
7987 memory to reference spill_slot_decl (%sfp), so we don't
7988 match above. That's ok, the pseudo must have referenced
7989 the entire parameter, so just reset OFFSET. */
7990 gcc_assert (decl
== get_spill_slot_decl (false));
7994 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &offset
))
7997 out
= &VTI (ENTRY_BLOCK_PTR
)->out
;
7999 dv
= dv_from_decl (parm
);
8001 if (target_for_debug_bind (parm
)
8002 /* We can't deal with these right now, because this kind of
8003 variable is single-part. ??? We could handle parallels
8004 that describe multiple locations for the same single
8005 value, but ATM we don't. */
8006 && GET_CODE (incoming
) != PARALLEL
)
8010 /* ??? We shouldn't ever hit this, but it may happen because
8011 arguments passed by invisible reference aren't dealt with
8012 above: incoming-rtl will have Pmode rather than the
8013 expected mode for the type. */
8017 val
= cselib_lookup (var_lowpart (mode
, incoming
), mode
, true);
8019 /* ??? Float-typed values in memory are not handled by
8023 preserve_value (val
);
8024 set_variable_part (out
, val
->val_rtx
, dv
, offset
,
8025 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8026 dv
= dv_from_value (val
->val_rtx
);
8030 if (REG_P (incoming
))
8032 incoming
= var_lowpart (mode
, incoming
);
8033 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
8034 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, offset
,
8036 set_variable_part (out
, incoming
, dv
, offset
,
8037 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8039 else if (MEM_P (incoming
))
8041 incoming
= var_lowpart (mode
, incoming
);
8042 set_variable_part (out
, incoming
, dv
, offset
,
8043 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
8047 if (MAY_HAVE_DEBUG_INSNS
)
8049 cselib_preserve_only_values ();
8050 cselib_reset_table (cselib_get_next_uid ());
8055 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8058 fp_setter (rtx insn
)
8060 rtx pat
= PATTERN (insn
);
8061 if (RTX_FRAME_RELATED_P (insn
))
8063 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
8065 pat
= XEXP (expr
, 0);
8067 if (GET_CODE (pat
) == SET
)
8068 return SET_DEST (pat
) == hard_frame_pointer_rtx
;
8069 else if (GET_CODE (pat
) == PARALLEL
)
8072 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
8073 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
8074 && SET_DEST (XVECEXP (pat
, 0, i
)) == hard_frame_pointer_rtx
)
8080 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8081 ensure it isn't flushed during cselib_reset_table.
8082 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8083 has been eliminated. */
8086 vt_init_cfa_base (void)
8090 #ifdef FRAME_POINTER_CFA_OFFSET
8091 cfa_base_rtx
= frame_pointer_rtx
;
8093 cfa_base_rtx
= arg_pointer_rtx
;
8095 if (cfa_base_rtx
== hard_frame_pointer_rtx
8096 || !fixed_regs
[REGNO (cfa_base_rtx
)])
8098 cfa_base_rtx
= NULL_RTX
;
8101 if (!MAY_HAVE_DEBUG_INSNS
)
8104 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
8106 preserve_value (val
);
8107 cselib_preserve_cfa_base_value (val
);
8108 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR
)->out
, cfa_base_rtx
,
8109 VAR_INIT_STATUS_INITIALIZED
, dv_from_value (val
->val_rtx
),
8110 0, NULL_RTX
, INSERT
);
8113 /* Allocate and initialize the data structures for variable tracking
8114 and parse the RTL to get the micro operations. */
8117 vt_initialize (void)
8119 basic_block bb
, prologue_bb
= NULL
;
8120 HOST_WIDE_INT fp_cfa_offset
= -1;
8122 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
8124 attrs_pool
= create_alloc_pool ("attrs_def pool",
8125 sizeof (struct attrs_def
), 1024);
8126 var_pool
= create_alloc_pool ("variable_def pool",
8127 sizeof (struct variable_def
)
8128 + (MAX_VAR_PARTS
- 1)
8129 * sizeof (((variable
)NULL
)->var_part
[0]), 64);
8130 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
8131 sizeof (struct location_chain_def
),
8133 shared_hash_pool
= create_alloc_pool ("shared_hash_def pool",
8134 sizeof (struct shared_hash_def
), 256);
8135 empty_shared_hash
= (shared_hash
) pool_alloc (shared_hash_pool
);
8136 empty_shared_hash
->refcount
= 1;
8137 empty_shared_hash
->htab
8138 = htab_create (1, variable_htab_hash
, variable_htab_eq
,
8139 variable_htab_free
);
8140 changed_variables
= htab_create (10, variable_htab_hash
, variable_htab_eq
,
8141 variable_htab_free
);
8142 if (MAY_HAVE_DEBUG_INSNS
)
8144 value_chain_pool
= create_alloc_pool ("value_chain_def pool",
8145 sizeof (struct value_chain_def
),
8147 value_chains
= htab_create (32, value_chain_htab_hash
,
8148 value_chain_htab_eq
, NULL
);
8151 /* Init the IN and OUT sets. */
8154 VTI (bb
)->visited
= false;
8155 VTI (bb
)->flooded
= false;
8156 dataflow_set_init (&VTI (bb
)->in
);
8157 dataflow_set_init (&VTI (bb
)->out
);
8158 VTI (bb
)->permp
= NULL
;
8161 if (MAY_HAVE_DEBUG_INSNS
)
8163 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
8164 scratch_regs
= BITMAP_ALLOC (NULL
);
8165 valvar_pool
= create_alloc_pool ("small variable_def pool",
8166 sizeof (struct variable_def
), 256);
8167 preserved_values
= VEC_alloc (rtx
, heap
, 256);
8171 scratch_regs
= NULL
;
8175 if (!frame_pointer_needed
)
8179 if (!vt_stack_adjustments ())
8182 #ifdef FRAME_POINTER_CFA_OFFSET
8183 reg
= frame_pointer_rtx
;
8185 reg
= arg_pointer_rtx
;
8187 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8190 if (GET_CODE (elim
) == PLUS
)
8191 elim
= XEXP (elim
, 0);
8192 if (elim
== stack_pointer_rtx
)
8193 vt_init_cfa_base ();
8196 else if (!crtl
->stack_realign_tried
)
8200 #ifdef FRAME_POINTER_CFA_OFFSET
8201 reg
= frame_pointer_rtx
;
8202 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
8204 reg
= arg_pointer_rtx
;
8205 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
8207 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8210 if (GET_CODE (elim
) == PLUS
)
8212 fp_cfa_offset
-= INTVAL (XEXP (elim
, 1));
8213 elim
= XEXP (elim
, 0);
8215 if (elim
!= hard_frame_pointer_rtx
)
8218 prologue_bb
= single_succ (ENTRY_BLOCK_PTR
);
8222 hard_frame_pointer_adjustment
= -1;
8227 HOST_WIDE_INT pre
, post
= 0;
8228 basic_block first_bb
, last_bb
;
8230 if (MAY_HAVE_DEBUG_INSNS
)
8232 cselib_record_sets_hook
= add_with_sets
;
8233 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8234 fprintf (dump_file
, "first value: %i\n",
8235 cselib_get_next_uid ());
8242 if (bb
->next_bb
== EXIT_BLOCK_PTR
8243 || ! single_pred_p (bb
->next_bb
))
8245 e
= find_edge (bb
, bb
->next_bb
);
8246 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
8252 /* Add the micro-operations to the vector. */
8253 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
8255 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
8256 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
8257 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
8258 insn
= NEXT_INSN (insn
))
8262 if (!frame_pointer_needed
)
8264 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
8268 mo
.type
= MO_ADJUST
;
8271 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8272 log_op_type (PATTERN (insn
), bb
, insn
,
8273 MO_ADJUST
, dump_file
);
8274 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
,
8276 VTI (bb
)->out
.stack_adjust
+= pre
;
8280 cselib_hook_called
= false;
8281 adjust_insn (bb
, insn
);
8282 if (MAY_HAVE_DEBUG_INSNS
)
8284 cselib_process_insn (insn
);
8285 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8287 print_rtl_single (dump_file
, insn
);
8288 dump_cselib_table (dump_file
);
8291 if (!cselib_hook_called
)
8292 add_with_sets (insn
, 0, 0);
8295 if (!frame_pointer_needed
&& post
)
8298 mo
.type
= MO_ADJUST
;
8301 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8302 log_op_type (PATTERN (insn
), bb
, insn
,
8303 MO_ADJUST
, dump_file
);
8304 VEC_safe_push (micro_operation
, heap
, VTI (bb
)->mos
,
8306 VTI (bb
)->out
.stack_adjust
+= post
;
8309 if (bb
== prologue_bb
8310 && hard_frame_pointer_adjustment
== -1
8311 && RTX_FRAME_RELATED_P (insn
)
8312 && fp_setter (insn
))
8314 vt_init_cfa_base ();
8315 hard_frame_pointer_adjustment
= fp_cfa_offset
;
8319 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
8324 if (MAY_HAVE_DEBUG_INSNS
)
8326 cselib_preserve_only_values ();
8327 cselib_reset_table (cselib_get_next_uid ());
8328 cselib_record_sets_hook
= NULL
;
8332 hard_frame_pointer_adjustment
= -1;
8333 VTI (ENTRY_BLOCK_PTR
)->flooded
= true;
8334 vt_add_function_parameters ();
8335 cfa_base_rtx
= NULL_RTX
;
8339 /* Get rid of all debug insns from the insn stream. */
8342 delete_debug_insns (void)
8347 if (!MAY_HAVE_DEBUG_INSNS
)
8352 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
8353 if (DEBUG_INSN_P (insn
))
8358 /* Run a fast, BB-local only version of var tracking, to take care of
8359 information that we don't do global analysis on, such that not all
8360 information is lost. If SKIPPED holds, we're skipping the global
8361 pass entirely, so we should try to use information it would have
8362 handled as well.. */
8365 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
8367 /* ??? Just skip it all for now. */
8368 delete_debug_insns ();
8371 /* Free the data structures needed for variable tracking. */
8380 VEC_free (micro_operation
, heap
, VTI (bb
)->mos
);
8385 dataflow_set_destroy (&VTI (bb
)->in
);
8386 dataflow_set_destroy (&VTI (bb
)->out
);
8387 if (VTI (bb
)->permp
)
8389 dataflow_set_destroy (VTI (bb
)->permp
);
8390 XDELETE (VTI (bb
)->permp
);
8393 free_aux_for_blocks ();
8394 htab_delete (empty_shared_hash
->htab
);
8395 htab_delete (changed_variables
);
8396 free_alloc_pool (attrs_pool
);
8397 free_alloc_pool (var_pool
);
8398 free_alloc_pool (loc_chain_pool
);
8399 free_alloc_pool (shared_hash_pool
);
8401 if (MAY_HAVE_DEBUG_INSNS
)
8403 htab_delete (value_chains
);
8404 free_alloc_pool (value_chain_pool
);
8405 free_alloc_pool (valvar_pool
);
8406 VEC_free (rtx
, heap
, preserved_values
);
8408 BITMAP_FREE (scratch_regs
);
8409 scratch_regs
= NULL
;
8413 XDELETEVEC (vui_vec
);
8418 /* The entry point to variable tracking pass. */
8420 static inline unsigned int
8421 variable_tracking_main_1 (void)
8425 if (flag_var_tracking_assignments
< 0)
8427 delete_debug_insns ();
8431 if (n_basic_blocks
> 500 && n_edges
/ n_basic_blocks
>= 20)
8433 vt_debug_insns_local (true);
8437 mark_dfs_back_edges ();
8438 if (!vt_initialize ())
8441 vt_debug_insns_local (true);
8445 success
= vt_find_locations ();
8447 if (!success
&& flag_var_tracking_assignments
> 0)
8451 delete_debug_insns ();
8453 /* This is later restored by our caller. */
8454 flag_var_tracking_assignments
= 0;
8456 success
= vt_initialize ();
8457 gcc_assert (success
);
8459 success
= vt_find_locations ();
8465 vt_debug_insns_local (false);
8469 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8471 dump_dataflow_sets ();
8472 dump_flow_info (dump_file
, dump_flags
);
8478 vt_debug_insns_local (false);
8483 variable_tracking_main (void)
8486 int save
= flag_var_tracking_assignments
;
8488 ret
= variable_tracking_main_1 ();
8490 flag_var_tracking_assignments
= save
;
8496 gate_handle_var_tracking (void)
8498 return (flag_var_tracking
);
8503 struct rtl_opt_pass pass_variable_tracking
=
8507 "vartrack", /* name */
8508 gate_handle_var_tracking
, /* gate */
8509 variable_tracking_main
, /* execute */
8512 0, /* static_pass_number */
8513 TV_VAR_TRACKING
, /* tv_id */
8514 0, /* properties_required */
8515 0, /* properties_provided */
8516 0, /* properties_destroyed */
8517 0, /* todo_flags_start */
8518 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */