1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "basic-block.h"
41 #include "tree-pass.h"
45 /* This pass does simple forward propagation and simplification when an
46 operand of an insn can only come from a single def. This pass uses
47 df.c, so it is global. However, we only do limited analysis of
48 available expressions.
50 1) The pass tries to propagate the source of the def into the use,
51 and checks if the result is independent of the substituted value.
52 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
53 zero, independent of the source register.
55 In particular, we propagate constants into the use site. Sometimes
56 RTL expansion did not put the constant in the same insn on purpose,
57 to satisfy a predicate, and the result will fail to be recognized;
58 but this happens rarely and in this case we can still create a
59 REG_EQUAL note. For multi-word operations, this
61 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
62 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
63 (set (subreg:SI (reg:DI 122) 0)
64 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
65 (set (subreg:SI (reg:DI 122) 4)
66 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
68 can be simplified to the much simpler
70 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
71 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
73 This particular propagation is also effective at putting together
74 complex addressing modes. We are more aggressive inside MEMs, in
75 that all definitions are propagated if the use is in a MEM; if the
76 result is a valid memory address we check address_cost to decide
77 whether the substitution is worthwhile.
79 2) The pass propagates register copies. This is not as effective as
80 the copy propagation done by CSE's canon_reg, which works by walking
81 the instruction chain, it can help the other transformations.
83 We should consider removing this optimization, and instead reorder the
84 RTL passes, because GCSE does this transformation too. With some luck,
85 the CSE pass at the end of rest_of_handle_gcse could also go away.
87 3) The pass looks for paradoxical subregs that are actually unnecessary.
90 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
91 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
92 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
93 (subreg:SI (reg:QI 121) 0)))
95 are very common on machines that can only do word-sized operations.
96 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
97 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
98 we can replace the paradoxical subreg with simply (reg:WIDE M). The
99 above will simplify this to
101 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
105 where the first two insns are now dead.
107 We used to use reaching definitions to find which uses have a
108 single reaching definition (sounds obvious...), but this is too
109 complex a problem in nasty testcases like PR33928. Now we use the
110 multiple definitions problem in df-problems.c. The similarity
111 between that problem and SSA form creation is taken further, in
112 that fwprop does a dominator walk to create its chains; however,
113 instead of creating a PHI function where multiple definitions meet
114 I just punt and record only singleton use-def chains, which is
115 all that is needed by fwprop. */
118 static int num_changes
;
121 DEF_VEC_ALLOC_P(df_ref
,heap
);
122 static VEC(df_ref
,heap
) *use_def_ref
;
123 static VEC(df_ref
,heap
) *reg_defs
;
124 static VEC(df_ref
,heap
) *reg_defs_stack
;
126 /* The MD bitmaps are trimmed to include only live registers to cut
127 memory usage on testcases like insn-recog.c. Track live registers
128 in the basic block and do not perform forward propagation if the
129 destination is a dead pseudo occurring in a note. */
130 static bitmap local_md
;
131 static bitmap local_lr
;
133 /* Return the only def in USE's use-def chain, or NULL if there is
134 more than one def in the chain. */
137 get_def_for_use (df_ref use
)
139 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
143 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
144 TOP_FLAG says which artificials uses should be used, when DEF_REC
145 is an artificial def vector. LOCAL_MD is modified as after a
146 df_md_simulate_* function; we do more or less the same processing
147 done there, so we do not use those functions. */
149 #define DF_MD_GEN_FLAGS \
150 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
153 process_defs (df_ref
*def_rec
, int top_flag
)
156 while ((def
= *def_rec
++) != NULL
)
158 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
161 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
164 dregno
= DF_REF_REGNO (def
);
166 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
169 /* Do not store anything if "transitioning" from NULL to NULL. But
170 otherwise, push a special entry on the stack to tell the
171 leave_block callback that the entry in reg_defs was NULL. */
172 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
175 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
178 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
180 bitmap_set_bit (local_md
, dregno
);
181 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
185 bitmap_clear_bit (local_md
, dregno
);
186 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
192 /* Fill the use_def_ref vector with values for the uses in USE_REC,
193 taking reaching definitions info from LOCAL_MD and REG_DEFS.
194 TOP_FLAG says which artificials uses should be used, when USE_REC
195 is an artificial use vector. */
198 process_uses (df_ref
*use_rec
, int top_flag
)
201 while ((use
= *use_rec
++) != NULL
)
202 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
204 unsigned int uregno
= DF_REF_REGNO (use
);
205 if (VEC_index (df_ref
, reg_defs
, uregno
)
206 && !bitmap_bit_p (local_md
, uregno
)
207 && bitmap_bit_p (local_lr
, uregno
))
208 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
209 VEC_index (df_ref
, reg_defs
, uregno
));
215 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
218 int bb_index
= bb
->index
;
219 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
220 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
223 bitmap_copy (local_md
, md_bb_info
->in
);
224 bitmap_copy (local_lr
, lr_bb_info
->in
);
226 /* Push a marker for the leave_block callback. */
227 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
229 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
230 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
231 df_simulate_initialize_forwards (bb
, local_lr
);
233 FOR_BB_INSNS (bb
, insn
)
236 unsigned int uid
= INSN_UID (insn
);
237 process_uses (DF_INSN_UID_USES (uid
), 0);
238 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
239 process_defs (DF_INSN_UID_DEFS (uid
), 0);
240 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
243 process_uses (df_get_artificial_uses (bb_index
), 0);
244 process_defs (df_get_artificial_defs (bb_index
), 0);
247 /* Pop the definitions created in this basic block when leaving its
251 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
252 basic_block bb ATTRIBUTE_UNUSED
)
255 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
257 unsigned int dregno
= DF_REF_REGNO (saved_def
);
259 /* See also process_defs. */
260 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
261 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
263 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
268 /* Build a vector holding the reaching definitions of uses reached by a
269 single dominating definition. */
272 build_single_def_use_links (void)
274 struct dom_walk_data walk_data
;
276 /* We use the multiple definitions problem to compute our restricted
278 df_set_flags (DF_EQ_NOTES
);
279 df_md_add_problem ();
280 df_note_add_problem ();
282 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
284 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
285 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
287 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
288 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
290 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
291 local_md
= BITMAP_ALLOC (NULL
);
292 local_lr
= BITMAP_ALLOC (NULL
);
294 /* Walk the dominator tree looking for single reaching definitions
295 dominating the uses. This is similar to how SSA form is built. */
296 walk_data
.dom_direction
= CDI_DOMINATORS
;
297 walk_data
.initialize_block_local_data
= NULL
;
298 walk_data
.before_dom_children
= single_def_use_enter_block
;
299 walk_data
.after_dom_children
= single_def_use_leave_block
;
301 init_walk_dominator_tree (&walk_data
);
302 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
303 fini_walk_dominator_tree (&walk_data
);
305 BITMAP_FREE (local_lr
);
306 BITMAP_FREE (local_md
);
307 VEC_free (df_ref
, heap
, reg_defs
);
308 VEC_free (df_ref
, heap
, reg_defs_stack
);
312 /* Do not try to replace constant addresses or addresses of local and
313 argument slots. These MEM expressions are made only once and inserted
314 in many instructions, as well as being used to control symbol table
315 output. It is not safe to clobber them.
317 There are some uncommon cases where the address is already in a register
318 for some reason, but we cannot take advantage of that because we have
319 no easy way to unshare the MEM. In addition, looking up all stack
320 addresses is costly. */
323 can_simplify_addr (rtx addr
)
327 if (CONSTANT_ADDRESS_P (addr
))
330 if (GET_CODE (addr
) == PLUS
)
331 reg
= XEXP (addr
, 0);
336 || (REGNO (reg
) != FRAME_POINTER_REGNUM
337 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
338 && REGNO (reg
) != ARG_POINTER_REGNUM
));
341 /* Returns a canonical version of X for the address, from the point of view,
342 that all multiplications are represented as MULT instead of the multiply
343 by a power of 2 being represented as ASHIFT.
345 Every ASHIFT we find has been made by simplify_gen_binary and was not
346 there before, so it is not shared. So we can do this in place. */
349 canonicalize_address (rtx x
)
352 switch (GET_CODE (x
))
355 if (CONST_INT_P (XEXP (x
, 1))
356 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
357 && INTVAL (XEXP (x
, 1)) >= 0)
359 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
361 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
369 if (GET_CODE (XEXP (x
, 0)) == PLUS
370 || GET_CODE (XEXP (x
, 0)) == ASHIFT
371 || GET_CODE (XEXP (x
, 0)) == CONST
)
372 canonicalize_address (XEXP (x
, 0));
386 /* OLD is a memory address. Return whether it is good to use NEW instead,
387 for a memory access in the given MODE. */
390 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
391 addr_space_t as
, bool speed
)
395 if (rtx_equal_p (old_rtx
, new_rtx
)
396 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
399 /* Copy propagation is always ok. */
400 if (REG_P (old_rtx
) && REG_P (new_rtx
))
403 /* Prefer the new address if it is less expensive. */
404 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
405 - address_cost (new_rtx
, mode
, as
, speed
));
407 /* If the addresses have equivalent cost, prefer the new address
408 if it has the highest `rtx_cost'. That has the potential of
409 eliminating the most insns without additional costs, and it
410 is the same that cse.c used to do. */
412 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
418 /* Flags for the last parameter of propagate_rtx_1. */
421 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
422 if it is false, propagate_rtx_1 returns false if, for at least
423 one occurrence OLD, it failed to collapse the result to a constant.
424 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
425 collapse to zero if replacing (reg:M B) with (reg:M A).
427 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
428 propagate_rtx_1 just tries to make cheaper and valid memory
432 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
433 outside memory addresses. This is needed because propagate_rtx_1 does
434 not do any analysis on memory; thus it is very conservative and in general
435 it will fail if non-read-only MEMs are found in the source expression.
437 PR_HANDLE_MEM is set when the source of the propagation was not
438 another MEM. Then, it is safe not to treat non-read-only MEMs as
439 ``opaque'' objects. */
442 /* Set when costs should be optimized for speed. */
443 PR_OPTIMIZE_FOR_SPEED
= 4
447 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
448 resulting expression. Replace *PX with a new RTL expression if an
449 occurrence of OLD was found.
451 This is only a wrapper around simplify-rtx.c: do not add any pattern
452 matching code here. (The sole exception is the handling of LO_SUM, but
453 that is because there is no simplify_gen_* function for LO_SUM). */
456 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
458 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
459 enum rtx_code code
= GET_CODE (x
);
460 enum machine_mode mode
= GET_MODE (x
);
461 enum machine_mode op_mode
;
462 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
463 bool valid_ops
= true;
465 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
467 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
468 they have side effects or not). */
469 *px
= (side_effects_p (x
)
470 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
471 : gen_rtx_SCRATCH (GET_MODE (x
)));
475 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
476 address, and we are *not* inside one. */
483 /* If this is an expression, try recursive substitution. */
484 switch (GET_RTX_CLASS (code
))
488 op_mode
= GET_MODE (op0
);
489 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
490 if (op0
== XEXP (x
, 0))
492 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
499 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
500 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
501 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
503 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
507 case RTX_COMM_COMPARE
:
510 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
511 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
512 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
513 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
515 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
519 case RTX_BITFIELD_OPS
:
523 op_mode
= GET_MODE (op0
);
524 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
525 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
526 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
527 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
529 if (op_mode
== VOIDmode
)
530 op_mode
= GET_MODE (op0
);
531 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
535 /* The only case we try to handle is a SUBREG. */
539 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
540 if (op0
== XEXP (x
, 0))
542 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
548 if (code
== MEM
&& x
!= new_rtx
)
553 /* There are some addresses that we cannot work on. */
554 if (!can_simplify_addr (op0
))
557 op0
= new_op0
= targetm
.delegitimize_address (op0
);
558 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
559 flags
| PR_CAN_APPEAR
);
561 /* Dismiss transformation that we do not want to carry on. */
564 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
565 || GET_MODE (new_op0
) == VOIDmode
))
568 canonicalize_address (new_op0
);
570 /* Copy propagations are always ok. Otherwise check the costs. */
571 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
572 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
574 flags
& PR_OPTIMIZE_FOR_SPEED
))
577 tem
= replace_equiv_address_nv (x
, new_op0
);
580 else if (code
== LO_SUM
)
585 /* The only simplification we do attempts to remove references to op0
586 or make it constant -- in both cases, op0's invalidity will not
587 make the result invalid. */
588 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
589 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
590 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
593 /* (lo_sum (high x) x) -> x */
594 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
597 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
599 /* OP1 is likely not a legitimate address, otherwise there would have
600 been no LO_SUM. We want it to disappear if it is invalid, return
601 false in that case. */
602 return memory_address_p (mode
, tem
);
605 else if (code
== REG
)
607 if (rtx_equal_p (x
, old_rtx
))
619 /* No change, no trouble. */
625 /* The replacement we made so far is valid, if all of the recursive
626 replacements were valid, or we could simplify everything to
628 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
632 /* for_each_rtx traversal function that returns 1 if BODY points to
633 a non-constant mem. */
636 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
639 return MEM_P (x
) && !MEM_READONLY_P (x
);
643 /* Replace all occurrences of OLD in X with NEW and try to simplify the
644 resulting expression (in mode MODE). Return a new expression if it is
645 a constant, otherwise X.
647 Simplifications where occurrences of NEW collapse to a constant are always
648 accepted. All simplifications are accepted if NEW is a pseudo too.
649 Otherwise, we accept simplifications that have a lower or equal cost. */
652 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
659 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
663 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
664 flags
|= PR_CAN_APPEAR
;
665 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
666 flags
|= PR_HANDLE_MEM
;
669 flags
|= PR_OPTIMIZE_FOR_SPEED
;
672 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
673 if (tem
== x
|| !collapsed
)
676 /* gen_lowpart_common will not be able to process VOIDmode entities other
678 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
681 if (GET_MODE (tem
) == VOIDmode
)
682 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
684 gcc_assert (GET_MODE (tem
) == mode
);
692 /* Return true if the register from reference REF is killed
693 between FROM to (but not including) TO. */
696 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
700 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
706 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
708 df_ref def
= *def_rec
;
709 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
717 /* Check if the given DEF is available in INSN. This would require full
718 computation of available expressions; we check only restricted conditions:
719 - if DEF is the sole definition of its register, go ahead;
720 - in the same basic block, we check for no definitions killing the
721 definition of DEF_INSN;
722 - if USE's basic block has DEF's basic block as the sole predecessor,
723 we check if the definition is killed after DEF_INSN or before
724 TARGET_INSN insn, in their respective basic blocks. */
726 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
728 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
729 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
733 /* We used to have a def reaching a use that is _before_ the def,
734 with the def not dominating the use even though the use and def
735 are in the same basic block, when a register may be used
736 uninitialized in a loop. This should not happen anymore since
737 we do not use reaching definitions, but still we test for such
738 cases and assume that DEF is not available. */
739 if (def_bb
== target_bb
740 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
741 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
744 /* Check if the reg in USE has only one definition. We already
745 know that this definition reaches use, or we wouldn't be here.
746 However, this is invalid for hard registers because if they are
747 live at the beginning of the function it does not mean that we
748 have an uninitialized access. */
749 regno
= DF_REF_REGNO (use
);
750 def
= DF_REG_DEF_CHAIN (regno
);
752 && DF_REF_NEXT_REG (def
) == NULL
753 && regno
>= FIRST_PSEUDO_REGISTER
)
756 /* Check locally if we are in the same basic block. */
757 if (def_bb
== target_bb
)
758 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
760 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
761 if (single_pred_p (target_bb
)
762 && single_pred (target_bb
) == def_bb
)
766 /* See if USE is killed between DEF_INSN and the last insn in the
767 basic block containing DEF_INSN. */
768 x
= df_bb_regno_last_def_find (def_bb
, regno
);
769 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
772 /* See if USE is killed between TARGET_INSN and the first insn in the
773 basic block containing TARGET_INSN. */
774 x
= df_bb_regno_first_def_find (target_bb
, regno
);
775 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
781 /* Otherwise assume the worst case. */
786 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
787 would require full computation of available expressions;
788 we check only restricted conditions, see use_killed_between. */
790 all_uses_available_at (rtx def_insn
, rtx target_insn
)
793 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
794 rtx def_set
= single_set (def_insn
);
796 gcc_assert (def_set
);
798 /* If target_insn comes right after def_insn, which is very common
799 for addresses, we can use a quicker test. */
800 if (NEXT_INSN (def_insn
) == target_insn
801 && REG_P (SET_DEST (def_set
)))
803 rtx def_reg
= SET_DEST (def_set
);
805 /* If the insn uses the reg that it defines, the substitution is
807 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
809 df_ref use
= *use_rec
;
810 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
813 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
815 df_ref use
= *use_rec
;
816 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
822 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
824 /* Look at all the uses of DEF_INSN, and see if they are not
825 killed between DEF_INSN and TARGET_INSN. */
826 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
828 df_ref use
= *use_rec
;
829 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
831 if (use_killed_between (use
, def_insn
, target_insn
))
834 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
836 df_ref use
= *use_rec
;
837 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
839 if (use_killed_between (use
, def_insn
, target_insn
))
848 struct find_occurrence_data
854 /* Callback for for_each_rtx, used in find_occurrence.
855 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
856 if successful, or 0 to continue traversing otherwise. */
859 find_occurrence_callback (rtx
*px
, void *data
)
861 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
863 rtx find
= fod
->find
;
874 /* Return a pointer to one of the occurrences of register FIND in *PX. */
877 find_occurrence (rtx
*px
, rtx find
)
879 struct find_occurrence_data data
;
881 gcc_assert (REG_P (find
)
882 || (GET_CODE (find
) == SUBREG
883 && REG_P (SUBREG_REG (find
))));
887 for_each_rtx (px
, find_occurrence_callback
, &data
);
892 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
893 uses from USE_VEC. Find those that are present, and create new items
894 in the data flow object of the pass. Mark any new uses as having the
897 update_df (rtx insn
, rtx
*loc
, df_ref
*use_rec
, enum df_ref_type type
,
900 bool changed
= false;
902 /* Add a use for the registers that were propagated. */
905 df_ref use
= *use_rec
;
906 df_ref orig_use
= use
, new_use
;
909 enum machine_mode mode
= VOIDmode
;
910 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
916 if (DF_REF_FLAGS_IS_SET (orig_use
, DF_REF_SIGN_EXTRACT
| DF_REF_ZERO_EXTRACT
))
918 width
= DF_REF_EXTRACT_WIDTH (orig_use
);
919 offset
= DF_REF_EXTRACT_OFFSET (orig_use
);
920 mode
= DF_REF_EXTRACT_MODE (orig_use
);
923 /* Add a new insn use. Use the original type, because it says if the
924 use was within a MEM. */
925 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
926 insn
, BLOCK_FOR_INSN (insn
),
927 type
, DF_REF_FLAGS (orig_use
) | new_flags
,
928 width
, offset
, mode
);
930 /* Set up the use-def chain. */
931 gcc_assert (DF_REF_ID (new_use
) == (int) VEC_length (df_ref
, use_def_ref
));
932 VEC_safe_push (df_ref
, heap
, use_def_ref
, get_def_for_use (orig_use
));
936 df_insn_rescan (insn
);
940 /* Try substituting NEW into LOC, which originated from forward propagation
941 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
942 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
943 new insn is not recognized. Return whether the substitution was
947 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
949 rtx insn
= DF_REF_INSN (use
);
950 enum df_ref_type type
= DF_REF_TYPE (use
);
951 int flags
= DF_REF_FLAGS (use
);
952 rtx set
= single_set (insn
);
953 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
957 /* forward_propagate_subreg may be operating on an instruction with
958 multiple sets. If so, assume the cost of the new instruction is
959 not greater than the old one. */
961 old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
964 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
965 print_inline_rtx (dump_file
, *loc
, 2);
966 fprintf (dump_file
, "\n with ");
967 print_inline_rtx (dump_file
, new_rtx
, 2);
968 fprintf (dump_file
, "\n");
971 validate_unshare_change (insn
, loc
, new_rtx
, true);
972 if (!verify_changes (0))
975 fprintf (dump_file
, "Changes to insn %d not recognized\n",
980 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
982 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
985 fprintf (dump_file
, "Changes to insn %d not profitable\n",
993 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
999 confirm_change_group ();
1002 df_ref_remove (use
);
1003 if (!CONSTANT_P (new_rtx
))
1005 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1006 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
), type
, flags
);
1007 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
), type
, flags
);
1014 /* Can also record a simplified value in a REG_EQUAL note,
1015 making a new one if one does not already exist. */
1019 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1021 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1023 /* ??? Is this still necessary if we add the note through
1024 set_unique_reg_note? */
1025 if (!CONSTANT_P (new_rtx
))
1027 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
1028 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
),
1029 type
, DF_REF_IN_NOTE
);
1030 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
),
1031 type
, DF_REF_IN_NOTE
);
1039 /* For the given single_set INSN, containing SRC known to be a
1040 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1041 is redundant due to the register being set by a LOAD_EXTEND_OP
1042 load from memory. */
1045 free_load_extend (rtx src
, rtx insn
)
1049 df_ref use
= 0, def
;
1051 reg
= XEXP (src
, 0);
1052 #ifdef LOAD_EXTEND_OP
1053 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1057 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1061 if (!DF_REF_IS_ARTIFICIAL (use
)
1062 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1063 && DF_REF_REG (use
) == reg
)
1069 def
= get_def_for_use (use
);
1073 if (DF_REF_IS_ARTIFICIAL (def
))
1076 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1078 rtx patt
= PATTERN (DF_REF_INSN (def
));
1080 if (GET_CODE (patt
) == SET
1081 && GET_CODE (SET_SRC (patt
)) == MEM
1082 && rtx_equal_p (SET_DEST (patt
), reg
))
1088 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1091 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1093 rtx use_reg
= DF_REF_REG (use
);
1096 /* Only consider subregs... */
1097 enum machine_mode use_mode
= GET_MODE (use_reg
);
1098 if (GET_CODE (use_reg
) != SUBREG
1099 || !REG_P (SET_DEST (def_set
)))
1102 /* If this is a paradoxical SUBREG... */
1103 if (GET_MODE_SIZE (use_mode
)
1104 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1106 /* If this is a paradoxical SUBREG, we have no idea what value the
1107 extra bits would have. However, if the operand is equivalent to
1108 a SUBREG whose operand is the same as our mode, and all the modes
1109 are within a word, we can just use the inner operand because
1110 these SUBREGs just say how to treat the register. */
1111 use_insn
= DF_REF_INSN (use
);
1112 src
= SET_SRC (def_set
);
1113 if (GET_CODE (src
) == SUBREG
1114 && REG_P (SUBREG_REG (src
))
1115 && GET_MODE (SUBREG_REG (src
)) == use_mode
1116 && subreg_lowpart_p (src
)
1117 && all_uses_available_at (def_insn
, use_insn
))
1118 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1122 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1123 is the low part of the reg being extended then just use the inner
1124 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1125 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1126 else if (subreg_lowpart_p (use_reg
))
1128 use_insn
= DF_REF_INSN (use
);
1129 src
= SET_SRC (def_set
);
1130 if ((GET_CODE (src
) == ZERO_EXTEND
1131 || GET_CODE (src
) == SIGN_EXTEND
)
1132 && REG_P (XEXP (src
, 0))
1133 && GET_MODE (XEXP (src
, 0)) == use_mode
1134 && !free_load_extend (src
, def_insn
)
1135 && all_uses_available_at (def_insn
, use_insn
))
1136 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1143 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1146 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1148 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1152 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1154 src
= SET_SRC (def_set
);
1155 use_pat
= PATTERN (use_insn
);
1157 /* In __asm don't replace if src might need more registers than
1158 reg, as that could increase register pressure on the __asm. */
1159 use_vec
= DF_INSN_USES (def_insn
);
1160 if (use_vec
[0] && use_vec
[1])
1163 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1164 asm_operands
= NULL_RTX
;
1165 switch (GET_CODE (use_pat
))
1168 asm_operands
= use_pat
;
1171 if (MEM_P (SET_DEST (use_pat
)))
1173 loc
= &SET_DEST (use_pat
);
1174 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1176 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1178 asm_operands
= SET_SRC (use_pat
);
1181 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1182 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1184 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1186 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1187 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1190 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1192 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1194 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1195 asm_operands
= XVECEXP (use_pat
, 0, i
);
1201 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1202 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1204 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1205 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1207 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1210 if (num_changes_pending () == 0 || !apply_change_group ())
1217 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1221 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1223 rtx use_insn
= DF_REF_INSN (use
);
1224 rtx use_set
= single_set (use_insn
);
1225 rtx src
, reg
, new_rtx
, *loc
;
1227 enum machine_mode mode
;
1230 if (INSN_CODE (use_insn
) < 0)
1231 asm_use
= asm_noperands (PATTERN (use_insn
));
1233 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1236 /* Do not propagate into PC, CC0, etc. */
1237 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1240 /* If def and use are subreg, check if they match. */
1241 reg
= DF_REF_REG (use
);
1242 if (GET_CODE (reg
) == SUBREG
1243 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1244 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1245 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1248 /* Check if the def had a subreg, but the use has the whole reg. */
1249 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1252 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1253 previous case, the optimization is possible and often useful indeed. */
1254 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1255 reg
= SUBREG_REG (reg
);
1257 /* Check if the substitution is valid (last, because it's the most
1258 expensive check!). */
1259 src
= SET_SRC (def_set
);
1260 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1263 /* Check if the def is loading something from the constant pool; in this
1264 case we would undo optimization such as compress_float_constant.
1265 Still, we can set a REG_EQUAL note. */
1266 if (MEM_P (src
) && MEM_READONLY_P (src
))
1268 rtx x
= avoid_constant_pool_reference (src
);
1269 if (x
!= src
&& use_set
)
1271 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1272 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1273 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1274 if (old_rtx
!= new_rtx
)
1275 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1281 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1283 /* Else try simplifying. */
1285 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1287 loc
= &SET_DEST (use_set
);
1288 set_reg_equal
= false;
1292 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1293 set_reg_equal
= false;
1297 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1298 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1299 loc
= &XEXP (note
, 0);
1301 loc
= &SET_SRC (use_set
);
1303 /* Do not replace an existing REG_EQUAL note if the insn is not
1304 recognized. Either we're already replacing in the note, or
1305 we'll separately try plugging the definition in the note and
1307 set_reg_equal
= (note
== NULL_RTX
);
1310 if (GET_MODE (*loc
) == VOIDmode
)
1311 mode
= GET_MODE (SET_DEST (use_set
));
1313 mode
= GET_MODE (*loc
);
1315 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1316 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1321 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1325 /* Given a use USE of an insn, if it has a single reaching
1326 definition, try to forward propagate it into that insn. */
1329 forward_propagate_into (df_ref use
)
1332 rtx def_insn
, def_set
, use_insn
;
1335 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1337 if (DF_REF_IS_ARTIFICIAL (use
))
1340 /* Only consider uses that have a single definition. */
1341 def
= get_def_for_use (use
);
1344 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1346 if (DF_REF_IS_ARTIFICIAL (def
))
1349 /* Do not propagate loop invariant definitions inside the loop. */
1350 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1353 /* Check if the use is still present in the insn! */
1354 use_insn
= DF_REF_INSN (use
);
1355 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1356 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1358 parent
= PATTERN (use_insn
);
1360 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1363 def_insn
= DF_REF_INSN (def
);
1364 if (multiple_sets (def_insn
))
1366 def_set
= single_set (def_insn
);
1370 /* Only try one kind of propagation. If two are possible, we'll
1371 do it on the following iterations. */
1372 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1373 forward_propagate_subreg (use
, def_insn
, def_set
);
1381 calculate_dominance_info (CDI_DOMINATORS
);
1383 /* We do not always want to propagate into loops, so we have to find
1384 loops and be careful about them. But we have to call flow_loops_find
1385 before df_analyze, because flow_loops_find may introduce new jump
1386 insns (sadly) if we are not working in cfglayout mode. */
1387 loop_optimizer_init (0);
1389 build_single_def_use_links ();
1390 df_set_flags (DF_DEFER_INSN_RESCAN
);
1396 loop_optimizer_finalize ();
1398 VEC_free (df_ref
, heap
, use_def_ref
);
1399 free_dominance_info (CDI_DOMINATORS
);
1401 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1405 "\nNumber of successful forward propagations: %d\n\n",
1410 /* Main entry point. */
1415 return optimize
> 0 && flag_forward_propagate
;
1425 /* Go through all the uses. update_df will create new ones at the
1426 end, and we'll go through them as well.
1428 Do not forward propagate addresses into loops until after unrolling.
1429 CSE did so because it was able to fix its own mess, but we are not. */
1431 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1433 df_ref use
= DF_USES_GET (i
);
1435 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1436 || DF_REF_BB (use
)->loop_father
== NULL
1437 /* The outer most loop is not really a loop. */
1438 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1439 forward_propagate_into (use
);
1446 struct rtl_opt_pass pass_rtl_fwprop
=
1450 "fwprop1", /* name */
1451 gate_fwprop
, /* gate */
1452 fwprop
, /* execute */
1455 0, /* static_pass_number */
1456 TV_FWPROP
, /* tv_id */
1457 0, /* properties_required */
1458 0, /* properties_provided */
1459 0, /* properties_destroyed */
1460 0, /* todo_flags_start */
1461 TODO_df_finish
| TODO_verify_rtl_sharing
|
1462 TODO_dump_func
/* todo_flags_finish */
1472 /* Go through all the uses. update_df will create new ones at the
1473 end, and we'll go through them as well. */
1474 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1476 df_ref use
= DF_USES_GET (i
);
1478 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1479 && DF_REF_BB (use
)->loop_father
!= NULL
1480 /* The outer most loop is not really a loop. */
1481 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1482 forward_propagate_into (use
);
1490 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1494 "fwprop2", /* name */
1495 gate_fwprop
, /* gate */
1496 fwprop_addr
, /* execute */
1499 0, /* static_pass_number */
1500 TV_FWPROP
, /* tv_id */
1501 0, /* properties_required */
1502 0, /* properties_provided */
1503 0, /* properties_destroyed */
1504 0, /* todo_flags_start */
1505 TODO_df_finish
| TODO_verify_rtl_sharing
|
1506 TODO_dump_func
/* todo_flags_finish */