PR ipa/83051
[official-gcc.git] / gcc / testsuite / gfortran.dg / norm2_3.f90
bloba1a3b3f45bda756f6b5f91c02e33bfe90d6acf4c
1 ! { dg-do run }
2 ! { dg-require-effective-target fortran_large_real }
5 ! PR fortran/33197
7 ! Check implementation of L2 norm (Euclidean vector norm)
9 implicit none
11 integer,parameter :: qp = selected_real_kind (precision (0.0d0)+1)
13 real(qp) :: a(3) = [real(qp) :: 1, 2, huge(3.0_qp)]
14 real(qp) :: b(3) = [real(qp) :: 1, 2, 3]
15 real(qp) :: c(4) = [real(qp) :: 1, 2, 3, -1]
16 real(qp) :: e(0) = [real(qp) :: ]
17 real(qp) :: f(4) = [real(qp) :: 0, 0, 3, 0 ]
19 real(qp) :: d(4,1) = RESHAPE ([real(qp) :: 1, 2, 3, -1], [4,1])
20 real(qp) :: g(4,1) = RESHAPE ([real(qp) :: 0, 0, 4, -1], [4,1])
22 ! Check compile-time version
24 if (abs (NORM2 ([real(qp) :: 1, 2, huge(3.0_qp)]) - huge(3.0_qp)) &
25 > epsilon(0.0_qp)*huge(3.0_qp)) call abort()
27 if (abs (SNORM2([real(qp) :: 1, 2, huge(3.0_qp)],3) - huge(3.0_qp)) &
28 > epsilon(0.0_qp)*huge(3.0_qp)) call abort()
30 if (abs (SNORM2([real(qp) :: 1, 2, 3],3) - NORM2([real(qp) :: 1, 2, 3])) &
31 > epsilon(0.0_qp)*SNORM2([real(qp) :: 1, 2, 3],3)) call abort()
33 if (NORM2([real(qp) :: ]) /= 0.0_qp) call abort()
34 if (abs (NORM2([real(qp) :: 0, 0, 3, 0]) - 3.0_qp) > epsilon(0.0_qp)) call abort()
36 ! Check TREE version
38 if (abs (NORM2 (a) - huge(3.0_qp)) &
39 > epsilon(0.0_qp)*huge(3.0_qp)) call abort()
41 if (abs (SNORM2(b,3) - NORM2(b)) &
42 > epsilon(0.0_qp)*SNORM2(b,3)) call abort()
44 if (abs (SNORM2(c,4) - NORM2(c)) &
45 > epsilon(0.0_qp)*SNORM2(c,4)) call abort()
47 if (ANY (abs (abs(d(:,1)) - NORM2(d, 2)) &
48 > epsilon(0.0_qp))) call abort()
50 ! Check libgfortran version
52 if (ANY (abs (SNORM2(d,4) - NORM2(d, 1)) &
53 > epsilon(0.0_qp)*SNORM2(d,4))) call abort()
55 if (abs (SNORM2(f,4) - NORM2(f, 1)) &
56 > epsilon(0.0_qp)*SNORM2(d,4)) call abort()
58 if (ANY (abs (abs(g(:,1)) - NORM2(g, 2)) &
59 > epsilon(0.0_qp))) call abort()
61 contains
62 ! NORM2 algorithm based on BLAS, cf.
63 ! http://www.netlib.org/blas/snrm2.f
64 REAL(qp) FUNCTION SNORM2 (X,n)
65 INTEGER, INTENT(IN) :: n
66 REAL(qp), INTENT(IN) :: X(n)
68 REAL(qp) :: absXi, scale, SSQ
69 INTEGER :: i
71 INTRINSIC :: ABS, SQRT
73 IF (N < 1) THEN
74 snorm2 = 0.0_qp
75 ELSE IF (N == 1) THEN
76 snorm2 = ABS(X(1))
77 ELSE
78 scale = 0.0_qp
79 SSQ = 1.0_qp
81 DO i = 1, N
82 IF (X(i) /= 0.0_qp) THEN
83 absXi = ABS(X(i))
84 IF (scale < absXi) THEN
85 SSQ = 1.0_qp + SSQ * (scale/absXi)**2
86 scale = absXi
87 ELSE
88 SSQ = SSQ + (absXi/scale)**2
89 END IF
90 END IF
91 END DO
92 snorm2 = scale * SQRT(SSQ)
93 END IF
94 END FUNCTION SNORM2
95 end